WO2020217947A1 - 太陽光発電システム及びそのアレイ退避方法 - Google Patents

太陽光発電システム及びそのアレイ退避方法 Download PDF

Info

Publication number
WO2020217947A1
WO2020217947A1 PCT/JP2020/015500 JP2020015500W WO2020217947A1 WO 2020217947 A1 WO2020217947 A1 WO 2020217947A1 JP 2020015500 W JP2020015500 W JP 2020015500W WO 2020217947 A1 WO2020217947 A1 WO 2020217947A1
Authority
WO
WIPO (PCT)
Prior art keywords
evacuation
array
wind
power generation
wind speed
Prior art date
Application number
PCT/JP2020/015500
Other languages
English (en)
French (fr)
Inventor
開路 杉山
岩崎 孝
義哉 安彦
塁 三上
山本 誠司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020217947A1 publication Critical patent/WO2020217947A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photovoltaic power generation system and a method for retracting an array thereof.
  • This application claims the priority based on Japanese Application No. 2019-085057 filed on April 26, 2019, and incorporates all the contents described in the Japanese application.
  • a large array is supported by a support mechanism, and the tracking operation is performed by the drive unit.
  • the support mechanism needs to support the array operating on the two axes of azimuth and elevation so as not to interfere with its movement. Therefore, the array is supported by, for example, one strut.
  • a load is applied to the entire support mechanism including the drive unit (two-axis drive), and a large load tends to be particularly concentrated on the support column and the drive unit. Therefore, it is necessary to give the support mechanism mechanical strength with sufficient margin so that it can withstand a strong wind load.
  • a solar tracking type photovoltaic power generation system which includes an array that receives sunlight to generate power, and a support mechanism that supports the array via a drive unit that drives the array around two axes.
  • the array is provided with a control unit that tracks the sun and causes the array to perform a retract operation when it is necessary to retract due to wind.
  • the control unit is provided with the retract operation.
  • a selection function for selecting which index of wind velocity and wind load should be used for determining whether or not it is necessary, and a retracting determination for determining whether or not the retracting operation is necessary based on the selected index. It is a photovoltaic power generation system that has functions.
  • the method is an array evacuation method of a photovoltaic power generation system in which the array tracks the sun and generates electricity while changing its posture, and causes the array to perform an evacuation operation when evacuation is required due to the wind.
  • Solar power that selects which index of wind speed and wind load should be used for determining whether or not an operation is necessary, and determines whether or not the evacuation operation is necessary based on the selected index.
  • This is an array evacuation method for a power generation system.
  • FIG. 1 is a perspective view of an example of a concentrating type photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows a completed photovoltaic power generation device.
  • FIG. 2 is a perspective view of an example of a concentrating type photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the photovoltaic power generation device in a state during assembly.
  • FIG. 3 is a perspective view showing the posture of the array facing the sun.
  • FIG. 4 is a perspective view showing an example of the evacuation posture in a strong wind.
  • FIG. 5 is a diagram showing a photovoltaic power generation system focusing on the drive control system of the drive unit.
  • FIG. 6 is a graph comparing the loss of the amount of generated power between the case of retracting based only on the wind speed (left) and the case of retracting based only on the wind load (right).
  • FIG. 7 is a graph showing the history of torque received by the drive unit in the elevation angle direction during the evacuation operation due to a strong wind.
  • FIG. 8 is a graph showing changes in wind speed and wind load per day.
  • FIG. 9 is a graph showing the wind speed and the wind load when the evacuation determination based on the wind load is performed on the day when the wind load may suddenly rise.
  • FIG. 10 is a graph showing the wind speed and the wind load when the evacuation determination based on the wind speed is performed on a day when the wind load may suddenly rise.
  • FIG. 11 is a graph showing the relationship between wind speed and precipitation.
  • FIG. 12 is a flowchart of selection executed by the control unit before the start of power generation every morning.
  • FIG. 13 is an example of a tracking flowchart including a determination of evacuation based on wind speed.
  • FIG. 14 is an example of a tracking flowchart including a determination of evacuation based on a wind load.
  • FIG. 15 shows the ratio of the amount of power lost due to evacuation for the three types of evacuation determination: wind speed only (left), wind load only (center), and proper use of wind load and wind speed as described above (right). It is a graph which shows.
  • FIG. 16 is a graph plotting the maximum torque received during the retracting operation.
  • Embodiments of the present disclosure include at least the following as a gist thereof.
  • Disclosure is a solar tracking type photovoltaic power generation system, in which an array that receives sunlight to generate power and a support that supports the array via a drive unit that drives the array around two axes.
  • the control unit includes a mechanism and a control unit that causes the array to track the sun by controlling the drive unit and causes the array to perform an evacuation operation when evacuation is required by wind.
  • a selection function for selecting which index of wind speed and wind load should be used for determining whether or not the evacuation operation is necessary, and determining whether or not the evacuation operation is necessary based on the selected index. It has an evacuation judgment function.
  • control unit may refer to the weather forecast when executing the selection function.
  • an appropriate index can be selected in advance based on the weather forecast.
  • the weather forecast includes, for example, wind speed and precipitation probability. Forecasts of wind speed and probability of precipitation are useful in selecting which index of wind speed or wind load should be used for evacuation determination. Therefore, an appropriate selection can be made based on the forecast of wind speed and probability of precipitation.
  • control unit refers to, for example, the weather forecast of the day before the start of power generation in the morning. In this case, it is possible to start power generation after appropriately selecting which index of wind speed and wind load should be used for evacuation determination based on the weather forecast of the day.
  • the method is an array evacuation method of a photovoltaic power generation system in which the array tracks the sun and generates power while changing its posture, and when the wind requires evacuation, the array performs an evacuation operation.
  • the determination as to whether or not the evacuation operation is necessary is selected based on which of the wind speed and the wind load, and it is determined whether or not the evacuation operation is necessary based on the selected index. ..
  • FIG. 1 and 2 are perspective views of an example of a concentrating photovoltaic power generation device for one unit as viewed from the light receiving surface side.
  • FIG. 1 shows a photovoltaic power generation device 100 in a completed state
  • FIG. 2 shows a photovoltaic power generation device 100 in a state in the middle of assembly.
