WO2020217724A1 - Position estimation device, position estimation system, and position estimation method - Google Patents

Position estimation device, position estimation system, and position estimation method Download PDF

Info

Publication number
WO2020217724A1
WO2020217724A1 PCT/JP2020/009117 JP2020009117W WO2020217724A1 WO 2020217724 A1 WO2020217724 A1 WO 2020217724A1 JP 2020009117 W JP2020009117 W JP 2020009117W WO 2020217724 A1 WO2020217724 A1 WO 2020217724A1
Authority
WO
WIPO (PCT)
Prior art keywords
identifier
sensor
information
train
position estimation
Prior art date
Application number
PCT/JP2020/009117
Other languages
French (fr)
Japanese (ja)
Inventor
小田 篤史
勝田 敬一
雄飛 堤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020217724A1 publication Critical patent/WO2020217724A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains

Definitions

  • the present invention relates to a position estimation device, a position estimation system, and a position estimation method for estimating the self-position of a moving body such as a train.
  • ATO Automatic Train Control
  • a general ATO device transmits position information from a ground element installed on the ground (inside a railroad track) to a device called an on-board child installed on the vehicle, and the position received by the on-board element.
  • the current position of the own train is estimated based on the information.
  • the method of estimating the self-position of a train using a ground element has advantages such as high environmental resistance and a high estimation speed of the current position.
  • it is necessary to install a ground element in the track When installing equipment on the track in this way, advanced safety measures are required to avoid contact with the train, and there is a problem that the cost is higher than when installing it outside the track such as a platform. ..
  • Patent Document 1 As a technique for detecting the self-position, there is an invention described in Patent Document 1.
  • Patent Document 1 "as a train fixed position stop control device, a speed / position calculating means for calculating a train speed and a current position, and a relative for calculating a relative distance between an object installed in a station yard and a train”. It is provided with a distance calculating means, and the speed / position calculating means calculates the current position of the train from the relative distance information input from the relative distance calculating means and the position information of the object.
  • Patent Document 1 after grasping which railroad track between which stations the train car is traveling on by using an identifier installed outside the railroad track, it is estimated at which position of the railroad track the vehicle exists.
  • the technology is disclosed. Specifically, the identifier that is installed in the station yard and serves as a reference point for position correction, the identifier, and the relative distance of the train are obtained, and the self-position of the train is estimated from the relative distance information and the position information of the identifier.
  • the present invention has been made in consideration of the above points, and when the self-position of a train or the like can be estimated with high accuracy without using a ground element and an identifier outside the track is used. It is an object of the present invention to provide a technique capable of correcting the above-mentioned problems in the above and improving the performance of estimating the self-position of a moving body such as a train.
  • one of the typical position estimation devices, position estimation systems, and position estimation methods of the present invention is A position estimation device that estimates the self-position of a moving body from the position information included in the identifier information of a sensor that recognizes an identifier installed outside the track and the relative distance between the identifier and the moving body.
  • the identifier includes a first identifier installed in the traveling direction of the train and a second identifier installed in the direction opposite to the traveling direction of the train.
  • the sensor includes a first sensor that recognizes the first identifier and detects identifier information, and a second sensor that recognizes the second identifier and detects identifier information.
  • the position estimation device recognizes the second identifier by the second sensor and is based on the position information included in the identifier information of the second identifier. It is characterized in that the self-position of the moving body is estimated.
  • the self-position of a moving body such as a train can be estimated with high accuracy without using a ground element. Further, even when the identifier installed in the traveling direction of the moving body cannot be detected, the self-position of the moving body can be estimated, and the position estimation accuracy can be improved. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
  • FIG. 1 It is a figure which shows the structure of the position estimation system which concerns on embodiment of this invention. It is a block diagram which shows the structural example of the position estimation apparatus which comprises the estimation system of this invention. It is a figure which shows an example of the identifier information (two-dimensional bar code information) described in the two-dimensional bar code when the two-dimensional bar code is used as the identifier in the Example of this invention. It is a figure explaining the installation direction included in the identifier information (two-dimensional bar code information) of FIG. It is a figure which shows the relationship between the area (two-dimensional bar code area) of an identifier (two-dimensional bar code) in an Example of this invention, and the relative distance relationship between an identifier and a train. It is a flowchart which shows the processing procedure of the position estimation apparatus in the Example of this invention.
  • the position of a vehicle such as a train is estimated using a plurality of identifiers (for example, a first identifier and a second identifier) installed outside the traveling path of a moving body such as a train, and is outside the track.
  • the self-position of the train is estimated from the first identifier information or the second identifier information from the first identifier or the second identifier to be installed and the relative distance between the first identifier or the second identifier and the train.
  • the term "outside the track” means the outside of the track, for example, a platform, and when the moving body is a car or a bus, it means the end of the road. That is, it means a position that is not an obstacle to the traveling of the moving body and is outside the track including the road edge and the road edge, and can be easily recognized by a plurality of sensors (for example, the first sensor and the second sensor). .. Further, the self-position means the position of the leading end of the leading vehicle in a moving body such as a train. In the present embodiment, the present invention will be described by taking a train as an example, but the present invention is not limited to trains.
  • the present invention can be applied to moving bodies such as automobiles, buses, and monorails other than trains by replacing trains with moving bodies. Therefore, the identifier may be set at a position recognizable by the sensor, and does not need to be limited to the home.
  • examples of self-position estimation by the position estimation device of the present invention will be described.
  • FIG. 1 is a diagram showing a configuration of a position estimation system according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration example of a position estimation device constituting the estimation system of the present invention.
  • the position estimation system includes a plurality of identifiers 108 and 109, a plurality of sensors 102 and 103, and a position estimation device 100.
  • the plurality of identifiers 108 and 109 include, for example, a first identifier 108 located in the traveling direction of the train 200 and a second identifier 109 located in the direction opposite to the traveling direction, and these identifiers are off-track, for example, respectively. It is installed outside the line 300 and consists of a bar code sign board that expresses the first identifier information and the second identifier information in a two-dimensional bar code.
  • the identifier information (two-dimensional bar code information) of the identifier (two-dimensional bar code) will be described later.
  • the plurality of sensors 102 and 103 include, for example, a first sensor 102 that recognizes the first identifier 108 and a second sensor 103 that recognizes the second identifier 109, and these sensors include, for example, a camera.
  • the first sensor 102 is attached to the leading vehicle 201 (frontmost vehicle) in the traveling direction of the train 200, and provides the first identification information (two-dimensional bar code information) of the first identifier 108 arranged in the traveling direction 101 of the train.
  • the second sensor 103 is for reading, and the second identifier 103 is attached to the leading vehicle 202 (rear vehicle) in the direction opposite to the traveling direction 101, and is installed in the direction opposite to the traveling direction 101 of the train 200. It reads the second identification information (two-dimensional bar code information) and does not need to be limited to the camera.
  • the relative distance between the own train and the identifier can be calculated, and for example, a well-known technology such as a millimeter wave radar or a laser range finder may be used.
  • a database (not shown) that records the position information of the identifier may be prepared and the position information of the identifier may be read from the database. Sensors can also be used.
  • the position estimation device 100 is, for example, a device installed on an on-board device that estimates its own position based on the first identifier information or the second identification information detected by the first sensor 102 or the second sensor 103. It is composed of an identifier information acquisition unit 104, an identification information monitoring unit 105, a relative distance calculation unit 106, and a self-position estimation unit 107.
  • identifier information acquisition unit 104 an identification information monitoring unit 105
  • a relative distance calculation unit 106 a relative distance calculation unit 106
  • self-position estimation unit 107 a self-position estimation unit 107.
  • the identifier information acquisition unit 104 acquires images from the first sensor 102 and the second sensor 103, and detects the identifiers 108 and 109 from the acquired images. Then, the identifier information acquisition unit 104 reads the identifier information of the detected identifier, for example, the identifier information of the identifier from the two-dimensional barcode information, recognizes the position information of the identifier, and has the information of the two-dimensional barcode and the two-dimensional. Calculate the area of the barcode.
  • a commonly used two-dimensional barcode detection logic can be applied for the detection of the identifiers 108 and 109. Since the image processing method for detecting the two-dimensional barcode described in the identifiers 108 and 109 is well known, the details thereof will be omitted, but in the present invention, the two-dimensional barcode may be detected, and the method is not limited.
  • FIG. 3 is a diagram showing an example of identifier information 3011 (two-dimensional barcode information) described in the two-dimensional barcode when a two-dimensional barcode is used as the identifier in the first embodiment of the present invention.
  • a two-dimensional barcode is described in the identifier 301 (108, 109 in FIG. 1).
  • the two-dimensional barcode includes each information such as the identifier ID 3012, which is an ID uniquely assigned to each identifier, the position information 3013 of the identifier, the installation direction 3014 of the identifier, and the route name 3015, as the identifier information 3011.
  • the identifier ID 3012 continuously takes ascending or descending values along the traveling direction of the train 200.
  • FIG. 4 is a diagram for explaining the installation direction included in the identifier information 3011 (two-dimensional barcode information) of the identifier 301 in which the two-dimensional barcode is described as the identifiers 108 and 109 according to the first embodiment of the present invention.
  • the identifier 301 is installed perpendicular to the line 300.
  • the train 200 is traveling in the traveling direction 302
  • the back side of the identifier 301 is recognized (detected) from the train 200. Therefore, on the back side of the identifier 301, a two-dimensional barcode which is another identifier having different contents of the identifier information on the front side is described.
