WO2020217879A1 - Power conversion apparatus, machine learning device, and learned model generation method - Google Patents
Power conversion apparatus, machine learning device, and learned model generation method Download PDFInfo
- Publication number
- WO2020217879A1 WO2020217879A1 PCT/JP2020/014808 JP2020014808W WO2020217879A1 WO 2020217879 A1 WO2020217879 A1 WO 2020217879A1 JP 2020014808 W JP2020014808 W JP 2020014808W WO 2020217879 A1 WO2020217879 A1 WO 2020217879A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power conversion
- switching
- current
- unit
- machine learning
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present application relates to a power converter, a machine learner, and a method of generating a trained model.
- Patent Document 2 a feedback control system equipped with a machine learning device is being studied.
- the machine learner adjusts the time for maintaining the switching state with respect to the switching state of the power converter calculated by the feedback control and the time for maintaining the switching state. This is expected to have an effect of suppressing vibration generated in a transient state.
- Direct torque control based on model predictive control as described in Patent Document 1 is expected to reduce steady-state switching loss while maintaining a high-speed torque response time in the transient state.
- a longer section must be predicted, and if the predicted section is unnecessarily expanded, the amount of calculation increases exponentially.
- the vibration generated in the transient state is suppressed, but the machine learning device only has the time to maintain the switching state of the power conversion unit. It is difficult to consider the switching loss, current harmonics, and drive noise related to the modulation method of the power converter because the switching state of the power converter is not adjusted or determined.
- This application discloses a technique for solving the above-mentioned problems, and while considering the performance related to the modulation method of the power conversion unit, it is adjusted to the user's request and the state of the rotating mechanical device to be controlled. It is an object of the present invention to provide a power converter, a machine learner, and a method of generating a trained model capable of determining a switching pattern.
- the power conversion device disclosed in the present application includes a plurality of switching elements, a power conversion unit that converts DC power into AC power and supplies it to a rotary mechanical device, and a current detection unit that detects a current flowing through the rotary mechanical device. And, for each set control cycle, the switching state for one cycle in the plurality of switching elements is determined based on the pattern generation function given by the machine learner, and the switching state for one cycle is combined. A pattern determination unit that generates a switching pattern and controls the output of the power conversion unit is provided. The machine learning device executes machine learning based on either the current command value, the current detection value detected by the current detection unit, or the voltage command value included in the teacher data, and the power conversion unit of the power conversion unit.
- the pattern determination unit inputs both the pattern generation function given by the machine learning device and either the current command value and the current detection value or the voltage command value to execute arithmetic processing. It determines the switching pattern of the power conversion unit.
- the machine learning device disclosed in the present application is a switching state for one cycle of a set control cycle of a plurality of switching elements constituting a power conversion unit that converts DC power into AC power and supplies it to a rotating machine device.
- a pattern generation function that determines a switching pattern consisting of a combination of is executed and output by machine learning based on the teacher data.
- An input data acquisition unit that acquires either the current command value included in the teacher data, the current detection value detected by the current detection unit that detects the current flowing through the rotating mechanical device, or the voltage command value as input data.
- a label acquisition unit that acquires the switching pattern of the power conversion unit included in the teacher data as a label, and The switching of the power conversion unit based on either one of the current command value and the current detection value or the voltage command value obtained by the input data acquisition unit and a switching pattern obtained by the label acquisition unit. It includes a learning unit that generates a trained model that determines the switching pattern of the element.
- the trained model generation method disclosed in the present application has been learned to determine the switching pattern of the switching element constituting the power conversion unit by performing machine learning using the machine learning device. Generate a model.
- the switching pattern can be determined according to the above.
- FIG. 1 is a block diagram showing the configuration of the power conversion device
- FIG. 2 is a hardware configuration diagram for realizing the power conversion device, and power is supplied.
- FIG. 3 which is a flowchart showing the operation
- FIG. 4 which is a block diagram showing the configuration of the machine learning device
- FIG. 5 which is a hardware configuration diagram for realizing the machine learning device.
- the entire system of the first embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
- the power conversion device 1 is connected between the DC power supply 2 and the rotary mechanical device 3, converts the DC power from the DC power supply 2 into AC power, outputs the AC power to the rotary mechanical device 3, and drives the rotary mechanical device 3. ..
- the rotary mechanical device 3 converts the AC power output from the power conversion device 1 into power.
- various electric motors such as an induction motor and a synchronous motor can be used.
- the power conversion device 1 includes a machine learning device 10, a uvw / dq converter 11, a power conversion unit 12, which is a main circuit, a current detection unit 13, and a pattern determination unit 14.
- the current detection unit 13 detects the current values iu (k), iv (k), and iw (k) for the three phases output by the power conversion unit 12 to the rotary mechanical device 3.
- the uvw / dq converter 11 converts the detected current values iu (k), iv (k), and iw (k) into current values id (k) and iq (k) on the dq coordinates.
- the pattern determination unit 14 switches the current values id (k), iq (k), current command values idref (k), iqref (k), which are the outputs of the uvw / dq converter 11, and the previous cycle for each control cycle.
- the switching pattern SWP of the power conversion unit 12 is based on the states SWu (k-1), SWv (k-1), SWw (k-1), and the pattern generation function output by the machine learning device 10 described in detail later. (K) is determined.
- the pattern generation function is represented as PGF for simplification of notation.
- the switching pattern SWP (k) is composed of a combination of switching states for one cycle of the control cycle, and the details will be described later.
- the notations (k-1) and (k) represent discrete-time signals for each control cycle, where (k-1) is the previous value, (k) is the current value, and (k + 1) is the next value. is there. This also applies to FIGS. 1 and 1 and subsequent figures.
- the current detected value iuvw (k) is appropriately described.
- id (k) and iq (k) which are the current values on the dq coordinates, are described together, they are appropriately described as the dq coordinate current value idq (k).
- the current command values idref (k) and iqref (k) are described together, they are appropriately described as the current command values idqref (k).
- the switching states SWu (k-1), SWv (k-1), and SWw (k-1) of the previous cycle (k-1) are described together, the switching state SW (k-1) of the previous cycle is appropriately described. ).
- the power conversion device 1 is realized by, for example, the hardware configuration shown in FIG.
- the power conversion device 1 is composed of a power conversion unit 12, a current detection unit 13, a processor 20 that controls the power conversion unit 12, and a storage device 21 included in the processor 20.
- the power conversion unit 12 is composed of a three-phase inverter circuit that converts the DC power of the DC power supply 2 into three-phase AC power, and drives a rotating mechanical device 3 such as an electric motor, which is a load.
- the power conversion unit 12 includes a plurality of switching elements Q1 to Q6 in which diodes D are connected in antiparallel.
- the U-phase upper and lower arms are provided with switching elements Q1 and Q2
- the V-phase upper and lower arms are provided with switching elements Q3 and Q4
- the W-phase upper and lower arms are switching elements Q5. And Q6. Then, from the connection point between the upper arm and the lower arm of each phase, the bus bar is connected to the input terminal of each phase of the rotary mechanical device 3.
- the storage device 21 includes a volatile storage device such as a RAM (Random Access Memory) and a non-volatile auxiliary storage device such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive) (all of which are not shown). ..
- a volatile storage device such as a RAM (Random Access Memory)
- a non-volatile auxiliary storage device such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive) (all of which are not shown).
- a flash memory or the like may be used instead of the HDD.
- the processor 20 executes the control program input from the storage device 21. Since the storage device 21 includes an auxiliary storage device and a volatile storage device, a control program is input to the processor 20 from the auxiliary storage device via the volatile storage device.
- the processor 20 may output data such as a calculation result to the volatile storage device of the storage device 21, or may store these data in the auxiliary storage device via the volatile storage device.
- FIG. 14 is a diagram showing an example of a switching state of the power conversion unit 12.
- the switching state is a combination of on (: 1) and off (: 0) signals of the switching elements Q1 to Q6.
- the switching elements Q1 to Q6 of the upper arm and the lower arm eight switching states (SW1 to SW8) in which one is on and the other is off, and all the switching elements Q1 to Q6 are switched when the power conversion device 1 is stopped.
- SW1 SWu1, SWv1, SWw1 of FIG. 14
- the switching elements Q1, Q4, and Q6 are on, and the switching elements Q2, Q3, and Q5 are off.
- FIG. 15 is a diagram illustrating a switching pattern SWP (k).
- the switching pattern SWP (k) is a combination of switching states for one cycle, and one cycle T is divided into a plurality of sections, and the switching state assigned to each section is determined.
- the switching pattern SWP (k) is a combination set to switch in the order of the switching states SW3, SW4, SW2, SW2, SW6, and SW7. It should be noted that one cycle may be divided into sections having a predetermined width and each switching state may be assigned, or timing information for switching the switching state to a different switching state may be added to the switching state information.
- the power conversion unit 12 is operating in the switching state SW1 at the present time t (k), and the previous switching state is SW7.
- the switching state SW1 at the present time t (k) also continues from the previous cycle (k-1), and the switching states SW1 and SW7 are the switching states SW (k-1) within the previous cycle (k-1). ..
- the pattern determination unit 14 includes switching states SW (k-1) in at least one previous cycle (k-1) including the switching state SW1 at the present time t (k), such as SW1 and SW7, and a current value idq (k). ) And the current command value idqref (k), the switching pattern SWP (k) (: SW3, SW4, SW2, SW2, SW6, SW7) for one cycle of the current cycle (k) is performed by the pattern generation function PGF. ) Is generated. The switching pattern SWP (k) is given to the power conversion unit 12 as a command of the switching state for one cycle, and the switching elements Q1 to Q6 are on / off controlled. Then, the pattern determination unit 14 generates a switching pattern SWP (k + 1) for the next cycle (k + 1) at the time point t (k + 1).
- the pattern determination unit 14 receives and acquires the actual switching state SW (k-1) in the previous cycle (k-1) from the power conversion unit 12, the pattern determination unit 14 has shown.
- the switching state SW (k-1) in the previous cycle (k-1) may be acquired from the switching pattern SWP (k-1) generated in the previous cycle.
- the switching pattern SWP is composed of a combination of a plurality of switching states. However, if the control cycle can be shortened to the same level as the duration of the switching state, one switching state may be set to one cycle.
- the switching state SW (k-1) in the previous cycle can be applied only in the current switching state, but it is desirable that there are a plurality of switching states.
- the switching state within the previous cycle is not limited to the immediately preceding cycle (k-1), and the switching state of, for example, two previous cycles (k-2) may be adopted together.
- the power conversion unit 12 converts the DC power supplied from the DC power supply 2 into AC power based on the switching pattern SWP (k) determined by the pattern determination unit 14, and outputs the DC power to the rotary mechanical device 3.
- the method for determining the switching pattern SWP (k) will be described later.
- the current detection unit 13 detects a three-phase alternating current between the power conversion unit 12 and the rotary mechanical device 3, and outputs this as a current detection value iuvw (k) to the uvw / dq converter 11.
- any current detection unit such as a CT (current transformer) detector, a shunt resistor, or the like may be used as the current detection unit 13.
- CT current transformer
- a shunt resistor or the like may be used as the current detection unit 13.
- the currents of two phases may be detected and the current of the remaining one phase may be calculated.
- a one-shunt current detection method that restores the three-phase alternating current value by one current detection unit may be used.
- the uvw / dq converter 11 converts the current value iuvw (k) detected by the current detection unit 13 into the current value idq (k) on the biaxial dq coordinates and outputs the current value idq (k) to the pattern determination unit 14.
- the phase generated in the power converter 1 can be used as the phase information of the magnetic pole position of the rotating mechanical device 3 required for the uvw / dq converter 11.
- a phase and speed detector such as an encoder is installed in the rotary mechanical device 3, the detected phase may be used.
- the current command value is an example of idqref (k) which is the current command value on the dq coordinate
- the current detection value iuvw (k) is set to the current value idq (k) on the dq coordinate. Is being converted to. If the current command value is the command value iuref (k), ivref (k), iwref (k) of the three-phase alternating current, the uvw / dq converter 11 does not perform coordinate conversion of the current detection value iuvw (k). It may be output to the pattern determination unit 14 as it is.
- the current detection value iuvw (k) is set to ⁇ by using the uvw / ⁇ converter instead of the uvw / dq converter 11.
- the current values i ⁇ (k) and i ⁇ (k) on the coordinates may be converted and output to the pattern determination unit 14.
- step S1 it is determined whether to execute machine learning A or motor control B.
- machine learning A is performed to create a trained model.
- the motor control B is executed using the trained model in which the machine learning A is performed. In this case, since the processing contents are different between the processing when the machine learning A is performed and the processing when the electric motor control B is performed, the processing procedure when the machine learning A is performed will be described first.
- Machine learning A is executed according to the configuration of the machine learning device 10 of FIG. As shown in FIG. 4, the machine learning device 10 includes an input data acquisition unit 10a, a label acquisition unit 10b, a learning unit 10c, and a pattern generation function storage unit 10d.
- the machine learning device 10 performs learning with teacher data based on teacher data prepared in advance. Learning with teacher data will be described later.
- the control method acquired as the teacher data is a so-called pulse width modulation (PWM) method in which the three-phase voltage command value is normalized and the switching pattern SWP (k) is determined by the triangular wave carrier comparison modulation method.
- PWM pulse width modulation
- it is a control method that reduces the switching loss of the power conversion unit 12, and is, for example, model predictive control (Model Predictive Control), selective harmonic elimination, and low-order harmonic elimination (Low-order Harmonic). Elimination), optimal pulse pattern (Optimized Pulse Patterns), and other control methods.
- step S2 the input data acquisition unit 10a of the machine learning device 10 has the current command value idqref (k), the dq coordinate current value idq (k), and the switching state SW (k-) of the previous cycle from the teacher data prepared in advance. 1) is acquired as input data and output to the learning unit 10c.
- the switching state SW (k-1) of the previous cycle used as input data is data obtained when, for example, model prediction control is performed in advance, and is the switching element Q1 of the power conversion unit 12 of FIG. This is data for controlling on / off of Q6.
- step S3 the label acquisition unit 10b of the machine learning device 10 acquires the switching pattern SWP (k) as a label from the teacher data prepared in advance and outputs it to the learning unit 10c.
- the learning unit 10c of the machine learning device 10 includes a set of data (hereinafter, a teacher data set) including input data input from the input data acquisition unit 10a and a label input from the label acquisition unit 10b. Acquire as) and execute learning with teacher data.
- a teacher data set including input data input from the input data acquisition unit 10a and a label input from the label acquisition unit 10b. Acquire as) and execute learning with teacher data.
- the learning unit 10c builds a learned model by performing learning with teacher data based on the teacher data set input as described above.
- the machine learning A for the electric motor control B in the first embodiment is learning with teacher data by a neural network configured by combining perceptrons. Specifically, a teacher data set consisting of input data indicating the motor state and a label corresponding to the motor state is given to the neural network, and weighting is performed for each perceptron so that the output of the neural network is the same as the label. Repeat learning while changing.
- the weighting value is adjusted so as to reduce the output error of each perceptron by repeating the process of backpropagation (also called backpropagation, error backpropagation method).
- the characteristics of the teacher data set are learned, and a trained model for estimating the result from the input is inductively acquired. That is, in the learning with teacher data, as described above, the error between the label and the output data is eliminated while adjusting the weighting value.
- the learning with teacher data carried out by the learning unit 10c controls the switching elements Q1 to Q6 of the power conversion unit 12 so that the switching loss is smaller than that of the pulse width modulation (PWM) method as the learning result.
- a trained model for determining the switching pattern SWP (k) to be used is obtained. Then, the trained model constructed by the learning unit 10c is output to the pattern generation function storage unit 10d in the next stage.
- the neural network used by the learning unit 10c for learning may have three layers, but the number of layers may be further increased. Learning may be performed by so-called deep learning (also called deep learning).
- step S5 the pattern generation function storage unit 10d of the machine learning device 10 stores the learned model obtained by learning with teacher data in the learning unit 10c as the pattern generation function PGF.
- the pattern generation function PGF may be updated by periodically executing the processes of steps S2 to S5.
- the pattern generation function PGF stored in the pattern generation function storage unit 10d is output to the pattern determination unit 14 when the motor control B described later is executed. Then, the pattern determination unit 14 switches the power conversion unit 12 based on the pattern generation function PGF, the dq coordinate current value idq (k), the current command value idqref (k), and the switching state SW (k-1) of the previous cycle.
- the pattern SWP (k) is determined.
- the machine learning device 10 for realizing the above-mentioned processing is realized by, for example, the hardware configuration shown in FIG. That is, the machine learning device 10 is composed of a processor 30 and a storage device 31 included in the processor 30.
- the storage device 31 includes a volatile storage device 311 such as a RAM (Random Access Memory) and a non-volatile auxiliary storage device 312 such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive).
- a volatile storage device 311 such as a RAM (Random Access Memory)
- a non-volatile auxiliary storage device 312 such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive).
- a flash memory or the like may be used instead of the HDD.
- the processor 30 executes various learning programs input from the storage device 31. Since the storage device 31 includes the volatile storage device 311 and the auxiliary storage device 312, various learning programs are input to the processor 30 from the auxiliary storage device 312 via the volatile storage device 311.
- the processor 30 may output data such as the learning result of the learning program to the volatile storage device 311 of the storage device 31, or stores these data in the auxiliary storage device 312 via the volatile storage device 311. May be good.
- the learning program is a program including instructions for causing the processor 30 of the machine learning device 10 to execute the learning process with teacher data and to generate the learning result data as a result of the machine learning A.
- the teacher data is subjected to machine learning A by the machine learning device 10 so as to acquire the switching pattern SWP (k) of the power conversion unit 12 for reducing the switching loss of the power conversion unit 12 as compared with the pulse width modulation (PWM) method. It is data to carry out.
- the machine learning device 10 can be realized by a PC (Personal Computer), a server device, or the like. However, since the machine learning device 10 has a large amount of calculation associated with machine learning A, for example, a GPU (Graphics Processing Units) is mounted on a PC, and a GPU called GPGPU (General-Purpose computing on Graphics Processing Units) is used. May be used for the arithmetic processing associated with the machine learning A so that the processing can be performed at high speed.
- a GPU Graphics Processing Units
- GPGPU General-Purpose computing on Graphics Processing Units
- the machine learning device 10 may include a plurality of processors.
- the processor 30 may be composed of a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), or the like.
- step S1 it is determined whether to execute machine learning A or motor control B. Since the processing when the machine learning A is performed has been described above, the processing content when the motor control B is performed (step S1: No) will be described here.
- step S6 the pattern determination unit 14 acquires the pattern generation function PGF, which is a learned model stored in the pattern generation function storage unit 10d of the machine learning device 10.
- step S7 the pattern determination unit 14 uses the current command value idqref (k), the dq coordinate current value idq (k), and the switching state SW (k-1) of the previous cycle of the power conversion unit 12 as input data. get.
- step S8 the pattern determination unit 14 uses the input data (current command value idqref (k), dq coordinate current value idq (k), switching state SW (k-1) of the previous cycle of the power conversion unit 12), and the machine.
- the switching pattern SWP (k) is generated based on the pattern generation function PGF obtained from the learner 10. Then, the generated switching pattern SWP (k) is output to the power conversion unit 12.
- step S9 the power conversion unit 12 supplies AC power to the rotary machine device 3 based on the switching pattern SWP (k) output from the pattern determination unit 14, and the rotary machine device 3 supplies the current command value idqref ( It is driven so as to make the switching loss of the power conversion unit 12 smaller than that of the pulse width modulation (PWM) method while following the dq coordinate current value idq (k) on the dq coordinate with respect to k).
- PWM pulse width modulation
- the power conversion device 1 of the first embodiment has a current detection unit 13 that detects the current flowing through the rotary machine device 3 and a machine learner 10 that outputs a pattern generation function for determining a switching pattern. Switching based on the current command value idqref (k), the dq coordinate current value idq (k), the switching state SW (k-1) of the previous cycle of the power conversion unit 12, and the pattern generation function from the machine learner 10.
- the machine learner 10 includes a pattern determination unit 14 that determines a pattern and a power conversion unit 12 that controls switching elements Q1 to Q6 according to the switching pattern and outputs AC power to the rotating mechanical device 3. Learning with teacher data is performed so that the switching loss of unit 12 is smaller than that of the pulse width modulation (PWM) method, a pattern generation function is output, and the pattern determination unit 14 determines the switching pattern of the power conversion unit 12 accordingly. decide.
- PWM pulse width modulation
- the power conversion device 1 of the first embodiment makes the dq coordinate current value idq (k) follow the current command value idqref (k), and the power conversion unit 12 is more than the pulse width modulation (PWM) method.
- the rotary mechanical device 3 can be driven so as to reduce the switching loss of the above.
- the teacher data prepared in advance is used for creating the trained model by the learning with the teacher data in the machine learning device 10, but the electric motor control B is not limited to this. While doing so, teacher data may be measured and learning with teacher data may be performed. Further, the machine learning device 10 may not be included in the power conversion device 1, and only the pattern generation function may be acquired from the machine learning device 10 by the pattern determination unit 14 of the power conversion device 1.
- Embodiment 2 In the power conversion device of the second embodiment, as the performance of the trained model created in the machine learner, in addition to making the switching loss of the power conversion unit 12 smaller than that of the pulse width modulation (PWM) method, the rotating machine At least one of the drive sound of the device, the mechanical vibration of the rotating machine device, the current harmonic of the rotating machine device, and the follow-up time of the current detection value to the current command value is set for the pulse width modulation (PWM) method. It is something that makes it possible to acquire something that makes it smaller.
- PWM pulse width modulation
- FIG. 6 which is a block diagram showing the configuration of the power conversion device, and the operation of the power conversion device and the machine learning device are shown in a flowchart. This will be described with reference to FIG.
- the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
- the entire system of the second embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
- the power conversion device 1 includes a machine learning device 10A, a power conversion unit 12 which is a main circuit, a current detection unit 13, a pattern determination unit 14A, a speed detection unit 15, a position detection unit 16, and a state observation unit 17.
- the current command value idqref (k), the dq coordinate current value idq (k), the switching state SW (k-1) of the previous cycle, and the pattern generation function are input to the pattern determination unit 14. Was there.
- the pattern determination unit 14A has a preset control target, a current command value idqref (k), a switching state SW (k-1) of the previous cycle, a pattern generation function, and the like.
- the state quantity output by the state observation unit 17 to be described in detail later is input.
- control targets include, for example, reduction of switching loss of the power conversion unit 12, reduction of driving noise of the rotary mechanical device 3, reduction of mechanical vibration of the rotary mechanical device 3, and current harmonics of the rotary mechanical device 3.
- This is a target value for reducing the current detection value and the follow-up time of the current detection value to the current command value.
- this control target is, for example, as a table associated with a number, the control target No. In No. 1, the switching loss is reduced, and the control target No. In 2, the switching loss and the mechanical vibration may be reduced in advance.