  • FIG. 1 shows a photovoltaic power generation device 100 in a completed state
  • FIG. 2 shows a photovoltaic power generation device 100 in a state in the middle of assembly.
  • FIG. 2 shows a state in which the skeleton of the tracking gantry 25 can be seen in the right half, and a state in which a concentrating photovoltaic power generation module (hereinafter, also simply referred to as a module) 1M is attached in the left half.
  • a module concentrating photovoltaic power generation module
  • the photovoltaic power generation device 100 includes a planar array (solar power generation panel) 1 that is continuous on the upper side and divided into left and right on the lower side, and a support mechanism 2 thereof.
  • the array 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side.
  • the module 1M a known configuration in which optical systems that collect sunlight and guide it to a power generation element are arranged in a matrix is mounted.
  • the support mechanism 2 includes a support column 21, a foundation 22, a drive unit 23, a horizontal shaft 24 (FIG. 2) serving as a drive shaft, and a tracking mount 25.
  • the lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a drive unit 23.
  • a solar position sensor 29 including a pyroheliometer is attached to the center of the upper end of the array 1, for example.
  • wind load sensors 30 are attached to the upper left and right ends of the array 1.
  • Various commercially available pressure sensors may be used for the wind load sensor 30, but as a simple configuration, for example, the limit switch operates when a thin wind receiving plate bends by a certain amount due to the wind. Good.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal.
  • the drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24).
  • a reinforcing member 25a for reinforcing the tracking mount 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal rails 25b are attached to the reinforcing member 25a.
  • Module 1M is mounted so as to fit into this rail. If the horizontal axis 24 rotates in the direction of the azimuth or elevation, the array 1 also rotates in that direction.
  • Array 1 is usually vertical as shown in FIG. 1 before dawn and sunset.
  • the drive unit 23 operates so that the light receiving surface of the array 1 always faces the sun, and the array 1 performs the tracking operation of the sun.
  • FIG. 3 is a perspective view showing the posture of the array 1 facing the sun as an example. Further, for example, at the time of mid-south near the equator, the array 1 is in a horizontal posture with the light receiving surface facing the sun.
  • FIG. 4 is a perspective view showing an example of the evacuation posture in a strong wind. In this case, the light receiving surface of the array 1 is horizontal and upward. It takes a certain amount of time (for example, about 20 minutes) to change from the sun tracking to the evacuation posture shown in FIG. 4, depending on the immediately preceding tracking posture.
  • the array 1 in the night standby posture is upside down from FIG. 4, that is, the array 1 is in a horizontal posture with the light receiving surface of the array 1 facing the ground.
  • FIG. 5 is a diagram showing a photovoltaic power generation system 200 paying attention to the drive control system of the drive unit 23.
  • the array 1 is driven around two axes by the drive unit 23.
  • the array 1 is provided with a sun position sensor 29 and a wind load sensor 30.
  • the detection outputs of the sun position sensor 29 and the wind load sensor 30 are input to the control unit 31.
  • the wind speed sensor 32 is installed in the vicinity of the array 1.
  • the detection output of the wind speed sensor 32 is also input to the control unit 31.
  • the drive unit 23 changes the posture of the array 1 in response to a drive command signal from the control unit 31.
  • the control unit 31 includes, for example, a computer, and the computer executes software (computer program) to realize a necessary control function.
  • the software is stored in a storage device (not shown) of the control unit 31.
  • a communication unit 33 is additionally provided in the control unit 31.
  • the communication unit 33 can communicate with the monitoring unit 34 that controls and monitors a plurality of arrays 1.
  • the monitoring unit 34 can communicate with the server 36 that provides the weather forecast via the Internet 35.
  • the control unit 31 has information on the latitude, longitude, altitude, and current time of the installation location as information necessary for tracking the sun. Basically, based on this information, the control unit 31 can calculate the position (azimuth angle, elevation angle) of the sun and perform tracking. Further, the control unit 31 can adjust the azimuth angle and the elevation angle so that the direct solar radiation can be obtained based on the detection output from the sun position sensor 29.
  • control unit 31 has a selection function 31a and an evacuation determination function 31b as internal functions realized by the computer.
  • the selection function 31a is to select which index of the wind speed and the wind load should be used for the evacuation determination.
  • weather forecast information provided by the monitoring unit 34 can be used.
  • the monitoring unit 34 acquires the weather forecast information from the server 36 that provides the weather forecast.
  • the weather forecast includes, for example, wind speed and probability of precipitation.
  • the evacuation determination function 31b is to determine whether or not the evacuation operation of the array 1 is necessary based on the selected index and the detection output from the wind load sensor 30 or the wind speed sensor 32. ..
  • FIG. 6 is a graph comparing the loss of the amount of generated power between the case of retracting based only on the wind speed (left) and the case of retracting based only on the wind load (right).
  • the vertical axis represents the evacuation time when the amount of generated power that would have been obtained if the evacuation was not performed within a predetermined time including the evacuation time (the length of the evacuation time) is 100%. It is the ratio [%] of the amount of power loss.
  • Evacuation at the wind speed alone is performed when a wind of a predetermined value (average value) or more per second blows for a predetermined time or longer.
  • Evacuation with only the wind load is performed when the wind load exceeds a predetermined value [kNm]. Evacuation using only the wind speed has an earlier evacuation timing than evacuation using only the wind load, and the amount of power loss increases accordingly. On the contrary, evacuation with only the wind load means sticking without evacuation to the limit, and the amount of power loss is smaller than that with evacuation with only the wind speed.
  • FIG. 7 is a graph showing the history of the torque received by the drive unit 23 in the elevation angle direction during the evacuation operation due to a strong wind.
  • the horizontal axis is the date and the vertical axis is the maximum torque received during the evacuation operation.
  • the square plot points in the graph are when they are retracted only by the wind load, and the round plot points are when they are retracted only by the wind speed. According to this result, when the evacuation is performed only by the wind load, there is a point that the upper limit value of the wind load indicated by the broken line in the horizontal direction is exceeded.
  • FIG. 8 is a graph showing changes in wind speed and wind load per day.