  • the installation direction 3014 in the identifier 301 means the traveling direction of the train 200 in which the two-dimensional bar code of the identifier 301 can be detected (in the case of FIG. 4, the traveling direction 302).
  • the identifier information acquisition unit 104 transmits the calculated two-dimensional barcode information and the two-dimensional barcode to the relative distance calculation unit 106 and the self-position estimation unit 107, and the area of the two-dimensional barcode is the relative distance calculation unit 106. Send to.
  • the identifier information acquisition unit 104 when the identifier information acquisition unit 104 cannot recognize (detect) the first identifier 108 (two-dimensional barcode), it transmits information indicating that the two-dimensional barcode has not been detected to the self-position estimation unit 107. For example, when the two-dimensional barcode is not detected in the sensor data (image data) from the first sensor 102, the information that the first sensor identifier has not been detected is transmitted to the self-position estimation unit 107.
  • the recognition status monitoring unit 105 constantly monitors the presence or absence of input of sensor data (image data) from the first sensor 102 and the second sensor 103, that is, monitors the status of the identifiers 108 and 109.
  • sensor data image data
  • the sensor information that identifies the sensor for which the sensor data input is interrupted and the sensor for which the sensor data input is interrupted are faulty. Outputs failure information indicating.
  • the recognition status monitoring unit 105 determines that the sensor 102 and / or the sensor 103 has failed, and the corresponding sensor information, that is, the corresponding sensor has a failure.
  • Information indicating the above is transmitted to the self-position estimation unit 107. For example, when the data input from the first sensor 102 is interrupted, the first sensor 102 transmits information that the failure occurs to the self-position estimation unit 107.
  • the relative distance calculation unit 106 receives the two-dimensional barcode information and the information indicating the area of the two-dimensional barcode transmitted from the identifier information acquisition unit 104, and is a reference for position correction installed outside the line (for example, home).
  • the relative distance between the first identifier 108 or the second identifier 109, which is a point, and the own train is calculated.
  • the relative distance in this embodiment means the distance between the identifier and the head end of the train.
  • the data 401 (see FIG. 5) representing the relationship between the relative distance and the two-dimensional barcode area is stored in the relative distance calculation unit 106, and the two-dimensional barcode received from the identifier information acquisition unit 104.
  • the relative distance is calculated by applying the area of to the data 401.
  • FIG. 5 is a characteristic diagram showing the relationship between the relative distance and the two-dimensional bar code area. That is, the data 401 records the relationship between the relative distance measured by running the train 200 in advance and the two-dimensional bar code area.
  • the relative distance calculation unit 106 reads out the data 401 corresponding to the identifier ID 3012 included in the identifier information (two-dimensional barcode information) received from the identifier information acquisition unit 104, and calculates the relative distance for each identifier. The calculated relative distance is transmitted to the self-position estimation unit 107.
  • the self-position estimation unit 107 receives the identifier information and the relative distance from the relative distance calculation unit 106, and estimates the position of the own train from the position information of the first identifier 102 or the second identifier and the relative distance to the train 200.
  • the self-position estimation unit 107 executes the position estimation process of the own train according to the program stored inside. Details will be described later.
  • FIG. 6 is a flowchart showing the procedure of the self-position estimation process executed by the self-position estimation unit 107.
  • the operation based on the flowchart of FIG. 6 is as follows, and each step is executed in a predetermined cycle, that is, is executed in each calculation cycle.
  • FIG. 6 will be described on the premise that the traveling direction is the traveling direction 101 and the value of the self-position increases each time the vehicle advances (ascending order).
  • Step 5011 The self-position estimation unit 107 acquires the identifier information from the identifier information acquisition unit 104, and proceeds to step 502.
  • the identifier information (two-dimensional bar code information) is acquired from each sensor (first sensor 102, second sensor 103).
  • Step 502 The self-position estimation unit 107 acquires information indicating that the identifier (identifier information) cannot be recognized from the sensors (first sensor 102, second sensor 103) from the recognition status monitoring unit 105 as failure information, and proceeds to step 503.
  • Step 503 The self-position estimation unit 107 first confirms whether or not the first sensor 102 has failed based on the failure information acquired in step 502.
  • the self-position estimation unit 107 has not received the failure information indicating that the first sensor 102 has failed from the recognition status monitoring unit, that is, when there is no failure of the first sensor (Yes)
  • the process proceeds to step 504 and the failure information indicating that the first sensor 102 has failed is received, that is, if there is a failure of the first sensor (No)
  • the process proceeds to step 507.
  • Step 504 the self-position estimation unit 107 confirms whether or not the first identifier 108 is detected and recognized by the first sensor 102.
  • the self-position estimation unit 107 cannot receive the first sensor identifier undetected from the identifier information acquisition unit 104, that is, when the first sensor 102 can receive the identifier information of the identifier 108 (Yes)
  • the process proceeds to step 505.
  • Step 505 The self-position estimation unit 107 acquires the relative distance from the relative distance calculation unit 106 to the first identifier 108, and proceeds to step 506.
  • Step 506 The self-position estimation unit 107 calculates the self-position by the number 1 from the position information of the first identifier 108 and the relative distance to the first identifier 108.
  • the obtained relative distance is the distance between the identifier and the distance measurement reference position of the sensor, so that the distance measurement reference position of the sensor and the train head end are used.
  • the self-position of Equation 1 is corrected by the distance to.
  • Step 507 The self-position estimation unit 107 confirms whether or not the second sensor 103 is out of order. As a result of the confirmation, if the second sensor failure information is not received from the recognition status monitoring unit 105, that is, if there is no second sensor failure (Yes), the process proceeds to step 508, and the second sensor failure information is received. If so, that is, if there is a second sensor failure (No), the process proceeds to step 511.
  • Step 508 The self-position estimation unit 107 confirms whether or not the identifier is detected and recognized by the second sensor 103. As a result of the confirmation, if the second sensor identifier not detected is not received from the identifier information acquisition unit 104, that is, if the identifier information of the identifier 109 can be received by the second sensor 103 (Yes), the process proceeds to step 509. . If the second sensor identifier not detected is received from the identifier information acquisition unit 104, that is, if the second sensor 103 cannot receive the identifier information of the identifier 109 (No), the process proceeds to step 511.
  • Step 509 The self-position estimation unit 107 acquires the relative distance from the relative distance calculation unit 106 to the second identifier 109, and proceeds to step 510.
  • Step 510 The self-position estimation unit 107 calculates the self-position by the number 2 from the position information of the second identifier 109, the relative distance to the second identifier 109, and the train length L stored in the database (not shown) in advance.
  • the self-position is explained in the case where the value increases in the traveling direction (ascending order), so the sign of the formula (2) is plus (+).
  • the self-position becomes smaller in the traveling direction (descending order), the sign of the formula (2) becomes negative.
  • the obtained relative distance is the distance between the identifier and the distance measurement reference position of the sensor, so that the distance measurement reference position of the sensor And the distance to the beginning of the train corrects the self-position of formula (2).
  • Step 511 Since the identifiers 108 and 109 are not detected in any of the first sensor 102 and the second sensor 103, the self-position estimation unit 107 notifies the upper system such as the crew and the operation management of the self-position indefinite. In this case, in general, by switching to the method of estimating the self-position from the integration of the vehicle speed, the self-position estimation accuracy is lowered, but the train operation can be continued.
  • the presence / absence of failure of the first sensor 102 that detects the leading direction of the traveling direction 101 and the presence / absence of identifier detection are confirmed first, but the process proceeds in the direction opposite to the traveling direction 101.
  • the presence / absence of sensor failure and the presence / absence of identifier detection are started from either the first sensor 102 or the second sensor 103, the effect of the present invention is not affected, so the order does not matter.
  • the two-dimensional barcode information detected by the sensors installed at the head in the traveling direction is preferentially used for self-position estimation, but the two-dimensional barcode information detected by the sensors on both sides is used. You may do so.
  • the average value of the self-position may be adopted as the self-position.
  • the difference between the first self-position and the second self-position is constantly monitored, and if the difference exceeds the specified value, it is determined that one of the self-positions is erroneously estimated, and a self-position estimation error occurs. May be notified to higher-level systems (not shown) such as crew members and operation management.
  • the traveling direction of the train can be determined from the increase / decrease in the relative distance between the installation direction of the identifier information and the identifier.
  • the traveling direction of the identifier information is 302 and the relative distance to the identifier is increasing, it is determined that the train is traveling in the direction away from the identifier, and the traveling direction of the train is the identifier information.
  • the traveling direction 303 opposite to the traveling direction 302 is set as the traveling direction of the train. By doing so, it is possible to determine from which direction the train is traveling on which route from the installation direction described in the two-dimensional barcode.
  • the traveling direction of the train can be specified without passing through at least two ground elements.
  • the self-position and the traveling direction of the train can be specified by slightly traveling the train.
  • the self-position is estimated even when the sensor installed at the head of the train in the traveling direction fails, the identifier in the traveling direction is shielded by an obstacle, or the identifier cannot be detected due to backlight. And can improve availability. Moreover, the motion direction information of the train itself can be eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

The purpose of the present invention is to improve the availability of a technique for estimating the self-position of a train using an identifier outside the rail. A self-position estimation means for estimating a self-position from the position information of an identifier installed outside the rail and a relative distance between the identifier and a train is characterized by, when it is impossible to recognize a first identifier in a traveling direction, recognizing a second identifier using a sensor on the opposite side to the traveling direction to estimate the self-position of the train from the position information of the second identifier.