- the pattern determination unit 14A outputs a type selection command of the trained model to the machine learning device 10A.
- This trained model type selection command is a command to select the performance of the trained model that matches the control target and read the pattern generation function from the machine learner 10A, and is used in the subsequent processing of the motor control B. explain.
- the trained model type selection command is represented as TSC for simplification of notation. ..
- the speed detection unit 15 detects the mechanical speed information ⁇ rm (k) of the rotary mechanical device 3 and outputs it to the state observation unit 17. As the speed information of the rotary mechanical device 3, the electrical speed information ⁇ re (k) may be detected.
- the position detection unit 16 detects the mechanical phase information ⁇ rm (k) of the rotary mechanical device 3 and outputs it to the state observation unit 17. As the phase information of the rotating mechanical device 3, the electrical phase information ⁇ re (k) may be detected.
- the state observing unit 17 observes the driving state of the rotating mechanical device 3 based on the current, speed, and phase of the rotating mechanical device 3 detected by the current detecting unit 13, the speed detecting unit 15, and the position detecting unit 16, respectively.
- the state quantity is output.
- the state observation unit 17 has a current command value idqref (k), a current detection value iuvw (k) acquired from the current detection unit 13, a speed detection value ⁇ rm (k) acquired from the speed detection unit 15, and a position detection unit.
- the state quantity of the rotating mechanical device 3 is observed based on the position detection value ⁇ rm (k) obtained from 16.
- the state quantities observed by the state observing unit 17 include, for example, the dq coordinate current value idq (k), the rotating machine parameter of the rotating machine device 3, the magnetic flux of the rotating machine device 3, the output torque, and the rotating machine device 3. It includes at least one of the harmonics of the flowing current and the rise time of the dq coordinate current value idq (k) with respect to the current command value idqref (k) to the rotating mechanical device 3.
- the rotary machine parameters of the rotary machine device 3 are, for example, values such as resistance, inductance, and moment of inertia of the rotary machine device 3.
- Each parameter of the rotary mechanical device 3 may be calculated by the state observation unit 17 or may be input to the state observation unit 17.
- the machine learning A performs learning with teacher data based on the teacher data prepared in advance, but the method of creating the teacher data is different.
- the machine learning device 10 acquires data for executing the motor control B as teacher data so that the switching loss of the power conversion unit 12 is smaller than that of the pulse width modulation (PWM) method. Was there.
- the machine learning device 10A not only reduces the switching loss according to the control target, but also reduces the driving sound of the rotating machine device 3 and the rotating machine device 3 Data is acquired when the motor control B is performed so as to reduce at least one of the mechanical vibration, the current harmonic of the rotating mechanical device 3, and the follow-up time of the current detected value to the current command value.
- the performance is determined according to the control target. Create and save multiple pattern generation functions with different values. The method of saving the pattern generation function created by learning with teacher data for that purpose and the method of acquiring the trained model for executing the motor control B will be described next.
- steps S2 to S4 a trained model is created by learning with teacher data according to the same procedure as in the first embodiment.
- step S10 the trained model created by learning with teacher data is saved as a pattern generation function.
- the process returns to step S1, the teacher data prepared in advance is changed, and learning with teacher data in steps S2 to S4 is performed again to reduce the switching loss and reduce the driving sound of the rotating mechanical device 3.
- a plurality of trained models may be individually created for each teacher data prepared in advance, and all pattern generation functions corresponding to the trained models may be saved.
- select only the necessary teacher data from all the teacher data prepared in advance create multiple trained models based on the selected teacher data, and save only the pattern generation function corresponding to the trained model. You may try to do it.
- a pattern generation function for each teacher data prepared in advance can be acquired and saved.
- the control target as a pattern generation function, in addition to making the switching loss of the power conversion unit 12 smaller than that of the pulse width modulation (PWM) method, the drive sound of the rotary machine device 3 and the rotary machine device 3 Switching pattern SWP of the power conversion unit 12 so as to realize the performance of reducing at least one of the mechanical vibration, the current harmonic of the rotating mechanical device 3, and the follow-up time of the current detected value to the current command value.
- PWM pulse width modulation
- step S1 it is determined whether to execute machine learning A or motor control B.
- the difference from the first embodiment in the second embodiment has already been described. Therefore, here, the embodiment when the processing of the electric motor control B is performed (step S1: No). The difference from 1 will be described.
- step S11 the pattern determination unit 14A acquires the control target.
- the control targets are, for example, reduction of switching loss of the power conversion unit 12, reduction of driving noise of the rotary mechanical device 3, reduction of mechanical vibration of the rotary mechanical device 3, and current harmonics of the rotary mechanical device 3. , Reduction of current detection value tracking time to current command value, etc.
- the pattern determination unit 14A generates a trained model type selection command TSC according to the acquired control target, and outputs this to the machine learner 10A.
- the trained model type selection command TSC in this case is a command for selecting the trained model stored as a table associated with the numbers in the pattern generation function storage unit 10d.
- the trained model No. In No. 1 a trained model that reduces switching loss
- the machine learner 10A outputs a pattern generation function conforming to the type selection command TSC of the trained model from the trained models saved in step S10, so that the pattern determination unit 14A acquires this pattern generation function. To do.
- step S7 the pattern determination unit 14A uses the current command value idqref (k) used in the learning with teacher data, the state quantity from the state observation unit 17, and the switching state SW of the previous cycle from the power conversion unit 12 ( k-1) is acquired as input data.
- the value to be acquired as input data all the input data used for each training with teacher data performed to acquire a plurality of trained models may be input, or a specific trained model may be input. It is also possible to input only the input data used for the learning with the teacher data performed in order to acquire.
- steps S8 to S9 the rotary mechanical device 3 is driven in the same procedure as in the first embodiment.
- the power conversion device 1 of the second embodiment reads a pattern generation function, which is a trained model conforming to the control target, from the machine learning device 10A, and reads the switching pattern SWP of the power conversion unit 12. (K) is determined. Therefore, not only the switching loss of the power conversion unit 12 is made smaller than that of the pulse width modulation (PWM) method, but also the driving sound of the rotary machine device 3, the mechanical vibration of the rotary machine device 3, and the rotary machine device 3 It is possible to drive the rotating mechanical device 3 so as to reduce at least one of the current harmonics and the follow-up time of the current detected value to the current command value.
- PWM pulse width modulation
- a method of creating and using a plurality of trained models has been described on the basis of making the switching loss smaller than that of the pulse width modulation (PWM) method, but the present invention is not limited to this.
- a trained model may be created based on the performance related to other modulation methods.
- Embodiment 3 The power conversion device of the third embodiment performs reinforcement learning on a pattern generation function that has been trained with teacher data used in the pattern determination unit.
- FIG. 8 is a block diagram showing the configuration of the power conversion device
- FIG. 8 is a flowchart showing the operation of the power conversion device and the machine learning device. This will be described based on 9.
- the same or corresponding parts as those of the first and second embodiments are designated by the same reference numerals.
- the entire system of the third embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
- the power conversion device 1 includes a machine learning device 10B, a power conversion unit 12, a current detection unit 13, a state observation unit 17B, and a pattern determination unit 14B, which are main circuits.
- the machine learning device 10B is provided with a reward calculation unit 10g and a function update unit 10h.
- Reinforcement learning is learning agents to maximize value in a given environment. That is, in the third embodiment, the state of the rotating mechanical device 3 (given) so as to make the switching loss of the power conversion unit 12 smaller (maximize the value) than the trained model created in the first embodiment. This means that a trained model (agent) that appropriately selects the switching pattern SWP (k) of the power conversion unit 12 is generated according to the environment).
- FIG. 9 is a flowchart for explaining an example of a processing procedure for performing reinforcement learning of the learned pattern generation function that has been trained with the teacher data described in FIG.
- the processing procedure described below is an example of reinforcement learning of the present application. Therefore, each process of these procedures may be changed as much as possible, and the processes can be omitted, replaced, and added as appropriate according to the embodiment.
- step S14 the pattern determination unit 14B sets the current command value idqref (k), the dq coordinate current value idq (k), the switching state SW (k-1) of the previous period, and the switching state SW (k-1) of the previous period as the initial state of the rotary mechanical device 3.
- the pattern generation function acquired by learning by learning with teacher data. It should be noted that these values acquired as the initial state may all start from the state of 0, or may start using the value in the middle of control.
- step S15 the pattern determination unit 14B determines the switching pattern SWP (k) based on the initial state of the rotary machine device 3 acquired in step S14 and the current pattern generation function obtained by the machine learning device 10B.
- step S16 the power conversion unit 12 drives the rotary mechanical device 3 based on the switching pattern SWP (k) output by the pattern determination unit 14B.
- the machine learning device 10B has a current command value idqref (k), a dq coordinate current value idq (k) given by the state observation unit 17B, a previous switching pattern SWP (k-1), and a current switching pattern SWP ( The switching transition number SWcount indicating the deviation of the number of times of on / off of the switching elements Q1 to Q6 of the power conversion unit 12 with k) is acquired.
- step S17 the reward calculation unit 10g calculates the current deviation between the current command value idqref (k) and the dq coordinate current value idq (k), and determines whether or not the current deviation is within the specified value.
- step S17: Yes the process proceeds to step S18, the preset reward (change amount ⁇ 1) is increased, and it is determined that the current deviation exceeds the specified value.
- step S17: No the process proceeds to step S19 to reduce the preset reward (change amount ⁇ 1).
- step S20 the reward calculation unit 10g determines whether or not the switching transition number SWcount obtained from the state observation unit 17B is within the specified value.
- step S20: Yes the process proceeds to step S21 to increase the preset reward (change amount ⁇ 2), and it is determined that the switching transition count SWcount exceeds the specified value.
- step S20: No the process proceeds to step S22 to reduce the preset reward (change amount ⁇ 2).
- step S23 the function update unit 10h sets the current deviations of each weighting coefficient and bias of the neural network constituting the pattern generation function based on the rewards (change amounts ⁇ 1, ⁇ 2) obtained by the reward calculation unit 10g. Update the value function to adjust to reduce switching loss while keeping it within the specified range. Then, the pattern generation function is updated based on the updated value function.
- the update of the pattern generation function is to adjust each weighting coefficient and bias of the neural network constituting the pattern generation function.
- the process returns to step S15, the switching pattern SWP (k) is determined based on the updated pattern generation function, and the same process is repeated.
- the power conversion device 1 of the third embodiment has a switching loss smaller than that of the pattern generation function related to the pulse width modulation (PWM) method created in the first embodiment.
- the pattern generation function is updated. Therefore, the rotary mechanical device 3 can be driven with the switching loss of the power conversion unit 12 smaller than that of the pattern generation function learned by the learning with the teacher data of the first embodiment.
- the method of reinforcement learning of the trained model trained by the learning with the teacher data of the first embodiment has been described, but the trained model of the second embodiment is to be reinforcement-learned. You may.
- the driving sound of the rotary machine device 3 is strengthened and learned, and a pattern generation function with further improved performance is created. May be good.
- the pattern generation function obtained by reinforcement learning may be used as the trained model in the machine learning devices 10 and 10A of the first embodiment or the second embodiment.
- the power conversion device 1 of the third embodiment causes switching loss by reinforcement learning of the trained model that has been trained with teacher data in the first embodiment or the second embodiment.
- the rotary mechanical device 3 can be driven so as to further reduce the size.
- the power conversion device of the fourth embodiment has a configuration in which the switching state of the power conversion unit 12 provided in the power conversion device 1 of the first embodiment is calculated based on the voltage command value.
- the time constant of the dq coordinate current value idq (k) with respect to the current command value idqref (k) can be set as designed, and further from the speed command of the electric motor. It can also be applied to a control method that calculates the voltage command value and does not go through the current command value.
- FIG. 10 is a block diagram showing the configuration of the power conversion device
- FIG. 11 which is a block diagram showing the configuration of the machine learning device.
- FIG. 10 which is a block diagram showing the configuration of the power conversion device
- FIG. 11 which is a block diagram showing the configuration of the machine learning device.
- the hardware configuration diagram for realizing the power conversion device is shown in FIG. 2
- the operation flowchart of the power conversion device and the machine learning device is shown in FIG. 3
- the hardware configuration diagram for realizing the machine learning device is shown in FIG.
- the description overlapping with the first embodiment will be omitted, and the points different from the first embodiment will be described in detail.
- the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
- the entire system of the fourth embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
- the power conversion device 1 includes a machine learning device 610, a uvw / dq converter 11, a main circuit power conversion unit 12, a current detection unit 13, a pattern determination unit 614, and a PI (Proportional International) current controller 618. Compared with the first embodiment, the power conversion device 1 is further provided with the PI current controller 618.
- the PI current controller 618 calculates from the current command value idqref (k) and the dq coordinate current value idq (k).
- a P (Proportional) current controller instead of the PI current controller 618, a P (Proportional) current controller, an I (Integral) current controller, a PID (Proportional Integral Differential) current controller, and an IP (Integral-Proportional) current controller are used.
- the voltage command value may be calculated from the speed command value by a control method such as V / f control.
- the voltage command value vdqref (k) in the dq coordinate is used as the voltage command value
- the voltage command value in the ⁇ coordinate and the voltage command value in the uvw coordinate may be used.
- the machine learning device 610 includes an input data acquisition unit 610a, a label acquisition unit 10b, a learning unit 10c, and a pattern generation function storage unit 10d. Since the data handled by the input data acquisition unit 610a is changed in the fourth embodiment as compared with the first embodiment, the changed contents will be mainly described.
- the machine learning device 610 performs learning with teacher data based on the teacher data prepared in advance. Since the method of learning with teacher data is the same as that of the first embodiment, the description thereof is omitted here.
- the input data included in the teacher data of the machine learning device 610 is the voltage command value vdqref (k) and the switching state SW (k-1) of the previous cycle of the power conversion unit 12.
- step S2 The operations of machine learning and electric motor control in the fourth embodiment are the same as those in the flowchart of FIG. 3, and the difference from the first embodiment is that the voltage command value vdqref (k) and the switching state of the previous cycle are different in step S2.
- the SW (k-1) is acquired as input data, and the voltage command value vdqref (k) and the switching state SW (k-1) of the previous cycle are acquired as input data in step S7.
- the switching pattern SWP (k) is calculated based on the voltage command value vdqref (k), the switching state SW (k-1) of the previous cycle, and the pattern generation function which is a learned model.
- the PI current controller 618 can design the time constant of the dq coordinate current value idq (k) of the electric motor with respect to the current command value idqref (k). Further, the configuration can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
- the power conversion device 1 of the fourth embodiment has a current detection unit 13 that detects the current flowing through the rotary machine device 3 and a machine learner 610 that outputs a pattern generation function for determining a switching pattern.
- the PI current controller 618 that calculates the voltage command value vdqref (k) from the current command value idqref (k) and the dq coordinate current value idq (k), the voltage command value vdqref (k), and the previous time of the power conversion unit 12.
- the pattern determination unit 614 which determines the switching pattern based on the periodic switching state SW (k-1) and the pattern generation function from the machine learner 610, and the switching elements Q1 to Q6 are controlled and rotated according to the switching pattern.
- the mechanical device 3 is provided with a power conversion unit 12 that outputs AC power, and the machine learner 610 performs learning with teacher data so that the switching loss of the power conversion unit 12 is smaller than that of the pulse width modulation (PWM) method.
- PWM pulse width modulation
- the pattern generation function is output, and the pattern determination unit 614 determines the switching state of the power conversion unit 12 accordingly.
- the power conversion device 1 of the fourth embodiment has the same effect as that of the first embodiment, and the dq coordinates of the rotating mechanical device 3 with respect to the current command value idqref (k) as compared with the first embodiment.
- the PI current controller 618 can design the time constant of the current value idq (k). Further, the configuration can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
- the teacher data prepared in advance is used for creating the trained model by the learning with the teacher data in the machine learning device 610, but the present invention is not limited to this, and the electric motor control B is used. While doing so, the teacher data may be measured to perform learning with teacher data, or the machine learning device 610 is not included in the power conversion device 1 and only the pattern generation function is included in the pattern determination unit 614 of the power conversion device 1. May be obtained from the machine learning device 610.
- the power conversion device of the fifth embodiment has a configuration in which the switching pattern of the power conversion unit 12 provided in the power conversion device 1 of the second embodiment is calculated based on the voltage command value.
- the switching pattern of the power conversion unit 12 By calculating the switching pattern of the power conversion unit 12 based on the voltage command value, it can be applied to a control method that calculates the voltage command value from the speed command of the electric motor without using the current command value. Further, even in such a control method, the switching loss of the power conversion unit 12 is reduced, the driving sound of the rotating mechanical device 3 is reduced, the mechanical vibration of the rotating mechanical device 3 is reduced, and the current harmonic of the rotating mechanical device 3 is reduced. The effect of reducing the current detection value tracking time to the current command value can be obtained.
- FIG. 12 is a block showing the configuration of the power conversion device.
- the configuration of the machine learning device is shown in FIG. 11, and the operation flowchart of the power conversion device and the machine learning device is shown in FIG. 7, which is common to the second embodiment or the fourth embodiment. Therefore, in the following, the duplicated description will be omitted, and the points different from those of the second embodiment or the fourth embodiment will be described in detail.
- the same or corresponding parts as those of the second embodiment or the fourth embodiment are designated by the same reference numerals.
- the entire system of the fifth embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
- the power conversion device 1 of the fifth embodiment includes a machine learning device 710, a main circuit power conversion unit 12, a current detection unit 13, a pattern determination unit 714, a speed detection unit 15, a position detection unit 16, and a state observation unit 17. , And a V / f controller 719.
- the configuration further includes a V / f controller 719.
- the Vf voltage command value vfref (k) is calculated from the speed command value wref (k) of the electric motor by the V / f controller 719.
- V / f controller 719 from the current command value idqref (k) and dq coordinate current value idq (k), PI current controller 618, P current controller, I current controller, PID current controller, I
- the voltage command value vdqref (k) may be calculated by the ⁇ P current controller, or the voltage command value may be changed to a voltage command value in ⁇ coordinates or a voltage command value in uvw coordinates.
- the machine learning device 710 used in the fifth embodiment has the same configuration as that of FIG. 11 of the fourth embodiment, but controls the input data and the label data included in the teacher data in the same manner as in the second embodiment.
- the learning department individually creates a plurality of trained models for each teacher data prepared in advance according to the goal.
- the machine learning and electric motor control in the fifth embodiment are the same as those in FIG. 7 of the operation flowchart of the power converter and the machine learning device.
- the difference from the second embodiment is that at least the Vf voltage command value vfr (k) and the switching state SW (k-1) of the previous cycle are acquired as input data in step S2, and in step S7, in step S12. At least the Vf voltage command value vref (k) and the switching state SW (k-1) of the previous cycle are acquired as input data corresponding to the acquired trained model.
- the Vf voltage command value vfr (k) and the pattern generation function matching the control target are read from the machine learning device 710 to determine the switching pattern SWP (k) of the power conversion unit 12. Therefore, even in a control method such as the V / f controller 719 that does not use the current command value for calculating the voltage command value from the speed command of the electric motor, the switching loss of the power conversion unit 12 is reduced as compared with the pulse width modulation (PWM) method.
- PWM pulse width modulation
- the switching pattern SWP (k) is calculated based on the Vf voltage command value Vfref (k) calculated by the V / f controller 719.
- the current command value is described.
- the voltage command value vdqref (k) is calculated by the PI current controller 618 from the idqref (k) and the dq coordinate current value idq (k), and the switching pattern SWP (k) is calculated from the voltage command value vdqref (k). It may be.
- the power conversion device of the sixth embodiment has a configuration in which the switching pattern of the power conversion unit 12 provided in the power conversion device 1 of the third embodiment is calculated based on the voltage command value.
- the switching pattern of the power conversion unit 12 By calculating the switching pattern of the power conversion unit 12 based on the voltage command value, it is used in the pattern determination unit while keeping the time constant of the dq coordinate current value idq (k) with respect to the current command value idqref (k) as designed. Reinforcement learning can be performed on the pattern generation function that has been trained with teacher data. Further, it can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
- FIG. 13 is a block showing the configuration of the power conversion device.
- the operation flowchart of the power conversion device and the machine learning device is shown in FIG. 9, which is common to the third embodiment. Therefore, in the following, the duplicated description will be omitted, and the differences from the third embodiment will be described in detail.
- the same or corresponding parts as those of the third embodiment are designated by the same reference numerals.
- the entire system of the sixth embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
- the power conversion device 1 includes a machine learning device 810, a power conversion unit 12, a current detection unit 13, a state observation unit 17, a PI current controller 618, and a pattern determination unit 814, which are main circuits. As compared with the third embodiment, the PI current controller 618 is further provided.
- the PI current controller 618 calculates from the current command value idqref (k) and the dq coordinate current value idq (k).
- a P current controller, an I current controller, a PID current controller, and an IP current controller may be used, and the speed command is performed by a control method such as V / f control.
- the voltage command value may be calculated from the value.
- the voltage command value is set to the dq coordinate, but it may be changed to the voltage command value of the ⁇ coordinate or the voltage command value of the uvw coordinate.
- the reinforcement learning and the electric motor control in the sixth embodiment are almost the same as those in FIG. 9 of the operation flowchart of the power converter and the machine learning device, but the difference from the third embodiment is the pattern determination unit 814 in step S15.
- the switching pattern SWP (k) is determined based on the current pattern generation function obtained by the learner 810.
- This embodiment 6 updates the trained model pattern generation function so that the switching loss is further smaller than the pattern generation function related to the pulse width modulation (PWM) method created in the fourth embodiment.
- the rotating mechanical device 3 can be driven with the switching loss of the power conversion unit 12 smaller than that of the learned model obtained by the learning with the teacher data of the fourth embodiment.
- the method of reinforcement learning of the trained model obtained by the learning with the teacher data of the fourth embodiment has been described, but the trained model of the fifth embodiment is reinforcement-learned. May be good.
- the driving sound of the rotary machine device 3 is strengthened and learned, and a pattern generation function with further improved performance is created. May be good.
- the pattern generation function obtained by reinforcement learning may be used as the trained model in the machine learning device 610 of the fourth embodiment or the machine learning device 710 of the fifth embodiment.
- the power conversion device 1 of the sixth embodiment causes switching loss by reinforcement learning of the trained model that has been trained with teacher data in the fourth embodiment or the fifth embodiment.
- the rotary mechanical device 3 can be driven so as to further reduce the size.
- the time constant of the dq coordinate current value idq (k) with respect to the current command value idqref (k) is designed by calculating the switching pattern of the power conversion unit 12 based on the voltage command value.
