WO2020220482A1 - 冷媒系统和空调器 - Google Patents

冷媒系统和空调器 Download PDF

Info

Publication number
WO2020220482A1
WO2020220482A1 PCT/CN2019/097381 CN2019097381W WO2020220482A1 WO 2020220482 A1 WO2020220482 A1 WO 2020220482A1 CN 2019097381 W CN2019097381 W CN 2019097381W WO 2020220482 A1 WO2020220482 A1 WO 2020220482A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
heat exchanger
compressor
refrigerant system
refrigerant
Prior art date
Application number
PCT/CN2019/097381
Other languages
English (en)
French (fr)
Inventor
苏仁杰
侯泽飞
杨晓东
王庆仙
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2020220482A1 publication Critical patent/WO2020220482A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • This application relates to the technical field of household appliances manufacturing, and in particular to a refrigerant system and an air conditioner with the refrigerant system.
  • the air supplement method of the air supplement system in the air-jet enthalpy compressor of the air conditioner includes: controlling the closing of the air supplement system by adding a solenoid valve to the air supplement system pipeline, and the compressor is connected to the air supplement pipeline but there is no air supplement pipeline. Any control device. Neither of these two methods can solve the problem of liquid entrainment in the air supply pipeline, and it is easy to cause liquid hammer in the compressor. The safety performance of the compressor is poor, and there is room for improvement.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, the present application proposes a refrigerant system, which can effectively solve the problem of liquid in the air supplement pipeline and prevent the phenomenon of liquid hammer in the compressor.
  • the refrigerant system includes: a compressor having an exhaust port, an air return port, and an air supplement port; an outdoor heat exchanger and an indoor heat exchanger, and the first end of the outdoor heat exchanger is connected to The exhaust port is in communication with one of the return air ports, and the first end of the indoor heat exchanger is in communication with the other of the exhaust port and the return air port; a gas-liquid separator, the The gas-liquid separator includes a first interface, a gas outlet, and a second interface.
  • a first throttling element is connected in series between the first interface and the second end of the outdoor heat exchanger, and the second interface is connected to the A second throttling element is connected in series between the second ends of the indoor heat exchanger; a heat exchange refrigerant element that exchanges heat with the compressor shell, and both ends of the heat exchange refrigerant element are connected to the gas outlet and The supplementary air ports are connected.
  • the air flow in the supplemental gas pipeline is heated and evaporated by the thermal energy of the compressor, which effectively prevents the supplementary gas pipeline from entering the compressor with liquid, reducing the risk of liquid hammer, and at the same time, using the thermal energy of the compressor to improve Energy efficiency reduces input costs.
  • This application also proposes an air conditioner.
  • the air conditioner according to the embodiment of the present application includes the refrigerant system described in any of the above embodiments.
  • Fig. 1 is a schematic structural diagram of a refrigerant system according to an embodiment of the present application.
  • Compressor 1 exhaust port 11, return port 12, supplementary port 13,
  • Gas-liquid separator 3 first interface 31, second interface 32, gas outlet 33,
  • Reversing assembly 5 first valve port 51, second valve port 52, third valve port 53, fourth valve port 54,
  • the first throttle element 61, the second throttle element 62, and the control valve 63 are connected to The first throttle element 61, the second throttle element 62, and the control valve 63.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the refrigerant system 100 is used for cooling or heating indoors, and the compressor 1 of the refrigerant system 100 is provided with a supplemental gas pipeline, which can be based on actual operating conditions Choose to disconnect or unblock, and the heat generated during the operation of compressor 1 can be used to heat the medium in the air supply line to reduce the content of liquid in the air supply line, prevent liquid hammer from compressor 1, and improve compression The safety of air supplement process of machine 1.
  • the refrigerant system 100 includes a compressor 1, an outdoor heat exchanger 21, an indoor heat exchanger 22, a gas-liquid separator 3, and a heat exchange refrigerant element 4.
  • the compressor 1 has an exhaust port 11, an air return port 12, and a supplementary air port 13.
  • the exhaust port 11, the return air port 12 and the supplementary air port 13 are spaced apart, and can all be located at the same end of the compressor 1. , To facilitate the arrangement of external pipelines.
  • the exhaust port 11 and the return port 12 can be kept unblocked during the operation of the compressor 1, so that the internal working cavity of the compressor 1 is connected with the external pipeline to form a circulation loop, and the compressor 1 can be continuously output. High temperature or low temperature medium, and then realize the role of cooling or heating.
  • Both the outdoor heat exchanger 21 and the indoor heat exchanger 22 have internal heat exchange pipes.
  • the heat exchange medium in the refrigerant system 100 flows through the internal heat exchange pipes of the outdoor heat exchanger 21
  • the heat exchange medium exchanges with the outdoor atmosphere.
  • the heat exchange medium in the refrigerant system 100 flows through the internal heat exchange pipes of the indoor heat exchanger 22
  • the heat exchange medium exchanges heat with the indoor air flow.
  • the outdoor heat exchanger 21 is installed outdoors and the indoor heat exchanger 22 is installed In the room.
  • the first end of the outdoor heat exchanger 21 is in communication with one of the exhaust port 11 and the return port 12. That is, the first end of the outdoor heat exchanger 21 can be in communication with the exhaust port 11.
  • the first end of the heat exchanger 21 can also be in communication with the air return port 12;
  • the first end of the indoor heat exchanger 22 is in communication with the other of the exhaust port 11 and the air return port 12, that is, the first end of the indoor heat exchanger 22 can be In communication with the exhaust port 11, the first end of the indoor heat exchanger 22 may also be in communication with the return port 12.
  • the first end of the outdoor heat exchanger 21 is in communication with the exhaust port 11, and the first end of the indoor heat exchanger 22 is in communication with the return port 12, so that the heat exchange medium discharged from the compressor 1 is discharged
  • the air port 11 is discharged and flows into the outdoor heat exchanger 21 through the first end of the outdoor heat exchanger 21, and then flows from the second end of the outdoor heat exchanger 21 to the second end of the indoor heat exchanger 22, and then flows into the indoor heat exchanger.
