WO2020217548A1 - Motor control device and electric power steering device - Google Patents

Motor control device and electric power steering device Download PDF

Info

Publication number
WO2020217548A1
WO2020217548A1 PCT/JP2019/025626 JP2019025626W WO2020217548A1 WO 2020217548 A1 WO2020217548 A1 WO 2020217548A1 JP 2019025626 W JP2019025626 W JP 2019025626W WO 2020217548 A1 WO2020217548 A1 WO 2020217548A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
command
current
current correction
correction command
Prior art date
Application number
PCT/JP2019/025626
Other languages
French (fr)
Japanese (ja)
Inventor
将彦 折井
勲 家造坊
辰也 森
元気 藤井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980095636.XA priority Critical patent/CN113728549A/en
Priority to EP19925603.3A priority patent/EP3961911B1/en
Priority to US17/598,414 priority patent/US11837979B2/en
Publication of WO2020217548A1 publication Critical patent/WO2020217548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor

Definitions

  • the present application relates to an electric motor control device and an electric power steering device using the electric motor control device.
  • PM motors permanent magnet embedded motors
  • the PM motor has a spatial harmonic in the rotating magnetic field due to its structure, and a harmonic component is generated in the induced voltage, so that torque ripple is generated.
  • Torque ripple can cause problems such as vibration, noise, and mechanical resonance, so technology to reduce it is required.
  • Patent Document 1 a method of generating a current command value capable of suppressing torque ripple and superimposing it on a basic current command to suppress torque ripple
  • FIG. 1 is a block diagram of the electric motor control device according to the first embodiment.
  • the electric motor control device includes a basic current command generation unit 1, a current correction command superimposition unit 2, a current control unit 3, a dq / 3-phase coordinate converter 4, a 3-phase / dq coordinate converter 5, and a vector control method. It has an inverter 6 and a current correction unit 100. Inside the current correction unit 100, there are a position-dependent component generation unit 101 of the electric motor, a median electrical characteristic output unit 102 of the electric motor, a current correction command calculation unit 103, and a sensitivity set value output unit 104. In the electric motor control device, detection signals from the current detector 8 and the rotation position detector 9 are input to the electric motor 7 having a salient polarity.
  • the median electrical characteristic output unit 102 of the electric motor outputs the median electrical characteristic of the electric motor to be controlled to the current correction command calculation unit 103. Further, the sensitivity set value output unit 104 sets a value specified in advance by the designer or a value set according to the operating condition as the sensitivity of the torque ripple with respect to the error of the electrical characteristics of the electric motor to the current correction command calculation unit 103. Output to. Details will be described together with the current correction command calculation unit 103.
  • Inductance and magnetic flux which are the electrical characteristics of an electric motor, are separated into the median and position-dependent components of the electrical characteristics, considering the position-dependent components related to the rotational position of the motor, and are defined as follows.
  • the basic current commands id0 and iq0 are calculated from the equations (8) and (9). Even when other known control methods are used, the basic current command is calculated based on the equation (8) expressing the basic torque. Next, assuming that the second-order or higher component of the harmonic is sufficiently small in the equation (7), the torque ripple, which is the harmonic component of the torque, is represented by the following equation (10).
  • the error region shown in FIG. 3 shows the ratio ⁇ L0 /
  • Arbitrary errors ⁇ L0 and ⁇ d0 can be expressed as coordinates of points on the error region. For example, when ⁇ L0 and ⁇ d0 are both 0, ⁇ L0 and ⁇ d0 correspond to the origin (0,0) of the error region.
  • equation (14) can be converted into the equation (15) as follows.
  • Equation (15) shows that, as shown in FIG. 5, it is possible to calculate the idle as in the block 103b, and then calculate the idle as in the block 103b using the ipripple. From this, if the ipripple can be calculated, the idle can be calculated simply. Further, in the equation (15), it can be seen that the current correction command does not depend on the coordinates of the error point itself, but depends on the coordinate ratio e. That is, if the error point is a point on a straight line whose slope is e, the current correction command has exactly the same value regardless of which point is selected as a specific error point.
  • the current correction command represented by the equation (15) is calculated so that the torque ripple becomes 0 at a specific error point, the current correction command represented by the equation (15) has a slope. It can be seen that the current has a torque ripple of 0 at all error points on the straight line e. Therefore, depending on the setting of e, the robustness against the error between the d-axis magnet magnetic flux and the median inductance can be selected.
  • a straight line having an inclination of e is referred to as a ripple suppression straight line.
  • the ripple suppression straight line Rsl coincides with the axis of ⁇ L0 / L0.
  • the current correction command at this time can suppress the torque ripple even when ⁇ L0 has any error. That is, by bringing e closer to 0, it is shown that it is robust with respect to ⁇ L0.
  • the ripple suppression straight line Rsl coincides with the axis of ⁇ d0 / ⁇ d0, and it is possible to robustly suppress the ripple with respect to ⁇ d0.
  • the q-axis current correction command ipripple is first calculated, and the d-axis current correction command idripple is obtained from the value of the qripple, and the idripple can be simply calculated as a simple integer multiple of the ipripple. is there.
  • the iripple may be calculated first, and the iqripple may be calculated using the idripple. Specifically, it becomes the following formula (16).
  • Equation (17) is a current represented by the sensitivity set value e as in the calculation of the current correction command of the electric motor having the reverse polarity, and when e is brought as close to 0 as possible, it is robust against ⁇ L0. Therefore, when e is set to a large value, it becomes robust with respect to ⁇ d0. Equation (17) is first calculated from the q-axis current correction command iplipple, and the d-axis current correction command idripple is obtained from the value of the qripple. However, even if the d-axis current correction command idripple is first calculated from the idripple and the ipripple is calculated using the idle. Good. Specifically, it becomes the following formula (18).
  • idripple * iq0 + iripple * id0 may be reduced.
  • the ipripple may be reduced.
  • iq0 is basically larger than id0, so to reduce the sensitivity of the torque ripple with respect to ⁇ L0.
  • Idripple should be made smaller. The above is the relationship between the sensitivity of torque ripple and the magnitude of the current correction command.
  • FIG. 6 shows the current correction command at that time by setting the value of e, which is the sensitivity setting value, in three ways (0.1, 1, 10).
  • 6 (a) shows a sensitivity setting value of 0.1
  • FIG. 6 (b) shows a sensitivity setting value of 1
  • FIG. 6 (c) shows a sensitivity setting value. It represents the case where e is 10. Looking at FIG. 6, it can be confirmed that the d-axis current correction command idle is small when the sensitivity setting value e, which is robust to ⁇ L0 in design, is small. Further, when the sensitivity set value e, which is robust to ⁇ d0 in design, is large, it can be confirmed that the q-axis current correction command ipripple is small.
  • FIGS. 7 (d) and 8 (d) represent the case of Patent Document 1.
  • 7 and 8 are plots of the magnitude of the torque ripple that occurs when the lower plane is the error region and the vertical axis is the torque ripple, and the electrical characteristics of the motor have an error within the error region.
  • FIG. 7 and 8 are plots of the magnitude of the torque ripple that occurs when the lower plane is the error region and the vertical axis is the torque ripple, and the electrical characteristics of the motor have an error within the error region.
  • FIG. 7 shows a case where there is no pulsation between the q-axis magnet magnetic flux and the inductance, and there is a pulsation of the d-axis magnet magnetic flux.
  • the torque ripple suppression effect is not diminished.
  • ⁇ d0 the torque ripple suppressing effect is diminished.
  • FIG. 8 shows a case where there is a q-axis magnet magnetic flux and an inductance pulsation in addition to the pulsation of the d-axis magnet magnetic flux.
  • the magnitude of the torque ripple when the torque ripple suppression is not performed is 0.1881 Nm.
  • the magnitude of the torque ripple when the current correction command of Patent Document 1 is used is about 0.06 Nm in any error, which is the original purpose of suppressing torque ripple. The effect is 68%.
  • the torque ripple can be reduced as compared with the case where the torque ripple suppression is not performed, the effect of the torque ripple suppression is smaller than the reduction rate when there is no pulsation between the q-axis magnet magnetic flux and the inductance.
  • the current correction command of the present embodiment has a high torque ripple suppression effect even if there is a q-axis magnet magnetic flux and an inductance pulsation, and the value of e, which is a sensitivity setting value, and the robustness against each error are also the characteristics as designed. Is appearing. From the above, even when there is a q-axis magnet magnetic flux and an inductance pulsation, the current correction command of the present embodiment can suitably suppress torque ripple even when there is an error in the electrical characteristics of the electric motor.
  • the current correction command calculation unit 103 which outputs a dq-axis current correction command, calculates a current correction command that robustly suppresses torque ripple with respect to the electrical characteristics of the electric motor by performing the same calculation as in the first embodiment. By superimposing on the dq-axis basic current command, torque ripple can be suppressed.
  • the table data in the present embodiment not only the 6f component but also the table data including any frequency component may be created. By outputting the position-dependent component from the table data including an arbitrary frequency component to the current correction command calculation unit 103, calculating the current correction command based on the equation (15), and superimposing it on the dq-axis basic current command, It is possible to suppress the torque ripple of the same frequency as the frequency component included in the table data. When multiple frequency components are included, torque ripple of the same frequency as those frequency components can be suppressed, so it is not necessary to calculate the current correction command individually for each frequency, and the amount of calculation can be reduced. It will be possible.
  • the third embodiment includes a current correction command phase component generation unit 106, a current correction gain calculation unit 107, and a current correction gain multiplication unit 108.
  • the inductance of the electric motor and the magnetic flux of the magnet are measured by a known method in advance, and the position-dependent component is extracted by subtracting the average value from each measured value.
  • the current correction command of the present embodiment has the same phase or a difference of 180 degrees between the d-axis current correction command and the q-axis current correction command, if there is a phase component represented by the equation (20), d
  • the axis current correction command and the q-axis current correction command can be simply obtained as simple integral multiples of the phase component.
  • the current correction gain calculation unit 107 calculates according to the following equation (21).
  • the role of the sensitivity set value e in the equation (21) is as described in the first embodiment.
  • the idle becomes small and the torque ripple is robustly suppressed with respect to the median inductance error ⁇ L0. It becomes a current, and when the value of e is increased, the inductance becomes smaller and becomes a current that robustly suppresses torque ripple with respect to the median error ⁇ d0 of the d-axis magnet magnetic flux.
  • the magnitude ratio of the dq-axis current correction command can be changed by the sensitivity set value e, whereby torque ripple can be suppressed even when there is an error in the electrical characteristics of the electric motor.
  • the molecular components of the current correction command may be applied to the periodic function of the trigonometric function for calculation.
  • the phase component of the current correction command is the following equation (22).
  • phase calculation of the current correction command is performed only for one of the d-axis current correction command and the q-axis current correction command.
  • the other can be obtained by simply multiplying the calculated one by a constant, so that the current correction command can be simply obtained.
  • FIG. 15 is a diagram showing the configuration of the electric power steering device according to the fifth embodiment.
  • the electric power steering device includes a steering wheel 301, a steering shaft 302, a rack pinion gear 303, wheels 304 and 305, an electric motor 7, a reduction gear 306, a rotation position detector 9, and a torque sensor.
  • 307, a vehicle speed sensor 308, and an electric motor control device 200 are provided.
  • the steering torque applied to the steering wheel 301 by a driver is transmitted to the rack through the torsion bar of the torque sensor 307, the steering shaft 302, the rack pinion gear 303, and the wheels 304 and 305.
  • the electric motor 7 is connected to the steering shaft 302 via a reduction gear 306.
  • the output torque generated from the electric motor 7 is transmitted to the steering shaft 302 via the reduction gear 306 to reduce the steering torque applied by the driver during steering.
  • the torque sensor 307 detects the steering torque applied to the torsion bar by the driver steering the steering wheel 301. Since this steering torque causes the torsion bar to twist in a manner substantially proportional to the steering torque, this twist angle is detected and converted into a steering torque signal.
  • the vehicle speed sensor 308 outputs the vehicle speed, which is a signal for detecting the traveling speed of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Provided is a motor control device that can suppress a torque ripple even when electric characteristics of a motor have errors or variations. The present invention comprises: a basic current command generation unit (1) that outputs a d-axis basic current command and a q-axis basic current command for outputting a basic torque to a motor (7) having saliency; a position-dependent component generation unit (101) that outputs a position-dependent component of the motor according to a rotational position of the motor; a current correction command calculation unit (103) that calculates a d-axis current correction command and a q-axis current correction command from the d-axis basic current command, the q-axis basic current command, and the position-dependent component; a current correction command superposition unit (2) that superimposes the d-axis current correction command and the q-axis current correction command on the d-axis basic current command and the q-axis basic current command to generate a d-axis current command and a q-axis current command; and a current control unit (3) that controls a current flowing in the motor 7 via an inverter 6 on the basis of the d-axis current command and the q-axis current command.