  • the dotted line (top) shows the change in wind speed
  • the solid line (bottom) shows the change in wind load.
  • this day is the day when the wind load gradually increased. Since the wind load exceeded the predetermined value at 8:24:50, evacuation was performed (the part indicated by the broken line of the vertically long rectangle). The wind load did not exceed the upper limit (broken line in the horizontal direction) during evacuation. From this result, it is understood that if the wind load gradually increases, there is no problem in making the evacuation determination based on the wind load.
  • FIG. 9 is a graph showing the wind speed and the wind load when the evacuation determination based on the wind load is performed on the day when the wind load may suddenly rise.
  • the broken line (mainly above) shows the change in wind speed
  • the solid line (mainly below) shows the change in wind load. In this case, since the wind load sometimes exceeded the threshold value, evacuation was performed, but the wind load exceeded the upper limit value during evacuation.
  • FIG. 10 is a graph showing the wind speed and the wind load when the evacuation determination based on the wind speed is performed on a day when the wind load may suddenly rise.
  • the broken line (mainly above) shows the change in wind speed
  • the solid line (mainly below) shows the change in wind load. In this case, since the wind speed sometimes exceeded the threshold value, evacuation was performed, but the wind load did not exceed the upper limit value during evacuation.
  • the evacuation determination based on the wind load may exceed the upper limit value during evacuation because the evacuation start timing is later than the evacuation determination based on the wind speed. is there.
  • the evacuation determination based on the wind speed does not exceed the upper limit of the wind load during evacuation because the evacuation start timing is earlier than the evacuation determination based on the wind load. Therefore, when the wind load suddenly rises, the evacuation determination based on the wind speed is more preferable.
  • FIG. 11 is a graph showing the relationship between wind speed and precipitation.
  • the horizontal axis is time, the vertical axis left is wind speed, and the vertical axis right is precipitation.
  • the solid line is the wind speed and the broken line is the precipitation.
  • FIG. 12 is a flowchart of selection executed by the control unit 31 every morning before the start of power generation.
  • the numerical values in the flowchart are merely examples, and are not limited to these numerical values.
  • the control unit 31 acquires the weather forecast information of the day from the monitoring unit 34 every morning before the start of power generation. First, the control unit 31 determines, based on the acquired weather forecast, whether or not the maximum average wind speed on the day is a forecast exceeding 14 [m / s] (step S1). Here, if the forecast does not exceed 14 [m / s], it is unlikely that a sudden change in the wind load will occur, so the control unit 31 selects the evacuation determination based on the wind load (step S5). ).
  • step S1 determines whether or not the probability of precipitation is less than 30% throughout the day (step S2). If it is less than 30%, it is estimated that there is wind but the possibility of a sudden change in the wind load is low, and the control unit 31 selects the evacuation determination based on the wind load (step S5). When the probability of precipitation is 30% or more, the control unit 31 further determines whether or not the probability of precipitation in the afternoon is 30% or more (step S3). If the probability of precipitation in the afternoon is less than 30%, the control unit 31 estimates that a sudden change in the wind load is unlikely to occur, and selects the evacuation determination based on the wind load (step S5). If the probability of precipitation is 30% or more in step S3, the control unit 31 selects the evacuation determination based on the wind speed, considering that there is a sufficient possibility that a sudden change in the wind load will occur (step S4). ..
  • FIG. 13 is an example of a tracking flowchart including a determination of evacuation based on wind speed.
  • the control unit 31 starts tracking the sun (step S41). While performing tracking, the control unit 31 determines whether or not the wind speed exceeds the threshold value (step S42). If the wind speed does not exceed the threshold value, step S41, step S42, and step S47 are repeated all day while determining whether or not sunset has arrived. When the wind speed reaches the sunset without exceeding the threshold value during the day (YES in step S47), the control unit 31 puts the array in the night posture (horizontal posture with the light receiving surface facing the ground) (step S48). ), The process ends.
  • step S43 the control unit 31 executes evacuation (step S43).
  • the evacuation is continued until the evacuation posture is reached and the evacuation is completed (repetition of steps S43 and S44).
  • step S44 the control unit 31 determines whether or not the wind has subsided and the wind speed is below the threshold value for a predetermined time, and the value is below the threshold value. Wait for it to become (step S45). If it is not sunset when the wind speed falls below the threshold value (NO in step S46), the process returns to sun tracking (step S41). If it is sunset (YES in step S47), the control unit 31 puts the array in the night posture (step S48), and the process ends.
  • FIG. 14 is an example of a tracking flowchart including a determination of evacuation based on a wind load.
  • the control unit 31 starts tracking the sun (step S51). While performing tracking, the control unit 31 determines whether or not the wind load exceeds the threshold value (step S52). If the wind load does not exceed the threshold value, step S51, step S52, and step S57 are repeated all day while determining whether or not sunset has been reached. If the wind load does not exceed the threshold value during the day and the sunset is reached (YES in step S57), the control unit 31 puts the array in the night posture (step S58), and the process ends.
  • step S53 when the wind load exceeds the threshold value in step S52, the control unit 31 executes evacuation (step S53). The evacuation is continued until the evacuation posture is reached and the evacuation is completed (repetition of steps S53 and S54). When the evacuation is completed over a certain period of time (YES in step S54), the control unit 31 determines whether or not the wind has subsided and the wind load is below the threshold value for a predetermined time, and is below the threshold value. Wait for it to become (step S55). If it is not sunset when the wind load becomes equal to or less than the threshold value (NO in step S56), the process returns to sun tracking (step S51). If it is sunset (YES in step S57), the control unit 31 puts the array in the night position (step S58), and the process ends.
  • FIG. 15 shows the ratio of the amount of power lost due to evacuation for the three types of evacuation determination: wind speed only (left), wind load only (center), and proper use of wind load and wind speed as described above (right). It is a graph which shows. The amount of power loss when the wind load and the wind speed are used properly is slightly increased as compared with the case of only the wind load, but is significantly reduced as compared with the case of only the wind speed.
  • FIG. 16 is a graph plotting the maximum torque received during the retracting operation.