  • the first end of the outdoor heat exchanger 21 is in communication with the air return port 12, and the first end of the indoor heat exchanger 22 is in communication with the exhaust port 11, so that the heat exchange medium discharged from the compressor 1 is
  • the exhaust port 11 is discharged and flows into the indoor heat exchanger 22 through the first end of the indoor heat exchanger 22, and then flows from the second end of the indoor heat exchanger 22 to the second end of the outdoor heat exchanger 21, and then flows into the outdoor In the heat exchanger 21, it finally flows back from the first end of the outdoor heat exchanger 21 to the air return port 12, and returns to the compressor 1, forming compressor 1-exhaust port 11-indoor heat exchanger 22-outdoor heat exchange
  • the device 21-the air return port 12-the circulation circuit of the compressor 1, and the circulation circuit can be applied to the refrigerant system 100 to heat the indoor environment.
  • the gas-liquid separator 3 is used to perform gas-liquid separation of the heat exchange medium in the circulation loop of the refrigerant system 100, so as to separate the gas in the heat exchange medium and supplement it to the compressor 1 through the gas supplement line.
  • the separator 3 is a flash evaporator.
  • the gas-liquid separator 3 includes a first interface 31, a gas outlet 33 and a second interface 32.
  • the first interface 31 communicates with the second end of the outdoor heat exchanger 21, and a first throttling element 61 is connected in series between the first interface 31 and the second end of the outdoor heat exchanger 21, and the first throttling element 61 is used for
  • the flow rate of the heat exchange medium between the first interface 31 and the second end of the outdoor heat exchanger 21 is controlled, thereby controlling the circulation efficiency of the heat exchange medium of the refrigerant system 100.
  • the second interface 32 communicates with the second end of the indoor heat exchanger 22, and a second throttling element 62 is connected in series between the second interface 32 and the second end of the indoor heat exchanger 22, and the second throttling element 62 is used for
  • the flow of heat exchange medium between the second interface 32 and the second end of the indoor heat exchanger 22 is controlled, so that the first throttling element 61 and the second throttling element 62 can effectively control the heat exchange in the refrigerant system 100
  • the circulation efficiency of the medium is controlled, so that the first throttling element 61 and the second throttling element 62 can effectively control the heat exchange in the refrigerant system 100 The circulation efficiency of the medium.
  • the first throttle element 61 and the second throttle element 62 can both be electronic expansion valves. In this way, the first throttle element 61 and the second throttle element 62 can both be controlled and adjusted by an external controller, or according to The preset program is automatically adjusted to enhance the convenience of control of the refrigerant system 100 and the degree of automation.
  • the gas-liquid separator 3 is connected to the outdoor heat exchanger 21 and the indoor heat exchanger 22 through the first interface 31 and the second interface 32, respectively, and then connected in series with the main flow path of the refrigerant system 100, and the gas-liquid separator 3 can separate the gas and liquid in the main flow path, and make the liquid continue to circulate in the main flow path, and the separated gas exits the gas-liquid separator 3 from the gas outlet 33.
  • the heat exchange refrigerant element 4 exchanges heat with the casing of the compressor 1, and the two ends of the heat exchange refrigerant element 4 are respectively connected to the gas outlet 33 and the supplemental gas port 13, so that the gas-liquid separator 3 is connected to the gas outlet
  • the discharged gas at 33 enters the heat exchange refrigerant element 4 and exchanges heat with the casing of the compressor 1 in the heat exchange refrigerant element 4.
  • the heat exchanged gas enters the working chamber of the compressor 1 from the air supply port 13.
  • the heat exchange refrigerant element 4 may be a regenerative heat exchanger, which can fully exchange heat with the compressor 1 and has the effect of damping and buffering.
  • the heat exchange refrigerant element 4 can be wound on the shell of the compressor 1 so that the heat exchange refrigerant element 4 can fully exchange heat with the shell of the compressor 1 to improve heat exchange efficiency and reduce heat loss. Moreover, the heat exchange refrigerant element 4 does not need a separate space for installation, which effectively reduces the overall volume of the refrigerant system 100 and facilitates the overall installation and arrangement of the refrigerant system 100.
  • a heat-conducting flexible piece is provided between the heat exchange refrigerant element 4 and the casing of the compressor 1, and the flexible piece can realize effective heat transfer between the heat exchange refrigerant element 4 and the casing of the compressor 1, and simultaneously The function of buffering and vibration reduction prevents the heat exchange refrigerant element 4 from being rigidly contacted with the casing of the compressor 1 when the refrigerant system 100 vibrates, and improves the safety of the operation of the refrigerant system 100.
  • the flexible member may be a rubber collar sleeved on the casing of the compressor 1.
  • the air flow in the supplemental gas pipeline is heated by the heat energy generated by the compressor 1 in the heat exchange refrigerant element 4 to prevent the supplementary gas pipeline from entering the compressor 1 with liquid, reducing the risk of liquid hammer, and making full use of the compressor 1
  • the waste heat improves energy efficiency, no separate heating equipment is required, and the operating cost of the refrigerant system 100 is reduced, which is beneficial to product development.
  • the air flow in the supplemental gas pipeline is heated and evaporated by the thermal energy of the compressor 1, which effectively prevents the supplementary pipeline from entering the compressor 1 with liquid, reducing the risk of liquid hammer, and at the same time utilizes the compressor 1. Heat energy, improve energy efficiency and reduce input costs.
  • the refrigerant system 100 further includes a control valve 63.