Description

電動機制御装置および電動パワーステアリング装置Electric motor control device and electric power steering device
 本願は、電動機制御装置およびそれを用いた電動パワーステアリング装置に関するものである。 The present application relates to an electric motor control device and an electric power steering device using the electric motor control device.
 電動機において、近年ではPMモータ(永久磁石埋め込みモータ)が小型・高効率という特徴から産業機器に広く利用されるようになった。しかし、PMモータは、その構造上回転磁界に空間高調波を持ち、それにより誘起電圧に高調波成分が生じるため、トルクリップルが発生する。トルクリップルは、振動あるいは騒音、機械的共振といった問題を引き起こす原因になりうるため、その低減技術が必要となる。この低減技術として、トルクリップルを抑制可能とする電流指令値を生成し、基本電流指令に重畳することでトルクリップルを抑制するようにした方法が開示されている(例えば、特許文献1参照)。
 特許文献1では、電動機に生じる回転磁界の空間高調波を回転位置に関するテーブルデータとして保持し、その空間高調波によって生じるトルクリップルが0となるような電流指令を作成し、基本電流指令に重畳することでトルクリップル抑制を実施している。
In recent years, PM motors (permanent magnet embedded motors) have become widely used in industrial equipment due to their small size and high efficiency. However, the PM motor has a spatial harmonic in the rotating magnetic field due to its structure, and a harmonic component is generated in the induced voltage, so that torque ripple is generated. Torque ripple can cause problems such as vibration, noise, and mechanical resonance, so technology to reduce it is required. As this reduction technique, there is disclosed a method of generating a current command value capable of suppressing torque ripple and superimposing it on a basic current command to suppress torque ripple (see, for example, Patent Document 1).
In Patent Document 1, the spatial harmonics of the rotating magnetic field generated in the electric motor are held as table data regarding the rotational position, a current command is created so that the torque ripple generated by the spatial harmonics becomes 0, and the current command is superimposed on the basic current command. By doing so, torque ripple suppression is implemented.
特開2007-267466号公報JP-A-2007-267466
 前述のように、特許文献1に記載されたトルクリップル抑制制御装置においては、事前に電動機の電気的特性をより高精度に取得できた場合においてトルクリップル抑制が可能となる。
 しかしながら、事前に取得する電動機の電気的特性は、その真値に対して設計値あるいは測定値が誤差を持つと考えることが自然であり、また電動機の動作状態あるいは製造ばらつきによって変動する。そのため、電動機の電気的特性の取得値が真値と乖離している場合はトルクリップル抑制の効果が出ないという問題がある。実際に、特許文献1は、電動機の電機子鎖交磁束とインダクタンスなど電気的パラメータの中央値の誤差に基づいた構成になっておらず、脈動項を除いて電気的パラメータの中央値のみを用いて制御されている。
As described above, in the torque ripple suppression control device described in Patent Document 1, torque ripple suppression is possible when the electrical characteristics of the electric motor can be acquired with higher accuracy in advance.
However, it is natural to consider that the design value or the measured value has an error with respect to the true value of the electric characteristics of the electric motor acquired in advance, and it varies depending on the operating state of the electric motor or the manufacturing variation. Therefore, there is a problem that the torque ripple suppression effect does not appear when the acquired value of the electrical characteristics of the electric motor deviates from the true value. Actually, Patent Document 1 does not have a configuration based on the error of the median value of the electrical parameters such as the armature interlinkage magnetic flux and the inductance of the electric motor, and uses only the median value of the electrical parameters excluding the pulsation term. Is controlled.
 本願は、上記のような問題点を解決するためになされたものであり、電動機の電気的特性の取得値が誤差を持つ場合においても好適にトルクリップルを抑制することが可能となる電動機制御装置を提供することを目的としている。 The present application has been made to solve the above-mentioned problems, and is an electric motor control device capable of suitably suppressing torque ripple even when the acquired value of the electric characteristics of the electric motor has an error. Is intended to provide.
 本願に開示される電動機制御装置は、突極性を有する電動機に基本的なトルクを出力させるためのd軸基本電流指令およびq軸基本電流指令を出力する基本電流指令生成部と、電動機の回転位置に応じて電動機の位置依存成分を出力する位置依存成分生成部と、d軸基本電流指令およびq軸基本電流指令と位置依存成分からd軸電流補正指令およびq軸電流補正指令を演算する電流補正指令演算部と、d軸基本電流指令にd軸電流補正指令を重畳し、q軸基本電流指令にq軸電流補正指令を重畳し、d軸電流指令およびq軸電流指令を生成する電流補正指令重畳部と、d軸電流指令およびq軸電流指令に基づいて電動機に流す電流を制御する電流制御部とを備え、電流補正指令演算部では、d軸電流補正指令とq軸電流補正指令の大きさが予め決められた比率に演算され、比率は事前に指定されるか、または、電動機の状態に応じて指定されるものである。 The electric motor control device disclosed in the present application includes a basic current command generator that outputs a d-axis basic current command and a q-axis basic current command for outputting a basic torque to a motor having a salient pole, and a rotation position of the motor. A position-dependent component generator that outputs the position-dependent component of the motor according to the motor, and current correction that calculates the d-axis current correction command and q-axis current correction command from the d-axis basic current command, q-axis basic current command, and position-dependent component. A current correction command that superimposes the d-axis current correction command on the command calculation unit and the d-axis basic current command, superimposes the q-axis current correction command on the q-axis basic current command, and generates the d-axis current command and the q-axis current command. A superimposing unit and a current control unit that controls the current flowing through the motor based on the d-axis current command and the q-axis current command are provided. In the current correction command calculation unit, the d-axis current correction command and the q-axis current correction command are large. Is calculated to a predetermined ratio, and the ratio is specified in advance or is specified according to the state of the motor.
 本願に開示される電動機制御装置によれば、電流補正指令演算部でd軸電流補正指令とq軸電流補正指令の大きさが決められた比率になるよう演算することができる。d軸電流補正指令とq軸電流補正指令の大きさを決められた比率に指定し、電動機の電気的特性の取得値の誤差に対するトルクリップルの感度を小さくすることで、電動機の電気的特性に誤差がある場合においてもトルクリップル抑制が可能となる。 According to the electric motor control device disclosed in the present application, the current correction command calculation unit can calculate so that the magnitudes of the d-axis current correction command and the q-axis current correction command are in a predetermined ratio. By specifying the magnitude of the d-axis current correction command and the q-axis current correction command at a fixed ratio and reducing the sensitivity of torque ripple to the error of the acquired value of the electrical characteristics of the motor, the electrical characteristics of the motor can be obtained. Even if there is an error, torque ripple can be suppressed.
実施の形態1に係る電動機制御装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the electric motor control device which concerns on Embodiment 1. FIG. 図1における位置依存成分を表す図である。It is a figure which shows the position-dependent component in FIG. 実施の形態において定義した誤差領域を表す図である。It is a figure which shows the error region defined in embodiment. 誤差領域におけるリップル抑制直線を表す図である。It is a figure which shows the ripple suppression straight line in an error region. 実施の形態における電流補正演算部の内部を表す図である。It is a figure which shows the inside of the current correction calculation unit in embodiment. 実施の形態における電流補正指令を表す図である。It is a figure which shows the current correction command in an embodiment. 実施の形態と特許文献1におけるトルクリップルの比較図である。It is a comparative figure of the torque ripple in Embodiment 1 and Patent Document 1. FIG. 実施の形態と特許文献1におけるトルクリップルの比較図である。It is a comparative figure of the torque ripple in Embodiment 1 and Patent Document 1. FIG. 実施の形態2に係る電動機制御装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the electric motor control device which concerns on Embodiment 2. FIG. 実施の形態における位置依存成分生成テーブルを表す図である。It is a figure which shows the position-dependent component generation table in an embodiment. 実施の形態3に係る電動機制御装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the electric motor control device which concerns on Embodiment 3. 実施の形態4に係る電動機制御装置の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the electric motor control device which concerns on Embodiment 4. FIG. 実施の形態4に係る電動機制御装置の変形例の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the modification of the electric motor control device which concerns on Embodiment 4. FIG. 実施の形態4に係る電動機制御装置の変形例の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the modification of the electric motor control device which concerns on Embodiment 4. FIG. 実施の形態に係る電動機制御装置が適用される実施の形態5における電動パワーステアリング装置を示す構成図である。It is a block diagram which shows the electric power steering apparatus in Embodiment 5 to which the electric motor control apparatus which concerns on embodiment are applied. 実施の形態に係る電動機制御装置のハードウエア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the electric motor control device which concerns on embodiment.
 以下、電動機制御装置の実施の形態について図に基づいて説明するが、各図において、同一または相当部分については、同一符号を付して説明する。 Hereinafter, embodiments of the electric motor control device will be described with reference to the drawings, but in each drawing, the same or corresponding parts will be described with the same reference numerals.
実施の形態1.
 図1は実施の形態1による電動機制御装置のブロック図である。図1において、電動機制御装置は、基本電流指令生成部1、電流補正指令重畳部2、電流制御部3、dq/3相座標変換器4、3相/dq座標変換器5、ベクトル制御方式のインバータ6、電流補正部100を有する。電流補正部100の内部には、電動機の位置依存成分生成部101、電動機の電気的特性中央値出力部102、電流補正指令演算部103、感度設定値出力部104を有する。電動機制御装置は、突極性を有する電動機7を電流検出器8、回転位置検出器9からの検出信号が入力される。
Embodiment 1.
FIG. 1 is a block diagram of the electric motor control device according to the first embodiment. In FIG. 1, the electric motor control device includes a basic current command generation unit 1, a current correction command superimposition unit 2, a current control unit 3, a dq / 3-phase coordinate converter 4, a 3-phase / dq coordinate converter 5, and a vector control method. It has an inverter 6 and a current correction unit 100. Inside the current correction unit 100, there are a position-dependent component generation unit 101 of the electric motor, a median electrical characteristic output unit 102 of the electric motor, a current correction command calculation unit 103, and a sensitivity set value output unit 104. In the electric motor control device, detection signals from the current detector 8 and the rotation position detector 9 are input to the electric motor 7 having a salient polarity.
 次に、これらの各構成要素の機能動作について説明する。
 基本電流指令生成部1は、上位制御系からのトルク指令値T*に基づいて、d軸基本電流指令id0とq軸基本電流指令iq0を演算し出力する。d軸基本電流指令とq軸基本電流指令の演算は、最大トルク制御に則って演算してもよい。また、稼動状況に応じた公知の基本電流指令に基づいて演算してもよい。
Next, the functional operation of each of these components will be described.
The basic current command generation unit 1 calculates and outputs the d-axis basic current command id0 and the q-axis basic current command iq0 based on the torque command value T * from the host control system. The calculation of the d-axis basic current command and the q-axis basic current command may be performed according to the maximum torque control. Further, the calculation may be performed based on a known basic current command according to the operating condition.
 電流補正指令重畳部2は、基本電流指令生成部1からの出力と、電流補正指令演算部103の出力である電流補正指令を足し合わせる。 The current correction command superimposition unit 2 adds the output from the basic current command generation unit 1 and the current correction command which is the output of the current correction command calculation unit 103.
 電流制御部3は、d軸実電流とq軸実電流が、電流補正指令重畳部2からの出力にそれぞれ追従するような制御方式によりdq軸電圧指令値を演算し出力する。制御方式はPI制御でもよい。また、他の公知の制御方式を用いてもよい。 The current control unit 3 calculates and outputs the dq-axis voltage command value by a control method in which the d-axis actual current and the q-axis actual current follow the output from the current correction command superimposition unit 2, respectively. The control method may be PI control. Further, other known control methods may be used.
 dq/3相座標変換器4は、回転位置検出器9で検出された電動機の回転位置を用いて、電流制御部3で出力されたdq軸電圧指令を3相座標上の電圧指令に変換し、インバータ6に入力する。インバータ6は、3相電圧を電動機7に印加する。 The dq / 3-phase coordinate converter 4 converts the dq-axis voltage command output by the current control unit 3 into a voltage command on the three-phase coordinates by using the rotation position of the electric motor detected by the rotation position detector 9. , Input to the inverter 6. The inverter 6 applies a three-phase voltage to the electric motor 7.