- Reinforcement learning can be performed on the pattern generation function that has been trained with the teacher data used in the pattern determination unit 814 while keeping the same. Further, it can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
- 1 Power converter 2 DC power supply, 3 Rotating machine device, 10, 10A, 10B, 610, 710, 810 Machine learning device, 10a, 610a Input data acquisition unit, 10b Label acquisition unit, 10c Learning unit, 10d Pattern generation function Storage unit, 10g reward calculation unit, 10h function update unit, 11 uvw / dq converter, 12 power conversion unit, 12a switching element, 13 current detection unit, 14, 14A, 14B, 614,714,814 pattern determination unit, 20 , 30 processor, 21,31 storage device, 15 speed detection unit, 16 position detection unit, 17,17B state observation unit, 311 volatile storage device, 312 auxiliary storage device, 618 PI current controller, 719 V / f controller ..
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
A machine learning device (10) is configured to carry out machine learning on the basis of a current command value and a current detection value detected by a current detection unit, or a voltage command value which are all included in teacher data, to thereby generate a pattern generation function for determining a switching pattern of a power conversion unit (12). A pattern determination unit (14) receives, as inputs, the pattern generation function provided from the machine learning device (10) together with the voltage command value or the current command and current detection values, carries out an arithmetic operation, and determines the switching pattern of the power conversion unit (12).
Description
本願は、電力変換装置、機械学習器、および学習済みモデルの生成方法に関するものである。
The present application relates to a power converter, a machine learner, and a method of generating a trained model.
従来、多相交流の回転機械装置の駆動制御において、回転機械装置の駆動状態に基づいて、電力変換部のスイッチング状態を直接決定する瞬時電流制御があり、瞬時電流制御の1つとしてモデル予測制御が知られている。
Conventionally, in the drive control of a multi-phase AC rotary mechanical device, there is an instantaneous current control that directly determines the switching state of the power converter based on the drive state of the rotary mechanical device, and model prediction control is one of the instantaneous current controls. It has been known.
例えば、下記の特許文献1記載の従来技術においては、モデル予測制御に基づいた直接トルク制御が検討されている。この制御方式は、回転機械装置のトルクと固定子磁束の数ステップ先を予測しながら定められた許容幅内で制御する方式であり、数ステップの予測区間で各相スイッチの切り替え回数が最小となるスイッチングパターンを探索する。このため、モデル予測制御による過渡状態の高速なトルク応答時間を維持しながら、定常状態のスイッチング損失を低減することが期待される。
For example, in the prior art described in Patent Document 1 below, direct torque control based on model predictive control is being studied. This control method is a method of controlling within a predetermined allowable range while predicting the torque of the rotating mechanical device and the stator magnetic flux several steps ahead, and the number of switching of each phase switch is the minimum in the prediction interval of several steps. Search for a switching pattern. Therefore, it is expected to reduce the switching loss in the steady state while maintaining the high-speed torque response time in the transient state by the model prediction control.
また、下記の特許文献2記載の従来技術においては、機械学習器を備えたフィードバック制御系が検討されている。フィードバック制御によって計算した電力変換部のスイッチング状態とスイッチング状態を維持する時間に対して、機械学習器はスイッチング状態を維持する時間を調整する。これにより、過渡状態で発生する振動の抑制効果が期待されている。
Further, in the prior art described in Patent Document 2 below, a feedback control system equipped with a machine learning device is being studied. The machine learner adjusts the time for maintaining the switching state with respect to the switching state of the power converter calculated by the feedback control and the time for maintaining the switching state. This is expected to have an effect of suppressing vibration generated in a transient state.
特許文献1に記載されているようなモデル予測制御に基づいた直接トルク制御は、過渡状態の高速なトルク応答時間を維持しながら、定常状態のスイッチング損失を低減することが期待される。しかしながら、スイッチング損失低減の効果をさらに高めようとした場合には、より長い区間を予測しなければならず、予測する区間を徒に拡張すると、演算量が指数関数的に増大するため、実機実装を考えた場合には、予測する区間を拡張してスイッチング損失を低減するには自ずと限界がある。
Direct torque control based on model predictive control as described in Patent Document 1 is expected to reduce steady-state switching loss while maintaining a high-speed torque response time in the transient state. However, if the effect of reducing the switching loss is to be further enhanced, a longer section must be predicted, and if the predicted section is unnecessarily expanded, the amount of calculation increases exponentially. When considering the above, there is naturally a limit to expanding the predicted interval and reducing the switching loss.
また、特許文献2に記載されているような機械学習器を備えたフィードバック制御系は、過渡状態で発生する振動が抑制されるものの、機械学習器は電力変換部のスイッチング状態を維持する時間のみを調整し、電力変換部のスイッチング状態を調整または決定しないため、電力変換部の変調方式に関わるスイッチング損失、電流高調波、および駆動音を考慮することが困難である。
Further, in the feedback control system provided with the machine learning device as described in Patent Document 2, the vibration generated in the transient state is suppressed, but the machine learning device only has the time to maintain the switching state of the power conversion unit. It is difficult to consider the switching loss, current harmonics, and drive noise related to the modulation method of the power converter because the switching state of the power converter is not adjusted or determined.
本願は、前記のような課題を解決するための技術を開示するものであり、電力変換部の変調方式に関わる性能を考慮しつつ、ユーザの要望と制御対象となる回転機械装置の状態に合わせてスイッチングパターンを決定することができる電力変換装置、機械学習器、および学習済みモデルの生成方法を提供することを目的とする。
This application discloses a technique for solving the above-mentioned problems, and while considering the performance related to the modulation method of the power conversion unit, it is adjusted to the user's request and the state of the rotating mechanical device to be controlled. It is an object of the present invention to provide a power converter, a machine learner, and a method of generating a trained model capable of determining a switching pattern.
本願に開示される電力変換装置は、複数のスイッチング素子を備え、直流電力を交流電力に変換して回転機械装置に供給する電力変換部と、前記回転機械装置に流れる電流を検出する電流検出部と、設定された制御周期ごとに、機械学習器から与えられるパターン生成関数に基づいて、前記複数のスイッチング素子における1周期分のスイッチング状態を決定し、前記1周期分のスイッチング状態の組み合わせから成るスイッチングパターンを生成して、前記電力変換部を出力制御するパターン決定部とを備え、
前記機械学習器は、教師データに含まれる、電流指令値および前記電流検出部で検出された電流検出値、若しくは電圧指令値のいずれか一方に基づいて機械学習を実行して前記電力変換部のスイッチングパターンを決定する前記パターン生成関数を生成するものであり、
前記パターン決定部は、前記機械学習器から与えられる前記パターン生成関数と、前記電流指令値および前記電流検出値若しくは前記電圧指令値のいずれか一方とを共に入力して演算処理を実行して前記電力変換部のスイッチングパターンを決定するものである。 The power conversion device disclosed in the present application includes a plurality of switching elements, a power conversion unit that converts DC power into AC power and supplies it to a rotary mechanical device, and a current detection unit that detects a current flowing through the rotary mechanical device. And, for each set control cycle, the switching state for one cycle in the plurality of switching elements is determined based on the pattern generation function given by the machine learner, and the switching state for one cycle is combined. A pattern determination unit that generates a switching pattern and controls the output of the power conversion unit is provided.
The machine learning device executes machine learning based on either the current command value, the current detection value detected by the current detection unit, or the voltage command value included in the teacher data, and the power conversion unit of the power conversion unit. It generates the pattern generation function that determines the switching pattern.
The pattern determination unit inputs both the pattern generation function given by the machine learning device and either the current command value and the current detection value or the voltage command value to execute arithmetic processing. It determines the switching pattern of the power conversion unit.
前記機械学習器は、教師データに含まれる、電流指令値および前記電流検出部で検出された電流検出値、若しくは電圧指令値のいずれか一方に基づいて機械学習を実行して前記電力変換部のスイッチングパターンを決定する前記パターン生成関数を生成するものであり、
前記パターン決定部は、前記機械学習器から与えられる前記パターン生成関数と、前記電流指令値および前記電流検出値若しくは前記電圧指令値のいずれか一方とを共に入力して演算処理を実行して前記電力変換部のスイッチングパターンを決定するものである。 The power conversion device disclosed in the present application includes a plurality of switching elements, a power conversion unit that converts DC power into AC power and supplies it to a rotary mechanical device, and a current detection unit that detects a current flowing through the rotary mechanical device. And, for each set control cycle, the switching state for one cycle in the plurality of switching elements is determined based on the pattern generation function given by the machine learner, and the switching state for one cycle is combined. A pattern determination unit that generates a switching pattern and controls the output of the power conversion unit is provided.
The machine learning device executes machine learning based on either the current command value, the current detection value detected by the current detection unit, or the voltage command value included in the teacher data, and the power conversion unit of the power conversion unit. It generates the pattern generation function that determines the switching pattern.
The pattern determination unit inputs both the pattern generation function given by the machine learning device and either the current command value and the current detection value or the voltage command value to execute arithmetic processing. It determines the switching pattern of the power conversion unit.
また、本願に開示される機械学習器は、直流電力を交流電力に変換して回転機械装置に供給する電力変換部を構成する複数のスイッチング素子の設定された制御周期の1周期分のスイッチング状態の組み合わせから成るスイッチングパターンを決めるパターン生成関数を、教師データに基づいて機械学習を実行して出力するものであって、
前記教師データに含まれる電流指令値および前記回転機械装置に流れる電流を検出する電流検出部で検出された電流検出値、若しくは電圧指令値のいずれか一方を入力データとして取得する入力データ取得部と、
前記教師データに含まれる前記電力変換部のスイッチングパターンをラベルとして取得するラベル取得部と、
前記入力データ取得部で得られた前記電流指令値および前記電流検出値、若しくは前記電圧指令値のいずれか一方と、前記ラベル取得部で得られたスイッチングパターンに基づいて前記電力変換部の前記スイッチング素子のスイッチングパターンを決める学習済みモデルを生成する学習部と、を備える。 Further, the machine learning device disclosed in the present application is a switching state for one cycle of a set control cycle of a plurality of switching elements constituting a power conversion unit that converts DC power into AC power and supplies it to a rotating machine device. A pattern generation function that determines a switching pattern consisting of a combination of is executed and output by machine learning based on the teacher data.
An input data acquisition unit that acquires either the current command value included in the teacher data, the current detection value detected by the current detection unit that detects the current flowing through the rotating mechanical device, or the voltage command value as input data. ,
A label acquisition unit that acquires the switching pattern of the power conversion unit included in the teacher data as a label, and
The switching of the power conversion unit based on either one of the current command value and the current detection value or the voltage command value obtained by the input data acquisition unit and a switching pattern obtained by the label acquisition unit. It includes a learning unit that generates a trained model that determines the switching pattern of the element.
前記教師データに含まれる電流指令値および前記回転機械装置に流れる電流を検出する電流検出部で検出された電流検出値、若しくは電圧指令値のいずれか一方を入力データとして取得する入力データ取得部と、
前記教師データに含まれる前記電力変換部のスイッチングパターンをラベルとして取得するラベル取得部と、
前記入力データ取得部で得られた前記電流指令値および前記電流検出値、若しくは前記電圧指令値のいずれか一方と、前記ラベル取得部で得られたスイッチングパターンに基づいて前記電力変換部の前記スイッチング素子のスイッチングパターンを決める学習済みモデルを生成する学習部と、を備える。 Further, the machine learning device disclosed in the present application is a switching state for one cycle of a set control cycle of a plurality of switching elements constituting a power conversion unit that converts DC power into AC power and supplies it to a rotating machine device. A pattern generation function that determines a switching pattern consisting of a combination of is executed and output by machine learning based on the teacher data.
An input data acquisition unit that acquires either the current command value included in the teacher data, the current detection value detected by the current detection unit that detects the current flowing through the rotating mechanical device, or the voltage command value as input data. ,
A label acquisition unit that acquires the switching pattern of the power conversion unit included in the teacher data as a label, and
The switching of the power conversion unit based on either one of the current command value and the current detection value or the voltage command value obtained by the input data acquisition unit and a switching pattern obtained by the label acquisition unit. It includes a learning unit that generates a trained model that determines the switching pattern of the element.
さらに、本願に開示される学習済みモデルの生成方法は、前記機械学習器を用いて機械学習を実施することにより、前記電力変換部を構成する前記スイッチング素子のスイッチングパターンを決定するための学習済みモデルを生成する。
Further, the trained model generation method disclosed in the present application has been learned to determine the switching pattern of the switching element constituting the power conversion unit by performing machine learning using the machine learning device. Generate a model.
本願に開示される電力変換装置、機械学習器、学習済みモデルの生成方法によれば、電力変換部の変調方式に関わる性能を考慮しつつ、ユーザの要望と制御対象となる回転機械装置の状態に合わせてスイッチングパターンを決定することができる。
According to the power conversion device, the machine learning device, and the trained model generation method disclosed in the present application, the state of the rotating machine device to be controlled and the user's request while considering the performance related to the modulation method of the power conversion unit. The switching pattern can be determined according to the above.
実施の形態1.
この実施の形態1に関わる電力変換装置と機械学習器の構成および動作について、電力変換装置の構成を示すブロック図である図1、電力変換装置を実現するハードウェア構成図である図2、電力変換装置と機械学習器の動作をフローチャートで示した図3、機械学習器の構成を示すブロック図である図4、機械学習器を実現するハードウェア構成図である図5に基づいて説明する。Embodiment 1.
Regarding the configuration and operation of the power conversion device and the machine learning device according to the first embodiment, FIG. 1 is a block diagram showing the configuration of the power conversion device, FIG. 2 is a hardware configuration diagram for realizing the power conversion device, and power is supplied. The operation of the conversion device and the machine learning device will be described with reference to FIG. 3, which is a flowchart showing the operation, FIG. 4, which is a block diagram showing the configuration of the machine learning device, and FIG. 5, which is a hardware configuration diagram for realizing the machine learning device.
この実施の形態1に関わる電力変換装置と機械学習器の構成および動作について、電力変換装置の構成を示すブロック図である図1、電力変換装置を実現するハードウェア構成図である図2、電力変換装置と機械学習器の動作をフローチャートで示した図3、機械学習器の構成を示すブロック図である図4、機械学習器を実現するハードウェア構成図である図5に基づいて説明する。
Regarding the configuration and operation of the power conversion device and the machine learning device according to the first embodiment, FIG. 1 is a block diagram showing the configuration of the power conversion device, FIG. 2 is a hardware configuration diagram for realizing the power conversion device, and power is supplied. The operation of the conversion device and the machine learning device will be described with reference to FIG. 3, which is a flowchart showing the operation, FIG. 4, which is a block diagram showing the configuration of the machine learning device, and FIG. 5, which is a hardware configuration diagram for realizing the machine learning device.
この実施の形態1のシステム全体は、図1に示すように、電力変換装置1、直流電源2、および回転機械装置3から構成される。
As shown in FIG. 1, the entire system of the first embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
電力変換装置1は、直流電源2と回転機械装置3との間に接続され、直流電源2からの直流電力を交流電力に変換して回転機械装置3に出力して回転機械装置3を駆動する。回転機械装置3は、電力変換装置1から出力された交流電力を動力に変換する。なお、ここで使用される回転機械装置3は、例えば誘導電動機、同期電動機等の各種の電動機を用いることができる。
The power conversion device 1 is connected between the DC power supply 2 and the rotary mechanical device 3, converts the DC power from the DC power supply 2 into AC power, outputs the AC power to the rotary mechanical device 3, and drives the rotary mechanical device 3. .. The rotary mechanical device 3 converts the AC power output from the power conversion device 1 into power. As the rotary mechanical device 3 used here, various electric motors such as an induction motor and a synchronous motor can be used.
電力変換装置1は、機械学習器10、uvw/dq変換器11、主回路である電力変換部12、電流検出部13、およびパターン決定部14を備える。
The power conversion device 1 includes a machine learning device 10, a uvw / dq converter 11, a power conversion unit 12, which is a main circuit, a current detection unit 13, and a pattern determination unit 14.
電流検出部13は、電力変換部12が回転機械装置3に出力している三相分の電流値iu(k)、iv(k)、iw(k)を検出する。uvw/dq変換器11は、検出した電流値iu(k)、iv(k)、iw(k)をdq座標上の電流値であるid(k)、iq(k)に変換する。
The current detection unit 13 detects the current values iu (k), iv (k), and iw (k) for the three phases output by the power conversion unit 12 to the rotary mechanical device 3. The uvw / dq converter 11 converts the detected current values iu (k), iv (k), and iw (k) into current values id (k) and iq (k) on the dq coordinates.
パターン決定部14は、制御周期ごとに、uvw/dq変換器11の出力である電流値id(k)、iq(k)、電流指令値idref(k)、iqref(k)、前回周期のスイッチング状態SWu(k-1)、SWv(k-1)、SWw(k-1)、および後で詳述する機械学習器10が出力したパターン生成関数に基づいて、電力変換部12のスイッチングパターンSWP(k)を決定する。なお、実施の形態1の図面(図1、図3、図4)において、また、実施の形態1以外の図面においても、パターン生成関数を、表記の簡易化のため、PGFと表している。
The pattern determination unit 14 switches the current values id (k), iq (k), current command values idref (k), iqref (k), which are the outputs of the uvw / dq converter 11, and the previous cycle for each control cycle. The switching pattern SWP of the power conversion unit 12 is based on the states SWu (k-1), SWv (k-1), SWw (k-1), and the pattern generation function output by the machine learning device 10 described in detail later. (K) is determined. In the drawings of the first embodiment (FIGS. 1, 3, and 4), and also in the drawings other than the first embodiment, the pattern generation function is represented as PGF for simplification of notation.
また、スイッチングパターンSWP(k)は、制御周期の1周期分のスイッチング状態の組み合わせから成るものであり、詳細は後述する。また、(k-1)、(k)の表記は、制御周期ごとの離散時間信号を表しており、(k-1)は前回値、(k)は現在値、(k+1)は次回値である。これは図1および図1以降の図においても同様である。
Further, the switching pattern SWP (k) is composed of a combination of switching states for one cycle of the control cycle, and the details will be described later. The notations (k-1) and (k) represent discrete-time signals for each control cycle, where (k-1) is the previous value, (k) is the current value, and (k + 1) is the next value. is there. This also applies to FIGS. 1 and 1 and subsequent figures.
また、検出した電流値iu(k)、iv(k)、iw(k)をまとめて記載する場合は、適宜、電流検出値iuvw(k)と表記する。dq座標上の電流値であるid(k)、iq(k)をまとめて記載する場合は、適宜、dq座標電流値idq(k)と記載する。電流指令値idref(k)、iqref(k)をまとめて記載する場合は、適宜、電流指令値idqref(k)と表記する。前回周期(k-1)のスイッチング状態SWu(k-1)、SWv(k-1)、SWw(k-1)をまとめて記載する場合は、適宜、前回周期のスイッチング状態SW(k-1)と表記する。これらの表記は、図1および、図1以降の図においても同様である。
When the detected current values iu (k), iv (k), and iw (k) are collectively described, the current detected value iuvw (k) is appropriately described. When id (k) and iq (k), which are the current values on the dq coordinates, are described together, they are appropriately described as the dq coordinate current value idq (k). When the current command values idref (k) and iqref (k) are described together, they are appropriately described as the current command values idqref (k). When the switching states SWu (k-1), SWv (k-1), and SWw (k-1) of the previous cycle (k-1) are described together, the switching state SW (k-1) of the previous cycle is appropriately described. ). These notations are the same in FIGS. 1 and 1 and subsequent figures.
電力変換装置1は、例えば、図2で示すハードウェア構成により実現される。
電力変換装置1は、電力変換部12、電流検出部13、電力変換部12を制御するプロセッサ20、およびプロセッサ20が備える記憶装置21で構成されている。 Thepower conversion device 1 is realized by, for example, the hardware configuration shown in FIG.
Thepower conversion device 1 is composed of a power conversion unit 12, a current detection unit 13, a processor 20 that controls the power conversion unit 12, and a storage device 21 included in the processor 20.
電力変換装置1は、電力変換部12、電流検出部13、電力変換部12を制御するプロセッサ20、およびプロセッサ20が備える記憶装置21で構成されている。 The
The
電力変換部12は、直流電源2の直流電力を三相交流電力に変換する三相インバータ回路により構成され、負荷である電動機などの回転機械装置3を駆動するものである。電力変換部12は、それぞれダイオードDが逆並列接続された複数のスイッチング素子Q1~Q6を備える。本例では、U相の上アームおよび下アームはスイッチング素子Q1およびQ2を備え、V相の上アームおよび下アームはスイッチング素子Q3およびQ4を備え、W相の上アームおよび下アームはスイッチング素子Q5およびQ6を備える。そして、各相の上アームと下アームとの接続点からバスバーによって回転機械装置3の各相の入力端子に接続されている。
The power conversion unit 12 is composed of a three-phase inverter circuit that converts the DC power of the DC power supply 2 into three-phase AC power, and drives a rotating mechanical device 3 such as an electric motor, which is a load. The power conversion unit 12 includes a plurality of switching elements Q1 to Q6 in which diodes D are connected in antiparallel. In this example, the U-phase upper and lower arms are provided with switching elements Q1 and Q2, the V-phase upper and lower arms are provided with switching elements Q3 and Q4, and the W-phase upper and lower arms are switching elements Q5. And Q6. Then, from the connection point between the upper arm and the lower arm of each phase, the bus bar is connected to the input terminal of each phase of the rotary mechanical device 3.
記憶装置21は、RAM(Random Access Memory)等の揮発性記憶装置と、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の不揮発性の補助記憶装置(いずれも図示省略)を備えている。なお、不揮発性の補助記憶装置としては、HDDの代わりにフラッシュメモリ等を使用してもよい。
The storage device 21 includes a volatile storage device such as a RAM (Random Access Memory) and a non-volatile auxiliary storage device such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive) (all of which are not shown). .. As the non-volatile auxiliary storage device, a flash memory or the like may be used instead of the HDD.
プロセッサ20は、記憶装置21から入力された制御プログラムを実行する。
記憶装置21は補助記憶装置と揮発性記憶装置とを備えるため、プロセッサ20には補助記憶装置から揮発性記憶装置を介して制御プログラムが入力される。
プロセッサ20は、演算結果等のデータを記憶装置21の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にこれらのデータを保存してもよい。 The processor 20 executes the control program input from thestorage device 21.
Since thestorage device 21 includes an auxiliary storage device and a volatile storage device, a control program is input to the processor 20 from the auxiliary storage device via the volatile storage device.
The processor 20 may output data such as a calculation result to the volatile storage device of thestorage device 21, or may store these data in the auxiliary storage device via the volatile storage device.
