WO2020216320A1 - 一种利用焦化厂方型炭化室还原氧化物矿物的方法 - Google Patents

一种利用焦化厂方型炭化室还原氧化物矿物的方法 Download PDF

Info

Publication number
WO2020216320A1
WO2020216320A1 PCT/CN2020/086643 CN2020086643W WO2020216320A1 WO 2020216320 A1 WO2020216320 A1 WO 2020216320A1 CN 2020086643 W CN2020086643 W CN 2020086643W WO 2020216320 A1 WO2020216320 A1 WO 2020216320A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
elemental
carbonization chamber
metal
square
Prior art date
Application number
PCT/CN2020/086643
Other languages
English (en)
French (fr)
Inventor
李海鸥
Original Assignee
李海鸥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李海鸥 filed Critical 李海鸥
Publication of WO2020216320A1 publication Critical patent/WO2020216320A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/015Pretreatment specially adapted for magnetic separation by chemical treatment imparting magnetic properties to the material to be separated, e.g. roasting, reduction, oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents

Definitions

  • the invention belongs to the technical field of metal reduction, and specifically relates to a method for reducing oxide minerals by using a square carbonization chamber of a coking plant.
  • the existing domestic oxidation metal reduction furnaces are rotary kiln metal reduction furnace, shaft kiln metal reduction furnace, tunnel pit metal reduction furnace, rotary hearth furnace metal reduction furnace and other common oxide mineral metal reduction furnaces, among which rotary kiln operation Separate gas-based reduction, gas-based reduction using natural gas to reduce the cost is high, the reduction reaction time is long, the coal-based reduction operation is simple, and the need for a large amount of pulverized coal injection cannot meet the environmental protection requirements.
  • the shaft furnace enters the furnace into the furnace divided into oxidized lump ore and oxidized pellets.
  • the cloth adopts a layer of coal and a layer of oxidized minerals into the furnace to complete the reduction reaction. The operation is simple. .
  • the tunnel pit adopts the method of briquetting the fine ore into the pit. Before entering the pit, the fine ore is pressed into a block, and the refractory tank needs to be replaced at a fixed time, which causes high cost and low output.
  • the rotary low furnace adopts powder ore method and reducing agent mixed press ball to send into the turntable for heating, and when the mineral reaches a specific reaction temperature, it is sent to the reduction chamber for reduction reaction. After the reduction reaction, the material enters the cooling chamber to cool to prevent the air from being oxidized.
  • the square coking chamber of the coking plant will tamped the coal into a wall and load it into the coking chamber with a pallet, and load the top of the bulk coal into the square carbonization.
  • the heat from the combustion chambers on both sides isolates the coal. Heating under the condition of air, the gaseous product generated escapes from the rising pipe at the top of the coking chamber, and the solids remaining in the coking chamber become coke products. Open the oven doors before and after the coking chamber, and use the coke pusher to pile up the coke , Sent to the water cooling workshop.
  • the present invention solves the technical problems of high reduction cost, low plant volume, and poor effect of metal reduction oxide minerals in the prior art, and has low cost, The output is infinitely enlarged, and the technical effect of efficiently reducing metal.
  • a method for reducing oxide minerals using a square carbonization chamber in a coking plant includes the following steps:
  • S2 Mixing: mix the oxide mineral powder, reducing agent, and adhesive in a ratio of 1:(0.08-0.15):(0.01-0.O3), or mix the oxide mineral and adhesive at a ratio of 1:(0.01 -0.O3) the proportion of mixing, mixing with a mixer to obtain the mixture;
  • S3 Shaping: Press the mixture with reducing agent into a ball or honeycomb shape, and dry it; or press the mixture without reducing agent into a ball or a pelletizer to form pellets, and Drying treatment;
  • step S4 Reduction: the mixture with the reducing agent that has been shaped into a spherical shape in step S3 is loaded from the top of the square carbonization chamber into the square carbonization chamber for reduction reaction to generate elemental metal materials; or the shape of a honeycomb coal is formed in step S3 The mixture is sent from the square pallet into the square carbonization chamber for reduction reaction to generate elemental metal materials; or the spherical oxide minerals without reducing agent and the granular oxidized pellet minerals are externally mixed with the granular carbon reducing agent to be carbonized by the square The top of the chamber is loaded into the square carbonization chamber for reduction reaction;
  • the raw material of the oxide ore mineral in the step S1 is iron ore concentrate, vanadium ilmenite concentrate, manganese iron ore concentrate, nickel iron ore concentrate, chromium iron concentrate, zinc iron ore concentrate, iron scale (Iron oxide scale) and other oxide mineral powder, any one of oxygen-containing mineral powder or oxidized massive oxide-containing mineral.
  • the reduction reaction in step S4 can also be carried out by sending the honeycomb-shaped mixture shaped in step S3 from the square pallet into the square carbonization chamber for reduction reaction to generate elemental metal materials;
  • step S1 the regular small block metal oxides are crushed into small block metal oxides and carbonaceous reducing agent to perform a reduction reaction at a ratio of 1: (0.1-0.2) to generate elemental metal materials;
  • the reduction reaction temperature in the S4 step is 800°C-1150°C, and the time is 12H-24H.
  • the metal oxide mineral, reducing agent, and bonding agent are 1:(0.08-0.1.
  • the reducing agent is charcoal, coal powder (grain), coke powder (grain), blue carbon powder (grain) ), wherein the adhesive agent is starch.
  • the stirring speed of the mixer in the step S1 is 10-15 r/min, and the stirring time is 8-20 min.
  • the temperature of the reduction reaction in step S3 is between 800 and 1150°C.
  • the elemental metal material is hot-charged into the corresponding container and injected with nitrogen to cool the elemental metal.
  • the separated elemental iron substance liquid is quenched and tempered by an electric furnace to become high-grade steel and special alloy steel, and other elemental metals insoluble in iron are quenched and tempered by an electric furnace to become high-quality products.
  • the cooling further includes cooling by hot pressing.
  • the hot pressing method is that the oxide minerals are fed into a hot pressing device at a high temperature after the reduction reaction is completed, and then pressed into a high-density cylinder. During the cooling process, the oxygen in the air cannot enter the high-density cylinder and the elemental metal An oxidation reaction occurs to prevent re-oxidation of elemental metal materials.
  • the beneficial effect of the present invention is that the present invention mixes oxide minerals with reducing agent and bonding agent in proportion, and presses them into balls or crushes massive oxide minerals into regular and uniform small pieces of mixed carbonaceous reducing agent from a square carbonization chamber
  • the top is loaded into a square carbonization chamber for reduction or pressed into a honeycomb coal shape, and placed on a pallet.
  • the furnace door is opened from the side and sent into the square carbonization chamber for reduction in the coking plant. It has the characteristics of simple operation, directness, large output, high quality and efficiency of reduced metal, easy operation, good reduction stability, etc.
  • the method of the present invention is used to perform oxide mineral reduction reaction, and the metal reduction rate of oxide minerals reduced to elemental metals reaches a percentage. More than ninety.
  • Figure 1 is a schematic diagram of the process flow of the present invention.
  • the method for reducing oxide minerals using a metal reduction furnace in a coking plant includes the following steps:
  • S2 Mixing: Mix the oxide mineral, reducing agent, and bonding agent to obtain a mixture after stirring with a mixer; or mix the oxide mineral powder and bonding agent to obtain a mixture after stirring with a mixer;
  • step S3 Shaping: Press the mixture with reducing agent obtained in step S2 into a ball or honeycomb shape, and dry it; or press the mixture without reducing agent into a ball or a pelletizer The pellets are dried and processed;
  • step S4 Reduction: the mixture with the reducing agent that has been shaped into a spherical shape in step S3 is loaded from the top of the square carbonization chamber into the square carbonization chamber for reduction reaction to generate elemental metal materials; or the shape of a honeycomb coal is formed in step S3 The mixture is sent from the square pallet into the square carbonization chamber for reduction reaction to generate elemental metal materials; or the oxide minerals crushed into regular small pieces in step S1 are directly mixed with carbonaceous reducing agent, and the oxide mineral material is mixed with Load on the top for reduction reaction to generate elemental metal materials: or mix spherical oxide minerals without reducing agent and granular oxide pellet minerals with granular carbonaceous reducing agent from the top of the square carbonization chamber into the square carbonization chamber Carry out a reduction reaction;
  • the metal oxide minerals in the step S1 material are iron ore concentrates, vanadium ilmenite concentrates, manganese iron ore concentrates, nickel iron ore concentrates, ferrochromium concentrates, and zinc-iron ore concentrates.
  • iron ore concentrates vanadium ilmenite concentrates
  • manganese iron ore concentrates nickel iron ore concentrates
  • ferrochromium concentrates zinc-iron ore concentrates.
  • zinc-iron ore concentrates One kind. Any one of oxygen-containing massive oxide minerals.
  • the reducing agent is one or more of charcoal, coal powder (granules), coke powder (granules), blue charcoal powder (granules), and the adhesive agent is starch, resin, and industrial glue. One or more mixtures.
  • the cooling also includes the use of a hot pressing method for cooling.
  • the hot pressing method is to send the oxide minerals to the hot press equipment at a high temperature after the reduction reaction to be hot pressed into a high-density cylindrical shape. During the cooling process, the oxygen in the air cannot It enters the high-density cylindrical shape and reacts with the elemental metal to prevent the elemental metal from re-oxidizing.
  • the method for reducing oxide minerals using a square metal reduction furnace in a coking plant includes the following steps:
  • S2 Mixing: Mix the powdered oxide minerals, reducing agent, and bonding agent in a ratio of 1:0.1:0.01, and mix with a mixer to obtain the mixture.
  • the mixing speed of the mixer is 20r/min and the mixing time is 10min;
  • step S3 Shaping: the mixture obtained in step S2 is pressed into a ball by a ball press, and dried by a dryer;
  • step S4 Reduction: the mixture that has been determined to form a spherical shape in step S3 is loaded from the top of the square carbonization chamber into the square carbonization chamber for reduction reaction to generate elemental metal materials;
  • the method for reducing oxide minerals using a square metal reduction furnace in a coking plant includes the following steps:
  • S2 Mixing: Mix the powdered oxide mineral and the bonding agent in a ratio of 1:0.01, and use a mixer to obtain the mixture.
  • the mixer has a stirring speed of 20r/min and a stirring time of 10min;
  • step S3 Shaping: the mixture obtained in step S2 is passed through a granulator to form pellets, and the mixture is dried by a dryer;
  • step S4 Reduction: the mixture that has been determined to form a spherical shape in step S3 is loaded from the top of the square-shaped carbonization chamber into the square-shaped carbonization chamber for reduction reaction to generate elemental metal materials;
  • the method for reducing oxide minerals using a square metal reduction furnace in a coking plant includes the following steps:
  • step S2 reduction: the oxide mineral ore crushed into regular small pieces in step S1 is directly mixed with a carbonaceous reducing agent for reduction reaction to generate elemental metal materials;
  • the method for reducing oxide minerals using a square metal reduction furnace in a coking plant includes the following steps:
  • S2 Mixing: Mix the powdered oxide minerals, reducing agent, and bonding agent in a ratio of 1:0.1:0.02, and mix with a mixer to obtain the mixture.
  • the mixing speed of the mixer is 15r/min and the mixing time is 30min;
  • step S3 Shaping: the mixture obtained in step S2 is pressed into a ball by a ball press, and dried by a dryer;
  • step S4 Reduction: the mixture that has been determined to form a spherical shape in step S3 is loaded from the top of the square carbonization chamber into the square carbonization chamber for reduction reaction to generate elemental metal materials;
  • the method for reducing oxide minerals using a square metal reduction furnace in a coking plant includes the following steps:
  • S2 Mixing: Mix the powdered oxide mineral and the bonding agent in a ratio of 1:0.02, and mix with a mixer to obtain the mixture.
  • the mixing speed of the mixer is 15r/min and the mixing time is 30min;
  • step S3 Shaping: the mixture obtained in step S2 is passed through a granulator to form pellets, and the mixture is dried by a dryer;
  • step S4 Reduction: the mixture that has been determined to form a spherical shape in step S3 is loaded from the top of the square-shaped carbonization chamber into the square-shaped carbonization chamber for reduction reaction to generate elemental metal materials;
  • the present invention utilizes the square carbonization chamber of the existing coking plant (also called the square vacuum metal reduction furnace in the present invention) to reduce the metal oxide minerals into elemental metals, and the oxide minerals are mixed with other auxiliary substances and pressed into a spherical shape.
  • Mixed carbonaceous reductant materials into honeycomb coal or broken into blocks enter the square carbonization chamber in different ways, and adjust the carbonization chamber temperature to 800-1150°C according to the type of oxide minerals, and the reducing agent is produced
  • the CO gas and H2 gas react with the oxygen in the oxide minerals to form CO2 gas and H2O.
  • the water vapor escapes from the riser at the top of the carbonization chamber, and is then introduced into the exhaust gas purification treatment system to purify it into standard emissions, while the oxide in the carbonization chamber
  • the minerals have been reduced to elemental metal materials, and then sent to the cooling workshop for cooling.
  • the invention utilizes the temperature, equipment, time and other conditions of the square carbonization chamber of the coking plant to reduce oxide minerals.
  • the reducing agent is charcoal, coal powder (grain), coke powder (grain), blue charcoal powder (grain) and other carbonaceous materials.
  • the CO gas, H2 gas and oxide minerals produced at a specific temperature
  • the oxygen at a specific temperature (above 800°C) reacts to form CO2 gas and H2O steam gas out of the kiln, and metal oxide minerals form elemental metals in the process.
  • the reduction time of oxide minerals is shortened to save costs.
  • Adhesive agent adopts starch, polymer (including glue, industrial glue, resin, etc.), add appropriate amount of water during use, mix oxide mineral powder, adhesive, press ball machine to press ball, honeycomb machine to press into briquette The shape prevents the material from forming loose under the high temperature conditions when entering the furnace.
  • the mixture material is pressed into a ball or honeycomb shape, and the oxide mineral block is broken into regular small blocks and mixed with carbonaceous reducing agent, and the material is charged to 40-1 reduction each time.
  • the present invention compared with the prior art method of ball pressing, drying, and then feeding the material to the turntable for reduction, the present invention has the advantages of saving process, improving efficiency, reducing cost, and unlimited plant capacity.
  • the temperature of the reduction reaction in the square carbonization chamber is preferably between 800 and 1150°C.
  • the indoor temperature reaches the time when the reducing agent produces CO gas and H2 gas, the volatilized gas takes away the oxygen in the oxide minerals, thereby forming CO2 and The H2O water vapor volatilizes outside the carbonization room, and the oxidized minerals form elemental metal products.
  • the time and temperature of the reduction reaction are determined by the fineness of the oxide minerals and the composition of the material structure. After the reaction proceeds for a certain period of time, a small amount of metal materials are taken for testing. The reaction is complete.
  • the existing coking plant's coke cooling system uses spray water to cool the coke when the coke is pushed out of the cooling workshop at a high temperature, which causes large-scale pollution and has an impact on the environment.
  • the present invention adopts the nitrogen cooling method when reducing the production and cooling of elemental metals in the square carbonization chamber of the coking plant.
  • none of the domestic large-scale reduction metal cooling methods adopts nitrogen cooling.
  • nitrogen production equipment is installed at the factory. Reduce metal materials! When the reduction kiln is pushed out, it is also directly hot-packed into a nitrogen injection container, and nitrogen is injected into the container to cool the elemental metal, and the elemental metal material will not undergo oxidation reaction when cooled to a specific temperature.
  • Hot-press cooling uses a hot-press machine with a pressure of more than 600 kg. When the reduced metal material is released from the furnace, it is hot-pressed into a high-density cylindrical shape. Because of the high density, air cannot enter the elemental metal and prevent the elemental metal from re-oxidation. By adopting the method of the invention to carry out the oxide mineral reduction reaction, the reduction rate of the oxide mineral into elemental metal reaches more than 90%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种利用焦化厂方型炭化室还原氧化物矿物的方法,包括混合、及通过压球机压成球状采用顶部装入方型炭化室进行还原反应、或直接把块状的氧化物破碎成有规则的小块混合炭质还原剂再从顶部装入方型炭化室进行还原反应、或将氧化物压成有孔蜂窝煤状再通过托盘从侧面推入方型炭化室进行还原反应的方式进行,以更多的适应不同形态下的氧化物矿物还原反应,生成单质金属物料。

Description

一种利用焦化厂方型炭化室还原氧化物矿物的方法 技术领域
本发明属于金属还原技术领域,具体涉及一种利用焦化厂方型炭化室还原氧化物矿物的方法。
背景技术
现有国内氧化金属还原炉的炉种分别是回转窖金属还原炉,竖窖金属还原炉,隧道窖金属还原炉,转底炉金属还原炉等常见的氧化物矿物金属还原炉,其中回转窖操作分气基还原,气基还原釆用天然气还原成本高,还原反应时间长,煤基还原操作简单,需要大量喷吹煤粉环保达不到要求。竖炉入炉分氧化块矿和氧化球团矿入炉,布料采用一层煤炭一层氧化矿物入炉完成还原反应,操作简单,但温度过高容易结炉造成出炉阻塞问题,还原效果不均匀。隧道窖釆用粉矿压块的方式入窖,入窖之前打粉矿压成块型,装入耐火罐需订期跟换,造成成本过高,且产量低。转低炉采用粉矿方式和还原剂混合压球送入转盘进行升温,在矿物达到特定的反应温度送入还原室进行还原反应,还原反应完成物料进入冷却室冷却防止进入空气在氧化。焦化厂方型炭化室炼焦将煤炭捣固成墙体用托板侧装送入炭化室,和将煤炭散装顶部装入方型炭化,由两侧燃烧室传来的热量,将煤料在隔绝空气的条件下加热,所生成的气态产物由炭化室顶端部的上升管逸出,残留在炭化室内的固体成焦炭厂品,将炭化室前后的炉门打开,用推焦机将焦炭堆出,送入水冷却车间。
目前,国内焦化厂由于厂能环保问题己经关停和拆除,只能根据国外发达国家关停冶炼高炉炼铁,就无法满足国内钢材需求量,现有的还原窖远远达不到还原铁(海绵铁)供给量。
发明内容
本发明通过提供一种利用焦化厂方型金属还原炉还原氧化物矿物的方法,解决了现有技术中金属还原氧化物矿物还原成本高、厂量低,效果差等技术问题,具有低成本、产量无限放大,高效还原金属的技术效果。
为实现上述目的,本发明的技术解决方案是:
一种利用焦化厂方型炭化室还原氧化物矿物的方法,包括以下步骤:
S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
S2:混合:把氧化物矿物粉、还原剂、贴结剂以1:(0.08-0.15):(0.01-0.O3)的比例混合,或把氧化物矿物和贴结剂按1:(0.01-0.O3)的比例混合,用搅拌机搅拌后得混合物料;
S3:定形:把带有还原剂的混合物料压成球状或压成蜂窝煤状,并进行烘干处理;或把不带有还原剂的混合物料压成球状或造粒机造成颗粒球团,并进行烘干处理;
S4:还原:将步骤S3中已定形成球状的带有还原剂的混合物由方形炭化室顶部装入至方型炭化室内进行还原反应,生成单质金属物料;或将步骤S3中定成形蜂窝煤状的混合物由方型托板送入方型炭化室内进行还原反应,生成单质金属物料;或将不带有还原剂的球状氧化物矿物和颗粒氧化球团矿物外部混合颗粒炭质还原剂由方型炭化室顶部装入至方型炭化室内进行还原反应;
S5:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离;
S6:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方 法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
S7:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
优选地,所述步骤S1中氧化矿矿物原料为铁矿精粉、钒钛铁矿精粉、锰铁矿精粉、镍铁矿精粉、铬铁精粉、锌铁矿精粉、铁鳞(氧化铁皮)等氧化物矿物粉中的任意一种含氧矿粉或氧化块状含氧化物矿物的任意一种。
优选的,所述S4步骤中的还原反应还可通过将步骤S3中定成形蜂窝煤状的混合物由方型托板送入方型炭化室内进行还原反应,生成单质金属物料;
优选的,将步骤S1中破碎成有规则的小块状金属氧化物按小块状金属氧化物和炭质还原剂以1:(0.1-0.2)进行还原反应,生成单质金属物料;
优选的,所述S4步骤中的还原反应温度为800℃-1150℃,时间为12H-24H。
优选地,所述金属氧化矿物、还原剂、贴结剂以1:(0.08-0.1优选地,所述还原剂为木炭、煤粉(粒)、焦碳粉(粒)、兰炭粉(粒)中的一种或一种以上混合物,所述贴结剂为淀粉类。
优选地,所述步骤S1中搅拌机搅拌速度为10-15r/min,搅拌时间为8-20min。
优选地,所述步骤S3中还原反应的温度在800-1150℃之间。
优选地,所述步骤S4中在冷却车间,把单质金属物料高温热装送入相应的容器里面注入氮气以冷却单质金属。
优选地,所述步骤S5中,分离后的单质铁物质的液体经过电炉调质变为高级钢材和特种合金钢,其他和铁不溶合的单质金属经过电炉调质变成高附加质产品。
优选地,所述冷却还包括采用热压法进行冷却。
优选地,所述热压法为氧化物矿物完成还原反应后高温送入热压设备进形热压成高密度圆柱状,在冷却过程中空气里面的氧无法进入高密度圆柱状里与单质金属发生氧化反应,从而防止单质金属物料再氧化。
本发明的有益效果是:本发明将氧化物矿物与还原剂,贴结剂按比例混合,压成球或把块状氧化物矿物破碎成有规则均匀小块混合炭质还原剂由方形炭化室顶部装入方型炭化室进行还原或打压成蜂窝煤形状放在托板由侧面打开炉门送入在焦化厂方型炭化室进行还原,还原成产品推出炭化室,送入冷却车间冷却形成产品,具有操作简单,直接,产量大,还原金属品质效率高,易操作,还原稳定性好等特点,采用本发明方法进行氧化物矿物还原反应,氧化物矿物还原成单质金属的金属还原率达到百分之九十以上。
附图说明
图1是本发明的工艺流程示意图。
具体实施方式
为了更好的理解本发明的技术方案,下面将结合说明书附图以及具体的实施方式对本发明的技术方案进行详细的说明。
参见图1,以下实施例中,所述的利用焦化厂金属还原炉还原氧化物矿物的方法,包括以下步骤:
S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
S2:混合:把氧化物矿物、还原剂、贴结剂混合,用搅拌机搅拌后得混合物料;或把氧化物矿物粉、贴结剂混合,用搅拌机搅拌后得混合物料;
S3:定形:把S2步骤中所得的带有还原剂的混合物料压成球状或压成蜂窝煤状,并进行烘干处理;或把不带有还原剂的混合物料压成球状或造粒机造成颗粒球 团,并进行烘干处理;
S4:还原:将步骤S3中已定形成球状的带有还原剂的混合物由方形炭化室顶部装入至方型炭化室内进行还原反应,生成单质金属物料;或将步骤S3中定成形蜂窝煤状的混合物由方型托板送入方型炭化室内进行还原反应,生成单质金属物料;或将步骤S1中破碎成规则小块状的氧化物矿物直接混合炭质还原剂,混合后氧化物矿物料由顶部装入进行还原反应,生成单质金属物料:或将不带有还原剂的球状氧化物矿物和颗粒氧化球团矿物外部混合颗粒炭质还原剂由方型炭化室顶部装入至方型炭化室内进行还原反应;
S5:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离,
S6:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
S7:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
所述步骤S1料中金属氧化矿物为铁矿精粉、钒钛铁矿精粉、锰铁矿精粉、镍铁矿精粉、铬铁精粉和锌铁矿精粉中的含氧矿物任意一种。含氧块状氧化物矿物的任意一种。
所述还原剂为木炭、煤粉(粒)、焦碳粉(粒)、兰炭粉(粒)中的一种或一种以上混合物,所述贴结剂为淀粉、树脂、工业胶中的一种或一种以上混合物。
所述冷却还包括采用热压法进行冷却,所述热压法为氧化物矿物完成还原反应 后高温送入热压机设备进行热压成高密度圆柱状,在冷却过程中空气里面的氧无法进入高密度圆柱状里与单质金属发生氧化反应,从而防止单质金属物料再氧化。
实施例一:
所述的利用焦化厂方型金属还原炉还原氧化物矿物的方法,包括以下步骤:
S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
S2:混合:把粉状氧化物矿物、还原剂、贴结剂按1:0.1:0.01的比例混合,用搅拌机搅拌后得混合物料,搅拌机搅拌速度为20r/min,搅拌时间为10min;
S3:定形:把S2步骤中所得的混合物通过压球机压成球状,并通过烘干机进行烘干处理;
S4:还原:将步骤S3中已定形成球状的混合物由方形炭化室顶部装入至方型炭化室内进行还原反应,生成单质金属物料;
S5:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离;
S6:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
S7:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
实施例二:
所述的利用焦化厂方型金属还原炉还原氧化物矿物的方法,包括以下步骤:
S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
S2:混合:把粉状氧化物矿物和贴结剂按1:0.01的比例混合,用搅拌机搅拌后得混合物料,搅拌机搅拌速度为20r/min,搅拌时间为10min;
S3:定形:把S2步骤中所得的混合物通过造粒机造成球团,并通过烘干机进行烘干处理;
S4:还原:将步骤S3中已定形成球状的混合物由方型炭化室顶部装入至方型炭化室内进行还原反应,生成单质金属物料;
S5:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离;
S6:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
S7:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
实施例三:
所述的利用焦化厂方型金属还原炉还原氧化物矿物的方法,包括以下步骤:
S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
S2:还原:将步骤S1中破碎成规则小块状的氧化物矿物矿直接混合炭质还原剂进行还原反应,生成单质金属物料;
S3:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离;
S4:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
S5:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
实施例四:
所述的利用焦化厂方型金属还原炉还原氧化物矿物的方法,包括以下步骤:
S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
S2:混合:把粉状氧化物矿物、还原剂、贴结剂按1:0.1:0.02的比例混合,用搅拌机搅拌后得混合物料,搅拌机搅拌速度为15r/min,搅拌时间为30min;
S3:定形:把S2步骤中所得的混合物通过压球机压成球状,并通过烘干机进行烘干处理;
S4:还原:将步骤S3中已定形成球状的混合物由方形炭化室顶部装入至方型炭化室内进行还原反应,生成单质金属物料;
S5:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离;
S6:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方 法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
S7:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
实施例五:
所述的利用焦化厂方型金属还原炉还原氧化物矿物的方法,包括以下步骤:
S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
S2:混合:把粉状氧化物矿物和贴结剂按1:0.02的比例混合,用搅拌机搅拌后得混合物料,搅拌机搅拌速度为15r/min,搅拌时间为30min;
S3:定形:把S2步骤中所得的混合物通过造粒机造成球团,并通过烘干机进行烘干处理;
S4:还原:将步骤S3中已定形成球状的混合物由方型炭化室顶部装入至方型炭化室内进行还原反应,生成单质金属物料;
S5:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离;
S6:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
S7:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
原理说明:
本发明利用现有焦化厂方型炭化室(本发明中亦称为方型真空金属还原炉)进行金属氧化物矿物还原成单质金属,把氧化物矿物与其它辅助物混合后压成球状,压成蜂窝煤状或破碎成块状混合炭质还原剂物料,以不同的进入方式进入方型炭化室,并根据氧化物矿物的种类还原温度调节炭化室温度为800-1150℃之间,还原剂产生CO气体和H2气体与氧化物矿物里面的氧反应形成CO2气体和H2O水蒸汽从炭化室顶端部的上升管逸出,再导入废气净化处理系统,净化成达标排放物,而炭化室内的氧化物矿物已经被还原成单质金属物料,再送入冷却车间进行冷却。
本发明利用了焦化厂方型炭化室的温度、设备、时间等条件,来还原氧化物矿物。上述实施例中,还原剂采用木炭、煤粉(粒)、焦粉(粒)、兰炭粉(粒)等炭质类,在特定的温度下产生的CO气体和H2气体与氧化物矿物中的氧在特定的温度(800℃以上)产生反应形成CO2气体和H2O水蒸汽气体排出炉窖,金属氧化物矿物在此过程中形成单质金属。在特定温度下缩短氧化物矿物还原时间节省成本。贴结剂采用淀粉、聚合物类(包括胶水、工业胶、树脂等),在使用过程中加入适量的水,将氧化物矿物粉,粘贴剂混合,压球机压球,蜂窝煤机压成蜂窝煤形状,防止物料在入进炉的高温条件下形成松散。
将混合物料压球或压成蜂窝煤形状,将氧化物矿物块状破碎成有规则小块状混合炭质还原剂,每次装入物料达40-1还原。此步骤相对于现有技术将物料进行压球,烘干,再送入转盘还原的方法,本发明具有节省工艺、提高效率、降低成本,厂量无限放大等优点。
在方型炭化室内进行还原反应的温度优选为800-1150℃之间,当室内温达到还 原剂产生CO气体和H2气体的时侯挥发出的气体带走氧化矿物里的氧,从而形成CO2和H2O水蒸气挥发出炭化室外,氧化矿物形成单质金属产品,还原反应的时间和温度是根据氧化物矿物的细度和物料结构的组成而定,反应进行到一定时间后取少量金属物料进行检测是否反应完全。
现有焦化厂出炉焦炭冷却系统是当焦炭在高温状态下推出冷却车间用喷淋水的方式冷却焦炭,造成大规模的污染,对环境产生影响。本发明在焦化厂方型炭化室内还原生产冷却单质金属时釆用氮气冷却方式,目前国内大型生产还原金属冷却方式没有任何一家釆用氮气冷却,根据焦化厂实际改造出厂加装氮气生产设备,当还原金属物料!推出还原窖的时候也是直接热装到一个注氮容器里,容器里面注入氮气冷却单质金属,冷却到特定温度条件下单质金属物料不会产生氧化反应。热压冷却是釆用600公斤压力以上的热压机,当还原金属物料出炉高温热压成高密度圆柱状,因为密度高使空气无法进入单质金属内部而防止单质金属再氧化。采用本发明方法进行氧化物矿物还原反应,氧化物矿物还原成单质金属的还原率达到90%以上。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

  1. 一种利用焦化厂方型炭化室还原氧化物矿物的方法,其特征在于,包括以下步骤:
    S1:破碎:把块状金属氧化物通过破碎机进行破碎成粉状或有规则的小块状;
    S2:混合:把氧化物矿物粉、还原剂、贴结剂混合,用搅拌机搅拌后得混合物料;或把氧化物矿物粉、贴结剂混合,用搅拌机搅拌后得混合物料;
    S3:定形:把带有还原剂的混合物料压成球状或压成蜂窝煤状,并进行烘干处理;或把不带有还原剂的混合物料压成球状或造粒机造成颗粒球团,并进行烘干处理;
    S4:还原:将步骤S3中已定形成球状的带有还原剂的混合物由方形炭化室顶部装入至方型炭化室内进行还原反应,生成单质金属物料;或将步骤S3中定成形蜂窝煤状的混合物由方型托板送入方型炭化室内进行还原反应,生成单质金属物料;或将不带有还原剂的球状氧化物矿物和颗粒氧化球团矿物外部混合颗粒炭质还原剂由方型炭化室顶部装入至方型炭化室内进行还原反应;
    S5:分离:当氧化物还原成单质金属以后,高温状态下推出方型炭化室,并装入高温热装电炉内进行溶解分离,使其将含有单质铁物质的金属经过溶解后和其他单质金属进行分离;
    S6:冷却:还原反应完成后将单质金属物料送入冷却车间冷却,加注氮气的方法冷却至温度低于100℃,隔绝空气进入单质金属物料内部,防止单质金属物料再氧化;
    S7:磨矿分选:将冷却后的单质金属物料破碎进行研磨,用磁选机分选,带磁性的铁物质被吸出,不带磁的其他金属物料被分选开来。
  2. 根据权利要求1所述的金属氧化矿物直接还原成单质金属的方法,其特征 在于:所述步骤S4中的还原反应还可通过直接将步骤S1中破碎成有规则的小块状金属氧化物和炭质还原剂进行还原反应,生成单质金属物料。
  3. 根据权利要求1所述的金属氧化矿物直接还原成单质金属的方法,其特征在于:所述步骤S2中,所述金属氧化矿物、还原剂、贴结剂以1:(0.08-0.15):(0.01-0.O3)的比例混合。
  4. 根据权利要求1所述的金属氧化矿物直接还原成单质金属的方法,其特征在于:所述步骤S2中,所述氧化物矿物和贴结剂按1:(0.01-0.O3)的比例混合。
  5. 根据权利要求2所述的金属氧化矿物直接还原成单质金属的方法,其特征在于:所述步骤S4中小块状金属氧化物和炭质还原剂以1:(0.1-0.2)的比例进行还原。
  6. 根据权利要求1所述的金属氧化矿物直接还原成单质金属的方法,其特征在于:所述步骤S1中氧化矿矿物原料为铁矿精粉、钒钛铁矿精粉、锰铁矿精粉、镍铁矿精粉、铬铁精粉、锌铁矿精粉、铁鳞(氧化铁皮)氧化物矿物粉中的任意一种含氧矿粉或氧化块状含氧化物矿物的任意一种。
PCT/CN2020/086643 2019-04-25 2020-04-24 一种利用焦化厂方型炭化室还原氧化物矿物的方法 WO2020216320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910337107.8 2019-04-25
CN201910337107.8A CN109929994A (zh) 2019-04-25 2019-04-25 一种利用焦化厂方型炭化室还原氧化物矿物的方法

Publications (1)

Publication Number Publication Date
WO2020216320A1 true WO2020216320A1 (zh) 2020-10-29

Family

ID=66990935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086643 WO2020216320A1 (zh) 2019-04-25 2020-04-24 一种利用焦化厂方型炭化室还原氧化物矿物的方法

Country Status (2)

Country Link
CN (2) CN109929994A (zh)
WO (1) WO2020216320A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929994A (zh) * 2019-04-25 2019-06-25 李海鸥 一种利用焦化厂方型炭化室还原氧化物矿物的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002822A1 (de) * 1989-08-22 1991-03-07 Gottfried Hochegger Neuartiges hochofenverfahren mit ökonomischer eisen- und stahlerzeugung
CN1316524A (zh) * 2001-01-15 2001-10-10 苏亚杰 型煤炼焦联产海绵铁工艺方法
CN101372719A (zh) * 2007-08-22 2009-02-25 郑州永通特钢有限公司 一种非焦冶炼钢铁的方法
CN102605128A (zh) * 2012-03-27 2012-07-25 毛耐文 一种利用焦炉生产还原粒铁的方法
CN106868245A (zh) * 2017-03-13 2017-06-20 武汉科思瑞迪科技有限公司 一种两步法的铁水生产工艺
KR101752606B1 (ko) * 2016-09-28 2017-07-11 (주)파인스 Finex 공장 유동환원로 작업용 스크류컨베이어 장치
CN109385526A (zh) * 2018-10-19 2019-02-26 李海鸥 一种利用焦化厂还原炉还原金属氧化矿物的方法
CN110066916A (zh) * 2019-04-25 2019-07-30 李海鸥 一种利用焦化厂方型炭化室还原氧化物矿物的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302712A (ja) * 1998-04-16 1999-11-02 Tetsugen Corp 鉄酸化物の還元溶解精錬方法
JP2008196027A (ja) * 2007-02-15 2008-08-28 Jfe Steel Kk 焼結鉱の製造方法
CN102605127A (zh) * 2012-03-27 2012-07-25 毛耐文 一种利用焦炉生产还原生铁的方法
CN106635067A (zh) * 2016-11-24 2017-05-10 武汉科思瑞迪科技有限公司 一种生产铁焦的竖炉工艺
CN108085035A (zh) * 2017-12-25 2018-05-29 武汉科思瑞迪科技有限公司 一种采用热压的铁焦生产工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002822A1 (de) * 1989-08-22 1991-03-07 Gottfried Hochegger Neuartiges hochofenverfahren mit ökonomischer eisen- und stahlerzeugung
CN1316524A (zh) * 2001-01-15 2001-10-10 苏亚杰 型煤炼焦联产海绵铁工艺方法
CN101372719A (zh) * 2007-08-22 2009-02-25 郑州永通特钢有限公司 一种非焦冶炼钢铁的方法
CN102605128A (zh) * 2012-03-27 2012-07-25 毛耐文 一种利用焦炉生产还原粒铁的方法
KR101752606B1 (ko) * 2016-09-28 2017-07-11 (주)파인스 Finex 공장 유동환원로 작업용 스크류컨베이어 장치
CN106868245A (zh) * 2017-03-13 2017-06-20 武汉科思瑞迪科技有限公司 一种两步法的铁水生产工艺
CN109385526A (zh) * 2018-10-19 2019-02-26 李海鸥 一种利用焦化厂还原炉还原金属氧化矿物的方法
CN110066916A (zh) * 2019-04-25 2019-07-30 李海鸥 一种利用焦化厂方型炭化室还原氧化物矿物的方法

Also Published As

Publication number Publication date
CN109929994A (zh) 2019-06-25
CN110066916A (zh) 2019-07-30
CN110066916B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN101942571B (zh) 铬渣与冶金废料无害化处理及再生利用的方法
CN100500887C (zh) 一种低品位硼铁矿中铁和硼的富集方法
WO2021244616A1 (zh) 基于气基能源的两步法高磷含铁资源铁磷高效分离的方法
CN114317852B (zh) 一种2500m3高炉煤气碳循环的低碳炼铁方法
CN104195276B (zh) 铁矿粉内配碳多孔块直接还原工艺
CN1861265B (zh) 贫铁矿含碳团块还原生产磁铁矿的选矿工艺
CN102634622A (zh) 采用难选矿、复合矿和含铁废料还原分离金属铁的方法
CN114517260A (zh) 一种直接应用生物质固废的金属化球团及铁水生产方法
CN104212931A (zh) 一种利用回转窑深度还原生产金属铁粉的方法
CN101538628A (zh) 红土镍矿在隧道窑中直接还原含镍粒铁的方法
CN103882224A (zh) 一种低品位红土镍矿的耦合式烧结方法
WO2020216320A1 (zh) 一种利用焦化厂方型炭化室还原氧化物矿物的方法
CN115491454B (zh) 一种铁矿石微波高温烧结氢冷还原装置及方法
CN106811597A (zh) 一种利用石灰窑废气生产高炉用冷固结含碳球团的方法
RU2458158C2 (ru) Способ получения окомкованного металлургического сырья
CN108676951A (zh) 一种铁精矿碳氢联合直接还原工艺
CN103602773B (zh) 一种转底炉直接还原-电炉熔分综合利用硼铁矿的方法
CN102409126A (zh) 一体式还原炼铁炉及一体式还原炼铁工艺
CN101638703B (zh) 红土镍矿在隧道窑中直接还原含镍生铁的方法
CN105463146A (zh) 一种利用转底炉直接还原处理赤铁矿生产粒铁的方法
CN109385526B (zh) 一种利用焦化厂还原炉还原金属氧化矿物的方法
CN113774215A (zh) 一种回收高锌高铅冶炼渣中有价金属的方法
CN105925745A (zh) 一种通过机械混磨装置强化转底炉直接还原效率的方法
CN103589865B (zh) 一种铁精粉碳循环增氧直接还原生产金属化球团的方法
CN206607286U (zh) 全钒钛矿直接还原‑磁选的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794978

Country of ref document: EP

Kind code of ref document: A1