  • the horizontal axis is the date, and the vertical axis is the maximum torque [kNm] received during the retracting operation. From this graph, it can be seen that the maximum torque exceeding the upper limit value indicated by the broken line in the horizontal direction does not appear.
  • control unit 31 of the photovoltaic power generation system 200 has a selection function of selecting which index of wind speed and wind load should be used for determining whether or not the evacuation operation is necessary. (31a) and a save determination function (31b) for determining whether or not a save operation is necessary based on the selected index are provided. In such a photovoltaic power generation system 200, it is possible to select which index of the wind speed and the wind load should be used for the evacuation determination.
  • the evacuation judgment based on the wind speed is preferable, the evacuation judgment based on the wind speed is performed, and if the evacuation judgment based on the wind load is preferable, the evacuation judgment is based on the wind load.
  • the evacuation judgment is based on the wind load.
  • an appropriate index can be selected in advance.
  • the weather forecast includes, for example, wind speed and probability of precipitation. Forecasts of wind speed and probability of precipitation are useful in selecting which index of wind speed or wind load should be used for evacuation determination. Therefore, an appropriate selection can be made based on the forecast of wind speed and probability of precipitation.
  • control unit 31 refers to the weather forecast for the day before the start of power generation in the morning.
  • the power generation can be started after making an appropriate selection based on which index of wind speed and wind load should be used for the evacuation judgment based on the weather forecast of the day.
  • the condensing type photovoltaic power generation device 100 is disclosed.
  • the generated power becomes 0 during the evacuation time during which tracking is not possible. Therefore, it is significant to select an appropriate index for evacuation determination as described above.
  • the amount of power generation will decrease if tracking is not possible. Therefore, it is also meaningful to select an appropriate index for evacuation determination.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Wind Motors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽追尾型の太陽光発電システムであって、太陽光を受けて発電するアレイと、アレイを2軸まわりに駆動する駆動部を介してアレイを支持する支持機構と、駆動部を制御することにより、アレイに太陽を追尾させるとともに、風により退避が必要な場合はアレイに退避動作を実行させる制御部と、を備え、制御部は、退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択する選択機能と、選択した指標に基づいて、退避動作が必要か否かを判定する退避判定機能と、を備えている。

Description

太陽光発電システム及びそのアレイ退避方法
 本発明は、太陽光発電システム及びそのアレイ退避方法に関する。
 本出願は、2019年4月26日出願の日本出願第2019-085057号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 太陽追尾型の太陽光発電装置では、大型のアレイを支持機構により支持し、駆動部により追尾動作を行わせる。支持機構は、方位角及び仰角の2軸に動作するアレイを、その動きと干渉しないように支持する必要がある。そのため、例えば1本の支柱により、アレイを支持する。この場合、アレイに強風が吹き付けると駆動部(2軸ドライブ)を含む支持機構全体に負荷がかかり、特に支柱及び駆動部に大きな負荷が集中しやすい。そのため、強風荷重にも耐えられるよう十分な余裕を見た機械的強度を支持機構に持たせる必要がある。
 但し、現実には、コストとの兼ね合いも有り、どのような猛烈な風にも耐えられる支持機構を作製することは合理的ではない。そこで、センサにより風速等を検出し、風による機械的負荷が閾値を超える場合には、例えば、風をまともに受けないようにアレイを水平にした退避の姿勢をとり、風を通し、機械的負荷を支持機構の強度範囲内に抑える、ということが現実的である(例えば、特許文献1,2参照。)。
特開2014-203911号公報 国際公開第2012/073705号公報
 本開示は、以下の発明を含む。但し、本発明は請求の範囲によって定められるものである。