記憶装置21は補助記憶装置と揮発性記憶装置とを備えるため、プロセッサ20には補助記憶装置から揮発性記憶装置を介して制御プログラムが入力される。
プロセッサ20は、演算結果等のデータを記憶装置21の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にこれらのデータを保存してもよい。 The processor 20 executes the control program input from the
Since the
The processor 20 may output data such as a calculation result to the volatile storage device of the
上述したように、パターン決定部14は、制御周期毎に1周期分のスイッチング状態の組み合わせから成るスイッチングパターンSWP(k)を出力して電力変換部12を制御する。
図14は、電力変換部12のスイッチング状態の一例を示す図である。スイッチング状態は、各スイッチング素子Q1~Q6のオン(:1)とオフ(:0)の信号の組み合わせである。上アームおよび下アームのスイッチング素子Q1~Q6の内、一方がオンで他方がオフとなる8通りのスイッチング状態(SW1~SW8)と、電力変換装置1の動作停止時に全スイッチング素子Q1~Q6をオフするスイッチング状態(SW0)の9通りのスイッチング状態がある。図14のスイッチング状態SW1(SWu1、SWv1、SWw1)では、スイッチング素子Q1、Q4、Q6がオン、スイッチング素子Q2、Q3、Q5がオフである。 As described above, thepattern determination unit 14 controls the power conversion unit 12 by outputting a switching pattern SWP (k) composed of a combination of switching states for one cycle for each control cycle.
FIG. 14 is a diagram showing an example of a switching state of thepower conversion unit 12. The switching state is a combination of on (: 1) and off (: 0) signals of the switching elements Q1 to Q6. Of the switching elements Q1 to Q6 of the upper arm and the lower arm, eight switching states (SW1 to SW8) in which one is on and the other is off, and all the switching elements Q1 to Q6 are switched when the power conversion device 1 is stopped. There are nine switching states (SW0) that are turned off. In the switching state SW1 (SWu1, SWv1, SWw1) of FIG. 14, the switching elements Q1, Q4, and Q6 are on, and the switching elements Q2, Q3, and Q5 are off.
図14は、電力変換部12のスイッチング状態の一例を示す図である。スイッチング状態は、各スイッチング素子Q1~Q6のオン(:1)とオフ(:0)の信号の組み合わせである。上アームおよび下アームのスイッチング素子Q1~Q6の内、一方がオンで他方がオフとなる8通りのスイッチング状態(SW1~SW8)と、電力変換装置1の動作停止時に全スイッチング素子Q1~Q6をオフするスイッチング状態(SW0)の9通りのスイッチング状態がある。図14のスイッチング状態SW1(SWu1、SWv1、SWw1)では、スイッチング素子Q1、Q4、Q6がオン、スイッチング素子Q2、Q3、Q5がオフである。 As described above, the
FIG. 14 is a diagram showing an example of a switching state of the
図15は、スイッチングパターンSWP(k)を説明する図である。スイッチングパターンSWP(k)は1周期分のスイッチング状態の組み合わせであり、1周期Tを複数区間に分割し、区間毎に割り当てるスイッチング状態が決定される。この場合、スイッチングパターンSWP(k)は、スイッチング状態SW3、SW4、SW2、SW2、SW6、SW7の順番で切り替わるように設定された、組み合わせである。
なお、1周期を予め決められた幅の区間に分割してスイッチング状態をそれぞれ割り当てるものでも、また、スイッチング状態を異なるスイッチング状態に切り替えるタイミング情報をスイッチング状態の情報に付加させても良い。 FIG. 15 is a diagram illustrating a switching pattern SWP (k). The switching pattern SWP (k) is a combination of switching states for one cycle, and one cycle T is divided into a plurality of sections, and the switching state assigned to each section is determined. In this case, the switching pattern SWP (k) is a combination set to switch in the order of the switching states SW3, SW4, SW2, SW2, SW6, and SW7.
It should be noted that one cycle may be divided into sections having a predetermined width and each switching state may be assigned, or timing information for switching the switching state to a different switching state may be added to the switching state information.
なお、1周期を予め決められた幅の区間に分割してスイッチング状態をそれぞれ割り当てるものでも、また、スイッチング状態を異なるスイッチング状態に切り替えるタイミング情報をスイッチング状態の情報に付加させても良い。 FIG. 15 is a diagram illustrating a switching pattern SWP (k). The switching pattern SWP (k) is a combination of switching states for one cycle, and one cycle T is divided into a plurality of sections, and the switching state assigned to each section is determined. In this case, the switching pattern SWP (k) is a combination set to switch in the order of the switching states SW3, SW4, SW2, SW2, SW6, and SW7.
It should be noted that one cycle may be divided into sections having a predetermined width and each switching state may be assigned, or timing information for switching the switching state to a different switching state may be added to the switching state information.
図15に示すように、電力変換部12は、現時点t(k)において、スイッチング状態SW1で動作しており、1つ前のスイッチング状態は、SW7である。現時点t(k)のスイッチング状態SW1も前周期(k-1)から継続するものであり、スイッチング状態SW1、SW7は、前周期(k-1)内のスイッチング状態SW(k-1)である。
As shown in FIG. 15, the power conversion unit 12 is operating in the switching state SW1 at the present time t (k), and the previous switching state is SW7. The switching state SW1 at the present time t (k) also continues from the previous cycle (k-1), and the switching states SW1 and SW7 are the switching states SW (k-1) within the previous cycle (k-1). ..
パターン決定部14は、現時点t(k)のスイッチング状態SW1を含む、少なくとも1つの前周期(k-1)内のスイッチング状態SW(k-1)、例えばSW1、SW7と、電流値idq(k)と、電流指令値idqref(k)とに基づいて、パターン生成関数PGFにより、現周期(k)の1周期分のスイッチングパターンSWP(k)(:SW3、SW4、SW2、SW2、SW6、SW7)を生成する。スイッチングパターンSWP(k)は1周期分のスイッチング状態の指令として電力変換部12に与えられ、各スイッチング素子Q1~Q6はオンオフ制御される。
そして、パターン決定部14は、時点t(k+1)において、次周期(k+1)のためのスイッチングパターンSWP(k+1)を生成する。 Thepattern determination unit 14 includes switching states SW (k-1) in at least one previous cycle (k-1) including the switching state SW1 at the present time t (k), such as SW1 and SW7, and a current value idq (k). ) And the current command value idqref (k), the switching pattern SWP (k) (: SW3, SW4, SW2, SW2, SW6, SW7) for one cycle of the current cycle (k) is performed by the pattern generation function PGF. ) Is generated. The switching pattern SWP (k) is given to the power conversion unit 12 as a command of the switching state for one cycle, and the switching elements Q1 to Q6 are on / off controlled.
Then, thepattern determination unit 14 generates a switching pattern SWP (k + 1) for the next cycle (k + 1) at the time point t (k + 1).
そして、パターン決定部14は、時点t(k+1)において、次周期(k+1)のためのスイッチングパターンSWP(k+1)を生成する。 The
Then, the
この場合、パターン決定部14が、前周期(k-1)内の実際のスイッチング状態SW(k-1)を電力変換部12から受信して取得するものを図示したが、パターン決定部14が前周期に生成したスイッチングパターンSWP(k-1)内から、前周期(k-1)内のスイッチング状態SW(k-1)を取得しても良い。
In this case, although the pattern determination unit 14 receives and acquires the actual switching state SW (k-1) in the previous cycle (k-1) from the power conversion unit 12, the pattern determination unit 14 has shown. The switching state SW (k-1) in the previous cycle (k-1) may be acquired from the switching pattern SWP (k-1) generated in the previous cycle.
なお、通常、制御周期の1周期Tは1つのスイッチング状態の継続期間より格段と長いため、スイッチングパターンSWPは、複数のスイッチング状態の組み合わせから成る。但し、制御周期がスイッチング状態の継続期間と同等に短縮可能な場合は、1つのスイッチング状態を1周期分としても良い。
Since one cycle T of the control cycle is usually much longer than the duration of one switching state, the switching pattern SWP is composed of a combination of a plurality of switching states. However, if the control cycle can be shortened to the same level as the duration of the switching state, one switching state may be set to one cycle.
また、前周期内のスイッチング状態SW(k-1)は、現時点のスイッチング状態のみでも適用可能であるが、複数個あるのが望ましい。また、制御周期が短い場合は、前周期内のスイッチング状態として直前周期(k-1)に限らず、例えば2個前の周期(k-2)のスイッチング状態を併せて採用しても良い。
Further, the switching state SW (k-1) in the previous cycle can be applied only in the current switching state, but it is desirable that there are a plurality of switching states. When the control cycle is short, the switching state within the previous cycle is not limited to the immediately preceding cycle (k-1), and the switching state of, for example, two previous cycles (k-2) may be adopted together.
次に、電力変換装置1の各部の機能、動作について、図1に基づいて説明する。
電力変換部12は、直流電源2から供給された直流電力をパターン決定部14で決定されたスイッチングパターンSWP(k)に基づいて交流電力に変換し、回転機械装置3に出力する。スイッチングパターンSWP(k)の決定方法については、後で説明する。 Next, the functions and operations of each part of thepower conversion device 1 will be described with reference to FIG.
Thepower conversion unit 12 converts the DC power supplied from the DC power supply 2 into AC power based on the switching pattern SWP (k) determined by the pattern determination unit 14, and outputs the DC power to the rotary mechanical device 3. The method for determining the switching pattern SWP (k) will be described later.
電力変換部12は、直流電源2から供給された直流電力をパターン決定部14で決定されたスイッチングパターンSWP(k)に基づいて交流電力に変換し、回転機械装置3に出力する。スイッチングパターンSWP(k)の決定方法については、後で説明する。 Next, the functions and operations of each part of the
The
電流検出部13は、電力変換部12と回転機械装置3の間の三相交流電流を検出し、これを電流検出値iuvw(k)としてuvw/dq変換器11に出力する。
ここで電流検出部13には、CT(Current Transformer)検出器、シャント抵抗等、いずれの電流検出部を用いてもよい。三相の電流の内、二相分の電流を検出し、残りの一相の電流を算出したものを用いてもよい。また、一つの電流検出部で三相交流電流値を復元する1シャント電流検出方式を用いてもよい。 Thecurrent detection unit 13 detects a three-phase alternating current between the power conversion unit 12 and the rotary mechanical device 3, and outputs this as a current detection value iuvw (k) to the uvw / dq converter 11.
Here, any current detection unit such as a CT (current transformer) detector, a shunt resistor, or the like may be used as thecurrent detection unit 13. Of the three-phase currents, the currents of two phases may be detected and the current of the remaining one phase may be calculated. Further, a one-shunt current detection method that restores the three-phase alternating current value by one current detection unit may be used.
ここで電流検出部13には、CT(Current Transformer)検出器、シャント抵抗等、いずれの電流検出部を用いてもよい。三相の電流の内、二相分の電流を検出し、残りの一相の電流を算出したものを用いてもよい。また、一つの電流検出部で三相交流電流値を復元する1シャント電流検出方式を用いてもよい。 The
Here, any current detection unit such as a CT (current transformer) detector, a shunt resistor, or the like may be used as the
uvw/dq変換器11は、電流検出部13で検出した電流値iuvw(k)を二軸のdq座標上の電流値idq(k)に変換し、パターン決定部14に出力する。このとき、uvw/dq変換器11に必要な回転機械装置3の磁極位置の位相情報は電力変換装置1内で生成した位相を用いることができる。回転機械装置3にエンコーダ等の位相および速度の検出器を設置している場合は、検出した位相を用いてもよい。
The uvw / dq converter 11 converts the current value iuvw (k) detected by the current detection unit 13 into the current value idq (k) on the biaxial dq coordinates and outputs the current value idq (k) to the pattern determination unit 14. At this time, the phase generated in the power converter 1 can be used as the phase information of the magnetic pole position of the rotating mechanical device 3 required for the uvw / dq converter 11. When a phase and speed detector such as an encoder is installed in the rotary mechanical device 3, the detected phase may be used.
この実施の形態1では、電流指令値がdq座標上の電流指令値であるidqref(k)の例を示しているため、電流検出値iuvw(k)をdq座標上の電流値idq(k)に変換している。電流指令値が三相交流電流の指令値iuref(k)、ivref(k)、iwref(k)であれば、uvw/dq変換器11で電流検出値iuvw(k)の座標変換は行わずにそのままパターン決定部14に出力すればよい。
In the first embodiment, since the current command value is an example of idqref (k) which is the current command value on the dq coordinate, the current detection value iuvw (k) is set to the current value idq (k) on the dq coordinate. Is being converted to. If the current command value is the command value iuref (k), ivref (k), iwref (k) of the three-phase alternating current, the uvw / dq converter 11 does not perform coordinate conversion of the current detection value iuvw (k). It may be output to the pattern determination unit 14 as it is.
また、電流指令値が二相交流電流iαref(k)、iβref(k)であれば、uvw/dq変換器11に代えて、uvw/αβ変換器を用いて電流検出値iuvw(k)をαβ座標上の電流値iα(k)、iβ(k)に変換してパターン決定部14に出力すればよい。
If the current command values are the two-phase alternating currents iαref (k) and iβref (k), the current detection value iuvw (k) is set to αβ by using the uvw / αβ converter instead of the uvw / dq converter 11. The current values iα (k) and iβ (k) on the coordinates may be converted and output to the pattern determination unit 14.
次に、この実施の形態1の電力変換装置1における動作例について、図3の処理手順を示すフローチャートを参照して説明する。なお、以下で説明する処理手順は、本願の学習方法と電動機制御方法の一例である。そのため、各処理は可能な限り変更されてもよく、また、実施の形態に応じて、適宜、処理の省略、置換、および追加が可能である。
Next, an operation example of the power conversion device 1 of the first embodiment will be described with reference to a flowchart showing a processing procedure of FIG. The processing procedure described below is an example of the learning method and the electric motor control method of the present application. Therefore, each process may be changed as much as possible, and the process can be omitted, replaced, and added as appropriate according to the embodiment.
まず、ステップS1では、機械学習Aを実行するか電動機制御Bを実行するかを判定する。機械学習Aを実行する場合(ステップS1:Yes)は、機械学習Aを行い、学習済みモデルを作成する。機械学習Aを実行しない場合(ステップS1:No)は、機械学習Aを行った学習済みモデルを用いて電動機制御Bを実行する。この場合、機械学習Aを行う場合の処理と、電動機制御Bを行う場合の処理とでそれぞれ処理内容が異なるため、まずは機械学習Aを行う場合の処理手順について説明する。
First, in step S1, it is determined whether to execute machine learning A or motor control B. When executing machine learning A (step S1: Yes), machine learning A is performed to create a trained model. When the machine learning A is not executed (step S1: No), the motor control B is executed using the trained model in which the machine learning A is performed. In this case, since the processing contents are different between the processing when the machine learning A is performed and the processing when the electric motor control B is performed, the processing procedure when the machine learning A is performed will be described first.
機械学習Aは、図4の機械学習器10の構成により実行される。
図4に示すように、機械学習器10は、入力データ取得部10a、ラベル取得部10b、学習部10c、およびパターン生成関数記憶部10dを含んで構成される。 Machine learning A is executed according to the configuration of themachine learning device 10 of FIG.
As shown in FIG. 4, themachine learning device 10 includes an input data acquisition unit 10a, a label acquisition unit 10b, a learning unit 10c, and a pattern generation function storage unit 10d.
図4に示すように、機械学習器10は、入力データ取得部10a、ラベル取得部10b、学習部10c、およびパターン生成関数記憶部10dを含んで構成される。 Machine learning A is executed according to the configuration of the
As shown in FIG. 4, the
機械学習器10は、機械学習Aを実施するに当たり、予め用意した教師データに基づいた教師データ付き学習を行う。なお、教師データ付き学習については後で説明する。
ここで教師データとして取得する制御方式は、三相の電圧指令値を正規化して三角波キャリア比較変調方式によりスイッチングパターンSWP(k)を決定する、いわゆるパルス幅変調(PWM:Pulse Width Modulation)方式に比べて、電力変換部12のスイッチング損失を小さくする制御方式であり、例えば、モデル予測制御(Model Predictive Control)、選択的高調波消去(Selective Harmonic Elimination)、低次高調波消去(Low-order Harmonic Elimination)、最適パルスパターン(Optimized Pulse Patterns)などの制御方式である。 In carrying out machine learning A, themachine learning device 10 performs learning with teacher data based on teacher data prepared in advance. Learning with teacher data will be described later.
Here, the control method acquired as the teacher data is a so-called pulse width modulation (PWM) method in which the three-phase voltage command value is normalized and the switching pattern SWP (k) is determined by the triangular wave carrier comparison modulation method. In comparison, it is a control method that reduces the switching loss of thepower conversion unit 12, and is, for example, model predictive control (Model Predictive Control), selective harmonic elimination, and low-order harmonic elimination (Low-order Harmonic). Elimination), optimal pulse pattern (Optimized Pulse Patterns), and other control methods.
ここで教師データとして取得する制御方式は、三相の電圧指令値を正規化して三角波キャリア比較変調方式によりスイッチングパターンSWP(k)を決定する、いわゆるパルス幅変調(PWM:Pulse Width Modulation)方式に比べて、電力変換部12のスイッチング損失を小さくする制御方式であり、例えば、モデル予測制御(Model Predictive Control)、選択的高調波消去(Selective Harmonic Elimination)、低次高調波消去(Low-order Harmonic Elimination)、最適パルスパターン(Optimized Pulse Patterns)などの制御方式である。 In carrying out machine learning A, the
Here, the control method acquired as the teacher data is a so-called pulse width modulation (PWM) method in which the three-phase voltage command value is normalized and the switching pattern SWP (k) is determined by the triangular wave carrier comparison modulation method. In comparison, it is a control method that reduces the switching loss of the
ステップS2では、機械学習器10の入力データ取得部10aは、予め用意した教師データの中から電流指令値idqref(k)、dq座標電流値idq(k)、前回周期のスイッチング状態SW(k-1)を入力データとして取得し、学習部10cに出力する。なお、入力データとして利用される前回周期のスイッチング状態SW(k-1)は、例えば事前にモデル予測制御を実施した場合に得られるデータであって、図2の電力変換部12のスイッチング素子Q1~Q6をオン/オフ制御するためのデータである。
In step S2, the input data acquisition unit 10a of the machine learning device 10 has the current command value idqref (k), the dq coordinate current value idq (k), and the switching state SW (k-) of the previous cycle from the teacher data prepared in advance. 1) is acquired as input data and output to the learning unit 10c. The switching state SW (k-1) of the previous cycle used as input data is data obtained when, for example, model prediction control is performed in advance, and is the switching element Q1 of the power conversion unit 12 of FIG. This is data for controlling on / off of Q6.
ステップS3では、機械学習器10のラベル取得部10bは、予め用意した教師データの中からスイッチングパターンSWP(k)をラベルとして取得し、学習部10cに出力する。
In step S3, the label acquisition unit 10b of the machine learning device 10 acquires the switching pattern SWP (k) as a label from the teacher data prepared in advance and outputs it to the learning unit 10c.
ステップS4では、機械学習器10の学習部10cは、入力データ取得部10aから入力された入力データと、ラベル取得部10bから入力されたラベルとからなる1組のデータ(以下、教師データ組と称する)として取得し、教師データ付き学習を実行する。
In step S4, the learning unit 10c of the machine learning device 10 includes a set of data (hereinafter, a teacher data set) including input data input from the input data acquisition unit 10a and a label input from the label acquisition unit 10b. Acquire as) and execute learning with teacher data.
学習部10cは、上述のように入力された教師データ組に基づいて教師データ付き学習を行うことにより、学習済みモデルを構築する。
The learning unit 10c builds a learned model by performing learning with teacher data based on the teacher data set input as described above.
この実施の形態1における電動機制御Bを対象とした機械学習Aは、パーセプトロンを組み合わせて構成したニューラルネットワークによる教師データ付き学習である。具体的には、電動機状態を示す入力データと電動機状態に応じたラベルとからなる教師データ組をニューラルネットワークに与え、ニューラルネットワークの出力がラベルと同じとなるように、各パーセプトロンについての重みづけを変更しながら学習を繰り返す。
The machine learning A for the electric motor control B in the first embodiment is learning with teacher data by a neural network configured by combining perceptrons. Specifically, a teacher data set consisting of input data indicating the motor state and a label corresponding to the motor state is given to the neural network, and weighting is performed for each perceptron so that the output of the neural network is the same as the label. Repeat learning while changing.
学習の過程では、バックプロパゲーション(Back-propagation、誤差逆伝搬法とも呼ばれる)という処理を行うことを繰り返すことにより各パーセプトロンの出力の誤差を小さくするように重みづけ値を調整する。
In the learning process, the weighting value is adjusted so as to reduce the output error of each perceptron by repeating the process of backpropagation (also called backpropagation, error backpropagation method).
このようにして、教師データ組の特徴を学習し、入力から結果を推定するための学習済みモデルを帰納的に獲得する。すなわち、教師データ付き学習は、上述したように、重みづけ値を調整しながら、ラベルと出力データとの誤差がなくなるようにするものである。
In this way, the characteristics of the teacher data set are learned, and a trained model for estimating the result from the input is inductively acquired. That is, in the learning with teacher data, as described above, the error between the label and the output data is eliminated while adjusting the weighting value.
このように、学習部10cにより実施される教師データ付き学習は、その学習結果として、パルス幅変調(PWM)方式よりもスイッチング損失を小さくなるように電力変換部12のスイッチング素子Q1~Q6を制御するスイッチングパターンSWP(k)を決定するための学習済みモデルが得られる。そして、学習部10cが構築した学習済みモデルは、次段のパターン生成関数記憶部10dに出力される。
In this way, the learning with teacher data carried out by the learning unit 10c controls the switching elements Q1 to Q6 of the power conversion unit 12 so that the switching loss is smaller than that of the pulse width modulation (PWM) method as the learning result. A trained model for determining the switching pattern SWP (k) to be used is obtained. Then, the trained model constructed by the learning unit 10c is output to the pattern generation function storage unit 10d in the next stage.
なお、学習部10cが学習に用いるニューラルネットワークは三層であってもよいが、これ以上にさらに層を増やすようにしてもよい。いわゆるディープラーニング(深層学習とも呼ばれる。)により学習を行うようにしてもよい。
The neural network used by the learning unit 10c for learning may have three layers, but the number of layers may be further increased. Learning may be performed by so-called deep learning (also called deep learning).
ステップS5では、機械学習器10のパターン生成関数記憶部10dは、学習部10cで教師データ付き学習により得られる学習済みモデルをパターン生成関数PGFとして保存する。なお、パターン生成関数PGFは、ステップS2からS5の処理を定期的に実行することで更新してもよい。
In step S5, the pattern generation function storage unit 10d of the machine learning device 10 stores the learned model obtained by learning with teacher data in the learning unit 10c as the pattern generation function PGF. The pattern generation function PGF may be updated by periodically executing the processes of steps S2 to S5.
パターン生成関数記憶部10dに保存したパターン生成関数PGFは、後述の電動機制御Bを実行する際にパターン決定部14に出力される。そして、パターン決定部14では、パターン生成関数PGF、dq座標電流値idq(k)、電流指令値idqref(k)、前回周期のスイッチング状態SW(k-1)に基づいて電力変換部12のスイッチングパターンSWP(k)が決定される。
The pattern generation function PGF stored in the pattern generation function storage unit 10d is output to the pattern determination unit 14 when the motor control B described later is executed. Then, the pattern determination unit 14 switches the power conversion unit 12 based on the pattern generation function PGF, the dq coordinate current value idq (k), the current command value idqref (k), and the switching state SW (k-1) of the previous cycle. The pattern SWP (k) is determined.