 3相/dq座標変換器5は、回転位置検出器9で検出された電動機の回転位置を用いて、電流検出器8で検出された3相実電流をdq軸電流に変換する。 The three-phase / dq coordinate converter 5 converts the three-phase actual current detected by the current detector 8 into a dq-axis current by using the rotation position of the electric motor detected by the rotation position detector 9.
 位置依存成分生成部101は、回転位置検出器9で検出された電動機の回転位置に応じて、電動機の位置に依存する電気的特性の成分である位置依存成分Pdを出力する。 The position-dependent component generation unit 101 outputs a position-dependent component Pd, which is a component of electrical characteristics depending on the position of the electric motor, according to the rotation position of the electric motor detected by the rotation position detector 9.
 電動機の電気的特性中央値出力部102は、制御の対象とする電動機の電気的特性の中央値を電流補正指令演算部103に出力する。また、感度設定値出力部104は、電動機の電気的特性の誤差に対するトルクリップルの感度として、設計者が事前に指定した値、または、運転状況に応じて設定した値を電流補正指令演算部103に出力する。詳しくは、電流補正指令演算部103とともに説明する。 The median electrical characteristic output unit 102 of the electric motor outputs the median electrical characteristic of the electric motor to be controlled to the current correction command calculation unit 103. Further, the sensitivity set value output unit 104 sets a value specified in advance by the designer or a value set according to the operating condition as the sensitivity of the torque ripple with respect to the error of the electrical characteristics of the electric motor to the current correction command calculation unit 103. Output to. Details will be described together with the current correction command calculation unit 103.
 電流補正指令演算部103は、d軸基本電流指令値、q軸基本電流指令値、電動機の電気的特性中央値、電動機の位置依存成分、感度設定値から、トルクリップルを抑制するdq軸電流補正指令を演算し出力する。 The current correction command calculation unit 103 performs dq-axis current correction that suppresses torque ripple from the d-axis basic current command value, the q-axis basic current command value, the median electrical characteristics of the motor, the position-dependent component of the motor, and the sensitivity set value. Calculates and outputs commands.
 以下、電流補正指令演算部103の原理と、電流補正指令演算部103から出力されるdq軸電流補正指令の効果について説明する。
突極性を有する電動機のトルクは、以下の式(1)で表される。
Hereinafter, the principle of the current correction command calculation unit 103 and the effect of the dq-axis current correction command output from the current correction command calculation unit 103 will be described.
The torque of the electric motor having salient polarity is represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 ここで、T:トルク、Pm:電動機の極対数、Ld:d軸インダクタンス、Lq:q軸インダクタンス、id:d軸電流、iq:q軸電流、Φd:d軸磁石磁束、Φq:q軸磁石磁束である。
 式(1)において、インダクタンスLd、Lqは、その差がトルクに寄与するため、ここではインダクタンスL=Ld-Lqと定義し、上記式(1)を式(2)に変換する。
Figure JPOXMLDOC01-appb-M000001
Here, T: torque, Pm: number of pole pairs of the motor, Ld: d-axis inductance, Lq: q-axis inductance, id: d-axis current, iq: q-axis current, Φd: d-axis magnet magnetic flux, Φq: q-axis magnet It is a magnetic flux.
In the equation (1), the difference between the inductances Ld and Lq contributes to the torque. Therefore, the inductance L = Ld-Lq is defined here, and the above equation (1) is converted into the equation (2).
Figure JPOXMLDOC01-appb-M000002
 電動機の電気的特性であるインダクタンスと磁石磁束について、電動機の回転位置に関する位置依存成分を考慮し、電気的特性の中央値と位置依存成分に分離し、以下のように定義する。
Figure JPOXMLDOC01-appb-M000002
Inductance and magnetic flux, which are the electrical characteristics of an electric motor, are separated into the median and position-dependent components of the electrical characteristics, considering the position-dependent components related to the rotational position of the motor, and are defined as follows.
Figure JPOXMLDOC01-appb-M000003
 ここで、L0:インダクタンスの中央値、Lripple:インダクタンスの位置依存成分、Φd0:d軸磁石磁束の中央値、Φdripple:d軸磁石磁束の位置依存成分、Φq0:q軸磁石磁束の中央値、Φqripple:q軸磁石磁束の位置依存成分である。式(3)を用いて位置依存成分を考慮することにより、位置依存成分によって発生するトルクリップルが計算できるため、トルクリップルを抑制する電流補正指令の計算が可能となる。位置依存成分は、図2に示すように回転位置に応じた値を持つ関数とする。例えば、電気角周波数の6倍の周波数を持つ位置依存成分は、下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000003
Here, L0: median inductance value, Lipple: position-dependent component of inductance, Φd0: median value of d-axis magnet magnetic flux, Φdrive: position-dependent component of d-axis magnet magnetic flux, Φq0: median value of q-axis magnet magnetic flux, Φqripple : A position-dependent component of the q-axis magnet magnetic flux. By considering the position-dependent component using the equation (3), the torque ripple generated by the position-dependent component can be calculated, so that the current correction command for suppressing the torque ripple can be calculated. The position-dependent component is a function having a value corresponding to the rotation position as shown in FIG. For example, a position-dependent component having a frequency six times the electrical angular frequency can be expressed as follows.
Figure JPOXMLDOC01-appb-M000004
 上記式(4)を用いて本実施の形態を適用すると、電気角周波数の6倍の周波数を持つトルクリップルの抑制が可能となる。また、電気角周波数の6倍の周波数ではなく、n倍の周波数を持つ位置依存成分は、下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
When the present embodiment is applied using the above equation (4), it is possible to suppress torque ripple having a frequency 6 times the electric angular frequency. Further, a position-dependent component having a frequency of n times, not 6 times the electric angular frequency, can be expressed as follows.
Figure JPOXMLDOC01-appb-M000005
 上記式(5)のように、任意の周波数の位置依存成分を対象とすることができる。式(5)を用いて本実施の形態を適用すると、電気角周波数のn倍の周波数を持つトルクリップルの抑制が可能となる。また、複数の周波数のトルクリップルを抑制するときは、各周波数における式(5)を用い、本実施の形態を適用して各周波数の電流補正指令を演算し、それらを基本電流指令に重畳すればよい。
 続いて、電気的特性を中央値と位置依存成分に分けてトルク方程式に代入すると、上記式(2)は式(6)に展開される。
Figure JPOXMLDOC01-appb-M000005
As in the above equation (5), a position-dependent component of an arbitrary frequency can be targeted. When the present embodiment is applied using the equation (5), it is possible to suppress the torque ripple having a frequency n times the electric angular frequency. Further, when suppressing the torque ripple of a plurality of frequencies, the equation (5) at each frequency is used, the current correction command of each frequency is calculated by applying the present embodiment, and they are superimposed on the basic current command. Just do it.
Subsequently, when the electrical characteristics are divided into the median value and the position-dependent component and substituted into the torque equation, the above equation (2) is expanded into the equation (6).
Figure JPOXMLDOC01-appb-M000006
 さらに、dq軸電流に高調波の補正指令を加えることとすると、上記式(6)は式(7)に展開される。
Figure JPOXMLDOC01-appb-M000006
Further, if a harmonic correction command is added to the dq-axis current, the above equation (6) is expanded into the equation (7).
Figure JPOXMLDOC01-appb-M000007
 ここで、id0:d軸基本電流指令値、idripple:d軸電流補正指令値、iq0:q軸基本電流指令値、iqripple:q軸電流補正指令値である。
 上記式(7)において、トルクの定数成分に着目する。トルクの定数成分は電動機の出力である基本的なトルクを表す。電流制御系では、電動機の出力である基本的なトルクがトルク指令値T*に追従するように電流制御を行う。基本的なトルクT0は、電動機の電気的特性と基本電流指令id0、iq0を用いて、下記式(8)となる。
Figure JPOXMLDOC01-appb-M000007
Here, id0: d-axis basic current command value, idripple: d-axis current correction command value, iq0: q-axis basic current command value, and iqripple: q-axis current correction command value.
In the above equation (7), attention is paid to the constant component of torque. The constant component of torque represents the basic torque that is the output of the electric motor. In the current control system, the current is controlled so that the basic torque, which is the output of the electric motor, follows the torque command value T *. The basic torque T0 is given by the following equation (8) using the electrical characteristics of the electric motor and the basic current commands id0 and iq0.
Figure JPOXMLDOC01-appb-M000008
 基本的なトルクから基本電流指令id0、iq0を求める方法は、最大トルク/電流(MTPA)制御を用いても良いし、他の公知の制御方法を用いても良い。例えば、MTPA制御を用いた場合、基本電流指令id0、iq0は、下記式(9)を満たすように計算される。
Figure JPOXMLDOC01-appb-M000008
As a method of obtaining the basic current commands id0 and iq0 from the basic torque, the maximum torque / current (MTPA) control may be used, or another known control method may be used. For example, when MTPA control is used, the basic current commands id0 and iq0 are calculated so as to satisfy the following equation (9).
Figure JPOXMLDOC01-appb-M000009
 式(8)と式(9)から基本電流指令id0、iq0が計算される。他の公知の制御手法を用いる場合でも、基本的なトルクを表す式(8)に基づいて基本電流指令が計算される。
 次に、式(7)において、高調波の二次以上の成分は十分小さいものとすると、トルクの高調波成分であるトルクリップルは以下の式(10)で表される。
Figure JPOXMLDOC01-appb-M000009
The basic current commands id0 and iq0 are calculated from the equations (8) and (9). Even when other known control methods are used, the basic current command is calculated based on the equation (8) expressing the basic torque.
Next, assuming that the second-order or higher component of the harmonic is sufficiently small in the equation (7), the torque ripple, which is the harmonic component of the torque, is represented by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
 ここで、Tripple:トルクリップルである。
 d軸磁石磁束とインダクタンスの中央値が誤差を有する場合、上記式(10)は、式(11)となる。
Figure JPOXMLDOC01-appb-M000010
Here, Triple: torque ripple.
When the median value of the d-axis magnet magnetic flux and the inductance has an error, the above equation (10) becomes the equation (11).
Figure JPOXMLDOC01-appb-M000011
 ここで、ΔL0:インダクタンスの中央値の誤差、ΔΦd0:d軸磁石磁束の中央値の誤差である。
Figure JPOXMLDOC01-appb-M000011
Here, ΔL0: an error of the median value of the inductance, and ΔΦd0: an error of the median value of the d-axis magnet magnetic flux.
 次に、ΔL0とΔΦd0について、図3に示す誤差領域の概念を導入し、トルクリップルを抑制する電流補正指令値について説明する。図3に示す誤差領域は、横軸が|L0|に対するΔL0の比ΔL0/|L0|、縦軸がΦd0に対するΔΦd0の比であるΔΦd0/Φd0を示す。任意の誤差ΔL0、ΔΦd0は、誤差領域上の点の座標として表現することが可能である。例えば、ΔL0とΔΦd0がどちらも0のとき、ΔL0とΔΦd0は誤差領域の原点(0,0)に対応する。また、誤差ΔL0とΔΦd0が、それぞれの中央値Meに対して+10%の大きさを持つとき、ΔL0とΔΦd0は誤差領域上の座標(0.1、0.1)に対応する。以下では、誤差領域上の点を誤差点Epと呼ぶ。
 電流補正指令の設計について、誤差領域上の誤差点Epを1つ選び、その座標を(eL、ep)とする。次に、選んだ誤差点Epと原点において式(11)で表されるトルクリップルが0となるように連立方程式を以下のように立てる。
Next, for ΔL0 and ΔΦd0, the concept of the error region shown in FIG. 3 is introduced, and the current correction command value for suppressing the torque ripple will be described. The error region shown in FIG. 3 shows the ratio ΔL0 / | L0 | of ΔL0 to | L0 | on the horizontal axis and ΔΦd0 / Φd0 on the vertical axis, which is the ratio of ΔΦd0 to Φd0. Arbitrary errors ΔL0 and ΔΦd0 can be expressed as coordinates of points on the error region. For example, when ΔL0 and ΔΦd0 are both 0, ΔL0 and ΔΦd0 correspond to the origin (0,0) of the error region. Further, when the errors ΔL0 and ΔΦd0 have a magnitude of + 10% with respect to their respective median Me, ΔL0 and ΔΦd0 correspond to the coordinates (0.1, 0.1) on the error region. Hereinafter, the points on the error region are referred to as error points Ep.
Regarding the design of the current correction command, one error point Ep on the error region is selected, and its coordinates are (eL, ep). Next, the simultaneous equations are set as follows so that the torque ripple represented by the equation (11) becomes 0 at the selected error point Ep and the origin.
Figure JPOXMLDOC01-appb-M000012
 ここで、L0はLd-Lqの中央値Meであり、逆突極性を持つ電動機では|L0|=-L0となる。上記式(12)の連立方程式を満たす電流補正指令idrippleとiqrippleを解くと、以下の電流補正指令の式が得られる。
Figure JPOXMLDOC01-appb-M000012
Here, L0 is the median value Me of Ld−Lq, and | L0 | = −L0 for an electric motor having a reverse polarity. By solving the current correction commands idle and equation that satisfy the simultaneous equations of the above equation (12), the following current correction command equations can be obtained.
Figure JPOXMLDOC01-appb-M000013
上記式(13)において、誤差点Epの座標(eL、ep)の比を以下のように定義する。
Figure JPOXMLDOC01-appb-M000013
In the above equation (13), the ratio of the coordinates (eL, ep) of the error point Ep is defined as follows.