 開示するのは、太陽追尾型の太陽光発電システムであって、太陽光を受けて発電するアレイと、前記アレイを2軸まわりに駆動する駆動部を介して前記アレイを支持する支持機構と、前記駆動部を制御することにより、前記アレイに太陽を追尾させるとともに、風により退避が必要な場合は前記アレイに退避動作を実行させる制御部と、を備え、前記制御部は、前記退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択する選択機能と、選択した指標に基づいて、前記退避動作が必要か否かを判定する退避判定機能と、を備えている太陽光発電システムである。
 方法の観点からは、アレイが太陽を追尾して姿勢を変えながら発電し、風により退避が必要な場合はアレイに退避動作を実行させる、太陽光発電システムのアレイ退避方法であって、前記退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択し、選択した指標に基づいて、前記退避動作が必要か否かを判定する、太陽光発電システムのアレイ退避方法である。
図1は、1基分の集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、完成した状態での太陽光発電装置を示している。 図2は、1基分の集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、組立途中の状態での太陽光発電装置を示している。 図3は、一例として、太陽に正対しているアレイの姿勢を示す斜視図である。 図4は、強風時の退避の姿勢の一例を示す斜視図である。 図5は、駆動部の駆動制御系統にも着目した太陽光発電システムを示す図である。 図6は、風速のみに基づいて退避した場合(左)と、風荷重のみに基づいて退避した場合(右)とで、発電電力量の損失を比較したグラフである。 図7は、強風で退避動作中に駆動部が仰角方向に受けたトルクの履歴を示すグラフである。 図8は、1日の風速及び風荷重の変化を示すグラフである。 図9は、風荷重が急上昇することがある日に、風荷重に基づく退避判定を行った場合の風速と風荷重とを示すグラフである。 図10は、風荷重が急上昇することがある日に、風速に基づく退避判定を行った場合の風速と風荷重とを示すグラフである。 図11は、風速と降水量との関係を示すグラフである。 図12は、毎朝、発電開始前に制御部が実行する選択のフローチャートである。 図13は、風速に基づく退避の判定を含む追尾のフローチャートの一例である。 図14は、風荷重に基づく退避の判定を含む追尾のフローチャートの一例である。 図15は、退避判定が風速のみ(左)、風荷重のみ(中央)、及び、上述のような風荷重と風速との使い分け(右)、の3種類についての退避による損失電力量の割合を示すグラフである。 図16は、退避動作中に受ける最大トルクをプロットしたグラフである。
 [本開示が解決しようとする課題]
 集光型の太陽光発電装置では、退避中は発電できないので、発電電力量の損失が生じる。従って、退避時間はなるべく少なくしたい。一方、退避の開始から完了までにはある程度の時間がかかるので、風が急速に強くなると、退避中に、耐えられる機械的負荷を超えてしまう可能性がある。多少の超過には実力として耐えられることも多いが、好ましくはない。このように、風に対してどのタイミングで退避すべきかの判断が難しい。
 かかる課題に鑑み、本開示は、発電電力量の損失をできるだけ抑制しつつ、風による機械的負荷にも安全に耐えるために好適な退避の仕方を提供することを目的とする。
 [本開示の効果]
 本開示によれば、発電電力量の損失をできるだけ抑制しつつ、風による機械的負荷にも安全に耐えるために好適な退避の仕方を提供することができる。
 [本開示の実施形態の説明]
 本開示の実施形態には、その要旨として、少なくとも以下のものが含まれる。
 (1)開示するのは、太陽追尾型の太陽光発電システムであって、太陽光を受けて発電するアレイと、前記アレイを2軸まわりに駆動する駆動部を介して前記アレイを支持する支持機構と、前記駆動部を制御することにより、前記アレイに太陽を追尾させるとともに、風により退避が必要な場合は前記アレイに退避動作を実行させる制御部と、を備え、前記制御部は、前記退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択する選択機能と、選択した指標に基づいて、前記退避動作が必要か否かを判定する退避判定機能と、を備えている。
 このような太陽光発電システムでは、風速及び風荷重のうち、いずれの指標に基づいて退避判定(退避するか否かの判定)すべきかを選択することができる。従って、発電電力量の損失を抑制する観点から、風速に基づく退避判定の方が好ましい場合は、風速に基づく退避判定を行い、風荷重に基づく退避判定の方が好ましい場合は、風荷重に基づく退避判定を行う。こうして、太陽の追尾を中断して退避が必要となる場合でも、発電電力量の損失ができるだけ少なくなるよう抑制し、かつ、強風により損傷を受ける事態の発生も抑制することができる。
 かかる太陽光発電システムによれば、発電電力量の損失をできるだけ抑制しつつ、風による機械的負荷にも安全に耐えるために好適な退避の仕方を提供することができる。
 (2)前記(1)の太陽光発電システムにおいて、前記制御部は、前記選択機能を実行する際に、気象予報を参照するようにしてもよい。
 この場合、気象予報に基づいて、事前に適切な指標を選択することができる。
 (3)前記(2)の太陽光発電システムにおいて、前記気象予報には、例えば、風速及び降水確率が含まれている。
 風速及び降水確率の予報は、風速及び風荷重のいずれの指標に基づいて退避判定するべきかの選択に有益である。そこで、風速及び降水確率の予報に基づいて適切な選択をすることができる。
 (4)前記(2)の太陽光発電システムにおいて、前記制御部は例えば、朝、発電開始前に、当日の気象予報を参照する。
 この場合、その日の気象予報に基づいて、風速及び風荷重のいずれの指標に基づいて退避判定するべきかの適切な選択をした上で、発電開始することができる。
 (5)方法の観点からは、アレイが太陽を追尾して姿勢を変えながら発電し、風により退避が必要な場合はアレイに退避動作を実行させる、太陽光発電システムのアレイ退避方法であって、前記退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択し、選択した指標に基づいて、前記退避動作が必要か否かを判定する。
 このような太陽光発電システムのアレイ退避方法では、風速及び風荷重のうち、いずれの指標に基づいて退避判定すべきかを選択することができる。従って、発電電力量の損失を抑制する観点から、風速に基づく退避判定の方が好ましい場合は、風速に基づく退避判定を行い、風荷重に基づく退避判定の方が好ましい場合は、風荷重に基づく退避判定を行う。こうして、太陽の追尾を中断して風に基づく退避が必要となる場合でも、発電電力量の損失ができるだけ少なくなるよう抑制し、かつ、強風により損傷を受ける事態の発生も抑制することができる。
 かかる太陽光発電システムのアレイ退避方法によれば、発電電力量の損失をできるだけ抑制しつつ、風による機械的負荷にも安全に耐えるために好適な退避の仕方を提供することができる。
 [本開示の実施形態の詳細]
 《太陽光発電装置の主な構成》
 以下、本開示の一実施形態に係る太陽光発電システムにおける、太陽光発電装置について、図面を参照して説明する。
 図1及び図2はそれぞれ、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。図1は、完成した状態での太陽光発電装置100を示し、図2は、組立途中の状態での太陽光発電装置100を示している。図2は、追尾架台25の骨組みが見える状態を右半分に示し、集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mが取り付けられた状態を左半分に示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた全体として面状のアレイ(太陽光発電パネル)1と、その支持機構2とを備えている。アレイ1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。モジュール1M内には、太陽光を集光させて発電素子に導く光学系がマトリックス状に並んで設けられた既知の構成が搭載されている。