上述した処理を実現するための機械学習器10は、例えば図5に示すハードウェア構成により実現される。すなわち、この機械学習器10は、プロセッサ30、およびプロセッサ30が備える記憶装置31で構成されている。
The machine learning device 10 for realizing the above-mentioned processing is realized by, for example, the hardware configuration shown in FIG. That is, the machine learning device 10 is composed of a processor 30 and a storage device 31 included in the processor 30.
記憶装置31は、RAM(Random Access Memory)等の揮発性記憶装置311と、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の不揮発性の補助記憶装置312を備えている。なお、不揮発性の補助記憶装置312としては、HDDの代わりにフラッシュメモリ等を使用してもよい。
The storage device 31 includes a volatile storage device 311 such as a RAM (Random Access Memory) and a non-volatile auxiliary storage device 312 such as an HDD (Hard Disk Drive) and an SSD (Solid State Drive). As the non-volatile auxiliary storage device 312, a flash memory or the like may be used instead of the HDD.
プロセッサ30は、記憶装置31から入力された各種の学習プログラムを実行する。
記憶装置31は、揮発性記憶装置311と補助記憶装置312を備えるため、プロセッサ30には補助記憶装置312から揮発性記憶装置311を介して各種の学習プログラムが入力される。 Theprocessor 30 executes various learning programs input from the storage device 31.
Since the storage device 31 includes thevolatile storage device 311 and the auxiliary storage device 312, various learning programs are input to the processor 30 from the auxiliary storage device 312 via the volatile storage device 311.
記憶装置31は、揮発性記憶装置311と補助記憶装置312を備えるため、プロセッサ30には補助記憶装置312から揮発性記憶装置311を介して各種の学習プログラムが入力される。 The
Since the storage device 31 includes the
プロセッサ30は、学習プログラムの学習結果等のデータを記憶装置31の揮発性記憶装置311に出力してもよいし、揮発性記憶装置311を介して補助記憶装置312にこれらのデータを保存してもよい。
The processor 30 may output data such as the learning result of the learning program to the volatile storage device 311 of the storage device 31, or stores these data in the auxiliary storage device 312 via the volatile storage device 311. May be good.
学習プログラムは、教師データ付き学習の処理を機械学習器10のプロセッサ30に実行させ、機械学習Aの結果として学習結果データを生成させるための命令を含むプログラムである。教師データは、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくするための電力変換部12のスイッチングパターンSWP(k)を獲得するように機械学習器10によって機械学習Aを実施するためのデータである。
The learning program is a program including instructions for causing the processor 30 of the machine learning device 10 to execute the learning process with teacher data and to generate the learning result data as a result of the machine learning A. The teacher data is subjected to machine learning A by the machine learning device 10 so as to acquire the switching pattern SWP (k) of the power conversion unit 12 for reducing the switching loss of the power conversion unit 12 as compared with the pulse width modulation (PWM) method. It is data to carry out.
機械学習器10は、PC(Personal Computer)、サーバ装置等により実現できる。ただし、機械学習器10については機械学習Aに伴う演算量が多いため、例えば、PCにGPU(Graphics Processing Units)を搭載し、GPGPU(General-Purpose computing on Graphics Processing Units)と呼ばれる技術により、GPUを機械学習Aに伴う演算処理に利用して、高速に処理できるようにしてもよい。
The machine learning device 10 can be realized by a PC (Personal Computer), a server device, or the like. However, since the machine learning device 10 has a large amount of calculation associated with machine learning A, for example, a GPU (Graphics Processing Units) is mounted on a PC, and a GPU called GPGPU (General-Purpose computing on Graphics Processing Units) is used. May be used for the arithmetic processing associated with the machine learning A so that the processing can be performed at high speed.
なお、機械学習器10の具体的なハードウェア構成に関して、各種の実施の形態に応じて、適宜、構成要素の省略、置換および追加が可能である。例えば、機械学習器10は、複数のプロセッサを含んでもよい。また、プロセッサ30は、CPU(Central Processing Unit)、FPGA(Field-Programmable Gate Array)等で構成されてもよい。
Regarding the specific hardware configuration of the machine learning device 10, it is possible to omit, replace, and add components as appropriate according to various embodiments. For example, the machine learning device 10 may include a plurality of processors. Further, the processor 30 may be composed of a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), or the like.
次に、上述のように機械学習Aが行われた後に、学習済みモデルを用いて行われる電動機制御Bの処理内容について、図3に示すフローチャートに戻って説明する。
Next, the processing content of the electric motor control B performed using the trained model after the machine learning A is performed as described above will be described by returning to the flowchart shown in FIG.
まず、ステップS1では、機械学習Aを実行するか電動機制御Bを実行するかを判定する。機械学習Aを実施する際の処理については上述にて説明しているため、ここでは電動機制御Bを行う場合(ステップS1:No)の処理内容について説明する。
First, in step S1, it is determined whether to execute machine learning A or motor control B. Since the processing when the machine learning A is performed has been described above, the processing content when the motor control B is performed (step S1: No) will be described here.
ステップS6では、パターン決定部14は、機械学習器10のパターン生成関数記憶部10dに記憶されている学習済みモデルであるパターン生成関数PGFを取得する。
In step S6, the pattern determination unit 14 acquires the pattern generation function PGF, which is a learned model stored in the pattern generation function storage unit 10d of the machine learning device 10.
次に、ステップS7では、パターン決定部14は、電流指令値idqref(k)、dq座標電流値idq(k)、電力変換部12の前回周期のスイッチング状態SW(k-1)を入力データとして取得する。
Next, in step S7, the pattern determination unit 14 uses the current command value idqref (k), the dq coordinate current value idq (k), and the switching state SW (k-1) of the previous cycle of the power conversion unit 12 as input data. get.
ステップS8では、パターン決定部14は、入力データ(電流指令値idqref(k)、dq座標電流値idq(k)、電力変換部12の前回周期のスイッチング状態SW(k-1))、および機械学習器10から得られるパターン生成関数PGFに基づいて、スイッチングパターンSWP(k)を生成する。そして、生成したスイッチングパターンSWP(k)は、電力変換部12に出力される。
In step S8, the pattern determination unit 14 uses the input data (current command value idqref (k), dq coordinate current value idq (k), switching state SW (k-1) of the previous cycle of the power conversion unit 12), and the machine. The switching pattern SWP (k) is generated based on the pattern generation function PGF obtained from the learner 10. Then, the generated switching pattern SWP (k) is output to the power conversion unit 12.
ステップS9では、電力変換部12は、パターン決定部14から出力されたスイッチングパターンSWP(k)に基づいて、回転機械装置3に交流電力を供給し、回転機械装置3は、電流指令値idqref(k)に対し、dq座標上のdq座標電流値idq(k)を追従させつつ、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくするように駆動される。
In step S9, the power conversion unit 12 supplies AC power to the rotary machine device 3 based on the switching pattern SWP (k) output from the pattern determination unit 14, and the rotary machine device 3 supplies the current command value idqref ( It is driven so as to make the switching loss of the power conversion unit 12 smaller than that of the pulse width modulation (PWM) method while following the dq coordinate current value idq (k) on the dq coordinate with respect to k).
以上のように、この実施の形態1の電力変換装置1は、回転機械装置3に流れる電流を検出する電流検出部13と、スイッチングパターンを決定するためのパターン生成関数を出力する機械学習器10と、電流指令値idqref(k)、dq座標電流値idq(k)、電力変換部12の前回周期のスイッチング状態SW(k-1)、および機械学習器10からのパターン生成関数に基づいてスイッチングパターンを決定するパターン決定部14と、スイッチングパターンに応じてスイッチング素子Q1~Q6を制御して回転機械装置3に交流電力を出力する電力変換部12とを備え、機械学習器10は、電力変換部12のスイッチング損失がパルス幅変調(PWM)方式よりも小さくなるように教師データ付き学習を行ってパターン生成関数を出力し、これに応じてパターン決定部14が電力変換部12のスイッチングパターンを決定する。
As described above, the power conversion device 1 of the first embodiment has a current detection unit 13 that detects the current flowing through the rotary machine device 3 and a machine learner 10 that outputs a pattern generation function for determining a switching pattern. Switching based on the current command value idqref (k), the dq coordinate current value idq (k), the switching state SW (k-1) of the previous cycle of the power conversion unit 12, and the pattern generation function from the machine learner 10. The machine learner 10 includes a pattern determination unit 14 that determines a pattern and a power conversion unit 12 that controls switching elements Q1 to Q6 according to the switching pattern and outputs AC power to the rotating mechanical device 3. Learning with teacher data is performed so that the switching loss of unit 12 is smaller than that of the pulse width modulation (PWM) method, a pattern generation function is output, and the pattern determination unit 14 determines the switching pattern of the power conversion unit 12 accordingly. decide.
このため、実施の形態1の電力変換装置1は、電流指令値idqref(k)に対し、dq座標電流値idq(k)を追従させつつ、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくするように回転機械装置3を駆動することができる。
Therefore, the power conversion device 1 of the first embodiment makes the dq coordinate current value idq (k) follow the current command value idqref (k), and the power conversion unit 12 is more than the pulse width modulation (PWM) method. The rotary mechanical device 3 can be driven so as to reduce the switching loss of the above.
なお、前記の実施の形態1の説明では、機械学習器10における教師データ付き学習による学習済みモデルの作成は、予め用意した教師データを使用しているが、これに限らず、電動機制御Bを行いながら、教師データを測定して教師データ付き学習を行うようにしてもよい。また、機械学習器10を電力変換装置1に含まずに、パターン生成関数のみを電力変換装置1のパターン決定部14が機械学習器10から取得する構成としてもよい。
In the above description of the first embodiment, the teacher data prepared in advance is used for creating the trained model by the learning with the teacher data in the machine learning device 10, but the electric motor control B is not limited to this. While doing so, teacher data may be measured and learning with teacher data may be performed. Further, the machine learning device 10 may not be included in the power conversion device 1, and only the pattern generation function may be acquired from the machine learning device 10 by the pattern determination unit 14 of the power conversion device 1.
実施の形態2.
この実施の形態2の電力変換装置は、機械学習器において作成する学習済みモデルの性能として、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくすることに加えて、回転機械装置の駆動音、回転機械装置の機械振動、回転機械装置の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つをパルス幅変調(PWM)方式に対して小さくするものを獲得できるようにしたものである。Embodiment 2.
In the power conversion device of the second embodiment, as the performance of the trained model created in the machine learner, in addition to making the switching loss of thepower conversion unit 12 smaller than that of the pulse width modulation (PWM) method, the rotating machine At least one of the drive sound of the device, the mechanical vibration of the rotating machine device, the current harmonic of the rotating machine device, and the follow-up time of the current detection value to the current command value is set for the pulse width modulation (PWM) method. It is something that makes it possible to acquire something that makes it smaller.
この実施の形態2の電力変換装置は、機械学習器において作成する学習済みモデルの性能として、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくすることに加えて、回転機械装置の駆動音、回転機械装置の機械振動、回転機械装置の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つをパルス幅変調(PWM)方式に対して小さくするものを獲得できるようにしたものである。
In the power conversion device of the second embodiment, as the performance of the trained model created in the machine learner, in addition to making the switching loss of the
以下、この実施の形態2に関わる電力変換装置と機械学習器の構成および動作について、電力変換装置の構成を示すブロック図である図6、電力変換装置と機械学習器の動作をフローチャートで示した図7に基づいて説明する。なお、実施の形態2の電力変換装置において、実施の形態1と同一あるいは相当部分には、同一の符号を付す。
Hereinafter, regarding the configuration and operation of the power conversion device and the machine learning device according to the second embodiment, FIG. 6 which is a block diagram showing the configuration of the power conversion device, and the operation of the power conversion device and the machine learning device are shown in a flowchart. This will be described with reference to FIG. In the power conversion device of the second embodiment, the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
この実施の形態2の電力変換装置の基本的な機能および構成は、上述した実施の形態1(図1)と共通するため、以下では、重複する説明を省略し、実施の形態1と実施の形態2について相違する点について、詳細に説明する。
Since the basic functions and configurations of the power conversion device of the second embodiment are the same as those of the first embodiment (FIG. 1) described above, redundant description will be omitted below, and the first and second embodiments will be implemented. The differences between the second and second forms will be described in detail.
この実施の形態2のシステム全体は、図6に示すように、電力変換装置1、直流電源2、および回転機械装置3から構成される。
As shown in FIG. 6, the entire system of the second embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
電力変換装置1は、機械学習器10A、主回路である電力変換部12、電流検出部13、パターン決定部14A、速度検出部15、位置検出部16、および状態観測部17を備える。
The power conversion device 1 includes a machine learning device 10A, a power conversion unit 12 which is a main circuit, a current detection unit 13, a pattern determination unit 14A, a speed detection unit 15, a position detection unit 16, and a state observation unit 17.
先の実施の形態1では、パターン決定部14には、電流指令値idqref(k)、dq座標電流値idq(k)、前回周期のスイッチング状態SW(k-1)、パターン生成関数が入力されていた。
In the first embodiment, the current command value idqref (k), the dq coordinate current value idq (k), the switching state SW (k-1) of the previous cycle, and the pattern generation function are input to the pattern determination unit 14. Was there.
これに対して、この実施の形態2では、パターン決定部14Aには、予め設定された制御目標、電流指令値idqref(k)、前回周期のスイッチング状態SW(k-1)、パターン生成関数、および後で詳述する状態観測部17が出力する状態量がそれぞれ入力されている。
On the other hand, in the second embodiment, the pattern determination unit 14A has a preset control target, a current command value idqref (k), a switching state SW (k-1) of the previous cycle, a pattern generation function, and the like. The state quantity output by the state observation unit 17 to be described in detail later is input.
ここに、前記の制御目標とは、例えば、電力変換部12のスイッチング損失の低減、回転機械装置3の駆動音の低減、回転機械装置3の機械振動の低減、回転機械装置3の電流高調波の低減、および電流指令値への電流検出値追従時間の低減などを図るための目標値である。なお、この制御目標は、例えば、数字と関連付けされたテーブルとして、制御目標No.1ではスイッチング損失を低減、制御目標No.2では、スイッチング損失と機械振動を低減、のように予め設定してもよい。
Here, the control targets include, for example, reduction of switching loss of the power conversion unit 12, reduction of driving noise of the rotary mechanical device 3, reduction of mechanical vibration of the rotary mechanical device 3, and current harmonics of the rotary mechanical device 3. This is a target value for reducing the current detection value and the follow-up time of the current detection value to the current command value. In addition, this control target is, for example, as a table associated with a number, the control target No. In No. 1, the switching loss is reduced, and the control target No. In 2, the switching loss and the mechanical vibration may be reduced in advance.
また、この実施の形態2において、パターン決定部14Aは、機械学習器10Aに対して学習済みモデルの種類選択指令を出力する。この学習済みモデルの種類選択指令は、前記の制御目標に適合した学習済みモデルの性能を選択して機械学習器10Aからパターン生成関数を読み出す指令であり、後の電動機制御Bの処理の際に説明する。なお、本実施の形態の図面(図6、図7)において、また、その他の実施の形態の図面においても、学習済みモデルの種類選択指令を、表記の簡易化のため、TSCと表している。
Further, in the second embodiment, the pattern determination unit 14A outputs a type selection command of the trained model to the machine learning device 10A. This trained model type selection command is a command to select the performance of the trained model that matches the control target and read the pattern generation function from the machine learner 10A, and is used in the subsequent processing of the motor control B. explain. In the drawings of this embodiment (FIGS. 6 and 7), and also in the drawings of other embodiments, the trained model type selection command is represented as TSC for simplification of notation. ..
次に、実施の形態1との差異である実施の形態2の速度検出部15、位置検出部16、状態観測部17の機能について説明する。
Next, the functions of the speed detection unit 15, the position detection unit 16, and the state observation unit 17 of the second embodiment, which are different from the first embodiment, will be described.
速度検出部15は、回転機械装置3の機械的な速度情報ωrm(k)を検出して、状態観測部17に出力する。なお、回転機械装置3の速度情報としては、電気的な速度情報ωre(k)を検出してもよい。
The speed detection unit 15 detects the mechanical speed information ωrm (k) of the rotary mechanical device 3 and outputs it to the state observation unit 17. As the speed information of the rotary mechanical device 3, the electrical speed information ωre (k) may be detected.
位置検出部16は、回転機械装置3の機械的な位相情報θrm(k)を検出して、状態観測部17に出力する。なお、回転機械装置3の位相情報としては、電気的な位相情報θre(k)を検出してもよい。
The position detection unit 16 detects the mechanical phase information θrm (k) of the rotary mechanical device 3 and outputs it to the state observation unit 17. As the phase information of the rotating mechanical device 3, the electrical phase information θre (k) may be detected.
状態観測部17は、電流検出部13、速度検出部15、および位置検出部16によりそれぞれ検出した回転機械装置3の電流、速度、位相に基づいて、回転機械装置3の駆動状態を観測してその状態量を出力する。
The state observing unit 17 observes the driving state of the rotating mechanical device 3 based on the current, speed, and phase of the rotating mechanical device 3 detected by the current detecting unit 13, the speed detecting unit 15, and the position detecting unit 16, respectively. The state quantity is output.
すなわち、状態観測部17は、電流指令値idqref(k)、電流検出部13から取得した電流検出値iuvw(k)、速度検出部15から取得した速度検出値ωrm(k)、および位置検出部16から取得した位置検出値θrm(k)に基づいて、回転機械装置3の状態量を観測する。ここで、状態観測部17が観測する状態量としては、例えば、dq座標電流値idq(k)、回転機械装置3の回転機械パラメータ、回転機械装置3の磁束、出力トルク、回転機械装置3に流れる電流の高調波、および回転機械装置3への電流指令値idqref(k)に対するdq座標電流値idq(k)の立ち上がり時間の少なくとも何れか1つを含む。
That is, the state observation unit 17 has a current command value idqref (k), a current detection value iuvw (k) acquired from the current detection unit 13, a speed detection value ωrm (k) acquired from the speed detection unit 15, and a position detection unit. The state quantity of the rotating mechanical device 3 is observed based on the position detection value θrm (k) obtained from 16. Here, the state quantities observed by the state observing unit 17 include, for example, the dq coordinate current value idq (k), the rotating machine parameter of the rotating machine device 3, the magnetic flux of the rotating machine device 3, the output torque, and the rotating machine device 3. It includes at least one of the harmonics of the flowing current and the rise time of the dq coordinate current value idq (k) with respect to the current command value idqref (k) to the rotating mechanical device 3.
なお、回転機械装置3の回転機械パラメータとしては、例えば、回転機械装置3の抵抗、インダクタンス、慣性モーメントなどの値である。回転機械装置3の各パラメータは、状態観測部17において計算してもよいし、状態観測部17に入力するようにしてもよい。
Note that the rotary machine parameters of the rotary machine device 3 are, for example, values such as resistance, inductance, and moment of inertia of the rotary machine device 3. Each parameter of the rotary mechanical device 3 may be calculated by the state observation unit 17 or may be input to the state observation unit 17.
次に、この実施の形態2の特徴である機械学習器10Aとパターン決定部14Aの処理手順について、図7に示すフローチャートを参照して説明する。なお、以下で説明する処理手順は、本願の学習方法と電動機制御方法の一例である。そのため、各処理は可能な限り変更されてもよく、また、実施の形態に応じて、適宜、処理の省略、置換、および追加が可能である。
Next, the processing procedure of the machine learning device 10A and the pattern determination unit 14A, which are the features of the second embodiment, will be described with reference to the flowchart shown in FIG. The processing procedure described below is an example of the learning method and the electric motor control method of the present application. Therefore, each process may be changed as much as possible, and the process can be omitted, replaced, and added as appropriate according to the embodiment.
この実施の形態2においても、先の実施の形態1と同様に、機械学習Aにおいては予め用意した教師データに基づいた教師データ付き学習を行うが、教師データの作成方法が異なる。
In the second embodiment as well, as in the first embodiment, the machine learning A performs learning with teacher data based on the teacher data prepared in advance, but the method of creating the teacher data is different.
すなわち、実施の形態1において、機械学習器10は、教師データとしてパルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失が小さくするように電動機制御Bを実施するためのデータを取得していた。これに対して、この実施の形態2では、機械学習器10Aは、制御目標に応じて、スイッチング損失を小さくするだけでなく、これに加えて、回転機械装置3の駆動音、回転機械装置3の機械振動、回転機械装置3の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つを小さくするように電動機制御Bを実施した時のデータを取得する。
That is, in the first embodiment, the machine learning device 10 acquires data for executing the motor control B as teacher data so that the switching loss of the power conversion unit 12 is smaller than that of the pulse width modulation (PWM) method. Was there. On the other hand, in the second embodiment, the machine learning device 10A not only reduces the switching loss according to the control target, but also reduces the driving sound of the rotating machine device 3 and the rotating machine device 3 Data is acquired when the motor control B is performed so as to reduce at least one of the mechanical vibration, the current harmonic of the rotating mechanical device 3, and the follow-up time of the current detected value to the current command value.
したがって、先の実施の形態1では、スイッチング損失を小さくするための学習済みモデルを求めて一つのパターン生成関数のみを作成していたが、この実施の形態2では、制御目標に応じて、性能の異なる複数のパターン生成関数を作成して保存する。そのための教師データ付き学習により作成するパターン生成関数の保存方法と、電動機制御Bを実施するための学習済みモデルの取得方法について、次に説明する。
Therefore, in the first embodiment, only one pattern generation function was created in search of a trained model for reducing the switching loss, but in the second embodiment, the performance is determined according to the control target. Create and save multiple pattern generation functions with different values. The method of saving the pattern generation function created by learning with teacher data for that purpose and the method of acquiring the trained model for executing the motor control B will be described next.
ステップS2からS4では、実施の形態1と同様の手順により、教師データ付き学習によって学習済みモデルを作成する。
In steps S2 to S4, a trained model is created by learning with teacher data according to the same procedure as in the first embodiment.
ステップS10において、教師データ付き学習により作成した学習済みモデルをパターン生成関数として保存する。その後、ステップS1に戻り、予め用意した教師データを変更して、再度ステップS2からS4の教師データ付き学習を行い、スイッチング損失を小さくすることに加えて、回転機械装置3の駆動音の低減、回転機械装置3の機械振動の低減、回転機械装置3の電流高調波の低減、および電流指令値への電流検出値の追従時間の低減のうち少なくとも何れか1つ別の性能を有した学習済みモデルを作成し、これを別のパターン生成関数として保存する。
In step S10, the trained model created by learning with teacher data is saved as a pattern generation function. After that, the process returns to step S1, the teacher data prepared in advance is changed, and learning with teacher data in steps S2 to S4 is performed again to reduce the switching loss and reduce the driving sound of the rotating mechanical device 3. Learned to have at least one of the following performances: reduction of mechanical vibration of rotary machinery 3, reduction of current harmonics of rotary machinery 3, and reduction of follow-up time of current detection value to current command value. Create a model and save it as a separate pattern generation function.