Description

位置推定装置、位置推定システム、位置推定方法Position estimation device, position estimation system, position estimation method
 本発明は、列車などの移動体の自己位置を推定する位置推定装置、位置推定システム、位置推定方法に関する。 The present invention relates to a position estimation device, a position estimation system, and a position estimation method for estimating the self-position of a moving body such as a train.
 近年、列車の運行については、運行ダイヤの過密化やホームドアの整備に伴う停止位置の厳密化が求められている。また、乗務員負担の低減や人件費の削減を目的として自動列車運転(ATO:Automatic Train Control)装置の導入が進められている。一般的なATO装置は、地上に設置(線路内)され位置情報を送信する地上子からの位置情報を車上に設置された車上子と呼ばれる装置に送信し、車上子が受信した位置情報をもとに自列車の現在位置を推定している。地上子を用いて列車の自己位置を推定する方法は、耐環境性が高く、現在位置の推定速度が高いといった利点を有する。一方、地上子を線路内に設置する必要がある。このように線路内に設備を設置する場合、列車との接触を避けるために高度な安全対策が必要となり、ホームなどの線路外に設置する場合と比較して費用が高くなるという課題があった。 In recent years, with regard to train operation, there has been a demand for stricter stop positions due to overcrowding of operation schedules and maintenance of platform doors. In addition, automatic train operation (ATO: Automatic Train Control) equipment is being introduced for the purpose of reducing the burden on crew members and labor costs. A general ATO device transmits position information from a ground element installed on the ground (inside a railroad track) to a device called an on-board child installed on the vehicle, and the position received by the on-board element. The current position of the own train is estimated based on the information. The method of estimating the self-position of a train using a ground element has advantages such as high environmental resistance and a high estimation speed of the current position. On the other hand, it is necessary to install a ground element in the track. When installing equipment on the track in this way, advanced safety measures are required to avoid contact with the train, and there is a problem that the cost is higher than when installing it outside the track such as a platform. ..
 また、自己位置を検出する技術として、特許文献1に記載された発明がある。この特許文献1には、「列車定位置停止制御装置として、列車の速度及び現在位置を算出する速度・位置算出手段と、駅構内に設置された対象物と列車との相対距離を算出する相対距離算出手段とを備え、速度・位置算出手段は、相対距離算出手段から入力した相対距離の情報及び対象物の位置情報から列車の現在位置を算出する。」との記載がある。 Further, as a technique for detecting the self-position, there is an invention described in Patent Document 1. In this Patent Document 1, "as a train fixed position stop control device, a speed / position calculating means for calculating a train speed and a current position, and a relative for calculating a relative distance between an object installed in a station yard and a train". It is provided with a distance calculating means, and the speed / position calculating means calculates the current position of the train from the relative distance information input from the relative distance calculating means and the position information of the object. "
特開2018-019470号公報Japanese Unexamined Patent Publication No. 2018-019470
 特許文献1には、線路外に設置した識別子を使用して列車の車両がどの駅間のどの線路を走行しているかを把握した上で、車両がその線路のどの位置に存在すかを推定する技術が開示されている。具体的には駅構内に設置され位置補正の基準点となる識別子と前記識別子と列車の相対距離を求め、その相対距離情報と識別子の位置情報とから列車の自己位置を推定している。 In Patent Document 1, after grasping which railroad track between which stations the train car is traveling on by using an identifier installed outside the railroad track, it is estimated at which position of the railroad track the vehicle exists. The technology is disclosed. Specifically, the identifier that is installed in the station yard and serves as a reference point for position correction, the identifier, and the relative distance of the train are obtained, and the self-position of the train is estimated from the relative distance information and the position information of the identifier.
 しかし、特許文献1に記載された発明では、列車の進行方向先頭に設置されたセンサのみで線路外の設備を検知している。このため、列車の進行方向先頭に設置されたセンサが故障した場合、列車の自己位置が推定できない可能性がある。また、列車の進行方向の識別子が、例えば、障害物などで遮蔽されていた場合や、逆光により識別子が認識(検知)できないといった場合、列車の自己位置が推定できない可能性がある、という課題があった。 However, in the invention described in Patent Document 1, the equipment outside the track is detected only by the sensor installed at the head of the train in the traveling direction. Therefore, if the sensor installed at the head of the train in the traveling direction fails, the self-position of the train may not be estimated. Another problem is that if the identifier in the traveling direction of the train is shielded by an obstacle or the like, or if the identifier cannot be recognized (detected) due to backlight, the self-position of the train may not be estimated. there were.
 そこで、本発明は以上の点を考慮してなされたものであり、地上子を用いることなくとも、列車などの自己位置を精度高く推定することができ、かつ、線路外の識別子を使用した場合における上述したような課題を是正し、列車などの移動体の自己位置を推定する性能を向上させ得る技術を提供することを目的とする。 Therefore, the present invention has been made in consideration of the above points, and when the self-position of a train or the like can be estimated with high accuracy without using a ground element and an identifier outside the track is used. It is an object of the present invention to provide a technique capable of correcting the above-mentioned problems in the above and improving the performance of estimating the self-position of a moving body such as a train.
 係る課題を解決するために、代表的な本発明の位置推定装置、位置推定システム、位置推定方法の一つは、
 走行路(線路)外に設置された識別子を認識するセンサの識別子情報に含まれる位置情報と、前記識別子と移動体の相対距離から移動体の自己位置を推定する位置推定装置であって、
 前記識別子は、前記列車の進行方向に設置された第一識別子と前記列車の進行方向とは逆方向に設置された第二識別子を含み、
 前記センサは、前記第一識別子を認識し、識別子情報を検出する第一センサと前記第二識別子を認識し、識別子情報を検出する第二センサを含み、
 前記位置推定装置は、前記第一センサにて前記第一識別子が認識できない場合は、前記第二センサにて前記第二識別子を認識し、前記第二識別子の識別子情報に含まれる位置情報に基づいて前記移動体の自己位置を推定することを特徴とする。
In order to solve such a problem, one of the typical position estimation devices, position estimation systems, and position estimation methods of the present invention is
A position estimation device that estimates the self-position of a moving body from the position information included in the identifier information of a sensor that recognizes an identifier installed outside the track and the relative distance between the identifier and the moving body.
The identifier includes a first identifier installed in the traveling direction of the train and a second identifier installed in the direction opposite to the traveling direction of the train.
The sensor includes a first sensor that recognizes the first identifier and detects identifier information, and a second sensor that recognizes the second identifier and detects identifier information.
When the first sensor cannot recognize the first identifier, the position estimation device recognizes the second identifier by the second sensor and is based on the position information included in the identifier information of the second identifier. It is characterized in that the self-position of the moving body is estimated.
 本発明によれば、地上子を用いなくとも、列車などの移動体の自己位置を精度高く推定することができる。また、移動体の進行方向に設置された識別子を検知できないといった場合においても、移動体の自己位置を推定することが可能となり、位置推定精度を向上することができる。
 上述した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the self-position of a moving body such as a train can be estimated with high accuracy without using a ground element. Further, even when the identifier installed in the traveling direction of the moving body cannot be detected, the self-position of the moving body can be estimated, and the position estimation accuracy can be improved.
Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
本発明の実施例に係る位置推定システムの構成を示す図である。It is a figure which shows the structure of the position estimation system which concerns on embodiment of this invention. 本発明の推定システムを構成する位置推定装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the position estimation apparatus which comprises the estimation system of this invention. 本発明の実施例おける識別子として2次元バーコードを使用した場合における2次元バーコードに記載される識別子情報(2次元バーコード情報)の一例を示す図である。It is a figure which shows an example of the identifier information (two-dimensional bar code information) described in the two-dimensional bar code when the two-dimensional bar code is used as the identifier in the Example of this invention. 図2の識別子情報(2次元バーコード情報)に含まれる設置方向について説明する図である。It is a figure explaining the installation direction included in the identifier information (two-dimensional bar code information) of FIG. 本発明の実施例における識別子(2次元バーコード)の面積(2次元バーコード面積)と識別子と列車との相対距離関係との関係を示す図である。It is a figure which shows the relationship between the area (two-dimensional bar code area) of an identifier (two-dimensional bar code) in an Example of this invention, and the relative distance relationship between an identifier and a train. 本発明の実施例おける位置推定装置の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the position estimation apparatus in the Example of this invention.
 以下、図面を参照して、本発明の実施形態について説明する。
 本実施形態では、列車など移動体の走行路外に設置される複数の識別子(例えば、第一識別子、第二識別子)を用いて列車などの車両の位置を推定するものであり、線路外に設置される第一識別子又は第二識別子からの第一識別子情報又は第二識別子情報と、第一識別子又は第二識別子と列車との相対距離から、列車の自己位置を推定するものである。
 走行路外とは、移動体が列車やモノレールの場合は、線路外、例えば、ホームなどを意味し、自動車やバスなどの場合は、道路端などを意味する。つまり、移動体が走行する上で障害にならない線路外や道路端などを含む走行路外であって、複数のセンサ(例えば、第一センサ、第二センサ)によって容易に認識できる位置を意味する。
 また、自己位置とは、列車などの移動体における先頭車両の先頭端の位置を意味する。
 なお、本実施形態において、列車を一例として本発明を説明するが、本発明は列車に限定されるものではない。本発明は、列車を移動体と読み替えることによって、列車以外の自動車やバス、モノレールなどの移動体に適用することができる。
 従って、識別子は、センサにより認識可能な位置に設定すればよく、ホームに限定する必要はない。
 以下、本発明の位置推定装置による自己位置推定の実施例について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, the position of a vehicle such as a train is estimated using a plurality of identifiers (for example, a first identifier and a second identifier) installed outside the traveling path of a moving body such as a train, and is outside the track. The self-position of the train is estimated from the first identifier information or the second identifier information from the first identifier or the second identifier to be installed and the relative distance between the first identifier or the second identifier and the train.
When the moving body is a train or a monorail, the term "outside the track" means the outside of the track, for example, a platform, and when the moving body is a car or a bus, it means the end of the road. That is, it means a position that is not an obstacle to the traveling of the moving body and is outside the track including the road edge and the road edge, and can be easily recognized by a plurality of sensors (for example, the first sensor and the second sensor). ..
Further, the self-position means the position of the leading end of the leading vehicle in a moving body such as a train.
In the present embodiment, the present invention will be described by taking a train as an example, but the present invention is not limited to trains. The present invention can be applied to moving bodies such as automobiles, buses, and monorails other than trains by replacing trains with moving bodies.
Therefore, the identifier may be set at a position recognizable by the sensor, and does not need to be limited to the home.
Hereinafter, examples of self-position estimation by the position estimation device of the present invention will be described.
 図1は、本発明の実施例に係る位置推定システムの構成を示す図、図2は、本発明の推定システムを構成する位置推定装置の構成例を示すブロック図である。 FIG. 1 is a diagram showing a configuration of a position estimation system according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a configuration example of a position estimation device constituting the estimation system of the present invention.
 位置推定システムは、複数の識別子108、109と、複数のセンサ102、103と、位置推定装置100とからなる。 The position estimation system includes a plurality of identifiers 108 and 109, a plurality of sensors 102 and 103, and a position estimation device 100.
 複数の識別子108、109は、例えば、列車200の進行方向に位置する第一識別子108及び進行方向とは逆方向に位置する第二識別子109を含み、これらの識別子は、それぞれ線路外、例えば、線路300の外側に設置され、第一識別子情報及び第二識別子情報を2次元バーコードで表現したバーコード標示板からなる。
 識別子(2次元バーコード)の識別子情報(2次元バーコード情報)については後述する。
The plurality of identifiers 108 and 109 include, for example, a first identifier 108 located in the traveling direction of the train 200 and a second identifier 109 located in the direction opposite to the traveling direction, and these identifiers are off-track, for example, respectively. It is installed outside the line 300 and consists of a bar code sign board that expresses the first identifier information and the second identifier information in a two-dimensional bar code.
The identifier information (two-dimensional bar code information) of the identifier (two-dimensional bar code) will be described later.
 複数のセンサ102、103は、例えば、第一識別子108を認識する第一センサ102、第二識別子109を認識する第二センサ103を含み、これらのセンサは、例えば、カメラからなる。 The plurality of sensors 102 and 103 include, for example, a first sensor 102 that recognizes the first identifier 108 and a second sensor 103 that recognizes the second identifier 109, and these sensors include, for example, a camera.
 第一センサ102は、列車200の進行方向における先頭車両201(最前部車両)に取り付けられ、列車の進行方向101に配置された第一識別子108の第一識別情報(2次元バーコード情報)を読み取るものであり、第二センサ103は、進行方向101とは逆方向の先頭車両202(最後部車両)に取り付けられ、列車200の進行方向101とは逆方向に設置された第二識別子109の第二識別情報(2次元バーコード情報)を読み取るものであって、カメラに限定する必要はない。 The first sensor 102 is attached to the leading vehicle 201 (frontmost vehicle) in the traveling direction of the train 200, and provides the first identification information (two-dimensional bar code information) of the first identifier 108 arranged in the traveling direction 101 of the train. The second sensor 103 is for reading, and the second identifier 103 is attached to the leading vehicle 202 (rear vehicle) in the direction opposite to the traveling direction 101, and is installed in the direction opposite to the traveling direction 101 of the train 200. It reads the second identification information (two-dimensional bar code information) and does not need to be limited to the camera.
 要は、自列車と識別子の相対距離が算出できればよく、例えば、周知のミリ波レーダーやレーザーレンジファインダーなどの技術を使用してもよい。この場合、識別子の位置情報がセンサで取得できないため、識別子の位置情報を記録したデータベース(図示せず)を用意し、識別子の位置情報をデータベースから読み出す構成とすればよく、これより、カメラ以外のセンサも使用できる。 The point is that the relative distance between the own train and the identifier can be calculated, and for example, a well-known technology such as a millimeter wave radar or a laser range finder may be used. In this case, since the position information of the identifier cannot be acquired by the sensor, a database (not shown) that records the position information of the identifier may be prepared and the position information of the identifier may be read from the database. Sensors can also be used.
 以下の本実施例では、第一センサ102と第二センサ103として、カメラを使用する場合について説明する。 In the following embodiment, a case where a camera is used as the first sensor 102 and the second sensor 103 will be described.
 位置推定装置100は、例えば、車上装置に設置され、第一センサ102、又は第二センサ103にて検知した第一識別子情報、又は第二識別情報をもとに自己位置を推定する装置であって、識別子情報取得部104、識別情報監視部105、相対距離算出部106、自己位置推定部107からなる。
 以下、これらの各部の動作について図2~図4を参照して説明する。
The position estimation device 100 is, for example, a device installed on an on-board device that estimates its own position based on the first identifier information or the second identification information detected by the first sensor 102 or the second sensor 103. It is composed of an identifier information acquisition unit 104, an identification information monitoring unit 105, a relative distance calculation unit 106, and a self-position estimation unit 107.
Hereinafter, the operation of each of these parts will be described with reference to FIGS. 2 to 4.
 まず、識別子情報取得部104の動作について説明する。
 識別子情報取得部104は、第一センサ102、第二センサ103から画像を取得し、取得した画像の中から識別子108、109を検出する。そして、識別子情報取得部104は、検出した識別子の識別子情報、例えば、2次元バーコード情報から識別子の識別子情報を読み取り、識別子の位置情報を認識し、かつ、2次元バーコードの情報と2次元バーコードの面積を算出する。
First, the operation of the identifier information acquisition unit 104 will be described.
The identifier information acquisition unit 104 acquires images from the first sensor 102 and the second sensor 103, and detects the identifiers 108 and 109 from the acquired images. Then, the identifier information acquisition unit 104 reads the identifier information of the detected identifier, for example, the identifier information of the identifier from the two-dimensional barcode information, recognizes the position information of the identifier, and has the information of the two-dimensional barcode and the two-dimensional. Calculate the area of the barcode.
 識別子108、109の検出は、例えば、一般的に使用される2次元バーコード検出ロジックが適用できる。
 識別子108、109に記載された2次元バーコードを検出する画像処理方法については、周知なので、その詳述は省略するが、本発明では2次元バーコードが検出できればよく、その方法は問わない。
For the detection of the identifiers 108 and 109, for example, a commonly used two-dimensional barcode detection logic can be applied.
Since the image processing method for detecting the two-dimensional barcode described in the identifiers 108 and 109 is well known, the details thereof will be omitted, but in the present invention, the two-dimensional barcode may be detected, and the method is not limited.
 図3は、本発明の実施例1おける識別子として2次元バーコードを使用した場合における2次元バーコードに記載される識別子情報3011(2次元バーコード情報)の一例を示す図である。 FIG. 3 is a diagram showing an example of identifier information 3011 (two-dimensional barcode information) described in the two-dimensional barcode when a two-dimensional barcode is used as the identifier in the first embodiment of the present invention.
 識別子301(図1の108、109)には、2次元バーコードが記載されている。2次元バーコードは、識別子情報3011として、各識別子に固有に割り当てられるIDである識別子ID3012、識別子の位置情報3013、識別子の設置方向3014、路線名3015などの各情報を含む。 A two-dimensional barcode is described in the identifier 301 (108, 109 in FIG. 1). The two-dimensional barcode includes each information such as the identifier ID 3012, which is an ID uniquely assigned to each identifier, the position information 3013 of the identifier, the installation direction 3014 of the identifier, and the route name 3015, as the identifier information 3011.
 識別子ID3012は、列車200の進行方向に沿って連続して昇順または降順の値をとる。 The identifier ID 3012 continuously takes ascending or descending values along the traveling direction of the train 200.
 ここで、図4を用いて、識別子情報3011のうち識別子301(図1の識別子108,109)の設置方向を示す情報の定義について説明する。
 図4は、本発明の実施例1に係る識別子108、109として、2次元バーコードを記載した識別子301の識別子情報3011(2次元バーコード情報)に含まれる設置方向を説明する図である。
Here, the definition of the information indicating the installation direction of the identifier 301 ( identifiers 108 and 109 in FIG. 1) of the identifier information 3011 will be described with reference to FIG.
FIG. 4 is a diagram for explaining the installation direction included in the identifier information 3011 (two-dimensional barcode information) of the identifier 301 in which the two-dimensional barcode is described as the identifiers 108 and 109 according to the first embodiment of the present invention.
 識別子301は、線路300に対して垂直に設置されている。ここで、列車200が進行方向302へ走行している場合は、列車200から識別子301の表側に記載された2次元バーコードを認識(検出)することが可能である。従って、列車200の先頭車両201にセンサ102を設置することにより、識別子301の2次元バーコードを読み取ることができる。
 一方、進行方向303へ走行している場合は、列車200から識別子301の裏側が認識(検出)される。故に、識別子301の裏側には、表側の識別子情報の内容が異なる別の識別子となる2次元バーコードが記載されている。
The identifier 301 is installed perpendicular to the line 300. Here, when the train 200 is traveling in the traveling direction 302, it is possible to recognize (detect) the two-dimensional barcode written on the front side of the identifier 301 from the train 200. Therefore, by installing the sensor 102 on the leading car 201 of the train 200, the two-dimensional bar code of the identifier 301 can be read.
On the other hand, when traveling in the traveling direction 303, the back side of the identifier 301 is recognized (detected) from the train 200. Therefore, on the back side of the identifier 301, a two-dimensional barcode which is another identifier having different contents of the identifier information on the front side is described.
 ここで、識別子301における設置方向3014とは、識別子301の2次元バーコードが検出可能な列車200の進行方向(図4の場合は進行方向302)を意味する。 Here, the installation direction 3014 in the identifier 301 means the traveling direction of the train 200 in which the two-dimensional bar code of the identifier 301 can be detected (in the case of FIG. 4, the traveling direction 302).
 識別子情報取得部104は、算出した2次元バーコードの情報と2次元バーコードを相対距離算出部106と自己位置推定部107に送信し、また、2次元バーコードの面積を相対距離算出部106に送信する。 The identifier information acquisition unit 104 transmits the calculated two-dimensional barcode information and the two-dimensional barcode to the relative distance calculation unit 106 and the self-position estimation unit 107, and the area of the two-dimensional barcode is the relative distance calculation unit 106. Send to.
 ここで、識別子情報取得部104が第一識別子108(2次元バーコード)を認識(検出)できない場合は、2次元バーコード未検出であることを示す情報を自己位置推定部107に送信する。
 例えば、第一センサ102からのセンサデータ(画像データ)において2次元バーコードが検出されない場合は、第一センサ識別子未検出という情報を自己位置推定部107に送信する。
Here, when the identifier information acquisition unit 104 cannot recognize (detect) the first identifier 108 (two-dimensional barcode), it transmits information indicating that the two-dimensional barcode has not been detected to the self-position estimation unit 107.
For example, when the two-dimensional barcode is not detected in the sensor data (image data) from the first sensor 102, the information that the first sensor identifier has not been detected is transmitted to the self-position estimation unit 107.
 次に、認識状況監視部105の動作について説明する。
 認識状況監視部105は、常時第一センサ102、第二センサ103からのセンサデータ(画像データ)の入力の有無を監視、つまり、識別子108,109の状況を監視する。そして、第一センサ102、第二センサ103からのセンサデータの入力が途絶えた場合、センサデータの入力が途絶えたセンサを特定するセンサ情報と、センサデータの入力が途絶えたセンサが故障であることを示す故障情報を出力する。
Next, the operation of the recognition status monitoring unit 105 will be described.
The recognition status monitoring unit 105 constantly monitors the presence or absence of input of sensor data (image data) from the first sensor 102 and the second sensor 103, that is, monitors the status of the identifiers 108 and 109. When the input of the sensor data from the first sensor 102 and the second sensor 103 is interrupted, the sensor information that identifies the sensor for which the sensor data input is interrupted and the sensor for which the sensor data input is interrupted are faulty. Outputs failure information indicating.
 センサ102、103からのセンサデータの入力が途絶えた場合、認識状況監視部105は、センサ102及び/又はセンサ103が故障したと判断して、該当センサ情報、つまり、該当センサが故障である旨を示す情報を自己位置推定部107に送信する。例えば、第一センサ102からのデータ入力が途絶えた場合は、第一センサ102が故障という情報を自己位置推定部107に送信する。 When the input of the sensor data from the sensors 102 and 103 is interrupted, the recognition status monitoring unit 105 determines that the sensor 102 and / or the sensor 103 has failed, and the corresponding sensor information, that is, the corresponding sensor has a failure. Information indicating the above is transmitted to the self-position estimation unit 107. For example, when the data input from the first sensor 102 is interrupted, the first sensor 102 transmits information that the failure occurs to the self-position estimation unit 107.
 次に、相対距離算出部106の動作について説明する。
 相対距離算出部106は、識別子情報取得部104から送信された2次元バーコードの情報及び2次元バーコードの面積を示す情報を受信し、線路外(例えばホーム)に設置された位置補正の基準点となる第一識別子108又は第二識別子109と自列車との相対距離を算出する。
 本実施例における相対距離とは、識別子と列車の先頭端間の距離を意味する。
Next, the operation of the relative distance calculation unit 106 will be described.
The relative distance calculation unit 106 receives the two-dimensional barcode information and the information indicating the area of the two-dimensional barcode transmitted from the identifier information acquisition unit 104, and is a reference for position correction installed outside the line (for example, home). The relative distance between the first identifier 108 or the second identifier 109, which is a point, and the own train is calculated.
The relative distance in this embodiment means the distance between the identifier and the head end of the train.
 この相対距離の算出は、相対距離と2次元バーコード面積の関係を表すデータ401(図5参照)を相対距離算出部106に記憶しておき、識別子情報取得部104から受信した2次元バーコードの面積をデータ401に当てはめることで相対距離を算出する。 For the calculation of the relative distance, the data 401 (see FIG. 5) representing the relationship between the relative distance and the two-dimensional barcode area is stored in the relative distance calculation unit 106, and the two-dimensional barcode received from the identifier information acquisition unit 104. The relative distance is calculated by applying the area of to the data 401.
 図5は、相対距離と2次元バーコード面積の関係を示す特性図である。
 すなわち、データ401には、予め列車200を走行させて測定した相対距離と2次元バーコード面積の関係が記録されている。
FIG. 5 is a characteristic diagram showing the relationship between the relative distance and the two-dimensional bar code area.
That is, the data 401 records the relationship between the relative distance measured by running the train 200 in advance and the two-dimensional bar code area.
 相対距離算出部106は、識別子情報取得部104から受信した識別子情報(2次元バーコード情報)に含まれる識別子ID3012に対応したデータ401を読み出し、相対距離を識別子ごとに算出する。算出した相対距離を自己位置推定部107に送信する。 The relative distance calculation unit 106 reads out the data 401 corresponding to the identifier ID 3012 included in the identifier information (two-dimensional barcode information) received from the identifier information acquisition unit 104, and calculates the relative distance for each identifier. The calculated relative distance is transmitted to the self-position estimation unit 107.
 自己位置推定部107は、相対距離算出部106からの識別子情報と相対距離を受けて、第一識別子102又は第二識別子の位置情報と列車200との相対距離から自列車の位置を推定する。
 自己位置推定部107は、内部に格納されたプログラムに従って、自列車の位置推定処理を実行する。詳細は後述する。
The self-position estimation unit 107 receives the identifier information and the relative distance from the relative distance calculation unit 106, and estimates the position of the own train from the position information of the first identifier 102 or the second identifier and the relative distance to the train 200.
The self-position estimation unit 107 executes the position estimation process of the own train according to the program stored inside. Details will be described later.
 図6は、自己位置推定部107により実行される自己位置推定処理の手順を示すフローチャートである。
 図6のフローチャートに基づく動作は以下のとおりであるが、各ステップは、所定の周期で実行、つまり、演算周期ごとに実行される。図6では、進行方向は進行方向101、自己位置は進行するたびに値が大きくなる(昇順)ことを前提として説明する。
FIG. 6 is a flowchart showing the procedure of the self-position estimation process executed by the self-position estimation unit 107.
The operation based on the flowchart of FIG. 6 is as follows, and each step is executed in a predetermined cycle, that is, is executed in each calculation cycle. FIG. 6 will be described on the premise that the traveling direction is the traveling direction 101 and the value of the self-position increases each time the vehicle advances (ascending order).
 ステップ501:
 自己位置推定部107は、識別子情報取得部104から識別子情報を取得し、ステップ502に進む。識別子情報(2次元バーコード情報)は、各センサ(第一センサ102、第二センサ103)から取得する。
Step 5011:
The self-position estimation unit 107 acquires the identifier information from the identifier information acquisition unit 104, and proceeds to step 502. The identifier information (two-dimensional bar code information) is acquired from each sensor (first sensor 102, second sensor 103).
 ステップ502:
 自己位置推定部107は、認識状況監視部105からセンサ(第一センサ102、第二センサ103)から識別子(識別子情報)を認識できないことを示す情報を故障情報として取得し、ステップ503に進む。
Step 502:
The self-position estimation unit 107 acquires information indicating that the identifier (identifier information) cannot be recognized from the sensors (first sensor 102, second sensor 103) from the recognition status monitoring unit 105 as failure information, and proceeds to step 503.
 ステップ503:
 自己位置推定部107は、ステップ502にて取得した故障情報をもとに、まず、第一センサ102が故障しているか否かを確認する。
 ここで、自己位置推定部107が、認識状況監視部から第一センサ102が故障していることを示す故障情報を受信していない場合、つまり、第一センサ故障なしの場合(Yes)は、ステップ504に進み、第一センサ102が故障していることを示す故障情報を受信した場合、つまり、第一センサ故障ありの場合(No)は、ステップ507に進む。
Step 503:
The self-position estimation unit 107 first confirms whether or not the first sensor 102 has failed based on the failure information acquired in step 502.
Here, when the self-position estimation unit 107 has not received the failure information indicating that the first sensor 102 has failed from the recognition status monitoring unit, that is, when there is no failure of the first sensor (Yes), If the process proceeds to step 504 and the failure information indicating that the first sensor 102 has failed is received, that is, if there is a failure of the first sensor (No), the process proceeds to step 507.
 ステップ504:
 次に、自己位置推定部107は、第一センサ102で第一識別子108が検出され、認識されているか否かを確認する。
 ここで、自己位置推定部107が、識別子情報取得部104から第一センサ識別子未検出を受信できない場合、つまり、第一センサ102にて識別子108の識別子情報を受信できた場合(Yes)は、ステップ505に進み、第一センサ識別子未検出を受信している場合、つまり、第一センサ102にて識別子108の識別子情報を受信できない場合(No)は、ステップ507に進む。
Step 504:
Next, the self-position estimation unit 107 confirms whether or not the first identifier 108 is detected and recognized by the first sensor 102.
Here, when the self-position estimation unit 107 cannot receive the first sensor identifier undetected from the identifier information acquisition unit 104, that is, when the first sensor 102 can receive the identifier information of the identifier 108 (Yes), If the first sensor identifier has not been detected, that is, if the first sensor 102 cannot receive the identifier information of the identifier 108 (No), the process proceeds to step 505.
 ステップ505:
 自己位置推定部107は、相対距離算出部106から第一識別子108までの相対距離を取得し、ステップ506に進む。
Step 505:
The self-position estimation unit 107 acquires the relative distance from the relative distance calculation unit 106 to the first identifier 108, and proceeds to step 506.
 ステップ506:
 自己位置推定部107は、第一識別子108の位置情報と第一識別子108までの相対距離から自己位置を数1で算出する。
Step 506:
The self-position estimation unit 107 calculates the self-position by the number 1 from the position information of the first identifier 108 and the relative distance to the first identifier 108.
 [数1]
   自己位置=識別子位置情報-相対距離
 ここで、符号(-)のマイナスは、識別子情報の設置方向から求まる列車の進行方向に応じて変更する。
[Number 1]
Self-position = identifier position information-relative distance Here, the minus of the sign (-) is changed according to the traveling direction of the train obtained from the installation direction of the identifier information.
 今回の例では、自己位置は進行方向に向かって値が大きくなる(昇順)場合で説明しているため、数式(1)の符号はマイナス(-)となる。
 自己位置が進行方向に向かって値が小さくなる(降順)場合は、数1の符号はプラス(+)となる。
In this example, since the self-position is explained in the case where the value increases in the traveling direction (ascending order), the sign of the mathematical formula (1) is minus (-).
When the self-position becomes smaller in the traveling direction (descending order), the sign of Equation 1 becomes plus (+).
 また、センサ102、103として、ミリ波やレーザーレンジファインダーを使用する場合は、得られる相対距離が識別子とセンサの測距基準位置までの距離となるため、センサの測距基準位置と列車先頭端までの距離で数1の自己位置を補正する。 Further, when millimeter waves or a laser range finder are used as the sensors 102 and 103, the obtained relative distance is the distance between the identifier and the distance measurement reference position of the sensor, so that the distance measurement reference position of the sensor and the train head end are used. The self-position of Equation 1 is corrected by the distance to.
 ステップ507:
 自己位置推定部107は、第二センサ103が故障しているか否かを確認する。その確認結果、認識状況監視部105から第二センサ故障情報を受信していな場合、つまり、第二センサ故障なしの場合(Yes)は、ステップ508に進み、第二センサ故障情報を受信している場合、つまり、第二センサ故障ありの場合(No)は、ステップ511に進む。
Step 507:
The self-position estimation unit 107 confirms whether or not the second sensor 103 is out of order. As a result of the confirmation, if the second sensor failure information is not received from the recognition status monitoring unit 105, that is, if there is no second sensor failure (Yes), the process proceeds to step 508, and the second sensor failure information is received. If so, that is, if there is a second sensor failure (No), the process proceeds to step 511.
 ステップ508:
 自己位置推定部107は、第二センサ103で識別子が検出され、認識されているか否かを確認する。
 その確認結果、識別子情報取得部104から第二センサ識別子未検出を受信していな場合、つまり、第二センサ103にて識別子109の識別子情報を受信できた場合(Yes)は、ステップ509に進む。
 識別子情報取得部104から第二センサ識別子未検出を受信している場合、つまり、第二センサ103にて識別子109の識別子情報を受信できない場合(No)は、ステップ511に進む。
Step 508:
The self-position estimation unit 107 confirms whether or not the identifier is detected and recognized by the second sensor 103.
As a result of the confirmation, if the second sensor identifier not detected is not received from the identifier information acquisition unit 104, that is, if the identifier information of the identifier 109 can be received by the second sensor 103 (Yes), the process proceeds to step 509. ..
If the second sensor identifier not detected is received from the identifier information acquisition unit 104, that is, if the second sensor 103 cannot receive the identifier information of the identifier 109 (No), the process proceeds to step 511.
 ステップ509:
 自己位置推定部107は、相対距離算出部106から第二識別子109までの相対距離を取得し、ステップ510に進む。
Step 509:
The self-position estimation unit 107 acquires the relative distance from the relative distance calculation unit 106 to the second identifier 109, and proceeds to step 510.
 ステップ510:
 自己位置推定部107は、第二識別子109の位置情報と第二識別子109までの相対距離とあらかじめデータベース(図示せず)に保持している列車長Lから自己位置を数2で算出する。
Step 510:
The self-position estimation unit 107 calculates the self-position by the number 2 from the position information of the second identifier 109, the relative distance to the second identifier 109, and the train length L stored in the database (not shown) in advance.
 [数2]
   自己位置=識別子位置情報+(相対距離+列車長)
 ここで、符号(+)は、識別子情報の設置方向から求まる列車の進行方向に応じて変更する。
[Number 2]
Self position = identifier position information + (relative distance + train length)
Here, the code (+) is changed according to the traveling direction of the train obtained from the installation direction of the identifier information.
 今回の例では、自己位置は進行方向に向かって値が大きくなる(昇順)場合で説明しているため数式(2)の符号はプラス(+)となる。自己位置が進行方向に向かって値が小さくなる(降順)場合は、数式(2)の符号はマイナスとなる。 In this example, the self-position is explained in the case where the value increases in the traveling direction (ascending order), so the sign of the formula (2) is plus (+). When the self-position becomes smaller in the traveling direction (descending order), the sign of the formula (2) becomes negative.
 また、センサ102、103として、上述したようにミリ波やレーザーレンジファインダーを使用する場合は、得られる相対距離が識別子とセンサの測距基準位置までの距離となるため、センサの測距基準位置と列車先頭端までの距離で数式(2)の自己位置を補正する。 Further, when the millimeter wave or the laser range finder is used as the sensors 102 and 103 as described above, the obtained relative distance is the distance between the identifier and the distance measurement reference position of the sensor, so that the distance measurement reference position of the sensor And the distance to the beginning of the train corrects the self-position of formula (2).
 ステップ511:
 自己位置推定部107は、第一センサ102、第二センサ103のいずれにおいても識別子108、109が検出されていない状態であるため乗務員や運行管理といった上位システムに自己位置不定を通知する。この場合、一般的には車両速度の積分から自己位置を推定する手法に切替えることで、自己位置推定精度は低下するが、列車の運用を継続することが可能である。
Step 511:
Since the identifiers 108 and 109 are not detected in any of the first sensor 102 and the second sensor 103, the self-position estimation unit 107 notifies the upper system such as the crew and the operation management of the self-position indefinite. In this case, in general, by switching to the method of estimating the self-position from the integration of the vehicle speed, the self-position estimation accuracy is lowered, but the train operation can be continued.
 以上述べた実施例では、進行方向101の先頭方向を検出している第一センサ102の故障の有無、識別子検出有無を先に確認しているが、進行方向101とは逆の方向に進行する場合は、第二センサ103の故障の有無、識別子検出有無を先に確認することが望ましい。しかし、センサの故障の有無、識別子検出有無を第一センサ102、第二センサ103のいずれから始めても、本発明の効果には影響しないため、その順番は問わない。 In the above-described embodiment, the presence / absence of failure of the first sensor 102 that detects the leading direction of the traveling direction 101 and the presence / absence of identifier detection are confirmed first, but the process proceeds in the direction opposite to the traveling direction 101. In this case, it is desirable to first confirm whether or not the second sensor 103 has failed and whether or not the identifier has been detected. However, even if the presence / absence of sensor failure and the presence / absence of identifier detection are started from either the first sensor 102 or the second sensor 103, the effect of the present invention is not affected, so the order does not matter.
 また、実施例では、進行方向先頭に設置されたセンサで検出した2次元バーコード情報を優先して自己位置推定に使用しているが、両側のセンサで検出した2次元バーコード情報を使用するようにしてもよい。例えば、第一識別子108の位置情報と第一識別子108までの相対距離から推定した第一の自己位置と、第二識別子109の位置情報と第二識別子109までの相対距離から推定した第二の自己位置の平均値を自己位置として採用するようにしてもよい。
 また、第一の自己位置と第二の自己位置の差を常時監視し、差が規定値以上になった場合は、いずれかの自己位置が誤推定していると判断し、自己位置推定エラーを乗務員や運行管理といった上位システム(図示せず)に通知するようにしてもよい。
Further, in the embodiment, the two-dimensional barcode information detected by the sensors installed at the head in the traveling direction is preferentially used for self-position estimation, but the two-dimensional barcode information detected by the sensors on both sides is used. You may do so. For example, the first self-position estimated from the position information of the first identifier 108 and the relative distance to the first identifier 108, and the second estimated from the position information of the second identifier 109 and the relative distance to the second identifier 109. The average value of the self-position may be adopted as the self-position.
In addition, the difference between the first self-position and the second self-position is constantly monitored, and if the difference exceeds the specified value, it is determined that one of the self-positions is erroneously estimated, and a self-position estimation error occurs. May be notified to higher-level systems (not shown) such as crew members and operation management.
 また、実施例において、識別子情報の設置方向と識別子までの相対距離の増減から列車の進行方向を決定することもできる。
 例えば、図3において、識別子情報の進行方向が302で識別子までの相対距離が増加している場合は、識別子から遠ざかる方向に列車が走行していると判断し、列車の進行方向を識別子情報の進行方向302の逆の進行方向303を列車の進行方向とする。
 このようにすることで2次元バーコードに記載された設置方向から列車がどの路線のどの方向を向いて走行しているかを判断することができる。因みに、従来のように、地上子を用いた自己位置推定では、電源立上げ直後で自己位置や列車の進行方向が不定の場合、少なくとも2つの地上子を通過しないと列車の進行方向が特定できなかったが、本発明によれば識別子の2次元バーコードが検出できれば、列車をわずかに走行させるだけで自己位置および列車の進行方向が特定可能となる。
Further, in the embodiment, the traveling direction of the train can be determined from the increase / decrease in the relative distance between the installation direction of the identifier information and the identifier.
For example, in FIG. 3, when the traveling direction of the identifier information is 302 and the relative distance to the identifier is increasing, it is determined that the train is traveling in the direction away from the identifier, and the traveling direction of the train is the identifier information. The traveling direction 303 opposite to the traveling direction 302 is set as the traveling direction of the train.
By doing so, it is possible to determine from which direction the train is traveling on which route from the installation direction described in the two-dimensional barcode. By the way, as in the past, in the self-position estimation using the ground element, if the self-position and the traveling direction of the train are uncertain immediately after the power is turned on, the traveling direction of the train can be specified without passing through at least two ground elements. However, according to the present invention, if the two-dimensional bar code of the identifier can be detected, the self-position and the traveling direction of the train can be specified by slightly traveling the train.
 以上述べた実施例によれば、列車の進行方向先頭に設置されたセンサが故障した際や進行方向の識別子が障害物などで遮蔽されていたり、逆光により識別子が検出できない場合でも自己位置が推定でき、可用性を向上させることができる。また、列車自身の運動方向情報を不要にすることができる。 According to the above-described embodiment, the self-position is estimated even when the sensor installed at the head of the train in the traveling direction fails, the identifier in the traveling direction is shielded by an obstacle, or the identifier cannot be detected due to backlight. And can improve availability. Moreover, the motion direction information of the train itself can be eliminated.
 以上、本発明の実施の形態について説明したが、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.
101 進行方向
102 第一センサ
103 第二センサ
104 識別子情報取得部
105 認識状況監視部
106 相対距離算出部
107 自己位置推定部
108 第一識別子
109 第二識別子
200 列車
201、202 車両
300 線路
301 識別子
101 Travel direction 102 First sensor 103 Second sensor 104 Identifier information acquisition unit 105 Recognition status monitoring unit 106 Relative distance calculation unit 107 Self-position estimation unit 108 First identifier 109 Second identifier 200 Train 201, 202 Vehicle 300 Track 301 Identifier

Claims (12)

  1.  走行路外に設置された識別子を認識するセンサの識別子情報に含まれる位置情報と、前記識別子と移動体との相対距離から移動体の自己位置を推定する位置推定装置であって、
     前記識別子は、前記移動体の進行方向に設置された第一識別子と前記列車の進行方向とは逆方向に設置された第二識別子を含み、
     前記センサは、前記第一識別子を認識し、識別子情報を検出する第一センサと前記第二識別子を認識し、識別子情報を検出する第二センサを含み、
     前記位置推定装置は、前記第一センサにて前記第一識別子が認識できない場合は、前記第二センサにて前記第二識別子を認識し、
     前記第二識別子の位置情報に基づいて前記移動体の自己位置を推定する
     ことを特徴とする位置推定装置。
    It is a position estimation device that estimates the self-position of a moving body from the position information included in the identifier information of the sensor that recognizes the identifier installed outside the travel path and the relative distance between the identifier and the moving body.
    The identifier includes a first identifier installed in the traveling direction of the moving body and a second identifier installed in the direction opposite to the traveling direction of the train.
    The sensor includes a first sensor that recognizes the first identifier and detects identifier information and a second sensor that recognizes the second identifier and detects identifier information.
    When the first sensor cannot recognize the first identifier, the position estimation device recognizes the second identifier by the second sensor.
    A position estimation device characterized in that the self-position of the moving body is estimated based on the position information of the second identifier.
  2.  請求項1に記載の位置推定装置において、
     前記移動体が列車からなり、
     前記第一識別子が認識できない場合は、
     前記第二の識別子の位置情報と前記第二識別子の設置方向と前記列車の列車長から前記列車の自己位置を推定する
     ことを特徴とする位置推定装置。
    In the position estimation device according to claim 1,
    The moving body consists of a train
    If the first identifier cannot be recognized
    A position estimation device for estimating the self-position of the train from the position information of the second identifier, the installation direction of the second identifier, and the train length of the train.
  3.  請求項1に記載の位置推定装置において、
     前記識別子情報は、前記識別子が検出可能な列車の進行方向を含む
     ことを特徴とする位置推定装置。
    In the position estimation device according to claim 1,
    The position estimation device, characterized in that the identifier information includes a train traveling direction in which the identifier can be detected.
  4.  請求項1に記載の位置推定装置において、
     前記移動体が列車からなり、
     前記第一識別子、又は第二識別子の識別子情報に含まれる設置方向と前記第一識別子、又は前記第二識別子と前記列車との相対距離の増減方向により、前記列車の進行方向を判定する
     ことを特徴とする位置推定装置。
    In the position estimation device according to claim 1,
    The moving body consists of a train
    The traveling direction of the train is determined based on the installation direction included in the identifier information of the first identifier or the second identifier and the increasing / decreasing direction of the relative distance between the first identifier or the second identifier and the train. A featured position estimation device.
  5.  請求項1に記載の位置推定装置において、
     前記センサは、前記識別子と移動体との相対距離を求めるミリ波レーダー又はレーザーレジンファインダーからなり、
    前記位置推定装置は、さらに、前記第一識別子および前記第二識別子の各識別子の位置を示す位置情報を予め記憶した記憶部を有し、
     前記ミリ波レーダー又はレーザーレジンファインダーにて前記第一識別子が認識できない場合は、前記ミリ波レーダー又はレーザーレジンファインダーにて前記第二識別子を認識し、
     前記記憶部に記憶された前記第二識別子に対応する位置情報を読み出して、当該位置情報基づいて前記移動体の自己位置を推定する
     ことを特徴とする位置推定装置。
    In the position estimation device according to claim 1,
    The sensor comprises a millimeter-wave radar or a laser resin finder that determines the relative distance between the identifier and the moving object.
    The position estimation device further has a storage unit that stores position information indicating the positions of the first identifier and each identifier of the second identifier in advance.
    If the millimeter-wave radar or laser resin finder cannot recognize the first identifier, the millimeter-wave radar or laser resin finder recognizes the second identifier.
    A position estimation device characterized in that the position information corresponding to the second identifier stored in the storage unit is read out and the self-position of the moving body is estimated based on the position information.
  6.  線路外に設置された識別子を認識するセンサと、当該センサにて認識した識別子の識別子情報に含まれる位置情報及び前記識別子と列車との相対距離から列車の自己位置を推定する位置推定装置を備えた位置推定システムであって、
     前記識別子は、前記列車の進行方向に設置された第一識別子と前記列車の進行方向とは逆方向に設置された第二識別子を含み、
     前記センサは、前記第一識別子を認識し、第一識別子情報を検出する第一センサと、前記第二識別子を認識し、第二識別子情報を検出する第二センサを含み、
     前記位置推定装置は、
     前記識別子の識別子情報を受信し、前記識別子と前記列車との相対距離を算出する相対距離算出部と、
     前記第一センサにて認識した前記第一識別子の識別子情報に含まれる位置情報、又は前記第二センサにて認識した前記第二識別子の識別子情報に含まれる位置情報と、前記前記第一識別子、又は前記第二識別子と前記列車との相対距離をもとに前記列車の自己位置を推定する位置推定部と、を有し、
     前記位置推定部は、
     前記第一センサが前記第一識別子を認識できない場合、前記第二センサにて前記第二識別子を認識し、
     前記第二識別子の識別子情報に含まれる位置情報をもとに前記列車の自己位置を推定する
     ことを特徴とする位置推定システム。
    It is equipped with a sensor that recognizes an identifier installed outside the track, a position information included in the identifier information of the identifier recognized by the sensor, and a position estimation device that estimates the self-position of the train from the relative distance between the identifier and the train. It is a position estimation system
    The identifier includes a first identifier installed in the traveling direction of the train and a second identifier installed in the direction opposite to the traveling direction of the train.
    The sensor includes a first sensor that recognizes the first identifier and detects the first identifier information, and a second sensor that recognizes the second identifier and detects the second identifier information.
    The position estimation device is
    A relative distance calculation unit that receives the identifier information of the identifier and calculates the relative distance between the identifier and the train.
    The position information included in the identifier information of the first identifier recognized by the first sensor, or the position information included in the identifier information of the second identifier recognized by the second sensor, and the first identifier. Alternatively, it has a position estimation unit that estimates the self-position of the train based on the relative distance between the second identifier and the train.
    The position estimation unit
    When the first sensor cannot recognize the first identifier, the second sensor recognizes the second identifier.
    A position estimation system characterized in that the self-position of the train is estimated based on the position information included in the identifier information of the second identifier.
  7.  請求項6に記載された位置推定システムにおいて、
     前記第二の識別子の位置情報と前記第二識別子の設置方向と前記列車の列車長から前記列車の自己位置を推定する
     ことを特徴とする位置推定システム。
    In the position estimation system according to claim 6,
    A position estimation system characterized in that the self-position of the train is estimated from the position information of the second identifier, the installation direction of the second identifier, and the train length of the train.
  8.  請求項6に記載された位置推定システムにおいて、
     前記第一センサ及び前記第二センサは、カメラからなり、
     前記第一識別子情報は、
     前記第一識別子が検出可能な前記列車の進行方向(識別子の設置方向)を示す情報を含み、
     前記第二識別子情報は、
     前記第二識別子が検出可能な前記列車の進行方向(識別子の設置方向)を示す情報を含む、
     ことを特徴とする位置推定システム。
    In the position estimation system according to claim 6,
    The first sensor and the second sensor consist of a camera.
    The first identifier information is
    The first identifier includes information indicating the detectable direction of the train (direction in which the identifier is installed).
    The second identifier information is
    The second identifier includes information indicating the detectable direction of the train (direction in which the identifier is installed).
    A position estimation system characterized by that.
  9.  請求項6に記載された位置推定システムにおいて、
     前記位置推定部は、
     前記第一識別子、又は前記第二識別子の設置方向を示す情報と前記第一識別子、又は前記第二識別子と前記列車との相対距離の増減方向の情報により、前記列車の進行方向を判定する
     ことを特徴とする位置推定システム。
    In the position estimation system according to claim 6,
    The position estimation unit
    The traveling direction of the train is determined from the information indicating the installation direction of the first identifier or the second identifier and the information in the increasing / decreasing direction of the relative distance between the first identifier or the second identifier and the train. A position estimation system characterized by.
  10.  請求項9に記載された位置推定システムにおいて、
     前記第一、第二識別子は、
     2次元バーコードが記載された識別子であり、
     前記第一、第二識別子情報は、
     前記第一、第二識別子の2次元バーコードの識別子情報及び2次元バーコードの面積を示す情報を含み、
     前記相対距離算出部は、
     前記2次元バーコードの面積を示す情報をもとに前記相対距離を算出する
     ことを特徴とする位置推定システム。
    In the position estimation system according to claim 9,
    The first and second identifiers are
    An identifier with a two-dimensional barcode
    The first and second identifier information is
    Includes the identifier information of the two-dimensional barcode of the first and second identifiers and the information indicating the area of the two-dimensional barcode.
    The relative distance calculation unit
    A position estimation system characterized in that the relative distance is calculated based on information indicating the area of the two-dimensional barcode.
  11.  請求項9又は10に記載された位置推定システムにおいて、
     さらに、前記第一センサと前記第二センサにて検出した識別子情報(センサデータ)の入力有無を監視し、前記識別子情報の入力が途絶えた場合、前記第一センサ、及び/又は前記第二センサが故障である旨を示す情報を前記位置推定部に送信する識別状況監視部を有する
     ことを特徴とする位置推定システム。
    In the position estimation system according to claim 9 or 10.
    Further, the presence / absence of input of the identifier information (sensor data) detected by the first sensor and the second sensor is monitored, and when the input of the identifier information is interrupted, the first sensor and / or the second sensor A position estimation system including an identification status monitoring unit that transmits information indicating that is a failure to the position estimation unit.
  12.  走行路外に設置された識別子を認識するセンサの識別子情報に含まれる位置情報と、前記識別子と移動体との相対距離から移動体の自己位置を推定する位置推定方法であって、
     前記識別子は、前記移動体の進行方向に設置された第一識別子と前記移動体の進行方向とは逆方向に設置された第二識別子を含み、
     前記センサは、前記第一識別子を認識し、識別子情報を検出する第一センサと前記第二識別子を認識し、識別子情報を検出する第二センサを含み、
     前記位置推定方法は、
     前記第一センサにて前記第一識別子を識別できない場合、
     前記第二センサにて前記第二識別子を認識するステップと、
     前記第二識別子の識別子情報に含まれる位置情報に基づいて前記移動体の自己位置を推定するステップを含む、
     ことを特徴とする位置推定方法。
    It is a position estimation method that estimates the self-position of a moving body from the position information included in the identifier information of the sensor that recognizes the identifier installed outside the traveling path and the relative distance between the identifier and the moving body.
    The identifier includes a first identifier installed in the traveling direction of the moving body and a second identifier installed in a direction opposite to the traveling direction of the moving body.
    The sensor includes a first sensor that recognizes the first identifier and detects identifier information and a second sensor that recognizes the second identifier and detects identifier information.
    The position estimation method is
    If the first sensor cannot identify the first identifier,
    The step of recognizing the second identifier by the second sensor,
    Including a step of estimating the self-position of the moving body based on the position information included in the identifier information of the second identifier.
    A position estimation method characterized by this.
PCT/JP2020/009117 2019-04-23 2020-03-04 Position estimation device, position estimation system, and position estimation method WO2020217724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082133 2019-04-23
JP2019082133A JP2020179708A (en) 2019-04-23 2019-04-23 Position estimation device, position estimation system and position estimation method

Publications (1)

Publication Number Publication Date
WO2020217724A1 true WO2020217724A1 (en) 2020-10-29

Family

ID=72942409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009117 WO2020217724A1 (en) 2019-04-23 2020-03-04 Position estimation device, position estimation system, and position estimation method

Country Status (2)

Country Link
JP (1) JP2020179708A (en)
WO (1) WO2020217724A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650649A (en) * 2021-08-23 2021-11-16 北京埃福瑞科技有限公司 Rail train positioning method and system
WO2023119498A1 (en) * 2021-12-22 2023-06-29 三菱電機株式会社 Communication device, wireless ranging system, control circuit, storage medium, and abnormality detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769215A (en) * 1993-06-29 1995-03-14 Yagi Antenna Co Ltd Information transmitting device for train
JP2012011867A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Vehicle position calculation system and vehicle position calculation method, and program therefor
JP2017211909A (en) * 2016-05-27 2017-11-30 株式会社東芝 Information processor and mobile apparatus
EP3415400A1 (en) * 2017-06-12 2018-12-19 Siemens Aktiengesellschaft System and method for determining the position of a guided vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769215A (en) * 1993-06-29 1995-03-14 Yagi Antenna Co Ltd Information transmitting device for train
JP2012011867A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Vehicle position calculation system and vehicle position calculation method, and program therefor
JP2017211909A (en) * 2016-05-27 2017-11-30 株式会社東芝 Information processor and mobile apparatus
EP3415400A1 (en) * 2017-06-12 2018-12-19 Siemens Aktiengesellschaft System and method for determining the position of a guided vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650649A (en) * 2021-08-23 2021-11-16 北京埃福瑞科技有限公司 Rail train positioning method and system
WO2023119498A1 (en) * 2021-12-22 2023-06-29 三菱電機株式会社 Communication device, wireless ranging system, control circuit, storage medium, and abnormality detection method
JPWO2023119498A1 (en) * 2021-12-22 2023-06-29
JP7391280B2 (en) 2021-12-22 2023-12-04 三菱電機株式会社 Communication device, wireless ranging system, control circuit, storage medium, and abnormality detection method

Also Published As

Publication number Publication date
JP2020179708A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
CN107709136B (en) Method and device for determining driving authorization for a rail vehicle
DK3038879T3 (en) Determination of the position of a rail vehicle
WO2020217724A1 (en) Position estimation device, position estimation system, and position estimation method
JP6801995B2 (en) Train automatic stop control device and railway vehicle equipped with it
US20090177344A1 (en) Method for the Onboard Determination of Train Detection, Train Integrity and Positive Train Separation
KR101590712B1 (en) Rail car and track monitoring system using running record and the method
RU2556263C2 (en) Method and apparatus for monitoring train integrity
CN102139704A (en) High-accuracy train positioning system based on radio frequency technology and positioning method thereof
CN112644561B (en) Train tracking capacity determination method based on relative speed tracking model
EP2614983A2 (en) Train control system
RU2618660C1 (en) Railway traffic interval regulation system based on radio channels
CN111016975B (en) Speed measurement positioning method and system of magnetic-levitation train and magnetic-levitation train
US8599017B2 (en) Method and device for monitoring the presence of a rail
JP2016137731A (en) Vehicle control system, on-train device, and ground device
JP2010120484A (en) Train stop control system
KR101859698B1 (en) Protectin function verification system for moving device and method thereof
CN111776021A (en) Method and system for realizing positioning verification of rail vehicle
US7684905B2 (en) System and method for verifying the integrity of a train
JP2020089233A (en) Train constant position stop control device and train constant position stop control method
KR102286475B1 (en) Recovery method of auto/driverless train location data
JP5306083B2 (en) Automatic train control device and train control method
JP2013107434A (en) In-vehicle device and train position identifying method
EP3686079B1 (en) Railway track section with a train detection system, and associated method for detecting presence of a railway vehicle on a track section
JP4578288B2 (en) Overrun prevention control device
JP2015033177A (en) Railway vehicle and railway vehicle control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795164

Country of ref document: EP

Kind code of ref document: A1