 支持機構2は、支柱21と、基礎22と、駆動部23と、駆動軸となる水平軸24(図2)と、追尾架台25とを備えている。支柱21は、下端が基礎22に固定され、上端に駆動部23を備えている。
 アレイ1の例えば上端中央には、直達日射計を含む太陽位置センサ29が取り付けられている。また、アレイ1の左右上端には、風荷重センサ30が取り付けられている。風荷重センサ30は、種々の市販の圧力センサを用いてもよいが、簡素な構成としては、例えば、薄い受風板が風を受けて一定量撓むと、リミットスイッチが動作する、という構成でもよい。
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向へのレール25bが取り付けられている。モジュール1Mは、このレールに嵌め込むように取り付けられる。水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、アレイ1の受光面が常に太陽に正対する姿勢となるよう、駆動部23が動作し、アレイ1は太陽の追尾動作を行う。
 図3は、一例として、太陽に正対しているアレイ1の姿勢を示す斜視図である。また、例えば赤道付近の南中時刻であれば、アレイ1は受光面を太陽に向けて水平な姿勢となる。
 図4は、強風時の退避の姿勢の一例を示す斜視図である。この場合、アレイ1の受光面は水平で上向きである。太陽追尾中から図4の退避姿勢になるには、直前の追尾姿勢にもよるが、ある程度の時間(例えば約20分)がかかる。
 なお、夜間待機姿勢におけるアレイ1は、図4と天地が逆、すなわち、アレイ1の受光面を地面に向けて水平な姿勢となる。
 《太陽光発電システムとしての構成》
 図5は、駆動部23の駆動制御系統にも着目した太陽光発電システム200を示す図である。図において、前述のように、アレイ1は駆動部23により2軸まわりに駆動される。アレイ1には、太陽位置センサ29及び風荷重センサ30が設けられている。太陽位置センサ29及び風荷重センサ30の検出出力は、制御部31に入力される。風速センサ32は、アレイ1の近傍に設置されている。風速センサ32の検出出力も、制御部31に入力される。駆動部23は、制御部31から駆動指令信号を受けてアレイ1の姿勢を変化させる。制御部31は、例えばコンピュータを含み、コンピュータがソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、制御部31の記憶装置(図示せず。)に格納される。
 制御部31には通信部33が付随的に設けられている。通信部33は、複数基のアレイ1を統括して監視する監視部34と通信可能である。監視部34は、インターネット35を介して気象予報を提供するサーバ36と通信可能である。
 制御部31は、太陽追尾に必要な情報として、設置場所の緯度、経度、標高、及び、現在時刻の情報を保有している。基本的には、これらの情報に基づいて、制御部31は太陽の位置(方位角、仰角)を演算し、追尾を行うことができる。さらに、制御部31は、太陽位置センサ29からの検出出力に基づいて、直達日射が得られるように方位角及び仰角を調整することができる。
 一方、制御部31は、コンピュータにより実現する内部機能として、選択機能31aと、退避判定機能31bとを有する。選択機能31aとは、風速及び風荷重のうち、いずれの指標に基づいて退避判定すべきかを選択することである。この選択には、例えば、監視部34から提供される気象予報の情報を利用することができる。監視部34は、気象予報を提供するサーバ36から、気象予報の情報を取得している。気象予報としては、例えば、風速、降水確率である。また、退避判定機能31bとは、選択した指標に基づいて、かつ、風荷重センサ30又は風速センサ32からの検出出力に基づいて、アレイ1の退避動作が必要か否かを判定することである。
 《風荷重に基づく退避と、風速に基づく退避との比較》
 図6は、風速のみに基づいて退避した場合(左)と、風荷重のみに基づいて退避した場合(右)とで、発電電力量の損失を比較したグラフである。縦軸は、退避時間(退避している時間の長さ)を含む所定時間内に、退避しなかったとすれば得られたであろう発電電力量を100%とした場合の、退避時間分の損失電力量の割合[%]である。風速のみでの退避は、毎秒所定値(平均値)以上の風が所定時間以上吹くと行われる。風荷重のみでの退避は、風荷重が所定値[kNm]以上になったとき行われる。風速のみでの退避は、退避のタイミングが風荷重のみでの退避よりも早くなり、その分、損失電力量が増えている。逆に、風荷重のみでの退避は、いわばギリギリまで退避せずに粘ることになり、その分、風速のみでの退避に比べて損失電力量が少ない。
 図7は、強風で退避動作中に駆動部23が仰角方向に受けたトルクの履歴を示すグラフであり、横軸が年月日、縦軸が退避動作中に受けた最大トルクである。グラフ中の四角いプロット点は、風荷重のみで退避した場合、丸いプロット点は風速のみで退避した場合、である。この結果によると、風荷重のみで退避した場合には、破線の横方向直線で示す風荷重の上限値を超過している点がある。
 図6,図7のグラフから言えることは、風荷重のみでの退避判定は、風速のみでの退避判定に比べて、損失電力量は少ないが、上限値を超える風荷重を経験してしまう場合がある、ということである。
 図8は、1日の風速及び風荷重の変化を示すグラフである。点線(上)は風速の変化、実線(下)は風荷重の変化を、それぞれ表している。この日は、結果的に、風荷重が徐々に上昇した日である。8時24分50秒において風荷重が所定値以上になったため、退避が行われた(縦長長方形の破線で示す部分)。退避中に風荷重が上限値(破線の横方向直線)を超えることはなかった。この結果から、風荷重が徐々に増加する場合であれば、風荷重により退避判定を行うことに問題はないと解される。
 図9は、風荷重が急上昇することがある日に、風荷重に基づく退避判定を行った場合の風速と風荷重とを示すグラフである。破線(主に上)は風速の変化、実線(主に下)は風荷重の変化を、それぞれ表している。この場合、風荷重が閾値を超えた時があったため、退避が行われたが、退避中に風荷重が上限値を超えてしまった。
 図10は、風荷重が急上昇することがある日に、風速に基づく退避判定を行った場合の風速と風荷重とを示すグラフである。破線(主に上)は風速の変化、実線(主に下)は風荷重の変化を、それぞれ表している。この場合、風速が閾値を超えた時があったため、退避が行われたが、退避中に風荷重が上限値を超えることはなかった。
 図9,図10により、風荷重が急上昇する場合においては、風荷重に基づく退避判定は、風速に基づく退避判定よりも、退避開始のタイミングが遅いので退避中に上限値を超えてしまうことがある。逆に、風速に基づく退避判定は、風荷重に基づく退避判定よりも、退避開始のタイミングが早いので退避中に風荷重の上限値を超えることはない。従って、風荷重が急上昇する場合には、風速に基づく退避判定の方が好適である。
 図11は、風速と降水量との関係を示すグラフである。横軸は時間、縦軸左は風速、縦軸右は降水量である。実線は風速、破線は降水量である。設置場所にもよるが、風速が急上昇して突風になるときは、雨を伴う可能性が高い。また、時間帯は、午後が多い。従って、午後の降水確率に基づいて、風速に基づく退避判定を行うか、風荷重に基づく退避判定を行うかを使い分けることが考えられる。
 《退避判定の指標の選択》