教師データ付き学習は、予め用意した教師データ毎に、個別に複数の学習済みモデルを作成し、学習済みモデルに対応するパターン生成関数をすべて保存してもよい。あるいは、予め用意した全ての教師データの内から、必要な教師データのみを選択し、選択した教師データに基づいて複数の学習済みモデルを作成し、学習済みモデルに対応するパターン生成関数のみを保存するようにしてもよい。
In learning with teacher data, a plurality of trained models may be individually created for each teacher data prepared in advance, and all pattern generation functions corresponding to the trained models may be saved. Alternatively, select only the necessary teacher data from all the teacher data prepared in advance, create multiple trained models based on the selected teacher data, and save only the pattern generation function corresponding to the trained model. You may try to do it.
上述の教師データ付き学習を行うことにより、予め用意した教師データ毎のパターン生成関数を獲得して保存できる。その場合、制御目標に応じて、パターン生成関数として、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくすることに加えて、回転機械装置3の駆動音、回転機械装置3の機械振動、回転機械装置3の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つを小さくする性能を実現するように電力変換部12のスイッチングパターンSWP(k)を決定する関数を獲得することができる。
By performing the above-mentioned learning with teacher data, a pattern generation function for each teacher data prepared in advance can be acquired and saved. In that case, according to the control target, as a pattern generation function, in addition to making the switching loss of the power conversion unit 12 smaller than that of the pulse width modulation (PWM) method, the drive sound of the rotary machine device 3 and the rotary machine device 3 Switching pattern SWP of the power conversion unit 12 so as to realize the performance of reducing at least one of the mechanical vibration, the current harmonic of the rotating mechanical device 3, and the follow-up time of the current detected value to the current command value. You can get a function that determines k).
次に、上述のように機械学習Aが行われた後に、学習済みモデルを用いて行われる電動機制御Bについて、図7の処理手順を示すフローチャートを参照して説明する。なお、以下で説明する処理手順は、本願の電動機制御方法の一例である。そのため、以下で説明する各処理は可能な限り変更されてもよく、また、実施の形態に応じて、適宜、処理の省略、置換、および追加が可能である。
Next, the electric motor control B performed by using the trained model after the machine learning A is performed as described above will be described with reference to the flowchart showing the processing procedure of FIG. 7. The processing procedure described below is an example of the electric motor control method of the present application. Therefore, each process described below may be changed as much as possible, and the processes can be omitted, replaced, and added as appropriate according to the embodiment.
まず、ステップS1では、機械学習Aを実行するか電動機制御Bを実行するかを判定する。機械学習Aを行う場合の処理については、実施の形態2における実施の形態1との差異を既に説明したので、ここでは電動機制御Bの処理を実施する場合(ステップS1:No)の実施の形態1との差異について説明する。
First, in step S1, it is determined whether to execute machine learning A or motor control B. Regarding the processing when the machine learning A is performed, the difference from the first embodiment in the second embodiment has already been described. Therefore, here, the embodiment when the processing of the electric motor control B is performed (step S1: No). The difference from 1 will be described.
ステップS11では、パターン決定部14Aは、制御目標を取得する。制御目標とは、前述したように、例えば、電力変換部12のスイッチング損失の低減、回転機械装置3の駆動音の低減、回転機械装置3の機械振動の低減、回転機械装置3の電流高調波の低減、電流指令値への電流検出値追従時間の低減などである。
In step S11, the pattern determination unit 14A acquires the control target. As described above, the control targets are, for example, reduction of switching loss of the power conversion unit 12, reduction of driving noise of the rotary mechanical device 3, reduction of mechanical vibration of the rotary mechanical device 3, and current harmonics of the rotary mechanical device 3. , Reduction of current detection value tracking time to current command value, etc.
ステップS12では、パターン決定部14Aは、取得した制御目標に応じて、学習済みモデルの種類選択指令TSCを生成し、これを機械学習器10Aに出力する。この場合の学習済みモデルの種類選択指令TSCは、パターン生成関数記憶部10dにおいて、数字と関連付けされたテーブルとして保存された学習済みモデルを選択する指令である。例えば、学習済みモデルNo.1ではスイッチング損失を低減する学習済みモデル、学習済みモデルNo.2ではスイッチング損失と機械振動を低減する学習済みモデル、……といったように、制御目標に適合した学習済みモデルを読み出すための信号である。
In step S12, the pattern determination unit 14A generates a trained model type selection command TSC according to the acquired control target, and outputs this to the machine learner 10A. The trained model type selection command TSC in this case is a command for selecting the trained model stored as a table associated with the numbers in the pattern generation function storage unit 10d. For example, the trained model No. In No. 1, a trained model that reduces switching loss, a trained model No. 1. In No. 2, it is a signal for reading a trained model that matches the control target, such as a trained model that reduces switching loss and mechanical vibration.
そして、機械学習器10Aは、ステップS10で保存した学習済みモデルの内から学習済みモデルの種類選択指令TSCに適合したパターン生成関数を出力するので、パターン決定部14Aは、このパターン生成関数を取得する。
Then, the machine learner 10A outputs a pattern generation function conforming to the type selection command TSC of the trained model from the trained models saved in step S10, so that the pattern determination unit 14A acquires this pattern generation function. To do.
引き続いて、ステップS7では、パターン決定部14Aが、教師データ付き学習において使用した電流指令値idqref(k)、状態観測部17からの状態量、電力変換部12からの前回周期のスイッチング状態SW(k-1)を入力データとして取得する。この場合に入力データとして取得する値は、複数の学習済みモデルを獲得するために行った教師データ付き学習毎に使用した入力データを全て入力するようにしてもよいし、あるいは特定の学習済みモデルを獲得するために行った教師データ付き学習に使用した入力データのみを入力するようにしてもよい。
その後、ステップS8~S9において、実施の形態1と同様の手順で回転機械装置3が駆動される。 Subsequently, in step S7, thepattern determination unit 14A uses the current command value idqref (k) used in the learning with teacher data, the state quantity from the state observation unit 17, and the switching state SW of the previous cycle from the power conversion unit 12 ( k-1) is acquired as input data. In this case, as the value to be acquired as input data, all the input data used for each training with teacher data performed to acquire a plurality of trained models may be input, or a specific trained model may be input. It is also possible to input only the input data used for the learning with the teacher data performed in order to acquire.
After that, in steps S8 to S9, the rotarymechanical device 3 is driven in the same procedure as in the first embodiment.
その後、ステップS8~S9において、実施の形態1と同様の手順で回転機械装置3が駆動される。 Subsequently, in step S7, the
After that, in steps S8 to S9, the rotary
上述の電動機制御を行うことにより、実施の形態2の電力変換装置1は、制御目標に適合した学習済みモデルであるパターン生成関数を機械学習器10Aから読み出して、電力変換部12のスイッチングパターンSWP(k)が決定される。そのため、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくするだけでなく、これに加えて、回転機械装置3の駆動音、回転機械装置3の機械振動、回転機械装置3の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つを小さくするように回転機械装置3を駆動することが可能となる。
By performing the above-mentioned electric motor control, the power conversion device 1 of the second embodiment reads a pattern generation function, which is a trained model conforming to the control target, from the machine learning device 10A, and reads the switching pattern SWP of the power conversion unit 12. (K) is determined. Therefore, not only the switching loss of the power conversion unit 12 is made smaller than that of the pulse width modulation (PWM) method, but also the driving sound of the rotary machine device 3, the mechanical vibration of the rotary machine device 3, and the rotary machine device 3 It is possible to drive the rotating mechanical device 3 so as to reduce at least one of the current harmonics and the follow-up time of the current detected value to the current command value.
なお、この実施の形態2では、パルス幅変調(PWM)方式よりもスイッチング損失を小さくすることをベースとした上で、複数の学習済みモデルの作成および使用方法について述べたが、これに限らず、他の変調方式に関わる性能をベースとして学習済みモデルを作成してもよい。
In the second embodiment, a method of creating and using a plurality of trained models has been described on the basis of making the switching loss smaller than that of the pulse width modulation (PWM) method, but the present invention is not limited to this. , A trained model may be created based on the performance related to other modulation methods.
実施の形態3.
この実施の形態3の電力変換装置は、パターン決定部に使用する教師データ付き学習を行ったパターン生成関数に対して、強化学習を行うものである。Embodiment 3.
The power conversion device of the third embodiment performs reinforcement learning on a pattern generation function that has been trained with teacher data used in the pattern determination unit.
この実施の形態3の電力変換装置は、パターン決定部に使用する教師データ付き学習を行ったパターン生成関数に対して、強化学習を行うものである。
The power conversion device of the third embodiment performs reinforcement learning on a pattern generation function that has been trained with teacher data used in the pattern determination unit.
以下、実施の形態3に関わる電力変換装置と機械学習器の構成および動作について、電力変換装置の構成を示すブロック図である図8、電力変換装置と機械学習器の動作をフローチャートで示した図9に基づいて説明する。なお、この実施の形態3の電力変換装置において、実施の形態1および2と同一あるいは相当部分には、同一の符号を付す。
Hereinafter, regarding the configuration and operation of the power conversion device and the machine learning device according to the third embodiment, FIG. 8 is a block diagram showing the configuration of the power conversion device, and FIG. 8 is a flowchart showing the operation of the power conversion device and the machine learning device. This will be described based on 9. In the power conversion device of the third embodiment, the same or corresponding parts as those of the first and second embodiments are designated by the same reference numerals.
この実施の形態3の電力変換装置の基本的な機能および構成は、上述した実施の形態1(図1)と共通するため、以下では重複する説明を省略し、ここでは実施の形態1と実施の形態3について相違する点について、以下、詳細に説明する。
Since the basic functions and configurations of the power conversion device of the third embodiment are the same as those of the first embodiment (FIG. 1) described above, duplicated description will be omitted below, and the first embodiment and the first embodiment will be omitted here. The differences in Form 3 of the above will be described in detail below.
この実施の形態3のシステム全体は、図8に示すように、電力変換装置1、直流電源2、および回転機械装置3から構成される。
As shown in FIG. 8, the entire system of the third embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
電力変換装置1は、機械学習器10Bと、主回路である電力変換部12、電流検出部13、状態観測部17B、およびパターン決定部14Bを備えている。
The power conversion device 1 includes a machine learning device 10B, a power conversion unit 12, a current detection unit 13, a state observation unit 17B, and a pattern determination unit 14B, which are main circuits.
この実施の形態3では、教師データ付き学習を行った学習済みモデルであるパターン生成関数に基づいて電動機制御を実行しながら、パターン生成関数の強化学習を行うように構成されている。そのため、機械学習器10Bでは、報酬計算部10gおよび関数更新部10hが設けられている。
In the third embodiment, reinforcement learning of the pattern generation function is performed while executing motor control based on the pattern generation function which is a trained model in which learning with teacher data is performed. Therefore, the machine learning device 10B is provided with a reward calculation unit 10g and a function update unit 10h.
ここで、まず、強化学習の概念について説明する。強化学習とは、与えられた環境において、価値を最大化するようにエージェントを学習させることである。すなわち、実施の形態3において、実施の形態1で作成した学習済みモデルよりも電力変換部12のスイッチング損失を小さくする(価値を最大化する)ように、回転機械装置3の状態(与えられた環境)に合わせて、電力変換部12のスイッチングパターンSWP(k)を適切に選択する学習済みモデル(エージェント)を生成するということである。
Here, first, the concept of reinforcement learning will be explained. Reinforcement learning is learning agents to maximize value in a given environment. That is, in the third embodiment, the state of the rotating mechanical device 3 (given) so as to make the switching loss of the power conversion unit 12 smaller (maximize the value) than the trained model created in the first embodiment. This means that a trained model (agent) that appropriately selects the switching pattern SWP (k) of the power conversion unit 12 is generated according to the environment).
図9は、図8における上述の教師データ付き学習を行った学習済みパターン生成関数の強化学習を行う処理手順の一例を説明するためのフローチャートである。なお、以下で説明する処理手順は、本願の強化学習の一例である。そのため、これらの手順の各処理は可能な限り変更されてもよく、また、実施の形態に応じて、適宜、処理の省略、置換、および追加が可能である。
FIG. 9 is a flowchart for explaining an example of a processing procedure for performing reinforcement learning of the learned pattern generation function that has been trained with the teacher data described in FIG. The processing procedure described below is an example of reinforcement learning of the present application. Therefore, each process of these procedures may be changed as much as possible, and the processes can be omitted, replaced, and added as appropriate according to the embodiment.
まず、ステップS14では、パターン決定部14Bは、回転機械装置3の初期状態として、電流指令値idqref(k)、dq座標電流値idq(k)、前回周期のスイッチング状態SW(k-1)、教師データ付き学習により学習を行って獲得したパターン生成関数を取得する。なお、この初期状態として取得するこれらの値は、すべて0の状態からスタートしてもよいし、あるいは制御途中の値を用いてスタートしてもよい。
First, in step S14, the pattern determination unit 14B sets the current command value idqref (k), the dq coordinate current value idq (k), the switching state SW (k-1) of the previous period, and the switching state SW (k-1) of the previous period as the initial state of the rotary mechanical device 3. Acquire the pattern generation function acquired by learning by learning with teacher data. It should be noted that these values acquired as the initial state may all start from the state of 0, or may start using the value in the middle of control.
ステップS15では、パターン決定部14Bは、ステップS14で取得した回転機械装置3の初期状態および機械学習器10Bで得られる今回のパターン生成関数に基づいて、スイッチングパターンSWP(k)を決定する。
In step S15, the pattern determination unit 14B determines the switching pattern SWP (k) based on the initial state of the rotary machine device 3 acquired in step S14 and the current pattern generation function obtained by the machine learning device 10B.
次に、ステップS16では、電力変換部12は、パターン決定部14Bの出力したスイッチングパターンSWP(k)に基づいて、回転機械装置3を駆動する。そして、機械学習器10Bは、電流指令値idqref(k)、状態観測部17Bから与えられるdq座標電流値idq(k)、および前回のスイッチングパターンSWP(k-1)と今回のスイッチングパターンSWP(k)との間における電力変換部12のスイッチング素子Q1~Q6のオン/オフの回数の偏差を示すスイッチング遷移回数SWcountを取得する。
Next, in step S16, the power conversion unit 12 drives the rotary mechanical device 3 based on the switching pattern SWP (k) output by the pattern determination unit 14B. Then, the machine learning device 10B has a current command value idqref (k), a dq coordinate current value idq (k) given by the state observation unit 17B, a previous switching pattern SWP (k-1), and a current switching pattern SWP ( The switching transition number SWcount indicating the deviation of the number of times of on / off of the switching elements Q1 to Q6 of the power conversion unit 12 with k) is acquired.
ステップS17では、報酬計算部10gは、電流指令値idqref(k)とdq座標電流値idq(k)との電流偏差を計算し、電流偏差が規定値以内かどうかを判定する。電流偏差が規定値以内であると判定した場合には(ステップS17:Yes)、ステップS18に進んで、予め設定した報酬(変化量Δ1)を増やし、電流偏差が規定値を超えると判定した場合(ステップS17:No)には、ステップS19に進んで予め設定した報酬(変化量Δ1)を減らす。
In step S17, the reward calculation unit 10g calculates the current deviation between the current command value idqref (k) and the dq coordinate current value idq (k), and determines whether or not the current deviation is within the specified value. When it is determined that the current deviation is within the specified value (step S17: Yes), the process proceeds to step S18, the preset reward (change amount Δ1) is increased, and it is determined that the current deviation exceeds the specified value. In (step S17: No), the process proceeds to step S19 to reduce the preset reward (change amount Δ1).
ステップS20では、報酬計算部10gは、状態観測部17Bから得られるスイッチング遷移回数SWcountが規定値以内かどうかを判定する。スイッチング遷移回数SWcountが規定値以内である場合には(ステップS20:Yes)、ステップS21に進んで予め設定した報酬(変化量Δ2)を増やし、スイッチング遷移回数SWcountが規定値を超えると判定した場合(ステップS20:No)には、ステップS22に進んで予め設定した報酬(変化量Δ2)を減らす。
In step S20, the reward calculation unit 10g determines whether or not the switching transition number SWcount obtained from the state observation unit 17B is within the specified value. When the switching transition count SWcount is within the specified value (step S20: Yes), the process proceeds to step S21 to increase the preset reward (change amount Δ2), and it is determined that the switching transition count SWcount exceeds the specified value. In (step S20: No), the process proceeds to step S22 to reduce the preset reward (change amount Δ2).
ステップS23では、関数更新部10hは、報酬計算部10gで得られた報酬(変化量Δ1、Δ2)に基づいて、パターン生成関数を構成するニューラルネットワークの各重みづけ係数とバイアスとを電流偏差を規定値の範囲内に維持しながら、スイッチング損失を小さくするように調整するために価値関数を更新する。そして、更新した価値関数に基づいて、パターン生成関数が更新される。
In step S23, the function update unit 10h sets the current deviations of each weighting coefficient and bias of the neural network constituting the pattern generation function based on the rewards (change amounts Δ1, Δ2) obtained by the reward calculation unit 10g. Update the value function to adjust to reduce switching loss while keeping it within the specified range. Then, the pattern generation function is updated based on the updated value function.
ここに、前記のパターン生成関数の更新とは、パターン生成関数を構成するニューラルネットワークの各重みづけ係数とバイアスを調整することである。
その後は、ステップS15に戻り、更新したパターン生成関数に基づいてスイッチングパターンSWP(k)を決定し、同様の処理を繰り返す。 Here, the update of the pattern generation function is to adjust each weighting coefficient and bias of the neural network constituting the pattern generation function.
After that, the process returns to step S15, the switching pattern SWP (k) is determined based on the updated pattern generation function, and the same process is repeated.
その後は、ステップS15に戻り、更新したパターン生成関数に基づいてスイッチングパターンSWP(k)を決定し、同様の処理を繰り返す。 Here, the update of the pattern generation function is to adjust each weighting coefficient and bias of the neural network constituting the pattern generation function.
After that, the process returns to step S15, the switching pattern SWP (k) is determined based on the updated pattern generation function, and the same process is repeated.
上述の強化学習を行うことにより、実施の形態3の電力変換装置1は、実施の形態1において作成されるパルス幅変調(PWM)方式に関するパターン生成関数よりもさらにスイッチング損失を小さくするように、パターン生成関数が更新される。そのため、実施の形態1の教師データ付き学習で学習を行ったパターン生成関数よりも電力変換部12のスイッチング損失を小さくして、回転機械装置3を駆動することができる。
By performing the above-mentioned reinforcement learning, the power conversion device 1 of the third embodiment has a switching loss smaller than that of the pattern generation function related to the pulse width modulation (PWM) method created in the first embodiment. The pattern generation function is updated. Therefore, the rotary mechanical device 3 can be driven with the switching loss of the power conversion unit 12 smaller than that of the pattern generation function learned by the learning with the teacher data of the first embodiment.
なお、この実施の形態3では、実施の形態1の教師データ付き学習で学習を行った学習済みモデルの強化学習の方法について説明したが、実施の形態2の学習済みモデルを強化学習するようにしてもよい。
In the third embodiment, the method of reinforcement learning of the trained model trained by the learning with the teacher data of the first embodiment has been described, but the trained model of the second embodiment is to be reinforcement-learned. You may.
すなわち、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくすることに加えて、回転機械装置3の駆動音、回転機械装置3の機械振動、回転機械装置3の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つを小さくすることができるパターン生成関数を強化学習し、さらに前記性能を向上させたパターン生成関数を作成するようにしてもよい。
また、強化学習を行ったパターン生成関数を学習済みモデルとして、実施の形態1または実施の形態2の機械学習器10、10Aにおいて使用してもよい。 That is, in addition to making the switching loss of thepower conversion unit 12 smaller than that of the pulse width modulation (PWM) method, the driving sound of the rotary machine device 3, the mechanical vibration of the rotary machine device 3, and the current harmonic of the rotary machine device 3 , And a pattern generation function that can reduce at least one of the follow-up time of the current detection value to the current command value is strengthened and learned, and a pattern generation function with further improved performance is created. May be good.
Further, the pattern generation function obtained by reinforcement learning may be used as the trained model in the machine learning devices 10 and 10A of the first embodiment or the second embodiment.
また、強化学習を行ったパターン生成関数を学習済みモデルとして、実施の形態1または実施の形態2の機械学習器10、10Aにおいて使用してもよい。 That is, in addition to making the switching loss of the
Further, the pattern generation function obtained by reinforcement learning may be used as the trained model in the
以上のように、この実施の形態3の電力変換装置1は、先の実施の形態1または実施の形態2において、教師データ付き学習を行った学習済みモデルを強化学習することにより、スイッチング損失に加えて、変調方式に関わる回転機械装置3の駆動音、回転機械装置3の機械振動、回転機械装置3の電流高調波、電流指令値への電流検出値の追従時間のうち少なくとも何れか1つをさらに小さくするように回転機械装置3を駆動することができる。
As described above, the power conversion device 1 of the third embodiment causes switching loss by reinforcement learning of the trained model that has been trained with teacher data in the first embodiment or the second embodiment. In addition, at least one of the driving sound of the rotating mechanical device 3 related to the modulation method, the mechanical vibration of the rotating mechanical device 3, the current harmonic of the rotating mechanical device 3, and the follow-up time of the current detected value to the current command value. The rotary mechanical device 3 can be driven so as to further reduce the size.
実施の形態4.
この実施の形態4の電力変換装置は、実施の形態1の電力変換装置1に備えられている電力変換部12のスイッチング状態を電圧指令値に基づいて計算する構成となっている。電力変換部12のスイッチング状態を電圧指令値に基づいて算出することで、電流指令値idqref(k)に対するdq座標電流値idq(k)の時定数を設計通りにでき、さらに電動機の速度指令から電圧指令値を計算する、電流指令値を介さない制御方式にも適用できるようになる。 Embodiment 4.
The power conversion device of the fourth embodiment has a configuration in which the switching state of thepower conversion unit 12 provided in the power conversion device 1 of the first embodiment is calculated based on the voltage command value. By calculating the switching state of the power conversion unit 12 based on the voltage command value, the time constant of the dq coordinate current value idq (k) with respect to the current command value idqref (k) can be set as designed, and further from the speed command of the electric motor. It can also be applied to a control method that calculates the voltage command value and does not go through the current command value.
この実施の形態4の電力変換装置は、実施の形態1の電力変換装置1に備えられている電力変換部12のスイッチング状態を電圧指令値に基づいて計算する構成となっている。電力変換部12のスイッチング状態を電圧指令値に基づいて算出することで、電流指令値idqref(k)に対するdq座標電流値idq(k)の時定数を設計通りにでき、さらに電動機の速度指令から電圧指令値を計算する、電流指令値を介さない制御方式にも適用できるようになる。 Embodiment 4.