Figure JPOXMLDOC01-appb-M000014
 このとき、式(14)は以下のように式(15)に変換することができる。
Figure JPOXMLDOC01-appb-M000014
At this time, the equation (14) can be converted into the equation (15) as follows.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 式(15)は、図5に示すように、ブロック103aのようにiqrippleを求めたあと、iqrripleを用いてブロック103bのようにidrippleを計算することが可能であることを示している。このことから、iqrippleを演算できればidrippleは簡素に演算することができる。また式(15)において、電流補正指令は誤差点の座標そのものに依存せず、座標の比であるeに依存することがわかる。つまり、誤差点は傾きがe となる直線上の点ならば、どの点を特定の誤差点として選択しようと電流補正指令は全く同じ値を持つこととなる。また、式(15)で表される電流補正指令は、特定の誤差点においてトルクリップルが0となるように計算されていることから、式(15)で表される電流補正指令は、傾きがeとなる直線上のすべての誤差点でのトルクリップルを0とする電流であることがわかる。よって、eの設定次第で、d軸磁石磁束とインダクタンスの中央値の誤差に対するロバスト性を選択することができる。 Equation (15) shows that, as shown in FIG. 5, it is possible to calculate the idle as in the block 103b, and then calculate the idle as in the block 103b using the ipripple. From this, if the ipripple can be calculated, the idle can be calculated simply. Further, in the equation (15), it can be seen that the current correction command does not depend on the coordinates of the error point itself, but depends on the coordinate ratio e. That is, if the error point is a point on a straight line whose slope is e, the current correction command has exactly the same value regardless of which point is selected as a specific error point. Further, since the current correction command represented by the equation (15) is calculated so that the torque ripple becomes 0 at a specific error point, the current correction command represented by the equation (15) has a slope. It can be seen that the current has a torque ripple of 0 at all error points on the straight line e. Therefore, depending on the setting of e, the robustness against the error between the d-axis magnet magnetic flux and the median inductance can be selected.
 以下では、図4に示すように傾きがeとなる直線をリップル抑制直線と呼ぶ。eを限りなく0に近づけたとき、リップル抑制直線RslはΔL0/L0の軸と一致する。このときの電流補正指令は、ΔL0が如何なる誤差を持つときもトルクリップルを抑制することが可能である。つまり、eを0に近づけることにより、ΔL0に対してロバストであるということを示している。同様の考えにより、eを大きい値に設定すると、リップル抑制直線RslはΔΦd0/Φd0の軸と一致し、ΔΦd0対してロバストにリップルを抑制することが可能である。また、eを任意の値に設定したときは、ΔL0とΔΦdの比がeとなる場合にロバストにリップルを抑制することが可能である。以上から、eはΔL0とΔΦd0に対する感度を表していることになっており、感度設定値と呼ぶこととする。 In the following, as shown in FIG. 4, a straight line having an inclination of e is referred to as a ripple suppression straight line. When e is brought as close to 0 as possible, the ripple suppression straight line Rsl coincides with the axis of ΔL0 / L0. The current correction command at this time can suppress the torque ripple even when ΔL0 has any error. That is, by bringing e closer to 0, it is shown that it is robust with respect to ΔL0. Based on the same idea, when e is set to a large value, the ripple suppression straight line Rsl coincides with the axis of ΔΦd0 / Φd0, and it is possible to robustly suppress the ripple with respect to ΔΦd0. Further, when e is set to an arbitrary value, it is possible to robustly suppress the ripple when the ratio of ΔL0 and ΔΦd is e. From the above, e represents the sensitivity to ΔL0 and ΔΦd0, and is referred to as the sensitivity set value.
 また式(15)では、まずq軸電流補正指令iqrippleから計算し、iqrippleの値からd軸電流補正指令idrippleを求めており、idrippleはiqrippleの単純な整数倍として簡素に計算することが可能である。また、最初にidrippleから計算し、idrippleを用いてiqrippleを計算してもよい。具体的には、下記の式(16)となる。 Further, in the equation (15), the q-axis current correction command ipripple is first calculated, and the d-axis current correction command idripple is obtained from the value of the qripple, and the idripple can be simply calculated as a simple integer multiple of the ipripple. is there. Alternatively, the iripple may be calculated first, and the iqripple may be calculated using the idripple. Specifically, it becomes the following formula (16).
Figure JPOXMLDOC01-appb-M000016
 上記式(16)より、idrippleを演算できれば、iqrippleはidrippleの定数倍として簡素に演算することができる。以上から、本実施の形態のd軸電流補正指令とq軸電流補正指令は、その位相が等しいかまたは180度の差を持つことを特徴としている。そのため片方を演算すれば、もう片方は演算した方の定数倍という簡素な計算により求めることができる。
Figure JPOXMLDOC01-appb-M000016
From the above equation (16), if the idle can be calculated, the ipripple can be simply calculated as a constant multiple of the idle. From the above, the d-axis current correction command and the q-axis current correction command of the present embodiment are characterized in that their phases are the same or have a difference of 180 degrees. Therefore, if one is calculated, the other can be obtained by a simple calculation of a constant multiple of the calculated one.
 本実施の形態における電流補正指令は、d軸インダクタンスLdがq軸インダクタンスLqよりも大きいという特徴を持つ順突極性の電動機に対しても適用することができる。この場合、式(12)において|L0|=L0になることに注意して解くと、以下の式が得られる。 The current correction command in the present embodiment can also be applied to an electric motor having a forward polarity in which the d-axis inductance Ld is larger than the q-axis inductance Lq. In this case, if the equation (12) is solved while paying attention to | L0 | = L0, the following equation can be obtained.
Figure JPOXMLDOC01-appb-M000017
 上記式(17)は、逆突極性を持つ電動機の電流補正指令の計算時と同様に感度設定値eで表される電流となっており、eを限りなく0に近づけるとΔL0に対してロバストとなり、eを大きい値に設定すると、ΔΦd0に対してロバストとなる。
式(17)は、まずq軸電流補正指令iqrippleから計算し、iqrippleの値からd軸電流補正指令idrippleを求めているが、最初にidrippleから計算し、idrippleを用いてiqrippleを計算してもよい。具体的には、下記の式(18)となる。
Figure JPOXMLDOC01-appb-M000017
The above equation (17) is a current represented by the sensitivity set value e as in the calculation of the current correction command of the electric motor having the reverse polarity, and when e is brought as close to 0 as possible, it is robust against ΔL0. Therefore, when e is set to a large value, it becomes robust with respect to ΔΦd0.
Equation (17) is first calculated from the q-axis current correction command iplipple, and the d-axis current correction command idripple is obtained from the value of the qripple. However, even if the d-axis current correction command idripple is first calculated from the idripple and the ipripple is calculated using the idle. Good. Specifically, it becomes the following formula (18).
Figure JPOXMLDOC01-appb-M000018
 次に、トルクリップルの感度と電流補正指令の大きさの関係について説明する。式(12)で表されるトルクリップルについて、ΔL0とΔΦd0に対する勾配を計算すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000018
Next, the relationship between the sensitivity of torque ripple and the magnitude of the current correction command will be described. The gradients for ΔL0 and ΔΦd0 for the torque ripple represented by the equation (12) are calculated as follows.
Figure JPOXMLDOC01-appb-M000019
 上記式(19)より、ΔL0に対するトルクリップルの感度を下げるためには、idripple*iq0+iqripple*id0を小さくすればよい。また、ΔΦd0に対するトルクリップルの感度を下げるためには、iqrippleを小さくすればよい。ここで、ΔL0に対するトルクリップルの勾配について、大きな弱め電流となるid0が必要となる高回転時を除いて、基本的にiq0の方がid0より大きいため、ΔL0に対するトルクリップルの感度を下げるには、idrippleを小さくすればよいことになる。以上が、トルクリップルの感度と電流補正指令の大きさの関係性となる。
Figure JPOXMLDOC01-appb-M000019
From the above equation (19), in order to reduce the sensitivity of the torque ripple with respect to ΔL0, idripple * iq0 + iripple * id0 may be reduced. Further, in order to reduce the sensitivity of the torque ripple with respect to ΔΦd0, the ipripple may be reduced. Here, regarding the gradient of the torque ripple with respect to ΔL0, except at the time of high rotation where id0 which is a large weakening current is required, iq0 is basically larger than id0, so to reduce the sensitivity of the torque ripple with respect to ΔL0. , Idripple should be made smaller. The above is the relationship between the sensitivity of torque ripple and the magnitude of the current correction command.
 図6は、感度設定値であるeの値を3通り(0.1、1、10)に設定し、そのときの電流補正指令を表したものである。図6(a)は、感度設定値であるeが0.1の場合、図6(b)は、感度設定値であるeが1の場合、図6(c)は、感度設定値であるeが10の場合を表している。図6を見ると、設計上はΔL0に対してロバストとなる感度設定値のeが小さい場合では、d軸電流補正指令idrippleが小さくなっていることが確認できる。また、設計上ΔΦd0に対してロバストとなる感度設定値のeが大きい場合では、q軸電流補正指令iqrippleが小さくなっていることが確認できる。以上の関係から、感度設定値であるeはdq軸電流補正指令idripple、iqrippleの大きさを調整しているパラメータであることがわかる。つまり、感度設定値であるeを小さくすればd軸電流補正指令idrippleが小さくなり、感度設定値であるeを大きくすればq軸電流補正指令iqrippleが小さくなる。以上から、感度設定値eは、d軸電流補正指令とq軸電流補正指令の大きさの比を操作し、ΔL0とΔΦd0に対するロバスト性を決定するためのパラメータであり、本実施の形態の電流補正指令を流すことにより、電動機の電気的特性に誤差がある場合のトルクリップルを従来よりも小さくできる。 FIG. 6 shows the current correction command at that time by setting the value of e, which is the sensitivity setting value, in three ways (0.1, 1, 10). 6 (a) shows a sensitivity setting value of 0.1, FIG. 6 (b) shows a sensitivity setting value of 1, and FIG. 6 (c) shows a sensitivity setting value. It represents the case where e is 10. Looking at FIG. 6, it can be confirmed that the d-axis current correction command idle is small when the sensitivity setting value e, which is robust to ΔL0 in design, is small. Further, when the sensitivity set value e, which is robust to ΔΦd0 in design, is large, it can be confirmed that the q-axis current correction command ipripple is small. From the above relationship, it can be seen that the sensitivity setting value e is a parameter for adjusting the magnitudes of the dq-axis current correction commands idripple and ipripple. That is, if the sensitivity setting value e is decreased, the d-axis current correction command idle becomes small, and if the sensitivity setting value e is increased, the q-axis current correction command ipripple becomes small. From the above, the sensitivity set value e is a parameter for manipulating the ratio of the magnitudes of the d-axis current correction command and the q-axis current correction command to determine the robustness with respect to ΔL0 and ΔΦd0, and is the current of the present embodiment. By sending a correction command, the torque ripple when there is an error in the electrical characteristics of the electric motor can be made smaller than before.
 電動機の電気的特性の誤差に対するロバスト性とトルクリップル抑制性能について、本実施の形態における電流補正指令と特許文献1の電流補正指令をそれぞれ通電した際に発生するトルクリップルの大きさを図7、図8に示している。図7(a)、図8(a)はe=0.1の場合、図7(b)、図8(b)はe=1の場合、図7(c)、図8(c)はe=10の場合、図7(d)、図8(d)は特許文献1の場合を表わしている。図7、図8は、下の平面が誤差領域、縦軸がトルクリップルであり、電動機の電気的特性が誤差領域内の誤差を持つときに生じるトルクリップルの大きさをプロットしたものである。図7はq軸磁石磁束とインダクタンスの脈動が無く、d軸磁石磁束の脈動がある場合を示す。図7(d)の特許文献1の電流補正指令は、図7(a)の本実施の形態の電流補正指令のe=0.1の場合と似た傾向にあり、インダクタンス誤差ΔL0があってもトルクリップル抑制効果が薄れにくいという特徴がある。しかし、d軸磁石磁束誤差ΔΦd0がある場合には、トルクリップル抑制効果が薄れている。このことから、製造の方法あるいは電動機の電気的特性の計測の理由でΔΦd0が生じ易い電動機に対しては、特許文献1の電流補正指令ではトルクリップルを抑制することができない。その点、本実施の形態の電流補正指令は感度設定値であるeを変更するだけでΔΦd0が生じ易い場合にもトルクリップルを抑制することができる。図7(b)は、ΔL0とΔΦd0が各中央値に対して同等程度の比率となる傾向がある場合にトルクリップルを抑制し、図7(c)は、ΔΦd0が生じ易い場合にトルクリップルを抑制することが可能であることを示している。 Regarding the robustness against errors in the electrical characteristics of the electric motor and the torque ripple suppression performance, the magnitude of the torque ripple generated when the current correction command in the present embodiment and the current correction command in Patent Document 1 are energized are shown in FIG. It is shown in FIG. 7 (a) and 8 (a) are when e = 0.1, FIG. 7 (b), FIG. 8 (b) is when e = 1, FIGS. 7 (c) and 8 (c) are When e = 10, FIGS. 7 (d) and 8 (d) represent the case of Patent Document 1. 7 and 8 are plots of the magnitude of the torque ripple that occurs when the lower plane is the error region and the vertical axis is the torque ripple, and the electrical characteristics of the motor have an error within the error region. FIG. 7 shows a case where there is no pulsation between the q-axis magnet magnetic flux and the inductance, and there is a pulsation of the d-axis magnet magnetic flux. The current correction command of Patent Document 1 in FIG. 7 (d) tends to be similar to the case of the current correction command e = 0.1 of the present embodiment of FIG. 7 (a), and has an inductance error ΔL0. However, the torque ripple suppression effect is not diminished. However, when there is a d-axis magnet magnetic flux error ΔΦd0, the torque ripple suppressing effect is diminished. For this reason, torque ripple cannot be suppressed by the current correction command of Patent Document 1 for an electric motor in which ΔΦd0 is likely to occur due to a manufacturing method or measurement of the electrical characteristics of the electric motor. In that respect, the current correction command of the present embodiment can suppress torque ripple even when ΔΦd0 is likely to occur only by changing the sensitivity set value e. FIG. 7 (b) suppresses torque ripple when ΔL0 and ΔΦd0 tend to have the same ratio with respect to each median, and FIG. 7 (c) shows torque ripple when ΔΦd0 is likely to occur. It shows that it can be suppressed.
