WO2020218233A1 - 繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具 - Google Patents

繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具 Download PDF

Info

Publication number
WO2020218233A1
WO2020218233A1 PCT/JP2020/017021 JP2020017021W WO2020218233A1 WO 2020218233 A1 WO2020218233 A1 WO 2020218233A1 JP 2020017021 W JP2020017021 W JP 2020017021W WO 2020218233 A1 WO2020218233 A1 WO 2020218233A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
manufacturing
mold
sheet
chopped
Prior art date
Application number
PCT/JP2020/017021
Other languages
English (en)
French (fr)
Inventor
尚哲 金森
敬洋 長谷川
Original Assignee
フクビ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクビ化学工業株式会社 filed Critical フクビ化学工業株式会社
Priority to JP2021516098A priority Critical patent/JP7108134B2/ja
Publication of WO2020218233A1 publication Critical patent/WO2020218233A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D1/00Producing articles with screw-threads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B43/00Washers or equivalent devices; Other devices for supporting bolt-heads or nuts

Definitions

  • the present invention relates to a method for manufacturing a fiber reinforced resin fastener and a fiber reinforced resin fastener.
  • Metal bolts and resin bolts have been used as fasteners.
  • Metal bolts have the disadvantage of being easily corroded and heavy, and resin bolts do not corrode, but have the disadvantage of lacking strength.
  • CFRP Carbon Fiber Reinforced Plastic
  • CFRP fasteners A generally known manufacturing method for manufacturing such CFRP fasteners is CFRP in which long fibers of carbon fibers contained in carbon fiber reinforced resin are impregnated in a resin in a state of being arranged in a predetermined direction.
  • a method of manufacturing a CFRP bolt by preparing a round bar made of CFRP and threading the peripheral surface of the round bar made of CFRP by cutting to cut out a thread.
  • thermoplastic carbon fiber reinforced resin in which reinforced carbon fibers are impregnated with a thermoplastic resin that is, a round bar made of CFRTP (Carbon Fiber Reinforced Thermal Plastic) is heated is used. It is also known to produce CFRTP bolts by hot press molding using them.
  • CFRP round bar usually has reinforcing fibers extending in the longitudinal direction of the round bar, the reinforcing fibers on the peripheral surface of the round bar are cut when threading is performed in order to manufacture a bolt. It is difficult to manufacture high-strength bolts.
  • An object of the present invention is to provide a fiber-reinforced resin fastener having excellent mass productivity and capable of producing a fastener having high strength.
  • the method for manufacturing a fiber-reinforced resin fastener of the present invention is a method for manufacturing a fiber-reinforced resin fastener, in which the opened reinforcing fibers are oriented in a predetermined direction.
  • a preparatory step of preparing a plurality of chop materials in which a fiber reinforced resin sheet impregnated with a thermoplastic resin is shredded to a predetermined size, and a charging step of charging the plurality of chop materials into a mold. It is characterized by including a pressurizing step of forming the shape of the fastener by pressurizing the chop material inside the mold while the mold is heated.
  • FIG. (A) was produced under the production conditions in which a 5 mm ⁇ 20 mm rectangular chop material (thickness 50 ⁇ m) and a PA6 film were used as the matrix (base material), and the fiber volume content of the carbon fibers was 53%.
  • a cross-sectional view of the bolt, (b) is a cross-sectional view of the bolt of Comparative Example 3. It is sectional drawing which shows the other example of the mold which can be used in the manufacturing method of this invention.
  • FIG. 1 shows bolts B, nuts N, and washers W as specific examples of fiber-reinforced resin fasteners manufactured by the manufacturing method of the present invention.
  • Fasteners such as these bolts B are manufactured by hot-press molding a chop material obtained by chopping a fiber-reinforced resin sheet impregnated with a reinforcing fiber into a thermoplastic resin.
  • the method for manufacturing the fastener made of fiber reinforced resin of the present embodiment is (A) A preparatory step of preparing a plurality of chop materials in which a fiber-reinforced resin sheet impregnated with a thermoplastic resin is shredded to a predetermined size in a state where the opened reinforcing fibers are oriented in a predetermined direction. (B) The loading process of loading multiple chop materials into the mold and (C) It is characterized by including a pressurizing step of forming a fastener into a shape by pressurizing a chop material inside the die while the die is heated.
  • the reinforcing fiber a fiber bundle obtained by opening a reinforcing fiber bundle such as a carbon fiber bundle, a glass fiber bundle, an aramid fiber bundle, or a ceramic fiber bundle (that is, a fiber bundle separated and spread in a band shape) is used.
  • a reinforcing fiber bundle such as a carbon fiber bundle, a glass fiber bundle, an aramid fiber bundle, or a ceramic fiber bundle (that is, a fiber bundle separated and spread in a band shape) is used.
  • carbon fiber bundles are preferable in terms of strength and corrosion resistance.
  • PAN (polyacrylonitrile) -based carbon fibers are particularly preferable because they have higher strength than other materials.
  • Thermoplastic resins include polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon MXD6, nylon 9T, nylon 11, nylon 12, etc.), polyacetal, polycarbonate, acrylonitrile-butadiene-styrene copolymer (ABS), Polyethylene terephthalate, polybutylene terephthalate, polyetherimide, polyethersulfone, polyphenylene sulfide, polyetherketone, polyetheretherketone, polyetherketoneketone, fluororesin and the like are used. Further, a resin obtained by mixing two or more kinds of these thermoplastic resins into a polymer alloy may be used.
  • thermoplastic resin is used in the form of a sheet when the fiber reinforced resin sheet is produced, but is used in the form of a woven sheet material or a knitted sheet material composed of fibers made of a thermoplastic resin material, and further in the form of a non-woven fabric or the like. You may.
  • the method for manufacturing the fiber-reinforced resin fastener of the present embodiment is executed by the procedure shown in the flowchart of FIG.
  • the bolt B will be described as an example of the fastener to be manufactured.
  • CFRTP sheet a sheet made of thermoplastic carbon fiber reinforced resin (hereinafter, CFRTP sheet) is manufactured as a fiber reinforced resin sheet (S1 in FIG. 2).
  • the CFRTP sheet is continuously manufactured, for example, by using a sheet manufacturing apparatus for manufacturing the CFRTP sheet as shown in FIG.
  • the sheet manufacturing apparatus shown in FIG. 3 is an apparatus for continuously producing a CFRTP sheet S by using a carbon fiber bundle F1 and a thermoplastic resin sheet R1 as reinforcing fibers.
  • the sheet manufacturing apparatus is located below a group of a plurality of pairs (two pairs in FIG. 3) of heating rolls 1 arranged side by side in the vertical direction and the above-mentioned group of heating rolls 1, and is vertically above and below each other.
  • a pair of endless belts hung in columns of a plurality of pairs of cooling rolls 2 arranged side by side (two pairs in FIG. 3) and two heating rolls 1 and two cooling rolls 2 arranged in the vertical direction.
  • a pair of pull-out rolls 4 located below the pair of endless belts 3 and a bobbin 5 for winding are provided.
  • a fiber opening mechanism is provided in the vicinity of the heating roll 1 on the uppermost stage to continuously form the fiber opening fibers F2 by opening the carbon fiber bundle F1 and spreading it in a band shape.
  • the fiber-spreading mechanism may be, for example, a mechanism capable of expanding the fiber bundle and flattening the long fibers so as to extend in the same direction.
  • Various mechanisms such as a mechanism for applying and spreading are used.
  • the CFRTP sheet S is manufactured by sandwiching the thermoplastic resin sheet R1 between the open fiber F2 from both the front and back sides.
  • the two pairs of heating rolls 1 are each heated by an electric heater, a heating fluid, or the like.
  • the two pairs of heating rolls 1 heat the spread fibers F2 while sandwiching them from both sides in a state where the spread fibers F2 and the thermoplastic resin sheet R1 are overlapped with each other via the endless belt 3 to heat the spread fibers F2.
  • R1 is continuously impregnated.
  • the plurality of pairs of cooling rolls 2 are each cooled by a cooling fluid or the like.
  • the plurality of pairs of cooling rolls 2 are CFRTP sheets having a predetermined thickness by cooling the thermoplastic resin sheet R1 in a state of being impregnated with the spread fiber F2 via the endless belt 3 while sandwiching it from both sides and sending it downward. S is continuously molded.
  • the pair of drawer rolls 4 are continuously pulled downward while applying tension to the manufactured CFRTP sheet S.
  • the bobbin 5 for winding is rotated by a drive source such as a motor, and the CFRTP sheet S drawn out by the pair of drawer rolls 4 is sequentially wound to form a roll-shaped CFRTP sheet S.
  • CFRTP sheet by a method in which a thermoplastic resin sheet and opened reinforcing fibers are flowed together in a predetermined direction and wound up without using the endless belt 3 shown in FIG.
  • the produced CFRTP sheet S is shredded to produce a chop material C (S2 in FIG. 2).
  • a cutter or the like having a large number of blades arranged at equal intervals in the width direction of the sheet S in section I or the like is used.
  • the sheet S is continuously cut in the longitudinal direction so as to form a large number of strips having a predetermined width.
  • section II the sheet S is cut into strips by a predetermined length by using a rotary cutter or the like having a blade extending in the width direction of the sheet S.
  • the chop material C having a predetermined size can be continuously produced.
  • the size of the chop material C is selected in consideration of various conditions such as the size of the bolt B to be molded, the size of the inlet 12 of the mold 11 described later, and the shapeability at the time of molding.
  • the mold 11 may be configured to be pressure-molded while heating the chop material C inside, and is composed of, for example, split dies 11a and 11b divided into two in the vertical direction.
  • a slot 12 is formed at the upper end of the mold 11.
  • a space portion (cavity) 13 corresponding to the shape of the bolt B (fastener) to be molded is formed.
  • the space portion 13 communicates with the input port 12.
  • the space portion 13 includes a shaft portion side space portion 13a corresponding to the shape of the shaft portion on which the screw of the bolt B is formed and a head side space portion 13b corresponding to the shape of the hexagonal head of the bolt B.
  • a female screw is formed on the inner surface of the shaft portion side space portion 13a, and a hexagonal columnar hollow recess is formed in the head side space portion 13b.
  • the two split molds 11a and 11b are connected in a state where the mating surfaces 14 are brought into contact with each other to form a space portion 13 corresponding to the shape of the bolt B.
  • the two split dies 11a and 11b are connected by inserting a bolt into a through hole 15 formed in the horizontal direction in the two split dies 11a and 11b and fastening a nut to the bolt.
  • the molds 11 shown in FIGS. 5 to 6 have two vertical split dies 11a and 11b, and one through hole 12 is formed on the bolt head side of the space portion 13.
  • the manufacturing method of the present invention does not limit the structure of the mold, and it is possible to adopt molds having various shapes.
  • a through hole 21c is formed in the bolt-shaped space portion 21a and communicates with the shaft portion side space portion 21b, and the shaft portion side penetration is formed.
  • the structure may be such that the pressure P can be applied from the hole 21c into the space 21a.
  • two through holes that is, a through hole 22c communicating with the shaft side space portion 22b of the bolt-shaped space portion 22a, and a head.
  • the structure may be such that a through hole 22e communicating with the partial side space portion 22d is formed.
  • pressure P can be applied into the space portion 22a from the two through holes 22c and 22e.
  • the horizontally split mold 23 shown in FIG. 16 may be used.