The power conversion device of the fourth embodiment has a configuration in which the switching state of the
以下、実施の形態4の電力変換装置と機械学習器の構成について、電力変換装置の構成を示すブロック図である図10、機械学習器の構成を示すブロック図である図11に基づいて説明する。
なお、電力変換装置を実現するハードウェア構成図は図2、電力変換装置と機械学習器の動作フローチャートは図3、機械学習器を実現するハードウェア構成図は図5であり、実施の形態1と共通する。そのため、以下では、実施の形態1と重複する説明を省略し、実施の形態1と相違する点について、詳細に説明する。また、実施の形態4の電力変換装置において、実施の形態1と同一あるいは相当部分には、同一の符号を付す。 Hereinafter, the configuration of the power conversion device and the machine learning device of the fourth embodiment will be described with reference to FIG. 10 which is a block diagram showing the configuration of the power conversion device and FIG. 11 which is a block diagram showing the configuration of the machine learning device. ..
The hardware configuration diagram for realizing the power conversion device is shown in FIG. 2, the operation flowchart of the power conversion device and the machine learning device is shown in FIG. 3, and the hardware configuration diagram for realizing the machine learning device is shown in FIG. In common with. Therefore, in the following, the description overlapping with the first embodiment will be omitted, and the points different from the first embodiment will be described in detail. Further, in the power conversion device of the fourth embodiment, the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
なお、電力変換装置を実現するハードウェア構成図は図2、電力変換装置と機械学習器の動作フローチャートは図3、機械学習器を実現するハードウェア構成図は図5であり、実施の形態1と共通する。そのため、以下では、実施の形態1と重複する説明を省略し、実施の形態1と相違する点について、詳細に説明する。また、実施の形態4の電力変換装置において、実施の形態1と同一あるいは相当部分には、同一の符号を付す。 Hereinafter, the configuration of the power conversion device and the machine learning device of the fourth embodiment will be described with reference to FIG. 10 which is a block diagram showing the configuration of the power conversion device and FIG. 11 which is a block diagram showing the configuration of the machine learning device. ..
The hardware configuration diagram for realizing the power conversion device is shown in FIG. 2, the operation flowchart of the power conversion device and the machine learning device is shown in FIG. 3, and the hardware configuration diagram for realizing the machine learning device is shown in FIG. In common with. Therefore, in the following, the description overlapping with the first embodiment will be omitted, and the points different from the first embodiment will be described in detail. Further, in the power conversion device of the fourth embodiment, the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
この実施の形態4のシステム全体は、図10に示すように、電力変換装置1、直流電源2、および回転機械装置3から構成される。
As shown in FIG. 10, the entire system of the fourth embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
電力変換装置1は、機械学習器610、uvw/dq変換器11、主回路である電力変換部12、電流検出部13、パターン決定部614、PI(Proportional Integral)電流制御器618を備える。実施の形態1と比較すると電力変換装置1はPI電流制御器618をさらに備えた構成となっている。
The power conversion device 1 includes a machine learning device 610, a uvw / dq converter 11, a main circuit power conversion unit 12, a current detection unit 13, a pattern determination unit 614, and a PI (Proportional International) current controller 618. Compared with the first embodiment, the power conversion device 1 is further provided with the PI current controller 618.
図10では、電圧指令値vdqref(k)を計算するために、電流指令値idqref(k)とdq座標電流値idq(k)からPI電流制御器618により計算している。しかし、PI電流制御器618ではなく、P(Proportional)電流制御器、I(Integral)電流制御器、PID(Proportional Integral Differential)電流制御器、I-P(Integral-Proportional)電流制御器を用いてもよく、V/f制御のような制御方式にて速度指令値から電圧指令値を計算するようにしてもよい。また、図10では、電圧指令値としてdq座標の電圧指令値vdqref(k)を使用しているが、αβ座標の電圧指令値、uvw座標の電圧指令値を使用してもよい。
In FIG. 10, in order to calculate the voltage command value vdqref (k), the PI current controller 618 calculates from the current command value idqref (k) and the dq coordinate current value idq (k). However, instead of the PI current controller 618, a P (Proportional) current controller, an I (Integral) current controller, a PID (Proportional Integral Differential) current controller, and an IP (Integral-Proportional) current controller are used. Alternatively, the voltage command value may be calculated from the speed command value by a control method such as V / f control. Further, in FIG. 10, although the voltage command value vdqref (k) in the dq coordinate is used as the voltage command value, the voltage command value in the αβ coordinate and the voltage command value in the uvw coordinate may be used.
次に、この実施の形態4で使用される機械学習器610の構成について説明する。
図11に示すように、機械学習器610は、入力データ取得部610a、ラベル取得部10b、学習部10c、およびパターン生成関数記憶部10dを含んで構成される。この実施の形態4では実施の形態1と比較して、入力データ取得部610aにて取り扱うデータが変更されるため、変更される内容を主として説明する。 Next, the configuration of themachine learning device 610 used in the fourth embodiment will be described.
As shown in FIG. 11, themachine learning device 610 includes an input data acquisition unit 610a, a label acquisition unit 10b, a learning unit 10c, and a pattern generation function storage unit 10d. Since the data handled by the input data acquisition unit 610a is changed in the fourth embodiment as compared with the first embodiment, the changed contents will be mainly described.
図11に示すように、機械学習器610は、入力データ取得部610a、ラベル取得部10b、学習部10c、およびパターン生成関数記憶部10dを含んで構成される。この実施の形態4では実施の形態1と比較して、入力データ取得部610aにて取り扱うデータが変更されるため、変更される内容を主として説明する。 Next, the configuration of the
As shown in FIG. 11, the
機械学習器610は、予め用意した教師データに基づいて教師データ付き学習を行う。教師データ付き学習の方法は実施の形態1と同様のため、ここでは説明を省略する。
The machine learning device 610 performs learning with teacher data based on the teacher data prepared in advance. Since the method of learning with teacher data is the same as that of the first embodiment, the description thereof is omitted here.
機械学習器610の教師データに含まれる入力データは、電圧指令値vdqref(k)と、電力変換部12の前回周期のスイッチング状態SW(k-1)である。
The input data included in the teacher data of the machine learning device 610 is the voltage command value vdqref (k) and the switching state SW (k-1) of the previous cycle of the power conversion unit 12.
図11のように、予め用意した教師データに基づいて学習部10cにて教師データ付き学習を実施することで、電圧指令値vdqref(k)と前回周期のスイッチング状態SW(k-1)からスイッチングパターンSWP(k)を決定する学習済みモデルが作成できる。
As shown in FIG. 11, by performing learning with teacher data in the learning unit 10c based on the teacher data prepared in advance, switching from the voltage command value vdqref (k) and the switching state SW (k-1) of the previous cycle. A trained model that determines the pattern SWP (k) can be created.
この実施の形態4における機械学習と電動機制御の動作は、図3のフローチャートと同様であり、実施の形態1との相違点は、ステップS2において電圧指令値vdqref(k)と前回周期のスイッチング状態SW(k-1)を入力データとして取得すること、および、ステップS7において電圧指令値vdqref(k)と前回周期のスイッチング状態SW(k-1)を入力データとして取得することである。
The operations of machine learning and electric motor control in the fourth embodiment are the same as those in the flowchart of FIG. 3, and the difference from the first embodiment is that the voltage command value vdqref (k) and the switching state of the previous cycle are different in step S2. The SW (k-1) is acquired as input data, and the voltage command value vdqref (k) and the switching state SW (k-1) of the previous cycle are acquired as input data in step S7.
この実施の形態4は、電圧指令値vdqref(k)と前回周期のスイッチング状態SW(k-1)、および学習済みモデルであるパターン生成関数に基づいて、スイッチングパターンSWP(k)を計算するため、電流指令値idqref(k)に対する電動機のdq座標電流値idq(k)の時定数をPI電流制御器618が設計できるようになる。さらに、電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式においても適用可能な構成である。
In the fourth embodiment, the switching pattern SWP (k) is calculated based on the voltage command value vdqref (k), the switching state SW (k-1) of the previous cycle, and the pattern generation function which is a learned model. The PI current controller 618 can design the time constant of the dq coordinate current value idq (k) of the electric motor with respect to the current command value idqref (k). Further, the configuration can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
以上のように、この実施の形態4の電力変換装置1は、回転機械装置3に流れる電流を検出する電流検出部13と、スイッチングパターンを決定するためのパターン生成関数を出力する機械学習器610と、電流指令値idqref(k)およびdq座標電流値idq(k)から電圧指令値vdqref(k)を計算するPI電流制御器618と、電圧指令値vdqref(k)、電力変換部12の前回周期のスイッチング状態SW(k-1)、および機械学習器610からのパターン生成関数に基づいてスイッチングパターンを決定するパターン決定部614と、スイッチングパターンに応じてスイッチング素子Q1~Q6を制御して回転機械装置3に交流電力を出力する電力変換部12とを備え、機械学習器610は、電力変換部12のスイッチング損失がパルス幅変調(PWM)方式よりも小さくなるように教師データ付き学習を行ってパターン生成関数を出力し、これに応じてパターン決定部614が電力変換部12のスイッチング状態を決定する。
As described above, the power conversion device 1 of the fourth embodiment has a current detection unit 13 that detects the current flowing through the rotary machine device 3 and a machine learner 610 that outputs a pattern generation function for determining a switching pattern. The PI current controller 618 that calculates the voltage command value vdqref (k) from the current command value idqref (k) and the dq coordinate current value idq (k), the voltage command value vdqref (k), and the previous time of the power conversion unit 12. The pattern determination unit 614, which determines the switching pattern based on the periodic switching state SW (k-1) and the pattern generation function from the machine learner 610, and the switching elements Q1 to Q6 are controlled and rotated according to the switching pattern. The mechanical device 3 is provided with a power conversion unit 12 that outputs AC power, and the machine learner 610 performs learning with teacher data so that the switching loss of the power conversion unit 12 is smaller than that of the pulse width modulation (PWM) method. The pattern generation function is output, and the pattern determination unit 614 determines the switching state of the power conversion unit 12 accordingly.
このため、実施の形態4の電力変換装置1は、実施の形態1と同様の効果を奏するとともに、実施の形態1と比較して、電流指令値idqref(k)に対する回転機械装置3のdq座標電流値idq(k)の時定数をPI電流制御器618が設計できるようになる。さらに、電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式においても適用可能な構成である。
Therefore, the power conversion device 1 of the fourth embodiment has the same effect as that of the first embodiment, and the dq coordinates of the rotating mechanical device 3 with respect to the current command value idqref (k) as compared with the first embodiment. The PI current controller 618 can design the time constant of the current value idq (k). Further, the configuration can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
なお、前記の実施の形態4の説明では、機械学習器610における教師データ付き学習による学習済みモデルの作成は、予め用意した教師データを使用しているが、これに限らず、電動機制御Bを行いながら、教師データを測定して教師データ付き学習を行うようにしてもよいし、機械学習器610を電力変換装置1に含まずに、パターン生成関数のみを電力変換装置1のパターン決定部614が機械学習器610から取得する構成としてもよい。
In the above description of the fourth embodiment, the teacher data prepared in advance is used for creating the trained model by the learning with the teacher data in the machine learning device 610, but the present invention is not limited to this, and the electric motor control B is used. While doing so, the teacher data may be measured to perform learning with teacher data, or the machine learning device 610 is not included in the power conversion device 1 and only the pattern generation function is included in the pattern determination unit 614 of the power conversion device 1. May be obtained from the machine learning device 610.
実施の形態5.
この実施の形態5の電力変換装置は、実施の形態2の電力変換装置1に備えられている電力変換部12のスイッチングパターンを電圧指令値に基づいて計算する構成となっている。電力変換部12のスイッチングパターンを電圧指令値に基づいて算出することで、電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式にも適用できる。そして、このような制御方式においても電力変換部12のスイッチング損失の低減、回転機械装置3の駆動音の低減、回転機械装置3の機械振動の低減、回転機械装置3の電流高調波の低減、電流指令値への電流検出値追従時間の低減効果が得られる。 Embodiment 5.
The power conversion device of the fifth embodiment has a configuration in which the switching pattern of thepower conversion unit 12 provided in the power conversion device 1 of the second embodiment is calculated based on the voltage command value. By calculating the switching pattern of the power conversion unit 12 based on the voltage command value, it can be applied to a control method that calculates the voltage command value from the speed command of the electric motor without using the current command value. Further, even in such a control method, the switching loss of the power conversion unit 12 is reduced, the driving sound of the rotating mechanical device 3 is reduced, the mechanical vibration of the rotating mechanical device 3 is reduced, and the current harmonic of the rotating mechanical device 3 is reduced. The effect of reducing the current detection value tracking time to the current command value can be obtained.
この実施の形態5の電力変換装置は、実施の形態2の電力変換装置1に備えられている電力変換部12のスイッチングパターンを電圧指令値に基づいて計算する構成となっている。電力変換部12のスイッチングパターンを電圧指令値に基づいて算出することで、電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式にも適用できる。そして、このような制御方式においても電力変換部12のスイッチング損失の低減、回転機械装置3の駆動音の低減、回転機械装置3の機械振動の低減、回転機械装置3の電流高調波の低減、電流指令値への電流検出値追従時間の低減効果が得られる。 Embodiment 5.
The power conversion device of the fifth embodiment has a configuration in which the switching pattern of the
以下、この実施の形態5に関わる電力変換装置の構成について、電力変換装置の構成を示すブロックである図12に基づいて説明する。機械学習器の構成は図11、電力変換装置と機械学習器の動作フローチャートは図7であり、実施の形態2または実施の形態4と共通する。そのため、以下では、重複する説明を省略し、実施の形態2または実施の形態4と相違する点について、詳細に説明する。なお、実施の形態5の電力変換装置において、実施の形態2または実施の形態4と同一あるいは相当部分には、同一の符号を付す。
Hereinafter, the configuration of the power conversion device according to the fifth embodiment will be described with reference to FIG. 12, which is a block showing the configuration of the power conversion device. The configuration of the machine learning device is shown in FIG. 11, and the operation flowchart of the power conversion device and the machine learning device is shown in FIG. 7, which is common to the second embodiment or the fourth embodiment. Therefore, in the following, the duplicated description will be omitted, and the points different from those of the second embodiment or the fourth embodiment will be described in detail. In the power conversion device of the fifth embodiment, the same or corresponding parts as those of the second embodiment or the fourth embodiment are designated by the same reference numerals.
この実施の形態5のシステム全体は、図12に示すように、電力変換装置1、直流電源2、および回転機械装置3から構成される。
As shown in FIG. 12, the entire system of the fifth embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
この実施の形態5の電力変換装置1は、機械学習器710、主回路である電力変換部12、電流検出部13、パターン決定部714、速度検出部15、位置検出部16、状態観測部17、およびV/f制御器719を備える。実施の形態2と比較するとV/f制御器719をさらに備えた構成となっている。
The power conversion device 1 of the fifth embodiment includes a machine learning device 710, a main circuit power conversion unit 12, a current detection unit 13, a pattern determination unit 714, a speed detection unit 15, a position detection unit 16, and a state observation unit 17. , And a V / f controller 719. Compared with the second embodiment, the configuration further includes a V / f controller 719.
図12では、Vf電圧指令値vfref(k)を、電動機の速度指令値wref(k)からV/f制御器719により計算している。しかし、V/f制御器719ではなく、電流指令値idqref(k)とdq座標電流値idq(k)からPI電流制御器618、P電流制御器、I電流制御器、PID電流制御器、I-P電流制御器により電圧指令値vdqref(k)を計算するようにしてもよく、また、電圧指令値をαβ座標の電圧指令値、uvw座標の電圧指令値に変更してもよい。
In FIG. 12, the Vf voltage command value vfref (k) is calculated from the speed command value wref (k) of the electric motor by the V / f controller 719. However, instead of V / f controller 719, from the current command value idqref (k) and dq coordinate current value idq (k), PI current controller 618, P current controller, I current controller, PID current controller, I The voltage command value vdqref (k) may be calculated by the −P current controller, or the voltage command value may be changed to a voltage command value in αβ coordinates or a voltage command value in uvw coordinates.
この実施の形態5で使用される機械学習器710は、実施の形態4の図11の構成と同様であるが、教師データに含まれる入力データとラベルデータについて、実施の形態2と同様に制御目標に応じて予め用意した教師データ毎に、学習部が個別に複数の学習済みモデルを作成する。
The machine learning device 710 used in the fifth embodiment has the same configuration as that of FIG. 11 of the fourth embodiment, but controls the input data and the label data included in the teacher data in the same manner as in the second embodiment. The learning department individually creates a plurality of trained models for each teacher data prepared in advance according to the goal.
この実施の形態5における機械学習と電動機制御は、電力変換装置と機械学習器の動作フローチャートの図7と同様である。実施の形態2との相違点は、ステップS2において少なくともVf電圧指令値vfref(k)と前回周期のスイッチング状態SW(k-1)を入力データとして取得し、ステップS7においては、ステップS12にて取得した学習済みモデルに対応して少なくともVf電圧指令値vfref(k)と前回周期のスイッチング状態SW(k-1)を入力データとして取得することである。
The machine learning and electric motor control in the fifth embodiment are the same as those in FIG. 7 of the operation flowchart of the power converter and the machine learning device. The difference from the second embodiment is that at least the Vf voltage command value vfr (k) and the switching state SW (k-1) of the previous cycle are acquired as input data in step S2, and in step S7, in step S12. At least the Vf voltage command value vref (k) and the switching state SW (k-1) of the previous cycle are acquired as input data corresponding to the acquired trained model.
この実施の形態5は、Vf電圧指令値vfref(k)と制御目標に適合したパターン生成関数を機械学習器710から読み出して、電力変換部12のスイッチングパターンSWP(k)を決定する。そのため、V/f制御器719のような電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式においても、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくするだけでなく、これに加えて、回転機械装置3の駆動音、回転機械装置3の機械振動、回転機械装置3の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つを小さくするように回転機械装置3を駆動する効果が得られる。
In the fifth embodiment, the Vf voltage command value vfr (k) and the pattern generation function matching the control target are read from the machine learning device 710 to determine the switching pattern SWP (k) of the power conversion unit 12. Therefore, even in a control method such as the V / f controller 719 that does not use the current command value for calculating the voltage command value from the speed command of the electric motor, the switching loss of the power conversion unit 12 is reduced as compared with the pulse width modulation (PWM) method. In addition to making it smaller, of the drive sound of the rotary machine device 3, the mechanical vibration of the rotary machine device 3, the current harmonic of the rotary machine device 3, and the follow-up time of the current detection value to the current command value. The effect of driving the rotary mechanical device 3 so as to reduce at least one of them can be obtained.
なお、前記の実施の形態5の説明では、V/f制御器719により計算したVf電圧指令値Vfref(k)に基づいてスイッチングパターンSWP(k)を計算するように説明したが、電流指令値idqref(k)とdq座標電流値idq(k)からPI電流制御器618により電圧指令値vdqref(k)を計算して、電圧指令値vdqref(k)からスイッチングパターンSWP(k)を計算するようにしてもよい。
In the description of the fifth embodiment, the switching pattern SWP (k) is calculated based on the Vf voltage command value Vfref (k) calculated by the V / f controller 719. However, the current command value is described. The voltage command value vdqref (k) is calculated by the PI current controller 618 from the idqref (k) and the dq coordinate current value idq (k), and the switching pattern SWP (k) is calculated from the voltage command value vdqref (k). It may be.
実施の形態6.
この実施の形態6の電力変換装置は、実施の形態3の電力変換装置1に備えられている電力変換部12のスイッチングパターンを電圧指令値に基づいて計算する構成となっている。電力変換部12のスイッチングパターンを電圧指令値に基づいて算出することで、電流指令値idqref(k)に対するdq座標電流値idq(k)の時定数を設計通りにしたまま、パターン決定部に使用する教師データ付き学習を行ったパターン生成関数に対して、強化学習を行うことができる。さらに、電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式にも適用できる。 Embodiment 6.
The power conversion device of the sixth embodiment has a configuration in which the switching pattern of thepower conversion unit 12 provided in the power conversion device 1 of the third embodiment is calculated based on the voltage command value. By calculating the switching pattern of the power conversion unit 12 based on the voltage command value, it is used in the pattern determination unit while keeping the time constant of the dq coordinate current value idq (k) with respect to the current command value idqref (k) as designed. Reinforcement learning can be performed on the pattern generation function that has been trained with teacher data. Further, it can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
この実施の形態6の電力変換装置は、実施の形態3の電力変換装置1に備えられている電力変換部12のスイッチングパターンを電圧指令値に基づいて計算する構成となっている。電力変換部12のスイッチングパターンを電圧指令値に基づいて算出することで、電流指令値idqref(k)に対するdq座標電流値idq(k)の時定数を設計通りにしたまま、パターン決定部に使用する教師データ付き学習を行ったパターン生成関数に対して、強化学習を行うことができる。さらに、電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式にも適用できる。 Embodiment 6.
The power conversion device of the sixth embodiment has a configuration in which the switching pattern of the
以下、この実施の形態6に関わる電力変換装置の構成について、電力変換装置の構成を示すブロックである図13に基づいて説明する。電力変換装置と機械学習器の動作フローチャートは図9に示しており、実施の形態3と共通する。そのため、以下では、重複する説明を省略し、実施の形態3と相違する点について、詳細に説明する。なお、実施の形態6の電力変換装置において、実施の形態3と同一あるいは相当部分には、同一の符号を付す。
Hereinafter, the configuration of the power conversion device according to the sixth embodiment will be described with reference to FIG. 13, which is a block showing the configuration of the power conversion device. The operation flowchart of the power conversion device and the machine learning device is shown in FIG. 9, which is common to the third embodiment. Therefore, in the following, the duplicated description will be omitted, and the differences from the third embodiment will be described in detail. In the power conversion device of the sixth embodiment, the same or corresponding parts as those of the third embodiment are designated by the same reference numerals.
この実施の形態6のシステム全体は、図13に示すように、電力変換装置1、直流電源2、および回転機械装置3から構成される。
As shown in FIG. 13, the entire system of the sixth embodiment is composed of a power conversion device 1, a DC power supply 2, and a rotary mechanical device 3.
電力変換装置1は、機械学習器810と、主回路である電力変換部12、電流検出部13、状態観測部17、PI電流制御器618、およびパターン決定部814を備えている。実施の形態3と比較するとPI電流制御器618をさらに備えた構成となっている。
The power conversion device 1 includes a machine learning device 810, a power conversion unit 12, a current detection unit 13, a state observation unit 17, a PI current controller 618, and a pattern determination unit 814, which are main circuits. As compared with the third embodiment, the PI current controller 618 is further provided.