 また、図7ではいずれの電流補正指令の場合も、誤差領域内でのトルクリップルの最大値は0.0167N・mであり、トルクリップル抑制を行わない場合でのトルクリップルの大きさが0.167N・mであるため、最悪でも90%の低減を行うことが可能となっている。さらに、ΔL0とΔΦd0が誤差領域内の任意の誤差を持つとき、図7からe=1の電流補正指令を通電した場合が、他の場合よりもトルクリップル抑制効果が高い範囲が大きいことが見てとれる。比較のため、各電流補正指令において、トルクリップルの最大値の半分である0.0084N・m以下となる誤差の範囲を求め、その範囲を誤差領域全体の面積に対する比率として計算する。計算すると、特許文献1では0.0084N・m以下となる範囲は誤差領域の48%であり、本実施の形態の電流補正指令では、e=0.1の場合は53%、e=1の場合は74%、e=10の場合は53%となった。このことから、e=1はΔL0とΔΦd0が誤差領域内の任意の誤差を一様な確率で持つときに、トルクリップルを抑制する確率が最も高いことがわかる。以上から、本実施の形態の電流補正指令は、電動機の電気的特性の誤差がある場合のトルクリップルを従来よりも小さくできる。 Further, in FIG. 7, the maximum value of the torque ripple in the error region is 0.0167 N ・ m in any of the current correction commands, and the magnitude of the torque ripple when the torque ripple suppression is not performed is 0. Since it is 167 Nm, it is possible to reduce the amount by 90% at the worst. Further, when ΔL0 and ΔΦd0 have arbitrary errors within the error region, it can be seen from FIG. 7 that when the current correction command of e = 1 is energized, the range in which the torque ripple suppression effect is higher is larger than in other cases. It can be taken. For comparison, in each current correction command, an error range of 0.0084 Nm or less, which is half of the maximum value of torque ripple, is obtained, and the range is calculated as a ratio to the area of the entire error region. When calculated, in Patent Document 1, the range of 0.0084 Nm or less is 48% of the error region, and in the current correction command of the present embodiment, 53% when e = 0.1 and e = 1. In the case of 74%, in the case of e = 10, it was 53%. From this, it can be seen that e = 1 has the highest probability of suppressing torque ripple when ΔL0 and ΔΦd0 have arbitrary errors in the error region with a uniform probability. From the above, the current correction command of the present embodiment can make the torque ripple smaller than the conventional one when there is an error in the electrical characteristics of the electric motor.
 次に、図8はd軸磁石磁束の脈動に加えて、q軸磁石磁束とインダクタンス脈動もある場合を示す。このとき、トルクリップル抑制を行わないときのトルクリップルの大きさは0.1881N・mである。図8(d)より、特許文献1の電流補正指令を用いたときのトルクリップルの大きさは、いずれの誤差の場合も約0.06N・mであり、本来の目的であるトルクリップル抑制の効果が68%となっている。トルクリップル抑制を行わない場合と比較するとトルクリップルは低減できているものの、q軸磁石磁束とインダクタンスの脈動が無いときの低減率に比べるとトルクリップル抑制の効果は小さくなっている。一方、本実施の形態の電流補正指令は、q軸磁石磁束とインダクタンス脈動があってもトルクリップル抑制効果が高く、また感度設定値であるeの値と各誤差に対するロバスト性も設計通りの特性が現れている。以上から、q軸磁石磁束とインダクタンス脈動がある場合においても、本実施の形態の電流補正指令は、電動機の電気的特性の誤差がある場合でもトルクリップルを好適に抑制することができる。 Next, FIG. 8 shows a case where there is a q-axis magnet magnetic flux and an inductance pulsation in addition to the pulsation of the d-axis magnet magnetic flux. At this time, the magnitude of the torque ripple when the torque ripple suppression is not performed is 0.1881 Nm. From FIG. 8D, the magnitude of the torque ripple when the current correction command of Patent Document 1 is used is about 0.06 Nm in any error, which is the original purpose of suppressing torque ripple. The effect is 68%. Although the torque ripple can be reduced as compared with the case where the torque ripple suppression is not performed, the effect of the torque ripple suppression is smaller than the reduction rate when there is no pulsation between the q-axis magnet magnetic flux and the inductance. On the other hand, the current correction command of the present embodiment has a high torque ripple suppression effect even if there is a q-axis magnet magnetic flux and an inductance pulsation, and the value of e, which is a sensitivity setting value, and the robustness against each error are also the characteristics as designed. Is appearing. From the above, even when there is a q-axis magnet magnetic flux and an inductance pulsation, the current correction command of the present embodiment can suitably suppress torque ripple even when there is an error in the electrical characteristics of the electric motor.
 図7、図8を用いた上述の説明では、電動機のインダクタンスと電機子鎖交磁束の中央値の誤差が実際に取りうる範囲をそれぞれ0.1倍としており、すなわち中央値の誤差の比率の実際に取りうる値を1とした説明であったので、e=1が最良であった。電動機のインダクタンスと電機子鎖交磁束の中央値の誤差の比率が実際に取りうる値が1以外の別の値であるときも、その値を予め把握しておくことで、その値を感度設定値eに与えることで、トルクリップルの振幅が小さい誤差領域を最大にすることができる。すなわち、本実施の形態の構成ならば、電気的パラメータの中央値の取りうる誤差領域に応じて電流補正指令を生成できるので、その誤差領域において、ΔL0とΔΦd0が誤差領域内の任意の誤差を一様な確率で持つときに、トルクリップルを所定の値よりも小さくする確率を最も高くすることができる。 In the above description using FIGS. 7 and 8, the range in which the error between the inductance of the motor and the median of the armature interlinkage magnetic flux can actually be taken is set to 0.1 times, that is, the ratio of the error of the median. Since the explanation was based on the value that can actually be taken as 1, e = 1 was the best. Even if the ratio of the error between the inductance of the motor and the median of the armature interlinkage magnetic flux is another value other than 1, the value can be set by grasping the value in advance. By giving the value e, the error region in which the amplitude of the torque ripple is small can be maximized. That is, in the configuration of the present embodiment, the current correction command can be generated according to the error region in which the median value of the electrical parameter can be taken. Therefore, in the error region, ΔL0 and ΔΦd0 set an arbitrary error in the error region. When it has a uniform probability, the probability that the torque ripple is smaller than a predetermined value can be maximized.
実施の形態2.
 次に、実施の形態2による電動機制御装置について、図9を用いて説明する。実施の形態2は、図9に示すとおり、回転位置に対する電動機の位置依存成分のテーブル105を持ち、そのテーブルに基づいて位置依存成分Pdを出力し電流補正指令を計算する場合である。
 本実施の形態では、予め公知の方法により、電動機のインダクタンス、および磁石磁束を測定しておき、各測定値から平均値を引くことで位置依存成分を抽出する。抽出した位置依存成分を図10のような回転位置に対するテーブルデータにし、回転位置に応じた位置依存成分Pdを電流補正指令演算部103に出力する。dq軸電流補正指令を出力する電流補正指令演算部103では、実施の形態1と同様の計算を行うことにより、電動機の電気的特性に対してロバストにトルクリップルを抑制する電流補正指令を計算し、dq軸基本電流指令に重畳することで、トルクリップルを抑制することができる。本実施の形態におけるテーブルデータは、6f成分だけでなく、任意の周波数成分が含まれたテーブルデータを作成してもよい。任意の周波数成分が含まれたテーブルデータから位置依存成分を電流補正指令演算部103に出力し、式(15)に基づいて電流補正指令を計算し、dq軸基本電流指令に重畳することで、テーブルデータに含まれている周波数成分と同じ周波数のトルクリップルを抑制することができる。複数の周波数成分が含まれている場合は、それらの周波数成分と同じ周波数のトルクリップルを抑制することができるため、各周波数で個別に電流補正指令を計算する必要がなく演算量を減らすことが可能となる。
Embodiment 2.
Next, the electric motor control device according to the second embodiment will be described with reference to FIG. The second embodiment is a case where, as shown in FIG. 9, a table 105 of the position-dependent component of the electric motor with respect to the rotation position is provided, the position-dependent component Pd is output based on the table, and the current correction command is calculated.
In the present embodiment, the inductance of the electric motor and the magnetic flux of the magnet are measured by a known method in advance, and the position-dependent component is extracted by subtracting the average value from each measured value. The extracted position-dependent component is used as table data for the rotation position as shown in FIG. 10, and the position-dependent component Pd corresponding to the rotation position is output to the current correction command calculation unit 103. The current correction command calculation unit 103, which outputs a dq-axis current correction command, calculates a current correction command that robustly suppresses torque ripple with respect to the electrical characteristics of the electric motor by performing the same calculation as in the first embodiment. By superimposing on the dq-axis basic current command, torque ripple can be suppressed. As the table data in the present embodiment, not only the 6f component but also the table data including any frequency component may be created. By outputting the position-dependent component from the table data including an arbitrary frequency component to the current correction command calculation unit 103, calculating the current correction command based on the equation (15), and superimposing it on the dq-axis basic current command, It is possible to suppress the torque ripple of the same frequency as the frequency component included in the table data. When multiple frequency components are included, torque ripple of the same frequency as those frequency components can be suppressed, so it is not necessary to calculate the current correction command individually for each frequency, and the amount of calculation can be reduced. It will be possible.
 感度設定値eは、実施の形態1で説明した通りであり、eを小さくするとidrippleが小さくなってインダクタンスの中央値誤差ΔL0に対してロバストにトルクリップルを抑制する電流となり、eの値を大きくするとiqrippleが小さくなってd軸磁石磁束の中央値誤差ΔΦd0に対してロバストにトルクリップルを抑制することができる。以上から、本実施の形態においても、感度設定値eによりdq軸電流補正指令の大きさ比率を変えることができ、それにより電動機の電気的特性に誤差ある場合においてもトルクリップルの抑制が可能になる。 The sensitivity set value e is as described in the first embodiment. When e is made small, the idle becomes small and becomes a current that robustly suppresses torque ripple with respect to the median inductance error ΔL0, and the value of e is made large. Then, the inductance becomes small, and the torque ripple can be robustly suppressed with respect to the median error ΔΦd0 of the d-axis magnet magnetic flux. From the above, also in the present embodiment, the magnitude ratio of the dq-axis current correction command can be changed by the sensitivity set value e, whereby torque ripple can be suppressed even when there is an error in the electrical characteristics of the electric motor. Become.
実施の形態3.
 次に、実施の形態3による電動機制御装置について、図11を用いて説明する。図11に示すように、実施の形態3では、電流補正指令位相成分生成部106と、電流補正ゲイン演算部107と、電流補正ゲイン乗算部108を備えている。
 本実施の形態では、予め公知の方法により、電動機のインダクタンス、および磁石磁束を測定しておき、各測定値から平均値を引くことで位置依存成分を抽出する。続いて、式(15)の分子部分を抽出した下記の式(20)に従い、電動機の回転位置とdq軸基本電流指令に対するdq軸電流補正指令の位相成分f(θ、id0、iq0)の三次元テーブルを作成し、電流補正指令位相成分生成部106とする。
Embodiment 3.
Next, the electric motor control device according to the third embodiment will be described with reference to FIG. As shown in FIG. 11, the third embodiment includes a current correction command phase component generation unit 106, a current correction gain calculation unit 107, and a current correction gain multiplication unit 108.
In the present embodiment, the inductance of the electric motor and the magnetic flux of the magnet are measured by a known method in advance, and the position-dependent component is extracted by subtracting the average value from each measured value. Subsequently, according to the following equation (20) in which the molecular portion of the equation (15) is extracted, the rotation position of the motor and the third order of the phase component f (θ, id0, iq0) of the dq-axis current correction command with respect to the dq-axis basic current command. The original table is created and used as the current correction command phase component generation unit 106.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 作成したテーブルからの位相成分f(θ、id0、iq0)相当出力に、電流補正ゲイン演算部107で計算された電流補正ゲインを電流補正ゲイン乗算部108で乗算し、電流補正指令重畳部2で基本電流指令に重畳する。本実施の形態では、電流補正指令の位相成分をテーブルとして保有するため、実施の形態2のように電動機の各電気的特性を別々にテーブルデータにする必要がなく、データ量を減らすことができる。また本実施の形態の電流補正指令は、d軸電流補正指令とq軸電流補正指令の位相が等しいかまたは180度の差であることから、式(20)で表す位相成分があれば、d軸電流補正指令とq軸電流補正指令は位相成分の単純な整数倍として簡素に求めることができる。電流補正ゲイン演算部107は、下記の式(21)に従って演算する。 The output corresponding to the phase component f (θ, id0, iq0) from the created table is multiplied by the current correction gain calculated by the current correction gain calculation unit 107 by the current correction gain multiplication unit 108, and the current correction command superimposition unit 2 Superimpose on the basic current command. In the present embodiment, since the phase component of the current correction command is stored as a table, it is not necessary to separately store each electrical characteristic of the electric motor as table data as in the second embodiment, and the amount of data can be reduced. .. Further, since the current correction command of the present embodiment has the same phase or a difference of 180 degrees between the d-axis current correction command and the q-axis current correction command, if there is a phase component represented by the equation (20), d The axis current correction command and the q-axis current correction command can be simply obtained as simple integral multiples of the phase component. The current correction gain calculation unit 107 calculates according to the following equation (21).
Figure JPOXMLDOC01-appb-M000021
 式(21)における感度設定値eの役割は実施の形態1で説明したとおりであり、eの値を小さくするとidrippleが小さくなってインダクタンスの中央値誤差ΔL0に対してロバストにトルクリップルを抑制する電流となり、eの値を大きくするとiqrippleが小さくなってd軸磁石磁束の中央値誤差ΔΦd0に対してロバストにトルクリップルを抑制する電流となる。
Figure JPOXMLDOC01-appb-M000021
The role of the sensitivity set value e in the equation (21) is as described in the first embodiment. When the value of e is reduced, the idle becomes small and the torque ripple is robustly suppressed with respect to the median inductance error ΔL0. It becomes a current, and when the value of e is increased, the inductance becomes smaller and becomes a current that robustly suppresses torque ripple with respect to the median error ΔΦd0 of the d-axis magnet magnetic flux.
 以上から、本実施の形態においても、感度設定値eによりdq軸電流補正指令の大きさ比率を変えることができ、それにより電動機の電気的特性に誤差ある場合においてもトルクリップルの抑制が可能になる。 From the above, also in the present embodiment, the magnitude ratio of the dq-axis current correction command can be changed by the sensitivity set value e, whereby torque ripple can be suppressed even when there is an error in the electrical characteristics of the electric motor. Become.
 また、電流補正指令の分子成分のテーブルを持つのではなく、電流補正指令の分子成分を三角関数の周期関数に当てはめて計算してもよい。その場合、例えば式(5)で表されるような電気角周波数のn倍の周波数を持つ電動機の位置依存成分を対象とすると、電流補正指令の位相成分は下記の式(22)になる。 Also, instead of having a table of molecular components of the current correction command, the molecular components of the current correction command may be applied to the periodic function of the trigonometric function for calculation. In that case, for example, when the position-dependent component of the electric motor having a frequency n times the electric angular frequency as represented by the equation (5) is targeted, the phase component of the current correction command is the following equation (22).
Figure JPOXMLDOC01-appb-M000022
 上記式(22)を用いることにより、テーブルデータの作成を行うことなく、特定の周波数のトルクリップルを抑制することが可能となる。そのため、本実施の形態でもテーブルデータを用いるか式(22)を用いるかは、場合に応じて使い分けることができる。
Figure JPOXMLDOC01-appb-M000022
By using the above equation (22), it is possible to suppress torque ripple at a specific frequency without creating table data. Therefore, whether to use the table data or the equation (22) in this embodiment can be selected depending on the case.
実施の形態4.
 次に、実施の形態4による電動機制御装置について、図12~図14を用いて説明する。実施の形態4では、電流補正指令に調整ゲイン生成部109で生成された調整ゲインを乗算する調整ゲイン乗算部110を有する。電流補正指令は、実施の形態1で説明した式(15)を用いた図12で示すような構成でもよく、あるいは実施の形態2で説明したように位相成分テーブルから演算した電流補正指令を用いた図13で示す変形例のような構成でもよく、または実施の形態3で説明したように電流補正指令位相成分と電流補正ゲインから演算された電流補正指令を用いた図14に示す変形例のような構成でもよい。この調整ゲインは、0から1までの値を持つものとする。本実施の形態においても、感度設定値eによってdq軸電流補正指令の大きさ比率を変えることができ、それにより電動機の電気的特性に誤差ある場合においてもトルクリップルの抑制が可能になる。
Embodiment 4.
Next, the electric motor control device according to the fourth embodiment will be described with reference to FIGS. 12 to 14. In the fourth embodiment, the adjustment gain multiplication unit 110 for multiplying the current correction command by the adjustment gain generated by the adjustment gain generation unit 109 is provided. The current correction command may have a configuration as shown in FIG. 12 using the equation (15) described in the first embodiment, or the current correction command calculated from the phase component table as described in the second embodiment is used. The configuration may be the same as the modified example shown in FIG. 13, or the modified example shown in FIG. 14 using the current correction command calculated from the current correction command phase component and the current correction gain as described in the third embodiment. The configuration may be as follows. It is assumed that this adjustment gain has a value from 0 to 1. Also in the present embodiment, the magnitude ratio of the dq-axis current correction command can be changed by the sensitivity set value e, whereby torque ripple can be suppressed even when there is an error in the electrical characteristics of the electric motor.
 また、d軸電流補正指令とq軸電流補正指令の位相が等しいかまたは180度の差であるため、電流補正指令の位相計算はd軸電流補正指令、またはq軸電流補正指令の片方だけ行えばよく、もう片方は計算した方の定数倍するだけで求めることができるため、簡素に電流補正指令を求めることができる。 Further, since the phases of the d-axis current correction command and the q-axis current correction command are the same or 180 degrees apart, the phase calculation of the current correction command is performed only for one of the d-axis current correction command and the q-axis current correction command. The other can be obtained by simply multiplying the calculated one by a constant, so that the current correction command can be simply obtained.
 さらに本実施の形態では、電流補正指令演算部103で演算された電流補正指令の最適設計値より小さくする構成を持つ。これにより、電動機の電気的特性が中央値となるときのトルクリップル抑制効果が低下するが、実施の形態1で説明したように、電流補正指令値が小さいほど電動機の電気的特性中央値の誤差に対してロバストとなるため、本実施の形態を適用することで電動機の電気的特性のばらつきが大きい場合でもトルクリップルを悪化させることなく低減することができる。本実施の形態は、電動機の電気的特性のばらつきに応じて、実施の形態1と使い分けることができる。 Further, in the present embodiment, the current correction command calculation unit 103 has a configuration that is smaller than the optimum design value of the current correction command. As a result, the torque ripple suppression effect when the electric characteristics of the electric motor reaches the median value decreases, but as described in the first embodiment, the smaller the current correction command value, the error in the median electrical characteristics of the electric motor. However, by applying this embodiment, it is possible to reduce the torque ripple without deteriorating even if the electrical characteristics of the electric motor vary widely. The present embodiment can be used properly with the first embodiment according to the variation in the electrical characteristics of the electric motor.
実施の形態5.
 前記実施の形態では電動機制御装置について説明したが、該電動機制御装置と運転者の操舵を補助するためのアシストトルクを発生する突極性を有する電動機とを備えた電動パワーステアリング装置に適用しても良い。
 図15は、実施の形態5における電動パワーステアリング装置の構成を示す図である。図15において、電動パワーステアリング装置は、ステアリングホイール301と、ステアリングシャフト302と、ラック・ピニオンギヤ303と、車輪304、305と、電動機7と、減速ギヤ306と、回転位置検出器9と、トルクセンサ307と、車速センサ308と、電動機制御装置200が設けられている。
Embodiment 5.
Although the electric motor control device has been described in the above embodiment, it may be applied to an electric power steering device including the electric motor control device and an electric motor having a salient pole to generate an assist torque for assisting the steering of the driver. good.
FIG. 15 is a diagram showing the configuration of the electric power steering device according to the fifth embodiment. In FIG. 15, the electric power steering device includes a steering wheel 301, a steering shaft 302, a rack pinion gear 303, wheels 304 and 305, an electric motor 7, a reduction gear 306, a rotation position detector 9, and a torque sensor. 307, a vehicle speed sensor 308, and an electric motor control device 200 are provided.
 図15において、図示しない運転者からステアリングホイール301に加えられた操舵トルクは、トルクセンサ307のトーションバー、ステアリングシャフト302を通り、ラック・ピニオンギヤ303を介して、ラックに伝達され、車輪304、305を転舵させる。
 電動機7は、減速ギヤ306を介してステアリングシャフト302と連結している。電動機7から発生する出力トルクは、減速ギヤ306を介してステアリングシャフト302に伝達され、操舵時に運転者が加える操舵トルクを軽減する。
 トルクセンサ307は、運転者がステアリングホイール301を操舵することによりトーションバーに加わった操舵トルクを検出する。この操舵トルクによってトーションバーには操舵トルクにほぼ比例した捩れが生じるので、この捩れ角を検出し、操舵トルク信号に換算する。車速センサ308は、車両の走行速度を検出した信号である車速を出力する。
In FIG. 15, the steering torque applied to the steering wheel 301 by a driver (not shown) is transmitted to the rack through the torsion bar of the torque sensor 307, the steering shaft 302, the rack pinion gear 303, and the wheels 304 and 305. To steer.
The electric motor 7 is connected to the steering shaft 302 via a reduction gear 306. The output torque generated from the electric motor 7 is transmitted to the steering shaft 302 via the reduction gear 306 to reduce the steering torque applied by the driver during steering.
The torque sensor 307 detects the steering torque applied to the torsion bar by the driver steering the steering wheel 301. Since this steering torque causes the torsion bar to twist in a manner substantially proportional to the steering torque, this twist angle is detected and converted into a steering torque signal. The vehicle speed sensor 308 outputs the vehicle speed, which is a signal for detecting the traveling speed of the vehicle.
 また、電動機制御装置200は、前記実施の形態のいずれかのものであり、トルクセンサ307で検出した操舵トルク信号と、回転位置検出器9で得られた回転位置θと、車速センサ308で検出した車速に応じて、電動機7が出力する出力トルクに相当する電流指令の方向と大きさを決定し、この出力トルクを電動機7に発生させるべく、電流指令に基づいて電源から電動機7に流す電流を制御する。
 このような電動パワーステアリング装置においても、実施の形態1~実施の形態4と同様に、電動機の電気的特性の取得値の誤差に対するトルクリップルの感度を小さくすることで、電動機の電気的特性に誤差がある場合においてもトルクリップル抑制が可能となる。
Further, the electric motor control device 200 is one of the above-described embodiments, and is detected by the steering torque signal detected by the torque sensor 307, the rotation position θ obtained by the rotation position detector 9, and the vehicle speed sensor 308. The direction and magnitude of the current command corresponding to the output torque output by the electric motor 7 are determined according to the vehicle speed, and the current flowing from the power supply to the motor 7 based on the current command in order to generate this output torque in the motor 7. To control.
In such an electric power steering device as well, as in the first to fourth embodiments, the electric characteristics of the electric motor can be improved by reducing the sensitivity of the torque ripple to the error of the acquired value of the electric characteristics of the electric motor. Even if there is an error, torque ripple can be suppressed.
 なお、電動機制御装置200は、ハードウエアの一例を図16に示すように、プロセッサ2000と記憶装置2001から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ2000は、記憶装置2001から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ2000にプログラムが入力される。また、プロセッサ2000は、演算結果等のデータを記憶装置2001の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。 The electric motor control device 200 is composed of a processor 2000 and a storage device 2001, as shown in FIG. 16 as an example of hardware. Although the storage device is not shown, it includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory. The processor 2000 executes the program input from the storage device 2001. In this case, a program is input from the auxiliary storage device to the processor 2000 via the volatile storage device. Further, the processor 2000 may output data such as a calculation result to the volatile storage device of the storage device 2001, or may store the data in the auxiliary storage device via the volatile storage device.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1 基本電流指令生成部、2 電流補正指令重畳部、3 電流制御部、6 インバータ、100 電流補正部、101 位置依存成分生成部、103 電流補正指令演算部、200 電動機制御装置 1 Basic current command generator, 2 Current correction command superimposition unit, 3 Current control unit, 6 Inverter, 100 Current correction unit, 101 Position-dependent component generation unit, 103 Current correction command calculation unit, 200 Motor control device

Claims (7)

  1.  突極性を有する電動機をベクトル制御方式のインバータで制御する電動機制御装置において、前記電動機に基本的なトルクを出力させるためのd軸基本電流指令およびq軸基本電流指令を出力する基本電流指令生成部と、前記電動機の回転位置に応じて前記電動機の位置依存成分を出力する位置依存成分生成部と、前記d軸基本電流指令および前記q軸基本電流指令と前記位置依存成分からd軸電流補正指令およびq軸電流補正指令を演算する電流補正指令演算部と、前記d軸基本電流指令に前記d軸電流補正指令を重畳し、前記q軸基本電流指令に前記q軸電流補正指令を重畳し、d軸電流指令およびq軸電流指令を生成する電流補正指令重畳部と、前記d軸電流指令および前記q軸電流指令に基づいて前記インバータを介して前記電動機に流す電流を制御する電流制御部とを備え、前記電流補正指令演算部では、前記d軸電流補正指令と前記q軸電流補正指令の大きさが予め決められた比率に演算され、前記比率は事前に指定されるか、または、前記電動機の状態に応じて指定されることを特徴とする電動機制御装置。 In an electric motor control device that controls an electric motor with salient poles with a vector control type inverter, a basic current command generator that outputs a d-axis basic current command and a q-axis basic current command for outputting the basic torque to the motor. A position-dependent component generator that outputs a position-dependent component of the motor according to the rotation position of the motor, a d-axis basic current command, a q-axis basic current command, and a d-axis current correction command from the position-dependent component. And the current correction command calculation unit that calculates the q-axis current correction command, the d-axis current correction command is superimposed on the d-axis basic current command, and the q-axis current correction command is superimposed on the q-axis basic current command. A current correction command superimposing unit that generates a d-axis current command and a q-axis current command, and a current control unit that controls a current flowing to the electric motor via the inverter based on the d-axis current command and the q-axis current command. In the current correction command calculation unit, the magnitudes of the d-axis current correction command and the q-axis current correction command are calculated to a predetermined ratio, and the ratio is specified in advance or said. An electric motor control device characterized in that it is specified according to the state of the electric motor.
  2.  前記位置依存成分生成部は、前記電動機の回転位置に応じて前記電動機の電機子鎖交磁束またはインダクタンスの位置依存成分を出力することを特徴とする請求項1に記載の電動機制御装置。 The motor control device according to claim 1, wherein the position-dependent component generating unit outputs a position-dependent component of the armature interlinkage magnetic flux or inductance of the motor according to the rotation position of the motor.
  3.  前記電流補正指令演算部は、前記電動機の電機子鎖交磁束とインダクタンスと前記d軸基本電流指令と前記q軸基本電流指令および前記q軸電流補正指令に基づいて前記d軸電流補正指令を演算することを特徴とする請求項1または請求項2に記載の電動機制御装置。 The current correction command calculation unit calculates the d-axis current correction command based on the armature interlinkage magnetic flux and inductance of the electric motor, the d-axis basic current command, the q-axis basic current command, and the q-axis current correction command. The electric motor control device according to claim 1 or 2, wherein the motor control device.
  4.  前記比率は、前記電動機の電機子鎖交磁束とインダクタンスそれぞれの中央値の誤差の比率である感度設定値に基づくことを特徴とする請求項1から請求項3のいずれか1項に記載の電動機制御装置。 The electric motor according to any one of claims 1 to 3, wherein the ratio is based on a sensitivity set value which is a ratio of an error between the median values of the armature interlinkage magnetic flux and the inductance of the electric motor. Control device.
  5.  前記電流補正指令演算部は、前記感度設定値と前記電動機の電機子鎖交磁束とインダクタンスと前記d軸基本電流指令および前記q軸基本電流指令に基づいて前記d軸電流補正指令および前記q軸電流補正指令を演算することを特徴とする請求項4に記載の電動機制御装置。 The current correction command calculation unit is based on the sensitivity set value, the armature interlinkage magnetic flux and inductance of the electric motor, the d-axis basic current command, and the q-axis basic current command, and the d-axis current correction command and the q-axis. The electric motor control device according to claim 4, wherein a current correction command is calculated.
  6.  前記d軸電流補正指令と前記q軸電流補正指令の位相が等しいかまたは180度の差であることを特徴とする請求項1から請求項4のいずれか1項に記載の電動機制御装置。 The electric motor control device according to any one of claims 1 to 4, wherein the phase of the d-axis current correction command and the phase of the q-axis current correction command are the same or the difference is 180 degrees.
  7.  運転者の操舵を補助するためのアシストトルクを発生する突極性を有した電動機と、請求項1から請求項6のいずれか1項に記載の電動機制御装置を備えたことを特徴とする電動パワーステアリング装置。 An electric power having a salient polarity that generates an assist torque for assisting the steering of the driver, and an electric motor control device according to any one of claims 1 to 6. Steering device.
PCT/JP2019/025626 2019-04-25 2019-06-27 Motor control device and electric power steering device WO2020217548A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980095636.XA CN113728549A (en) 2019-04-25 2019-06-27 Motor control device and electric power steering device
EP19925603.3A EP3961911B1 (en) 2019-04-25 2019-06-27 Motor control device and electric power steering device
US17/598,414 US11837979B2 (en) 2019-04-25 2019-06-27 Electric motor control device and electric power steering apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019083633A JP6641053B1 (en) 2019-04-25 2019-04-25 Electric motor control device and electric power steering device
JP2019-083633 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020217548A1 true WO2020217548A1 (en) 2020-10-29