  • the mold 23 has an upper mold 23a and a lower mold 23b as two split molds that can be fitted by a mating surface 23d extending in the horizontal direction.
  • a bolt-shaped space portion 23c is formed.
  • two through holes 24e and 24f may be formed as in the horizontal split mold mold 24 shown in FIG.
  • a bolt-shaped space portion 24c is formed by aligning the upper die 24a and the lower die 24b on the horizontal mating surface 24d.
  • the shaft portion side space portion 24c1 communicates with the through hole 24e
  • the head side space portion 24c2 communicates with the through hole 24f. It is possible to apply the pressure P into the space portion 24c from the two through holes 24e and 24f.
  • the heating method of the mold 11 is not particularly limited in the present invention as long as it can be heated to a temperature at which the chop material C melts (for example, 250 to 300 ° C. around 270 ° C.).
  • a temperature at which the chop material C melts for example, 250 to 300 ° C. around 270 ° C.
  • heating may be performed by induction heating or the like.
  • the present invention is not particularly limited as to the method of charging the chop material C into the mold 11, and a predetermined amount of the chop material C may be charged by a mechanical method using a charging device or manually.
  • the directions of the carbon fibers inside the chop material C are not aligned so that a large number of chop materials C face different directions from each other (that is, the directions of the chop material C are randomly arranged). It is possible to ensure the random orientation of the bolt B after molding by charging the bolt B (so that it becomes). Therefore, the size of the chop material C should be such that a large number of chop materials C face each other in different directions at the time of charging in consideration of the opening area of the input port 12 and the volume and shape of the space portion 13. It is preferable that the setting is as follows.
  • the chop material C is pushed into the mold 11 (S4 in FIG. 2).
  • the pressing rod 16 is inserted into the insertion port 12 of the mold 11, and the chop material C inserted into the mold 11 is pushed into the space (cavity) 13 inside the mold 11 by the pressing rod 16. ..
  • the chop material C is uniformly dispersed and packed inside the space portion 13.
  • the chop material C may be pushed through a lid having a size substantially the same as that of the insertion port 12, or may be pushed directly by the lower end surface of the pressing rod 16. If the chop material C does not leak when it is pushed in, it may be pushed in by an appropriate method.
  • the step (S4) of pushing the chop material C into the mold 11 is not essential in the manufacturing method of the present invention and may be omitted.
  • the chop material C inside the die 11 is pressed by using the heat press machine 17 (S5 in FIG. 2).
  • the heat press 17 has a pedestal 17a and a pressurizing portion 17b arranged above the pedestal 17a.
  • the pedestal 17a has a heater and heats the mold 11 placed on the pedestal 17a.
  • the pressurizing portion 17b With the mold 11 mounted on the pedestal 17a, the pressurizing portion 17b lowers, so that the pressurizing portion 17b pressurizes the chop material C inside the heated mold 11 via the pressing rod 16.
  • a large number of groups of chop materials C inside the mold 11 are melt-deformed inside the space 13 under high temperature and high pressure to be formed into the shape of the bolt B.
  • the mold 11 is disassembled and divided into two split molds 11a and 11b (S6 in FIG. 2).
  • the bolt B is removed from the space 13 of one of the split molds 11a of the mold 11 and removed from the mold (S7 in FIG. 2), and a series of methods for manufacturing the bolt B is performed. The process ends.
  • the fiber-reinforced resin fastener such as the bolt B according to the embodiment of the present invention is manufactured by the above manufacturing method, and is impregnated with the thermoplastic resin and the thermoplastic resin in a state where the orientation is not specified.
  • the volume content of the reinforcing fibers in the thermoplastic resin can be in the range of 30 to 80%, preferably 30 to 60%.
  • the state in which the orientation of the reinforcing fibers is not specified that is, the reinforcing fibers in a state having a random orientation can be impregnated with a thermoplastic resin, moreover, the conditions in the reinforcing fibers, fiber length of 5 ⁇ 100 mm Since it is within the range and the volume content of the thermoplastic resin is within the range of 30 to 80%, it is excellent in mass productivity and has high strength.
  • the fiber length of the reinforcing fiber is 5 to 100 mm, preferably 5 to 40 mm, and more preferably about 5 to 20 mm
  • the tensile strength is excellent.
  • the bolt can be manufactured and the volume content of the reinforcing fiber is within the range of 30 to 80%, preferably 30 to 60%, it is possible to secure high strength and shapeability of the bolt. It is based on a certain point.
  • the opened reinforcing fibers F2 are oriented in a predetermined direction as a material for a fastener such as a bolt B, as shown in FIGS.
  • a plurality of chop materials C formed by shredding a fiber-reinforced resin sheet such as CFRTP sheet S impregnated with the thermoplastic resin R1 into a predetermined size are prepared.
  • a plurality of chop materials C are put into the inside of the mold 11, and the chop materials are pressure-molded in a heated state. Since the chop material C has good shapeability, that is, followability to the cavity shape of the mold, it is excellent in mass productivity as compared with the case where a rod-shaped member made of a conventional fiber reinforced resin is cut and manufactured.
  • the fiber-reinforced resin fastener manufactured by the manufacturing method of the present embodiment can be mass-produced by hot press molding as in the pressurization step (C) above. Further, if the used fastener is reheated to melt the thermoplastic resin, it can be reused for other purposes.
  • the group of a plurality of chop materials used as the material of the fastener has random orientation, there is a low possibility that the reinforcing fibers contained in the chop material will be cut even if pressure molding is performed. Further, since the fastener after molding also maintains a constant fiber length, the strength of the fastener (for example, torsional strength, shear strength, etc.) can be improved. This makes it possible to manufacture a fiber reinforced resin fastener having excellent mass productivity and high strength.
  • the strength and shapeability of the CFRTP bolt B manufactured by the method for manufacturing the fiber-reinforced resin fastener of the present embodiment will be evaluated.
  • a hexagonal full-threaded bolt having a size of M8 ⁇ 30 that is, a hexagonal full-threaded bolt having an outer diameter of 8 mm and a shaft portion having a length of 30 mm
  • M8 ⁇ 30 that is, a hexagonal full-threaded bolt having an outer diameter of 8 mm and a shaft portion having a length of 30 mm
  • the CFRTP chop material used as the material for the bolt B is formed by shredding the CFRTP sheet.
  • the CFRTP sheet consists of a sheet in which a large number of long fibers made of carbon fibers extend in a single direction, that is, a UD sheet. Specifically, an opened PAN (polyacrylonitrile) -based carbon fiber is formed in a single direction. It is produced by impregnating nylon 6 (PA6), PA9T, PPS, etc., which is a matrix (base material) while stretching.
  • PA6 polyacrylonitrile
  • the size of the chop material formed by shredding the CFRTP sheet is shaped with respect to the cavity in consideration of the size of the mold inlet and the cavity for forming the M8 bolt. It is set to have a good size.
  • Vf volume content of carbon fibers in the CFRTP sheet and the chopped material obtained by chopping it is 35 to 53%.
  • a chop material (or a chopped sheet in which the chop material is fixed to a carrier sheet (for example, a film made of a thermoplastic resin)) is put into a mold and the bolt B is press-molded, for example, heating at a molding temperature of 270 ° C. Under the condition, the chopped material (or chopped sheet) is pressed with a pressing pressure of 37 MPa. Then, with the heating stopped, as a cold press, the bolt B is further pressurized at a press pressure of 73 MPa at room temperature (for example, about 25 ° C.) to form a bolt B having a predetermined shape.
  • a carrier sheet for example, a film made of a thermoplastic resin
  • the tensile breaking load, formability, and fiber filling degree of the CFRTP bolt B manufactured by the manufacturing method of the present embodiment are evaluated as follows.
  • the tensile breaking load test is carried out by a test method conforming to JIS B 1051.
  • Example 1 a rectangular chop material (thickness 50 ⁇ m) of 5 mm ⁇ 10 mm (that is, width 5 mm and length 10 mm) and a PA6 film as a matrix (base material) are used.
  • the fiber volume content (Vf) of the carbon fiber is 53%.
  • Example 2 a rectangular chop material (thickness 50 ⁇ m) of 5 mm ⁇ 20 mm and a PA6 film as a matrix (base material) are used, and the fiber volume content of carbon fibers is 35%.
  • Example 3 a rectangular chop material (thickness 50 ⁇ m) of 5 mm ⁇ 100 mm and a PA6 film as a matrix (base material) are used, and the fiber volume content of carbon fibers is 53%.
  • Example 4 a 40 mm square (that is, 40 mm in both vertical and horizontal directions) square chop material and a PA6 film as a matrix (base material) are used, and the fiber volume content of carbon fibers is 53%.
  • Example 5 a rectangular chop material (thickness 50 ⁇ m) of 5 mm ⁇ 20 mm and a PA9T film having better physical properties than PA6 were used as the matrix (base material), and the fiber volume content of the carbon fibers was high. It is 53%.
  • Example 6 a rectangular chop material having a size of 5 mm ⁇ 10 mm and a PPS film as a matrix (base material) are used.
  • the fiber volume content of the carbon fiber is 47.7%.
  • Example 7 a chopped sheet (that is, a sheet in which a chopped material is fixed to a carrier sheet (a film made of a thermoplastic resin)) and a PA6 film as a matrix (base material) are used, and the fiber volume content of carbon fibers is high. It is 53%.
  • Example 8 is an M8 nut corresponding to a bolt manufactured under the conditions of Examples 1 to 7, and is used as a 5 mm ⁇ 20 mm rectangular chop material (thickness 50 ⁇ m) and a matrix (base material). A PA6 film is used, and the fiber volume content of the carbon fibers is 53%.
  • Comparative Example 1 a UD sheet (thickness 180 ⁇ m) and a PA6 film is used as a matrix (base material).
  • Comparative Example 2 a tape material (thickness 50 ⁇ m) of 5 mm ⁇ 1000 mm is rolled and put into a mold. A PA6 film is used as the matrix (base material), and the fiber volume content of the carbon fibers is 53%.
  • Comparative Example 3 a 5 mm ⁇ 20 mm rectangular chop material (thickness 50 ⁇ m) and a PA6 film as the matrix (base material) are used, and the fiber volume content of the carbon fibers is 53% under the manufacturing conditions. A bolt with a thread cut out after manufacturing is used.
  • Comparative Example 4 it is an injection product of a material of a short fiber reinforced product containing glass fiber, and PPS is used as a matrix (base material).
  • the content of glass fiber (GF) is 40% (% by weight).
  • Comparative Example 5 it is an injection product of a material of a short fiber reinforced product containing glass fiber, and MXD6 is used as a matrix (base material).
  • the content of glass fiber (GF) is 50% (% by weight).
  • Comparative Example 6 it is an injection product of a resin material, and PC (polycarbonate) is used as the matrix (base material).
  • Comparative Example 7 it is an injection product of a resin material, and PEEK (polyetheretherketone) is used as a matrix (base material).
  • PEEK polyetheretherketone
  • Comparative Example 8 it is an M8 nut corresponding to a bolt manufactured under the conditions of Comparative Example 4, is an injection product of a material of a short fiber reinforced product, and PPS is used as a matrix (base material).
  • the content of glass fiber (GF) is 40% (% by weight).
  • the tensile breaking load of the bolt made of CFRTP manufactured by the manufacturing method of the present embodiment is determined. As shown in Examples 1 to 7, it is in the range of 4921 to 7890N. Moreover, in Examples 1 to 7, the evaluations of the moldability are ⁇ (molding completed at a rate of about 70%) and ⁇ (all molding completed). Further, in Examples 1 to 7, the evaluation of the filling degree of the fiber is also ⁇ (filling is completed to the entire screw thread at a rate of about 70%) and ⁇ (filling is completed to the tip of all threads) (of the fiber of FIG. 18). See the explanatory diagram for the evaluation of the filling degree). Note that FIG. 18 shows a cross-sectional view of the thread 31 of the bolt, where 31a is the tip of the thread, 32 is the carbon fiber, and 33 is the matrix resin.
  • Comparative Example 1 the tensile breaking load of the bolt produced by pressure-molding the UD sheet as it is is only 2537N, which is far below the minimum value of 4921N in the above range in Examples 1 to 7. Further, the evaluation of the filling degree of the fiber is also ⁇ (the tip of the thread could not be filled) (see FIG. 18).
  • Comparative Example 1 it is possible to mold a bolt using a UD sheet, but the tensile breaking load is only 2537N, and tensile breaking of Examples 1 to 4 and 7 using a matrix of the same material (PA6 film). Significantly lower than the load (4921-7890N). This is due to the decrease in rigidity of the bolt B molded according to Comparative Example 1 due to the void V (vacancy) generated at the inner part of the screw thread G in the cross section of the bolt B shown in FIG. It is believed that there is. It is believed that the void V was generated during bolting due to the continuous fibers in the UD sheet (ie, the layer of reinforcing fibers of long fibers oriented in a predetermined direction) blocking the air escape path. The void V shown in FIG. 12 was confirmed by observing the cut surface of the bolt B with a laser microscope. On the other hand, in the bolts B of Examples 1 to 4 and 7, no void V was found even when the cross section was observed.
  • Comparative Example 3 is produced under production conditions in which a 5 mm ⁇ 20 mm rectangular chop material (thickness 50 ⁇ m) and a PA6 film are used as a matrix (base material), and the fiber volume content of carbon fibers is 53%.
  • the M8 bolt (8 mm in diameter) is further machined to cut threads.
  • the tensile breaking load (2084N) of Comparative Example 3 is significantly lower than the tensile breaking load (4921 to 7890N) of Examples 1 to 4 and 7.
  • the cause of this is a comparative example after the shaving process shown in FIG. 13 (b), as compared with the state in which the reinforcing fibers F are continuously extended inside the bolt B1 before the shaving process shown in FIG. 13 (a). It is considered that the cause is that the reinforcing fiber F is cut inside the bolt B2 of No. 3 and the tensile strength is lowered.
  • the tensile breaking load of the nut made of CFRTP manufactured by the manufacturing method of the present embodiment is 9292N. It is a very high value.
  • the evaluation of moldability is ⁇ (all molding is completed), and the evaluation of the fiber filling degree is also ⁇ (all filling is completed up to the thread tip).
  • the tensile breaking load of the nut manufactured in Comparative Example 8 that is, the nut which is an injection product of PPS containing glass fiber, is only 3290N, which is much lower than the tensile breaking load (9292N) of the nut of the above example. ing.
  • the weight of the carbon fiber (CF) M8 bolts manufactured in Examples 1 to 7 is 3 g, and the weight of the stainless steel (SUS) M8 bolts. It is smaller than 1/5 and very light compared to (16 g). Further, the weight of the carbon fiber (CF) M8 nut manufactured in Example 8 is 1.2 g, which is 1 compared with the weight of the stainless steel (SUS) M8 nut (5.4 g). It is about / 4 to 1/5 small and very light.
  • the fiber length of the reinforcing fiber contained in the chop material is 5 to 100 mm, preferably 5 to 40 mm, and more preferably 5 to 20 mm, the tensile strength is excellent. It is believed that bolts and nuts can be manufactured. Further, it is presumed that the bolts and nuts manufactured according to Examples 1 to 8 have a high torsional strength in consideration of the excellent tensile strength.
  • the fluidity (MFR) of the resin material of the matrix is 2 to 50 g. / 10 min, preferably 5 to 30 g / min. With this value, it is possible to maintain good formability.
  • the volume content of the reinforcing fibers contained in the matrix in the chop material is in the range of 30 to 80%. If it is less than 30%, the strength of the bolt will be low, and if it exceeds 80%, the shapeability will decrease and molding will be difficult. Therefore, from the viewpoint of ensuring the high strength and shapeability of the bolt, the volume of the reinforcing fiber is contained.
  • the rate is preferably within the above range, more preferably 30 to 60%.
  • this manufacturing method after the above-mentioned (A) preparation step of the chopping material, (D) a plurality of chopping materials are arranged in a plane and united to produce a chopped sheet. It further includes a chopped sheet manufacturing step (S21 in FIG. 2), and is characterized in that the chopped sheet is packed inside the mold in the above-mentioned (B) loading step.
  • the chopped sheet manufacturing step is only required to be able to manufacture a chopped sheet CS in which a plurality of chopped materials C are arranged in a plane and united, and the present invention does not particularly limit the use of a film for combining the plurality of chopped materials C. ..
  • a chopped sheet is manufactured by impregnating a plurality of chopped materials in a state of being dispersed on at least one surface of a thermoplastic resin film.
  • a chopped sheet CS in which the chopping material C is dispersed on both sides is produced.
  • the chop material C may be impregnated only on one of both sides of the thermoplastic resin film R2.
  • thermoplastic resin film R2 is the same material (for example, nylon 6 (PA6)) as the thermoplastic resin sheet R1 (see FIG. 3) used in manufacturing the above-mentioned chop material C, the matrix of the chop material C is used. Since it is the same material as the (base material), the chop material C is easily impregnated into the thermoplastic resin film R2.
  • PA6 nylon 6
  • thermoplastic resin sheet R1 and the thermoplastic resin film R2 are appropriately selected in consideration of the manufacturing conditions for producing the chopped material C and the chopped sheet CS.
  • the manufactured chopped sheet CS is deformed so that it can be easily inserted into the insertion port 12 of the mold 11, and is packed into the mold 11 in a rolled state, for example (see FIG. 6).
  • the chopped sheet CS When the chopped sheet CS is large, it may be cut out to a size corresponding to the volume of the bolt B to be molded and then rolled up.
  • a plurality of chopped materials C are formed into a chopped sheet CS in which a plurality of chopped materials C are arranged in a plane and united, and the chopped sheet CS is packed inside the mold 11 to form a plurality of chopped materials C. It is possible to easily disperse and charge the mold 11 into the space 13 (cavity) 13. As a result, it is not necessary to perform another work for uniformly dispersing the chopped material C after charging in the space 13 of the mold 11, and the mass productivity is further improved.
  • the chopped sheet CS can be easily produced by impregnating the plurality of chop materials C in a state of being dispersed on at least one surface of the thermoplastic resin film R2. Further, the possibility that the chop material C is separated from the chopped sheet CS after production is also reduced.
  • the chopped sheet CS produced in FIG. 11 may be shredded into a size that can be easily put into the mold 11.
  • the chopped sheet CS is more than the chopped material C as shown in the sections XII to XIII of FIG.
  • a chopped sheet shredding step of shredding into a large predetermined size is further included, and in the above-mentioned (B) loading step, the chopped sheet T (see FIGS. 6 and 11) is packed inside the mold 11. It is characterized by that.
  • the chopped sheet T shredded to a predetermined size larger than the chopping material C is packed inside the mold 11, so that the chopped sheet is rolled or deformed before being packed inside the mold 11. No separate work is required, and it is easy to put it in the mold. At the same time, it is possible to disperse the chop material C uniformly in the space 13 of the mold 11 rather than throwing it into the mold 11 as it is. As a result, mass productivity is further improved.
  • the method for manufacturing a fiber-reinforced resin fastener is a method for manufacturing a fiber-reinforced resin fastener, in which the opened reinforcing fibers are impregnated with the thermoplastic resin in a state of being oriented in a predetermined direction.
  • the fiber-reinforced resin sheet impregnated with the thermoplastic resin is shredded into a predetermined size in a state where the opened reinforcing fibers are oriented in a predetermined direction as a material for the fastener.
  • a plurality of chop materials are put into the mold, and the chop materials are pressure-molded in a heated state. Since the chop material has good shapeability, that is, the ability to follow the cavity shape of the mold, it is excellent in mass productivity as compared with the case where a rod-shaped member made of a conventional fiber reinforced resin is cut and manufactured.
  • the group of a plurality of chop materials used as the material of the fastener has a random orientation (that is, the property that the orientation of the reinforcing fibers is not specified), the reinforcing fibers contained in the chopping material are contained even if pressure molding is performed. Low risk of disconnection. Further, since the fastener after molding also maintains a constant fiber length of the reinforcing fiber, the strength of the fastener can be improved. This makes it possible to manufacture a fiber reinforced resin fastener having excellent mass productivity and high strength.
  • the above-mentioned method for manufacturing a fiber-reinforced resin fastener further including a chopped sheet manufacturing step of manufacturing a chopped sheet in which the plurality of chopping materials are arranged in a plane and united after the preparatory step.
  • a chopped sheet manufacturing step of manufacturing a chopped sheet in which the plurality of chopping materials are arranged in a plane and united after the preparatory step.
  • the plurality of chopped materials are arranged in a plane and combined into a chopped sheet, and the chopped sheets are packed inside the mold, whereby the plurality of chopped materials can be easily placed in the space of the mold. It becomes possible to disperse and input. As a result, it is not necessary to perform another work for uniformly dispersing the chopped material after charging in the space of the mold, and the mass productivity is further improved.
  • the chopped sheet manufacturing step involves impregnating the plurality of chopped materials in a state of being dispersed on at least one surface of a thermoplastic resin film. It is preferable to prepare.
  • the above-mentioned method for manufacturing a fiber-reinforced resin fastener further including a chopped sheet shredding step of chopping the chopped sheet into a predetermined size larger than the chopped material after the chopped sheet manufacturing step.
  • a chopped sheet shredding step of chopping the chopped sheet into a predetermined size larger than the chopped material after the chopped sheet manufacturing step.
  • the charging step it is preferable to pack the chopped sheet into the inside of the mold.
  • the fiber length of the reinforcing fiber contained in the chop material is preferably 5 to 100 mm. Within this range, it is possible to secure high strength of the fastener.
  • the volume content of the reinforcing fibers contained in the thermoplastic resin in the chop material is preferably 30 to 80%. Within this range, it is possible to secure high strength and shapeability of the fastener.
  • the fiber-reinforced resin fastener according to the present embodiment is a fiber-reinforced resin fastener formed of a thermoplastic resin and reinforcing fibers impregnated in the thermoplastic resin in a state where the orientation is not specified.
  • the fiber length of the reinforcing fiber is in the range of 5 to 100 mm, and the volume content of the reinforcing fiber in the thermoplastic resin is in the range of 30 to 80%.
  • the thermoplastic resin is impregnated in a state where the orientation of the reinforcing fibers is not specified, that is, the reinforcing fibers have long fibers, and the fiber length is in the range of 5 to 100 mm as a condition for the reinforcing fibers. Since the volume content of the thermoplastic resin is in the range of 30 to 80%, it is excellent in mass productivity and has high strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Bolts, Nuts, And Washers (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

量産性に優れ、かつ高い強度の締結具を製造することが可能な繊維強化樹脂製締結具を提供する。繊維強化樹脂製の締結具の製造方法であって、開繊した強化繊維が所定の方向に配向した状態で熱可塑性樹脂に含浸された繊維強化樹脂シートが所定の大きさに細断された複数のチョップ材を準備する準備工程と、複数のチョップ材を金型の内部に投入する投入工程と、前記金型を加熱した状態で前記金型内部の前記チョップ材を加圧することにより、前記締結具の形状に成形する加圧工程とを含む。

Description

繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具
 本発明は、繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具に関する。
 従来、締結具として金属ボルトや樹脂製ボルトなどが用いられている。金属ボルトは腐食しやすく、重量があるという欠点があり、樹脂製のボルトは腐食することはないが、強度が足りないという欠点がある。
 そこで、近年では、腐食しにくく、軽量でかつ金属製のボルト等と同程度の強度を有する締結具として、炭素繊維強化樹脂(CFRP(Carbon Fiber Reinforced Plastic)、以下、CFRPと呼ぶ)からなるボルトやナットなどの締結具が製造されてきている。CFRP製の締結具は、耐腐食性および高強度を両立しているので、水中や雨にさらされやすい場所などの過酷な使用条件下でも使用可能である。
 このようなCFRP製の締結具を製造する方法として一般的に知られる製造方法には、炭素繊維強化樹脂に含まれる炭素繊維の長繊維を所定の方向に並べた状態で樹脂に含浸させたCFRP製の丸棒を準備し、当該CFRP製の丸棒の周面を切削加工によってねじ切りしてねじ山を削り出すことによって、CFRP製のボルトを製造する方法がある。
 また、特許文献1記載の方法のように、強化炭素繊維に熱可塑性樹脂を含浸させた熱可塑性炭素繊維強化樹脂、すなわちCFRTP(Carbon Fiber Reinforced Thermal Plastic)製の丸棒を加熱状態の金型を用いて熱プレス成形することによってCFRTP製のボルトを製造することも知られている。
 しかし、CFRP製の丸棒を切削加工によりねじ切りをしてボルトを製造する方法では、1本ごとに切削加工を施す必要があり、量産性に劣る。しかも、CFRP製の丸棒は、通常、丸棒の長手方向に強化繊維が延びているので、ボルトを製造するために、ねじ切り加工をしたときに、丸棒周面の強化繊維が切断されて高い強度のボルトを製造することが難しい。
 また、特許文献1記載のようにCFRP製の丸棒を熱プレス成形してボルトを製造する方法においても、ねじ山部分で強化繊維が急激な変形をして切断されるので、この製造方法でもボルトの強度の向上が難しい。
特公平7-86367号公報
 本発明の目的は、量産性に優れ、かつ高い強度の締結具を製造することが可能な繊維強化樹脂製締結具を提供することである。
 上記の課題を解決するために、本発明の繊維強化樹脂製締結具の製造方法は、繊維強化樹脂製の締結具の製造方法であって、開繊した強化繊維が所定の方向に配向した状態で熱可塑性樹脂に含浸された繊維強化樹脂シートが所定の大きさに細断された複数のチョップ材を準備する準備工程と、前記複数のチョップ材を金型の内部に投入する投入工程と、前記金型を加熱した状態で前記金型内部の前記チョップ材を加圧することにより、前記締結具の形状に成形する加圧工程とを含むことを特徴とする。
本発明の製造方法によって製造される繊維強化樹脂製締結具の具体例としてのボルト、ナット、およびワッシャの斜視図である。 本発明の繊維強化樹脂製締結具の製造方法の実施形態に係る製造方法の一連の流れを示すフローチャートである。 締結具の材料となるCFRTP製のチョップ材を製造するための中間材として、CFRTP製シートを製造する過程を示す説明図である。 CFRTP製シートを連続的に細断してCFRTP製のチョップ材を製造する過程を示す説明図である。 本発明の製造方法で用いられる金型の分解斜視図である。 本発明の製造方法における複数のチョップ材またはチョップドシートを金型に投入する投入工程を示す説明図である。 投入工程においてチョップ材を金型の内部に押し込む過程を示す説明図である。 本発明の製造方法におけるチョップ材を金型の内部で加圧して締結具であるボルトを成形する加圧工程を示す説明図である。 加圧工程後に金型を分解する過程を示す説明図である。 成形されたボルトを金型から取り出す過程を示す説明図である。 本発明の製造方法の変形例であるチョップ材を熱可塑性フィルムに含浸させることによりチョップドシートを作製するチョップドシート作製工程を示す説明図である。 比較例1のボルトの断面図である。 (a)は5mm×20mmの矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である製造条件によって製造されたボルトの断面図、(b)は比較例3のボルトの断面図である。 本発明の製造方法で使用可能な金型の他の例を示す断面図である。 本発明の製造方法で使用可能な金型の他の例を示す断面図である。 本発明の製造方法で使用可能な金型の他の例を示す断面図である。 本発明の製造方法で使用可能な金型の他の例を示す断面図である。 繊維強化樹脂製ボルトの断面を観察した場合の繊維の充填度合いの評価についての説明図である。
 以下、添付図面を参照しながら本発明の好ましい実施の一形態について詳述する。
 図1には、本発明の製造方法によって製造される繊維強化樹脂製締結具の具体例としてのボルトB、ナットN、およびワッシャWが示されている。これらボルトBなどの締結具は、強化繊維を熱可塑性樹脂に含浸させた繊維強化樹脂シートを細断したチョップ材を熱プレス成形することによって製造されている。
 すなわち、本実施形態の繊維強化樹脂製の締結具の製造方法は、
(A) 開繊した強化繊維が所定の方向に配向した状態で熱可塑性樹脂に含浸された繊維強化樹脂シートが所定の大きさに細断された複数のチョップ材を準備する準備工程と、
(B) 複数のチョップ材を金型の内部に投入する投入工程と、
(C) 金型を加熱した状態で金型内部のチョップ材を加圧することにより、締結具の形状に成形する加圧工程と
を含むことを特徴とする。
 強化繊維としては、炭素繊維束、ガラス繊維束、アラミド繊維束、セラミックス繊維束などの強化繊維束を開繊したもの(すなわち、繊維束をばらして帯状に広げたもの)が用いられる。とくに、炭素繊維束は、強度および耐腐食性などの点で好ましい。また、炭素繊維のうち、とくに、PAN(ポリアクリロニトリル)系炭素繊維は、他の素材よりも高い強度を有する点で好ましい。
 熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロンMXD6、ナイロン9T、ナイロン11、ナイロン12等)、ポリアセタール、ポリカーボネート、アクリロニトリル‐ブタジエン‐スチレン共重合体(ABS)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、フッ素系樹脂などが使用される。また、これらの熱可塑性樹脂を2種類以上混合して、ポリマーアロイにした樹脂を使用してもよい。
 また、熱可塑性樹脂は、繊維強化樹脂シートの作製時にはシート状の形態で使用されるが、熱可塑性樹脂材料による繊維から構成される織物シート材または編物シート材、さらには不織布などの形態で使用してもよい。
 本実施形態の繊維強化樹脂製の締結具の製造方法は、具体的には、図2のフローチャートに示される手順で実行される。ここでは、製造される締結具として、ボルトBを例に挙げて説明する。
 まず、繊維強化樹脂シートとして熱可塑性炭素繊維強化樹脂(CFRTP)製のシート(以下、CFRTPシート)を製造する(図2のS1)。
 CFRTPシートは、例えば、図3に示されるようなCFRTPシートを製造するシート製造装置を用いて連続的に製造される。
 図3に示されるシート製造装置は、強化繊維としての炭素繊維束F1および熱可塑性樹脂シートR1を用いて、CFRTPシートSを連続的に製造する装置である。
 シート製造装置は、具体的には、互いに上下方向に並んで配置された複数対(図3では2対)の加熱ロール1と、上記の加熱ロール1の群の下側に位置し、互いに上下方向に並んで配置された複数対(図3では2対)の冷却ロール2と、上下方向に並ぶ2本加熱ロール1および2本の冷却ロール2の縦列にそれぞれ掛け回された一対の無端ベルト3と、一対の無端ベルト3の下側に位置する一対の引き出しロール4と、巻き取り用のボビン5とを備えている。
 また、図示されていないが、最上段の加熱ロール1の近傍には、炭素繊維束F1を開繊して帯状に広げることによって開繊繊維F2を連続的に形成する開繊機構が設けられている。開繊機構としては、例えば、繊維束を広げて長繊維を同一方向に延びるように平たく広げる処理をすることが可能な機構であればよく、繊維束を叩いて広げる機構、または繊維束に風を当てて広げる機構などの種々の機構が用いられる。
 図3に示される製造装置では、熱可塑性樹脂シートR1を表裏両側から開繊繊維F2で挟むことによって、CFRTPシートSを製造する。
 2対の加熱ロール1は、それぞれ電気ヒータまたは加熱流体などによって加熱される。2対の加熱ロール1は、無端ベルト3を介して開繊繊維F2と熱可塑性樹脂シートR1とを互いに重ね合せた状態で両側から挟み込みながら加熱することにより、開繊繊維F2を熱可塑性樹脂シートR1に連続的に含浸させる。
 複数対の冷却ロール2は、それぞれ冷却流体などによって冷却される。複数対の冷却ロール2は、無端ベルト3を介して開繊繊維F2が含浸された状態の熱可塑性樹脂シートR1を両側から挟み込みながら冷却して下方へ送り出すことにより、所定の厚さのCFRTPシートSを連続的に成形する。
 一対の引き出しロール4は、製造されたCFRTPシートSに張力を加えながら連続的に下方へ引き出す。
 巻き取り用のボビン5は、モータなどの駆動源によって回転し、一対の引き出しロール4によって引き出されたCFRTPシートSを順次巻き取ることにより、ロール状のCFRTPシートSを形成する。
 なお、図3に示される無端ベルト3を用いずに熱可塑性樹脂シートと開繊した強化繊維を所定の方向に一緒に流して巻き取る方法によっても、CFRTPシートを製造することが可能である。
 ついで、図4に示されるように、作製されたCFRTPシートSを細断してチョップ材Cを作製する(図2のS2)。
 具体的には、図4に示されるように、ロール状に巻かれたCFRTPシートSを引き出しながら、区間Iにおいて、シートSの幅方向に等間隔に配置された多数の刃を有するカッターなどを用いて、所定の幅を有する多数の短冊(strip)状になるようにシートSを長手方向に連続的に切断する。ついで、区間IIにおいて、シートSの幅方向に延びる刃を有するロータリーカッターなどを用いて、シートSが短冊状に切断されたものを所定の長さごとに切断する。これにより、所定の寸法のチョップ材Cを連続的に作製することができる。
 チョップ材Cの大きさは、成形されるボルトBの寸法、後述する金型11の投入口12の大きさ、成形時の賦形性などの種々の条件を考慮して選定される。
 ついで、上記(B)の投入工程として、図5~6に示される金型11を加熱した状態で、投入口12を通して、当該金型11に多数のチョップ材Cを投入する。
 金型11は、その内部でチョップ材Cを加熱しながら加圧成形できる構成であればよく、例えば、縦方向に2分割された割り型11a、11bによって構成される。金型11の上端には、投入口12が形成されている。金型11の内部には、成形されるボルトB(締結具)の形状に対応する空間部(キャビティー)13が形成されている。空間部13は、投入口12と連通している。空間部13は、ボルトBのおねじが形成された軸部分の形状に対応する軸部側空間部13aと、ボルトBの六角形の頭部の形状に対応する頭部側空間部13bとを有する。したがって、軸部側空間部13aの内面にはめねじが形成され、頭部側空間部13bには六角柱状にくりぬかれた凹部が形成されている。
 2つの割り型11a、11bは、互いの合わせ面14を当接させてボルトBの形状に対応する空間部13を形成した状態で連結される。具体的には、2つの割り型11a、11bに水平方向に形成された貫通孔15にボルトを挿入するとともに当該ボルトにナットを締結することによって、2つの割り型11a、11bが連結される。
 なお、図5~6に示される上記の金型11は、縦割り型の2つの割り型11a、11bを有し、空間部13のうちボルト頭部側に1個の貫通孔12が形成された構造を有しているが、本発明の製造方法では金型の構造について限定するものではなく、種々の形状の金型を採用することが可能である。
 例えば、本発明の変形例として、図14に示される金型21のように、ボルト形状の空間部21aのうち軸部側空間部21bに連通する貫通孔21cが形成され、軸部側の貫通孔21cから圧力Pを空間部21a内に与えることが可能な構造であってもよい。
 また、他の変形例として、図15に示される金型22のように、2つの貫通孔、すなわち、ボルト形状の空間部22aのうち軸部側空間部22bに連通する貫通孔22c、および頭部側空間部22dに連通する貫通孔22eが形成された構造であってもよい。図15の構造では、2か所の貫通孔22c、22eから圧力Pを空間部22a内に与えることが可能である。
 さらに他の変形例として、図16に示される横割り型の金型23を用いてもよい。この金型23は、水平方向に延びる合わせ面23dで合わせることが可能な2つの割り型として、上型23aおよび下型23bを有する。上型23aおよび下型23bを合わせることによりボルト状の空間部23cが形成される。
 横割り型についてのさらに他の変形例として、図17に示される横割り型の金型24のように、2か所の貫通孔24e、24fを形成してもよい。図17の構造では、上型24aおよび下型24bを水平合わせ面24dで合わせることによってボルト形状の空間部24cが形成されている。当該空間部24cのうち軸部側空間部24c1は、貫通孔24eに連通し、頭部側空間部24c2は、貫通孔24fに連通している。2か所の貫通孔24e、24fから圧力Pを空間部24c内に与えることが可能である。
 金型11の加熱方法については、チョップ材Cが溶融する温度(例えば270℃前後の250~300℃)まで加熱できる方法であればよく、本発明ではとくに限定しない。例えば、赤外線やバーナーなどによる加熱の他、誘導加熱などによって加熱してもよい。
 チョップ材Cを金型11に投入する方法については、本発明はとくに限定されるものではなく、投入装置を用いた機械的な方法または手作業で所定量のチョップ材Cを投入すればよい。
 チョップ材Cを投入する際には、チョップ材C内部の炭素繊維の延びる方向がそろわないように多数のチョップ材Cが互いにバラバラの方向を向くように(すなわち、チョップ材Cの向きがランダムになるように)投入することにより、成形後のボルトBのランダム配向性を確実に担保することが可能である。したがって、チョップ材Cの大きさは、投入口12の開口面積や空間部13の体積や形状などを考慮して、多数のチョップ材Cが投入時において互いにバラバラの方向を向く程度の大きさになるように設定されるのが好ましい。
 ついで、図7に示されるように、チョップ材Cを金型11に押し込む(図2のS4)。具体的には、押圧ロッド16を金型11の投入口12に挿入し、押圧ロッド16によって、金型11に投入されたチョップ材Cを金型11内部の空間部(キャビティー)13に押し込む。これにより、チョップ材Cを空間部13の内部に均一に分散して詰め込まれるようにする。押圧ロッド16によってチョップ材Cを押し込む場合、投入口12とほぼ同一の大きさの蓋を介してチョップ材Cを押し込んでもよいし、押圧ロッド16の下端面で直接押し込んでもよい。押し込んだときにチョップ材Cが漏れなければ適宜の方法で押し込めばよい。上記のチョップ材Cを金型11に押し込む工程(S4)は本発明の製造方法では、必須でなく、省略してもよい。
 その後、図8に示されるように、熱プレス機17を用いて金型11内部のチョップ材Cを加圧する(図2のS5)。熱プレス機17は、台座17aと、台座17aの上方に配置された加圧部17bとを有する。台座17aは、ヒータを有しており、台座17aに載置された金型11を加熱する。金型11が台座17aに載置された状態で、加圧部17bが下降することにより、加圧部17bは押圧ロッド16を介して加熱された金型11内部のチョップ材Cを加圧する。これにより、金型11内部では多数のチョップ材Cの群が高温高圧下で空間部13内部で溶融変形してボルトBの形状に成形される。
 ボルトBの成形後、図9に示されるように、金型11を分解して、2つの割り型11a、11bに分割する(図2のS6)。
 最後に、図10に示されるように、ボルトBを金型11の一方の割り型11aの空間部13から取り外して脱型をして(図2のS7)、ボルトBの製造方法の一連の工程が終了する。
 本発明の実施形態に係るボルトBなどの繊維強化樹脂製締結具は、上記の製造方法で製造することにより、熱可塑性樹脂と、配向が特定されない状態で前記熱可塑性樹脂に含浸されている強化繊維とで形成された繊維強化樹脂製締結具であって、前記強化繊維の繊維長は、5~100mmの範囲内、好ましくは5~40mmであり、さらに好ましくは5~20mmである。前記熱可塑性樹脂における前記強化繊維の体積含有率は、30~80%の範囲内、好ましくは30~60%であるという特徴を有することが可能になる。
 上記の締結具では、強化繊維配向が特定されない状態、すなわちランダム配向性を有する状態で強化繊維が熱可塑性樹脂に含浸されており、しかも、強化繊維における条件として、繊維長が5~100mmの範囲内であり、かつ、前記熱可塑性樹脂における体積含有率が30~80%の範囲内であるので、量産性に優れ、かつ高い強度を有している。
 上記の条件は、後述の実施例で示されるように、強化繊維の繊維長が、5~100mmで、好ましくは5~40mmであり、さらに好ましくは5~20mm程度あれば、引張強度に優れたボルトを製造することができる点、および強化繊維の体積含有率が30~80%の範囲内、好ましくは30~60%であれば、ボルトの高い強度および賦形性を確保することが可能である点に基づいている。
 (本実施形態の特徴)
 上記の本実施形態の繊維強化樹脂製の締結具の製造方法では、ボルトBなどの締結具の材料として、図3~4に示されるように、開繊した強化繊維F2が所定の方向に配向した状態で熱可塑性樹脂R1に含浸されたCFRTPシートSなどの繊維強化樹脂シートを所定の大きさに細断することによって形成された複数のチョップ材Cを準備する。そして、複数のチョップ材Cを金型11の内部に投入して、チョップ材を加熱した状態で加圧成形する。チョップ材Cは賦形性、すなわち金型のキャビティ形状への追随性が良いので、従来の繊維強化樹脂製の棒状部材を切削加工して製造する場合と比較して量産性に優れる。
 すなわち、本実施形態の製造方法によって製造された繊維強化樹脂製の締結具は、上記(C)の加圧工程のように熱プレス成形を行うことによって大量量産が可能である。また、使用済の締結具を再加熱して熱可塑性樹脂を溶融すれば他の用途に再利用することが可能である。
 しかも、締結具の材料となる複数のチョップ材の群はランダム配向性を有するので、加圧成形しても、チョップ材に含まれる強化繊維が切断されるおそれが低い。そして、成形後の締結具も一定の繊維長を維持しているので、締結具の強度(例えば、ねじり強度、せん断強度など)を向上することができる。これにより、量産性に優れてかつ高い強度を有する繊維強化樹脂製締結具を製造することが可能になる。
 つぎに、本発明の実施例として、本実施形態の繊維強化樹脂製の締結具の製造方法によって製造されたCFRTP製のボルトBの強度および賦形性についての評価を行う。ボルトBとしては、M8×30のサイズの六角全ねじのボルト(すなわち外径が8mmで、かつ、長さ30mmの軸部を有する六角全ねじのボルト)を例に挙げて説明する。
 ボルトBの材料となるCFRTP製のチョップ材は、CFRTPシートを細断することにより形成される。CFRTPシートは、炭素繊維からなる多数の長繊維が単一の方向に延びるシート、すなわちUDシートからなり、具体的には、開繊されたPAN(ポリアクリロニトリル)系炭素繊維を単一の方向に延ばしながらマトリックス(母材)となるナイロン6(PA6)、PA9T、PPSなどに含浸させることにより製造される。
 上記のCFRTPシートを細断することにより形成されるチョップ材の大きさは、M8のボルトを成形するための金型の投入口およびキャビティの大きさを考慮して、当該キャビティに対して賦形性の良い大きさになるように設定される。
 CFRTPシートおよびそれを細断したチョップ材における炭素繊維の体積含有率(Vf)は、35~53%である。
 チョップ材(またはチョップ材をキャリアシート(例えば、熱可塑性樹脂製のフィルム)に固定したチョップドシート)を金型に投入してボルトBをプレス成形する際には、例えば、成形温度270℃の加熱状態の下、プレス圧力37MPaでチョップ材(またはチョップドシート)を加圧する。その後、加熱を停止した状態で、冷間プレスとして、常温(例えば25℃程度)の状態においてプレス圧力73MPaでさらに加圧して、所定の形状のボルトBに成形する。
 本実施形態の製造方法によって製造されたCFRTP製のボルトBの引張破断荷重、成形性、および繊維充填度合いについての評価は、以下のようにして行われる。
 なお、引張破断荷重の試験は、JIS B 1051に準拠した試験方法で実施される。
 表1に示されるように、本実施形態の繊維強化樹脂製の締結具の製造方法によって製造されたCFRTP製のボルトBとして、実施例1~7の条件でM8×30のサイズの六角全ねじのボルトを製造する。あわせて、実施例8の条件で当該ボルトに対応するM8のナットを製造する。
 実施例1では、5mm×10mm(すなわち、横5mm、縦10mm)の矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6フィルムが用いられる。なお、炭素繊維の繊維体積含有率(Vf)は53%である。
 実施例2では、5mm×20mmの矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は35%である。
 実施例3では、5mm×100mmの矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である。
 実施例4では、40mm角(すなわち、縦横いずれも40mm)の正方形状のチョップ材、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である。
 実施例5では、5mm×20mmの矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6よりも物理的特性に優れたPA9Tフィルムが用いられ、炭素繊維の繊維体積含有率は53%である。
 実施例6では、5mm×10mmの矩形形状のチョップ材、およびマトリックス(基材)としてPPSフィルムが用いられる。なお、炭素繊維の繊維体積含有率は47.7%である。
 実施例7では、チョップドシート(すなわち、チョップ材をキャリアシート(熱可塑性樹脂製のフィルム)に固定したシート)、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である。
 実施例8は、上記実施例1~7の条件で製造されるボルトに対応するM8のナットであって、5mm×20mmの矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である。
 一方、表2には、上記実施例1~8と比較するために、比較例1~7の条件でM8×30のサイズの六角全ねじのボルトを製造する。あわせて、実施例8の条件で当該ボルトに対応するM8のナットを製造する。
 比較例1では、UDシート(厚さ180μm)であって、マトリックス(基材)としてPA6フィルムが用いられる。
 比較例2では、5mm×1000mmのテープ材(厚さ50μm)を丸めて金型に投入する形で用いられる。なお、マトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である。
 さらに、比較例3では、5mm×20mmの矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である製造条件でボルトを製造後にねじ山を削り出したものが用いられる。
 比較例4では、ガラス繊維を含む短繊維強化品の材料の射出品であり、マトリックス(基材)としてPPSが用いられる。ガラス繊維(GF)の含有率は40%(重量%)である。
 比較例5では、ガラス繊維を含む短繊維強化品の材料の射出品であり、マトリックス(基材)としてMXD6が用いられる。ガラス繊維(GF)の含有率は50%(重量%)である。
 比較例6では、樹脂製の材料の射出品であり、マトリックス(基材)としてPC(ポリカーボネート)が用いられる。
 比較例7では、樹脂製の材料の射出品であり、マトリックス(基材)としてPEEK(ポリエーテルエーテルケトン)が用いられる。
 比較例8では、上記比較例4の条件で製造されるボルトに対応するM8のナットであって、短繊維強化品の材料の射出品であり、マトリックス(基材)としてPPSが用いられる。ガラス繊維(GF)の含有率は40%(重量%)である。
 上記実施例1~8および比較例1~8によってそれぞれ製造されたボルトおよびナットについて規定本数の引張試験を行った結果、それぞれの例についての引張張破断荷重を求めるとともに、成形性および繊維の充填度合いについての評価を行った。その結果が表1~2に示される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の表1~2に示されるように、本実施形態の製造方法(すなわち、CFRTP製のチョップ材を用いて加圧成形する製造方法)によって製造されたCFRTP製のボルトの引張破断荷重は、実施例1~7に示されるように、4921~7890Nの範囲内である。しかも、実施例1~7では、成形性についての評価は△(7割程度の割合で成形完了)および〇(すべて成形完了)である。また、実施例1~7では、繊維の充填度合いの評価も〇(7割程度の割合でねじ山全体まで充填完了)および◎(すべてねじ山先端まで充填完了)である(図18の繊維の充填度合いの評価についての説明図参照)。なお、図18には、ボルトのねじ山31の断面図が示され、31aがねじ山の先端、32が炭素繊維、33がマトリックス樹脂を示す。
 一方、比較例1では、UDシートをそのまま加圧成形して製造したボルトの引張破断荷重が2537Nにすぎず、実施例1~7における上記の範囲内の最小値の4921Nを大きく下回っている。さらに、繊維の充填度合いの評価も×(ねじ山の先端まで充填できなかった)である(図18参照)。
 上記の比較例1では、UDシートを用いたボルトの成型は可能であるが、引張破断荷重が2537Nしかなく、同一材料(PA6フィルム)のマトリックスを用いた実施例1~4および7の引張破断荷重(4921~7890N)よりも大幅に低い。この原因は、比較例1によって成型されたボルトBでは、図12に示される当該ボルトBの断面において、ネジ山Gの奥の箇所において発生したボイドV(空孔)による剛性の低下が原因であると考えられる。ボイドVは、ボルト成型中においてUDシート内の連続繊維(すなわち、所定方向に配向された長繊維の強化繊維の層)によって空気の逃げ道を塞ぐために生じたと考えられる。なお、図12に示されるボイドVは、ボルトBの切断面をレーザー顕微鏡で観察することによって確認された。一方、実施例1~4および7のボルトBでは、断面観察してもボイドVは発見されなかった。
 比較例2のようにテープ材を丸めて加圧成形した場合、ボルトを成形することができず、引張破断荷重の測定、ならびに成形性および繊維の充填度合いの評価を行うことができなかった。
 比較例3は、5mm×20mmの矩形形状のチョップ材(厚さ50μm)、およびマトリックス(基材)としてPA6フィルムが用いられ、炭素繊維の繊維体積含有率は53%である製造条件によって製造されたM8のボルト(直径8mm)をさらにネジ山を削る加工をしている。これにより、比較例3の引張破断荷重(2084N)は、実施例1~4および7の引張破断荷重(4921~7890N)よりも大幅に低下している。この原因は、図13(a)に示される削り加工前のボルトB1内部において強化繊維Fが連続して延びている状態と比較して、図13(b)に示される削り加工後の比較例3のボルトB2内部において強化繊維Fが切断されて引張強度が低下したことが原因であると考えられる。
 比較例4のようにガラス繊維を含むPPSの射出品、および比較例5のようにガラス繊維を含むMXD6の射出品を用いた場合のそれぞれの引張破断荷重(3215Nおよび4386N)を見ても、実施例1~4および7の引張破断荷重(4921~7890N)よりも十分に低いことがわかる。
 また、繊維を含まない樹脂の射出品の例として、比較例6のようにPCの射出品、および比較例7のようにPEEKの射出品を用いた場合のそれぞれの引張破断荷重(2121Nおよび3258N)を見ても、実施例1~4および7の引張破断荷重(4921~7890N)よりも十分に低いことがわかる。
 また、実施例8に示されるように、本実施形態の製造方法(すなわち、CFRTP製のチョップ材を用いて加圧成形する製造方法)によって製造されたCFRTP製のナットの引張破断荷重は、9292Nであり、非常に高い値である。しかも、実施例8では、成形性についての評価は〇(すべて成形完了)であり、かつ、繊維の充填度合いの評価も◎(すべてねじ山先端まで充填完了)である。
 一方、比較例8で製造されたナット、すなわち、ガラス繊維を含むPPSの射出品であるナットの引張破断荷重は3290Nにすぎず、上記の実施例のナットの引張破断荷重(9292N)を大きく下回っている。
 さらに、以下の表3に示されるように、実施例1~7で製造される炭素繊維製(CF)のM8のボルトの重量は3gであり、ステンレス鋼(SUS)製のM8のボルトの重量(16g)と比較して1/5よりも小さく、非常に軽い。また、実施例8で製造される炭素繊維製(CF)のM8のナットの重量は1.2gであり、ステンレス鋼(SUS)製のM8のナットの重量(5.4g)と比較して1/4~1/5程度小さく、非常に軽い。
Figure JPOXMLDOC01-appb-T000003
 上記の表1の試験結果などを見れば、チョップ材に含まれる強化繊維の繊維長は、5~100mmで、好ましくは5~40mm、さらに好ましくは5~20mm程度あれば、引張強度に優れたボルトやナットを製造することができると考えられる。また、このように実施例1~8によって製造されたボルトやナットは、引張強度に優れることを考慮すればねじり強度も高くなることが推定される。
 ここで、チョップ材の繊維長は、長い方がボルトの強度の向上に寄与すると考えられるが、賦形性を考えた場合には、マトリックスの樹脂材料の流動性(MFR)は、2~50g/10min、好ましくは5~30g/minである。この数値であれば賦形性を良好に維持することが可能である。
 また、チョップ材におけるマトリックスに含まれる強化繊維の体積含有率が30~80%の範囲内であるのが好ましい。30%よりも少ないとボルトの強度が低くなり、80%を超えると賦形性が低下して成型が困難になるので、ボルトの高い強度および賦形性を確保する観点から強化繊維の体積含有率は上記の範囲内であることが好ましく、さらに好ましくは30~60%が良い。
 (変形例)
 (A)
 上記の実施形態では、図6に示されるようにCFRTPシートを細断した多数のチョップ材Cを金型11に投入して、チョップ材Cの状態で熱プレス成形をしてボルトBなどの締結具を製造しているが、本発明はこれに限定するものではなく、多数のチョップ材Cを平面的に並べて合体したシート状の部材、すなわちチョップドシートCSの状態で金型に投入してもよい。
 すなわち、本発明の製造方法の変形例として、この製造方法は、上記の(A)チョップ材の準備工程の後において、(D)複数のチョップ材を平面的に並べて合体したチョップドシートを作製するチョップドシート作製工程(図2のS21)をさらに含み、上記の(B)投入工程において、チョップドシートを金型の内部に詰め込むことを特徴とする。
 チョップドシート作製工程は、複数のチョップ材Cを平面的に並べて合体したチョップドシートCSを作製することができればよく、本発明では複数のチョップ材Cを合体させるためのフィルムの使用についてはとくに限定しない。
 チョップドシート作製工程の一例としては、例えば、複数のチョップ材を熱可塑性樹脂フィルムの少なくとも一方の面に分散させた状態で含浸させたチョップドシートを作製する。具体的には、図11に示されるように、熱可塑性樹脂フィルムR2を連続的に送り出していき、区間XIのように、熱可塑性樹脂フィルムR2の両面に多数のチョップ材Cを分散させた状態で加熱ロールなどで加熱しながら加圧することにより、チョップ材Cが両面に分散されたチョップドシートCSが製造される。なお、チョップ材Cは、熱可塑性樹脂フィルムR2の両面のうちのいずれか一方の面のみに含浸してもよい。
 熱可塑性樹脂フィルムR2は、上記のチョップ材Cを製造する際に用いられた熱可塑性樹脂シートR1(図3参照)と同じ材料(例えばナイロン6(PA6))であれば、チョップ材Cのマトリックス(母材)と同じ材料であるので、チョップ材Cが熱可塑性樹脂フィルムR2に含浸されやすくなる。
 なお、これら熱可塑性樹脂シートR1および熱可塑性樹脂フィルムR2の厚さは、チョップ材CおよびチョップドシートCSを作製する際の製造条件などを考慮して適宜選定される。
 製造されたチョップドシートCSは、金型11の投入口12に投入しやすいように変形され、例えば丸められた状態で金型11に詰め込まれる(図6参照)。なお、チョップドシートCSが大きい場合は、成形されるボルトBの体積に対応する大きさで切り出してから丸めて用いればよい。
 このような上記の製造方法では、複数のチョップ材Cを平面的に並べて合体したチョップドシートCSの状態にして、当該チョップドシートCSを金型11の内部に詰め込むことにより、複数のチョップ材Cを金型11の空間部(キャビティー)13に容易に分散させて投入することが可能になる。その結果、投入後のチョップ材Cを金型11の空間部13に均一に分散させるための別作業が必要なくなり、量産性がさらに向上する。
 しかも、チョップドシートCS内部のチョップ材Cにおいても一定の繊維長が維持されているので、長繊維を有するボルトBなどの締結具を製造することが可能であり、締結具の強度を向上することが可能である。
 また、上記の変形例では、複数のチョップ材Cを熱可塑性樹脂フィルムR2の少なくとも一方の面に分散させた状態で含浸させることにより、チョップドシートCSを容易に作製することが可能である。また、作製後のチョップドシートCSからチョップ材Cが分離するおそれも低減する。
 (B)
 また、他の変形例として、上記の図11で作製されたチョップドシートCSを金型11に投入しやすい大きさに細断してもよい。
 すなわち、本発明の他の変形例としての製造方法は、上記の(D)チョップドシート作製工程の後において、図11の区間XII~XIIIに示されるように、チョップドシートCSをチョップ材Cよりも大きい所定の大きさに細断するチョップドシート細断工程をさらに含み、上記の(B)投入工程において、細断されたチョップドシートT(図6および図11参照)を金型11の内部に詰め込むことを特徴とする。
 上記の製造方法では、チョップ材Cよりも大きい所定の大きさに細断されたチョップドシートTを金型11の内部に詰め込むので、チョップドシートを金型11の内部に詰め込む前に丸めたり変形する別作業が不要になり、金型への投入が容易である。それとともに、チョップ材Cのままの状態で金型11に投入するよりも金型11の空間部13において均一に分散させることが可能である。その結果、量産性がより一層優れる。
 (C)
 なお、上記実施の形態の製造方法では、複数のチョップ材を平面的に並べて合体したチョップドシートを作製し、当該チョップドシートを金型の内部に詰め込む例が示されているが、本発明はこれに限定されるものではなく、複数のチョップ材のどのような形状にまとめて金型に詰め込むか限定としない。したがって、本発明の変形例として、複数のチョップ材を棒状にしたものを金型に投入して加圧するようにしてもよい。
<実施形態のまとめ>
 前記実施形態をまとめると以下のとおりである。
 前記実施形態にかかる繊維強化樹脂製締結具の製造方法は、繊維強化樹脂製の締結具の製造方法であって、開繊した強化繊維が所定の方向に配向した状態で熱可塑性樹脂に含浸された繊維強化樹脂シートが所定の大きさに細断された複数のチョップ材を準備する準備工程と、前記複数のチョップ材を金型の内部に投入する投入工程と、前記金型を加熱した状態で前記金型内部の前記チョップ材を加圧することにより、前記締結具の形状に成形する加圧工程とを含むことを特徴とする。
 かかる製造方法では、締結具の材料として、開繊した強化繊維が所定の方向に配向した状態で熱可塑性樹脂に含浸された繊維強化樹脂シートを所定の大きさに細断することによって形成された複数のチョップ材を準備する。そして、複数のチョップ材を金型の内部に投入して、チョップ材を加熱した状態で加圧成形する。チョップ材は賦形性、すなわち金型のキャビティ形状への追随性が良いので、従来の繊維強化樹脂製の棒状部材を切削加工して製造する場合と比較して量産性に優れる。
 しかも、締結具の材料となる複数のチョップ材の群はランダム配向性(すなわち強化繊維の配向が特定されていない性質)を有するので、加圧成形しても、チョップ材に含まれる強化繊維が切断されるおそれが低い。そして、成形後の締結具も強化繊維の一定の繊維長を維持しているので、締結具の強度を向上することができる。これにより、量産性に優れてかつ高い強度を有する繊維強化樹脂製締結具を製造することが可能になる。
 上記の繊維強化樹脂製締結具の製造方法であって、前記準備工程の後において、前記複数のチョップ材を平面的に並べて合体したチョップドシートを作製するチョップドシート作製工程をさらに含み、前記投入工程において、前記チョップドシートを前記金型の内部に詰め込むのが好ましい。
 かかる製造方法では、前記複数のチョップ材を平面的に並べて合体したチョップドシートの状態にして、当該チョップドシートを金型の内部に詰め込むことにより、複数のチョップ材を金型の空間部に容易に分散させて投入することが可能になる。その結果、投入後のチョップ材を金型の空間部に均一に分散させるための別作業が必要なくなり、量産性がさらに向上する。
 しかも、チョップドシート内部のチョップ材においても一定の繊維長が維持されているので、長繊維を有する締結具を製造することが可能であり、締結具の強度を向上することが可能である。
 上記の繊維強化樹脂製締結具の製造方法であって、前記チョップドシート作製工程は、前記複数のチョップ材を熱可塑性樹脂フィルムの少なくとも一方の面に分散させた状態で含浸させることにより前記チョップドシートを作製するのが好ましい。
 この場合、複数のチョップ材を熱可塑性樹脂フィルムの少なくとも一方の面に分散させた状態で含浸させることにより、チョップドシートを容易に作製することが可能である。また、作製後のチョップドシートからチョップ材が分離するおそれも低減する。
 上記の繊維強化樹脂製締結具の製造方法であって、前記チョップドシート作製工程の後において、前記チョップドシートを前記チョップ材よりも大きい所定の大きさに細断するチョップドシート細断工程をさらに含み、前記投入工程において、細断された前記チョップドシートを前記金型の内部に詰め込むのが好ましい。
 かかる製造方法では、チョップ材よりも大きい所定の大きさに細断されたチョップドシートを金型の内部に詰め込むので、チョップドシートを金型の内部に詰め込む前に丸めたり変形する別作業が不要になり、金型への投入が容易である。それとともに、チョップ材のままの状態で金型に投入するよりも金型の空間部において均一に分散させることが可能である。その結果、量産性がより一層優れる。
 上記の繊維強化樹脂製締結具の製造方法であって、前記チョップ材に含まれる前記強化繊維の繊維長は、5~100mmであるのが好ましい。この範囲内であれば、締結具の高い強度を確保することが可能である。
 上記の繊維強化樹脂製締結具の製造方法であって、前記チョップ材における前記熱可塑性樹脂に含まれる強化繊維の体積含有率は、30~80%であるのが好ましい。この範囲内であれば、締結具の高い強度および賦形性を確保することが可能である。
 本実施形態にかかる繊維強化樹脂製締結具は、熱可塑性樹脂と、配向が特定されない状態で前記熱可塑性樹脂に含浸されている強化繊維とで形成された繊維強化樹脂製締結具であって、前記強化繊維の繊維長は、5~100mmの範囲内であり、前記熱可塑性樹脂における前記強化繊維の体積含有率は、30~80%の範囲内であることを特徴とする。
 上記の締結具では、強化繊維の配向が特定されない状態、すなわち強化繊維が長繊維を有する状態で熱可塑性樹脂に含浸されており、しかも、強化繊維における条件として、繊維長が5~100mmの範囲内であり、かつ、前記熱可塑性樹脂における体積含有率が30~80%の範囲内であるので、量産性に優れ、かつ高い強度を有する。
 本実施形態にかかる繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具によれば、量産性に優れ、かつ高い強度の締結具を製造することができる。

Claims (7)

  1.  繊維強化樹脂製の締結具の製造方法であって、
     開繊した強化繊維が所定の方向に配向した状態で熱可塑性樹脂に含浸された繊維強化樹脂シートが所定の大きさに細断された複数のチョップ材を準備する準備工程と、
     前記複数のチョップ材を金型の内部に投入する投入工程と、
     前記金型を加熱した状態で前記金型内部の前記チョップ材を加圧することにより、前記締結具の形状に成形する加圧工程と
    を含む繊維強化樹脂製締結具の製造方法。
  2.  前記準備工程の後において、前記複数のチョップ材を平面的に並べて合体したチョップドシートを作製するチョップドシート作製工程をさらに含み、
     前記投入工程において、前記チョップドシートを前記金型の内部に詰め込む、
     請求項1に記載の繊維強化樹脂製締結具の製造方法。
  3.  前記チョップドシート作製工程は、前記複数のチョップ材を熱可塑性樹脂フィルムの少なくとも一方の面に分散させた状態で含浸させることにより前記チョップドシートを作製する
     請求項2に記載の繊維強化樹脂製締結具の製造方法。
  4.  前記チョップドシート作製工程の後において、前記チョップドシートを前記チョップ材よりも大きい所定の大きさに細断するチョップドシート細断工程をさらに含み、
     前記投入工程において、細断された前記チョップドシートを前記金型の内部に詰め込む、
    請求項2または3に記載の繊維強化樹脂製締結具の製造方法。
  5.  前記チョップ材に含まれる前記強化繊維の繊維長は、5~100mmである、
    請求項1~4のいずれか1項に記載の繊維強化樹脂製締結具の製造方法。
  6.  前記チョップ材における前記熱可塑性樹脂に含まれる強化繊維の体積含有率は、30~80%である、
    請求項1~5のいずれか1項に記載の繊維強化樹脂製締結具の製造方法。
  7.  熱可塑性樹脂と、配向が特定されない状態で前記熱可塑性樹脂に含浸されている強化繊維とで形成された繊維強化樹脂製締結具であって、
     前記強化繊維の繊維長は、5~100mmの範囲内であり、
     前記熱可塑性樹脂における前記強化繊維の体積含有率は、30~80%の範囲内である、
    ことを特徴とする繊維強化樹脂製締結具。
PCT/JP2020/017021 2019-04-25 2020-04-20 繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具 WO2020218233A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516098A JP7108134B2 (ja) 2019-04-25 2020-04-20 繊維強化樹脂製締結具の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019084239 2019-04-25
JP2019-084239 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020218233A1 true WO2020218233A1 (ja) 2020-10-29

Family

ID=72942729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017021 WO2020218233A1 (ja) 2019-04-25 2020-04-20 繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具

Country Status (2)

Country Link
JP (1) JP7108134B2 (ja)
WO (1) WO2020218233A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145155A1 (ja) * 2020-12-28 2022-07-07 フクビ化学工業株式会社 繊維強化樹脂シート及び繊維強化複合材並びに成形品
CN116572555A (zh) * 2023-05-30 2023-08-11 东莞市麦星匠碳纤维科技有限公司 热固性碳纤维增强型复合材料螺丝的制备方法
JP7390279B2 (ja) 2020-12-24 2023-12-01 フクビ化学工業株式会社 繊維強化樹脂チョップ材、繊維強化樹脂複合材及び樹脂成形品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186241A (ja) * 1984-10-03 1986-05-01 Sekisui Chem Co Ltd 繊維強化プラスチツクねじ状成形体の製造方法
JPH10138244A (ja) * 1996-11-07 1998-05-26 Chisso Corp 長短繊維強化ポリオレフィン複合構造物及びそれからなる成形体
US20140232042A1 (en) * 2013-02-21 2014-08-21 The Boeing Company Method and Apparatus for Fabricating Composite Fasteners
JP2019015399A (ja) * 2017-07-03 2019-01-31 小松マテーレ株式会社 ネジ状成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186241A (ja) * 1984-10-03 1986-05-01 Sekisui Chem Co Ltd 繊維強化プラスチツクねじ状成形体の製造方法
JPH10138244A (ja) * 1996-11-07 1998-05-26 Chisso Corp 長短繊維強化ポリオレフィン複合構造物及びそれからなる成形体
US20140232042A1 (en) * 2013-02-21 2014-08-21 The Boeing Company Method and Apparatus for Fabricating Composite Fasteners
JP2019015399A (ja) * 2017-07-03 2019-01-31 小松マテーレ株式会社 ネジ状成形体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7390279B2 (ja) 2020-12-24 2023-12-01 フクビ化学工業株式会社 繊維強化樹脂チョップ材、繊維強化樹脂複合材及び樹脂成形品
WO2022145155A1 (ja) * 2020-12-28 2022-07-07 フクビ化学工業株式会社 繊維強化樹脂シート及び繊維強化複合材並びに成形品
JP2022103810A (ja) * 2020-12-28 2022-07-08 フクビ化学工業株式会社 繊維強化樹脂シート及び繊維強化複合材並びに成形品
JP7273785B2 (ja) 2020-12-28 2023-05-15 フクビ化学工業株式会社 繊維強化樹脂シート及び繊維強化複合材並びに成形品
CN116572555A (zh) * 2023-05-30 2023-08-11 东莞市麦星匠碳纤维科技有限公司 热固性碳纤维增强型复合材料螺丝的制备方法

Also Published As

Publication number Publication date
JPWO2020218233A1 (ja) 2021-11-25
JP7108134B2 (ja) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2020218233A1 (ja) 繊維強化樹脂製締結具の製造方法および繊維強化樹脂製締結具
US8992811B2 (en) Method for manufacturing shaped product by low-pressure molding
WO2013035705A1 (ja) 繊維強化複合材料から構成される表面意匠性が優れた成形体
US20170260345A1 (en) Fiber-reinforced resin molding material and production method thereof
JP5952510B2 (ja) 開口部を有する成形体の製造方法
US20140178653A1 (en) Production Method for Composite Shaped Product Having Undercut Portion
CN109715385B (zh) 层叠基材及其制造方法
JP6883527B2 (ja) 繊維強化樹脂成形体の製造方法
JP2017043095A (ja) 繊維強化複合材料成形体およびその製造方法
JP2011073436A (ja) 中間製品および中間製品複合体
JP6462190B2 (ja) プレス成形品の製造方法
JP2013103481A (ja) 複合材料成形品の製造方法
JP5812439B2 (ja) 繊維強化熱可塑性樹脂の積層成形品
US11826940B2 (en) Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article
JP2013099817A (ja) 繊維強化複合材料の加工方法
WO2021079786A1 (ja) 繊維強化複合材およびその製造方法並びに樹脂成形品の製造方法
EP3261822A1 (de) Prozessanordnung sowie verfahren zur herstellung eines faserverstärkten kunststoffbauteils
JP2012172104A (ja) 複合成形体の製造方法
JP5598931B2 (ja) 繊維強化された樹脂基材、樹脂成形体の製造方法及びその実施のための樹脂加工機
CN108350202B (zh) 预浸片
US10836078B2 (en) Molded article having hole, and method for producing same
JP7222430B2 (ja) Frp製品の製造方法
JP6458589B2 (ja) シート材料、一体化成形品および一体化成形品の製造方法
JP7220448B2 (ja) 繊維強化複合材の製造方法
JP5958360B2 (ja) Frpシートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795327

Country of ref document: EP

Kind code of ref document: A1