 図12は、毎朝、発電開始前に制御部31が実行する選択のフローチャートである。なお、フローチャート中の数値は一例に過ぎず、これらの数値に限定されるわけではない。制御部31は、毎朝、発電を開始する前までに、監視部34から当日の気象予報の情報を取得している。まず、制御部31は、取得した気象予報に基づいて、当日の最大の平均風速が14[m/s]を超える予報となっているか否かを判定する(ステップS1)。ここで、14[m/s]を超えない予報である場合は、風荷重の急激な変化が発生する可能性は低いので、制御部31は、風荷重に基づく退避判定を選択する(ステップS5)。
 一方、ステップS1において14[m/s]を超える予想である場合は、制御部31は、降水確率が終日30%未満であるか否かを判定する(ステップS2)。30%未満である場合、風はあるが、風荷重の急激な変化が発生する可能性は低いと推定し、制御部31は、風荷重に基づく退避判定を選択する(ステップS5)。降水確率が30%を以上である場合には、制御部31は、さらに、午後の降水確率が30%以上であるか否かを判定する(ステップS3)。午後の降水確率が30%未満の場合は、制御部31は、風荷重の急激な変化が発生する可能性は低いと推定し、風荷重に基づく退避判定を選択する(ステップS5)。ステップS3において降水確率が30%以上である場合は、風荷重の急激な変化が発生する可能性が十分にあると見て、制御部31は、風速に基づく退避判定を選択する(ステップS4)。
 《風速に基づく退避の判定を含む追尾》
 図13は、風速に基づく退避の判定を含む追尾のフローチャートの一例である。図において、発電開始により、制御部31は、太陽の追尾を開始する(ステップS41)。追尾を行いながら、制御部31は、風速が閾値を超えたか否かを判定する(ステップS42)。風速が閾値を超えない場合は、日没を迎えたか否かの判定をしながら、ステップS41,ステップS42,ステップS47を1日中繰り返す。1日中、風速が閾値を超えることなく日没を迎えた場合(ステップS47のYES)は、制御部31は、アレイを夜間姿勢(受光面を地面に向けた水平姿勢)にして(ステップS48)、処理は終了となる。
 一方、ステップS42において風速が閾値を超えた場合は、制御部31は、退避を実行する(ステップS43)。退避は、退避姿勢になって退避完了となるまで続けられる(ステップS43,S44の繰り返し)。一定時間をかけて退避が完了になると(ステップS44のYES)、制御部31は、今度は、風が治まり、風速が所定時間、閾値以下の状態となるか否かを判定し、閾値以下になるのを待つ(ステップS45)。風速が閾値以下になった時点でまだ日没でなければ(ステップS46のNO)、太陽追尾(ステップS41)に戻る。もし、日没になっていれば(ステップS47のYES)、制御部31は、アレイを夜間姿勢にして(ステップS48)、処理は終了となる。
 《風荷重に基づく退避の判定を含む追尾》
 図14は、風荷重に基づく退避の判定を含む追尾のフローチャートの一例である。図において、発電開始により、制御部31は、太陽の追尾を開始する(ステップS51)。追尾を行いながら、制御部31は、風荷重が閾値を超えたか否かを判定する(ステップS52)。風荷重が閾値を超えない場合は、日没を迎えたか否かの判定をしながら、ステップS51,ステップS52,ステップS57を1日中繰り返す。1日中、風荷重が閾値を超えることなく日没を迎えた場合(ステップS57のYES)は、制御部31は、アレイを夜間姿勢にして(ステップS58)、処理は終了となる。
 一方、ステップS52において風荷重が閾値を超えた場合は、制御部31は、退避を実行する(ステップS53)。退避は、退避姿勢になって退避完了となるまで続けられる(ステップS53,S54の繰り返し)。一定時間をかけて退避が完了になると(ステップS54のYES)、制御部31は、今度は、風が治まり、風荷重が所定時間、閾値以下の状態となるか否かを判定し、閾値以下になるのを待つ(ステップS55)。風荷重が閾値以下になった時点でまだ日没でなければ(ステップS56のNO)、太陽追尾(ステップS51)に戻る。もし、日没になっていれば(ステップS57のYES)、制御部31は、アレイを夜間姿勢にして(ステップS58)、処理は終了となる。
 《結果のグラフ》
 図15は、退避判定が風速のみ(左)、風荷重のみ(中央)、及び、上述のような風荷重と風速との使い分け(右)、の3種類についての退避による損失電力量の割合を示すグラフである。風荷重と風速との使い分けをする場合の損失電力量は、風荷重のみの場合に比べると若干増加するものの、風速のみの場合と比べると大幅に低減されている。
 図16は、退避動作中に受ける最大トルクをプロットしたグラフである。横軸は年月日、縦軸は退避動作中に受ける最大トルク[kNm]である。このグラフにより、破線の横方向直線で示す上限値を超える最大トルクは出現していないことがわかる。
 《開示のまとめ》
 以上、詳述したように、太陽光発電システム200の制御部31は、退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択する選択機能(31a)と、選択した指標に基づいて、退避動作が必要か否かを判定する退避判定機能(31b)と、を備えている。
 このような太陽光発電システム200では、風速及び風荷重のうち、いずれの指標に基づいて退避判定すべきかを選択することができる。従って、発電電力量の損失を抑制する観点から、風速に基づく退避判定の方が好ましい場合は、風速に基づく退避判定を行い、風荷重に基づく退避判定の方が好ましい場合は、風荷重に基づく退避判定を行う。こうして、太陽の追尾を中断して風に基づく退避が必要となる場合でも、発電電力量の損失ができるだけ少なくなるよう抑制し、かつ、強風により損傷を受ける事態の発生も抑制することができる。
 また、選択機能を実行する際に、気象予報を参照すれば、事前に適切な指標を選択することができる。気象予報には、例えば、風速及び降水確率が含まれている。
 風速及び降水確率の予報は、風速及び風荷重のいずれの指標に基づいて退避判定するべきかの選択に有益である。そこで、風速及び降水確率の予報に基づいて適切な選択をすることができる。
 さらに、制御部31は、朝、発電開始前に、当日の気象予報を参照する。この場合、その日の気象予報に基づいて、風速及び風荷重のいずれの指標に基づいて退避判定するべきかの適切な選択をした上で、発電開始することができる。
 《その他》
 なお、上述の実施形態では、集光型の太陽光発電装置100を開示した。集光型の場合、追尾ができない退避時間中は発電電力が0になる。そのため、上述のように退避判定の適切な指標を選ぶことの意義が大きい。但し、集光型でない結晶シリコン型の太陽光発電装置であっても、追尾ができない場合は発電量が低下するので、同様に、退避判定の適切な指標を選ぶことの意義がある。
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 アレイ
 1M モジュール(集光型太陽光発電モジュール)
 2 支持機構
 21 支柱
 22 基礎
 23 駆動部
 24 水平軸
 25 追尾架台
 25a 補強材
 25b レール
 29 太陽位置センサ
 30 風荷重センサ
 31 制御部
 31a 選択機能
 31b 退避判定機能
 32 風速センサ
 33 通信部
 34 監視部
 35 インターネット
 36 サーバ
 100 太陽光発電装置
 200 太陽光発電システム

Claims (5)

  1.  太陽追尾型の太陽光発電システムであって、
     太陽光を受けて発電するアレイと、
     前記アレイを2軸まわりに駆動する駆動部を介して前記アレイを支持する支持機構と、
     前記駆動部を制御することにより、前記アレイに太陽を追尾させるとともに、風により退避が必要な場合は前記アレイに退避動作を実行させる制御部と、を備え、
     前記制御部は、
     前記退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択する選択機能と、