  • the control valve 63 is connected in series between the heat exchange refrigerant element 4 and the gas outlet 33, that is, the inlet end of the control valve 63 communicates with the gas outlet 33, and the outlet end of the control valve 63 communicates with the inlet end of the heat exchange refrigerant element 4; or the control valve 63 is connected in series between the heat exchange refrigerant element 4 and the air supplement port 13, that is, the inlet end of the control valve 63 communicates with the outlet end of the heat exchange refrigerant element 4, and the outlet end of the control valve 63 communicates with the air supplement port 13.
  • the installation of the control valve 63 The location can be selectively arranged according to actual space needs.
  • control valve 63 is connected in series between the heat exchange refrigerant element 4 and the gas outlet 33.
  • control valve 63 is connected in series to the supplemental gas pipeline of the refrigerant system 100 and can be switched on and off by the switchable control valve 63
  • the on and off of the air supplement pipeline for state adjustment realizes the effect of air supplement on the compressor 1, which is convenient for switching between different operating states.
  • control valve 63 is a solenoid valve. In this way, the operator can control the current input or disconnection of the solenoid valve to switch the working state of the control valve 63, which is easy to operate and easy to achieve.
  • the refrigerant system 100 further includes a reversing assembly 5.
  • the reversing assembly 5 is a four-way valve, that is, the reversing assembly 5 includes a first valve port 51, a second valve port 52, a third valve port 53 and a fourth valve port 54, wherein the first valve port 51 and the second valve port Port 52 communicates with one of the third valve port 53, the fourth valve port 54 communicates with the other of the second valve port 52 and the third valve port 53, the first valve port 51 is connected with the exhaust port 11,
  • the second valve port 52 is connected to the first end of the outdoor heat exchanger 21, the third valve port 53 is connected to the first end of the indoor heat exchanger 22, and the fourth valve port 54 is connected to the return air port 12.
  • the communication state of the first valve port 51, the second valve port 52, the third valve port 53, and the fourth valve port 54 can be selected according to the operating mode of the refrigerant system 100 to select the flow path of the heat exchange medium.
  • the refrigerant system 100 has a heating mode and a cooling mode.
  • the first valve port 51 is connected to the exhaust port 11
  • the first valve port 51 is connected to the third valve port 53
  • the third valve port 53 is connected to the indoor heat exchanger 22.
  • the first end is connected
  • the second valve port 52 is in communication with the fourth valve port 54
  • the fourth valve port 54 is in communication with the air return port 12
  • the first port 31 of the gas-liquid separator 3 is in communication with the second end of the outdoor heat exchanger 21
  • the second interface 32 of the gas-liquid separator 3 is in communication with the second end of the indoor heat exchanger 22.
  • the heat exchange medium in the main flow path flows from the discharge port 11 of the compressor 1-the first valve port 51-the third valve port 53-the indoor heat exchanger 22-the gas-liquid separator 3-the outdoor heat exchanger 21-the second The second valve port 52-the fourth valve port 54-the air return port 12 of the compressor 1 realizes the main flow circulation of the heating mode.
  • the control valve 63 When it is detected that the outdoor environment temperature is lower than the first set temperature, the control valve 63 is opened, the gas outlet 33 of the gas-liquid separator 3 communicates with the heat exchange refrigerant element 4, and the gas separated in the gas-liquid separator 3 enters the heat exchange
  • the refrigerant element 4 exchanges heat with the casing of the compressor 1 to achieve heating, and then enters the working cavity of the compressor 1 through the air supplement 13.
  • the heat exchange medium in the refrigerant system 100 is returned to the compressor 1 in two ways, and the two refrigerants are compressed while being mixed in the cavity of the compressor 1, and finally discharged from the exhaust port 11 of the compressor 1 and enters The next cycle.
  • the gas entering the compressor 1 through the supplemental port 13 has no liquid or a very small liquid content, which reduces the risk of liquid hammer, and at the same time makes full use of the waste heat of the compressor 1 to improve energy efficiency.
  • the control valve 63 When it is detected that the outdoor environment temperature is not lower than the first set temperature, the control valve 63 is closed, the gas outlet 33 of the gas-liquid separator 3 is disconnected from the heat exchange refrigerant element 4, and the heat exchange medium in the refrigerant system 100 passes through the main flow
  • the circuit returns to the compressor 1 to realize circulation.
  • the control valve 63 is opened, and when the outdoor ambient temperature value is not less than T1, the control valve 63 is closed.
  • the first valve port 51 is connected to the exhaust port 11
  • the first valve port 51 is connected to the second valve port 52
  • the second valve port 52 is connected to the first valve port of the outdoor heat exchanger 21.
  • One end is connected
  • the third valve port 53 is connected with the fourth valve port 54
  • the third valve port 53 is connected with the indoor heat exchanger 22
  • the fourth valve port 54 is connected with the return air port 12
  • the first port of the gas-liquid separator 3 31 is in communication with the second end of the outdoor heat exchanger 21
  • the second interface 32 of the gas-liquid separator 3 is in communication with the second end of the indoor heat exchanger 22.
  • the control valve 63 When the detected outdoor ambient temperature is higher than the second set temperature, the control valve 63 is opened, the gas outlet 33 of the gas-liquid separator 3 is connected to the heat exchange refrigerant element 4, and the gas separated in the gas-liquid separator 3 enters the heat exchange
  • the refrigerant element 4 exchanges heat with the casing of the compressor 1 to achieve heating, and then enters the working cavity of the compressor 1 through the air supplement 13.
  • the heat exchange medium in the refrigerant system 100 is returned to the compressor 1 in two ways, and the two refrigerants are compressed while being mixed in the cavity of the compressor 1, and finally discharged from the exhaust port 11 of the compressor 1 and enters The next cycle.
  • the gas entering the compressor 1 through the supplemental port 13 has no liquid or a very small liquid content, which reduces the risk of liquid hammer, and at the same time makes full use of the waste heat of the compressor 1 to improve energy efficiency.