図13では、電圧指令値vdqref(k)を計算するために、電流指令値idqref(k)とdq座標電流値idq(k)からPI電流制御器618により計算している。しかし、PI電流制御器618ではなく、P電流制御器、I電流制御器、PID電流制御器、I-P電流制御器を用いてもよく、V/f制御のような制御方式にて速度指令値から電圧指令値を計算するようにしてもよい。本実施の形態では、dq座標の電圧指令値としているが、αβ座標の電圧指令値、uvw座標の電圧指令値に変更してもよい。
In FIG. 13, in order to calculate the voltage command value vdqref (k), the PI current controller 618 calculates from the current command value idqref (k) and the dq coordinate current value idq (k). However, instead of the PI current controller 618, a P current controller, an I current controller, a PID current controller, and an IP current controller may be used, and the speed command is performed by a control method such as V / f control. The voltage command value may be calculated from the value. In the present embodiment, the voltage command value is set to the dq coordinate, but it may be changed to the voltage command value of the αβ coordinate or the voltage command value of the uvw coordinate.
この実施の形態6における強化学習と電動機制御は、電力変換装置と機械学習器の動作フローチャートの図9とほぼ同様であるが、実施の形態3との相違点は、ステップS15においてパターン決定部814は、ステップS14で取得した回転機械装置3の初期状態の電流指令値idqref(k)とdq座標電流値idq(k)をPI電流制御器618により計算した電圧指令値vdqref(k)と、機械学習器810で得られる今回のパターン生成関数に基づいて、スイッチングパターンSWP(k)を決定することである。
The reinforcement learning and the electric motor control in the sixth embodiment are almost the same as those in FIG. 9 of the operation flowchart of the power converter and the machine learning device, but the difference from the third embodiment is the pattern determination unit 814 in step S15. Is the voltage command value vdqref (k) calculated by the PI current controller 618 of the current command value idqref (k) and the dq coordinate current value idq (k) in the initial state of the rotary machine device 3 acquired in step S14, and the machine. The switching pattern SWP (k) is determined based on the current pattern generation function obtained by the learner 810.
この実施の形態6により、実施の形態4において作成されるパルス幅変調(PWM)方式に関するパターン生成関数よりもさらにスイッチング損失を小さくするように、学習済みモデルであるパターン生成関数が更新されるため、実施の形態4の教師データ付き学習で得られた学習済みモデルよりも電力変換部12のスイッチング損失を小さくして、回転機械装置3を駆動することができる。
This embodiment 6 updates the trained model pattern generation function so that the switching loss is further smaller than the pattern generation function related to the pulse width modulation (PWM) method created in the fourth embodiment. The rotating mechanical device 3 can be driven with the switching loss of the power conversion unit 12 smaller than that of the learned model obtained by the learning with the teacher data of the fourth embodiment.
なお、この実施の形態6では、実施の形態4の教師データ付き学習で得られた学習済みモデルの強化学習の方法について説明したが、実施の形態5の学習済みモデルを強化学習するようにしてもよい。
In the sixth embodiment, the method of reinforcement learning of the trained model obtained by the learning with the teacher data of the fourth embodiment has been described, but the trained model of the fifth embodiment is reinforcement-learned. May be good.
すなわち、パルス幅変調(PWM)方式よりも電力変換部12のスイッチング損失を小さくすることに加えて、回転機械装置3の駆動音、回転機械装置3の機械振動、回転機械装置3の電流高調波、および電流指令値への電流検出値の追従時間のうち少なくとも何れか1つを小さくすることができるパターン生成関数を強化学習し、さらに前記性能を向上させたパターン生成関数を作成するようにしてもよい。
また、強化学習を行ったパターン生成関数を学習済みモデルとして、実施の形態4の機械学習器610または実施の形態5の機械学習器710に使用してもよい。 That is, in addition to making the switching loss of thepower conversion unit 12 smaller than that of the pulse width modulation (PWM) method, the driving sound of the rotary machine device 3, the mechanical vibration of the rotary machine device 3, and the current harmonic of the rotary machine device 3 , And a pattern generation function that can reduce at least one of the follow-up time of the current detection value to the current command value is strengthened and learned, and a pattern generation function with further improved performance is created. May be good.
Further, the pattern generation function obtained by reinforcement learning may be used as the trained model in themachine learning device 610 of the fourth embodiment or the machine learning device 710 of the fifth embodiment.
また、強化学習を行ったパターン生成関数を学習済みモデルとして、実施の形態4の機械学習器610または実施の形態5の機械学習器710に使用してもよい。 That is, in addition to making the switching loss of the
Further, the pattern generation function obtained by reinforcement learning may be used as the trained model in the
以上のように、この実施の形態6の電力変換装置1は、先の実施の形態4または実施の形態5において、教師データ付き学習を行った学習済みモデルを強化学習することにより、スイッチング損失に加えて、変調方式に関わる回転機械装置6の駆動音、回転機械装置6の機械振動、回転機械装置6の電流高調波、電流指令値への電流検出値の追従時間のうち少なくとも何れか1つをさらに小さくするように回転機械装置3を駆動することができる。さらに、実施の形態3と比較すると、電力変換部12のスイッチングパターンを電圧指令値に基づいて算出することで、電流指令値idqref(k)に対するdq座標電流値idq(k)の時定数を設計通りにしたまま、パターン決定部814に使用する教師データ付き学習を行ったパターン生成関数に対して、強化学習を行うことができる。さらに、電動機の速度指令から電圧指令値を計算する電流指令値を介さない制御方式にも適用できる。
As described above, the power conversion device 1 of the sixth embodiment causes switching loss by reinforcement learning of the trained model that has been trained with teacher data in the fourth embodiment or the fifth embodiment. In addition, at least one of the driving sound of the rotating mechanical device 6 related to the modulation method, the mechanical vibration of the rotating mechanical device 6, the current harmonic of the rotating mechanical device 6, and the follow-up time of the current detected value to the current command value. The rotary mechanical device 3 can be driven so as to further reduce the size. Further, as compared with the third embodiment, the time constant of the dq coordinate current value idq (k) with respect to the current command value idqref (k) is designed by calculating the switching pattern of the power conversion unit 12 based on the voltage command value. Reinforcement learning can be performed on the pattern generation function that has been trained with the teacher data used in the pattern determination unit 814 while keeping the same. Further, it can be applied to a control method that does not use a current command value for calculating a voltage command value from a speed command of an electric motor.
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
1 電力変換装置、2 直流電源、3 回転機械装置、10,10A,10B,610,710,810 機械学習器、10a,610a 入力データ取得部、10b ラベル取得部、10c 学習部、10d パターン生成関数記憶部、10g 報酬計算部、10h 関数更新部、11 uvw/dq変換器、12 電力変換部、12a スイッチング素子、13 電流検出部、14,14A,14B,614,714,814 パターン決定部、20,30 プロセッサ、21,31 記憶装置、15 速度検出部、16 位置検出部、17,17B 状態観測部、311 揮発性記憶装置、312 補助記憶装置、618 PI電流制御器、719 V/f制御器。
1 Power converter, 2 DC power supply, 3 Rotating machine device, 10, 10A, 10B, 610, 710, 810 Machine learning device, 10a, 610a Input data acquisition unit, 10b Label acquisition unit, 10c Learning unit, 10d Pattern generation function Storage unit, 10g reward calculation unit, 10h function update unit, 11 uvw / dq converter, 12 power conversion unit, 12a switching element, 13 current detection unit, 14, 14A, 14B, 614,714,814 pattern determination unit, 20 , 30 processor, 21,31 storage device, 15 speed detection unit, 16 position detection unit, 17,17B state observation unit, 311 volatile storage device, 312 auxiliary storage device, 618 PI current controller, 719 V / f controller ..
Claims (15)
- 複数のスイッチング素子を備え、直流電力を交流電力に変換して回転機械装置に供給する電力変換部と、前記回転機械装置に流れる電流を検出する電流検出部と、設定された制御周期ごとに、機械学習器から与えられるパターン生成関数に基づいて、前記複数のスイッチング素子における1周期分のスイッチング状態を決定し、前記1周期分のスイッチング状態の組み合わせから成るスイッチングパターンを生成して、前記電力変換部を出力制御するパターン決定部とを備え、
前記機械学習器は、教師データに含まれる、電流指令値および前記電流検出部で検出された電流検出値、若しくは電圧指令値のいずれか一方に基づいて機械学習を実行して前記電力変換部のスイッチングパターンを決定する前記パターン生成関数を生成するものであり、
前記パターン決定部は、前記機械学習器から与えられる前記パターン生成関数と、前記電流指令値および前記電流検出値若しくは前記電圧指令値のいずれか一方とを共に入力して演算処理を実行して前記電力変換部のスイッチングパターンを決定するものである、電力変換装置。 A power conversion unit that is equipped with a plurality of switching elements and converts DC power into AC power and supplies it to the rotary machine device, a current detection unit that detects the current flowing through the rotary machine device, and each set control cycle. Based on the pattern generation function given by the machine learner, the switching states for one cycle in the plurality of switching elements are determined, and a switching pattern consisting of a combination of the switching states for one cycle is generated to generate the power conversion. Equipped with a pattern determination unit that outputs and controls the unit
The machine learning device executes machine learning based on either the current command value, the current detection value detected by the current detection unit, or the voltage command value included in the teacher data, and the power conversion unit of the power conversion unit. It generates the pattern generation function that determines the switching pattern.
The pattern determination unit inputs both the pattern generation function given by the machine learning device and either the current command value and the current detection value or the voltage command value to execute arithmetic processing. A power conversion device that determines the switching pattern of the power conversion unit. - 前記パターン決定部は、前記機械学習器から、前記電力変換部のスイッチング損失をパルス幅変調方式の場合よりも小さくするための前記パターン生成関数を取得する、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the pattern determination unit acquires the pattern generation function for reducing the switching loss of the power conversion unit from the machine learning device as compared with the case of the pulse width modulation method.
- 前記パターン決定部は、前記機械学習器から、前記回転機械装置の駆動音、前記回転機械装置の機械振動、前記回転機械装置に流れる電流に含まれる電流高調波、前記電流指令値への前記電流検出値の追従時間の内の少なくともいずれか1つをパルス幅変調方式の場合よりも小さくするための前記パターン生成関数を取得する、請求項1または請求項2に記載の電力変換装置。 From the machine learner, the pattern determining unit determines the driving sound of the rotating machine device, the mechanical vibration of the rotating machine device, the current harmonics included in the current flowing through the rotating machine device, and the current to the current command value. The power conversion device according to claim 1 or 2, wherein the pattern generation function for making at least one of the tracking times of the detected values smaller than that in the case of the pulse width modulation method is acquired.
- 前記パターン決定部は、前記電力変換部のスイッチングパターンを決定する場合に、前記回転機械装置の磁束応答値、速度応答値、位置応答値、前記回転機械装置の磁束指令値、速度指令値、位置指令値、前記電力変換部の前回の制御周期内のスイッチング状態、および前記回転機械装置の回転機械パラメータの少なくともいずれか1つを状態量として取得する、請求項1から請求項3のいずれか1項に記載の電力変換装置。 When determining the switching pattern of the power conversion unit, the pattern determining unit determines the magnetic flux response value, the speed response value, the position response value, the magnetic flux command value, the speed command value, and the position of the rotating mechanical device. Any one of claims 1 to 3, which acquires at least one of a command value, a switching state in the previous control cycle of the power conversion unit, and a rotary machine parameter of the rotary machine device as a state quantity. The power converter according to the section.
- 前記機械学習器をさらに備える請求項1から請求項4のいずれか1項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 4, further comprising the machine learning device.
- 直流電力を交流電力に変換して回転機械装置に供給する電力変換部を構成する複数のスイッチング素子の設定された制御周期の1周期分のスイッチング状態の組み合わせから成るスイッチングパターンを決めるパターン生成関数を、教師データに基づいて機械学習を実行して出力するものであって、
前記教師データに含まれる電流指令値および前記回転機械装置に流れる電流を検出する電流検出部で検出された電流検出値、若しくは電圧指令値のいずれか一方を入力データとして取得する入力データ取得部と、
前記教師データに含まれる前記電力変換部のスイッチングパターンをラベルとして取得するラベル取得部と、
前記入力データ取得部で得られた前記電流指令値および前記電流検出値、若しくは前記電圧指令値のいずれか一方と、前記ラベル取得部で得られたスイッチングパターンに基づいて前記電力変換部の前記スイッチング素子のスイッチングパターンを決める学習済みモデルを生成する学習部と、を備える機械学習器。 A pattern generation function that determines a switching pattern consisting of a combination of switching states for one set control cycle of multiple switching elements that make up the power conversion unit that converts DC power to AC power and supplies it to the rotating machinery. , Executes machine learning based on teacher data and outputs it.
An input data acquisition unit that acquires either the current command value included in the teacher data, the current detection value detected by the current detection unit that detects the current flowing through the rotating mechanical device, or the voltage command value as input data. ,
A label acquisition unit that acquires the switching pattern of the power conversion unit included in the teacher data as a label, and
The switching of the power conversion unit based on either one of the current command value and the current detection value or the voltage command value obtained by the input data acquisition unit and a switching pattern obtained by the label acquisition unit. A machine learning device equipped with a learning unit that generates a trained model that determines the switching pattern of an element. - 前記入力データ取得部は、前記教師データに含まれる前記入力データとして、前回周期の前記電力変換部のスイッチング状態を取得するとともに、
前記ラベル取得部は、前記教師データに含まれる前記ラベルとして、前記前回周期の前記電力変換部のスイッチング状態に対応する今回周期の前記電力変換部のスイッチングパターンを取得する、請求項6に記載の機械学習器。 The input data acquisition unit acquires the switching state of the power conversion unit in the previous cycle as the input data included in the teacher data, and at the same time,
The sixth aspect of claim 6, wherein the label acquisition unit acquires the switching pattern of the power conversion unit of the current cycle corresponding to the switching state of the power conversion unit of the previous cycle as the label included in the teacher data. Machine learning device. - 前記入力データ取得部は、前記教師データに含まれる前記入力データとして、前記回転機械装置の磁束応答値、速度応答値、位置応答値、前記回転機械装置の磁束指令値、速度指令値、位置指令値、および前記回転機械装置の回転機械パラメータの少なくともいずれか1つを取得する、請求項6または請求項7に記載の機械学習器。 The input data acquisition unit, as the input data included in the teacher data, includes a magnetic flux response value, a speed response value, and a position response value of the rotary machine device, a magnetic flux command value, a speed command value, and a position command of the rotary machine device. The machine learning device according to claim 6 or 7, wherein the value and at least one of the rotary machine parameters of the rotary machine device are acquired.
- 前記ラベル取得部は、前記教師データに含まれる前記ラベルとして、前記電力変換部のスイッチング損失をパルス幅変調方式の場合よりも小さくするための前記スイッチングパターンを取得する、請求項6または請求項7に記載の機械学習器。 Claim 6 or claim 7 that the label acquisition unit acquires the switching pattern for reducing the switching loss of the power conversion unit as the label included in the teacher data as compared with the case of the pulse width modulation method. The machine learning device described in.
- 前記ラベル取得部は、前記教師データに含まれる前記ラベルとして、前記回転機械装置に流れる電流に含まれる電流高調波、および前記電流指令値への前記電流検出値の追従時間のうち少なくともいずれか1つをパルス幅変調方式の場合よりも小さくするスイッチングパターンを取得する、請求項6、請求項7または請求項9のいずれか1項に記載の機械学習器。 The label acquisition unit, as the label included in the teacher data, is at least one of a current harmonic included in the current flowing through the rotating machine device and a follow-up time of the current detection value to the current command value. The machine learning device according to any one of claims 6, 7, or 9, which acquires a switching pattern in which one is smaller than that in the case of the pulse width modulation method.
- 前記学習部は、前記電流指令値、前記電流検出値、または前記スイッチング状態に基づいて報酬を計算する報酬計算部と、前記報酬計算部から入力された前記報酬に基づいて前記パターン生成関数を更新する関数更新部を備える、請求項6から請求項10のいずれか1項に記載の機械学習器。 The learning unit updates the pattern generation function based on the reward calculation unit that calculates the reward based on the current command value, the current detection value, or the switching state, and the reward input from the reward calculation unit. The machine learning device according to any one of claims 6 to 10, further comprising a function update unit.
- 前記報酬計算部は、前記電力変換部におけるスイッチングパターンにおいて、前記電力変換部のスイッチング回数を現状よりも少なくしたら報酬を増やし、前記電流指令値に対する前記電流検出値の差が規定値を超えたら現状よりも報酬を減らす、請求項11に記載の機械学習器。 In the switching pattern of the power conversion unit, the reward calculation unit increases the reward when the number of switching times of the power conversion unit is smaller than the current state, and the current state when the difference between the current detection value and the current command value exceeds the specified value. The machine learning device according to claim 11, which reduces the reward more than.
- 前記報酬計算部は、前記電力変換部におけるスイッチングパターンにおいて、前記回転機械装置の機械振動を現状よりも小さくしたら報酬を増やす、請求項12に記載の機械学習器。 The machine learning device according to claim 12, wherein the reward calculation unit increases the reward when the mechanical vibration of the rotating mechanical device is made smaller than the current state in the switching pattern in the power conversion unit.
- 前記報酬計算部は、前記電力変換部におけるスイッチングパターンにおいて、前記回転機械装置の駆動音を現状よりも小さくしたら報酬を増やす、請求項12または請求項13に記載の機械学習器。 The machine learning device according to claim 12 or 13, wherein the reward calculation unit increases the reward when the driving sound of the rotating mechanical device is made smaller than the current state in the switching pattern in the power conversion unit.
- 請求項6から請求項14のいずれか1項に記載の機械学習器を用いて機械学習を実施することにより、前記電力変換部を構成する前記スイッチング素子のスイッチングパターンを決定するための学習済みモデルを生成する、学習済みモデルの生成方法。 A trained model for determining a switching pattern of the switching element constituting the power conversion unit by performing machine learning using the machine learning device according to any one of claims 6 to 14. How to generate a trained model.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021515920A JP6987304B2 (en) | 2019-04-23 | 2020-03-31 | Power converters, machine learners, and how to generate trained models |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019081821 | 2019-04-23 | ||
JP2019-081821 | 2019-04-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020217879A1 true WO2020217879A1 (en) | 2020-10-29 |
Family
ID=72942278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014808 WO2020217879A1 (en) | 2019-04-23 | 2020-03-31 | Power conversion apparatus, machine learning device, and learned model generation method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6987304B2 (en) |
WO (1) | WO2020217879A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112769151A (en) * | 2020-12-28 | 2021-05-07 | 国网天津市电力公司电力科学研究院 | Deep learning type model prediction control system and method for multi-level energy storage type converter |
US11489478B2 (en) | 2019-01-16 | 2022-11-01 | Mitsubishi Electric Corporation | Power conversion device |
WO2023089805A1 (en) * | 2021-11-22 | 2023-05-25 | 三菱電機株式会社 | Electric motor control device, electric motor control system, and electric motor control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124266A (en) * | 1989-10-03 | 1991-05-27 | Univ Nagoya | Power converter controller through neutral network |
JPH08149884A (en) * | 1994-11-21 | 1996-06-07 | Toyo Electric Mfg Co Ltd | Control method for inverter having constant measuring and setting function |
JPH08172796A (en) * | 1994-12-16 | 1996-07-02 | Yaskawa Electric Corp | Inverter system |
WO2013110532A1 (en) * | 2012-01-24 | 2013-08-01 | Abb Research Ltd | Multicore implemented weight - function based predictive control of an electric converter |
JP2017083237A (en) * | 2015-10-26 | 2017-05-18 | ファナック株式会社 | Machine learning device and method for learning predicted life of power element, life prediction system including machine learning device, and motor drive unit |
-
2020
- 2020-03-31 JP JP2021515920A patent/JP6987304B2/en active Active
- 2020-03-31 WO PCT/JP2020/014808 patent/WO2020217879A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124266A (en) * | 1989-10-03 | 1991-05-27 | Univ Nagoya | Power converter controller through neutral network |
JPH08149884A (en) * | 1994-11-21 | 1996-06-07 | Toyo Electric Mfg Co Ltd | Control method for inverter having constant measuring and setting function |
JPH08172796A (en) * | 1994-12-16 | 1996-07-02 | Yaskawa Electric Corp | Inverter system |
WO2013110532A1 (en) * | 2012-01-24 | 2013-08-01 | Abb Research Ltd | Multicore implemented weight - function based predictive control of an electric converter |
JP2017083237A (en) * | 2015-10-26 | 2017-05-18 | ファナック株式会社 | Machine learning device and method for learning predicted life of power element, life prediction system including machine learning device, and motor drive unit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11489478B2 (en) | 2019-01-16 | 2022-11-01 | Mitsubishi Electric Corporation | Power conversion device |
CN112769151A (en) * | 2020-12-28 | 2021-05-07 | 国网天津市电力公司电力科学研究院 | Deep learning type model prediction control system and method for multi-level energy storage type converter |
WO2023089805A1 (en) * | 2021-11-22 | 2023-05-25 | 三菱電機株式会社 | Electric motor control device, electric motor control system, and electric motor control method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020217879A1 (en) | 2021-11-18 |
JP6987304B2 (en) | 2021-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020217879A1 (en) | Power conversion apparatus, machine learning device, and learned model generation method | |
Eswar et al. | A simplified predictive torque control scheme for open-end winding induction motor drive | |
JP5737445B2 (en) | Power converter control device | |
JP4995518B2 (en) | AC motor control device and method for calculating superimposed current for suppressing iron loss | |
JP4920784B2 (en) | Motor drive control device | |
EP3598634B1 (en) | Apparatus and method for controlling inverter for driving motor | |
JP6326832B2 (en) | Inverter control method and voltage type inverter | |
Karpe et al. | Switching losses minimization by using direct torque control of induction motor | |
JP6664565B1 (en) | Power converter | |
WO2021045021A1 (en) | Rotating electrical machine control device | |
Kennel et al. | Improved direct torque control for induction motor drives with rapid prototyping system | |
Cho et al. | Model predictive control using a three-level inverter for induction motors with torque ripple reduction | |
WO2022107838A1 (en) | Power conversion device | |
JP5498664B2 (en) | Inverter control device | |
JP6221815B2 (en) | Inverter control method and inverter | |
Rodríguez-Ponce et al. | Microcontroller‐Based Direct Torque Control Servodrive | |
WO2020148925A1 (en) | Power conversion device | |
JP2012253943A (en) | Rotary machine controller | |
JP2703711B2 (en) | Control method of PWM inverter | |
WO2021181660A1 (en) | Power conversion device | |
JP2013038946A (en) | Control unit for rotary machine | |
JP5707028B2 (en) | Power converter | |
JP2005137076A (en) | Apparatus and method for controlling motor | |
JP2008109790A (en) | Power conversion apparatus | |
CN116458050A (en) | Power conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20796414 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021515920 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20796414 Country of ref document: EP Kind code of ref document: A1 |