Family

ID=69320963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025626 WO2020217548A1 (en) 2019-04-25 2019-06-27 Motor control device and electric power steering device

Country Status (5)

Country Link
US (1) US11837979B2 (en)
EP (1) EP3961911B1 (en)
JP (1) JP6641053B1 (en)
CN (1) CN113728549A (en)
WO (1) WO2020217548A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267487B1 (en) 2022-05-12 2023-05-01 三菱電機株式会社 Control device for rotating electrical machine and method for controlling rotating electrical machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267466A (en) 2006-03-28 2007-10-11 Meidensha Corp Vector controller for ipm motor
JP2011019336A (en) * 2009-07-08 2011-01-27 Toshiba Corp Electric motor control device
JP2015035885A (en) * 2013-08-08 2015-02-19 日産自動車株式会社 Motor controller
JP2017051031A (en) * 2015-09-03 2017-03-09 株式会社Ihi Motor controller
JP2017070066A (en) * 2015-09-29 2017-04-06 日本精工株式会社 Electric power steering control method, electric power steering control device, electric power steering device and vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417195B2 (en) * 2010-01-19 2014-02-12 国産電機株式会社 Torque ripple suppression control device for permanent magnet motor, electric power steering system
JP2011211815A (en) * 2010-03-30 2011-10-20 Kokusan Denki Co Ltd Controller of permanent magnet motor
JP5920769B2 (en) * 2011-09-27 2016-05-18 株式会社ミツバ Brushless motor control method, brushless motor control device, and electric power steering device
JP6052727B2 (en) * 2012-09-21 2016-12-27 国立大学法人 東京大学 Motor control device
JP6103125B1 (en) * 2015-10-29 2017-03-29 ダイキン工業株式会社 Speed command correction device, primary magnetic flux command generation device
JP6662081B2 (en) * 2016-02-17 2020-03-11 株式会社デンソー Control device for three-phase rotating machine and electric power steering device
JP6316481B1 (en) * 2017-04-21 2018-04-25 三菱電機株式会社 Electric motor control device
JP7304891B2 (en) * 2018-12-06 2023-07-07 三菱電機株式会社 Rotating machine control device and electric vehicle control device
WO2020217764A1 (en) * 2019-04-23 2020-10-29 日立オートモティブシステムズ株式会社 Power conversion device, and electric vehicle system provided therewith
US11881803B2 (en) * 2021-01-15 2024-01-23 Toyota Jidosha Kabushiki Kaisha Control device for electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267466A (en) 2006-03-28 2007-10-11 Meidensha Corp Vector controller for ipm motor
JP2011019336A (en) * 2009-07-08 2011-01-27 Toshiba Corp Electric motor control device
JP2015035885A (en) * 2013-08-08 2015-02-19 日産自動車株式会社 Motor controller
JP2017051031A (en) * 2015-09-03 2017-03-09 株式会社Ihi Motor controller
JP2017070066A (en) * 2015-09-29 2017-04-06 日本精工株式会社 Electric power steering control method, electric power steering control device, electric power steering device and vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961911A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267487B1 (en) 2022-05-12 2023-05-01 三菱電機株式会社 Control device for rotating electrical machine and method for controlling rotating electrical machine
WO2023218676A1 (en) * 2022-05-12 2023-11-16 三菱電機株式会社 Rotating electric machine control device and rotating electric machine control method
JP2023167415A (en) * 2022-05-12 2023-11-24 三菱電機株式会社 Control device and control method for rotary electric machine

Also Published As

Publication number Publication date
CN113728549A (en) 2021-11-30
US20220181998A1 (en) 2022-06-09
JP6641053B1 (en) 2020-02-05
EP3961911B1 (en) 2023-11-29
JP2020182307A (en) 2020-11-05
EP3961911A1 (en) 2022-03-02
EP3961911A4 (en) 2022-06-15
US11837979B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
JP5652664B2 (en) Rotating electrical machine control device
US8154231B2 (en) Motor controller and vehicular steering system using said motor controller
JP6324627B2 (en) AC rotating machine control device and electric power steering control device
EP2924874B1 (en) Control device for ac rotating machine
JP2007259551A (en) Controller of motor
JP2005151714A (en) Brushless motor controller
JP2010119245A (en) Controller of ac motor
JP2008220100A (en) Motor controller
JPH08280199A (en) Sensor-less controller for permanent-magnet field synchronous motor
JP4915305B2 (en) Control device for electric power steering device
WO2020217548A1 (en) Motor control device and electric power steering device
JP6288408B2 (en) Motor control method, motor control device, and electric power steering device
JP7090812B2 (en) Control device for AC rotary electric machine and electric power steering device
JP5050387B2 (en) Motor control device
JP5028813B2 (en) Electric power steering apparatus and control apparatus therefor
JP2018125955A (en) Motor controller
JP5652701B2 (en) Motor drive control device
JP6089608B2 (en) Control method of synchronous motor
WO2023218676A1 (en) Rotating electric machine control device and rotating electric machine control method
JP6163375B2 (en) Brushless motor control method and brushless motor control device
JP4724078B2 (en) Electric motor control device
JP5412391B2 (en) Electric power steering device
JP2022048802A (en) Motor control device and setting method of map
JP2021061699A (en) Motor control device, motor control method, and electric power steering device
JP2024017952A (en) Motor control method and motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019925603

Country of ref document: EP

Effective date: 20211125