  • the control valve 63 When it is detected that the outdoor ambient temperature is not higher than the second set temperature, the control valve 63 is closed, the gas outlet 33 of the gas-liquid separator 3 is disconnected from the heat exchange refrigerant element 4, and the heat exchange medium in the refrigerant system 100 passes through the main flow
  • the circuit returns to the compressor 1 to realize circulation.
  • This application also proposes an air conditioner.
  • the air conditioner according to the embodiment of the present application includes the refrigerant system 100 of any of the above embodiments, and the air flow in the supplemental gas pipeline is heated and evaporated by the thermal energy of the compressor 1, which effectively prevents the supplementary pipeline from carrying liquid into the compressor 1.
  • the risk of liquid shock is reduced, and the heat energy of the compressor 1 is used to improve energy efficiency, reduce input costs, improve the safety performance of the air conditioner, and reduce the overall cost of the air conditioner.
  • the refrigerant system includes: a compressor having an exhaust port, an air return port, and an air supplement port; an outdoor heat exchanger and an indoor heat exchanger, and the first end of the outdoor heat exchanger is connected to The exhaust port is in communication with one of the return air ports, and the first end of the indoor heat exchanger is in communication with the other of the exhaust port and the return air port; a gas-liquid separator, the The gas-liquid separator includes a first interface, a gas outlet, and a second interface.
  • a first throttling element is connected in series between the first interface and the second end of the outdoor heat exchanger, and the second interface is connected to the A second throttling element is connected in series between the second ends of the indoor heat exchanger; a heat exchange refrigerant element that exchanges heat with the compressor shell, and both ends of the heat exchange refrigerant element are connected to the gas outlet and The supplementary air ports are connected.
  • the refrigerant system further includes a control valve connected in series between the heat exchange refrigerant element and the gas outlet or between the heat exchange refrigerant element and the air supplement port .
  • the refrigerant system has a heating mode.
  • the control valve In the heating mode, when the outdoor ambient temperature is detected to be lower than the first set temperature, the control valve is controlled to open. When the outdoor environment temperature is not lower than the first set temperature, the control valve is controlled to close.
  • the refrigerant system has a cooling mode.
  • the control valve In the cooling mode, when the outdoor environment temperature is detected to be higher than the second set temperature, the control valve is controlled to open, and when the outdoor environment is detected When the temperature is not higher than the second set temperature, the control valve is controlled to close.
  • control valve is connected in series between the heat exchange refrigerant element and the gas outlet, and the control valve is a solenoid valve.
  • the heat exchange refrigerant element is wound on the casing of the compressor.
  • a heat-conducting flexible member is provided between the heat exchange refrigerant element and the casing of the compressor.
  • the heat exchange refrigerant element is a regenerative heat exchanger.
  • the refrigerant system further includes a reversing assembly, the reversing assembly includes a first valve port, a second valve port, a third valve port, and a fourth valve port.
  • the second valve port is in communication with one of the third valve port
  • the fourth valve port is in communication with the other of the second valve port and the third valve port
  • the first valve port is in communication with the The exhaust port is connected
  • the second valve port is connected to the first end of the outdoor heat exchanger
  • the third valve port is connected to the first end of the indoor heat exchanger
  • the fourth valve port is Connected with the return air port.
  • This application also proposes an air conditioner.
  • the air conditioner according to the embodiment of the present application includes the refrigerant system described in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种冷媒系统(100)和空调器,冷媒系统(100)包括:压缩机(1),压缩机(1)具有排气口(11)、回气口(12)和补气口(13);室外换热器(21)和室内换热器(22),室外换热器(21)的第一端与排气口(11)和回气口(12)中的其中一个连通,室内换热器(22)的第一端与排气口(11)和回气口(12)中的另一个连通;气液分离器(3),气液分离器(3)包括第一接口(31)、气体出口(33)和第二接口(32),第一接口(31)与室外换热器(21)的第二端之间串联有第一节流元件(61),第二接口(32)与室内换热器(22)的第二端之间串联有第二节流元件(62);与压缩机(1)的外壳进行换热的换热冷媒元件(4)。

Description

冷媒系统和空调器
相关申请的交叉引用
本申请要求广东美的制冷设备有限公司、美的集团股份有限公司于2019年4月30日提交的、发明名称为“冷媒系统和空调器”的中国专利申请号“201910359188.1”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及家用电器制造技术领域,尤其涉及一种冷媒系统和具有该冷媒系统的空调器。
背景技术
在空调器使用的过程中,需要向压缩机中补充气体。目前空调的喷气增焓压缩机中补气系统的补气方法包括:通过在补气系统管路加上电磁阀来控制补气系统的关闭,以及压缩机连接补气管路但补气管路中无任何控制装置。这两种方法均无法解决补气管路带液现象,极易造成压缩机内液击的情况,压缩机的安全性能较差,存在改进的空间。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种冷媒系统,所述冷媒系统能够有效地解决补气管路带液的问题,防止压缩机内出现液击的现象。
根据本申请实施例的冷媒系统,包括:压缩机,所述压缩机具有排气口、回气口和补气口;室外换热器和室内换热器,所述室外换热器的第一端与所述排气口和所述回气口中的其中一个连通,所述室内换热器的第一端与所述排气口和所述回气口中的另一个连通;气液分离器,所述气液分离器包括第一接口、气体出口和第二接口,所述第一接口与所述室外换热器的第二端之间串联有第一节流元件,所述第二接口与所述室内换热器的第二端之间串联有第二节流元件;与所述压缩机的外壳进行换热的换热冷媒元件,所述换热冷媒元件的两端分别与所述气体出口和所述补气口相连。
根据本申请实施例的冷媒系统,补气管路中的气流利用压缩机的热能进行加热蒸发,有效地防止补气管路带液进入压缩机,减少液击的风险,同时利用压缩机的热能,提高能效,降低投入成本。
本申请还提出了一种空调器。
根据本申请实施例的空调器,包括上述任一种实施例所述的冷媒系统。
所述空调器和上述的冷媒系统相对于现有技术所具有的优势相同,在此不再赘述。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的冷媒系统的结构示意图。
附图标记:
冷媒系统100,
压缩机1,排气口11,回气口12,补气口13,
室外换热器21,室内换热器22,
气液分离器3,第一接口31,第二接口32,气体出口33,
换热冷媒元件4,
换向组件5,第一阀口51,第二阀口52,第三阀口53,第四阀口54,
第一节流元件61,第二节流元件62,控制阀63。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术 语在本申请中的具体含义。
下面参考图1描述根据本申请实施例的冷媒系统100,该冷媒系统100用于向室内制冷或制热,且冷媒系统100的压缩机1设有补气管路,补气管路可根据实际运行状态选择断开或畅通,且可利用压缩机1运行过程中产生的热量对补气管路中的介质进行加热,以减少补气管路中液体的含量,防止造成压缩机1液击的情况,提高压缩机1补气过程的安全性。
如图1所示,根据本申请一些实施例的冷媒系统100,冷媒系统100包括压缩机1、室外换热器21、室内换热器22、气液分离器3和换热冷媒元件4。
如图1所示,压缩机1具有排气口11、回气口12和补气口13,排气口11、回气口12和补气口13间隔开设置,且可均设于压缩机1的同一端,以便于外接管路的排布。
其中,排气口11和回气口12在压缩机1运行的过程中均可保持畅通的状态,以使压缩机1内部工作腔与外部管路连通形成循环回路,保证压缩机1能够持续地输出高温或低温介质,进而实现制冷或制热的作用。
室外换热器21和室内换热器22均具有内部换热管路,冷媒系统100中的换热介质流经室外换热器21的内部换热管路时,换热介质与室外大气进行换热,冷媒系统100中的换热介质流经室内换热器22的内部换热管路时,换热介质与室内气流进行换热,室外换热器21安装于室外,室内换热器22安装于室内。
如图1所示,室外换热器21的第一端与排气口11和回气口12中的其中一个连通,即室外换热器21的第一端可与排气口11连通,室外换热器21的第一端也可与回气口12连通;室内换热器22的第一端与排气口11和回气口12中的另一个连通,即室内换热器22的第一端可与排气口11连通,室内换热器22的第一端也可与回气口12连通。
如在一些实施例中,室外换热器21的第一端与排气口11连通,室内换热器22的第一端与回气口12连通,这样,压缩机1排出的换热介质由排气口11排出,并经室外换热器21的第一端流入室外换热器21中,再由室外换热器21的第二端流向室内换热器22的第二端,进而流入室内换热器22中,最后从室内换热器22的第一端流回至回气口12,回流至压缩机1内,形成压缩机1-排气口11-室外换热器21-室内换热器22-回气口12-压缩机1的循环回路,且该循环回路可应用于冷媒系统100对室内环境制冷。
如在另一些实施例中,室外换热器21的第一端与回气口12连通,室内换热器22的第一端与排气口11连通,这样,压缩机1排出的换热介质由排气口11排出,并经室内换热器22的第一端流入室内换热器22中,再由室内换热器22的第二端流向室外换热器21的第二端,进而流入室外换热器21中,最后从室外换热器21的第一端流回至回气口12,回流至压缩机1内,形成压缩机1-排气口11-室内换热器22-室外换热器21-回气口12-压缩 机1的循环回路,且该循环回路可应用于冷媒系统100对室内环境制热。
气液分离器3用于对冷媒系统100的循环回路中的换热介质进行气液分离,以将换热介质中的气体分离出来并通过补气管路补充到压缩机1中,其中,气液分离器3为闪蒸器。
如图1所示,气液分离器3包括第一接口31、气体出口33和第二接口32。
第一接口31与室外换热器21的第二端连通,且第一接口31与室外换热器21的第二端之间串联有第一节流元件61,第一节流元件61用于控制第一接口31与室外换热器21的第二端之间换热介质的流通量,进而控制冷媒系统100的换热介质的循环效率。
第二接口32与室内换热器22的第二端连通,且第二接口32与室内换热器22的第二端之间串联有第二节流元件62,第二节流元件62用于控制第二接口32与室内换热器22的第二端之间换热介质的流通量,由此,通过第一节流元件61和第二节流元件62可有效控制冷媒系统100中换热介质的循环效率。
其中,第一节流元件61和第二节流元件62可均为电子膨胀阀,这样,第一节流元件61和第二节流元件62可均通过外部控制器进行控制和调节,或者按照预设程序进行自动调节,提升冷媒系统100控制的便捷性,提升自动化程度。
由此,气液分离器3通过第一接口31、第二接口32分别与室外换热器21和室内换热器22接通,进而串联与冷媒系统100的主流路中,且气液分离器3可将主流路中的气体和液体分离开,并使得液体继续在主流路中循环,分离出的气体从气体出口33排出气液分离器3。
如图1所示,换热冷媒元件4与压缩机1的外壳进行换热,换热冷媒元件4的两端分别与气体出口33和补气口13相连,这样,气液分离器3由气体出口33排出的气体进入换热冷媒元件4中,并在换热冷媒元件4中与压缩机1的外壳进行换热,换热后的气体再从补气口13进入到压缩机1的工作腔中。
气体在换热冷媒元件4中与压缩机1的外壳进行换热,可使得气体中含有的液体有效地蒸发,同时使气体的整体温度更高,这样,可避免气体在从换热冷媒元件4的出口端流向压缩机1的工作腔的过程中发生液化,进而使进入压缩机1的气体中无液体或液体的含量极少,不会对压缩机1造成液击现象。其中,换热冷媒元件4可为蓄热式换热器,蓄热式换热器可与压缩机1进行充分地换热,且具有减振缓冲的效果。
其中,换热冷媒元件4可缠绕在压缩机1的外壳上,以使换热冷媒元件4可与压缩机1的外壳充分地换热,提高换热效率,减少热量损失。且换热冷媒元件4不需单独的空间进行安装,有效地减小冷媒系统100的整体体积,便于冷媒系统100的整体安装与排布。
在一些实施例中,换热冷媒元件4与压缩机1的外壳之间设有导热的柔性件,柔性件能够实现换热冷媒元件4与压缩机1的外壳之间的有效传热,同时起到缓冲、减振的作用, 防止冷媒系统100在发生振动时换热冷媒元件4与压缩机1的外壳刚性接触,提高冷媒系统100运行的安全性。其中,柔性件可为套设于压缩机1的外壳的橡胶套环。
这样,补气管路中的气流在换热冷媒元件4利用压缩机1产生的热能进行加热,避免补气管路带液进入压缩机1,减少了液击的风险,同时充分地利用压缩机1的余热,提高了能效,无需单独设置加热设备,降低了冷媒系统100的运行成本,利于产品开发。
根据本申请实施例的冷媒系统100,补气管路中的气流利用压缩机1的热能进行加热蒸发,有效地防止补气管路带液进入压缩机1,减少液击的风险,同时利用压缩机1的热能,提高能效,降低投入成本。
在一些实施例中,如图1所示,冷媒系统100还包括控制阀63。
控制阀63串联在换热冷媒元件4和气体出口33之间,即控制阀63的入口端与气体出口33连通,控制阀63的出口端与换热冷媒元件4的入口端连通;或者控制阀63串联在换热冷媒元件4和补气口13之间,即控制阀63的入口端与换热冷媒元件4的出口端连通,控制阀63的出口端与补气口13连通,控制阀63的安装位置可根据实际的空间需要进行选择性地布置。
如图1所示,控制阀63串联在换热冷媒元件4和气体出口33之间,由此,控制阀63串联于冷媒系统100的补气管路中,可通过切换的控制阀63的通断状态调节补气管路的通断,实现对压缩机1补气的作用,便于不同的运行状态切换。
其中,控制阀63为电磁阀,这样,操作人员可通过控制电磁阀的电流输入或断开,以实现对控制阀63的工作状态的切换,便于操作,易于实现作用。
在一些实施例中,如图1所示,冷媒系统100还包括换向组件5。
换向组件5为四通阀,即换向组件5包括第一阀口51、第二阀口52、第三阀口53和第四阀口54,其中,第一阀口51与第二阀口52和第三阀口53中的其中一个连通,第四阀口54与第二阀口52和第三阀口53中的另一个连通,第一阀口51与排气口11相连,第二阀口52与室外换热器21的第一端相连,第三阀口53与室内换热器22的第一端相连,第四阀口54与回气口12相连。
可根据冷媒系统100的运行模式选择第一阀口51、第二阀口52、第三阀口53和第四阀口54的连通状态,以选择换热介质的流通路径。
根据本申请实施例的冷媒系统100,具有制热模式和制冷模式。
下面参考图1详细描述冷媒系统100的制热模式和制冷模式的运行过程。
1)在制热模式,如图1所示,第一阀口51与排气口11连通,第一阀口51与第三阀口53连通,第三阀口53与室内换热器22的第一端相连,第二阀口52与第四阀口54连通,第四阀口54与回气口12连通,气液分离器3的第一接口31与室外换热器21的第二端连 通,气液分离器3的第二接口32与室内换热器22的第二端连通。
这样,主流路中的换热介质从压缩机1的排气口11-第一阀口51-第三阀口53-室内换热器22-气液分离器3-室外换热器21-第二阀口52-第四阀口54-压缩机1的回气口12,实现制热模式的主流路循环。
当检测室外环境温度低于第一设定温度时,控制控制阀63打开,气液分离器3的气体出口33与换热冷媒元件4连通,气液分离器3中分离出的气体进入换热冷媒元件4中与压缩机1的外壳进行换热,实现加热作用,进而通过补气口13进入压缩机1的工作腔中。
由此,冷媒系统100中的换热介质分两路回流至压缩机1中,且两路冷媒在压缩机1腔体内边混合边压缩,最后再从压缩机1的排气口11排出,进入下一循环。这样,通过补气口13进入压缩机1的气体中无液体或液体含量极小,减少了液击的风险,同时充分利用压缩机1的余热,提高能效。
当检测到室外环境温度不低于第一设定温度时,控制控制阀63关闭,气液分离器3的气体出口33与换热冷媒元件4断开,冷媒系统100中的换热介质经主流路回流至压缩机1中实现循环。其中,第一设定温度值为T1,满足:0℃≤T1≤4℃,如T1=1℃,或者T1=2℃,再或者T1=3℃,由此,当室外环境温度值小于T1,控制阀63打开,当室外环境温度值不小于T1时,控制阀63关闭。
2)在制冷模式,如图1所示,第一阀口51与排气口11连通,第一阀口51与第二阀口52连通,第二阀口52与室外换热器21的第一端连通,第三阀口53与第四阀口54连通,第三阀口53与室内换热器22连通,第四阀口54与回气口12连通,气液分离器3的第一接口31与室外换热器21的第二端连通,气液分离器3的第二接口32与室内换热器22的第二端连通。
这样,主流路中的换热介质从压缩机1的排气口11-第一阀口51-第二阀口52-室外换热器21-气液分离器3-室内换热器22-第三阀口53-第四阀口54-压缩机1的回气口12,实现制冷模式的主流路循环。
当检测室外环境温度高于第二设定温度时,控制控制阀63打开,气液分离器3的气体出口33与换热冷媒元件4连通,气液分离器3中分离出的气体进入换热冷媒元件4中与压缩机1的外壳进行换热,实现加热作用,进而通过补气口13进入压缩机1的工作腔中。
由此,冷媒系统100中的换热介质分两路回流至压缩机1中,且两路冷媒在压缩机1腔体内边混合边压缩,最后再从压缩机1的排气口11排出,进入下一循环。这样,通过补气口13进入压缩机1的气体中无液体或液体含量极小,减少了液击的风险,同时充分利用压缩机1的余热,提高能效。
当检测到室外环境温度不高于第二设定温度时,控制控制阀63关闭,气液分离器3的 气体出口33与换热冷媒元件4断开,冷媒系统100中的换热介质经主流路回流至压缩机1中实现循环。其中,第二设定温度值为T2,满足:33℃≤T2≤37℃,如T2=34℃,或者T2=35℃,再或者T2=36℃,由此,当室外环境温度值大于T2,控制阀63打开,当室外环境温度值小于T2时,控制阀63关闭。
本申请还提出了一种空调器。
根据本申请实施例的空调器,包括上述任一种实施例的冷媒系统100,补气管路中的气流利用压缩机1的热能进行加热蒸发,有效地防止补气管路带液进入压缩机1,减少液击的风险,同时利用压缩机1的热能,提高能效,降低投入成本,提高空调器的安全性能,降低空调器的整体成本。
根据本申请实施例的冷媒系统,包括:压缩机,所述压缩机具有排气口、回气口和补气口;室外换热器和室内换热器,所述室外换热器的第一端与所述排气口和所述回气口中的其中一个连通,所述室内换热器的第一端与所述排气口和所述回气口中的另一个连通;气液分离器,所述气液分离器包括第一接口、气体出口和第二接口,所述第一接口与所述室外换热器的第二端之间串联有第一节流元件,所述第二接口与所述室内换热器的第二端之间串联有第二节流元件;与所述压缩机的外壳进行换热的换热冷媒元件,所述换热冷媒元件的两端分别与所述气体出口和所述补气口相连。
根据本申请一些实施例的冷媒系统,还包括控制阀,所述控制阀串联在所述换热冷媒元件和所述气体出口之间或者串联在所述换热冷媒元件和所述补气口之间。
根据本申请一些实施例的冷媒系统,所述冷媒系统具有制热模式,在所述制热模式,当检测室外环境温度低于第一设定温度时,控制所述控制阀打开,当检测到室外环境温度不低于第一设定温度时,控制所述控制阀关闭。
根据本申请一些实施例的冷媒系统,所述冷媒系统具有制冷模式,在所述制冷模式,当检测室外环境温度高于第二设定温度时,控制所述控制阀打开,当检测到室外环境温度不高于第二设定温度时,控制所述控制阀关闭。
根据本申请一些实施例的冷媒系统,所述控制阀串联在所述换热冷媒元件和所述气体出口之间,所述控制阀为电磁阀。
根据本申请一些实施例的冷媒系统,所述换热冷媒元件缠绕在所述压缩机的外壳上。
根据本申请一些实施例的冷媒系统,所述换热冷媒元件与所述压缩机的外壳之间设有导热的柔性件。
根据本申请一些实施例的冷媒系统,所述换热冷媒元件为蓄热式换热器。
根据本申请一些实施例的冷媒系统,还包括换向组件,所述换向组件包括第一阀口、第二阀口、第三阀口和第四阀口,所述第一阀口与所述第二阀口和所述第三阀口中的其中 一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第二阀口与所述室外换热器的第一端相连,所述第三阀口与所述室内换热器的第一端相连,所述第四阀口与所述回气口相连。
本申请还提出了一种空调器。
根据本申请实施例的空调器,包括上述任一种实施例所述的冷媒系统。
在本说明书的描述中,参考术语“一些实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一些实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种冷媒系统,其特征在于,包括:
    压缩机,所述压缩机具有排气口、回气口和补气口;
    室外换热器和室内换热器,所述室外换热器的第一端与所述排气口和所述回气口中的其中一个连通,所述室内换热器的第一端与所述排气口和所述回气口中的另一个连通;
    气液分离器,所述气液分离器包括第一接口、气体出口和第二接口,所述第一接口与所述室外换热器的第二端之间串联有第一节流元件,所述第二接口与所述室内换热器的第二端之间串联有第二节流元件;
    与所述压缩机的外壳进行换热的换热冷媒元件,所述换热冷媒元件的两端分别与所述气体出口和所述补气口相连。
  2. 根据权利要求1所述的冷媒系统,其特征在于,还包括控制阀,所述控制阀串联在所述换热冷媒元件和所述气体出口之间或者串联在所述换热冷媒元件和所述补气口之间。
  3. 根据权利要求2所述的冷媒系统,其特征在于,所述冷媒系统具有制热模式,在所述制热模式,当检测室外环境温度低于第一设定温度时,控制所述控制阀打开,当检测到室外环境温度不低于第一设定温度时,控制所述控制阀关闭。
  4. 根据权利要求2或3所述的冷媒系统,其特征在于,所述冷媒系统具有制冷模式,在所述制冷模式,当检测室外环境温度高于第二设定温度时,控制所述控制阀打开,当检测到室外环境温度不高于第二设定温度时,控制所述控制阀关闭。
  5. 根据权利要求2-4中任一项所述的冷媒系统,其特征在于,所述控制阀串联在所述换热冷媒元件和所述气体出口之间,所述控制阀为电磁阀。
  6. 根据权利要求1-5中任一项所述的冷媒系统,其特征在于,所述换热冷媒元件缠绕在所述压缩机的外壳上。
  7. 根据权利要求6所述的冷媒系统,其特征在于,所述换热冷媒元件与所述压缩机的外壳之间设有导热的柔性件。
  8. 根据权利要求1-7中任一项所述的冷媒系统,其特征在于,所述换热冷媒元件为蓄热式换热器。
  9. 根据权利要求1-8中任一项所述的冷媒系统,其特征在于,还包括换向组件,所述换向组件包括第一阀口、第二阀口、第三阀口和第四阀口,所述第一阀口与所述第二阀口和所述第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第二阀口与所述室外换热器的第一端相连,所述第三阀口与所述室内换热器的第一端相连,所述第四阀口与所述回气口相连。
  10. 一种空调器,其特征在于,包括根据权利要求1-9中任一项所述的冷媒系统。
PCT/CN2019/097381 2019-04-30 2019-07-24 冷媒系统和空调器 WO2020220482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910359188.1A CN110057132A (zh) 2019-04-30 2019-04-30 冷媒系统和空调器
CN201910359188.1 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220482A1 true WO2020220482A1 (zh) 2020-11-05

Family

ID=67321808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097381 WO2020220482A1 (zh) 2019-04-30 2019-07-24 冷媒系统和空调器

Country Status (2)

Country Link
CN (1) CN110057132A (zh)
WO (1) WO2020220482A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057132A (zh) * 2019-04-30 2019-07-26 广东美的制冷设备有限公司 冷媒系统和空调器
CN111023615A (zh) * 2019-12-31 2020-04-17 杭州三花微通道换热器有限公司 换热系统
CN115218362A (zh) * 2021-04-21 2022-10-21 芜湖美智空调设备有限公司 空调器的补气控制方法、装置、空调器及存储介质
WO2022222587A1 (zh) * 2021-04-20 2022-10-27 芜湖美智空调设备有限公司 空调器的补气控制方法、空调器、存储介质及用于空调器的压缩机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100212342A1 (en) * 2009-02-25 2010-08-26 Lg Electronics Inc. Air conditioner and method of controlling the same
CN103574966A (zh) * 2012-07-30 2014-02-12 珠海格力电器股份有限公司 热泵式空调系统及其除霜方法
CN105042924A (zh) * 2015-05-29 2015-11-11 广东美的制冷设备有限公司 空调器及其控制方法
CN105180510A (zh) * 2015-08-06 2015-12-23 芜湖美智空调设备有限公司 空调装置及其控制方法
CN206269278U (zh) * 2016-10-31 2017-06-20 广东美的制冷设备有限公司 空气源热泵空调系统以及包含其的空调
CN107388633A (zh) * 2017-08-15 2017-11-24 东北电力大学 一种喷气增焓空气源热泵系统及其控制方法
CN207963224U (zh) * 2018-01-31 2018-10-12 美的集团武汉制冷设备有限公司 空调器
CN110057132A (zh) * 2019-04-30 2019-07-26 广东美的制冷设备有限公司 冷媒系统和空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144650A (ja) * 2008-12-19 2010-07-01 Jfe Steel Corp 排熱利用電力の発電方法
CN102022826A (zh) * 2010-11-30 2011-04-20 广东长菱空调冷气机制造有限公司 一种具有同时两级冷凝补气热泵热水器
CN106918161B (zh) * 2017-03-27 2023-12-22 广东美的制冷设备有限公司 一种补气增焓热泵系统及其制热控制方法
CN109539631B (zh) * 2018-11-28 2020-05-12 珠海格力电器股份有限公司 一种压缩机组件和空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100212342A1 (en) * 2009-02-25 2010-08-26 Lg Electronics Inc. Air conditioner and method of controlling the same
CN103574966A (zh) * 2012-07-30 2014-02-12 珠海格力电器股份有限公司 热泵式空调系统及其除霜方法
CN105042924A (zh) * 2015-05-29 2015-11-11 广东美的制冷设备有限公司 空调器及其控制方法
CN105180510A (zh) * 2015-08-06 2015-12-23 芜湖美智空调设备有限公司 空调装置及其控制方法
CN206269278U (zh) * 2016-10-31 2017-06-20 广东美的制冷设备有限公司 空气源热泵空调系统以及包含其的空调
CN107388633A (zh) * 2017-08-15 2017-11-24 东北电力大学 一种喷气增焓空气源热泵系统及其控制方法
CN207963224U (zh) * 2018-01-31 2018-10-12 美的集团武汉制冷设备有限公司 空调器
CN110057132A (zh) * 2019-04-30 2019-07-26 广东美的制冷设备有限公司 冷媒系统和空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法

Also Published As

Publication number Publication date
CN110057132A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2020220482A1 (zh) 冷媒系统和空调器
CN211739588U (zh) 一种可提高换热性能的空调
CN102734885B (zh) 串联式空调和调温箱一体机及其运行控制方法
WO2013135048A1 (zh) 一种热交换器及一种机柜
CN205351844U (zh) 冷暖型空调系统和单冷型空调系统
CN100541050C (zh) 利用co2作为制冷剂的热泵及其运行方法
WO2022068281A1 (zh) 空调系统及其除霜控制方法、存储介质、控制装置
JP2014126350A (ja) 空気調和機
CN204063308U (zh) 空调系统
CN103234301A (zh) 空调换热系统及其控制方法
CN112594985B (zh) 一种具有双四通阀多功能多联机系统的回油控制方法
CN204254947U (zh) 空调系统
CN212511480U (zh) 一种空调换热器、冷媒循环系统及空调器
WO2023173847A1 (zh) 空气源热泵热水器系统
CN210951943U (zh) 空调系统
KR101173736B1 (ko) 냉장 및 냉동 복합 공조시스템
CN211575589U (zh) 一种热泵式空调系统
CN109282520B (zh) 涡流管与压缩式复合的直膨式空调系统及控制方法
CN109237832B (zh) 热水系统及热水系统的控制方法
CN207688456U (zh) 多联式空调系统
CN206131220U (zh) 一种空调机组
CN221005322U (zh) 空调热水器系统
CN215675896U (zh) 一种空调器
CN220380016U (zh) 一种热泵系统及空调
CN213931536U (zh) 空调系统和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927052

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927052

Country of ref document: EP

Kind code of ref document: A1