     選択した指標に基づいて、前記退避動作が必要か否かを判定する退避判定機能と、
     を備えている太陽光発電システム。
  2.  前記制御部は、前記選択機能を実行する際に、気象予報を参照する請求項1に記載の太陽光発電システム。
  3.  前記気象予報には、風速及び降水確率が含まれている請求項2に記載の太陽光発電システム。
  4.  前記制御部は、朝、発電開始前に、当日の気象予報を参照する請求項2に記載の太陽光発電システム。
  5.  アレイが太陽を追尾して姿勢を変えながら発電し、風により退避が必要な場合はアレイに退避動作を実行させる、太陽光発電システムのアレイ退避方法であって、
     前記退避動作が必要か否かの判定を、風速及び風荷重のうちいずれの指標に基づいてするべきかを選択し、
     選択した指標に基づいて、前記退避動作が必要か否かを判定する、
     太陽光発電システムのアレイ退避方法。
PCT/JP2020/015500 2019-04-26 2020-04-06 太陽光発電システム及びそのアレイ退避方法 WO2020217947A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019085057 2019-04-26
JP2019-085057 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020217947A1 true WO2020217947A1 (ja) 2020-10-29

Family

ID=72942248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015500 WO2020217947A1 (ja) 2019-04-26 2020-04-06 太陽光発電システム及びそのアレイ退避方法

Country Status (1)

Country Link
WO (1) WO2020217947A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790939A (ja) * 1993-09-22 1995-04-04 Junichi Mishima 建築物
US20030062037A1 (en) * 2001-10-02 2003-04-03 Hayden Herbert T. Celestial tracking apparatus and method of controlling wind stow therefor
US20100258110A1 (en) * 2007-06-21 2010-10-14 Voltwerk Electronics Gmbh Modular Pivotable Solar Collector Arrangement
US20110155218A1 (en) * 2008-07-14 2011-06-30 Buechel Arthur Solar installation
WO2019030996A1 (ja) * 2017-08-09 2019-02-14 住友電気工業株式会社 太陽光発電システム及び、太陽光発電パネルの姿勢制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790939A (ja) * 1993-09-22 1995-04-04 Junichi Mishima 建築物
US20030062037A1 (en) * 2001-10-02 2003-04-03 Hayden Herbert T. Celestial tracking apparatus and method of controlling wind stow therefor
US20100258110A1 (en) * 2007-06-21 2010-10-14 Voltwerk Electronics Gmbh Modular Pivotable Solar Collector Arrangement
US20110155218A1 (en) * 2008-07-14 2011-06-30 Buechel Arthur Solar installation
WO2019030996A1 (ja) * 2017-08-09 2019-02-14 住友電気工業株式会社 太陽光発電システム及び、太陽光発電パネルの姿勢制御方法

Similar Documents

Publication Publication Date Title
EP2997316B1 (en) Method and system of controlling a solar tracking system
KR101242410B1 (ko) 태양광 발전 장치 및 태양광 전지판 조절 방법
KR101242412B1 (ko) 태양광 발전 장치 및 태양광 전지판 조절 방법
US20160056754A1 (en) Solar tracking-type photovoltaic power generation system control device and solar tracking-type photovoltaic power generation system
US10965242B2 (en) Solar power generation device, method for installing solar power generation device, and method for operating solar power generation device
CN113056870A (zh) 太阳能跟踪器的分级收起及其方法
KR101238444B1 (ko) 태양광 발전용 반사경장치
KR101709847B1 (ko) 태양전지 발전장치
US20180358921A1 (en) Solar tracker
EP2366965B1 (en) Solar energy system with wind vane
CN110687933A (zh) 太阳能发电系统、控制装置及方法、计算机可读存储介质
Lim et al. Industrial design and implementation of a large-scale dual-axis sun tracker with a vertical-axis-rotating-platform and multiple-row-elevation structures
KR20050080114A (ko) 태양광 추적장치 및 그를 이용한 태양광 추적방법
Lee et al. A novel algorithm for single-axis maximum power generation sun trackers
CN116169943A (zh) 一种风电和光伏互补发电系统
WO2020217947A1 (ja) 太陽光発電システム及びそのアレイ退避方法
WO2019030996A1 (ja) 太陽光発電システム及び、太陽光発電パネルの姿勢制御方法
KR100986818B1 (ko) 태양광 추적방법 및 추적장치
EP3939158A1 (en) Rocking solar panel sun tracking mounting system
JP2015122401A (ja) 追尾型太陽光発電装置および追尾型太陽光発電システム
CN115940768A (zh) 光伏设备、节能系统和光伏设备的跟踪控制方法
CN114779831A (zh) 光伏跟踪支架的控制方法、系统以及终端设备
KR102173743B1 (ko) 태양광발전 시스템
JP2019216554A (ja) 太陽光発電装置
KR102035336B1 (ko) 태양광 발전을 위한 각도 조절형 집광판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP