WO2020217627A1 - 電動工具 - Google Patents

電動工具 Download PDF

Info

Publication number
WO2020217627A1
WO2020217627A1 PCT/JP2020/003301 JP2020003301W WO2020217627A1 WO 2020217627 A1 WO2020217627 A1 WO 2020217627A1 JP 2020003301 W JP2020003301 W JP 2020003301W WO 2020217627 A1 WO2020217627 A1 WO 2020217627A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
axis current
impact
current
measured value
Prior art date
Application number
PCT/JP2020/003301
Other languages
English (en)
French (fr)
Inventor
賢治 花村
中原 雅之
文生 米田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20794392.9A priority Critical patent/EP3960373A4/en
Priority to US17/604,894 priority patent/US20220193867A1/en
Priority to CN202080030341.7A priority patent/CN113710425B/zh
Publication of WO2020217627A1 publication Critical patent/WO2020217627A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • B25B23/1475Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers for impact wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present disclosure relates to power tools in general, and more specifically to power tools provided with an impact mechanism.
  • the power tool described in Patent Document 1 has a motor, an impact mechanism, and a control means.
  • the motor is driven by PWM control of the semiconductor switching element.
  • the impact mechanism strikes or rotates the anvil with a hammer rotated by a motor.
  • the control means controls the rotation of the motor. Then, when the impact mechanism continues to hit a plurality of times, the motor is driven with the duty ratio changed from a high value to a low value.
  • An object of the present disclosure is to provide a power tool provided with a new means for detecting the presence or absence of a striking motion of an impact mechanism.
  • the power tool includes an electric motor, an impact mechanism, a impact detection unit, and a measurement unit.
  • the impact mechanism performs a striking operation in which power is obtained from the electric motor to generate a striking force.
  • the hit detection unit detects the presence or absence of the hit operation.
  • the measuring unit measures at least one of the d-axis current and the q-axis current supplied to the electric motor.
  • the striking detection unit detects the presence or absence of the striking operation based on at least one of the measured value of the d-axis current and the measured value of the q-axis current measured by the measuring unit.
  • FIG. 1 is a block diagram of a power tool according to an embodiment.
  • FIG. 2 is a schematic view of the same power tool.
  • FIG. 3 is a block diagram of a main part of the same power tool.
  • FIG. 4 is a graph showing a first operation example of the same power tool.
  • FIG. 5 is a graph showing a second operation example of the same power tool.
  • FIG. 6 is a graph showing a third operation example of the same power tool.
  • FIG. 7 is a graph showing a fourth operation example of the same power tool.
  • 8A and 8B are graphs showing measured values of the output current of the inverter circuit section of the power tool of the same.
  • FIG. 9 is a graph showing an operation example of the power tool according to the first modification.
  • FIG. 2 described in the following embodiment is a schematic view, and the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio. ..
  • the power tool 1 of the present embodiment is used as, for example, an impact driver or an impact wrench.
  • the electric tool 1 includes an AC electric motor 15 (electric motor), an impact mechanism 17, and a control unit 4.
  • the AC motor 15 is, for example, a brushless motor.
  • the AC electric motor 15 of the present embodiment is a synchronous motor, and more specifically, a permanent magnet synchronous motor (PMSM (Permanent Magnet Synchronous Motor)).
  • the impact mechanism 17 receives power from the AC electric motor 15 to generate a striking force.
  • the control unit 4 feedback-controls the operation of the AC motor 15.
  • the control unit 4 has a hit detection unit 49.
  • the impact detection unit 49 detects the presence or absence of the impact operation of the impact mechanism 17.
  • the period before the impact mechanism 17 starts the striking operation is referred to as a preceding period.
  • the period after the impact detection unit 49 detects that the impact mechanism 17 has started the impact operation is referred to as a subsequent period.
  • the control unit 4 changes the parameter to be changed from the parameter to be changed in the preceding period.
  • the parameter to be changed includes a control gain of feedback control by the control unit 4. That is, the control unit 4 changes the control gain of the feedback control when the impact detection unit 49 detects the start of the impact operation. This enables finer control of the AC motor 15 as compared with the case where the control gain in the preceding period and the control gain in the succeeding period are equal.
  • the control gain includes a proportional gain and an integral gain.
  • the control unit 4 of the present embodiment performs at least one of making the proportional gain in the subsequent period different from the proportional gain in the preceding period and making the integrated gain in the subsequent period different from the integrated gain in the preceding period. ..
  • control gain changed by the control unit 4 when shifting from the preceding period to the succeeding period is not limited to the proportional gain and the integrated gain.
  • control gain includes a differential gain.
  • the control unit 4 may change at least one of the proportional gain, the integrated gain, and the differential gain.
  • the AC motor 15 includes a rotor having a permanent magnet and a stator having a coil.
  • the control unit 4 performs vector control that independently controls the weakening magnetic flux current (d-axis current) and the torque current (q-axis current) supplied to the AC motor 15.
  • the weakening magnetic flux current is a current that causes a coil to generate a magnetic flux that weakens the magnetic flux of a permanent magnet (weak magnetic flux).
  • the weakening magnetic flux current is a current that causes the coil to generate a magnetic flux opposite to the direction of the magnetic flux of the permanent magnet.
  • the electric tool 1 includes an AC electric motor 15 (electric motor), an impact mechanism 17, a hit detection unit 49, and a measurement unit 60.
  • the measuring unit 60 measures at least one of the d-axis current and the q-axis current supplied to the AC motor 15. In the present embodiment, the measuring unit 60 measures both the d-axis current and the q-axis current.
  • the impact detection unit 49 of the impact mechanism 17 is based on at least one of the measured value of the d-axis current (current measured value id1) and the measured value of the q-axis current (current measured value iq1) measured by the measuring unit 60. Detects the presence or absence of striking motion. As a result, the presence or absence of a striking operation can be detected without using the measured value of the output current of the power supply 32 of the power tool 1.
  • the measuring unit 60 measures only the current measured value id1 out of the current measured values id1 and iq1, it means “based on the current measured value id1 measured by the measuring unit 60".
  • the measuring unit 60 measures only the current measured value iq1 out of the current measured values id1 and iq1, it means "based on the current measured value iq1 measured by the measuring unit 60".
  • the measuring unit 60 measures both the current measured values id1 and iq1, "based on only the current measured value id1 measured by the measuring unit 60, or based on only the current measured value iq1 or , Based on both current measurement values id1 and iq1 ".
  • the power tool 1 includes an AC motor 15, a power supply 32, a drive transmission unit 18, an impact mechanism 17, a socket 23, a trigger volume 29, and a control unit 4.
  • a torque measuring unit 26, a bit rotation measuring unit 25, and a motor rotation measuring unit 27 are provided.
  • the power tool 1 further includes a tip tool.
  • the impact mechanism 17 has an output shaft 21.
  • the output shaft 21 is a portion that rotates by a driving force transmitted from the AC motor 15.
  • the socket 23 is fixed to the output shaft 21 and is a portion to which the tip tool can be detachably attached.
  • the electric tool 1 is a tool that drives the tip tool with the driving force of the AC electric motor 15.
  • the tip tool (also referred to as a bit) is, for example, a screwdriver or a drill.
  • a tip tool according to the application is attached to the socket 23 and used.
  • the tip tool may be mounted directly on the output shaft 21.
  • the AC motor 15 is a drive source for driving the tip tool.
  • the AC electric motor 15 has an output shaft 16 that outputs rotational power.
  • the power supply 32 is an AC power supply that supplies an electric current for driving the AC electric motor 15.
  • the power supply 32 includes, for example, one or more secondary batteries.
  • the drive transmission unit 18 adjusts the rotational power of the AC motor 15 to output a desired torque.
  • the drive transmission unit 18 includes a drive shaft 22 which is an output unit.
  • the drive shaft 22 of the drive transmission unit 18 is connected to the impact mechanism 17.
  • the impact mechanism 17 converts the rotational power of the AC motor 15 received via the drive transmission unit 18 into pulsed torque to generate an impact force.
  • the impact mechanism 17 includes a hammer 19, an anvil 20, an output shaft 21, and a spring 24.
  • the hammer 19 is attached to the drive shaft 22 of the drive transmission unit 18 via a cam mechanism.
  • the anvil 20 is coupled to the hammer 19 and rotates integrally with the hammer 19.
  • the spring 24 pushes the hammer 19 toward the anvil 20.
  • the anvil 20 is integrally formed with the output shaft 21.
  • the anvil 20 may be formed separately from the output shaft 21 and fixed to the output shaft 21.
  • the trigger volume 29 is an operation unit that receives an operation for controlling the rotation of the AC motor 15. By pulling the trigger volume 29, the AC motor 15 can be switched on and off. Further, the rotation speed of the output shaft 21, that is, the rotation speed of the AC motor 15, can be adjusted by the pull-in amount of the operation of pulling the trigger volume 29. The larger the pull-in amount, the faster the rotation speed of the AC motor 15.
  • the control unit 4 rotates or stops the AC motor 15 according to the pull-in amount of the operation of pulling the trigger volume 29, and also controls the rotation speed of the AC motor 15.
  • the tip tool is attached to the socket 23. Then, the rotation speed of the tip tool is controlled by controlling the rotation speed of the AC motor 15 by operating the trigger volume 29.
  • the tip tool can be replaced according to the application, but it is not essential that the tip tool can be replaced.
  • the power tool 1 may be a power tool that can be used only with a specific tip tool.
  • the torque measuring unit 26 measures the operating torque of the AC motor 15.
  • the torque measuring unit 26 is, for example, a magnetostrictive strain sensor capable of detecting torsional strain.
  • the magnetostrictive strain sensor detects a change in the magnetostriction according to the strain generated by applying torque to the output shaft 16 of the AC motor 15 with a coil installed in the non-rotating portion of the AC motor 15, and is proportional to the strain. Outputs a voltage signal.
  • the bit rotation measuring unit 25 measures the rotation angle of the output shaft 21.
  • the rotation angle of the output shaft 21 is equal to the rotation angle of the tip tool (bit).
  • bit rotation measuring unit 25 for example, a photoelectric encoder or a magnetic encoder can be adopted.
  • the motor rotation measuring unit 27 measures the rotation angle of the AC motor 15.
  • a photoelectric encoder or a magnetic encoder can be adopted.
  • Control unit 4 includes a computer system having one or more processors and memories.
  • the processor of the computer system executes the program recorded in the memory of the computer system, at least a part of the functions of the control unit 4 are realized.
  • the program may be recorded in a memory, provided through a telecommunication line such as the Internet, or may be recorded and provided on a non-temporary recording medium such as a memory card.
  • the control unit 4 includes a parameter specification unit 41, a speed control unit 42, a current control unit 43, a first coordinate converter 44, a second coordinate converter 45, and magnetic flux control. It has a unit 46, an estimation unit 47, a step-out detection unit 48, and a blow detection unit 49.
  • the power tool 1 includes an inverter circuit unit 51, a first setting unit 52, a second setting unit 53, and a plurality of current sensors 61 and 62 (two in FIG. 1).
  • the control unit 4 is used together with the inverter circuit unit 51, and controls the operation of the AC motor 15 by feedback control.
  • Each of the plurality of current sensors 61 and 62 includes, for example, a Hall element current sensor or a shunt resistance element.
  • the plurality of current sensors 61 and 62 measure the current supplied from the power supply 32 to the AC motor 15 via the inverter circuit unit 51.
  • a three-phase current (U-phase current, V-phase current, and W-phase current) is supplied to the AC electric motor 15, and the plurality of current sensors 61 and 62 measure at least two-phase currents.
  • the current sensor 61 measures the U-phase current and outputs the measured current value i u 1
  • the current sensor 62 measures the V-phase current and outputs the measured current value i v 1.
  • the estimation unit 47 calculates the angular velocity ⁇ 1 (angular velocity of the output shaft 16) of the AC motor 15 by time-differentiating the rotation angle ⁇ 1 of the AC motor 15 measured by the motor rotation measurement unit 27.
  • the second coordinate converter 45 uses the current measurement values i u 1 and i v 1 measured by the plurality of current sensors 61 and 62 based on the rotation angle ⁇ 1 of the AC electric motor 15 measured by the motor rotation measurement unit 27. And the current measurement values id1 and iq1 are calculated. That is, the second coordinate converter 45, the current measured value current measured value i u 1, i v 1 corresponding to the two-phase currents of the three-phase current, corresponding to the magnetic field component (d-axis current) id1 And the current measured value iq1 corresponding to the torque component (q-axis current).
  • the measuring unit 60 has two current sensors 61 and 62 and a second coordinate converter 45.
  • the measuring unit 60 measures the d-axis current and the q-axis current supplied to the AC motor 15. That is, the measured values of the d-axis current and the q-axis current can be obtained by converting the two-phase currents measured by the two current sensors 61 and 62 by the second coordinate converter 45.
  • the hit detection unit 49 detects the presence or absence of a hit operation of the impact mechanism 17. The method of detecting the presence or absence of a striking motion by the striking detection unit 49 will be described in detail later.
  • the parameter designation unit 41 specifies parameters related to the control of the AC motor 15.
  • the parameter specification unit 41 specifies parameters related to the control of the AC motor 15.
  • the parameters to be changed include at least the control gain of the feedback control.
  • the parameter to be changed includes an upper limit value and a lower limit value of the command value (target value) of the speed (angular velocity) of the AC motor 15.
  • the parameter to be changed includes the command value c ⁇ 1 of the angular velocity of the AC motor 15.
  • the parameter designation unit 41 determines the command value c ⁇ 1 of the angular velocity of the AC motor 15.
  • the parameter designation unit 41 sets the command value c ⁇ 1 to, for example, a size corresponding to the pull-in amount of the operation of pulling the trigger volume 29 (see FIG. 2). That is, the parameter designation unit 41 increases the command value c ⁇ 1 of the angular velocity as the pull-in amount increases.
  • the process in which the parameter specifying unit 41 specifies the upper limit value and the lower limit value of the command value of the control gain and the speed of the AC motor 15 will be described later.
  • the timing at which the impact detection unit 49 detects that the impact mechanism 17 has started the impact operation and the impact detection signal b1 is input from the impact detection unit 49 to the parameter designation unit 41 is referred to as the impact start timing.
  • the striking start timing is the timing at which the striking detection unit 49 first detects the striking motion after the AC motor 15 starts rotating.
  • the preceding period includes the period immediately before the striking start timing.
  • the subsequent period includes the period immediately after the hit start timing.
  • the speed control unit 42 generates the command value ciq1 based on the difference between the command value c ⁇ 1 generated by the parameter specification unit 41 and the angular velocity ⁇ 1 calculated by the estimation unit 47.
  • the command value ciq1 is a command value that specifies the magnitude of the torque current (q-axis current) of the AC motor 15.
  • the speed control unit 42 determines the command value ciq1 so as to reduce the difference (deviation) between the command value c ⁇ 1 and the angular velocity ⁇ 1.
  • the magnetic flux control unit 46 generates a command value cid1 based on the angular velocity ⁇ 1 calculated by the estimation unit 47 and the current measurement value iq1 (q-axis current).
  • the command value cid1 is a command value that specifies the magnitude of the weakening magnetic flux current (d-axis current) of the AC motor 15.
  • the command value cid1 generated by the magnetic flux control unit 46 is, for example, a command value for setting the magnitude of the weakening magnetic flux to 0.
  • the magnetic flux control unit 46 may always generate a command value cid1 for making the magnitude of the weakening magnetic flux 0, or if necessary, a command value cid1 for making the magnitude of the weakening magnetic flux larger than 0. May be generated.
  • a negative weakening magnetic flux current flows through the AC motor 15, and the weakening magnetic flux is generated.
  • the current control unit 43 generates the command value cvd1 based on the difference between the command value cyd1 generated by the magnetic flux control unit 46 and the current measurement value id1 calculated by the second coordinate converter 45.
  • the command value cvd1 is a command value that specifies the magnitude of the d-axis voltage of the AC motor 15.
  • the current control unit 43 determines the command value cvd1 so as to reduce the difference (deviation) between the command value cid1 and the current measurement value id1.
  • the current control unit 43 generates the command value cvq1 based on the difference between the command value iq1 generated by the speed control unit 42 and the current measurement value iq1 calculated by the second coordinate converter 45.
  • the command value cvq1 is a command value that specifies the magnitude of the q-axis voltage of the AC motor 15.
  • the current control unit 43 generates the command value cvq1 so as to reduce the difference (deviation) between the command value cit1 and the current measurement value iq1.
  • FIG. 3 is a block diagram showing each configuration of the speed control unit 42 and the current control unit 43 by a transfer function.
  • K P is a proportional gain in FIG. 3
  • K I is the integral gain.
  • E in FIG. 3 is an input deviation.
  • the deviation is the difference between the command value c ⁇ 1 and the angular velocity ⁇ 1.
  • the deviation is the difference between the command value cid1 and the current measurement value id1 when the command value cvd1 is generated, and the command value ciq1 and the current measurement value iq1 when the command value cvq1 is generated.
  • “U” in FIG. 3 is an operation amount.
  • u is an operation amount corresponding to the command value iq1.
  • u is an operation amount corresponding to the command value cvd1 or the command value cvq1.
  • the parameter specification unit 41 specifies the proportional gain and the integral gain of the speed control unit 42.
  • the parameter specification unit 41 has a preceding period before the impact detection unit 49 detects that the impact mechanism 17 has started the impact operation, and after the impact detection unit 49 detects that the impact mechanism 17 has started the impact operation. At least one of the proportional gain and the integrated gain of the speed control unit 42 is made different from the subsequent period of. For example, the parameter specification unit 41 sets the proportional gain of the speed control unit 42 in the preceding period to the first proportional gain, and sets the proportional gain of the speed control unit 42 in the subsequent period to the second proportional gain. The second proportional gain is smaller than the first proportional gain.
  • the parameter designation unit 41 makes the proportional gain in the subsequent period smaller than the proportional gain in the preceding period. Further, for example, the parameter specifying unit 41 sets the integrated gain of the speed control unit 42 in the preceding period as the first integrated gain, and sets the integrated gain of the speed control unit 42 in the subsequent period as the second integrated gain. The second integrated gain is smaller than the first integrated gain. That is, the parameter specification unit 41 makes the integrated gain in the subsequent period smaller than the integrated gain in the preceding period. For example, the second integrated gain is 1/10 times as large as the first integrated gain.
  • the parameter specification unit 41 changes the parameters to be changed (proportional gain and integral gain) at the start of the subsequent period, for example.
  • the proportional gain and the integrated gain of the speed control unit 42 are changed in the speed control unit 42 in the preceding period from the time when the proportional gain and the integrated gain are changed in the subsequent period until the AC electric motor 15 is stopped.
  • the state changed from the proportional gain and the integrated gain of is maintained. That is, when the proportional gain of the speed control unit 42 becomes the second proportional gain, the proportional gain of the speed control unit 42 becomes the second proportional gain until the user sets the pull-in amount of the trigger volume 29 to 0 and the AC electric motor 15 stops. Maintained in gain.
  • the integrated gain of the speed control unit 42 becomes the second integrated gain
  • the integrated gain of the speed control unit 42 becomes the second integral until the user sets the pull-in amount of the trigger volume 29 to 0 and the AC motor 15 stops. Maintained in gain.
  • the parameter designation unit 41 specifies an upper limit value and a lower limit value of the command value of the speed of the AC motor 15.
  • the speed command value is limited to a value between the upper and lower limits.
  • the command value c ⁇ 1 of the angular velocity of the AC motor 15 is controlled, and as a result, the command value of the speed of the AC motor 15 is controlled. That is, the parameter specifying unit 41 designates the upper limit value and the lower limit value of the command value c ⁇ 1 of the angular velocity of the AC motor 15.
  • the parameter specification unit 41 makes the upper limit of the angular velocity command value c ⁇ 1 in the preceding period smaller than the upper limit of the angular velocity command value c ⁇ 1 in the subsequent period.
  • the parameter designation unit 41 sets the upper limit of the command value c ⁇ 1 of the angular velocity in the preceding period to NA1 ⁇ 2 ⁇ / 60 [rad / s] (NA1 is, for example, a value of about 10,000 to 20,000).
  • NA1 is, for example, a value of about 10,000 to 20,000.
  • the parameter specification unit 41 sets the upper limit of the command value c ⁇ 1 of the angular velocity in the subsequent period to NA2 ⁇ 2 ⁇ / 60 [rad / s] (NA2 ⁇ NA1, NA2 is, for example, a value of about 10,000 to 20,000).
  • the parameter specification unit 41 sets the upper limit of the command value of the rotation speed of the AC motor 15 (the rotation speed of the output shaft 16) in the preceding period to NA1 [rpm], and sets the upper limit of the command value of the rotation speed in the subsequent period. Set the value to NA2 [rpm].
  • the lower limit of the command value c ⁇ 1 of the angular velocity is always fixed to 0 [rad / s]. That is, the parameter specifying unit 41 sets the command value c ⁇ 1 of the angular velocity to the first upper limit value (NA1 ⁇ 2 ⁇ / 60 [rad / s]) and the first lower limit value (0 [rad / s]) during the preceding period. Limit to the first limiting range between and.
  • the parameter specification unit 41 sets the command value c ⁇ 1 of the angular velocity to the second upper limit value (NA2 ⁇ 2 ⁇ / 60 [rad / s]) and the second lower limit value (0 [rad / s]).
  • the second limiting range is a range different from the first limiting range.
  • the parameter specification unit 41 changes, for example, the parameter to be changed (the upper limit of the command value c ⁇ 1 of the angular velocity) at the start of the subsequent period.
  • the parameter specification unit 41 changes the upper limit of the angular velocity command value c ⁇ 1 in the subsequent period until the AC motor 15 is stopped, and the upper limit of the angular velocity command value c ⁇ 1 is the command of the angular velocity in the preceding period.
  • the state changed from the upper limit of the value c ⁇ 1 is maintained.
  • the upper limit value of the command value c ⁇ 1 of the angular velocity becomes the second upper limit value
  • the upper limit value of the command value c ⁇ 1 of the angular velocity becomes the second upper limit value until the user sets the pull-in amount of the trigger volume 29 to 0 and the AC motor 15 stops. Is maintained at the upper limit of.
  • the first setting unit 52 and the second setting unit 53 refer to the parameters to be changed in the subsequent period (here, the proportional gain of the speed control unit 42, the integrated gain (second proportional gain, the second integrated gain), and the angular velocity. Accepts an input for determining the upper limit value (second upper limit value) of the command value c ⁇ 1.
  • the first setting unit 52 is, for example, a memory that stores a second proportional gain, a second integrated gain, and a second upper limit value. More specifically, the first setting unit 52 is, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), or the like.
  • the second proportional gain, the second integrated gain, and the second upper limit value are stored in the first setting unit 52, respectively, so that the second proportional gain and the second proportional gain are stored.
  • the integral gain of 2 and the second upper limit are determined.
  • the first setting unit 52 receives an input for determining the parameter to be changed in the subsequent period, at least at the design stage or the manufacturing time of the power tool 1.
  • the parameter specifying unit 41 reads out the second proportional gain, the second integrated gain, and the second upper limit value from the first setting unit 52.
  • the second setting unit 53 uses the parameters to be changed in the subsequent period (here, the proportional gain and the integrated gain (the second proportional gain and the second integrated gain) of the speed control unit 42) and the upper limit value of the command value c ⁇ 1 of the angular velocity. (Second upper limit value)) is accepted by the user for determining. That is, the second setting unit 53 receives an input for determining the parameter to be changed in the subsequent period, at least after the production of the power tool 1.
  • the second setting unit 53 is, for example, an input interface such as a button, a lever, or a touch panel display. The user can switch the second proportional gain from at least two values by operating the second setting unit 53.
  • the user can switch the second integrated gain from at least two values by operating the second setting unit 53. Further, the user can switch the second upper limit value from at least two values by operating the second setting unit 53.
  • "accepting input by the user” means that the second setting unit 53 may have at least a function of accepting the input by the user, and the subject who actually executes the input is other than the user (for example, the manufacturer of the power tool 1). It may be an employee).
  • the first coordinate converter 44 converts the command values cvd1 and cvq1 into coordinates based on the rotation angle ⁇ 1 of the AC motor 15 measured by the motor rotation measuring unit 27, and the command values cv u 1, cv v 1, cv. Calculate w 1. That is, the first coordinate converter 44 sets the command value cvd1 corresponding to the magnetic field component (d-axis voltage) and the command value cvq1 corresponding to the torque component (q-axis voltage) to the command value corresponding to the three-phase voltage. Convert to cv u 1, cv v 1, cv w 1.
  • the command value cv u 1 corresponds to the U-phase voltage
  • the command value cv v 1 corresponds to the V-phase voltage
  • the command value cv w 1 corresponds to the W-phase voltage.
  • the inverter circuit unit 51 supplies the AC motor 15 with a three-phase voltage according to the command values cv u 1, cv v 1, and cv w 1.
  • the control unit 4 controls the electric power supplied to the AC motor 15 by controlling the inverter circuit unit 51 by PWM (Pulse Width Modulation).
  • the AC motor 15 is driven by the electric power (three-phase voltage) supplied from the inverter circuit section 51 to generate rotational power.
  • control unit 4 controls the angular velocity of the AC motor 15 so that the angular velocity of the AC motor 15 becomes the angular velocity corresponding to the command value c ⁇ 1 generated by the parameter designation unit 41.
  • the step-out detection unit 48 steps out the AC motor 15 based on the current measurement values id1 and iq1 acquired from the second coordinate converter 45 and the command values cvd1 and cvq1 obtained from the current control unit 43. To detect. When step-out is detected, the step-out detection unit 48 transmits a stop signal cs1 to the inverter circuit unit 51 to stop the power supply from the inverter circuit unit 51 to the AC motor 15.
  • FIGS. 4 to 7 are examples of temporal transitions of each parameter when the power tool 1 is operated.
  • the control contents of the AC motor 15 by the control unit 4 are different from each other in FIGS. 4 to 7.
  • the “battery current” refers to the output current of the power supply 32 of the power tool 1
  • the “battery voltage” refers to the output voltage of the power supply 32.
  • iq1 refers to the measured current value iq1
  • id1 refers to the measured current value id1.
  • r1 is the rotation speed of the AC motor 15.
  • the command value cN1 is a value obtained by converting the command value c ⁇ 1 of the angular velocity of the AC motor 15 into the rotation speed.
  • FIG. 5 since the command value cN1 of the rotation speed substantially overlaps with the rotation speed r1, the illustration of the command value cN1 of the rotation speed is omitted.
  • the command value cid1 (see FIG. 1) of the d-axis current is always 0. Note that FIG. 4 shows an operation example when the wood screw is driven into the member by using the power tool 1. Further, FIGS. 5 to 7 show an operation example when the target (not limited to the wood screw) is driven into the member by using the power tool 1.
  • the hit detection unit 49 detects the presence or absence of a hit operation of the impact mechanism 17. Specifically, the impact detection unit 49 determines the impact mechanism 17 when the time required from the satisfaction of one of the following first and second conditions to the satisfaction of the other is within a predetermined time. Outputs the detection result (striking detection signal b1) that is performing a striking operation. In other cases, the impact detection unit 49 outputs a detection result that the impact mechanism 17 is not performing the impact operation.
  • the first condition is that the absolute value of the current measurement value id1 calculated by the second coordinate converter 45 is larger than the predetermined d-axis threshold value Idt1 (see FIG. 4, hereinafter simply referred to as the threshold value Idt1).
  • the second condition is that the absolute value of the current measurement value iq1 calculated by the second coordinate converter 45 is larger than the predetermined q-axis threshold value Iqt1 (see FIG. 4, hereinafter simply referred to as the threshold value Iqt1).
  • the difference between the timing when the first condition regarding the current measurement value id1 of the d-axis current is satisfied and the timing when the second condition regarding the current measurement value iq1 of the q-axis current is satisfied is within a predetermined time. In the case of, it is detected that the striking motion is being performed. That is, at this time, the impact detection unit 49 derives a determination result that the impact mechanism 17 is performing the impact operation.
  • the threshold value Idt1 and the threshold value Iqt1 are recorded in advance in, for example, the memory of the microcontroller constituting the control unit 4.
  • the pulsating components of the d-axis current and the q-axis current and the pulsating components of the corresponding current measurement values id1 and iq1 increase as compared with before the striking operation is started.
  • the absolute value of the current measured value id1 may be larger than the threshold value Idt1
  • the absolute value of the current measured value iq1 may be larger than the threshold value Iqt1. Therefore, the presence or absence of a striking operation can be detected by comparing the measured current values id1 and iq1 with the threshold values Idt1 and Iqt1.
  • the predetermined time is, for example, about 100 ms, 50 ms, or 10 ms.
  • the current measurement values id1 and iq1 are output at predetermined sampling cycles, respectively.
  • the impact detection unit 49 determines whether or not a predetermined time has elapsed by counting the number of times the current measurement values id1 and iq1 are output, for example.
  • the predetermined time may coincide with the sampling period of the current measurement value id1 or iq1.
  • the impact detection unit 49 satisfies both the first condition and the second condition at a certain sampling timing of the current measurement values id1 and iq1. At that time, it may be detected that a striking motion is being performed.
  • the impact detection unit 49 detects the presence or absence of the impact operation based on at least the current measurement value id1 of the d-axis current. Further, the impact detection unit 49 of the present embodiment detects the presence or absence of an impact operation based on both the current measurement value id1 of the d-axis current and the current measurement value iq1 of the q-axis current. More specifically, the impact detection unit 49 corresponds to at least one (here, both) of the absolute value of the current measurement value id1 of the d-axis current and the absolute value of the current measurement value iq1 of the q-axis current. When it is larger than the threshold value, it is detected that the striking motion is being performed.
  • the threshold value corresponding to the absolute value of the current measured value id1 is the threshold value Idt1
  • the threshold value corresponding to the absolute value of the current measured value iq1 is the threshold value Iqt1.
  • the start of the batting operation is started.
  • the impact detection unit 49 detects the start of the impact operation based on at least one of the current measurement value id1 of the d-axis current and the current measurement value iq1 of the q-axis current.
  • the impact detection unit 49 starts detecting the presence or absence of the impact operation of the impact mechanism 17 after a predetermined mask period Tm1 (see FIG. 4) has elapsed from the start of the AC motor 15 (when the rotation starts).
  • Tm1 mask period
  • the impact detection unit 49 starts detecting the presence or absence of the impact operation of the impact mechanism 17 after a predetermined mask period Tm1 (see FIG. 4) has elapsed from the start of the AC motor 15 (when the rotation starts).
  • the AC motor 15 starts rotating when the user pulls the trigger volume 29 of the power tool 1 at the time point T1.
  • the rotation speed r1 gradually increases according to the pull-in amount with respect to the trigger volume 29.
  • the pull-in amount with respect to the trigger volume 29 is the maximum. Therefore, the rotation speed r1 increases up to the upper limit within the adjustable range.
  • the impact mechanism 17 starts a striking operation, and the striking detection unit 49 detects this. That is, in the vicinity of the time point T2, the absolute value of the current measured value id1 exceeds the threshold value Idt1, and at about the same time, the absolute value of the current measured value iq1 exceeds the threshold value Iqt1.
  • the parameter specification unit 41 changes the magnitude of the proportional gain of the speed control unit 42 from the first proportional gain to the second proportional gain to change the proportional gain. Make it smaller. Further, in this case, the parameter specifying unit 41 reduces the integrated gain by changing the magnitude of the integrated gain of the speed control unit 42 from the first integrated gain to the second integrated gain. Further, in this case, the parameter designation unit 41 reduces the upper limit value by changing the upper limit value of the command value of the speed of the AC motor 15 from the first upper limit value to the second upper limit value. That is, as shown in FIGS. 5 to 7, the control unit 4 reduces the rotation speed r1 of the AC motor 15 after the time point T2. In FIG.
  • the parameter designation unit 41 is the upper limit of the command values of the proportional gain, the integral gain, and the speed of the AC motor 15 after a predetermined standby time elapses after the impact detection unit 49 detects the impact operation. Change the value.
  • FIG. 4 shows each parameter of the power tool 1 before the standby time elapses. Therefore, at each time point shown in FIG. 4, the control unit 4 has not yet performed control to reduce the rotation speed of the AC motor 15.
  • Example of operation from start to stop of rotation In FIGS. 5 to 7, the magnitude of the first proportional gain is common and is larger than 0. In FIG. 5, the magnitude of the second proportional gain is equal to the magnitude of the first proportional gain. In FIGS. 6 and 7, the magnitude of the second proportional gain is 1/10 times the magnitude of the first proportional gain.
  • the magnitude of the integrated gain (first integrated gain) of the speed control unit 42 in the preceding period is Kc.
  • the upper limit value (first upper limit value) of the command value of the angular velocity of the AC motor 15 in the preceding period is NA1 ⁇ 2 ⁇ / 60 [rad / s]. That is, in FIGS. 5 to 7, the magnitude of the first integrated gain is common, and the first upper limit value is also common.
  • the magnitude of the integrated gain (second integrated gain) of the speed control unit 42 in the subsequent period is Kc. That is, the second integrated gain is equal to the first integrated gain.
  • the rotation speed r1 shown in FIG. 5 is the AC motor 15 when the upper limit value (second upper limit value) of the command value c ⁇ 1 of the angular velocity of the AC motor 15 in the subsequent period is NA2 ⁇ 2 ⁇ / 60 [rad / s].
  • the rotation speed r2 shown in FIG. 5 is the AC motor 15 when the first upper limit value and the second upper limit value are equal to each other, that is, when the second upper limit value is NA1 ⁇ 2 ⁇ / 60 [rad / s]. It is a reference value of the rotation speed of.
  • the magnitude of the first integrated gain is Kc
  • the magnitude of the second integrated gain is Kc / 10.
  • the rotation speed r1 shown in FIG. 6 is the rotation speed of the AC motor 15 when the second upper limit value is NA2 ⁇ 2 ⁇ / 60 [rad / s].
  • the rotation speed r1 shown in FIG. 7 is the rotation speed of the AC motor 15 when the second upper limit value is NA3 ⁇ 2 ⁇ / 60 [rad / s] (NA2 ⁇ NA3 ⁇ NA1 holds).
  • the AC motor 15 starts rotating when the user pulls the trigger volume 29 of the power tool 1 at the time point T1.
  • the rotation speed r1 gradually increases according to the pull-in amount with respect to the trigger volume 29.
  • the pull-in amount with respect to the trigger volume 29 is the maximum. Therefore, the rotation speed r1 increases up to the upper limit within the adjustable range.
  • the impact mechanism 17 starts a striking operation, and the striking detection unit 49 detects this. Therefore, after the time point T2, the command value c ⁇ 1 of the angular velocity becomes the second upper limit value. That is, after the time point T2, the command value cN1 of the rotation speed becomes NA2 [rpm] in FIG.
  • the second proportional gain, the second integrated gain, and the second upper limit are determined so that the rotation speed r1 and the q-axis current after the striking operation is started are both stable.
  • Will be done. 5 to 7 are examples of trial results in the design stage of the power tool 1.
  • the pulsation of the rotation speed r1 is relatively small and the rotation speed r1 tends to be stable, but the pulsation of the current measurement value iq1 of the q-axis current tends to be relatively large and the current measurement value iq1 tends to be unstable. ..
  • FIG. 5 the pulsation of the rotation speed r1 is relatively small and the rotation speed r1 tends to be stable, but the pulsation of the current measurement value iq1 of the q-axis current tends to be relatively large and the current measurement value iq1 tends to be unstable. ..
  • FIG. 5 the pulsation of the rotation speed r1 is relatively small and the rotation speed r1 tends to
  • the pulsation of the rotation speed r1 is relatively large and the rotation speed r1 tends to be unstable, but the pulsation of the current measurement value iq1 is relatively small and the current measurement value iq1 tends to be stable.
  • both the pulsation of the rotation speed r1 and the current measurement value iq1 are relatively small, and the rotation speed r1 and the current measurement value iq1 tend to be stable. Therefore, in the design stage of the power tool 1, the magnitude of the second proportional gain is determined to be 1/10 times the first proportional gain, for example, as in the case of FIG. 7, based on the above trial results. , The magnitude of the second integrated gain is determined to be Kc / 10, and the second upper limit is determined to be NA3 ⁇ 2 ⁇ / 60 [rad / s].
  • the control unit 4 changes the control gain in the subsequent period from the control gain in the preceding period. More specifically, the control unit 4 changes at least one of the proportional gain and the integrated gain as the control gain from the preceding period to the succeeding period. Therefore, finer control of the AC motor 15 can be performed as compared with the case where the control gain in the preceding period and the control gain in the succeeding period are equal. Further, the control unit 4 changes the upper limit value of the command value c ⁇ 1 (speed command value) of the angular velocity in the subsequent period from the upper limit value of the command value c ⁇ 1 of the angular velocity in the preceding period. Change from the upper limit of 1 to the second upper limit.
  • the AC motor 15 can be controlled more finely.
  • the second proportional gain, the second integrated gain, and the second upper limit value are determined according to the specifications of the impact mechanism 17, so that the alternating current after the striking operation is started is determined.
  • the rotation speed of the electric motor 15 and the q-axis current can be stabilized.
  • the magnitude of the striking force can be stabilized.
  • the load on the impact mechanism 17 can be reduced.
  • the second proportional gain is made smaller than the first proportional gain
  • the second integrated gain is made smaller than the first integrated gain
  • the first upper limit is obtained.
  • Reducing the second upper limit value as compared with the above leads to stabilization of the rotation speed and the q-axis current of the AC motor 15. Further, typically, changing the proportional gain of the control gain has a greater effect of stabilizing the magnitude of the striking force as compared with changing the integrated gain.
  • control gain in the subsequent period smaller than the control gain in the preceding period, the current capacity of the circuit component of the control unit 4 can be made relatively small.
  • the impact is achieved. It is possible to stabilize the rotation speed and the q-axis current of the AC motor 15 after the operation is started.
  • Examples of the type of load include wood screws and bolts.
  • the impact detection unit 49 of the present embodiment detects the presence or absence of an impact operation based on at least one of the current measurement values id1 and iq1. Therefore, the power tool 1 does not have to measure the output current (battery current) of the power supply 32 or the like in order to detect the presence or absence of the striking operation.
  • the power tool 1 of the present embodiment employs vector control that controls the rotation speed of the AC motor 15 and the current supplied to the AC motor 15 based on the current measurement values id1 and iq1 of the d-axis current and the q-axis current. doing. In vector control, the AC motor 15 can be controlled without measuring the output current of the power supply 32.
  • the power tool 1 of the present embodiment has an advantage that it is possible to control the AC motor 15 and detect the presence or absence of a striking operation even if the power tool 1 of the present embodiment does not include a circuit for measuring the output current of the power supply 32. .. As a result, the area and dimensions of the circuit provided in the power tool 1 can be reduced, and the cost required for the circuit can be reduced.
  • the power tool 1 may include a circuit for measuring the output current of the power supply 32. Further, the impact detection unit 49 may detect the presence or absence of the impact operation based on the output current of the power supply 32.
  • the impact detection unit 49 detects the presence or absence of the impact operation based on at least one of the current measurement values id1 and iq1, so that the output current (U-phase current, V-phase current or W-phase current) of the inverter circuit unit 51 is detected.
  • the detection accuracy may be higher than when detecting the presence or absence of a striking motion based on.
  • 8A and 8B show an example of the measured value of the output current of the inverter circuit unit 51.
  • the impact detection unit 49 detects that the impact operation is being performed.
  • the impact mechanism 17 actually starts the striking operation at the time point T10, whereby the pulsating component is superimposed on the measured value.
  • the time point T10 is not near the peak point of the waveform, even if the pulsating component is superimposed on the measured value, the measured value is still below the threshold Th1 and it is not detected that the striking operation is being performed.
  • the measured value becomes larger than the threshold value Th1, and it is detected that the striking operation is being performed. That is, it is detected that the striking motion is performed at the time point T11 delayed from the time point T10 which is the start point of the striking motion.
  • the impact mechanism 17 actually starts the striking operation at the time point T13, whereby the pulsating component is superimposed on the measured value.
  • the measured value becomes larger than the threshold value Th1 at the time point T12 before the time point T13, and it is detected that the striking operation is performed.
  • the time point T13 is not near the peak point of the waveform, even if the pulsating component is superimposed on the measured value, the measured value is still below the threshold Th1 and it is not detected that the striking operation is being performed.
  • the presence / absence of the striking operation when the presence / absence of the striking operation is detected based on the output current of the inverter circuit unit 51, the presence / absence of the striking operation may be erroneously detected when the pulsating component is not superimposed near the peak point of the waveform.
  • the possibility of accurately detecting the presence or absence of the striking motion can be increased. is there.
  • the power tool 1 of the present embodiment has The accuracy of detecting the presence or absence of a striking motion may be improved.
  • FIG. 9 shows an operation example when the bolt is driven into the member by using the power tool 1.
  • the magnitudes of the AC components of at least one (here, both) of the current measurement value id1 of the d-axis current and the current measurement value iq1 of the q-axis current correspond to each other.
  • the impact detection unit 49 evaluates the size of the AC component based on the effective value of the AC component.
  • the AC component of the current measurement values id1 and iq1 has a frequency equal to or higher than the rotation speed of the output shaft 21 of the power tool 1. Similar to the embodiment, the impact detection unit 49 starts detecting the presence or absence of the impact operation of the impact mechanism 17 after the mask period Tm1 has elapsed from the start of the AC motor 15.
  • the hit detection unit 49 obtains the effective values Ed1 and Eq1 by performing the following calculation.
  • the current measurement values id1 and iq1 may include a DC component and an AC component, respectively.
  • RMS is an effective value of the measured current values id1 and iq1 within a predetermined period.
  • AVG is the average value of the current measurement values id1 and iq1 within the above-mentioned predetermined period.
  • the AC component of the current measured value id1 is obtained. Further, by subtracting the square of the average value of the current measured value iq1 of the q-axis current from the square of the effective value of the current measured value iq1 of the q-axis current and then taking the square root, the AC component of the current measured value iq1 can be obtained. The effective value Eq1 is obtained.
  • the impact detection unit 49 detects the presence or absence of the impact operation of the impact mechanism 17 by using the effective values Ed1 and Eq1 thus obtained. That is, in the impact detection unit 49, the impact mechanism 17 performs the impact operation when the time required from the satisfaction of one of the following two conditions to the satisfaction of the other is within a predetermined time. The detection result is output. One of the two conditions is that the effective value Ed1 is larger than the first threshold value. The other of the two conditions is that the effective value Eq1 is larger than the second threshold. In FIGS. 4 and 9, for example, the impact mechanism 17 starts a striking operation near the time point T2, and the striking detection unit 49 detects this.
  • control unit 4 may be provided with a filter circuit including a high-pass filter, and the effective values Ed1 and Eq1 of the AC component may be acquired by passing the current measurement values id1 and iq1 through the filter circuit.
  • the impact detection unit 49 of the present modification 1 detects the presence or absence of the impact operation by monitoring the magnitudes of the effective values Ed1 and Eq1. Therefore, according to the present modification 1, even if the magnitude of the DC components of the current measurement values id1 and iq1 does not increase at the start of striking, or even when the amount of increase is relatively small, the presence or absence of striking operation is detected. Is possible.
  • the impact detection unit 49 may evaluate the magnitude of the AC component by the amplitude of the AC component. That is, the impact detection unit 49 compares at least one of the amplitude of the AC component of the current measurement value id1 and the amplitude of the AC component of the current measurement value iq1 with the corresponding threshold value instead of the effective values Ed1 and Eq1. May be good. More specifically, in the impact detection unit 49, at least one of the amplitude of the AC component of the current measurement value id1 of the d-axis current and the amplitude of the AC component of the current measurement value iq1 of the q-axis current is larger than the corresponding threshold value. If it is large, it may be detected that a striking motion is being performed.
  • the impact detection unit 49 of the second modification gives different weights to the first determination result regarding the current measurement value id1 of the d-axis current and the second determination result regarding the current measurement value iq1 of the q-axis current. Based on the 1st determination result and the 2nd determination result, the presence or absence of a striking motion is detected. However, as in the embodiment, the impact detection unit 49 starts detecting the presence or absence of the impact operation of the impact mechanism 17 after the mask period Tm1 has elapsed from the start of the AC motor 15.
  • the first determination result is, for example, a comparison result between the current measurement value id1 and the threshold value Idt1.
  • the second determination result is, for example, a comparison result between the measured current value iq1 and the threshold value Iqt1.
  • the impact detection unit 49 makes the weighting of the first determination result larger than the weighting of the second determination result.
  • the impact detection unit 49 detects that the impact operation is performed regardless of the magnitude of the current measurement value iq1. That is, in the impact detection unit 49, the determination result that the absolute value of the current measurement value id1 is larger than the threshold value Idt1 is processed with a higher importance than the determination result regarding the current measurement value iq1.
  • the determination result that the absolute value of the current measurement value id1 is larger than the threshold value Idt1 is derived, the detection result of the presence or absence of the striking operation is determined regardless of the magnitude of the current measurement value iq1.
  • the impact detection unit 49 indicates that the absolute value of the current measurement value id1 is larger than the predetermined threshold value and the absolute value of the current measurement value iq1 is the threshold value Iqt1. If it is larger than, it is detected that a striking motion is being performed.
  • the predetermined threshold value is smaller than the threshold value Idt1.
  • the batting detection unit 49 may make the weighting of the second determination result larger than the weighting of the first determination result.
  • the size ratio between the weighting of the first determination result and the weighting of the second determination result is determined, for example, at the design stage of the power tool 1. The greater the change in the magnitude of the d-axis current when comparing before and after the striking operation, the greater the weighting of the first determination result may be. Similarly, the larger the change in the magnitude of the q-axis current when comparing before and after the striking operation, the greater the weighting of the second determination result may be. Further, the smaller the fluctuation of the average value of the current measurement value id1, the larger the weighting of the first determination result may be. Similarly, the smaller the fluctuation of the average value of the current measured value iq1, the greater the weighting of the second determination result may be.
  • the impact detection unit 49 of the third modification detects the presence or absence of an impact operation based on the waveform of at least one of the current measurement value id1 of the d-axis current and the current measurement value iq1 of the q-axis current. More specifically, the impact detection unit 49 compares the current measured value id1 with the model waveform of the d-axis current, and compares the current measured value iq1 with the model waveform of the q-axis current. The impact detection unit 49 performs a striking operation when at least one of the matching rate between the current measured value id1 and the model waveform and the matching rate between the current measured value iq1 and the model waveform is equal to or greater than a predetermined value. Detects the presence.
  • the model waveform of the d-axis current and the model waveform of the q-axis current are, for example, waveform patterns of a period including at least one of immediately before and immediately after the striking operation. That is, the impact detection unit 49 detects the presence or absence of the impact operation by detecting the feature amount of the waveforms of the current measurement values id1 and iq1 immediately before and immediately after the impact operation by comparing with the model waveform. ..
  • the model waveform of the d-axis current and the model waveform of the q-axis current are recorded in advance in, for example, the memory of the microcontroller constituting the control unit 4.
  • the impact detection unit 49 may detect the presence or absence of an impact operation by using different model waveforms according to parameters such as the magnitude of the torque applied to the AC motor 15 and the rotation speed of the AC motor 15.
  • the impact detection unit 49 of the present modification 4 performs an impact operation when the conditions relating to at least one of the current measurement value id1 of the d-axis current and the current measurement value iq1 of the q-axis current are satisfied more than a predetermined number of times. Detect that it has been damaged. That is, since the current measurement values id1 and iq1 are output at predetermined sampling cycles, the impact detection unit 49 outputs the current measurement values id1 and / or iq1 each time the current measurement values id1 and iq1 are output. It is determined whether or not the above conditions are satisfied. When the number of times that the above conditions are satisfied exceeds the predetermined number of times, the hitting detection unit 49 detects that the hitting operation is being performed. When the AC motor 15 is stopped, the count is reset (returns to 0).
  • the above condition is, for example, satisfying the first condition and the second condition mentioned in the embodiment.
  • the first condition is that the absolute value of the current measured value id1 is larger than the threshold value Idt1.
  • the second condition is that the absolute value of the measured current value iq1 is larger than the threshold value Iqt1.
  • the impact detection unit 49 starts detecting the presence or absence of the impact operation of the impact mechanism 17 after the mask period Tm1 has elapsed from the start of the AC motor 15.
  • the hitting detection unit 49 may detect that the hitting operation is being performed when the above conditions are satisfied more than a predetermined number of times within a predetermined time. For example, the batting detection unit 49 may reset the count of the number of times the above condition is satisfied every time a certain time elapses.
  • the impact detection unit 49 of the present modification 5 performs a impact operation when the conditions relating to at least one of the current measurement value id1 of the d-axis current and the current measurement value iq1 of the q-axis current are satisfied for a specified time or longer. Detects that.
  • the above condition is, for example, satisfying the first condition and the second condition mentioned in the embodiment.
  • the impact detection unit 49 starts detecting the presence or absence of the impact operation of the impact mechanism 17 after the mask period Tm1 has elapsed from the start of the AC motor 15.
  • the hit detection unit 49 detects, for example, that a hit operation is being performed when the above conditions are continuously satisfied for a specified time. “Continued” means, for example, that the length of time required from satisfying the above conditions at a certain point in time to the next satisfying the above conditions is equal to or less than a predetermined threshold value. That is, “continuously” does not only allow the above conditions to be constantly satisfied, but also allows the case where the above conditions are temporarily not satisfied.
  • the impact detection unit 49 detects that the impact operation is performed when the above conditions are intermittently satisfied and the total length of time for which the above conditions are satisfied reaches the specified time. You may.
  • the parameter specification unit 41 is not limited to a configuration in which the command value c ⁇ 1 is indirectly changed by changing the upper limit value or the lower limit value of the command value c ⁇ 1 of the angular velocity when the preceding period is changed to the succeeding period, and the command value is not limited to the command value. You may change c ⁇ 1 directly.
  • the parameter designation unit 41 is not limited to changing the control gain of the speed control unit 42 when the preceding period changes to the succeeding period, and the control gain of the current control unit 43 may be changed. Further, the parameter specifying unit 41 may change both the control gain of the speed control unit 42 and the control gain of the current control unit 43 when the preceding period is changed to the succeeding period. For example, the parameter designation unit 41 may make the control gain of the current control unit 43 in the subsequent period smaller than the control gain of the current control unit 43 in the preceding period.
  • the control unit 4 waits for a predetermined time to elapse and then changes the parameter to be changed (the upper limit value of the command value c ⁇ 1 of the control gain and the angular velocity). ) May be changed.
  • the control unit 4 When the impact detection unit 49 detects the end of the impact operation of the impact mechanism 17 in the subsequent period, the control unit 4 returns the parameter to be changed (the upper limit of the command value c ⁇ 1 of the control gain and the angular velocity) to the value in the preceding period. You may. Alternatively, at this time, the control unit 4 may set the parameter to be changed to a value different from the value in the preceding period and the value in the succeeding period.
  • the function of accepting the input for determining the parameter to be changed in the subsequent period may not be distributed to the first setting unit 52 and the second setting unit 53, and may be integrated into any one of the configurations. ..
  • the power tool 1 may be able to use any one type of battery from a plurality of types of batteries as the power source 32.
  • the user can switch the second proportional gain, the second integrated gain, and the second upper limit value according to the type of the battery by operating the second setting unit 53. That is, by switching the second proportional gain, the second integrated gain, and the second upper limit value according to the battery specifications and the like, it is possible to stabilize the striking operation when using each battery.
  • the threshold value (threshold value Idt1, Iqt1, etc.) used for detecting the presence or absence of the striking motion of the impact mechanism 17 is at least one of the elapsed time since the AC motor 15 starts rotating, the current measurement value id1, and the current measurement value iq1. It may change according to the situation. For example, the threshold value may change according to the average value of the current measurement value id1 or the average value of the current measurement value iq1.
  • the threshold value may change depending on the magnitude of the difference between the current measured value id1 and the command value pid1 or the difference between the current measured value iq1 and the command value iq1.
  • the threshold value Idt1 may be a value obtained by adding a value in the command value cid1.
  • the threshold value Iqt1 may be a value obtained by adding a value in the command value ciq1.
  • the impact detection unit 49 may detect the presence or absence of an impact operation based on only one of the current measurement values id1 and iq1.
  • the presence or absence of the striking operation is detected when the average value of the current measured value id1 is stable and when the change in the current measured value id1 is large before and after the start of the striking operation. It will be easy.
  • the presence or absence of the striking operation is detected when the average value of the current measured value iq1 is stable and when the change in the current measured value iq1 is large before and after the start of the striking operation. It will be easy.
  • the striking motion is performed when the striking motion is not performed. It may be possible to reduce the possibility of being affected.
  • the difference between the timing when the first condition regarding the current measurement value id1 of the d-axis current is satisfied and the timing when the second condition regarding the current measurement value iq1 of the q-axis current is satisfied is within a predetermined time. In the case of, it is detected that the striking motion is being performed.
  • the hitting detection unit 49 may detect that the hitting operation is performed when the first condition and the second condition are satisfied regardless of the difference between the two timings. .. As a result, it is possible to reduce the possibility that the impact detection unit 49 continues to output the detection result that the impact operation is not performed even though the impact operation is performed.
  • the striking detection unit 49 may detect the presence or absence of a striking motion by combining two or more of the striking motion presence / absence detecting means shown in the embodiment and each modification.
  • the power tool 1 includes an electric motor (AC motor 15), an impact mechanism 17, a impact detection unit 49, and a measurement unit 60.
  • the impact mechanism 17 performs a striking operation in which power is obtained from an electric motor to generate a striking force.
  • the hit detection unit 49 detects the presence or absence of a hit operation.
  • the measuring unit 60 measures at least one of the d-axis current and the q-axis current supplied to the electric motor.
  • the impact detection unit 49 has a striking operation based on at least one of the d-axis current measurement value (current measurement value id1) and the q-axis current measurement value (current measurement value iq1) measured by the measurement unit 60. Is detected.
  • the impact detection unit 49 measures the d-axis current (current measurement value id1) and the q-axis current measurement value (current measurement value iq1). The start of the striking motion is detected based on at least one of them.
  • the power tool 1 can control the electric motor (AC motor 15) according to the start of the striking operation.
  • the power tool 1 includes the control unit 4 in the second aspect.
  • the control unit 4 has a impact detection unit 49.
  • the control unit 4 feedback-controls the operation of the electric motor (AC motor 15).
  • the control unit 4 changes the control gain of the feedback control.
  • the impact detection unit 49 performs a striking operation based on the measured value of the d-axis current (current measured value id1). Detects the presence or absence of.
  • the impact detection unit 49 has a d-axis current measured value (current measured value id1) and a q-axis current measured value (current measured value iq1). ) And the presence or absence of striking motion is detected.
  • the impact detection unit 49 has the first determination result regarding the measured value of the d-axis current (current measured value id1) and the measured value of the q-axis current.
  • the second determination result regarding (current measurement value iq1) is weighted differently, and the presence or absence of a striking motion is detected based on the weighted first determination result and the second determination result.
  • the impact detection unit 49 measures the timing at which the condition regarding the measured value of the d-axis current (current measured value id1) is satisfied and the measurement of the q-axis current. When the difference from the timing at which the condition regarding the value (current measured value iq1) is satisfied is within a predetermined time, it is detected that the striking operation is performed.
  • the impact detection unit 49 has the absolute value of the measured value of the d-axis current (current measured value id1) and q. When at least one of the absolute value of the measured value of the shaft current (current measured value iq1) is larger than the corresponding threshold value (threshold Idt1, Iqt1), it is detected that the striking operation is performed.
  • the presence or absence of a striking motion can be detected by a simple process.
  • the impact detection unit 49 has the measured value of the d-axis current (current measured value id1) and the q-axis current. When the magnitude of at least one of the measured values (current measured value iq1) and the AC component is larger than the corresponding threshold value, it is detected that the striking operation is performed.
  • the impact detection unit 49 has the measured value of the d-axis current (current measured value id1) and the q-axis current. The presence or absence of a striking motion is detected based on the waveform of at least one of the measured values (current measured value iq1).
  • the impact detection unit 49 has the measured value of the d-axis current (current measured value id1) and the q-axis current. When the condition relating to at least one of the measured values (current measured value iq1) is satisfied a predetermined number of times of two or more times, it is detected that the striking operation is performed.
  • the impact detection unit 49 has the measured value of the d-axis current (current measured value id1) and the q-axis current. When the condition relating to at least one of the measured values (current measured value iq1) is satisfied for a specified time or longer, it is detected that the striking operation is being performed.
  • Configurations other than the first aspect are not essential configurations for the power tool 1, and can be omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

本開示は、インパクト機構の打撃動作の有無を検知する新たな手段を備える電動工具を提供することを目的とする。電動工具(1)は、電動機(交流電動機15)と、インパクト機構と、打撃検知部(49)と、測定部(60)と、を備える。インパクト機構は、電動機から動力を得て打撃力を発生させる打撃動作を行う。打撃検知部(49)は、打撃動作の有無を検知する。測定部(60)は、電動機に供給されるd軸電流及びq軸電流のうち少なくとも一方を測定する。打撃検知部(49)は、測定部(60)で測定されたd軸電流の測定値(電流測定値id1)及びq軸電流の測定値(電流測定値iq1)のうち少なくとも一方に基づいて、打撃動作の有無を検知する。

Description

電動工具
 本開示は一般に電動工具に関し、より詳細には、インパクト機構を備える電動工具に関する。
 特許文献1に記載の電動工具は、モータと、インパクト機構と、制御手段を有する。モータは、半導体スイッチング素子をPWM制御することにより駆動される。インパクト機構は、モータによって回転されるハンマによってアンビルを打撃又は回転させる。制御手段は、モータの回転を制御する。そして、インパクト機構による複数回の打撃が継続したらデューティ比を高い値から低い値に変更した状態でモータを駆動する。
国際公開第2014/162862号公報
 本開示は、インパクト機構の打撃動作の有無を検知する新たな手段を備える電動工具を提供することを目的とする。
 本開示の一態様に係る電動工具は、電動機と、インパクト機構と、打撃検知部と、測定部と、を備える。前記インパクト機構は、前記電動機から動力を得て打撃力を発生させる打撃動作を行う。前記打撃検知部は、前記打撃動作の有無を検知する。前記測定部は、前記電動機に供給されるd軸電流及びq軸電流のうち少なくとも一方を測定する。前記打撃検知部は、前記測定部で測定された前記d軸電流の測定値及び前記q軸電流の測定値のうち少なくとも一方に基づいて、前記打撃動作の有無を検知する。
図1は、一実施形態に係る電動工具のブロック図である。 図2は、同上の電動工具の概略図である。 図3は、同上の電動工具の要部のブロック図である。 図4は、同上の電動工具の第1の動作例を示すグラフである。 図5は、同上の電動工具の第2の動作例を示すグラフである。 図6は、同上の電動工具の第3の動作例を示すグラフである。 図7は、同上の電動工具の第4の動作例を示すグラフである。 図8A、図8Bは、同上の電動工具のインバータ回路部の出力電流の測定値を示すグラフである。 図9は、変形例1に係る電動工具の動作例を示すグラフである。
 以下、実施形態に係る電動工具1について、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、下記の実施形態において説明する図2は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。
 (1)概要
 本実施形態の電動工具1は、例えば、インパクトドライバ又はインパクトレンチとして用いられる。電動工具1は、図1、図2に示すように、交流電動機15(電動機)と、インパクト機構17と、制御部4と、を備えている。交流電動機15は、例えばブラシレスモータである。特に、本実施形態の交流電動機15は、同期電動機であり、より詳細には、永久磁石同期電動機(PMSM(Permanent Magnet Synchronous Motor))である。インパクト機構17は、交流電動機15から動力を得て打撃力を発生させる打撃動作を行う。制御部4は、交流電動機15の動作をフィードバック制御する。制御部4は、打撃検知部49を有している。打撃検知部49は、インパクト機構17の打撃動作の有無を検知する。
 ここで、インパクト機構17が打撃動作を開始する前の期間を、先行期間と称す。インパクト機構17が打撃動作を開始したことを打撃検知部49が検知してからの期間を、後続期間と称す。後続期間に、制御部4は、変更対象パラメータを、先行期間における変更対象パラメータから変更する。変更対象パラメータは、制御部4によるフィードバック制御の制御ゲインを含む。すなわち、制御部4は、打撃検知部49が打撃動作の開始を検知すると、フィードバック制御の制御ゲインを変化させる。これにより、先行期間における制御ゲインと後続期間における制御ゲインとが等しい場合と比較して、交流電動機15のより細かな制御が可能となる。本実施形態では、一例として、制御部4はPI制御を行うので、制御ゲインは、比例ゲインと、積分ゲインと、を含む。本実施形態の制御部4は、後続期間における比例ゲインを先行期間における比例ゲインとは異ならせることと、後続期間における積分ゲインを先行期間における積分ゲインとは異ならせることとのうち少なくとも一方を行う。
 なお、先行期間から後続期間に移行した際に制御部4が変更する制御ゲインは、比例ゲイン及び積分ゲインに限定されない。制御部4がPD制御又はPID制御を行う場合は、制御ゲインには微分ゲインが含まれる。先行期間から後続期間に移行した際に、制御部4は、比例ゲインと、積分ゲインと、微分ゲインとのうち少なくとも1つを変更すればよい。
 また、交流電動機15は、永久磁石を有する回転子と、コイルを有する固定子と、を含んでいる。制御部4は、交流電動機15に供給される弱め磁束電流(d軸電流)とトルク電流(q軸電流)とを独立に制御するベクトル制御を行う。弱め磁束電流とは、永久磁石の磁束を弱める磁束(弱め磁束)をコイルに発生させる電流である。言い換えると、弱め磁束電流は、永久磁石の磁束の向きに対して反対向きの磁束をコイルに発生させる電流である。
 また、電動工具1は、交流電動機15(電動機)と、インパクト機構17と、打撃検知部49と、測定部60と、を備えている。測定部60は、交流電動機15に供給されるd軸電流及びq軸電流のうち少なくとも一方を測定する。本実施形態では、測定部60は、d軸電流とq軸電流との両方を測定する。打撃検知部49は、測定部60で測定されたd軸電流の測定値(電流測定値id1)及びq軸電流の測定値(電流測定値iq1)のうち少なくとも一方に基づいて、インパクト機構17の打撃動作の有無を検知する。これにより、電動工具1の電源32の出力電流の測定値等を用いることなく打撃動作の有無を検知することができる。
 ここで、「測定部60で測定されたd軸電流の測定値(電流測定値id1)及びq軸電流の測定値(電流測定値iq1)のうち少なくとも一方に基づいて」とは、次の意味である。すなわち、測定部60が電流測定値id1、iq1のうち電流測定値id1のみを測定する場合には、「測定部60で測定された電流測定値id1に基づいて」という意味である。一方で、測定部60が電流測定値id1、iq1のうち電流測定値iq1のみを測定する場合には、「測定部60で測定された電流測定値iq1に基づいて」という意味である。また、測定部60が電流測定値id1、iq1の両方を測定する場合には、「測定部60で測定された電流測定値id1のみに基づいて、又は、電流測定値iq1のみに基づいて、あるいは、電流測定値id1、iq1の両方に基づいて」という意味である。
 (2)電動工具
 図2に示すように、電動工具1は、交流電動機15と、電源32と、駆動伝達部18と、インパクト機構17と、ソケット23と、トリガボリューム29と、制御部4と、トルク測定部26と、ビット回転測定部25と、モータ回転測定部27と、を備えている。また、電動工具1は、先端工具を更に備えている。
 インパクト機構17は、出力軸21を有している。出力軸21は、交流電動機15から伝達された駆動力により回転する部分である。ソケット23は、出力軸21に固定されており、先端工具が着脱自在に取り付けられる部分である。電動工具1は、先端工具を交流電動機15の駆動力で駆動する工具である。先端工具(ビットとも言う)は、例えば、ドライバ又はドリル等である。各種の先端工具のうち用途に応じた先端工具が、ソケット23に取り付けられて用いられる。なお、出力軸21に直接に先端工具が装着されてもよい。
 交流電動機15は、先端工具を駆動する駆動源である。交流電動機15は、回転動力を出力する出力軸16を有している。電源32は、交流電動機15を駆動する電流を供給する交流電源である。電源32は、例えば、1又は複数の2次電池を含む。駆動伝達部18は、交流電動機15の回転動力を調整して所望のトルクを出力する。駆動伝達部18は、出力部である駆動軸22を備えている。
 駆動伝達部18の駆動軸22は、インパクト機構17に接続されている。インパクト機構17は、駆動伝達部18を介して受け取った交流電動機15の回転動力をパルス状のトルクに変換してインパクト力を発生する。インパクト機構17は、ハンマ19と、アンビル20と、出力軸21と、ばね24と、を備えている。ハンマ19は、駆動伝達部18の駆動軸22にカム機構を介して取り付けられている。アンビル20はハンマ19に結合されており、ハンマ19と一体に回転する。ばね24は、ハンマ19をアンビル20側に押している。アンビル20は、出力軸21と一体に形成されている。なお、アンビル20は、出力軸21とは別体に形成されて出力軸21に固定されていてもよい。
 出力軸21に所定の大きさ以上の負荷(トルク)がかかっていないときには、カム機構により連結された駆動軸22とハンマ19とが一体に回転し、さらにハンマ19とアンビル20とが一体に回転するので、アンビル20と一体に形成された出力軸21が回転する。一方で、出力軸21に所定の大きさ以上の負荷がかかった時には、ハンマ19がカム機構による規制を受けながらばね24に抗して後退し(つまり、アンビル20から離れ)、ハンマ19とアンビル20との結合が外れた時点で、ハンマ19は回転しながら前進してアンビル20に回転方向の打撃衝撃を与え、出力軸21を回転させる。このように、インパクト機構17は、ハンマ19とアンビル20との衝突を繰り返す打撃動作を行うことで、ハンマ19からアンビル20を介して出力軸21に打撃衝撃を加えることを繰り返す。
 トリガボリューム29は、交流電動機15の回転を制御するための操作を受け付ける操作部である。トリガボリューム29を引く操作により、交流電動機15のオンオフを切替可能である。また、トリガボリューム29を引く操作の引込み量で、出力軸21の回転速度、つまり交流電動機15の回転速度を調整可能である。上記引込み量が大きいほど、交流電動機15の回転速度が速くなる。制御部4は、トリガボリューム29を引く操作の引込み量に応じて、交流電動機15を回転又は停止させ、また、交流電動機15の回転速度を制御する。この電動工具1では、先端工具がソケット23に取り付けられる。そして、トリガボリューム29への操作によって交流電動機15の回転速度が制御されることで、先端工具の回転速度が制御される。
 なお、実施形態の電動工具1はソケット23を備えることで、先端工具を用途に応じて交換可能であるが、先端工具が交換可能であることは必須ではない。例えば、電動工具1は、特定の先端工具のみ用いることができる電動工具であってもよい。
 トルク測定部26は、交流電動機15の動作トルクを測定する。トルク測定部26は、例えば、ねじり歪みの検出が可能な磁歪式歪センサである。磁歪式歪センサは、交流電動機15の出力軸16にトルクが加わることにより発生する歪みに応じた透磁率の変化を、交流電動機15の非回転部分に設置したコイルで検出し、歪みに比例した電圧信号を出力する。
 ビット回転測定部25は、出力軸21の回転角を測定する。ここでは、出力軸21の回転角は、先端工具(ビット)の回転角に等しい。ビット回転測定部25としては、例えば、光電式エンコーダ又は磁気式エンコーダを採用することができる。
 モータ回転測定部27は、交流電動機15の回転角を測定する。モータ回転測定部27としては、例えば、光電式エンコーダ又は磁気式エンコーダを採用することができる。
 (3)制御部
 制御部4は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、制御部4の少なくとも一部の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。
 図1に示すように、制御部4は、パラメータ指定部41と、速度制御部42と、電流制御部43と、第1の座標変換器44と、第2の座標変換器45と、磁束制御部46と、推定部47と、脱調検出部48と、打撃検知部49と、を有している。また、電動工具1は、インバータ回路部51と、第1設定部52と、第2設定部53と、複数(図1では2つ)の電流センサ61、62と、を備えている。制御部4は、インバータ回路部51と共に用いられ、フィードバック制御により交流電動機15の動作を制御する。
 複数の電流センサ61、62はそれぞれ、例えば、ホール素子電流センサ又はシャント抵抗素子を含んでいる。複数の電流センサ61、62は、電源32からインバータ回路部51を介して交流電動機15に供給される電流を測定する。ここで、交流電動機15には、3相電流(U相電流、V相電流及びW相電流)が供給されており、複数の電流センサ61、62は、少なくとも2相の電流を測定する。図1では、電流センサ61がU相電流を測定して電流測定値i1を出力し、電流センサ62がV相電流を測定して電流測定値i1を出力する。
 推定部47は、モータ回転測定部27で測定された交流電動機15の回転角θ1を時間微分して、交流電動機15の角速度ω1(出力軸16の角速度)を算出する。
 第2の座標変換器45は、複数の電流センサ61、62で測定された電流測定値i1、i1を、モータ回転測定部27で測定された交流電動機15の回転角θ1に基づいて座標変換し、電流測定値id1、iq1を算出する。すなわち、第2の座標変換器45は、3相電流のうちの2相の電流に対応する電流測定値i1、i1を、磁界成分(d軸電流)に対応する電流測定値id1と、トルク成分(q軸電流)に対応する電流測定値iq1とに変換する。
 測定部60は、2つの電流センサ61、62と、第2の座標変換器45と、を有している。測定部60は、交流電動機15に供給されるd軸電流及びq軸電流を測定する。すなわち、2つの電流センサ61、62で測定された2相の電流が第2の座標変換器45で変換されることで、d軸電流及びq軸電流の測定値が得られる。
 打撃検知部49は、インパクト機構17の打撃動作の有無を検知する。打撃検知部49による打撃動作の有無の検知方法について、詳細は後述する。
 パラメータ指定部41は、交流電動機15の制御に関わるパラメータを指定する。指定されるパラメータのうち少なくとも一部の変更対象パラメータは、インパクト機構17の打撃動作の開始を検知した打撃検知部49からパラメータ指定部41に打撃検知信号b1が入力されると、パラメータ指定部41により変更される。変更対象パラメータは、フィードバック制御の制御ゲインを少なくとも含む。また、変更対象パラメータは、交流電動機15の速度(角速度)の指令値(目標値)の上限値と下限値とを含む。さらに、変更対象パラメータは、交流電動機15の角速度の指令値cω1を含む。
 パラメータ指定部41は、交流電動機15の角速度の指令値cω1を決定する。パラメータ指定部41は指令値cω1を、例えば、トリガボリューム29(図2参照)を引く操作の引込み量に応じた大きさにする。すなわち、パラメータ指定部41は、上記引込み量が大きいほど、角速度の指令値cω1を大きくする。パラメータ指定部41が制御ゲイン及び交流電動機15の速度の指令値の上限値と下限値とを指定する処理については、後述する。
 インパクト機構17が打撃動作を開始したことを打撃検知部49が検知し、打撃検知部49からパラメータ指定部41に打撃検知信号b1が入力されるタイミングを、打撃開始タイミングと称す。打撃開始タイミングは、交流電動機15が回転を始めた後に打撃検知部49が打撃動作を最初に検知するタイミングである、先行期間は、打撃開始タイミングの直前の期間を含む。後続期間は、打撃開始タイミングの直後の期間を含む。
 速度制御部42は、パラメータ指定部41で生成された指令値cω1と推定部47で算出された角速度ω1との差分に基づいて、指令値ciq1を生成する。指令値ciq1は、交流電動機15のトルク電流(q軸電流)の大きさを指定する指令値である。速度制御部42は、指令値cω1と角速度ω1との差分(偏差)を小さくするように指令値ciq1を決定する。
 磁束制御部46は、推定部47で算出された角速度ω1と、電流測定値iq1(q軸電流)と、に基づいて、指令値cid1を生成する。指令値cid1は、交流電動機15の弱め磁束電流(d軸電流)の大きさを指定する指令値である。
 磁束制御部46で生成される指令値cid1は、例えば、弱め磁束の大きさを0にするための指令値である。磁束制御部46は、常時弱め磁束の大きさを0にするための指令値cid1を生成してもよいし、必要に応じて、弱め磁束の大きさを0よりも大きくするための指令値cid1を生成してもよい。弱め磁束電流の指令値cid1が0より大きくなると、交流電動機15にマイナスの弱め磁束電流が流れ、弱め磁束が発生する。
 電流制御部43は、磁束制御部46で生成された指令値cid1と第2の座標変換器45で算出された電流測定値id1との差分に基づいて、指令値cvd1を生成する。指令値cvd1は、交流電動機15のd軸電圧の大きさを指定する指令値である。電流制御部43は、指令値cid1と電流測定値id1との差分(偏差)を小さくするように指令値cvd1を決定する。
 また、電流制御部43は、速度制御部42で生成された指令値ciq1と第2の座標変換器45で算出された電流測定値iq1との差分に基づいて、指令値cvq1を生成する。指令値cvq1は、交流電動機15のq軸電圧の大きさを指定する指令値である。電流制御部43は、指令値ciq1と電流測定値iq1との差分(偏差)を小さくするように指令値cvq1を生成する。
 図3は、速度制御部42及び電流制御部43のそれぞれの構成を伝達関数で表したブロック図である。図3中の「K」は比例ゲイン、「K」は積分ゲインである。図3中の「e」は、入力される偏差である。速度制御部42では、偏差は、指令値cω1と角速度ω1との差分である。電流制御部43では、偏差は、指令値cvd1を生成する場合には指令値cid1と電流測定値id1との差分であり、指令値cvq1を生成する場合には指令値ciq1と電流測定値iq1との差分である。図3中の「u」は、操作量である。速度制御部42では、「u」は、指令値ciq1に対応する操作量である。電流制御部43では、「u」は、指令値cvd1又は指令値cvq1に対応する操作量である。s領域における操作量は、式u=(K+K/s)eにより表される。
 パラメータ指定部41は、速度制御部42の比例ゲイン及び積分ゲインを指定する。パラメータ指定部41は、インパクト機構17が打撃動作を開始したことを打撃検知部49が検知する前の先行期間と、インパクト機構17が打撃動作を開始したことを打撃検知部49が検知してからの後続期間とで、速度制御部42の比例ゲイン及び積分ゲインのうち少なくとも一方を異ならせる。例えば、パラメータ指定部41は、先行期間における速度制御部42の比例ゲインを第1の比例ゲインにし、後続期間における速度制御部42の比例ゲインを第2の比例ゲインにする。第2の比例ゲインは、第1の比例ゲインよりも小さい。すなわち、パラメータ指定部41は、後続期間における比例ゲインを、先行期間における比例ゲインよりも小さくする。また、例えば、パラメータ指定部41は、先行期間における速度制御部42の積分ゲインを第1の積分ゲインにし、後続期間における速度制御部42の積分ゲインを第2の積分ゲインにする。第2の積分ゲインは、第1の積分ゲインよりも小さい。すなわち、パラメータ指定部41は、後続期間における積分ゲインを、先行期間における積分ゲインよりも小さくする。例えば、第2の積分ゲインは、第1の積分ゲインの1/10倍の大きさである。
 パラメータ指定部41は、例えば、後続期間の開始時点に変更対象パラメータ(比例ゲイン及び積分ゲイン)を変更する。パラメータ指定部41は、後続期間に比例ゲイン及び積分ゲインを変更してから、交流電動機15が停止するまでの間を通して、速度制御部42の比例ゲイン及び積分ゲインが、先行期間における速度制御部42の比例ゲイン及び積分ゲインから変更された状態を維持する。すなわち、速度制御部42の比例ゲインが第2の比例ゲインになると、ユーザがトリガボリューム29の引込み量を0にして交流電動機15が停止するまで、速度制御部42の比例ゲインが第2の比例ゲインに維持される。また、速度制御部42の積分ゲインが第2の積分ゲインになると、ユーザがトリガボリューム29の引込み量を0にして交流電動機15が停止するまで、速度制御部42の積分ゲインが第2の積分ゲインに維持される。
 また、パラメータ指定部41は、交流電動機15の速度の指令値の上限値と下限値とを指定する。速度の指令値は、上限値と下限値との間の値に制限される。本実施形態では、交流電動機15の角速度の指令値cω1が制御されることで、結果的に交流電動機15の速度の指令値が制御される。すなわち、パラメータ指定部41は、交流電動機15の角速度の指令値cω1の上限値と下限値とを指定する。
 パラメータ指定部41は、先行期間における角速度の指令値cω1の上限値を、後続期間における角速度の指令値cω1の上限値よりも小さくする。例えば、パラメータ指定部41は、先行期間における角速度の指令値cω1の上限値を、NA1×2π/60[rad/s](NA1は例えば10000~20000程度の値)にする。パラメータ指定部41は、後続期間における角速度の指令値cω1の上限値を、NA2×2π/60[rad/s](NA2<NA1、NA2は例えば10000~20000程度の値)にする。言い換えると、パラメータ指定部41は、先行期間における交流電動機15の回転数(出力軸16の回転数)の指令値の上限値を、NA1[rpm]にし、後続期間における回転数の指令値の上限値を、NA2[rpm]にする。本実施形態では、角速度の指令値cω1の下限値は常に0[rad/s]に固定されている。すなわち、パラメータ指定部41は、先行期間に、角速度の指令値cω1を、第1の上限値(NA1×2π/60[rad/s])と第1の下限値(0[rad/s])との間の第1の制限範囲に制限する。パラメータ指定部41は、後続期間に、角速度の指令値cω1を、第2の上限値(NA2×2π/60[rad/s])と第2の下限値(0[rad/s])との間の第2の制限範囲に制限する。第2の制限範囲は、第1の制限範囲とは異なる範囲である。
 パラメータ指定部41は、例えば、後続期間の開始時点に変更対象パラメータ(角速度の指令値cω1の上限値)を変更する。パラメータ指定部41は、後続期間に角速度の指令値cω1の上限値を変更してから、交流電動機15が停止するまでの間を通して、角速度の指令値cω1の上限値が、先行期間における角速度の指令値cω1の上限値から変更された状態を維持する。すなわち、角速度の指令値cω1の上限値が第2の上限値になると、ユーザがトリガボリューム29の引込み量を0にして交流電動機15が停止するまで、角速度の指令値cω1の上限値が第2の上限値に維持される。
 第1設定部52及び第2設定部53は、後続期間における変更対象パラメータ(ここでは、速度制御部42の比例ゲイン、積分ゲイン(第2の比例ゲイン、第2の積分ゲイン)及び、角速度の指令値cω1の上限値(第2の上限値))を決定するための入力を受け付ける。
 第1設定部52は、例えば、第2の比例ゲイン、第2の積分ゲイン及び第2の上限値を記憶するメモリである。より詳細には、第1設定部52は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)又はEEPROM(Electrically Erasable Programmable Read Only Memory)等である。電動工具1の設計段階又は製造工程等において、第1設定部52に第2の比例ゲイン、第2の積分ゲイン及び第2の上限値がそれぞれ記憶されることで、第2の比例ゲイン、第2の積分ゲイン及び第2の上限値が決定される。すなわち、第1設定部52は、少なくとも電動工具1の設計段階又は製造時において、後続期間における変更対象パラメータを決定するための入力を受け付ける。電動工具1の動作時に、パラメータ指定部41は、第1設定部52から第2の比例ゲイン、第2の積分ゲイン及び第2の上限値を読み出す。
 第2設定部53は、後続期間における変更対象パラメータ(ここでは、速度制御部42の比例ゲイン、積分ゲイン(第2の比例ゲイン、第2の積分ゲイン)及び、角速度の指令値cω1の上限値(第2の上限値))を決定するための、ユーザによる入力を受け付ける。すなわち、第2設定部53は、少なくとも電動工具1の製造後において、後続期間における変更対象パラメータを決定するための入力を受け付ける。第2設定部53は、例えば、釦、レバー、又はタッチパネルディスプレイ等の入力インターフェースである。ユーザは、第2設定部53を操作することで、第2の比例ゲインを少なくとも2つの値の中から切り替えることができる。また、ユーザは、第2設定部53を操作することで、第2の積分ゲインを少なくとも2つの値の中から切り替えることができる。また、ユーザは、第2設定部53を操作することで、第2の上限値を少なくとも2つの値の中から切り替えることができる。ここで、「ユーザによる入力を受け付ける」とは、第2設定部53に少なくともユーザによる入力を受け付ける機能があればよく、実際に入力を実行する主体は、ユーザ以外(例えば電動工具1のメーカの従業員)であってもよい。
 第1の座標変換器44は、指令値cvd1、cvq1を、モータ回転測定部27で測定された交流電動機15の回転角θ1に基づいて座標変換し、指令値cv1、cv1、cv1を算出する。すなわち、第1の座標変換器44は、磁界成分(d軸電圧)に対応する指令値cvd1と、トルク成分(q軸電圧)に対応する指令値cvq1とを、3相電圧に対応する指令値cv1、cv1、cv1に変換する。指令値cv1はU相電圧に、指令値cv1はV相電圧に、指令値cv1はW相電圧に対応する。
 インバータ回路部51は、指令値cv1、cv1、cv1に応じた3相電圧を交流電動機15に供給する。制御部4は、インバータ回路部51をPWM(Pulse Width Modulation)制御することにより、交流電動機15に供給される電力を制御する。
 交流電動機15は、インバータ回路部51から供給された電力(3相電圧)により駆動され、回転動力を発生させる。
 この結果、制御部4は、交流電動機15の角速度が、パラメータ指定部41で生成された指令値cω1に対応した角速度となるように交流電動機15の角速度を制御する。
 脱調検出部48は、第2の座標変換器45から取得した電流測定値id1、iq1と、電流制御部43から取得した指令値cvd1、cvq1と、に基づいて、交流電動機15の脱調を検出する。脱調が検出された場合は、脱調検出部48は、インバータ回路部51に停止信号cs1を送信して、インバータ回路部51から交流電動機15への電力供給を停止させる。
 (4)打撃検知
 図4~図7はそれぞれ、電動工具1を動作させる場合の各パラメータの時間的な推移の一例である。制御部4による交流電動機15の制御内容は、図4~図7において互いに異なる。図5~図7において、「電池電流」は、電動工具1の電源32の出力電流を指し、「電池電圧」は、電源32の出力電圧を指す。図4~図7において、「iq1」は、電流測定値iq1を指し、「id1」は、電流測定値id1を指す。また、図4~図7において、「r1」は、交流電動機15の回転数である。図4、図6、図7には、交流電動機15の回転数の指令値cN1を図示した。指令値cN1は、交流電動機15の角速度の指令値cω1を回転数に換算した値である。図5では、回転数の指令値cN1が回転数r1に略重なるので、回転数の指令値cN1の図示を省略した。図示は省略するが、図4~図7では、d軸電流の指令値cid1(図1参照)は常に0である。なお、図4は、電動工具1を用いて木ねじを部材に打ち込む場合の動作例を示している。また、図5~図7は、電動工具1を用いて対象(木ねじに限らない)を部材に打ち込む場合の動作例を示している。
 打撃検知部49は、インパクト機構17の打撃動作の有無を検知する。具体的には、打撃検知部49は、次の第1条件及び第2条件のうち一方が満たされてから、他方が満たされるまでに要した時間が所定の時間以内の場合に、インパクト機構17が打撃動作をしているという検知結果(打撃検知信号b1)を出力する。また、打撃検知部49は、それ以外の場合に、インパクト機構17が打撃動作をしていないという検知結果を出力する。第1条件は、第2の座標変換器45で算出された電流測定値id1の絶対値が所定のd軸閾値Idt1(図4参照。以下、単に閾値Idt1と称す)よりも大きいことである。第2条件は、第2の座標変換器45で算出された電流測定値iq1の絶対値が所定のq軸閾値Iqt1(図4参照。以下、単に閾値Iqt1と称す)よりも大きいことである。言い換えると、打撃検知部49は、d軸電流の電流測定値id1に関する第1条件が満たされるタイミングと、q軸電流の電流測定値iq1に関する第2条件が満たされるタイミングとの差が所定時間内の場合に、打撃動作が行われていることを検知する。つまり、このとき打撃検知部49は、インパクト機構17が打撃動作を行っているという判定結果を導出する。閾値Idt1及び閾値Iqt1は、例えば、制御部4を構成するマイクロコントローラのメモリに予め記録されている。
 インパクト機構17が打撃動作を開始すると、打撃動作を開始する前よりもd軸電流及びq軸電流の脈動成分並びにこれらに対応する電流測定値id1、iq1の脈動成分が増加する。脈動成分が増加することにより、電流測定値id1の絶対値は閾値Idt1よりも大きくなることがあり、また、電流測定値iq1の絶対値は閾値Iqt1よりも大きくなることがある。そのため、電流測定値id1、iq1と閾値Idt1、Iqt1との比較を行うことで、打撃動作の有無を検知することができる。
 所定の時間は、例えば、100ms、50ms又は10ms程度である。電流測定値id1、iq1はそれぞれ、所定のサンプリング周期ごとに出力される。打撃検知部49は、例えば、電流測定値id1、iq1が出力された回数をカウントすることで、所定の時間が経過したか否かを判定する。一例として、所定の時間は、電流測定値id1又はiq1のサンプリング周期に一致していてもよい。電流測定値id1、iq1の各々のサンプリングのタイミングが同期している場合に、打撃検知部49は、電流測定値id1、iq1のあるサンプリングのタイミングで第1条件と第2条件とが共に満たされた際に、打撃動作が行われていることを検知してもよい。
 このように、打撃検知部49は、少なくともd軸電流の電流測定値id1に基づいて、打撃動作の有無を検知する。また、本実施形態の打撃検知部49は、d軸電流の電流測定値id1と、q軸電流の電流測定値iq1との両方に基づいて、打撃動作の有無を検知する。更に詳細には、打撃検知部49は、d軸電流の電流測定値id1の絶対値と、q軸電流の電流測定値iq1の絶対値とのうち少なくとも一方(ここでは、両方)が、対応する閾値よりも大きい場合に、打撃動作が行われていることを検知する。電流測定値id1の絶対値に対応する閾値は、閾値Idt1であり、電流測定値iq1の絶対値に対応する閾値は、閾値Iqt1である。
 打撃動作が行われていないことを打撃検知部49が検知している状態から、打撃動作が行われていることを打撃検知部49が検知している状態となることは、打撃動作の開始を検知することに相当する。つまり、打撃検知部49は、d軸電流の電流測定値id1及びq軸電流の電流測定値iq1のうち少なくとも一方に基づいて、打撃動作の開始を検知する。
 打撃検知部49は、交流電動機15の始動時(回転開始時)から所定のマスク期間Tm1(図4参照)が経過した後に、インパクト機構17の打撃動作の有無の検知を開始する。これにより、交流電動機15の始動時にq軸電流の電流測定値iq1が一時的に増加する場合であっても、打撃動作による電流測定値iq1の増加を始動時の電流測定値iq1の増加と区別して検知できる。
 図4~図7ではそれぞれ、時点T1においてユーザが電動工具1のトリガボリューム29を引く操作をすることで、交流電動機15が回転を開始する。その後、トリガボリューム29に対する引込み量に応じて、回転数r1は徐々に増加する。ここでは、トリガボリューム29に対する引込み量は最大である。そのため、回転数r1は、調整可能な範囲内で上限まで増加する。時点T2付近において、インパクト機構17が打撃動作を開始し、これを打撃検知部49が検知する。すなわち、時点T2付近において、電流測定値id1の絶対値が閾値Idt1を超え、略同時に、電流測定値iq1の絶対値が閾値Iqt1を超える。
 打撃検知部49が打撃動作の開始を検知すると、パラメータ指定部41は、速度制御部42の比例ゲインの大きさを第1の比例ゲインから第2の比例ゲインに変更することで、比例ゲインを小さくする。また、この場合にパラメータ指定部41は、速度制御部42の積分ゲインの大きさを第1の積分ゲインから第2の積分ゲインに変更することで、積分ゲインを小さくする。さらに、この場合にパラメータ指定部41は、交流電動機15の速度の指令値の上限値を第1の上限値から第2の上限値に変更することで、上限値を小さくする。すなわち、図5~図7に示すように、制御部4は、時点T2以降に、交流電動機15の回転数r1を低下させる。なお、図4では、パラメータ指定部41は、打撃検知部49が打撃動作を検知した後、所定の待機時間が経過してから、比例ゲイン、積分ゲイン及び交流電動機15の速度の指令値の上限値を変更する。図4は、待機時間が経過する前の電動工具1の各パラメータを示している。したがって、図4に示す各時点においては、制御部4は未だ交流電動機15の回転数を低下させる制御を行っていない。
 (5)回転開始から停止までの動作例
 図5~図7において、第1の比例ゲインの大きさは共通であり、0より大きい。図5では、第2の比例ゲインの大きさは第1の比例ゲインの大きさと等しい。図6、図7では、第2の比例ゲインの大きさは、第1の比例ゲインの1/10倍である。
 図5~図7において、先行期間における速度制御部42の積分ゲイン(第1の積分ゲイン)の大きさをKcとする。また、図5~図7では、先行期間における交流電動機15の角速度の指令値の上限値(第1の上限値)がNA1×2π/60[rad/s]である。すなわち、図5~図7において、第1の積分ゲインの大きさは共通であり、第1の上限値も共通である。
 図5では、後続期間における速度制御部42の積分ゲイン(第2の積分ゲイン)の大きさはKcである。すなわち、第2の積分ゲインは第1の積分ゲインと等しい。図5に示す回転数r1は、後続期間における交流電動機15の角速度の指令値cω1の上限値(第2の上限値)がNA2×2π/60[rad/s]である場合の交流電動機15の回転数である。図5に示す回転数r2は、第1の上限値と第2の上限値とが等しい場合、すなわち、第2の上限値がNA1×2π/60[rad/s]である場合の交流電動機15の回転数の参考値である。
 図6、図7では、第1の積分ゲインの大きさがKcであるのに対して、第2の積分ゲインの大きさはKc/10である。図6に示す回転数r1は、第2の上限値がNA2×2π/60[rad/s]である場合の交流電動機15の回転数である。図7に示す回転数r1は、第2の上限値がNA3×2π/60[rad/s](NA2<NA3<NA1が成り立つ)である場合の交流電動機15の回転数である。
 図5~図7ではそれぞれ、時点T1においてユーザが電動工具1のトリガボリューム29を引く操作をすることで、交流電動機15が回転を開始する。その後、トリガボリューム29に対する引込み量に応じて、回転数r1は徐々に増加する。ここでは、トリガボリューム29に対する引込み量は最大である。そのため、回転数r1は、調整可能な範囲内で上限まで増加する。時点T2付近において、インパクト機構17が打撃動作を開始し、これを打撃検知部49が検知する。そのため、時点T2以降では、角速度の指令値cω1は第2の上限値となる。すなわち、時点T2以降、図5では回転数の指令値cN1がNA2[rpm]となり、図6では指令値cN1がNA2[rpm]となり、図7では指令値cN1がNA3[rpm]となる。時点T3において、ユーザがトリガボリューム29の引込み量を0にすることで、交流電動機15が停止する。
 電動工具1の設計段階では、打撃動作が開始されてからの回転数r1及びq軸電流がいずれも安定するように、第2の比例ゲイン、第2の積分ゲイン及び第2の上限値が決定される。図5~図7は、電動工具1の設計段階における試行結果の一例である。例えば、図5では、回転数r1の脈動が比較的小さく回転数r1が安定傾向であるが、q軸電流の電流測定値iq1の脈動が比較的大きく電流測定値iq1が不安定な傾向である。図6では、回転数r1の脈動が比較的大きく回転数r1が不安定な傾向であるが、電流測定値iq1の脈動が比較的小さく電流測定値iq1が安定傾向である。図7では、回転数r1及び電流測定値iq1のいずれの脈動も比較的小さく、回転数r1及び電流測定値iq1が安定傾向である。そのため、電動工具1の設計段階において、上記の試行結果に基づいて、例えば、図7の場合と同様に、第2の比例ゲインの大きさは第1の比例ゲインの1/10倍に決定され、第2の積分ゲインの大きさはKc/10に決定され、第2の上限値がNA3×2π/60[rad/s]に決定される。
 以上説明した本実施形態の電動工具1では、制御部4は、後続期間における制御ゲインを、先行期間における制御ゲインから変更する。より詳細には、制御部4は、先行期間から後続期間にかけて、制御ゲインとしての比例ゲインと積分ゲインとのうち少なくとも一方を変更する。そのため、先行期間における制御ゲインと後続期間における制御ゲインとが等しい場合と比較して、交流電動機15のより細かな制御ができる。また、制御部4は、後続期間における角速度の指令値cω1(速度指令値)の上限値を、先行期間における角速度の指令値cω1の上限値から変更する、より詳細には、上記上限値を第1の上限値から第2の上限値に変更する。そのため、交流電動機15の更に細かな制御ができる。例えば、電動工具1の設計段階において、インパクト機構17の仕様に応じて第2の比例ゲイン、第2の積分ゲイン及び第2の上限値を決定することで、打撃動作が開始されてからの交流電動機15の回転数及びq軸電流の安定化を図ることができる。これにより、打撃力の大きさの安定化を図ることができる。そして、打撃力の大きさの安定化により、インパクト機構17にかかる負担を低減させることができる。典型的には、第1の比例ゲインと比較して第2の比例ゲインを小さくすること、第1の積分ゲインと比較して第2の積分ゲインを小さくすること、及び、第1の上限値と比較して第2の上限値を小さくすることが、交流電動機15の回転数及びq軸電流の安定化につながる。また、典型的には、制御ゲインのうち比例ゲインを変更することが、積分ゲインを変更することと比較して、打撃力の大きさを安定化させる効果が大きい。
 また、後続期間における制御ゲインを先行期間における制御ゲインよりも小さくすることで、制御部4の回路部品の電流容量を比較的小さくすることができる。
 また、後続期間における制御ゲイン及び交流電動機15の速度の指令値の上限値を低下させることで、インパクト機構17に過大な力が加わる可能性を低減できる。
 また、例えば、先端工具の種類、重量及び寸法、並びに、作業対象である負荷の種類等に応じて第2の比例ゲイン、第2の積分ゲイン及び第2の上限値を決定することで、打撃動作が開始されてからの交流電動機15の回転数及びq軸電流の安定化を図ることができる。負荷の種類としては、例えば、木ねじ及びボルトが挙げられる。ユーザは、第2設定部53を操作することで、先端工具の種類、重量及び寸法、並びに、負荷の種類等に応じて第2の比例ゲイン、第2の積分ゲイン及び第2の上限値を切り替えることもできる。
 また、本実施形態の打撃検知部49は、電流測定値id1、iq1のうち少なくとも一方に基づいて、打撃動作の有無を検知する。そのため、電動工具1は、打撃動作の有無を検知するために、電源32の出力電流(電池電流)等を測定しなくてもよい。特に、本実施形態の電動工具1では、d軸電流及びq軸電流の電流測定値id1、iq1に基づいて交流電動機15の回転数及び交流電動機15に供給される電流を制御するベクトル制御を採用している。ベクトル制御では、電源32の出力電流を測定しなくても交流電動機15の制御が可能である。したがって、本実施形態の電動工具1は、電源32の出力電流を測定するための回路を備えていなくても、交流電動機15の制御と打撃動作の有無の検知とが可能であるという利点がある。これにより、電動工具1に備えられる回路の面積及び寸法の低減、並びに、回路に要するコストの低減を図ることができる。ただし、電動工具1は、電源32の出力電流を測定する回路を備えていてもよい。また、打撃検知部49は、電源32の出力電流に更に基づいて、打撃動作の有無を検知してもよい。
 また、打撃検知部49が電流測定値id1、iq1のうち少なくとも一方に基づいて打撃動作の有無を検知することで、インバータ回路部51の出力電流(U相電流、V相電流又はW相電流)に基づいて打撃動作の有無を検知する場合よりも検知精度が高まることがある。図8A、図8Bに、インバータ回路部51の出力電流の測定値の一例を示す。ここで、インバータ回路部51の出力電流の測定値が所定の閾値Th1よりも大きい場合に、打撃動作が行われていることが打撃検知部49により検知されるという場合を仮定する。
 図8Aでは、実際には時点T10においてインパクト機構17が打撃動作を開始し、これにより測定値に脈動成分が重畳される。しかしながら、時点T10は波形のピーク点付近ではないため、測定値に脈動成分が重畳されてもなお測定値は閾値Th1以下であり、打撃動作が行われていることが検知されない。時点T11では、波形のピーク点付近において測定値に脈動成分が重畳されるので、測定値は閾値Th1よりも大きくなり、打撃動作が行われていることが検知される。すなわち、打撃動作の開始時点である時点T10から遅れた時点T11に、打撃動作が行われていることが検知される。
 図8Bでは、実際には時点T13においてインパクト機構17が打撃動作を開始し、これにより測定値に脈動成分が重畳される。しかしながら、インバータ回路部51の出力電流の波形の乱れにより、時点T13よりも前の時点T12において測定値は閾値Th1よりも大きくなり、打撃動作が行われていることが検知される。一方で、時点T13は波形のピーク点付近ではないため、測定値に脈動成分が重畳されてもなお測定値は閾値Th1以下であり、打撃動作が行われていることが検知されない。
 つまり、インバータ回路部51の出力電流に基づいて打撃動作の有無を検知する場合は、脈動成分が波形のピーク点付近に重畳されない際には、打撃動作の有無を誤検知する可能性がある。これに対して、本実施形態のように電流測定値id1、iq1のうち少なくとも一方に基づいて打撃動作の有無を検知することで、打撃動作の有無を正確に検知できる可能性を高められることがある。すなわち、インバータ回路部51の出力電流の脈動成分の検知精度よりも、d軸電流及びq軸電流の脈動成分の検知精度の方が高くなることがあるので、本実施形態の電動工具1では、打撃動作の有無の検知精度を向上させられることがある。
 (実施形態の変形例1)
 次に、実施形態の変形例1について、図4、図9を参照して説明する。なお、図9は、電動工具1を用いてボルトを部材に打ち込む場合の動作例を示している。
 本変形例1の打撃検知部49は、d軸電流の電流測定値id1と、q軸電流の電流測定値iq1とのうち少なくとも一方(ここでは、両方)の交流成分の大きさが、対応する閾値よりも大きい場合に、打撃動作が行われていることを検知する。ここでは、打撃検知部49は、交流成分の大きさを、交流成分の実効値により評価する。電流測定値id1、iq1の交流成分は、電動工具1の出力軸21の回転数以上の周波数を有する。実施形態と同様に、打撃検知部49は、交流電動機15の始動時からマスク期間Tm1が経過した後に、インパクト機構17の打撃動作の有無の検知を開始する。
 図4、図9に、電流測定値id1の交流成分の実効値Ed1、及び、電流測定値iq1の交流成分の実効値Eq1を図示する。インパクト機構17が打撃動作を開始すると、打撃動作を開始する前よりも交流成分の実効値Ed1、Eq1が増加することがある。そのため、実効値Ed1と実効値Ed1に対応する閾値との比較、及び、実効値Eq1と実効値Eq1に対応する閾値との比較を行うことで、打撃動作の有無を検知することができる。
 打撃検知部49は、具体的には、次の演算を行うことで、実効値Ed1、Eq1を求める。
Figure JPOXMLDOC01-appb-M000001
 電流測定値id1、iq1はそれぞれ、直流成分及び交流成分を含み得る。「RMS」は、電流測定値id1、iq1のそれぞれの所定の期間内における実効値である。「AVG」は、電流測定値id1、iq1のそれぞれの上記所定の期間内における平均値である。
 すなわち、d軸電流の電流測定値id1の実効値の2乗からd軸電流の電流測定値id1の平均値の2乗を引いてから、平方根を取ることで、電流測定値id1の交流成分の実効値Ed1が求められる。また、q軸電流の電流測定値iq1の実効値の2乗からq軸電流の電流測定値iq1の平均値の2乗を引いてから、平方根を取ることで、電流測定値iq1の交流成分の実効値Eq1が求められる。
 打撃検知部49は、このようにして求められた実効値Ed1、Eq1を用いて、インパクト機構17の打撃動作の有無を検知する。すなわち、打撃検知部49は、次の2つの条件のうち一方が満たされてから、他方が満たされるまでに要した時間が所定の時間以内の場合に、インパクト機構17が打撃動作をしているという検知結果を出力する。2つの条件のうち一方は、実効値Ed1が第1の閾値よりも大きいことである。2つの条件のうち他方は、実効値Eq1が第2の閾値よりも大きいことである。図4、図9では、例えば、時点T2付近において、インパクト機構17が打撃動作を開始し、これを打撃検知部49が検知する。
 なお、制御部4にハイパスフィルタを含むフィルタ回路を設けて、電流測定値id1、iq1をフィルタ回路に通すことより、交流成分の実効値Ed1、Eq1を取得してもよい。
 以上説明したように、本変形例1の打撃検知部49は、実効値Ed1、Eq1の大きさを監視することで、打撃動作の有無を検知する。そのため、本変形例1によれば、電流測定値id1、iq1の直流成分の大きさが打撃開始時に増加しない場合、又は、増加量が比較的小さい場合であっても、打撃動作の有無の検知が可能となる。
 なお、本変形例1において、打撃検知部49は、交流成分の大きさを、交流成分の振幅により評価してもよい。つまり、打撃検知部49は、実効値Ed1、Eq1に代えて、電流測定値id1の交流成分の振幅と電流測定値iq1の交流成分の振幅とのうち少なくとも一方を、対応する閾値と比較してもよい。より詳細には、打撃検知部49は、d軸電流の電流測定値id1の交流成分の振幅とq軸電流の電流測定値iq1の交流成分の振幅とのうち少なくとも一方が、対応する閾値よりも大きい場合に、打撃動作が行われていることを検知してもよい。
 (実施形態の変形例2)
 次に、実施形態の変形例2について説明する。
 本変形例2の打撃検知部49は、d軸電流の電流測定値id1に関する第1判定結果と、q軸電流の電流測定値iq1に関する第2判定結果とにそれぞれ異なる重み付けをし、重み付けした第1判定結果及び第2判定結果に基づいて、打撃動作の有無を検知する。ただし、実施形態と同様に、打撃検知部49は、交流電動機15の始動時からマスク期間Tm1が経過した後に、インパクト機構17の打撃動作の有無の検知を開始する。
 第1判定結果は、例えば、電流測定値id1と閾値Idt1との比較結果である。第2判定結果は、例えば、電流測定値iq1と閾値Iqt1との比較結果である。打撃検知部49は、例えば、第1判定結果の重み付けを第2判定結果の重み付けよりも大きくする。
 具体例として、打撃検知部49は、電流測定値id1の絶対値が閾値Idt1よりも大きい場合は、電流測定値iq1の大きさに関係なく、打撃動作が行われていることを検知する。つまり、打撃検知部49では、電流測定値id1の絶対値が閾値Idt1よりも大きいという判定結果は、電流測定値iq1に関する判定結果よりも高い重要度で処理される。電流測定値id1の絶対値が閾値Idt1よりも大きいという判定結果が導出された場合は、電流測定値iq1の大きさに関係なく、打撃動作の有無の検知結果が確定する。
 また、打撃検知部49は、電流測定値id1の絶対値が閾値Idt1以下の場合は、電流測定値id1の絶対値が所定の閾値よりも大きく、かつ、電流測定値iq1の絶対値が閾値Iqt1よりも大きい場合に、打撃動作が行われていることを検知する。上記所定の閾値は、閾値Idt1よりも小さい。
 なお、打撃検知部49は、第2判定結果の重み付けを第1判定結果の重み付けよりも大きくしてもよい。第1判定結果の重み付けと第2判定結果の重み付けとの大きさ比は、例えば、電動工具1の設計段階において決定される。打撃動作の前と後とを比較した場合にd軸電流の大きさの変化が大きいほど、第1判定結果の重み付けを大きくしてもよい。同様に、打撃動作の前と後とを比較した場合にq軸電流の大きさの変化が大きいほど、第2判定結果の重み付けを大きくしてもよい。また、電流測定値id1の平均値の変動が小さいほど、第1判定結果の重み付けを大きくしてもよい。同様に、電流測定値iq1の平均値の変動が小さいほど、第2判定結果の重み付けを大きくしてもよい。
 (実施形態の変形例3)
 次に、実施形態の変形例3について説明する。
 本変形例3の打撃検知部49は、d軸電流の電流測定値id1と、q軸電流の電流測定値iq1とのうち少なくとも一方の波形に基づいて、打撃動作の有無を検知する。より詳細には、打撃検知部49は、電流測定値id1をd軸電流のモデル波形と比較し、電流測定値iq1をq軸電流のモデル波形と比較する。打撃検知部49は、電流測定値id1とモデル波形とのマッチング率、及び、電流測定値iq1とモデル波形とのマッチング率のうち少なくとも一方が、所定値以上の場合に、打撃動作が行われていることを検知する。
 d軸電流のモデル波形及びq軸電流のモデル波形は、例えば、打撃動作の直前及び直後のうち少なくとも一方を含む期間の波形のパターンである。すなわち、打撃検知部49は、打撃動作の直前及び直後のうち少なくとも一方における電流測定値id1、iq1の波形の特徴量を、モデル波形との比較により検知することで、打撃動作の有無を検知する。d軸電流のモデル波形及びq軸電流のモデル波形は、例えば、制御部4を構成するマイクロコントローラのメモリに予め記録されている。
 なお、打撃検知部49は、交流電動機15に掛かるトルクの大きさ及び交流電動機15の回転数等のパラメータに応じて異なるモデル波形を用いて、打撃動作の有無を検知してもよい。
 (実施形態の変形例4)
 次に、実施形態の変形例4について説明する。
 本変形例4の打撃検知部49は、d軸電流の電流測定値id1と、q軸電流の電流測定値iq1とのうち少なくとも一方に関する条件が所定の回数以上満たされる場合に、打撃動作が行われていることを検知する。すなわち、電流測定値id1、iq1はそれぞれ、所定のサンプリング周期ごとに出力されるので、電流測定値id1、iq1が出力される毎に、打撃検知部49は、電流測定値id1及び/又はiq1が上記条件を満たすか否かを判定する。上記条件を満たした回数のカウントが所定回数以上になると、打撃検知部49は、打撃動作が行われていることを検知する。なお、交流電動機15が停止すると、カウントがリセットされる(0に戻る)。
 上記条件は、例えば、実施形態で挙げた第1条件と第2条件とを満たすことである。第1条件は、電流測定値id1の絶対値が閾値Idt1よりも大きいことである。第2条件は、電流測定値iq1の絶対値が閾値Iqt1よりも大きいことである。
 ただし、実施形態と同様に、打撃検知部49は、交流電動機15の始動時からマスク期間Tm1が経過した後に、インパクト機構17の打撃動作の有無の検知を開始する。
 なお、打撃検知部49は、所定時間内に上記条件が所定の回数以上満たされる場合に、打撃動作が行われていることを検知してもよい。例えば、打撃検知部49は、ある時間が経過するごとに、上記条件を満たした回数のカウントをリセットしてもよい。
 (実施形態の変形例5)
 次に、実施形態の変形例5について説明する。
 本変形例5の打撃検知部49は、d軸電流の電流測定値id1と、q軸電流の電流測定値iq1とのうち少なくとも一方に関する条件が規定時間以上満たされる場合に、打撃動作が行われていることを検知する。上記条件は、例えば、実施形態で挙げた第1条件と第2条件とを満たすことである。
 ただし、実施形態と同様に、打撃検知部49は、交流電動機15の始動時からマスク期間Tm1が経過した後に、インパクト機構17の打撃動作の有無の検知を開始する。
 打撃検知部49は、例えば、上記条件が規定時間の間継続して満たされる場合に打撃動作が行われていることを検知する。「継続して」とは、例えば、ある時点で上記条件を満たしてから、次に上記条件を満たすまでに要した時間の長さが所定の閾値以下であることである。つまり、「継続して」とは、上記条件を常に満たし続けることのみを許容するのではなく、一時的に上記条件を満たさなくなる場合を許容する。
 あるいは、打撃検知部49は、上記条件が間欠的に満たされて、上記条件が満たされた時間の長さの合計が規定時間に達した場合に、打撃動作が行われていることを検知してもよい。
 (実施形態のその他の変形例)
 以下、実施形態の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。また、以下の変形例は、上述の変形例1~5のうち少なくとも1つと適宜組み合わせて実現されてもよい。
 パラメータ指定部41は、先行期間から後続期間になった際に、角速度の指令値cω1の上限値又は下限値を変更することで間接的に指令値cω1を変更する構成に限定されず、指令値cω1を直接変更してもよい。
 パラメータ指定部41は、先行期間から後続期間になった際に、速度制御部42の制御ゲインを変更することに限定されず、電流制御部43の制御ゲインを変更してもよい。また、パラメータ指定部41は、先行期間から後続期間になった際に、速度制御部42の制御ゲインと電流制御部43の制御ゲインとの両方を変更してもよい。パラメータ指定部41は、例えば、後続期間における電流制御部43の制御ゲインを、先行期間における電流制御部43の制御ゲインよりも小さくしてもよい。
 制御部4は、インパクト機構17が打撃動作を開始したことを打撃検知部49が検知した際に、所定の時間が経過してから、変更対象パラメータ(制御ゲイン及び角速度の指令値cω1の上限値)を変更してもよい。
 制御部4は、後続期間において打撃検知部49がインパクト機構17の打撃動作の終了を検知した際に、変更対象パラメータ(制御ゲイン及び角速度の指令値cω1の上限値)を先行期間における値に戻してもよい。あるいは、この際に、制御部4は、変更対象パラメータを先行期間における値とも後続期間における値とも異なる値にしてもよい。
 後続期間における変更対象パラメータを決定するための入力を受け付ける機能は、第1設定部52と第2設定部53とに分散されていなくてもよく、いずれか1つの構成に集約されていてもよい。
 電動工具1は、電源32として複数種類の電池の中から任意の1種類の電池を使用可能であってもよい。この場合に、ユーザは、第2設定部53を操作することで、電池の種類に応じて第2の比例ゲイン、第2の積分ゲイン及び第2の上限値を切り替えることができる。すなわち、電池の仕様等に応じて第2の比例ゲイン、第2の積分ゲイン及び第2の上限値を切り替えることで、それぞれの電池を使用する際に打撃動作の安定化を図ることができる。
 インパクト機構17の打撃動作の有無の検知に用いられる閾値(閾値Idt1、Iqt1等)は、交流電動機15が回転を開始してからの経過時間、電流測定値id1及び電流測定値iq1のうち少なくとも1つに応じて変化してもよい。例えば、上記閾値は、電流測定値id1の平均値又は電流測定値iq1の平均値に応じて変化してもよい。
 あるいは、上記閾値は、電流測定値id1と指令値cid1との差分又は電流測定値iq1と指令値ciq1との差分の大きさに応じて変化してもよい。例えば、閾値Idt1は、指令値cid1にある値を加えた値であってもよい。また、例えば、閾値Iqt1は、指令値ciq1にある値を加えた値であってもよい。
 打撃検知部49は、電流測定値id1、iq1のうち一方のみに基づいて打撃動作の有無を検知してもよい。電流測定値id1のみに基づく場合は、電流測定値id1の平均値が安定的な場合、及び、打撃動作の開始の前後で電流測定値id1の変化が大きい場合に、打撃動作の有無の検知が容易となる。電流測定値iq1のみに基づく場合は、電流測定値iq1の平均値が安定的な場合、及び、打撃動作の開始の前後で電流測定値iq1の変化が大きい場合に、打撃動作の有無の検知が容易となる。また、実施形態のように電流測定値id1、iq1の両方に基づいて打撃動作の有無が検知される場合は、例えば、打撃動作が行われていないときに打撃動作が行われていると誤検知される可能性を低減できることがある。
 実施形態の打撃検知部49は、d軸電流の電流測定値id1に関する第1条件が満たされるタイミングと、q軸電流の電流測定値iq1に関する第2条件が満たされるタイミングとの差が所定時間内の場合に、打撃動作が行われていることを検知する。これに対して、打撃検知部49は、この2つのタイミングの差に関係なく、第1条件と第2条件とが満たされた場合に、打撃動作が行われていることを検知してもよい。これにより、打撃動作が行われているにも関わらず打撃動作が行われていないという検知結果を打撃検知部49が出力し続ける可能性を低減できる。
 打撃検知部49は、実施形態及び各変形例に示した打撃動作の有無の検知手段のうち2つ以上を組み合わせて打撃動作の有無を検知してもよい。
 (まとめ)
 以上説明した実施形態等から、以下の態様が開示されている。
 第1の態様に係る電動工具1は、電動機(交流電動機15)と、インパクト機構17と、打撃検知部49と、測定部60と、を備える。インパクト機構17は、電動機から動力を得て打撃力を発生させる打撃動作を行う。打撃検知部49は、打撃動作の有無を検知する。測定部60は、電動機に供給されるd軸電流及びq軸電流のうち少なくとも一方を測定する。打撃検知部49は、測定部60で測定されたd軸電流の測定値(電流測定値id1)及びq軸電流の測定値(電流測定値iq1)のうち少なくとも一方に基づいて、打撃動作の有無を検知する。
 上記の構成によれば、インパクト機構17の打撃動作の有無を検知する新たな手段を提供できる。
 また、第2の態様に係る電動工具1では、第1の態様において、打撃検知部49は、d軸電流の測定値(電流測定値id1)及びq軸電流の測定値(電流測定値iq1)のうち少なくとも一方に基づいて、打撃動作の開始を検知する。
 上記の構成によれば、電動工具1では、電動機(交流電動機15)に対して、打撃動作の開始に応じた制御を行うことができる。
 また、第3の態様に係る電動工具1では、第2の態様において、制御部4を備える。制御部4は、打撃検知部49を有する。制御部4は、電動機(交流電動機15)の動作をフィードバック制御する。制御部4は、打撃検知部49が打撃動作の開始を検知すると、フィードバック制御の制御ゲインを変化させる。
 上記の構成によれば、打撃動作の開始時に制御ゲインが変化しない場合と比較して、電動機(交流電動機15)のより細かな制御ができる。
 また、第4の態様に係る電動工具1では、第1~3の態様のいずれか1つにおいて、打撃検知部49は、d軸電流の測定値(電流測定値id1)に基づいて、打撃動作の有無を検知する。
 上記の構成によれば、打撃動作の開始の前後でd軸電流の電流測定値id1の変化が大きい場合に、打撃動作の有無の検知が容易となる。
 また、第5の態様に係る電動工具1では、第4の態様において、打撃検知部49は、d軸電流の測定値(電流測定値id1)と、q軸電流の測定値(電流測定値iq1)との両方に基づいて、打撃動作の有無を検知する。
 上記の構成によれば、例えば、打撃動作が行われていないときに打撃動作が行われていると誤検知される可能性の低減を図ることができる。
 また、第6の態様に係る電動工具1では、第5の態様において、打撃検知部49は、d軸電流の測定値(電流測定値id1)に関する第1判定結果と、q軸電流の測定値(電流測定値iq1)に関する第2判定結果とにそれぞれ異なる重み付けをし、重み付けした第1判定結果及び第2判定結果に基づいて、打撃動作の有無を検知する。
 上記の構成によれば、打撃動作の有無の検知精度の向上を図ることができる。
 また、第7の態様に係る電動工具1では、第5の態様において、打撃検知部49は、d軸電流の測定値(電流測定値id1)に関する条件が満たされるタイミングと、q軸電流の測定値(電流測定値iq1)に関する条件が満たされるタイミングとの差が所定時間内の場合に、打撃動作が行われていることを検知する。
 上記の構成によれば、打撃動作の有無の検知精度の向上を図ることができる。
 また、第8の態様に係る電動工具1は、第1~7の態様のいずれか1つにおいて、打撃検知部49は、d軸電流の測定値(電流測定値id1)の絶対値と、q軸電流の測定値(電流測定値iq1)の絶対値とのうち少なくとも一方が、対応する閾値(閾値Idt1、Iqt1)よりも大きい場合に、打撃動作が行われていることを検知する。
 上記の構成によれば、簡素な処理により打撃動作の有無を検知できる。
 また、第9の態様に係る電動工具1は、第1~7の態様のいずれか1つにおいて、打撃検知部49は、d軸電流の測定値(電流測定値id1)と、q軸電流の測定値(電流測定値iq1)とのうち少なくとも一方の交流成分の大きさが、対応する閾値よりも大きい場合に、打撃動作が行われていることを検知する。
 上記の構成によれば、電流測定値id1、iq1の直流成分の大きさが打撃開始時に増加しない場合、又は、増加量が比較的小さい場合であっても、打撃動作の有無の検知が可能となる。
 また、第10の態様に係る電動工具1では、第1~7の態様のいずれか1つにおいて、打撃検知部49は、d軸電流の測定値(電流測定値id1)と、q軸電流の測定値(電流測定値iq1)とのうち少なくとも一方の波形に基づいて、打撃動作の有無を検知する。
 上記の構成によれば、打撃動作の有無の検知精度の向上を図ることができる。
 また、第11の態様に係る電動工具1では、第1~10の態様のいずれか1つにおいて、打撃検知部49は、d軸電流の測定値(電流測定値id1)と、q軸電流の測定値(電流測定値iq1)とのうち少なくとも一方に関する条件が2回以上の所定の回数満たされる場合に、打撃動作が行われていることを検知する。
 上記の構成によれば、打撃動作の有無の検知精度の向上を図ることができる。
 また、第12の態様に係る電動工具1では、第1~11の態様のいずれか1つにおいて、打撃検知部49は、d軸電流の測定値(電流測定値id1)と、q軸電流の測定値(電流測定値iq1)とのうち少なくとも一方に関する条件が規定時間以上満たされる場合に、打撃動作が行われていることを検知する。
 上記の構成によれば、打撃動作の有無の検知精度の向上を図ることができる。
 第1の態様以外の構成については、電動工具1に必須の構成ではなく、適宜省略可能である。
1 電動工具
4 制御部
15 交流電動機(電動機)
17 インパクト機構
49 打撃検知部
60 測定部
id1 電流測定値(測定値)
iq1 電流測定値(測定値)
Idt1 閾値
Iqt1 閾値

Claims (12)

  1.  電動機と、
     前記電動機から動力を得て打撃力を発生させる打撃動作を行うインパクト機構と、
     前記打撃動作の有無を検知する打撃検知部と、
     前記電動機に供給されるd軸電流及びq軸電流のうち少なくとも一方を測定する測定部と、を備え、
     前記打撃検知部は、前記測定部で測定された前記d軸電流の測定値及び前記q軸電流の測定値のうち少なくとも一方に基づいて、前記打撃動作の有無を検知する、
     電動工具。
  2.  前記打撃検知部は、前記d軸電流の前記測定値及び前記q軸電流の前記測定値のうち少なくとも一方に基づいて、前記打撃動作の開始を検知する、
     請求項1に記載の電動工具。
  3.  前記電動機の動作をフィードバック制御する制御部を備え、
     前記制御部は、前記打撃検知部が前記打撃動作の開始を検知すると、前記フィードバック制御の制御ゲインを変化させる、
     請求項2に記載の電動工具。
  4.  前記打撃検知部は、前記d軸電流の前記測定値に基づいて、前記打撃動作の有無を検知する、
     請求項1~3のいずれか一項に記載の電動工具。
  5.  前記打撃検知部は、前記d軸電流の前記測定値と、前記q軸電流の前記測定値との両方に基づいて、前記打撃動作の有無を検知する、
     請求項4に記載の電動工具。
  6.  前記打撃検知部は、前記d軸電流の前記測定値に関する第1判定結果と、前記q軸電流の前記測定値に関する第2判定結果とにそれぞれ異なる重み付けをし、重み付けした前記第1判定結果及び前記第2判定結果に基づいて、前記打撃動作の有無を検知する、
     請求項5に記載の電動工具。
  7.  前記打撃検知部は、前記d軸電流の前記測定値に関する条件が満たされるタイミングと、前記q軸電流の前記測定値に関する条件が満たされるタイミングとの差が所定時間内の場合に、前記打撃動作が行われていることを検知する、
     請求項5に記載の電動工具。
  8.  前記打撃検知部は、前記d軸電流の前記測定値の絶対値と、前記q軸電流の前記測定値の絶対値とのうち少なくとも一方が、対応する閾値よりも大きい場合に、前記打撃動作が行われていることを検知する、
     請求項1~7のいずれか一項に記載の電動工具。
  9.  前記打撃検知部は、前記d軸電流の前記測定値と、前記q軸電流の前記測定値とのうち少なくとも一方の交流成分の大きさが、対応する閾値よりも大きい場合に、前記打撃動作が行われていることを検知する、
     請求項1~7のいずれか一項に記載の電動工具。
  10.  前記打撃検知部は、前記d軸電流の前記測定値と、前記q軸電流の前記測定値とのうち少なくとも一方の波形に基づいて、前記打撃動作の有無を検知する、
     請求項1~7のいずれか一項に記載の電動工具。
  11.  前記打撃検知部は、前記d軸電流の前記測定値と、前記q軸電流の前記測定値とのうち少なくとも一方に関する条件が2回以上の所定の回数満たされる場合に、前記打撃動作が行われていることを検知する、
     請求項1~10のいずれか一項に記載の電動工具。
  12.  前記打撃検知部は、前記d軸電流の前記測定値と、前記q軸電流の前記測定値とのうち少なくとも一方に関する条件が規定時間以上満たされる場合に、前記打撃動作が行われていることを検知する、
     請求項1~11のいずれか一項に記載の電動工具。
PCT/JP2020/003301 2019-04-24 2020-01-30 電動工具 WO2020217627A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20794392.9A EP3960373A4 (en) 2019-04-24 2020-01-30 POWER TOOL
US17/604,894 US20220193867A1 (en) 2019-04-24 2020-01-30 Electric power tool
CN202080030341.7A CN113710425B (zh) 2019-04-24 2020-01-30 电动工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-083352 2019-04-24
JP2019083352A JP2020179449A (ja) 2019-04-24 2019-04-24 電動工具

Publications (1)

Publication Number Publication Date
WO2020217627A1 true WO2020217627A1 (ja) 2020-10-29

Family

ID=72942392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003301 WO2020217627A1 (ja) 2019-04-24 2020-01-30 電動工具

Country Status (5)

Country Link
US (1) US20220193867A1 (ja)
EP (1) EP3960373A4 (ja)
JP (2) JP2020179449A (ja)
CN (1) CN113710425B (ja)
WO (1) WO2020217627A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311237A1 (en) * 2021-03-23 2022-09-29 Snap-On Incorporated Overcurrent protection for electric motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328952A (ja) * 1997-06-02 1998-12-15 Wako Giken:Kk モータの制御方法及び装置並びにねじ締め方法及び装置
JP2005059177A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Works Ltd インパクト回転工具
JP2007007784A (ja) * 2005-06-30 2007-01-18 Matsushita Electric Works Ltd インパクト回転工具
WO2014084158A1 (ja) * 2012-11-29 2014-06-05 日立工機株式会社 インパクト工具
WO2014162862A1 (ja) 2013-03-30 2014-10-09 日立工機株式会社 電動工具
JP2017189067A (ja) * 2016-04-08 2017-10-12 シナノケンシ株式会社 モータ駆動装置
WO2018230141A1 (ja) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 インパクト電動工具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009598A (ja) * 2001-04-16 2003-01-10 Sanken Electric Co Ltd 交流電動機のベクトル制御装置及び制御方法
US20040100220A1 (en) * 2002-11-25 2004-05-27 Zhenxing Fu Weighted higher-order proportional-integral current regulator for synchronous machines
JP4319112B2 (ja) * 2004-08-27 2009-08-26 三菱電機株式会社 電動パワーステアリング装置
JP4211744B2 (ja) * 2005-02-23 2009-01-21 パナソニック電工株式会社 インパクト締付け工具
JP2014209086A (ja) * 2013-03-25 2014-11-06 株式会社デンソー 衝撃検出装置
CN104227634B (zh) * 2013-06-09 2017-01-18 南京德朔实业有限公司 冲击类紧固工具及其控制方法
KR101754441B1 (ko) * 2013-07-02 2017-07-05 엘에스산전 주식회사 전동기의 기동판별 장치
CN105751132A (zh) * 2014-12-18 2016-07-13 苏州博来喜电器有限公司 冲击扳手
JP6685765B2 (ja) * 2016-02-25 2020-04-22 日立オートモティブシステムズ株式会社 パワーステアリング装置の制御装置、及びそれを用いたパワーステアリング装置
JP6901898B2 (ja) * 2017-04-17 2021-07-14 株式会社マキタ 回転打撃工具
JP6802135B2 (ja) * 2017-10-11 2020-12-16 日立オートモティブシステムズ株式会社 モータ駆動装置及びモータ駆動装置の制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328952A (ja) * 1997-06-02 1998-12-15 Wako Giken:Kk モータの制御方法及び装置並びにねじ締め方法及び装置
JP2005059177A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Works Ltd インパクト回転工具
JP2007007784A (ja) * 2005-06-30 2007-01-18 Matsushita Electric Works Ltd インパクト回転工具
WO2014084158A1 (ja) * 2012-11-29 2014-06-05 日立工機株式会社 インパクト工具
WO2014162862A1 (ja) 2013-03-30 2014-10-09 日立工機株式会社 電動工具
JP2017189067A (ja) * 2016-04-08 2017-10-12 シナノケンシ株式会社 モータ駆動装置
WO2018230141A1 (ja) * 2017-06-16 2018-12-20 パナソニックIpマネジメント株式会社 インパクト電動工具

Also Published As

Publication number Publication date
CN113710425B (zh) 2024-01-09
EP3960373A1 (en) 2022-03-02
US20220193867A1 (en) 2022-06-23
EP3960373A4 (en) 2022-06-01
JP7496569B2 (ja) 2024-06-07
CN113710425A (zh) 2021-11-26
JP2020179449A (ja) 2020-11-05
JP2023073480A (ja) 2023-05-25

Similar Documents

Publication Publication Date Title
JP5935983B2 (ja) 電動工具
EP2830832B1 (en) Electric tool and fastening method using the same
JP7496569B2 (ja) 電動工具
WO2021002120A1 (ja) インパクト工具
JP7390587B2 (ja) 電動工具、カムアウト検知方法及びプログラム
WO2020217625A1 (ja) 電動工具
WO2020217626A1 (ja) 電動工具
WO2021095533A1 (ja) 電動工具、制御方法、カムアウト検知方法、及びプログラム
WO2021100368A1 (ja) インパクト工具、インパクト工具の制御方法及びプログラム
WO2021095427A1 (ja) インパクト工具、インパクト工具の制御方法及びプログラム
JP2021079509A (ja) 電動工具、制御方法、及びプログラム
WO2021095470A1 (ja) 電動工具、制御方法、及びプログラム
JP7442139B2 (ja) インパクト工具、インパクト工具の制御方法及びプログラム
JP7228763B2 (ja) 電動工具
JP2021030358A (ja) 電動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020794392

Country of ref document: EP

Effective date: 20211124