WO2020216278A1 - 触压按键组件、控制电路和电子设备 - Google Patents

触压按键组件、控制电路和电子设备 Download PDF

Info

Publication number
WO2020216278A1
WO2020216278A1 PCT/CN2020/086338 CN2020086338W WO2020216278A1 WO 2020216278 A1 WO2020216278 A1 WO 2020216278A1 CN 2020086338 W CN2020086338 W CN 2020086338W WO 2020216278 A1 WO2020216278 A1 WO 2020216278A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
force
control circuit
signal
unit
Prior art date
Application number
PCT/CN2020/086338
Other languages
English (en)
French (fr)
Inventor
邢增平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/606,267 priority Critical patent/US11789546B2/en
Priority to JP2021556901A priority patent/JP2022529577A/ja
Priority to EP20795657.4A priority patent/EP3937379A4/en
Publication of WO2020216278A1 publication Critical patent/WO2020216278A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/023Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/964Piezoelectric touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96003Touch switches using acoustic waves, e.g. ultrasound
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96015Constructional details for touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96062Touch switches with tactile or haptic feedback

Definitions

  • This application relates to the field of electronic products, in particular to touch-press button assemblies, control circuits and electronic equipment.
  • the present application provides a touch button assembly, a control circuit and an electronic device, which can simplify the circuit and reduce the cost.
  • an electronic device including: a sensor and a control circuit, the control circuit is configured to output a driving signal S d to a first port of the sensor in a first time interval, and in a second time interval Output high resistance state or floating state, the driving signal S d is used to drive the sensor to drive the housing to vibrate; the sensor is used to detect the vibration of the housing and output a vibration induction signal S z through the first port, The vibration induction signal S z is the vibration wake response signal after the sensor receives the driving signal S d ; the control circuit is also used to detect the vibration induction signal S z in the second time interval, And determine whether to trigger an event according to the vibration sensing signal S z .
  • the control circuit outputs the intermittent drive signal S d to the sensor, and detects the vibration tail wave response signal at the time interval when the drive signal S d is not output.
  • This detection method can make the same device of the sensor Undertake the driving function and detection function in different time periods, so that a single unit sensor can be used to realize the touch-press button function, which simplifies the circuit and cost.
  • control circuit is specifically configured to alternately output the drive signal S d and the high impedance state in the time domain, or alternately in the time domain
  • the driving signal S d and the floating state are outputted sexually.
  • control circuit further includes a first amplifying unit for amplifying the vibration induction signal S z .
  • the control circuit can amplify the vibration sensing signal S z output by the sensor, which helps to more accurately and sensitively determine whether an event is triggered, thereby improving the sensitivity and anti-error of the electronic device Touch performance.
  • control circuit further includes a filtering unit, and the filtering unit is configured to perform filtering processing on the vibration induction signal S z .
  • the high-pass filtering of the vibration induction signal S z can be realized by the filter unit, so that the baseline of the vibration induction signal S z can be stabilized and the detection efficiency of the electronic device can be improved.
  • the senor is also used to detect force or deformation, and output a force sensing signal S f through the first port of the sensor; the control circuit is also It is used to detect and determine whether the force sensing signal S f meets the active start condition, and when the force sensing signal S f meets the active start condition, the driving signal S d is sent to the sensor.
  • control circuit sends the driving signal only when the force sensing signal S f reaches the preset condition, so that the control circuit does not need to send the driving signal all the time, thereby saving power consumption.
  • control circuit further includes a second amplifying unit for amplifying the force sensing signal S f .
  • the control circuit can amplify the force sensing signal S f output by the sensor, which helps to more accurately and sensitively determine whether an event is triggered, thereby improving the sensitivity and error resistance of the electronic device Touch performance.
  • control circuit is specifically configured to: determine whether the force sensing signal S f meets the calculation start condition, and when the force sensing signal S f meets the calculation In the case of starting conditions, calculate the force and/or acceleration force sensed by the sensor according to the force sensing signal S f ; and determine whether the force and/or acceleration force meets the active starting condition, When the force and/or acceleration force meet the active start condition, the driving signal S d is sent to the sensor.
  • the control circuit starts the calculation force and/or acceleration force only when the force sensing signal S f reaches the preset condition. Therefore, the control circuit does not need to perform the function of calculating force and/or acceleration force all the time, so that it can Save power consumption.
  • control circuit is specifically configured to: start an interrupt program when the force sensing signal S f meets the calculation start condition; and After the program is interrupted, calculate the force and/or acceleration force sensed by the sensor according to the force sensing signal S f , and determine whether the force and/or acceleration force meets the active start condition. Or when the acceleration force meets the active start condition, and when the force and/or acceleration force meets the active start condition, the drive signal S d is sent to the sensor.
  • control circuit includes an interrupt circuit, and only when the interrupt program is entered, the control circuit starts the calculation force and/or acceleration force, so the control circuit does not need to always perform the function of calculation force and/or acceleration force , Which can save power consumption.
  • the senor includes an electrical or magnetic deformation reversible device.
  • the senor is a piezoelectric device.
  • the senor includes the first port and a second port, and the second port is a common end.
  • control circuit is a processing chip of the electronic device.
  • control circuit is a control chip of the sensor.
  • the housing is a part of the housing of the electronic device.
  • the housing is the housing of the sensor.
  • a control circuit for outputting a driving signal S d to the first port of the sensor in a first time interval, and outputting a high impedance state or a floating state in a second time interval,
  • the driving signal S d is used to drive the sensor to vibrate;
  • the control circuit is also used to detect the vibration sensing signal S z output by the sensor through the first port in the second time interval, and according to the The vibration sensing signal S z determines whether an event is triggered, and the vibration sensing signal S z is a vibration wake response signal after the sensor receives the driving signal S d .
  • the control circuit outputs the intermittent drive signal S d to the sensor, and detects the vibration tail wave response signal at the time interval when the drive signal S d is not output.
  • This detection method can make the same device of the sensor Undertake the driving function and detection function in different time periods, so that a single unit sensor can be used to realize the touch-press button function, which simplifies the circuit and cost.
  • control circuit is specifically configured to alternately output the drive signal S d and a high impedance state in the time domain, or in the time domain
  • the driving signal S d and the floating state are alternately output.
  • control circuit includes a first amplifying unit, and the first amplifying unit is configured to amplify the vibration induction signal S z .
  • control circuit further includes a filtering unit configured to perform filtering processing on the vibration induction signal S z .
  • control circuit is further configured to receive the force sensing signal S f output by the sensor through the first port, and the force sensing signal S f is used to indicate the force or deformation detected by the sensor; and to determine whether the force sensing signal S f meets the active start condition, and if the force sensing signal S f meets the active start condition, send to the sensor The driving signal S d .
  • control circuit further includes a second amplifying unit for amplifying the force sensing signal S f .
  • control circuit is specifically configured to: determine whether the force sensing signal S f meets the calculation start condition, and when the force sensing signal S f meets the In the case of calculating the starting condition, calculate the force and/or acceleration force sensed by the sensor according to the force sensing signal S f ; and determine whether the force and/or acceleration force meets the active starting condition, and If the force and/or acceleration force meet the active start condition, the driving signal S d is sent to the sensor.
  • control circuit is specifically configured to: when the force sensing signal S f meets the calculation start condition, start an interrupt program; and, After starting the interrupt program, calculate the force and/or acceleration force sensed by the sensor according to the force sensing signal S f , and determine whether the force and/or acceleration force meets the active start condition. If the acceleration force meets the active start condition, and/or the acceleration force meets the active start condition, the drive signal S d is sent to the sensor.
  • control circuit is a processing chip of the control circuit.
  • control circuit is a control chip of the sensor.
  • control circuit and the sensor are provided in an electronic device, and the housing is a part of a housing of the electronic device.
  • the housing is the housing of the sensor.
  • a touch button assembly which includes a sensor, a housing, and a control circuit as in the second aspect or any one of the second aspects, and the driving signal S d is used to drive the The sensor drives the housing to vibrate.
  • an electronic device including the touch-and-press button assembly as described in the third aspect, and the housing is attached to or integrated with the housing of the electronic device.
  • a control method applied to an electronic device wherein a sensor of the electronic device is attached to a housing, and the method includes: driving the housing to vibrate in a first time interval, and in a second time interval Inwardly output a high-impedance state or a floating state to the housing; when the vibration characteristic of the housing falls within the range of the user's trigger habit, a trigger event is determined.
  • the housing is the housing of the electronic device.
  • the housing is a housing of a sensor.
  • a chip in a sixth aspect, includes the control circuit in the second aspect or any one of the second aspects.
  • an electronic device including a sensor, the sensor includes a driving unit and a vibration sensing unit, the driving unit is configured to receive a driving signal S d and drive the housing to vibrate, and the vibration sensing unit uses For detecting the vibration of the housing and outputting a vibration induction signal S z , the vibration induction signal S z is a vibration wake response signal after receiving the drive signal S d , wherein the drive unit and the vibration induction unit Multiplexing the same device; a control circuit for outputting a driving signal S d to the driving unit in the first time interval, and outputting a high impedance state or a floating state in the second time interval, the control circuit is also used for The vibration sensing signal S z is detected in the second time interval, and whether to trigger an event is determined according to the vibration sensing signal S z .
  • the control circuit includes a signal generation unit and a detection unit, and the signal generation unit is used to alternately output the driving signal S in the time domain. d and a high resistance state, or alternately output the drive signal S d and a floating state in the time domain; the detection unit is used to detect the vibration induction signal S z , and determine according to the vibration induction signal S z Whether to trigger the event.
  • control circuit further includes a first amplifying unit, and the first amplifying unit is disposed between the sensor and the detection unit to use To amplify the vibration sensing signal S z .
  • control circuit further includes a filter unit, the filter unit is disposed between the sensor and the detection unit, and the filter unit is configured to The vibration induction signal S z is filtered.
  • the senor further includes a force sensing unit configured to detect the force or deformation of the housing and output a force sensing signal S f ,
  • the driving unit, the vibration sensing unit, and the force sensing unit multiplex the same device;
  • the control circuit also includes a calculation unit for detecting and judging whether the force sensing signal S f conforms to the active start Condition, when the force sensing signal S f meets the active start condition, an indication signal is sent to the signal generating unit, the indication signal is used to instruct to turn on the signal generating unit; the signal generating unit is used to After receiving the indication signal, the driving signal S d and the high impedance state are alternately output in the time domain, or the driving signal S d and the floating state are alternately output in the time domain.
  • control circuit further includes a second amplifying unit, and the second amplifying unit is disposed between the sensor and the calculation unit to use To amplify the force sensing signal S f .
  • the calculation unit is specifically configured to: determine whether the force induction signal S f meets the calculation start condition, and when the force induction signal S f meets the calculation In the case of a start condition, calculate the force and/or acceleration force sensed by the sensor according to the force sensing signal S f ; and determine whether the force and/or acceleration force meets the active start condition, when the force And/or when the acceleration force is greater than the active start threshold, the indication signal is sent to the signal generating unit.
  • control circuit further includes an interrupt unit, and the interrupt unit is configured to detect the force sensing signal S f , and the force sensing signal S f When the calculation start condition is met, the calculation unit is turned on through the interrupt unit; the calculation unit is used to calculate the force and/or acceleration force sensed by the sensor according to the force sensing signal S f , and determine Whether the force and/or acceleration force meets the active start condition, and when the force and/or acceleration force meets the active start condition, the indication signal is sent to the signal generating unit.
  • control circuit further includes a third amplifying unit, and the third amplifying unit is provided between the interrupting unit and the sensor for use To amplify the force sensing signal S f .
  • the senor includes a first port and a second port, and the first port is used to receive the driving signal S d or output the vibration sensor For the signal S z , the second port is used to ground or connect to a reference voltage.
  • the senor includes an electrical or magnetic deformation reversible device.
  • the senor is a piezoelectric device.
  • control circuit is a processing chip of the control circuit.
  • control circuit is a control chip of the sensor.
  • a control circuit including: a signal generating unit for outputting a driving signal S d to the sensor in a first time interval, and outputting a high impedance state or a floating state in a second time interval, the The driving signal S d is used to drive the sensor to vibrate; the detection unit is used to detect the vibration sensing signal S z output by the sensor in the second time interval, and determine whether to trigger an event according to the vibration sensing signal S z
  • the vibration sensing signal S z is a vibration wake response signal after the sensor receives the driving signal S d .
  • the signal generating unit is specifically configured to alternately output the driving signal S d and a high impedance state in the time domain, or in the time domain The driving signal S d and the floating state are alternately output.
  • control circuit further includes a first amplifying unit, and the first amplifying unit is disposed between the sensor and the detection unit to use To amplify the vibration sensing signal S z .
  • control circuit further includes a filter unit, the filter unit is disposed between the sensor and the detection unit, and the filter unit is configured to The vibration induction signal S z is filtered.
  • the control circuit further includes a calculation unit configured to receive the force sensing signal S f output by the sensor, and the force sensing signal S f is used to indicate the force or deformation detected by the sensor; the calculation unit is also used to determine whether the force sensing signal S f meets the active start condition, and when the force sensing signal S f meets the active start condition , Sending an instruction signal to the signal generating unit, where the instruction signal is used to instruct to turn on the signal generating unit; the signal generating unit is used to alternately output the signal in the time domain after receiving the instruction signal The driving signal S d and the high impedance state, or the driving signal S d and the floating state are alternately output in the time domain.
  • the control circuit further includes an interrupt unit, and the interrupt unit is configured to detect the force sensing signal S f output by the sensor.
  • S f is used to indicate the force or deformation detected by the sensor; when the force sensing signal S f meets the calculation start condition, the calculation unit is turned on by the interrupt unit; the calculation unit is specifically used to The force sensing signal S f calculates the force and/or acceleration force sensed by the sensor, and determines whether the force and/or acceleration force meets the active start condition, and when the force and/or acceleration force meets the In the case of an active start condition, the indication signal is sent to the signal generating unit.
  • control circuit further includes a third amplifying unit, and the third amplifying unit is disposed between the interrupting unit and the sensor to use To amplify the force sensing signal S f .
  • the senor includes a first port and a second port, and the first port is used to receive the drive signal S d or output the vibration sensor For the signal S z , the second port is used to ground or connect to a reference voltage.
  • the senor includes an electrical or magnetic deformation reversible device.
  • the senor is a piezoelectric device.
  • control circuit is a processing chip of the control circuit.
  • control circuit is a control chip of the sensor.
  • control circuit and the sensor are provided in an electronic device, and the housing is a part of a housing of the electronic device.
  • the housing is the housing of the sensor.
  • a touch button assembly including a sensor, a housing, and a control circuit as in any one of the eighth aspect or the eighth aspect, and the driving signal S d is used to drive the The drive unit of the sensor drives the housing to vibrate.
  • an electronic device including the touch-and-press button assembly as described in the ninth aspect, and the housing is attached to or integrated with the housing of the electronic device.
  • a chip in an eleventh aspect, includes the control circuit of the eighth aspect or any one of the eighth aspects.
  • FIG. 1 is a schematic structural diagram of an electronic device that may be used in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a user accidentally triggering a touch-and-press button assembly according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of the touch button assembly according to an embodiment of the present application.
  • FIG. 4 are schematic diagrams of the structure of the electronic device and the sensor in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the touch button assembly of the embodiment of the present application vibrating when it is not subjected to touch pressure.
  • FIG. 6 is a schematic diagram of the touch-and-press button assembly of an embodiment of the present application vibrating when subjected to touch pressure.
  • FIG. 7 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a sensor according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a touch button assembly according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a circuit of a touch button assembly according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • FIG. 16 is a schematic circuit diagram of a touch button assembly according to another embodiment of the present application.
  • FIG. 17 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • FIG. 18 is a schematic circuit diagram of a touch button assembly according to another embodiment of the present application.
  • the embodiments of the present application relate to touch-press button components and devices, which can be applied to electronic devices.
  • the electronic devices can be terminal devices.
  • the above-mentioned terminal devices can include mobile terminals (such as smart phones or tablet computers) and wearable electronic devices (such as smart watches, etc.) , Home appliances, automobile dashboards and other electrical products.
  • touch button components are of great significance for improving user experience and waterproofing.
  • touch button components are easily triggered by mistake. Such false triggering will bring a worse user experience, thus limiting touch button component technology Development on electronic devices such as smart phones and tablets.
  • good force perception allows users to have a good experience in triggering response. How to design a cheap and reliable touch button assembly so that it can respond well to the force from the user and reduce false triggers. This is the current touch button The development direction of the component.
  • FIG. 1 is a schematic structural diagram of a possible application of an electronic device 100 according to an embodiment of the present application.
  • the housing of the electronic device 100 includes a front panel 101, a middle frame 102 and a rear cover 103.
  • the touch-press button assembly can be arranged at a position of the housing or touch screen of the electronic device 100, such as the position of the front panel 101, the middle frame 102 or the rear cover 103.
  • the touch-press button assembly may be arranged on the outer side wall or the inner side wall of the housing of the electronic device 100.
  • the touch button assembly in FIG. 1 is arranged at the outer frame of the middle frame 102, which is represented by a dashed frame.
  • a marking symbol can be set on the outer surface of the electronic device 100 to prompt the user to trigger the position of the touch button assembly, or a transparent area, a transparent area, a convex portion or a concave portion can be provided on the housing of the electronic device 100 , And set the touch button assembly in it.
  • the touch-press button assembly can also be made into a module form and attached to the housing of the electronic device 100.
  • the touch-press key assembly of the present application can realize the functions of general physical keys (or mechanical keys), such as volume adjustment, confirmation key, power-on key, sliding key, press key and other function keys.
  • Fig. 2 is a schematic diagram of a user accidentally triggering a touch-and-press button assembly according to an embodiment of the present application. Wherein Fig. 2 only shows the sensor 300 of the touch button assembly, and does not show the control circuit of the touch button assembly.
  • the outer surface of the electronic device includes a sensitive area and a non-sensitive area, wherein the sensor 300 of the touch-and-press button assembly can be arranged at a position corresponding to the inner wall of the sensitive area.
  • the non-sensitive area is the area adjacent to the sensitive area. Ideally, only when the user touches the sensitive area, the sensor 300 of the electronic device detects the deformation, thereby instructing the user to trigger the touch button assembly.
  • the sensor 300 of the electronic device will not detect the deformation, and will not instruct the user to trigger the touch and press button assembly, so the electronic device will not make a false judgment.
  • the touch-and-press button assembly is easily triggered by mistake, for example, by other objects outside the body of the human body, or when the user touches a non-sensitive area, the button is triggered by mistake.
  • This false trigger is due to the following reasons: Most sensors only measure deformation, that is, force/deformation sensing. The deformation of the non-sensitive area is easily transmitted to the sensitive area, resulting in the deformation of the sensitive area. When the sensor detects the deformation, it is considered that it has touched the sensitive area, thereby generating a false trigger.
  • the deformation caused by vibration feedback (such as the vibration of the motor in the device) can also cause the sensor to trigger falsely.
  • one way is to resist false triggering by changing the structure, such as thickening the thickness of the side, so that the deformation outside the non-sensitive area is reduced, and the deformation transmitted to the sensitive area is also reduced.
  • this method is in contradiction with the development trend of thin and light mobile devices, and it is easy to bring a poor user experience due to inconsistent touch forces.
  • Another way is to make the sensitive area have certain characteristic identification codes, such as fingerprint recognition.
  • fingerprint recognition the cost of this method is higher, and the addition of fingerprint recognition function will cause the response speed of the buttons to slow down, which will affect the user experience. Therefore, how to make virtual keys with good resistance to false touches is a hot research topic in the industry.
  • FIG. 3 is a schematic diagram of the structure of the touch button assembly according to an embodiment of the present application.
  • the touch button assembly includes a sensor 300 and a control circuit 400, and the sensor 300 is attached to the housing 10.
  • the housing 10 may be a part of the housing of an electronic device.
  • the housing 10 and the housing of the electronic device are an integrated structure.
  • the sensor 300 may be attached to the inner surface of the housing 11 of the electronic device.
  • the housing 10 and the housing 11 of the electronic device may be separate structures.
  • the housing 10 may be the housing of the sensor 300.
  • the sensor 300 may be attached to the outer surface of the housing 11 of the electronic device, and the housing 10 touched by the user is the housing of the sensor 300 instead of the electronic device.
  • the shell For example, as shown in Figure 4(b), a through hole 12 can be provided on the housing 11 of the electronic device, and the sensor 300 can be attached to the outer surface of the housing 11 of the electronic device.
  • the connection between the sensor 300 and the control circuit 400 can be realized through the through hole 12; if the control circuit 400 and the sensor 300 are both packaged in the housing 10, the control circuit 400 can be realized through the through hole 12 Connection with the processing chip inside the electronic device.
  • a recessed portion may be provided on the outer surface of the housing 11 of the electronic device, and the sensor 300 may be provided in the recessed portion, so that the sensor 300 and the surface of the housing of the electronic device have the same height.
  • the sensor 300 is used to sense the contact pressure of the user or other objects on the housing 10 and generate corresponding sensing signals.
  • the control circuit 400 detects the sensing signal sent by the sensor 300.
  • the control circuit 400 can determine whether an event is triggered according to the aforementioned sensing signal.
  • the trigger event may refer to triggering the function corresponding to the touch-press button assembly.
  • the touch button component corresponds to a power-on button
  • the power-on function is triggered.
  • the touch button component corresponds to volume adjustment
  • the volume adjustment function is triggered.
  • the touch and pressure button assembly may also be called a touch and pressure sensor module, a virtual button, and so on.
  • a high-frequency vibration damping suppression method can be used to implement the touch-press button assembly, which is also called an active method.
  • the principle of the active method is that the control circuit 400 outputs a driving signal S d of a certain frequency to the sensor 300, and the driving signal S d causes the sensor 300 to drive the housing 10 to vibrate.
  • the structure in which the sensor 300 and the housing 10 can be combined is called a composite vibrator.
  • the frequency of the driving signal S d may be the same as or close to the resonance frequency of the composite vibrator.
  • the control circuit 400 detects the vibration induction signal S z output by the sensor 300 in response to the above-mentioned vibration.
  • the control circuit 400 can determine whether the event is triggered by determining the attenuation or increase degree of the vibration induction signal S z .
  • This judgment method is a 0-1 judgment. This method can effectively resist non-human accidental touch, and has the advantages of low cost and high sensitivity.
  • the vibration sensing signal S z detected by the control circuit 400 may be the response signal at the time when the sensor 300 receives the drive signal S d , or the sensor 300 receives the drive signal S d.
  • the subsequent wake response is not limited in this application.
  • the control circuit 400 can determine whether to trigger the event according to whether the vibration sensing signal S z conforms to the human trigger characteristic. If it meets the trigger characteristics of the human body, the trigger event is determined. If it does not meet the human trigger characteristics, discard this test. Next, a specific method for judging whether the vibration sensing signal S z conforms to the trigger characteristic of the human body will be described.
  • the control circuit 400 is used to compare the vibration sensing signal S z with a threshold to obtain a comparison result, and determine whether to trigger an event according to the comparison result.
  • the threshold is a boundary value that conforms to the user's touch and pressure habit, and when the comparison result shows that the vibration sensing signal S z falls within the user's touch and pressure habit, a trigger event is determined.
  • the "boundary value" may be the upper limit or the lower limit of the range that conforms to the user's touch and pressure habit.
  • the user's touch pressure may cause the amplitude of the housing 10 to decrease, and may also cause the amplitude of the housing 10 That is, the contact pressure of the user may suppress the vibration of the housing 10, and may also expand the vibration amplitude of the housing 10.
  • the threshold value is the upper limit of the user's touch and pressure habit range.
  • the threshold value is the lower limit of the user's touch pressure habit.
  • the vibration induction signal S z is used to indicate the amplitude of the vibration of the housing 10.
  • the vibration induction signal S z can be a voltage signal, a current signal or a change in resistance value, which is different from the specific design form of the sensor 300 related.
  • the range that conforms to the user's touch and pressure habit refers to: the amplitude range of the vibration area of the housing 10 after the user's habitual force of triggering the touch and pressure button. Meeting the user's touch and pressure habit refers to satisfying the user's touch and pressure sensation.
  • the range that conforms to the user's touch and pressure habit is the range value obtained by data collection and sampling according to different user's touch and pressure habit, and statistical analysis. For example, the user touch habit range can be collected and obtained through machine learning, and the user touch habit range of different users may be different.
  • the amplitude of the vibration generated by the sensor 300 driving the housing 10 when the housing 10 is not under contact pressure is within the first range.
  • FIG. 3 shows that when the sensor 300 is not working, the housing 10 does not vibrate.
  • Fig. 5 shows a schematic diagram of the housing 10 vibrating under the drive of the sensor 300 when the housing 10 is not subjected to contact pressure, including the two states of maximum displacement during the vibration process, which are represented by a solid line (S1) and a dashed line (S2) respectively.
  • S1 solid line
  • S2 dashed line
  • the amplitude is smaller than the amplitude of the vibration of the housing 10 shown in FIG. 5.
  • the amplitude of the housing 10 will become larger.
  • the effect of the contact pressure on the housing 10 may also increase the amplitude of the housing 10.
  • the control circuit receives the vibration sensing signal S z , and determines whether to trigger an event according to the comparison result of the vibration sensing signal S z and a threshold; when the contact pressure on the housing 10 suppresses the vibration of the housing 10, When the threshold is less than the lower limit of the first range, and the amplitude of the vibration induction signal S z is less than the threshold, the control circuit 400 determines a trigger event; when the contact pressure on the housing 10 increases When the housing 10 vibrates, the threshold is greater than the upper limit of the first range, and when the amplitude of the vibration induction signal S z is greater than the threshold, the control circuit 400 determines a trigger event.
  • the data in the first range is affected by factors such as the temperature and material of the electronic device where the touch pressure is pressed. After many experiments, the statistically calculated vibration amplitude under the condition that the user touch pressure (or a certain fixed touch pressure) is not applied. Is the voltage signal or resistance change.
  • the setting of the first range can be performed by a circuit in the main chip or processor integrated in the electronic device, or can be performed by a hardware circuit independent of the main chip or processor.
  • the present application provides a touch-press button assembly, which drives the housing 10 to vibrate through the sensor 300, and detects the amplitude of the vibration of the housing 10.
  • the vibration of the housing 10 is suppressed or the vibration of the housing 10 is enlarged, and the control circuit 400 compares and detects The relationship between the amplitude and the threshold value to achieve virtual keystrokes.
  • the first range is the range in which the housing 10 can be subjected to a certain fixed contact pressure (including the fixed contact pressure is zero, neither the contact pressure), the sensor 300 drives the vibration amplitude range of the housing 10, when the housing 10 is in no environmental interference
  • the vibration amplitude of the housing 10 driven by the sensor 300 should be a numerical value.
  • electronic devices are inevitably affected by some environmental factors, such as temperature changes, different materials of the housing 10, and user status changes (For example, if the electronic device is in the user's pocket, the user handles static and moving states, or the contact between the electronic device and the user or changes in friction, etc., factors will affect the vibration amplitude of the housing 10).
  • the housing 10 is defined Under a certain fixed contact pressure, the amplitude range of the vibration of the housing 10 driven by the sensor 300 is the first range.
  • the setting of the first range is the statistically calculated vibration amplitude under a certain fixed contact pressure after many experiments, which can be a voltage signal, a current signal or a resistance change.
  • the threshold value is less than the lower limit of the first range or greater than the upper limit of the first range as the condition of the control circuit triggering event, which can obtain accurate judgments and improve the triggering accuracy and reliability of the touch button.
  • the threshold is 0.1 to 0.9 times the lower limit of the first range, or the threshold is greater than or equal to 1.1 times the upper limit of the first range.
  • a buffer structure is provided on the inner surface of the housing 10 so that the vibration generated by the sensor 300 is concentrated in the area of the housing where the sensor 300 is attached to prevent the vibration from spreading to other areas of the housing 10. Ensure the sensitivity of the touch button assembly. When touch pressure is applied to the vibration position of the housing, it can prevent the false touch of other areas of the housing 10 from affecting the touch button assembly, because other areas of the housing 10 are not affected by the vibration of the sensor. When there is contact pressure in other areas, the vibration amplitude of the housing driven by the sensor will not be suppressed or enlarged, and the contact pressure button assembly will naturally not be triggered.
  • FIG. 7 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • the sensor 300 usually needs to include a driving unit 61 and a vibration sensing unit 62.
  • the driving unit 61 is used to receive the driving signal S d input by the control circuit 400 and drive the housing 10 to vibrate.
  • the unit 62 is used to generate a vibration induction signal S z in response to the vibration.
  • the driving unit 61 may be any of the following types: piezoelectric devices, magneto-dynamic devices, electric devices, and thermoelectric devices.
  • the vibration sensing unit 62 may be any one of the following devices: piezoelectric devices, piezoresistive devices, pressure vessel components, pressure sensitive devices.
  • the sensor 300 in the above solution requires at least two devices to realize the driving unit and the vibration sensing unit.
  • the driving unit 61 and the vibration sensing unit 62 may both be piezoelectric devices, or the driving unit 61 may be a piezoelectric device, and the vibration sensing unit 62 may be a piezoresistive device.
  • the driving unit 61 is connected to one port of the sensor 300 for receiving a driving signal S d
  • the vibration sensing unit 62 is connected to another port of the sensor 300 for outputting a vibration sensing signal S z .
  • the sensor 300 needs at least two units to be composed.
  • this sensor also includes two or more ports.
  • the structure is more complicated. Make more requests. This is more difficult for some small size applications, and the preparation method is also more complicated.
  • an embodiment of the present application proposes a touch button assembly.
  • the "unit function time-division multiplexing technology" is used to realize the touch-press button assembly, that is, the same unit (or the same device) of the sensor assumes different functions at different time periods to realize the multi-function of a single unit .
  • the same device realizes the function of the driving unit and the function of the vibration sensing unit in different time periods, and the unit function time-division multiplexing can be realized by using a single-output sensor, thereby simplifying the circuit and cost.
  • FIG. 8 is a schematic structural diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the touch button assembly 200 includes a sensor 300 and a control circuit 400.
  • the sensor 300 may be implemented by a single unit, or a single output sensor.
  • the sensor 300 includes two ports, a first port A and a second port E, respectively.
  • the second port E is used for grounding or reference voltage connection.
  • the first port A can be used to receive the driving signal S d and also to output the vibration induction signal S z .
  • the control circuit is used to output a driving signal S d to the sensor 300 and receive a vibration induction signal S z output by the sensor.
  • the driving signal S d is sent intermittently, that is, the driving signal S d and the high-impedance state (or floating state) are alternately output in the time domain.
  • the driving signal S d and the high-impedance state (or floating state) may alternate periodically or non-periodically in the time domain. For example, after the high impedance state (or floating state) every 10 ms, a drive signal S d with a length of 5 ms is output.
  • the first port A is used to receive a driving signal S d , and after receiving the driving signal S d , output a vibration sensing signal S z in response to the driving signal S d to realize the separation of the sensor 300 at the first port A Time reuse.
  • the vibration induction signal S z is the vibration tail wave response signal after receiving the driving signal S d , rather than the response signal at the time when the driving signal S d is received.
  • the signal d transmitted by the design of the drive for the intermittent signal S, and the control circuit 400 detects the trailing wave drive signal S d of the transmission during an interval after the driving signal S d of the response signal may be time-division sensor 300 to the same port Multiplexing to achieve drive and detection.
  • the vibrating coda response signal may also be referred to as a coda response signal or a coda response.
  • the vibration of the sensor caused by the drive signal S d does not stop.
  • the vibration at this time can be called a vibration wake.
  • the signal generated by the sensor detecting the vibration tail wave can be called the vibration tail wave response signal.
  • the above-mentioned high-impedance state means that a certain node in the circuit has a higher impedance than other points in the circuit, and the high-impedance state can be understood as an open circuit during circuit analysis.
  • the above floating state can also be referred to as a floating state, which means that a certain node in the circuit is not connected to any potential, and the floating state can be understood as an open circuit during circuit analysis.
  • the touch button assembly 200 further includes a housing (not shown in the figure), and the sensor 300 is attached to the housing, and the housing and the housing of the electronic device may be an integrated structure.
  • the housing and the housing of the electronic device may also be separate.
  • a through portion may be provided on the housing of the electronic device, and the touch button assembly 200 (including the housing) may be provided in the through unit.
  • the housing may belong to a part of the sensor 300, or may also be separate from the sensor 300.
  • the sensor 300, the control circuit 400, and the housing may be integrated in the same module, or may be separate from each other.
  • the above-mentioned driving signal S d may be an AC waveform, and the AC waveform includes but is not limited to at least one of the following types: square wave, triangle wave, sawtooth wave, sine wave, and the like.
  • the AC waveform may be a square wave including several pulses, for example.
  • the frequency of the driving signal S d may be the same as or close to the resonance frequency of the composite vibrator to facilitate driving the sensor 300 to drive the housing to vibrate.
  • control circuit 400 may be a control chip of the sensor.
  • the control circuit 400 can be used as a control chip of the sensor and integrated with the sensor 300 in the same package.
  • the control circuit 400 may be packaged separately from the sensor 300.
  • the control circuit 400 may be integrated in the central processing unit, application processor or auxiliary processor of the electronic device.
  • Coprocessor coprocessor
  • the control circuit 400 can also be configured as a hardware circuit independent of the main chip or processor.
  • the control circuit 400 may be composed of several discrete components, or may be implemented by the same integrated chip, which is not limited in the embodiment of the present application.
  • the module may be a chip.
  • the control circuit 400 is a control chip packaged with a sensor to perform touch
  • the circuit unit of the function of the pressing button component is a processing chip of an electronic device, such as a central processing unit or a coprocessor or an application processor, and the above-mentioned trigger event may include a circuit that the control circuit 400 sends a trigger signal to perform the function of the pressing button component
  • the unit receives the trigger signal and executes corresponding functions according to the trigger signal, such as powering on, adjusting the volume, and so on.
  • the above-mentioned trigger event includes the control circuit 400 executing the function of the touch button assembly.
  • the trigger event may include the control circuit 400 executing the function of the touch button assembly.
  • the sensor 300 in the embodiment of the present application includes a tactile sensor.
  • the tactile force sensor includes a tactile sensor and/or a force sensor.
  • the tactile force sensor includes the function of the tactile sensor and/or the function of the force sensor.
  • the tactile force sensor may be used to detect tactile force or pressure applied by a user.
  • Common tactile sensors include many types. For example, piezoelectric type, pressure-capacitance type, piezoresistive type, eddy current effect type, ultrasonic emission type, fingerprint type, etc. Among them, pressure-capacitive sensors are commonly found in touch screens.
  • the eddy current effect sensor is one of the inductive pressure sensors.
  • the sensor sensing unit 300 may have a multi-functional characteristics such as to achieve the drive housing and the vibration signal S z vibration sensing functions both time division multiplexing, transmission
  • the sensing unit is usually an electrical/magnetic deformation reversible device, such as a piezoelectric element, which will be described below in conjunction with embodiments.
  • FIG. 9 is a schematic structural diagram of a sensor 300 according to an embodiment of the present application.
  • the sensor 300 includes: a housing 31; a restriction node 32; an adhesive gel 33; a sensing unit 34; a first electrode 35; and a second electrode 36.
  • the function and configuration of each unit included in the sensor 300 are described as follows.
  • the housing 31 can be connected with the sensing unit 34 by bonding, crimping, or by interference fit.
  • Restriction node 32 used to restrict the sensing area of the housing 31, and the force or deformation placed on the sensing area spreads to other areas.
  • the restriction node 32 can be formed by raising the periphery of the sensing area, making it into a groove shape, or putting a damping material around the sensing area.
  • the restriction node 32 is an important feature for setting the sensing area.
  • the restriction node 32 and the housing 31 can be made into an integrated structure, or the restriction node 32 can be a part of the housing 31.
  • the housing 31 can be used as the housing 10 in the touch key assembly shown in FIGS. 3-7.
  • the housing 31 and the restriction node 32 may be integrated with the housing of the electronic device.
  • the bonding glue 33 is a cured glue and used to connect the housing 31 and the sensing unit 34 together.
  • Sensing unit 34 It is the core unit of the sensor, and can be a reversible electrical/magnetic deformation device.
  • Electrical/magnetic deformation reversible devices can refer to devices made of electrical/magnetic deformation reversible materials.
  • the characteristics of electrical/magnetically deformable reversible materials are: electricity or magnetism can cause its deformation, and the deformation changes its electrical or magnetic properties.
  • the above electrical or magnetic properties may be changed, including but not limited to the following situations: voltage, current, charge, resistance, capacitance, inductance, or magnetic moment changes.
  • the embodiments of the present application do not limit the shape of the electrical/magnetic deformation reversible device, which may be a single-layer structure or a multilayer structure, or other various shapes.
  • the electric/magnetic-deformation reversible device may include two electrodes.
  • two electrodes, the first electrode 35 and the second electrode 36, are shown in FIG. 9.
  • One of the two electrodes can be used to ground or connect to a reference voltage, which is equivalent to the second port E, and the other electrode is used to receive the driving signal S d and/or output the vibration induction signal S z , which is equivalent to the first Port A.
  • typical electrical/magnetic-deformation reversible materials include piezoelectric materials, and piezoelectric materials may have a positive piezoelectric effect and an inverse piezoelectric effect.
  • the positive piezoelectric effect means that pressure can generate electric charge in the piezoelectric material
  • the inverse piezoelectric effect means that electricity can cause the deformation of the piezoelectric material.
  • the sensing unit 34 may also be called a piezoelectric unit or a piezoelectric device, and the sensor may be called a piezoelectric sensor.
  • the driving function uses the inverse piezoelectric effect
  • the vibration sensing function uses the pressure Electric effect, which can simplify the design of the sensor.
  • the sensing unit 34 may also be made of other types of electrical/magnetic deformation reversible materials, which is not limited in the embodiment of the present application.
  • the sensing unit 34 may be a piezoelectric sheet.
  • the piezoelectric sheet can be single-layer, double-layer, or multi-layer, and its shape can be square, round, elliptical or polygonal.
  • the sensor 300 shown in FIG. 9 has a rectangular shape.
  • One surface of the piezoelectric sheet may be connected to the inner surface of the housing 31 by glue or interference fit, and the bonding surface of the piezoelectric sheet and the housing 31 is relatively flat.
  • the sensor 300 used in the present application includes only one electrode, which is a sensor including a single unit, or may also be called a single output sensor.
  • This kind of sensor is simple to manufacture, low in cost, and is a universal sensor.
  • the touch-press button assembly of the embodiment of the present application can use such a single-output sensor with a simple structure, and realize active detection by time-division multiplexing of sensor functions, thereby achieving the purpose of saving cost and simplifying the circuit.
  • the description of the sensor 300 in FIG. 9 is only an example, and the sensor 300 in the embodiment of the present application may also be other types of sensors, as long as it can realize the function of reversible electrical/magnetic deformation.
  • FIG. 10 is a circuit structure diagram of a touch button assembly 200 according to an embodiment of the present application.
  • the touch button assembly 200 includes a sensor 300 and a control circuit 400, and the control circuit 400 is connected to the sensor 300 for realizing the driving function and the detection function of the sensor 300 through time division multiplexing.
  • the touch button assembly 200 may also be referred to as a touch sensor module or a touch button assembly.
  • Part or all of the functions of the control circuit 400 may be integrated on the same chip, or may also be implemented by separate devices.
  • all or part of the functions of the control circuit 400 may be implemented by a microcontroller unit (MCU).
  • the control circuit 400 may be provided on a printed circuit board (PCB).
  • PCB printed circuit board
  • the control circuit 400 includes a signal generation unit 40 and a detection unit 50.
  • the signal generating unit 40 is connected to the first port A of the sensor 300, and the output terminal of the signal generating unit 40 is used to output a driving signal S d to the first port A of the sensor 300.
  • the driving signal S d is an intermittent signal.
  • the detection unit 50 is also connected to the first port A of the sensor 300, and the detection unit 50 is used to detect the vibration induction signal S z output by the first port A of the sensor 300. If the user touches the area where the sensor 300 is located, the amplitude of the vibration sensing signal S z will be attenuated or increased.
  • the detection unit 50 can determine whether the event is triggered by detecting the attenuation or increase of the vibration induction signal S z .
  • the sensor 300 may be a sensor 300 including a single unit, that is, a single output sensor.
  • the sensor 300 includes a first port A and a second port E.
  • the first port A is used to receive a driving signal S d or send a vibration induction signal S z in time sharing, and the second port E is used to ground or a reference voltage.
  • the above-mentioned driving signal S d is an intermittent signal. It can be understood that the above-mentioned signal generating unit 40 outputs the driving signal S d in the first time interval, and the output in the second time interval is in a high impedance state or a floating state.
  • the detection unit 50 detects the vibration induction signal S z output by the sensor 300 in the second time interval. The first time interval and the second time interval do not overlap. In other words, after the above-mentioned signal generating unit 40 outputs a segment of the drive signal S d , it can quickly switch the output terminal to a high impedance state or a floating state, and then the detection unit 50 detects the output of the sensor 300 in response to the drive signal S d .
  • the control circuit 400 can input the driving signal S d through the same terminal of the sensor 300 and receive the vibration sensing signal S z .
  • the driving signal S d and the high impedance state (floating state) are alternately output in the time domain. For example, after the high impedance state (or floating state) every 10 ms, a drive signal S d with a length of 5 ms is output.
  • the different functions of the sensor are time-division multiplexed, and the single-output sensor 300 is used to realize the touch-and-press button assembly, which saves cost, simplifies the complexity of circuit design, and can achieve high sensitivity and anti-inadvertent touch. demand.
  • the above-mentioned driving signal S d and the high-impedance state may be sent alternately according to a period in the time domain, for example, a driving signal S d of a certain length of time may be sent every 10 ms or 5 ms.
  • a driving signal S d of a certain length of time may be sent every 10 ms or 5 ms.
  • each drive signal S d of the transmitted waveform may be the same period
  • the duration of each transmission of the drive signal S d may be the same.
  • the waveform, period, or duration of the driving signal S d sent each time may also be different, which is not limited in the embodiment of the present application.
  • the frequency of the driving signal S d may be equal to or close to the resonance frequency of the composite vibrator.
  • the above-mentioned driving signal S d and the high-impedance state may also be sent aperiodically in the time domain, which is not limited in the embodiment of the present application.
  • the above-mentioned driving signal S d may be an AC waveform
  • the AC waveform includes but is not limited to at least one of the following types: square wave, triangle wave, sawtooth wave, sine wave, and the like.
  • the AC waveform may be a square wave including several pulses, for example.
  • the resistance value of the high resistance state may be greater than 1 kiloohm (k ⁇ ).
  • the touch-and-press button assembly can combine the driving function of the sensor and the vibration sensing function into one through time-sharing multiplexing. Therefore, only a single output sensor is needed to realize the above two functions. It is not accidentally touched by a human body, and can also simplify the sensor used in the touch and press button assembly, thereby simplifying the structure of the touch and press button assembly.
  • a traditional single-output sensor can be used to realize the touch-and-press button assembly.
  • common processes can be used to implement the single-output sensor used in the embodiments of the present application, so as to reduce the cost of implementing the touch button assembly and improve the reliability of the device.
  • some human-like substances contacting the sensing area of the touch-and-press button assembly will also cause the output amplitude of the device to be attenuated or increased by a greater degree than when there is no contact. Therefore, in order to avoid misjudging the situation of human-like substance contact as human body contact, the above-mentioned process of proactively determining whether an event is triggered can be performed multiple times to avoid misjudgment.
  • FIG. 11 shows a schematic structural diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the control circuit 400 further includes a first amplifying unit 21.
  • the first amplifying unit 21 may be disposed between the sensor 300 and the detection unit 50.
  • the first amplifying unit 21 is used to amplify the output of the sensor 300. the vibration sensing signal S z, and outputs the signal S z vibration sensing the sense amplifier in accordance with the vibration sensing signal S z amplified signal, a detection unit 50.
  • the detection unit 50 detects the amplified vibration sensing signal S z output by the sensor 300, which helps to more accurately and sensitively determine whether the event is triggered, thereby improving the sensitivity of the touch-press button assembly and the resistance to false touch performance.
  • FIG. 12 is a schematic structural diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the control circuit 400 further includes a filtering unit 25 for filtering the vibration induction signal S z output by the sensor 300.
  • the filtering unit 25 may perform high-pass filtering on the vibration induction signal S z .
  • the filtering unit 25 may also be integrated in the first amplifying unit 21 or integrated in the detecting unit 50, which is not limited in the embodiment of the present application.
  • the high-pass filtering of the vibration induction signal S z can be realized by the filter unit, so that the baseline of the vibration induction signal S z can be stabilized, and the detection efficiency of the touch button assembly can be improved.
  • the embodiment of the present application does not limit the specific circuit structure of the signal generating unit 40, the detecting unit 50, the first amplifying unit 21, or the filtering unit 25, as long as the above functions can be realized.
  • Those skilled in the art can understand that upon learning the above circuit functions, those skilled in the art can obtain specific circuits that implement the corresponding circuit functions.
  • the signal generating unit 40 has a function of outputting a driving signal S d , and can be switched to a high impedance state or a floating state.
  • the high resistance state may be greater than 1 k ⁇ , or may also be a high resistance state with other resistance values.
  • the first amplifying unit 21 may be constituted by a circuit that realizes an amplifying function.
  • the first amplifying unit 21 may include but is not limited to at least one of the following devices: a charge amplifier, a current amplifier, an operational amplifier, a rectifier amplifier, a detection amplifier, a comparison amplifier, and the like.
  • the detection unit 50 may include, but is not limited to, at least one of the following circuits: an analog to digital converter (ADC) circuit, a comparator, and the like.
  • ADC analog to digital converter
  • the filtering unit 25 may be constructed using a simple first-order high-pass filter circuit, or may also be constructed using a high-order high-pass filter circuit, which is not limited in the embodiment of the present application.
  • FIG. 13 is a schematic circuit diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the signal generating unit and the detecting unit in the control circuit are integrated in the same control chip 500.
  • the control chip 500 may be implemented by an MCU.
  • FIG. 13 does not show the connection relationship between the signal generation unit, the detection unit, and the functional units in the control chip 500.
  • the IO port represents the output terminal of the signal generating unit, which is used to output the driving signal S d .
  • the AD port represents the input terminal of the detection unit, which is used to detect the vibration induction signal S z output by the sensor 300 in response to the driving signal S d after the signal generation unit is turned on.
  • a first amplifying unit 21 (amplifier AMP) is provided between the input terminal AD of the detection unit and the sensor 300 for amplifying the vibration induction signal S z .
  • a filter unit 25 may also be provided between the input terminal AD of the detection unit and the sensor 300, and the filter unit 25 is composed of a capacitor C and a resistor R.
  • the filtering unit 25 may be used to perform high-pass filtering on the vibration induction signal S z .
  • the filtering unit 25 may be integrated in the first amplifying unit 21 or the detecting unit, which is not limited in the embodiment of the present application.
  • FIG. 13 is merely an example of the specific implementation of the above functional units. Those skilled in the art can understand that the above functional units also have other specific implementations or variations, which should be covered by the protection scope of the present application.
  • the control chip 500 sends an intermittent driving signal S d through the IO port.
  • a driving signal S d of a certain length of time may be sent every 5 ms or 10 ms.
  • the frequency of the driving signal S d may be equal to or close to the resonance frequency of the composite vibrator.
  • the sensor realizes the function of the drive unit.
  • the IO port is in a high-impedance state or a floating state.
  • the control chip 500 detects the vibration induction signal S z received by the AD port, and judges according to the vibration induction signal S z Whether to trigger the event.
  • the vibration induction signal S z is the vibration wake response signal of the drive signal S d .
  • the sensor realizes the function of a vibration sensing unit.
  • the embodiment of the drive signal S d is transmitted every embodiment of the present application, i.e., the transmission time intervals drive signal S d, and therefore requires a higher contact pressure on the reaction rate of the key assembly scene, it may affect the user experience . Missing To avoid triggering event, the signal generating unit needs a short period of time every time the drive signal S d transmits, for example, a drive signal S d transmitted every 10ms, but such an approach would result in greater power consumption .
  • FIG. 14 is a schematic diagram of the structure of a touch button assembly according to another embodiment of the present application.
  • the sensor 300 in addition to the driving unit 61 and the vibration sensing unit 62, the sensor 300 also includes a force sensing unit 63.
  • the force sensing unit 63 is used to sense force or deformation and output a force sensing signal. S f .
  • the control circuit 400 first detects the force sensing signal S f output by the sensor force sensing unit without sending the driving signal S d .
  • the output terminal of the control circuit 400 is in a high impedance state or a floating state, and the driving unit 61 of the sensor 300 does not receive the driving signal S d , so it can be called “passive” detection.
  • the control circuit 400 detects that the contact pressure induced by the sensor 300 exceeds a certain threshold, the "active" detection is started.
  • the amplitude of the vibration sensing signal S z output by the sensor 300 will be attenuated or increased, and the control circuit 400 can be based on the detected vibration sensing signal S The degree of attenuation or increase of z determines whether the event is triggered.
  • the control circuit 400 since the combination of "active" detection and “passive” detection is adopted, and the active is activated by passive, the control circuit 400 does not need to continuously send the driving signal S d to the sensor 300, thereby reducing the touch and pressing of the key components. Power consumption.
  • This combination of active and passive can also be realized by using "unit function time-sharing multiplexing technology", that is, the same sensing unit assumes different functions at different time periods, such as force sensing function, driving function or vibration sensing function And so on, so as to realize the multi-function of a single sensing unit.
  • a sensing unit may be the aforementioned electric/magnetic deformation reversible device, such as a piezoelectric element.
  • the sensor 300 in FIG. 14 can also be implemented by the single-output sensor in the foregoing embodiment through time-division multiplexing.
  • a calculation unit may be added to the control circuit to realize the detection and/or calculation of the force induction signal S f .
  • the calculation unit can control the signal generating unit to turn on when the preset condition is met according to the detected force sensing signal S f , so that the signal generating unit does not need to be in working state all the time, thereby reducing power consumption.
  • the control circuit may further include an interrupt unit, and the interrupt unit is used to control the calculation unit to be turned on when the preset condition is met, thereby further reducing the power consumption of the circuit.
  • FIG. 15 is a schematic structural diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the control circuit 400 includes a signal generation unit 40, a detection unit 50 and a calculation unit 60.
  • the calculation unit 60 is used to detect the force sensing signal S f generated by the sensor 300.
  • the sensor 300 implements the function of a force sensing unit.
  • the calculation unit 60 sends an indication signal to the signal generation unit 40 to instruct the signal generation unit 40 to start.
  • the sensor 300 implements the function of a driving unit.
  • the detection unit 50 detects the vibration sensing signal S z output by the sensor 300 and determines whether the event is triggered according to the vibration sensing signal S z .
  • the sensor 300 implements the function of a vibration sensing unit. In this manner, the signal generating unit 40 does not need to be in the working state all the time, so it is not necessary to frequently send the driving signal S d , so that power consumption can be saved.
  • the force sensing signal S f detected by the calculating unit 60 is generated when the signal generating unit 40 is not working, so the force sensing signal S f detected by the calculating unit 60 is not a response signal of the driving signal S d .
  • This detection method is called “passive” detection.
  • the vibration sensing signal S z detected by the detection unit 50 responds to the drive signal S d , and this detection method is called “active” detection.
  • the embodiment of the application combines the “active" detection and the "passive” detection, and adopts the “passive” detection to start the "active” detection method, so that the "active” detection does not need to be always turned on in the circuit, thereby saving power consumption the goal of.
  • the calculation unit 60 may be used to determine whether the current sensed pressure meets the active start condition, and if it meets the active start condition, the calculation unit 60 instructs the signal generating unit 40 to start working. If the active start condition is not met, the signal generating unit 40 does not work.
  • the above method for determining whether the active activation condition is met may include determining whether the force sensed by the force sensing unit 63 exceeds a set active activation threshold, or may also include determining whether the force sensed by the force sensing unit 63 is pressed according to the pressing pattern Meet the active start conditions, such as double-clicking, long-pressing, etc.
  • the calculation unit 60 may make a two-step judgment. First, the calculation unit 60 can determine whether the force sensing signal S f meets the calculation start condition. If the calculation start condition is met, the calculation unit 60 starts to calculate the force or acceleration force according to the force sensing signal S f , and continues to determine whether the calculated force or acceleration force meets the active start condition. If the active start condition is met, the calculation unit 60 instructs the signal generating unit 40 to start working. If the force sensing signal S f does not meet the calculation start condition, the calculation unit 60 does not need to calculate and judge whether the aforementioned force or acceleration force meets the active start condition.
  • the foregoing manner of determining whether the calculation start condition is met may include determining whether the force sensed by the force sensing unit 63 exceeds a set calculation start threshold, or may also include determining whether the force sensed by the force sensing unit 63 is pressed according to the pressing pattern Meet the calculation start conditions, such as double-clicking, long-pressing, etc.
  • the values of the calculated start threshold and the active start threshold may be determined according to actual applications, and are not limited in the embodiment of the present application.
  • the calculated starting threshold may refer to a threshold used for starting or accelerating force calculation.
  • the active start threshold may refer to a threshold for enabling "active" detection.
  • the calculation start threshold can be set to the value obtained by the calculation unit corresponding to 100 grams of force, and the active start threshold value is the value obtained by the calculation unit corresponding to 200 grams of force. If the calculation start condition is met, the calculation unit 60 starts to calculate the force or acceleration force, and determines whether the calculated force or acceleration force meets the active start condition. When the force or acceleration force meets the active start condition, the signal generating unit 40 starts to work.
  • the value obtained by the calculation unit may refer to the dimension used by the calculation unit to determine the force or the acceleration force according to the force sensing signal S f .
  • the calculation unit 60 may read the force sensing signal S f output by the sensor 300 at regular intervals. At this time, the output of the signal generation unit 40 is in a high impedance state or a floating state. If the force sensing signal S f meets the calculation start condition, the calculation unit 60 starts the calculation of the force or acceleration force. During this time period, the sensor 300 implements the function of a force sensing unit.
  • the calculation unit 60 calculates the force or acceleration force, if the obtained calculation result meets the conditions of "active" detection, that is, the force or acceleration force meets the active start condition, the calculation unit 60 sends an instruction to the signal generating unit 40
  • the indication signal is used to instruct the signal generating unit 40 to start working, that is, the signal generating unit 40 starts to input the intermittent driving signal S d to the sensor 300, and the driving signal S d drives the composite vibrator to vibrate, so that the sensor 300 outputs a response
  • the vibration induction signal S z is the driving signal S d .
  • the detection unit 50 detects the vibration induction signal S z output by the sensor 300 and determines the attenuation or increase of the vibration induction signal S z It determines whether an event is triggered or not.
  • the sensor 300 in this period of time realizes the functions of the driving unit and the vibration sensing unit in a time-sharing period. The specific implementation here is similar to the foregoing embodiment and will not be repeated here.
  • the calculation unit 60 may read the vibration sensing signal S z generated by the sensor 300 according to a certain time period, for example, read every 5 ms or 10 ms.
  • control circuit of the touch button assembly includes a calculation unit for detecting the touch pressure state of the sensor without receiving the driving signal S d to determine whether to turn on the signal generating unit. Therefore, the signal generating unit only turns on and sends the intermittent driving signal S d when the preset conditions are met, which can reduce the power consumption of the circuit.
  • a first amplifying unit 21 may be provided between the detection unit 50 and the sensor 300, and the first amplifying unit 21 is located between the sensor 300 and the detection unit 50 for Amplify the vibration sensing signal S z output by the sensor 300.
  • a second amplifying unit 22 may be provided between the calculation unit 60 and the sensor 300, and the second amplifying unit 22 is located between the sensor 300 and the calculation unit 60 for amplifying the force sensing signal S output by the sensor 300. f .
  • the calculation unit 60 can determine whether to activate the signal generating unit 40 by detecting the amplified force sensing signal S f .
  • the calculating unit can detect the amplified force sensing signal S f output by the sensor, which helps to more accurately and sensitively determine whether an event is triggered, thereby improving the touch-press button assembly The sensitivity and anti-mistouch performance.
  • the first amplifying unit 21 and the second amplifying unit 22 may be composed of a circuit that realizes an amplifying function.
  • the first amplifying unit 21 and the second amplifying unit 22 may include but are not limited to at least one of the following devices: a charge amplifier, a current amplifier, an operational amplifier, a rectifier amplifier, a detection amplifier, a comparison amplifier, and the like.
  • FIG. 16 is a schematic circuit diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the signal generation unit, the detection unit, and the calculation unit can be integrated in the same control chip 500.
  • the control chip 500 may be implemented by an MCU.
  • the structure of the signal generation unit, the detection unit, the calculation unit, and the connection relationship between the functional units in the control chip 500 are not shown in FIG. 16.
  • the IO port represents the output terminal of the signal generating unit, which is used to output the driving signal S d .
  • the AD1 port represents the input terminal of the calculation unit, which is used to detect the force sensing signal S f output by the sensor 300.
  • the AD2 port represents the input terminal of the detection unit, which is used to detect the vibration induction signal S z output by the sensor 300 in response to the driving signal S d after the signal generation unit is turned on.
  • a second amplifying unit 22 (amplifier AMP1) is provided between the input terminal AD1 of the calculation unit and the sensor 300 to amplify the force sensing signal S f .
  • a first amplifying unit 21 (amplifier AMP2) is provided between the input terminal AD2 of the detection unit and the sensor 300 to amplify the vibration induction signal S z .
  • a filter unit 25 may be further provided between the input terminal AD2 of the detection unit and the sensor 300, and the filter unit 25 is composed of a capacitor C and a resistor R. The filtering unit 25 may be used for high-pass filtering. Alternatively, the filtering unit 25 may be integrated in the first amplifying unit 21 or the detecting unit, which is not limited in the embodiment of the present application.
  • FIG. 16 is only an example of the specific implementation of the above functional units. Those skilled in the art can understand that the above functional units also have other specific implementations or variations, which should be covered by the protection scope of this application.
  • the initial state of the IO port is a high impedance state or a floating state.
  • the control chip 500 detects the force sensing signal S f input from the AD1 port at regular intervals to determine whether the force received by the sensor 300 meets the calculation start condition.
  • the control chip 500 can periodically detect the force sensing signal S f input from the AD1 port, for example, it can be detected every 5 ms or 10 ms. If the force sensing signal S f meets the calculation start condition, the control chip 500 starts to calculate the force or acceleration force received by the sensor 300 according to the force sensing signal S f input from the AD1 port, and judges whether the force or acceleration force meets the active start condition.
  • the sensor 300 realizes the function of a force sensing unit. If the active start condition is met, the control chip 500 sends an intermittent driving signal S d through the IO port. During this time period, the sensor 300 realizes the function of the driving unit. In the interval after each drive signal S d is sent, the IO port is in a high-impedance state or a floating state. At this stage, the control chip 500 detects the vibration induction signal S z input from the AD2 port, and based on the vibration induction signal S z determines whether the event is triggered. During this time period, the sensor 300 implements the function of a vibration sensing unit.
  • the force sensing function, driving function, and vibration sensing function of the sensor 300 are time-division multiplexed, so that a single-output sensor is used to implement a touch-press button assembly solution combining active and passive detection.
  • FIG. 17 is a schematic structural diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the control circuit 400 includes a signal generation unit 40, a detection unit 50, a calculation unit 60 and an interrupt unit 70.
  • the interrupt unit 70 is used to detect the force sensing signal S f output by the sensor 300 and control the turning on of the calculation unit 60. Specifically, the interrupt unit 70 can realize the function of judging whether the force sensing signal S f meets the calculation start condition. In the case that the force sensing signal S f meets the calculation start condition, the interrupt unit 70 may control the calculation unit 60 to turn on.
  • the calculation unit 60 calculates the force or acceleration force received by the sensor 300 according to the force sensing signal S f , and determines whether the calculated force and/or acceleration force meets the active start condition. If the active start condition is met, the calculation unit 60 sends an instruction signal to the signal generating unit 40 to instruct the signal generating unit 40 to start working.
  • the interrupt unit 70 in FIG. 17 realizes the function of judging whether the force sensing signal S f meets the calculation start condition
  • the calculation unit 60 realizes the function of calculating and judging whether the force or acceleration force meets the active start condition.
  • the interrupt unit 70 controls the turning on of the computing unit 60, and the computing unit 60 controls the turning on of the signal generating unit 40. Therefore, the calculation unit 60 and the signal generation unit 40 only work when the preset conditions are met, so that the power consumption of the circuit can be reduced.
  • the interrupt unit 70 may be implemented by an interrupt circuit
  • the interrupt circuit is turned on only when the input voltage or current meets the preset conditions.
  • the type of interrupt circuit can be level interrupt, rising edge interrupt or falling edge interrupt. If the force sensing signal S f output by the sensor 300 meets the pre-designed level requirement, rising edge or falling edge requirement, the interrupt program will be entered.
  • the calculation unit 60 is connected to the interrupt unit 70, and after entering the interrupt program, the calculation unit 60 is started. In other words, the interrupt unit 70 is equivalent to a switch that controls the calculation unit 60. When the interrupt unit 70 is turned on, the computing unit 60 starts to work.
  • After 70 can be designed to said interrupting unit, such that the pressure sensor 300 sensing meet calculation start condition, the voltage value of the detection signal S f of the force sensing unit 63 outputs a force greater than the starting voltage interruption unit 70, so that the interrupting unit 70 is turned on.
  • the interrupt unit 70 is connected to the computing unit 60, and when the interrupt unit 70 is turned on, the computing unit 60 starts to work.
  • the foregoing interrupt unit 70 determines whether the pressure sensed by the sensor 300 meets the calculation start condition. It can also be understood that the interrupt unit 70 determines whether the force sensing signal S f output by the sensor 300 meets the interrupt condition.
  • the interrupt unit 70 is not turned on, and the control circuit 400 hardly generates power consumption. Only when the contact pressure meets the calculation start condition, the interrupt The unit 70 is turned on, and the calculation unit 60 is activated accordingly. Therefore, the solution of the embodiment of the present application can save circuit power consumption while achieving good anti-mistouch characteristics.
  • a third amplifying unit 23 may also be provided between the interrupting unit 70 and the sensor 300, and the interrupting unit 70 receives and detects the force sensing signal S f amplified by the third amplifying unit 23. It can be designed such that when the pressure received by the sensor 300 meets the calculation start condition, the amplified force sensing signal S f causes the interrupt unit 70 to start the interrupt program.
  • the third amplifying unit 23 is constituted by a circuit that realizes an amplifying function.
  • the third amplifying unit 23 may include but is not limited to at least one of the following devices: a charge amplifier, a current amplifier, an operational amplifier, a rectifier amplifier, a detection amplifier, a comparison amplifier, and the like.
  • FIG. 18 is a schematic circuit diagram of a touch button assembly 200 according to another embodiment of the present application.
  • the signal generation unit, the detection unit, the calculation unit, and the interrupt unit can be integrated in the same control chip 500.
  • the control chip 500 may be implemented by an MCU.
  • FIG. 18 does not show the connection relationship between the signal generating unit, the calculation unit, the detection unit, the interrupt unit, and the functional units in the control chip 500.
  • the IO port represents the output terminal of the signal generating unit, which is used to output the driving signal S d .
  • the INT port represents the input terminal of the interrupt unit, which is used to detect the force sensing signal S f output by the sensor 300 and determine whether to turn on the calculation unit.
  • the AD1 port represents the input terminal of the calculation unit, which is used to detect the force sensing signal S f output by the sensor 300 and determine whether to turn on the signal generating unit, so that the IO port outputs an intermittent driving signal S d .
  • the AD2 port represents the input terminal of the detection unit, which is used to detect the vibration sensing signal S z output by the sensor 300 in response to the driving signal S d after the signal generation unit is turned on, and determine whether an event is triggered.
  • the interrupt unit Only when the interrupt unit detects that the force sensing signal S f meets the calculation start condition, the interrupt unit sends out an interrupt signal, so that the calculation unit starts to work. In other words, when the pressure sensed by the sensor 300 meets the calculation start condition, the calculation unit is started, and then the calculation unit starts to calculate the force and/or acceleration force received by the sensor 300, and judges whether it conforms to the obtained force and/or acceleration force. Active start condition. If the active start condition is met, the computing unit sends an indication signal to the signal generating unit to instruct the signal generating unit to start working.
  • a second amplifying unit 22 (amplifier AMP1) is provided between the input terminal AD1 of the calculation unit and the sensor 300 for amplifying the force sensing signal S f .
  • a first amplifying unit 21 (amplifier AMP2) is provided between the input terminal AD2 of the detection unit and the sensor 300 for amplifying the vibration induction signal S z .
  • a third amplifying unit 23 (amplifier AMP3) can also be provided between the input terminal INT of the interrupt unit and the sensor 300 to amplify the force sensing signal S f .
  • a filter unit 25 may be further provided between the input terminal AD2 of the detection unit and the sensor 300, and the filter unit 25 is composed of a capacitor C and a resistor R.
  • the filtering unit 25 may be used to perform high-pass filtering on the vibration induction signal S z .
  • the filtering unit 25 may be integrated in the first amplifying unit 21 or the detecting unit, which is not limited in the embodiment of the present application.
  • FIG. 18 is only an example of the specific implementation of the above functional units. Those skilled in the art can understand that the above functional units also have other specific implementations or variations, which should be covered by the protection scope of this application.
  • the initial state of the IO port is a high impedance state or a floating state.
  • the control chip 500 detects the force sensing signal S f input from the INT port. In the case of force sensing signal S f start calculated does not meet the conditions, the force sensing signal S f enough to start the interrupt routine, all of the functional units do not work.
  • the control chip 500 starts the interrupt program, and the control chip 500 starts to calculate the force or acceleration force received by the sensor 300 according to the force sensing signal S f input from the AD1 port, and determines Whether the stated force or acceleration force meets the active start conditions.
  • the sensor 300 implements the function of a force sensing unit.
  • the control chip 500 starts to send the intermittent driving signal S d through the IO port.
  • the sensor 300 implements the function of the driving unit.
  • the IO port is in a high impedance state or a floating state.
  • the control chip 500 detects the vibration induction signal S z input from the AD2 port, and performs the operation according to the vibration induction signal S z Determine whether an event is triggered, and the vibration sensing signal S z is the coda response signal of the driving signal S d .
  • the sensor 300 implements the function of a vibration sensing unit. In this way, the touch-and-press button assembly technology is realized by multiplexing different functions of the sensor 300 in time, and the design difficulty of the sensor 300 is reduced.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Telephone Function (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Input From Keyboards Or The Like (AREA)
  • Push-Button Switches (AREA)

Abstract

一种触压按键组件、控制电路和电子设备(100),能够简化电路和降低成本。电子设备(100)包括传感器(300)和控制电路(400),控制电路(400)用于在第一时间区间内向传感器(300)的第一端口(A)输出驱动信号S d,以及在第二时间区间内输出高阻态或浮空态,驱动信号S d用于驱动传感器(300)带动外壳(10)振动;传感器(300)用于检测外壳(10)的振动并通过第一端口(A)输出振动感应信号S z,振动感应信号S z为传感器(300)接收驱动信号S d后的振动尾波响应信号;控制电路(400)还用于在第二时间区间内检测振动感应信号S z,并根据振动感应信号S z确定是否触发事件。

Description

触压按键组件、控制电路和电子设备
本申请要求在2019年4月25日提交中国国家知识产权局、申请号为201910339870.4、发明名称为“触压按键组件、控制电路和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品领域,尤其涉及触压按键组件、控制电路和电子设备。
背景技术
随着移动设备技术的发展,一体化将成为一种趋势,这在防水、用户体验方面的优势很大。实体按键作为移动设备一体化的一个障碍,将逐渐被虚拟按键取代。然而虚拟按键也存在许多待解决的问题,例如虚拟按键容易被用户误触发,并且工业化大量生产设备需要考虑投入成本。如何能够实现低成本的虚拟按键是业界亟待解决的问题
发明内容
本申请提供一种触压按键组件、控制电路和电子设备,能够简化电路和降低成本。
第一方面,提供了一种电子设备,包括:传感器和控制电路,所述控制电路用于在第一时间区间内向所述传感器的第一端口输出驱动信号S d,以及在第二时间区间内输出高阻态或浮空态,所述驱动信号S d用于驱动所述传感器带动外壳振动;所述传感器用于检测所述外壳的振动并通过所述第一端口输出振动感应信号S z,所述振动感应信号S z为所述传感器接收所述驱动信号S d后的振动尾波响应信号;所述控制电路还用于在所述第二时间区间内检测所述振动感应信号S z,并根据所述振动感应信号S z确定是否触发事件。
在本申请实施例中,控制电路向传感器输出间断性的驱动信号S d,并在不输出驱动信号S d的时间间隔检测振动尾波响应信号,采用这种检测方式可以使得传感器的同一器件可以在不同的时间段承担驱动功能和检测功能,从而可以使用单个单元的传感器实现触压按键功能,简化了电路和成本。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路具体用于在时域上交替性地输出所述驱动信号S d和高阻态,或者在时域上交替性地输出所述驱动信号S d和浮空态。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路还包括第一放大单元,以用于放大所述振动感应信号S z
在本申请实施例中,通过设置第一放大单元,控制电路可以放大传感器输出的振动感应信号S z,有助于更精确和灵敏的判断是否触发事件,从而提高了电子设备的灵敏度和抗误触性能。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路还包括滤波单元,所述滤波单元用于对所述振动感应信号S z作滤波处理。
在本申请实施例中,可以通过滤波单元实现对振动感应信号S z的高通滤波,从而能 够稳定振动感应信号S z的基线,提高电子设备的检测效率。
结合第一方面,在第一方面的一种可能的实现方式中,所述传感器还用于检测力或形变,并通过所述传感器的第一端口输出力感应信号S f;所述控制电路还用于检测并判断所述力感应信号S f是否符合主动启动条件,在所述力感应信号S f符合主动启动条件的情况下,向所述传感器发送所述驱动信号S d
在本申请实施例中,控制电路在力感应信号S f达到预设条件的情况下才发送驱动信号,从而控制电路无须一直发送驱动信号,从而能够节约功耗。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路还包括第二放大单元,以用于放大所述力感应信号S f
在本申请实施例中,通过设置第二放大单元,控制电路可以放大传感器输出的力感应信号S f,有助于更精确和灵敏的判断是否触发事件,从而提高了电子设备的灵敏度和抗误触性能。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路具体用于:判断所述力感应信号S f是否符合计算启动条件,在所述力感应信号S f符合计算启动条件的情况下,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力;以及,判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,向所述传感器发送所述驱动信号S d
在本申请实施例中,控制电路在力感应信号S f达到预设条件的情况下才启动计算力和/或加速力,因此控制电路无须一直执行计算力和/或加速力的功能,从而能够节约功耗。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路具体用于:在所述力感应信号S f符合计算启动条件的情况下,开启中断程序;以及,在开启中断程序后,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力,并判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,在所述力和/或加速力符合所述主动启动条件的情况下,向所述传感器发送所述驱动信号S d
在本申请实施例中,控制电路中包括中断电路,只有在进入中断程序的情况下,控制电路才启动计算力和/或加速力,因此控制电路无须一直执行计算力和/或加速力的功能,从而能够节约功耗。
结合第一方面,在第一方面的一种可能的实现方式中,所述传感器包括电或磁形变可逆器件。
结合第一方面,在第一方面的一种可能的实现方式中,所述传感器为压电器件。
结合第一方面,在第一方面的一种可能的实现方式中,所述传感器包括所述第一端口和第二端口,所述第二端口为公共端。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路为所述电子设备的处理芯片。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制电路为所述传感器的控制芯片。
结合第一方面,在第一方面的一种可能的实现方式中,所述外壳为所述电子设备的壳体的一部分。
结合第一方面,在第一方面的一种可能的实现方式中,所述外壳为所述传感器的外壳。
第二方面,提供了一种控制电路,所述控制电路用于在第一时间区间内向传感器的第一端口输出驱动信号S d,以及在第二时间区间内输出高阻态或浮空态,所述驱动信号S d用于驱动所述传感器振动;所述控制电路还用于在所述第二时间区间内检测所述传感器通过所述第一端口输出的振动感应信号S z,并根据所述振动感应信号S z确定是否触发事件,所述振动感应信号S z为所述传感器接收所述驱动信号S d后的振动尾波响应信号。
在本申请实施例中,控制电路向传感器输出间断性的驱动信号S d,并在不输出驱动信号S d的时间间隔检测振动尾波响应信号,采用这种检测方式可以使得传感器的同一器件可以在不同的时间段承担驱动功能和检测功能,从而可以使用单个单元的传感器实现触压按键功能,简化了电路和成本。
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路具体用于在时域上交替性地输出所述驱动信号S d和高阻态,或者在时域上交替性地输出所述驱动信号S d和浮空态。
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路包括第一放大单元,所述第一放大单元用于放大所述振动感应信号S z
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路还包括滤波单元,所述滤波单元用于对所述振动感应信号S z作滤波处理。
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路还用于接收所述传感器通过所述第一端口输出的力感应信号S f,所述力感应信号S f用于指示所述传感器检测的力或形变;以及,判断所述力感应信号S f是否符合主动启动条件,在所述力感应信号S f符合主动启动条件的情况下,向所述传感器发送所述驱动信号S d
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路还包括第二放大单元,以用于放大所述力感应信号S f
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路具体用于:判断所述力感应信号S f是否符合计算启动条件,在所述力感应信号S f符合计算启动条件的情况下,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力;以及,判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,向所述传感器发送所述驱动信号S d
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路具体用于:在所述力感应信号S f符合计算启动条件的情况下,开启中断程序;以及,在开启中断程序后,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力,并判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,在所述力和/或加速力符合所述主动启动条件的情况下,向所述传感器发送所述驱动信号S d
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路为所述控制电路的处理芯片。
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路为所述传感器的控制芯片。
结合第二方面,在第二方面的任一种可能的实现方式中,所述控制电路和所述传感器设置于电子设备中,所述外壳为所述电子设备的壳体的一部分。
结合第二方面,在第二方面的任一种可能的实现方式中,所述外壳为所述传感器的外 壳。
第三方面,提供了一种触压按键组件,包括传感器、外壳和如所述第二方面或第二方面中的任意一种实施方式中的控制电路,所述驱动信号S d用于驱动所述传感器带动所述外壳振动。
第四方面,提供了一种电子设备,包括如第三方面所述的触压按键组件,所述外壳与所述电子设备的壳体贴合或者融为一体。
第五方面,提供了一种应用于电子设备的控制方法,所述电子设备的传感器贴合至外壳,所述方法包括:在第一时间区间内驱动所述外壳振动,以及在第二时间区间内向所述外壳输出高阻态或浮空态;在所述外壳振动的特性落入用户触发习惯的范围时,确定触发事件。
结合第五方面,在第五方面的一种可能的实现方式中,所述外壳为所述电子设备的外壳。
结合第五方面,在第五方面的一种可能的实现方式中,所述外壳为传感器的外壳。
第六方面,提供了一种芯片,所述芯片包括所述第二方面或第二方面中的任意一种实施方式中的控制电路。
第七方面,提供了一种电子设备,包括:传感器,所述传感器包括驱动单元和振动感应单元,所述驱动单元用于接收驱动信号S d并驱动所述外壳振动,所述振动感应单元用于检测所述外壳的振动并输出振动感应信号S z,所述振动感应信号S z为接收所述驱动信号S d后的振动尾波响应信号,其中,所述驱动单元和所述振动感应单元复用同一器件;控制电路,用于在第一时间区间内向所述驱动单元输出驱动信号S d,以及在第二时间区间内输出高阻态或浮空态,所述控制电路还用于在所述第二时间区间内检测所述振动感应信号S z,并根据所述振动感应信号S z确定是否触发事件。
结合第七方面,在第七方面的一种可能的实现方式中,所述控制电路包括信号发生单元和检测单元,所述信号发生单元用于在时域上交替性地输出所述驱动信号S d和高阻态,或者在时域上交替性地输出所述驱动信号S d和浮空态;所述检测单元用于检测所述振动感应信号S z,根据所述振动感应信号S z确定是否触发事件。
结合第七方面,在第七方面的一种可能的实现方式中,所述控制电路还包括第一放大单元,所述第一放大单元设置于所述传感器与所述检测单元之间,以用于放大所述振动感应信号S z
结合第七方面,在第七方面的一种可能的实现方式中,所述控制电路还包括滤波单元,所述滤波单元设置于所述传感器与所述检测单元之间,所述滤波单元用于对所述振动感应信号S z作滤波处理。
结合第七方面,在第七方面的一种可能的实现方式中,所述传感器还包括力感应单元,所述力感应单元用于检测所述外壳的力或形变并输出力感应信号S f,所述驱动单元、所述振动感应单元以及所述力感应单元复用同一器件;所述控制电路还包括计算单元,所述计算单元用于检测并判断所述力感应信号S f是否符合主动启动条件,在所述力感应信号S f符合主动启动条件的情况下,向所述信号发生单元发送指示信号,所述指示信号用于指示开启所述信号发生单元;所述信号发生单元用于在接收所述指示信号之后,在时域上交替性地输出所述驱动信号S d和高阻态,或者在时域上交替性地输出所述驱动信号S d和浮空态。
结合第七方面,在第七方面的一种可能的实现方式中,所述控制电路还包括第二放大单元,所述第二放大单元设置于所述传感器与所述计算单元之间,以用于放大所述力感应信号S f
结合第七方面,在第七方面的一种可能的实现方式中,所述计算单元具体用于:判断所述力感应信号S f是否符合计算启动条件,在所述力感应信号S f符合计算启动条件的情况下,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力;以及判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力大于所述主动启动阈值的情况下,向所述信号发生单元发送所述指示信号。
结合第七方面,在第七方面的一种可能的实现方式中,所述控制电路还包括中断单元,所述中断单元用于检测所述力感应信号S f,在所述力感应信号S f符合计算启动条件的情况下,通过所述中断单元开启所述计算单元;所述计算单元用于根据所述力感应信号S f计算所述传感器所感应的力和/或加速力,并判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,向所述信号发生单元发送所述指示信号。
结合第七方面,在第七方面的一种可能的实现方式中,所述控制电路还包括第三放大单元,所述第三放大单元设置于所述中断单元与所述传感器之间,以用于放大所述力感应信号S f
结合第七方面,在第七方面的一种可能的实现方式中,所述传感器包括第一端口和第二端口,所述第一端口用于接收所述驱动信号S d或输出所述振动感应信号S z,所述第二端口用于接地或者接参考电压。
结合第七方面,在第七方面的一种可能的实现方式中,所述传感器包括电或磁形变可逆器件。
结合第七方面,在第七方面的一种可能的实现方式中,所述传感器为压电器件。
结合第七方面,在第七方面的任一种可能的实现方式中,所述控制电路为所述控制电路的处理芯片。
结合第七方面,在第七方面的任一种可能的实现方式中,所述控制电路为所述传感器的控制芯片。
第八方面,提供了一种控制电路,包括:信号发生单元,用于在第一时间区间内向传感器输出驱动信号S d,以及在第二时间区间内输出高阻态或浮空态,所述驱动信号S d用于驱动所述传感器振动;检测单元,用于在所述第二时间区间内检测所述传感器输出的振动感应信号S z,并根据所述振动感应信号S z确定是否触发事件,所述振动感应信号S z为所述传感器接收所述驱动信号S d后的振动尾波响应信号。
结合第八方面,在第八方面的一种可能的实现方式中,所述信号发生单元具体用于在时域上交替性地输出所述驱动信号S d和高阻态,或者在时域上交替性地输出所述驱动信号S d和浮空态。
结合第八方面,在第八方面的一种可能的实现方式中,所述控制电路还包括第一放大单元,所述第一放大单元设置于所述传感器与所述检测单元之间,以用于放大所述振动感应信号S z
结合第八方面,在第八方面的一种可能的实现方式中,所述控制电路还包括滤波单元,所述滤波单元设置于所述传感器与所述检测单元之间,所述滤波单元用于对所述振动感应 信号S z作滤波处理。
结合第八方面,在第八方面的一种可能的实现方式中,所述控制电路还包括计算单元,所述计算单元用于接收所述传感器输出的力感应信号S f,所述力感应信号S f用于指示所述传感器检测的力或形变;所述计算单元还用于判断所述力感应信号S f是否符合主动启动条件,在所述力感应信号S f符合主动启动条件的情况下,向所述信号发生单元发送指示信号,所述指示信号用于指示开启所述信号发生单元;所述信号发生单元用于在接收所述指示信号之后,在时域上交替性地输出所述驱动信号S d和高阻态,或者在时域上交替性地输出所述驱动信号S d和浮空态。
结合第八方面,在第八方面的一种可能的实现方式中,所述控制电路还包括中断单元,所述中断单元用于检测所述传感器输出的力感应信号S f,所述力感应信号S f用于指示所述传感器检测的力或形变;在所述力感应信号S f符合计算启动条件的情况下,通过所述中断单元开启所述计算单元;所述计算单元具体用于根据所述力感应信号S f计算所述传感器所感应的力和/或加速力,并判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,向所述信号发生单元发送所述指示信号。
结合第八方面,在第八方面的一种可能的实现方式中,所述控制电路还包括第三放大单元,所述第三放大单元设置于所述中断单元与所述传感器之间,以用于放大所述力感应信号S f
结合第八方面,在第八方面的一种可能的实现方式中,所述传感器包括第一端口和第二端口,所述第一端口用于接收所述驱动信号S d或输出所述振动感应信号S z,所述第二端口用于接地或者接参考电压。
结合第八方面,在第八方面的一种可能的实现方式中,所述传感器包括电或磁形变可逆器件。
结合第八方面,在第八方面的一种可能的实现方式中,所述传感器为压电器件。
结合第八方面,在第八方面的任一种可能的实现方式中,所述控制电路为所述控制电路的处理芯片。
结合第八方面,在第八方面的任一种可能的实现方式中,所述控制电路为所述传感器的控制芯片。
结合第八方面,在第八方面的任一种可能的实现方式中,所述控制电路和所述传感器设置于电子设备中,所述外壳为所述电子设备的壳体的一部分。
结合第八方面,在第八方面的任一种可能的实现方式中,所述外壳为所述传感器的外壳。
第九方面,提供了一种触压按键组件,包括传感器、外壳和如所述第八方面或第八方面中的任意一种实施方式中的控制电路,所述驱动信号S d用于驱动所述传感器的驱动单元带动所述外壳振动。
第十方面,提供了一种电子设备,包括如第九方面所述的触压按键组件,所述外壳与所述电子设备的壳体贴合或者融为一体。
第十一方面,提供了一种芯片,所述芯片包括所述第八方面或第八方面中的任意一种实施方式中的控制电路。
附图说明
图1是本申请实施例的可能应用的电子设备的结构示意图。
图2是本申请实施例的用户误触发触压按键组件的示意图。
图3是本申请实施例的触压按键组件的结构示意图。
图4中的(a)和(b)是本申请实施例的电子设备与传感器的结构示意图。
图5是本申请实施例的触压按键组件在未受触压力时振动的示意图。
图6是本申请实施例的触压按键组件在受到触压力时振动的示意图。
图7是本申请又一实施例的触压按键组件的结构示意图。
图8是本申请又一实施例的触压按键组件的结构示意图。
图9是本申请实施例的传感器的结构示意图。
图10是本申请又一实施例的触压按键组件的结构示意图。
图11是本申请又一实施例的触压按键组件的结构示意图。
图12是本申请又一实施例的触压按键组件的结构示意图。
图13是本申请实施例的触压按键组件的电路示意图。
图14是本申请又一实施例的触压按键组件的结构示意图。
图15是本申请又一实施例的触压按键组件的结构示意图。
图16是本申请又一实施例的触压按键组件的电路示意图。
图17是本申请又一实施例的触压按键组件的结构示意图。
图18是本申请又一实施例的触压按键组件的电路示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例涉及触压按键组件和装置,可以应用于电子设备,电子设备可以为终端设备,上述终端设备可以包括移动终端(例如智能手机或平板电脑)、穿戴电子设备(例如智能手表等)、家电、汽车仪表盘及其它电器产品。
触压按键组件的应用对于提升用户体验和防水具有很重要的意义,然而触压按键组件很容易被误触发,这种误触发会带来比较糟糕的用户体验,从而限制了触压按键组件技术在诸如智能手机、平板电脑这样的电子设备上的发展。另外,力的感知良好能够让用户对触发响应有很好的体验,如何设计廉价可靠的触压按键组件,使之即能对来自用户的力响应良好,又减少误触发,是当前触压按键组件的发展方向。
图1是本申请实施例的一种可能应用的电子设备100的结构示意图。如图1所示,电子设备100的壳体包括前面板101、中框102和后盖103。通常情况下,触压按键组件可以设置在电子设备100的壳体或者触摸屏的位置,例如前面板101、中框102或者后盖103的位置。所述触压按键组件可以设置在电子设备100的壳体的外侧壁或者内侧壁。图1中的触压按键组件设置在中框102的外侧边框处,用虚线框表示。实际应用中,可以在电子设备100的外表面设置标记符号,以提示用户触发触压按键组件的位置,也可以在电子设备100的壳体设置透明区、透光区、凸出部或凹入部,并在其中设置触压按键组件。或者,还可以将触压按键组件做成模组形式,贴在电子设备100的壳体上。其中,本申请的触压按键组件可以实现通用的实体按键(或者说机械按键)的功能,例如音量调节、确认键、开机键、滑动键、按压键等功能键。
图2是本申请实施例的用户误触发触压按键组件的示意图。其中图2中仅示出了触压 按键组件的传感器300,未示出触压按键组件的控制电路。如图2所示,电子设备的外表面包括敏感区和非敏感区,其中,触压按键组件的传感器300可以设置于敏感区对应的内壁位置。非敏感区为与敏感区相邻的区域。理想情况下,只有用户触压敏感区时,电子设备的传感器300检测到形变,从而指示用户触发触压按键组件。而用户触压敏感区之外的区域,电子设备的传感器300不会检测到形变,也就不会指示用户触发触压按键组件,因此电子设备不会产生误判。但是实际应用时,触压按键组件很容易被误触发,例如被除人体外的其他物体误触发,或者用户接触到非敏感区时误触发了按键。这种误触发源于以下的一些原因:大部分传感器只对形变进行测量,即力/形变传感。非敏感区的形变容易传递到敏感区,导致敏感区形变。传感器检测到形变即认为是接触到敏感区,从而产生误触发。振动反馈(例如设备中的马达振动)带来的形变也可会让传感器误触发。
为了消除误触发的影响,一种方式是通过改变结构来抵抗误触发,例如增厚侧边的厚度等方式,使得非敏感区外的形变减少,同时传递到敏感区的形变也减少。但这种方式与移动设备轻薄化的发展趋势是相矛盾的,而且容易由于触力不一致而带来较差的用户体验。还有一种方式是使敏感区具有某些特征识别码,例如指纹识别。但是这种方式一方面成本较高,另外增加指纹识别功能将导致按键的反应速度变慢,影响用户体验。因此如何制造抗误触良好的虚拟按键是业界研究的热点。
图3是本申请实施例的触压按键组件的结构示意图。如图3所示,触压按键组件包括传感器300以及控制电路400,所述传感器300贴合至外壳10。可选地,所述外壳10可以是电子设备的壳体的一部分。或者说,所述外壳10和电子设备的壳体是一体化的结构。例如,如图4中的(a)所示,所述传感器300可以贴合在所述电子设备的壳体11的内表面。或者,所述外壳10和电子设备的壳体11可以是分立的结构。例如,外壳10可以为传感器300的外壳,在这种情况下,传感器300可以贴合在所述电子设备的壳体11的外表面,用户触摸的外壳10为传感器300的外壳,而非电子设备的壳体。例如,如图4中的(b)所示,可以在电子设备的壳体11上设置通孔12,将传感器300贴合至电子设备的壳体11的外表面,若控制电路400设置在电子设备的内部,则可以通过所述通孔12实现传感器300与控制电路400的连接;若控制电路400和传感器300均封装在所述外壳10中,则控制电路400可以通过所述通孔12实现与电子设备内部的处理芯片的连接。又例如,可以在所述电子设备的壳体11的外表面设置凹入部,将所述传感器300设置在所述凹入部,使得所述传感器300与所述电子设备的壳体的表面高度一致。本领域技术人员能够理解,触压按键组件和电子设备之间的位置关系还可以有其他实现方式,本申请不再一一列举。
传感器300用于感应用户或者其它物体对外壳10产生的触压力,并生成相应的感应信号。控制电路400检测传感器300发送的感应信号。控制电路400可以根据上述感应信号判断是否触发事件。其中,触发事件可以指触发所述触压按键组件对应的功能。例如,若所述触压按键组件对应开机键,则触发开机的功能。若触压按键组件对应音量调节,则触发音量调节的功能。可选地,所述触压按键组件也可以称为触压传感模组、虚拟按键等。
在一种实施方式中,可以利用高频振动阻尼抑制法来实现触压按键组件,该方法也称为主动法。主动法的原理在于控制电路400向传感器300输出一定频率的驱动信号S d,所述驱动信号S d使传感器300带动外壳10发生振动。其中,可以将传感器300和外壳10组合在一起的结构称为复合振子。上述驱动信号S d的频率可以与复合振子的谐振频率相 同或者相近。所述控制电路400检测传感器300输出的响应于上述振动的振动感应信号S z。若用户触摸或按压触压按键组件所在的区域,传感器300输出的振动感应信号S z的幅度将发生衰减或者增加。控制电路400可以通过确定该振动感应信号S z衰减或增加的程度,判断是否触发事件,这种判断方式是一种0-1判断。这种方式能够有效地抗非人体误触,并且具有成本低、灵敏度高的优点。
可选地,在输入驱动信号S d的情况下,所述控制电路400检测的振动感应信号S z可以是传感器300接收驱动信号S d当时的响应信号,也可以是传感器300接收驱动信号S d之后的尾波响应,本申请对此不作限定。控制电路400可以根据振动感应信号S z是否符合人体触发特性来确定是否触发事件。若符合人体触发特性,则确定触发事件。若不符合人体触发特性,则丢弃本次检测。接下来将描述判断振动感应信号S z是否符合人体触发特性的具体方式。
继续参见图3,所述控制电路400用于比较所述振动感应信号S z与阈值,得到比较结果,并根据比较结果确定是否触发事件。所述阈值是符合用户触压习惯范围的边界值,在所述比较结果显示所述振动感应信号S z落入符合用户触压习惯的范围的情况下,确定触发事件。所述“边界值”可以为符合用户触压习惯的范围的上限或下限,原因在于:当用户按压触压按键时,用户的触压力可能导致外壳10振幅的减少,也可能会导致外壳10振幅的增大,也就是说,用户的触压力可能会抑制外壳10的振动,也可能会扩大外壳10的振动幅度。当用户触压力抑制外壳10振动时,阈值为符合用户触压习惯范围的上限,当用户触压力扩大外壳10的振动幅度时,阈值为符合用户触压习惯范围的下限。
所述振动感应信号S z用于表示所述外壳10振动的幅值,振动感应信号S z可以为电压信号,也可以为电流信号或电阻值变化量,这与所述传感器300的具体设计形式有关。相应地,所述符合用户触压习惯的范围是指:所述外壳10的振动区在受到用户触发所述触压按键的习惯用力后的幅值范围。符合用户触压习惯是指满足用户的触压感。符合用户触压习惯的范围是根据不同的用户触压感的习惯进行数据收集采样,并统计分析得到的范围值。例如,可以通过机器学习的方式采集和获取用户触压习惯范围,不同用户的用户触压习惯范围可以是不相同的。
一种实施方式中,所述外壳10未受触压力时所述传感器300驱动所述外壳10产生的振动的幅值在第一范围内。图3所示为传感器300未工作状态下,外壳10也没有产生振动。图5所示为外壳10未受触压力时,外壳10在传感器300带动下振动的示意图,其中包括振动过程最大位移的两个状态,分别用实线(S1)和虚线(S2)表示。当外壳10的外表面受到触压力时,如图6所示,用户手指触压外壳10,触压力的作用下,外壳10的振动受到抑制,图6所示的状态下的外壳10的振动的振幅小于图5所示的外壳10的振动的振幅。当然,在某些振动频率状态下,会使得外壳10的振幅变得更大,即使用本申请的触压按键组件,触压力对外壳10的作用也可能会使得外壳10的振幅增加。
所述控制电路接收所述振动感应信号S z,并依据所述振动感应信号S z和阈值的比较结果确定是否触发事件;当所述外壳10所受的触压力抑制所述外壳10振动时,所述阈值小于所述第一范围的下限,所述振动感应信号S z的幅值小于所述阈值时,所述控制电路400确定触发事件;当所述外壳10所受的触压力扩大所述外壳10振动时,所述阈值大于所述第一范围的上限,所述振动感应信号S z的幅值大于所述阈值时,所述控制电路400确定触发事件。第一范围数据受触压按压所处的电子设备的温度、材质等因素影响,经过 多次试验,统计出来的外过未受用户触压力(或某固定触压力)情况下的振动幅度,可以为电压信号或电阻变化量。第一范围的设置可以由集成在电子设备内的主芯片或处理器内的电路执行,也可以设置为相对主芯片或处理器独立的硬件电路来执行。
本申请提供一种触压按键组件,通过传感器300带动外壳10振动,并检测外壳10振动的振幅,有触压力的情况下,抑制外壳10振动或扩大外壳10的振动,通过控制电路400比较检测到的振幅和阈值的关系,以实现虚拟按键。
第一范围是外壳10可以是受某固定触压力(包括固定触压力为零,既未受触压力)情况下,传感器300驱动外壳10振动的幅值范围,当外壳10处于无任何环境因素干扰的情况下,受某固定触压力时,传感器300驱动外壳10振动幅值应当是一个数值,但是,由于电子设备难免会受一些环境因素影响,例如温度变化、外壳10材质的不同,用户状态变化(例如电子设备位于用户口袋中,用户处理静止状态和移动状态,或者电子设备与用户接触或摩擦变化,等因素都会对外壳10振动幅值产生影响),由于这些环境因素的影响,定义外壳10在受某固定触压力情况下,传感器300驱动外壳10振动的幅值范围为第一范围。第一范围的设置是经过多次试验,统计出来的处于受某固定触压力情况下的振动幅度,可以为电压信号、电流信号或电阻变化量。
根据用户体验或者实验数据得知:以阈值小于第一范围下限或者大于第一范围上限作为控制电路触发事件的条件较为合适,可以得到准确的判断,提高触压按键的触发准确度和可靠性。一种实施方式中,所述阈值为所述第一范围下限的0.1~0.9倍,或者,阈值大于等于第一范围上限1.1倍。
可选地,本申请通过在外壳10的内表面设置具有缓冲结构,以使传感器300产生的振动集中在与传感器300贴合的外壳的区域,防止振动扩散至外壳10的其它区域,这样即能保证触压按键组件的灵敏度,有触压力施加至外壳振动位置时,可以防止外壳10其它区域的误触对触压按键组件产生的影响,因为外壳10其它区域不受传感器振动影响,当外壳10其它区域有触压力时,不会抑制或扩大传感器带动的外壳的振动的振幅,自然也不会触发触压按键组件。
图7是本申请又一实施例的触压按键组件的结构示意图。如图7所示,在该方案中,传感器300通常需要包括驱动单元61和振动感应单元62,其中驱动单元61用于接收控制电路400输入的驱动信号S d,并驱动外壳10振动,振动感应单元62用于产生响应于该振动的振动感应信号S z。其中所述驱动单元61可以为以下任意一种类型:压电器件、磁动器件、电动器件、热电器件。所述振动感应单元62可以为以下任意一种器件:压电器件、压阻器件、压容器件、压感器件。
通常情况下,上述方案中的传感器300需要至少两个器件来实现驱动单元和振动感应单元。例如,驱动单元61和振动感应单元62可以均为压电器件,或者,驱动单元61可以为压电器件,振动感应单元62可以为压阻器件。驱动单元61与传感器300的一个端口相连,用于接收驱动信号S d,振动感应单元62与传感器300的另一个端口相连,用于输出振动感应信号S z。换句话说,传感器300需要至少两个单元来组成,这种传感器除了用于接地或者接参考电压的公共端之外,还包括两个或两个以上的端口,结构较复杂,对传感器的制作提出较多要求。这对于一些小尺寸的应用场合较有难度,并且制备方式也较复杂。
因此,在主动法的基础上,本申请实施例提出了一种触压按键组件。在该方案中采用 “单元功能分时复用技术”实现触压按键组件,即通过传感器的同一单元(或者说同一器件)在不同的时间段承担不同的功能,以实现单个单元的多功能化。例如同一器件在不同时间段分别实现驱动单元的功能和振动感应单元的功能,单元功能分时复用可以使用单输出的传感器来实现,从而简化了电路和成本。
图8是本申请又一实施例提出的触压按键组件200的结构示意图。如图8所示,触压按键组件200包括传感器300以及控制电路400。所述传感器300可以采用单个单元来实现,或者说单输出传感器。传感器300包括两个端口,分别为第一端口A和第二端口E。所述第二端口E用于接地或者接参考电压。所述第一端口A既可以用于接收驱动信号S d,又可以用于输出振动感应信号S z。所述控制电路用于向传感器300输出驱动信号S d,并接收传感器输出的振动感应信号S z
其中,所述驱动信号S d是间断性发送的,即所述驱动信号S d和高阻态(或浮空态)在时域上是交替输出的。所述驱动信号S d和高阻态(或浮空态)在时域上可以是周期性交替的,也可以是非周期性交替的。例如,每隔10ms的高阻态(或浮空态)之后,输出一段5ms长度的驱动信号S d。所述第一端口A用于接收驱动信号S d,并在接收驱动信号S d之后,输出响应于所述驱动信号S d的振动感应信号S z,以实现传感器300在第一端口A的分时复用。所述振动感应信号S z是接收驱动信号S d之后的振动尾波响应信号,而并非接收驱动信号S d当时的响应信号。因此通过设计驱动信号S d为间断性发送的信号,并且控制电路400在发送驱动信号S d的之后的间隔期间检测驱动信号S d的尾波响应信号,可以对传感器300的同一端口进行分时复用,以实现驱动和检测。该方案能够减少触压按键组件的模组的复杂程度,并达到低成本、高灵敏和抗误触的需求。
在本申请实施例中,振动尾波响应信号也可以称为尾波响应信号或尾波响应。在传感器在接收一段驱动信号S d之后的时间段内,虽然传感器不接收驱动信号Sd,但所述驱动信号S d引起的传感器的振动并未停止,此时的振动可称为振动尾波,传感器检测所述振动尾波所产生的信号,可以称为振动尾波响应信号。
其中,上述高阻态指电路中的某个节点具有相对电路中其它点更高的阻抗,在电路分析时可以将所述高阻态理解为开路。上述浮空态也可以称为悬空态,指电路中的某个节点不与任何电位相连,在电路分析时可以将浮空态理解为开路。
可选地,所述触压按键组件200还包括外壳(图中未示出),所述传感器300贴合至所述外壳,所述外壳和电子设备的壳体可以为一体化的结构。或者,所述外壳和电子设备的壳体也可以是分立的,例如,可以在所述电子设备的壳体上设置贯通部,所述触压按键组件200(包括外壳)可以设置在所述贯通部。可选地,所述外壳可以属于所述传感器300的一部分,或者也可以与所述传感器300是分立的。可选地,所述传感器300、所述控制电路400和所述外壳可以集成在同一个模组中,也可以是相互分立的。
可选地,上述驱动信号S d可以是一段交流波形,所述交流波形包括但不限于以下类型中的至少一种:方波、三角波、锯齿波、正弦波等。在一个示例中,所述交流波形例如可以是包括若干个脉冲的方波。所述驱动信号S d的频率可以与复合振子的谐振频率相同或相近,以利于驱动所述传感器300带动外壳振动。
可选地,控制电路400可以为传感器的控制芯片。例如,控制电路400可以作为传感器的控制芯片,与传感器300集成在同一封装内。或者控制电路400也可以与传感器300分别封装。控制电路400可以集成在电子设备的中央处理器、应用处理器或协助处理器内。 协处理器(coprocessor)为一种芯片,用于减轻系统微处理器的特定处理任务,是一种协助中央处理器完成其无法执行或执行效率、效果低下的处理工作而开发和应用的处理器。当然,所述控制电路400也可以设置为相对主芯片或处理器独立的硬件电路。可选地,控制电路400可以由若干分立的元件组成,也可以由同一集成芯片实现,本申请实施例对此不作限定。
可选地,若执行触压按键组件功能的电路单元与所述控制电路400设置在不同的模块中,该模块可以是芯片,例如,控制电路400为与传感器封装在一起的控制芯片,执行触压按键组件功能的电路单元为电子设备的处理芯片,例如中央处理器或协处理器或者应用处理器,则上述触发事件可以包括所述控制电路400发送触发信号,执行触压按键组件功能的电路单元接收所述触发信号,并根据所述触发信号,执行相应的功能,例如开机、调节音量等。
可选地,若所述控制电路400包括中央处理器或协处理器或者应用处理器的功能,则上述触发事件包括所述控制电路400执行所述触压按键组件的功能。
可选地,若所述控制电路400包括执行触压按键组件功能的电路单元,则触发事件可以包括控制电路400执行所述触压按键组件的功能。
可选地,本申请实施例中的传感器300包括触力觉传感器。所述触力觉传感器包括触觉传感器和/或力觉传感器。或者说,所述触力觉传感器包括触觉传感器的功能和/或力觉传感器的功能。所述触力觉传感器可以用于检测用户施加的触力或压力。常见的触力觉传感器包括多种类型。例如,压电型、压容型、压阻型、涡流效应型、超声波发射型、指纹型等。其中压容型传感器常见于触摸屏。涡流效应型传感器属于电感式压力传感器中的一种。另外,为了实现对单个单元的分时复用功能,传感器300的传感单元可以具有多功能特性,例如为了实现驱动外壳振动和产生振动感应信号S z这两种功能的分时复用,传感单元通常是电/磁形变可逆器件,比如压电元件,下面将结合实施例进行说明。
图9是本申请实施例的传感器300的结构示意图。如图9所示,传感器300包括:外壳31;限制节点32;粘结胶体33;传感单元34;第一电极35;第二电极36。传感器300中包括的各个单元的功能和构造的描述如下。
外壳31:与传感单元34可以通过粘结、压接或者通过过盈配合连接。
限制节点32:用于限制外壳31的传感区域,放置传感区域的力或形变扩散到其他区域。可通过将传感区域周边做高、做成槽状、或者通过在传感区域周边放入阻尼材料来形成限制节点32。限制节点32是设置传感区域的重要特征。所述限制节点32和所述外壳31可以做成一体化结构,或者说限制节点32可以是属于外壳31的一部分。
可选地,所述外壳31可以作为图3-图7中所示的触压按键组件中的外壳10。例如,所述外壳31、限制节点32可以和电子设备的壳体做成一体化结构。
粘结胶体33,所述粘结胶体33为固化胶体,用于将外壳31和传感单元34连接在一起。
传感单元34:是传感器的核心单元,可以是电/磁形变可逆器件。电/磁形变可逆器件可以指电/磁形变可逆材料构成的器件。电/磁形变可逆材料的特性为:电或磁可以导致其变形,而该变形又使得其电学或磁学特性发生改变。上述电学或磁学特性发生改变可以包括但不限于以下情形:电压、电流、电荷、电阻、电容、电感或磁矩发生变化。本申请实施例对电/磁形变可逆器件的形状不作限定,其可以是单层结构或者多层结构,或者其他 各种形状。电/磁-形变可逆器件可以包括两个电极。例如,图9中示出了第一电极35和第二电极36这两个电极。这两个电极中的一个电极可以用于接地或者接参考电压,即相当于第二端口E,另一个电极用于接收驱动信号S d和/或输出振动感应信号S z,即相当于第一端口A。
作为一个示例,典型的电/磁-形变可逆材料包括压电材料,压电材料可以具有正压电效应和逆压电效应。其中正压电效应指压力可以在压电材料中产生电荷,逆压电效应指电可以导致压电材料的形变。若采用压电材料构成上述传感单元34,则该传感单元34也可以称为压电单元或压电器件,该传感器可以称为压电传感器。对于压电传感器来说,通过功能的分时复用,只需要一个压电单元就可以实现驱动功能和振动感应功能,其中驱动功能利用的是逆压电效应,而振动感应功能利用的是压电效应,从而能够简化传感器的设计。传感单元34也可以是其他类型的电/磁形变可逆材料构成,本申请实施例对此不作限定。
在一个示例中,所述传感单元34可以是压电片。该压电片可以是单层、双层、多层,其外形可以是方形、圆形、椭圆形或多边形等各种形状。如图9所示的传感器300的形状为长方形。压电片的一个面可以通过胶或者过盈配合连接到外壳31的内表面,压电片与外壳31粘结的面比较平整。
由上描述可知,除用于接地或参考电压的电极之外,本申请使用的传感器300只包括一个电极,其为包括单个单元的传感器,或者也可以称为单输出传感器。这种传感器制作简单,成本低,是通用的传感器。本申请实施例的触压按键组件可以使用这种结构简单的单输出传感器,通过对传感器功能的分时复用实现主动法检测,从而达到节约成本以及简化电路的目的。
需要说明的是,图9中对传感器300的描述仅仅作为示例,本申请实施例中的传感器300也可以为其他类型的传感器,只要其能实现电/磁形变可逆的功能即可。
图10是本申请实施例的触压按键组件200的电路结构图。所述触压按键组件200包括传感器300和控制电路400,所述控制电路400与传感器300相连,用于通过分时复用实现对传感器300的驱动功能和检测功能。所述触压按键组件200也可以称为触压传感模组、触压按键组件。所述控制电路400的部分或全部功能可以集成在同一芯片上,或者也可以由分立的器件实现。例如,所述控制电路400的全部或部分功能可以由微控制单元(microcontroller unit,MCU)实现。可选地,所述控制电路400可以设置在印刷电路板(printed circuit board,PCB)上。
如图10所示,所述控制电路400包括信号发生单元40和检测单元50。信号发生单元40与传感器300的第一端口A相连,信号发生单元40的输出端用于向传感器300的第一端口A输出驱动信号S d。其中,所述驱动信号S d为间断性的信号。检测单元50也与传感器300的第一端口A相连,检测单元50用于检测传感器300的第一端口A输出的振动感应信号S z。若用户触压传感器300所在的区域,所述振动感应信号S z的幅度将发生衰减或者增加。检测单元50可以通过检测振动感应信号S z的衰减或增加程度,判断是否触发事件。
可选地,传感器300可以是包括单个单元的传感器300,即单输出传感器。传感器300包括第一端口A和第二端口E,所述第一端口A用于分时接收驱动信号S d或发送振动感应信号S z,所述第二端口E用于接地或者参考电压。
上述驱动信号S d为间断性的信号,可以理解为,上述信号发生单元40在第一时间区 间内输出驱动信号S d,在第二时间区间内的输出呈高阻态或浮空态。检测单元50在所述第二时间区间内检测传感器300输出的振动感应信号S z。所述第一时间区间和所述第二时间区间不重叠。换句话说,上述信号发生单元40在输出一段驱动信号S d之后,可以迅速将输出端切换为高阻态或者浮空态,然后由检测单元50检测传感器300输出的响应于驱动信号S d的振动感应信号S z。因此控制电路400可以通过传感器300的同一端输入驱动信号S d并接收振动感应信号S z。或者说,所述驱动信号S d和高阻态(浮空态)在时域上是交替输出的。例如,每隔10ms的高阻态(或浮空态)之后,输出一段5ms长度的驱动信号S d。本申请实施例中通过对传感器的不同功能进行分时复用,利用单输出传感器300实现触压按键组件,节约了成本,简化了电路设计的复杂度,同时能够实现高灵敏度和抗误触的需求。
可选地,上述驱动信号S d和高阻态(浮空态)在时域上可以是根据周期交替性地发送的,例如可以每隔10ms或者5ms发送一定时间长度的驱动信号S d。通常情况下,每次发送的驱动信号S d的波形、周期可以是相同的,每次发送驱动信号S d的持续时间也可以是相同的。或者,在一些示例中,每次发送的驱动信号S d的波形、周期或者持续时间也可以是不同的,本申请实施例对此不作限定。在一些示例中,所述驱动信号S d的频率可以等于或接近复合振子的谐振频率。
可选地,上述驱动信号S d和高阻态(浮空态)在时域上也可以是非周期性发送的,本申请实施例对此不作限定。
可选地,上述驱动信号S d可以是一段交流波形,所述交流波形包括但不限于以下类型中的至少一种:方波、三角波、锯齿波、正弦波等。在一个示例中,所述交流波形例如可以是包括若干个脉冲的方波。作为一个示例,所述高阻态的阻值可以大于1千欧姆(kΩ)。
在本申请实施例中,触压按键组件可以通过分时复用,将传感器的驱动功能以及振动感应功能合二为一,因此只需要单输出传感器便可以实现上述两个功能,不但能实现抗非人体误触,还可以简化触压按键组件使用的传感器,从而简化触压按键组件的结构。
在本申请实施例中,可以采用传统的单输出传感器实现触压按键组件。在器件制备上,可以采用常用的工艺实现本申请实施例中使用的单输出传感器,以降低实现触压按键组件的成本以及提高器件的可靠性。
需要说明的是,在一些示例中,一些类人体物质接触到触压按键组件的传感区域,也会导致器件的输出幅度相比没有接触时有较大幅度的衰减或增加。因此为了避免将类人体物质接触的情形误判为人体接触,上述主动式判断是否触发事件的过程可以进行多次,以避免出现误判。
图11示出了本申请又一实施例的触压按键组件200的结构示意图。如图11所示,所述控制电路400还包括第一放大单元21,上述第一放大单元21可以设置于传感器300与检测单元50之间,所述第一放大单元21用于放大传感器300输出的振动感应信号S z,并输出根据所述振动感应信号S z放大的信号,检测单元50用于检测放大后的所述振动感应信号S z
在本申请实施例中,检测单元50检测传感器300输出的放大后的振动感应信号S z,有助于更精确和灵敏的判断是否触发事件,从而提高了触压按键组件的灵敏度和抗误触性能。
图12是本申请又一实施例的触压按键组件200的结构示意图。如图12所示,所述控制电路400还包括滤波单元25,所述滤波单元25于对传感器300输出的振动感应信号S z进行滤波处理。可选地,所述滤波单元25可以对振动感应信号S z作高通滤波。所述滤波单元25还可以集成在第一放大单元21中,或者集成在检测单元50中,本申请实施例对此不做限定。
在本申请实施例中,可以通过滤波单元实现对振动感应信号S z的高通滤波,从而能够稳定振动感应信号S z的基线,提高触压按键组件的检测的效率。
本申请实施例对信号发生单元40、检测单元50、所述第一放大单元21或所述滤波单元25的具体电路结构不作限定,只要能实现上述功能即可。本领域技术人员能够理解,在获悉上述电路功能的情况下,本领域人员能够得到实现相应电路功能的具体电路。
在一些示例中,信号发生单元40具有输出驱动信号S d的功能,并且能切换至高阻态或浮空态。其中,所述高阻态例如可以大于1kΩ,或者也可以为其他阻值的高阻态。
在一些示例中,所述第一放大单元21可以由实现放大功能的电路构成。例如,第一放大单元21可以包括但不限于以下器件中的至少一种:电荷放大器、电流放大器、运算放大器、整流放大器、检波放大器、比较放大器等。
在一些示例中,检测单元50可以包括但不限于以下至少一种电路:模数转换(analog to digital converter,ADC)电路、比较器等。
在一些示例中,滤波单元25可以使用简单的一阶高通滤波电路构成,或者也可以使用高阶的高通滤波电路构成,本申请实施例对此不作限定。
图13是本申请又一实施例的触压按键组件200的电路示意图。图13中,控制电路中的信号发生单元以及检测单元集成在同一控制芯片500中。所述控制芯片500可以由MCU实现。图13未示出信号发生单元、检测单元以及控制芯片500内的各功能单元之间的连接关系,上述各功能单元的连接关系可以参考前述具体实施例中的描述。IO端口表示所述信号发生单元的输出端,其用于输出驱动信号S d。AD端口表示检测单元的输入端,其用于在信号发生单元开启之后,检测传感器300输出的响应于驱动信号S d的振动感应信号S z
可选地,检测单元的输入端AD与传感器300之间设置有第一放大单元21(放大器AMP),以用于放大振动感应信号S z。检测单元的输入端AD与传感器300之间还可以设置滤波单元25,所述滤波单元25由电容C和电阻R组成。所述滤波单元25可以用于对振动感应信号S z进行高通滤波。可替代地,所述滤波单元25可以集成在第一放大单元21或者检测单元中,本申请实施例对此不作限定。图13仅仅作为以上各功能单元的具体实现的一种例示,本领域技术人员可以理解,上述各功能单元还具有其他多种具体实现或变化方式,均应涵盖在本申请的保护范围之内。
在控制芯片500工作时,控制芯片500通过IO端口发送间断性的驱动信号S d。例如,可以每隔5ms或者10ms发送一定时间长度的驱动信号S d。所述驱动信号S d的频率可以等于或接近复合振子的谐振频率。在这个时间段,所述传感器实现的是驱动单元的功能。在发送驱动信号S d之后的间隔内,所述IO端口为高阻态或浮空态,在此阶段,控制芯片500检测AD端口接收的振动感应信号S z,并根据振动感应信号S z判断是否触发事件。所述振动感应信号S z为所述驱动信号S d的振动尾波响应信号。在这个时间段内,所述传感器实现的是振动感应单元的功能。
由于本申请实施例中的驱动信号S d是间隔发送的,即每隔一段时间发送一次驱动信号S d,因此在对触压按键组件的反应速度的要求较高的场景,可能会影响用户体验。为了避免漏判触发事件,信号发生单元需要每隔一段较短的时间就发送一次驱动信号S d,例如可以每隔10ms发送一次驱动信号S d,但采取这种方式将导致较大的功耗。
为了解决这一问题,本申请实施例还提出了进一步的方案。图14是本申请又一实施例的触压按键组件的结构示意图。如图14所示,在该方案中,传感器300除了包括驱动单元61和振动感应单元62以外,还包括力感应单元63,所述力感应单元63用于感应力或者形变,并输出力感应信号S f。控制电路400首先在不发送驱动信号S d的情形下,检测传感器力感应单元输出的力感应信号S f。此时控制电路400的输出端为高阻态或浮空态,传感器300的驱动单元61未接收驱动信号S d,因此可以称为“被动式”检测。当控制电路400检测到传感器300力感应的触压力超过某个阈值时,再开始启用“主动式”检测。在“主动式”检测期间,若用户触摸或按压传感器300所在的区域,传感器300输出的振动感应信号S z的幅度将发生衰减或者增加,所述控制电路400可以根据检测到的振动感应信号S z的衰减或增加的程度,判断是否触发事件。在这种方案中,由于采用了“主动式”检测和“被动式”检测结合的方式,通过被动来启动主动,控制电路400无需持续向传感器300发送驱动信号S d,从而能够减少触压按键组件的功耗。
这种主被动结合的方式,也可以使用“单元功能分时复用技术”来实现,即通过同一传感单元在不同的时间段承担不同的功能,例如力感应功能、驱动功能或者振动感应功能等,从而实现单个传感单元的多功能化。这种传感单元可以是上述的电/磁形变可逆器件,比如压电元件。换句话说,图14中的传感器300也可以通过分时复用,由前述实施例中的单输出传感器实现。
可选地,可以在控制电路中增加计算单元,以实现对力感应信号S f的检测和/或计算。计算单元可以根据检测的力感应信号S f控制信号发生单元在符合预设条件的情况下开启,从而信号发生单元无须一直处于工作状态,以减少了功耗。进一步地,所述控制电路中还可以包括中断单元,所述中断单元用于控制计算单元在符合预设条件的情况下开启,从而进一步地减少电路的功耗。接下来结合图15-图18,继续介绍本申请实施例中的方案。
图15是本申请又一实施例的触压按键组件200的结构示意图。如图15所示,所述控制电路400包括信号发生单元40、检测单元50以及计算单元60。当传感器300感受到力时,会产生形变,并输出与该形变对应的力感应信号S f,计算单元60用于检测传感器300产生的力感应信号S f。在这个时间段,传感器300实现的是力感应单元的功能。当传感器300感应到的力超过一定阈值时,计算单元60向信号发生单元40发送指示信号,以指示信号发生单元40启动。在这个时间段,所述传感器300实现的是驱动单元的功能。在发送驱动信号S d之后的间隔时间,检测单元50检测传感器300输出的振动感应信号S z,并根据振动感应信号S z判断是否触发事件。在这个时间段,传感器300实现的是振动感应单元的功能。在这种方式下,信号发生单元40无需一直处于工作状态,因此不需要频繁地发送驱动信号S d,从而能够节省功耗。
需要说明的是,计算单元60检测的力感应信号S f是在信号发生单元40不工作的状态下生成的,因此计算单元60检测的力感应信号S f并非驱动信号S d的响应信号,这种检测方式被称为“被动式”检测。而检测单元50检测的振动感应信号S z响应于驱动信号S d,这种检测方式被称为“主动式”检测。本申请实施例将“主动式”检测和“被动式”检测结合起来, 并采用“被动式”检测启动“主动式”检测的方式,使得电路中无需一直开启“主动式”检测,从而达到节约功耗的目的。
在一些示例中,计算单元60可以用于判断当前感应的压力是否符合主动启动条件,若符合主动启动条件,则计算单元60指示信号发生单元40开始工作。若未符合主动启动条件,则信号发生单元40不工作。
可选地,上述判断是否符合主动启动条件的方式可以包括判断力感应单元63感应到的力是否超过设定的主动启动阈值,或者还可以包括根据力感应单元63感应的力的按压形态确定是否符合主动启动条件,例如双击、长按等。
在另一些示例中,计算单元60可以进行两个步骤的判断。首先计算单元60可以判断力感应信号S f是否符合计算启动条件。若符合计算启动条件,计算单元60开始根据力感应信号S f计算力或加速力,并继续判断计算的力或加速力是否符合主动启动条件。若符合主动启动条件,则计算单元60指示所述信号发生单元40开始工作。若力感应信号S f不符合计算启动条件,计算单元60无需计算并判断上述力或加速力是否符合主动启动条件。
可选地,上述判断是否符合计算启动条件的方式可以包括判断力感应单元63感应到的力是否超过设定的计算启动阈值,或者还可以包括根据力感应单元63感应的力的按压形态确定是否符合计算启动条件,例如双击、长按等。
所述计算启动阈值和所述主动启动阈值的取值可以根据实际应用确定,本申请实施例不作限定。在一些示例中,所述计算启动阈值可以指用于启动力或加速力计算的阈值。所述主动启动阈值可以指开启“主动式”检测的阈值。例如,可以设定计算启动阈值为100克力对应的计算单元获得值,主动启动阈值为200克力对应的计算单元获得值。若符合计算启动条件,则计算单元60开始计算力或加速力,并判断计算的力或加速力是否符合主动启动条件。在所述力或加速力符合主动启动条件的情形下,信号发生单元40开始工作。其中,计算单元获得值可以指计算单元根据力感应信号S f确定力或加速力所使用的量纲。
作为一个具体示例,在初始化之后,计算单元60可以每隔一段时间读取一次传感器300输出的力感应信号S f,此时信号发生单元40的输出为高阻态或者浮空态。若力感应信号S f符合计算启动条件,则计算单元60启动对力或加速力的计算。在这一时间段传感器300实现的为力感应单元的功能。计算单元60在进行对力或加速力计算之后,若得到的计算结果符合“主动式”检测的条件,即力或加速力符合主动启动条件,则计算单元60向所述信号发生单元40发送指示信号,所述指示信号用于指示信号发生单元40开始工作,即信号发生单元40开始向传感器300输入间断性的驱动信号S d,所述驱动信号S d驱动复合振子振动,使得传感器300输出响应于驱动信号S d的振动感应信号S z。在信号发生单元40的输出端切换至高阻态或浮空态的时间段内,检测单元50检测传感器300的输出的振动感应信号S z,并根据所述振动感应信号S z的衰减或增加的程度判断是否触发事件,这一时间段的传感器300分时实现驱动单元和振动感应单元的功能,这里的具体实现方式与前述实施例类似,此处不再赘述。
可选地,计算单元60可以根据一定的时间周期读取传感器300产生的振动感应信号S z,例如,每隔5ms或者10ms读取一次。
在本申请实施例中,触压按键组件的控制电路中包括计算单元,计算单元用于检测传感器在未接收驱动信号S d的情况下的触压力状态,以确定是否开启信号发生单元。因此信号发生单元只在符合预设条件的情形下开启并发送间断性的驱动信号S d,能够减少电路 的功耗。
可选地,如图15所示,检测单元50和传感器300之间可以设置第一放大单元21,所述第一放大单元21位于所述传感器300与所述检测单元50之间,以用于放大传感器300输出的振动感应信号S z。计算单元60和传感器300之间还可以设置第二放大单元22,所述第二放大单元22位于所述传感器300与所述计算单元60之间,以用于放大传感器300输出的力感应信号S f。计算单元60可以通过检测放大后的力感应信号S f,来确定是否启动信号发生单元40。
在本申请实施例中,通过设置第二放大单元,计算单元可以检测传感器输出的放大后的力感应信号S f,有助于更精确和灵敏的判断是否触发事件,从而提高了触压按键组件的灵敏度和抗误触性能。
在一些示例中,所述第一放大单元21和所述第二放大单元22可以由实现放大功能的电路构成。例如,第一放大单元21和第二放大单元22可以包括但不限于以下器件中的至少一种:电荷放大器、电流放大器、运算放大器、整流放大器、检波放大器、比较放大器等。
图16是本申请又一实施例的触压按键组件200的电路示意图。图16中,信号发生单元、检测单元以及计算单元可以集成在同一控制芯片500中。所述控制芯片500可以由MCU实现。图16中未示出信号发生单元、检测单元、计算单元的结构以及控制芯片500中的各功能单元之间的连接关系,上述各功能单元的连接关系可以参考前述实施例的描述。其中IO端口表示所述信号发生单元的输出端,其用于输出驱动信号S d。AD1端口表示计算单元的输入端,其用于检测传感器300输出的力感应信号S f。AD2端口表示检测单元的输入端,其用于在信号发生单元开启之后,检测传感器300输出的响应于驱动信号S d的振动感应信号S z
可选地,计算单元的输入端AD1与传感器300之间设置有第二放大单元22(放大器AMP1),以放大力感应信号S f。检测单元的输入端AD2与传感器300之间设置有第一放大单元21(放大器AMP2),以放大振动感应信号S z。检测单元的输入端AD2与传感器300之间还可以设置滤波单元25,所述滤波单元25由电容C和电阻R组成。所述滤波单元25可以用于高通滤波。可替代地,所述滤波单元25可以集成在第一放大单元21中或者检测单元中,本申请实施例对此不作限定。图16仅仅作为以上各功能单元的具体实现的一种例示,本领域技术人员可以理解,上述各功能单元还具有其他多种具体实现或变化方式,均应涵盖在本申请的保护范围之内。
在控制芯片500工作时,所述IO端口的起始状态为高阻态或浮空态。控制芯片500每隔一段时间检测一次AD1端口输入的力感应信号S f,以判断传感器300所受的力是否符合计算启动条件。其中,控制芯片500可以周期性地检测AD1端口输入的力感应信号S f,例如可以每隔5ms或10ms检测一次。若力感应信号S f符合计算启动条件,控制芯片500开始根据AD1端口输入的力感应信号S f计算传感器300所受的力或加速力,并判断力或加速力是否符合主动启动条件,在这个时间段,传感器300实现的是力感应单元的功能。若符合主动启动条件,控制芯片500通过IO端口发送间断性的驱动信号S d。在这个时间段,传感器300实现的是驱动单元的功能。在每次发送驱动信号S d之后的间隔,所述IO端口为高阻态或浮空态,在此阶段,控制芯片500检测AD2端口输入的振动感应信号S z,并根据所述振动感应信号S z判断是否触发事件。在这个时间段,传感器300实现 的是振动感应单元的功能。在本申请实施例中,对传感器300的力传感功能、驱动功能以及振动感应功能进行分时复用,从而利用单输出传感器实现主动式与被动式检测结合的触压按键组件方案。
图17是本申请又一实施例的触压按键组件200的结构示意图。如图17所示,所述控制电路400包括信号发生单元40、检测单元50、计算单元60以及中断单元70。所述中断单元70用于检测传感器300输出的力感应信号S f,并控制计算单元60的开启。具体地,中断单元70可以实现判断力感应信号S f是否符合计算启动条件的功能。在力感应信号S f符合计算启动条件的情形下,所述中断单元70可以控制计算单元60开启。然后计算单元60根据力感应信号S f计算传感器300所受到的力或加速力,并判断计算的力和/或加速力是否符合主动启动条件。若符合主动启动条件,则计算单元60向信号发生单元40发送指示信号,指示所述信号发生单元40开始工作。
可以理解为,图17中的中断单元70实现了判断力感应信号S f是否符合计算启动条件的功能,而计算单元60则实现了计算并判断力或加速力是否符合主动启动条件的功能。
在本申请实施例中,由中断单元70控制计算单元60的开启,以及由计算单元60控制信号发生单元40的开启。因此计算单元60和信号发生单元40只有在符合预设条件的情形下才工作,从而能够减少电路的功耗。
可选地,所述中断单元70可以由中断电路实现,
中断电路在输入的电压或电流符合预设条件的情形下才开启。中断电路的类型可以是电平中断、上升沿中断或下降沿中断。若传感器300输出的力感应信号S f符合预先设计的电平要求、上升沿或下降沿要求,则会进入中断程序。所述计算单元60与所述中断单元70相连,在进入中断程序之后,所述计算单元60启动。换句话说,所述中断单元70相当于控制计算单元60的开关。在中断单元70开启下,计算单元60才开始工作。可以对所述中断单元70进行设计,使得传感器300感应的压力符合计算启动条件之后,力感应单元63输出的力感应信号S f的电压值大于中断单元70的启动电压,从而使得所述中断单元70开启。中断单元70与计算单元60相连,在中断单元70开启的情况下,计算单元60开始工作。可选地,上述中断单元70判断传感器300感应的压力是否符合计算启动条件,也可以理解为,所述中断单元70判断传感器300所输出的力感应信号S f是否符合中断条件。
因此,在传感器300所受的触压力不符合计算启动条件的情形下,中断单元70不开启,控制电路400几乎不产生功耗,只有在该触压力符合计算启动条件的情形下,所述中断单元70才开启,并相应地启动计算单元60开始工作。因此,本申请实施例的方案能够在实现良好抗误触特性的同时,节省电路功耗。
可选地,在所述中断单元70和传感器300之间也可以设置第三放大单元23,所述中断单元70接收和检测该第三放大单元23放大后的力感应信号S f。可以通过设计,使得当传感器300所受的压力符合计算启动条件时,放大后的力感应信号S f使得中断单元70开启中断程序。
在一些示例中,所述第三放大单元23以由实现放大功能的电路构成。例如,第三放大单元23可以包括但不限于以下器件中的至少一种:电荷放大器、电流放大器、运算放大器、整流放大器、检波放大器、比较放大器等。
图18是本申请又一实施例的触压按键组件200的电路示意图。在图18中,信号发生 单元、检测单元、计算单元以及中断单元可以集成在同一控制芯片500中。所述控制芯片500可以由MCU实现。图18中未示出信号发生单元、计算单元、检测单元、中断单元以及控制芯片500中的各功能单元之间的连接关系,上述各功能单元的连接关系可以参考前述具体实施例中的描述。IO端口表示所述信号发生单元的输出端,其用于输出驱动信号S d。INT端口表示中断单元的输入端,其用于检测传感器300输出的力感应信号S f,并判断是否开启计算单元。AD1端口表示计算单元的输入端,其用于检测传感器300输出的力感应信号S f,并判断是否开启信号发生单元,使得IO端口输出间断性的驱动信号S d。AD2端口表示检测单元的输入端,其用于在信号发生单元开启之后,检测传感器300输出的响应于驱动信号S d的振动感应信号S z,并判断是否触发事件。
在中断单元检测到力感应信号S f符合计算启动条件的情形下,中断单元才发出中断信号,使得计算单元开始工作。或者说,在传感器300感应的压力符合计算启动条件的情况下,启动计算单元,然后计算单元开始计算传感器300受到的力和/或加速力,并根据得到的力和/或加速力判断是否符合主动启动条件。若符合主动启动条件,则计算单元向信号发生单元发送指示信号,指示所述信号发生单元开始工作。
可选地,计算单元的输入端AD1与传感器300之间设置有第二放大单元22(放大器AMP1),以用于放大力感应信号S f。检测单元的输入端AD2与传感器300之间设置有第一放大单元21(放大器AMP2),以用于放大振动感应信号S z。中断单元的输入端INT与传感器300之间还可以设置第三放大单元23(放大器AMP3),以放大力感应信号S f。检测单元的输入端AD2与传感器300之间还可以设置滤波单元25,所述滤波单元25由电容C和电阻R组成。所述滤波单元25可以用于对振动感应信号S z进行高通滤波。可替代地,所述滤波单元25可以集成在第一放大单元21中或者检测单元中,本申请实施例对此不作限定。图18仅仅作为以上各功能单元的具体实现的一种例示,本领域技术人员可以理解,上述各功能单元还具有其他多种具体实现或变化方式,均应涵盖在本申请的保护范围之内。
在控制芯片500工作时,所述IO端口的起始状态为高阻态或浮空态。控制芯片500检测INT端口输入的力感应信号S f。在力感应信号S f未符合计算启动条件的情况下,力感应信号S f不足以启动中断程序,所有的功能单元均不工作。在力感应信号S f符合计算启动条件的情况下,控制芯片500开启中断程序,则控制芯片500开始根据AD1端口输入的力感应信号S f计算传感器300所受的力或加速力,并判断所述力或加速力是否符合主动启动条件。在这个时间段,传感器300实现的是力感应单元的功能。若符合主动启动条件,控制芯片500开始通过IO端口发送间断性的驱动信号S d。在这个时间段,传感器300实现的是驱动单元的功能。在发送驱动信号S d之后的间隔时间,所述IO端口为高阻态或浮空态,在此阶段,控制芯片500检测AD2端口输入的振动感应信号S z,并根据所述振动感应信号S z判断是否触发事件,所述振动感应信号S z为所述驱动信号S d的尾波响应信号。在这个时间段,传感器300实现的是振动感应单元的功能。从而通过对传感器300分时复用不同功能实现了触压按键组件技术,降低了传感器300的设计难度。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种电子设备,其特征在于,包括:传感器和控制电路,
    所述控制电路用于在第一时间区间内向所述传感器的第一端口输出驱动信号S d,以及在第二时间区间内输出高阻态或浮空态,所述驱动信号S d用于驱动所述传感器带动外壳振动;
    所述传感器用于检测所述外壳的振动并通过所述第一端口输出振动感应信号S z,所述振动感应信号S z为所述传感器接收所述驱动信号S d后的振动尾波响应信号;
    所述控制电路还用于在所述第二时间区间内检测所述振动感应信号S z,并根据所述振动感应信号S z确定是否触发事件。
  2. 如权利要求1所述的电子设备,其特征在于,所述控制电路包括第一放大单元,所述第一放大单元用于放大所述振动感应信号S z
  3. 如权利要求1或2所述的电子设备,其特征在于,所述控制电路还包括滤波单元,所述滤波单元用于对所述振动感应信号S z作滤波处理。
  4. 如权利要求1至3中任一项所述的电子设备,其特征在于,所述传感器还用于检测力或形变,并通过所述传感器的第一端口输出力感应信号S f
    所述控制电路还用于检测并判断所述力感应信号S f是否符合主动启动条件,在所述力感应信号S f符合主动启动条件的情况下,向所述传感器发送所述驱动信号S d
  5. 如权利要求4所述的电子设备,其特征在于,所述控制电路还包括第二放大单元,以用于放大所述力感应信号S f
  6. 如权利要求4或5所述的电子设备,其特征在于,所述控制电路具体用于:
    判断所述力感应信号S f是否符合计算启动条件,在所述力感应信号S f符合计算启动条件的情况下,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力;以及,
    判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,向所述传感器发送所述驱动信号S d
  7. 如权利要求4或5所述的电子设备,其特征在于,所述控制电路具体用于:
    在所述力感应信号S f符合计算启动条件的情况下,开启中断程序;以及,
    在开启中断程序后,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力,并判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,在所述力和/或加速力符合所述主动启动条件的情况下,发送所述驱动信号S d
  8. 如权利要求1至7中任一项所述的电子设备,其特征在于,所述传感器包括电或磁形变可逆器件。
  9. 如权利要求1至8中任一项所述的电子设备,其特征在于,所述传感器为压电器件。
  10. 如权利要求1至9中任一项所述的电子设备,其特征在于,所述传感器包括所述第一端口和第二端口,所述第二端口为公共端。
  11. 如权利要求1至10中任一项所述的电子设备,其特征在于,所述控制电路为所述电子设备的处理芯片。
  12. 如权利要求1至10中任一项所述的电子设备,其特征在于,所述控制电路为所述传感器的控制芯片。
  13. 如权利要求1至12中任一项所述的电子设备,其特征在于,所述外壳为所述电子设备的壳体的一部分。
  14. 如权利要求1至12中任一项所述的电子设备,其特征在于,所述外壳为所述传感器的外壳。
  15. 一种控制电路,其特征在于,所述控制电路用于在第一时间区间内向传感器的第一端口输出驱动信号S d,以及在第二时间区间内输出高阻态或浮空态,所述驱动信号S d用于驱动所述传感器振动;
    所述控制电路还用于在所述第二时间区间内检测所述传感器通过所述第一端口输出的振动感应信号S z,并根据所述振动感应信号S z确定是否触发事件,所述振动感应信号S z为所述传感器接收所述驱动信号S d后的振动尾波响应信号。
  16. 如权利要求15所述的控制电路,其特征在于,所述控制电路包括第一放大单元,所述第一放大单元用于放大所述振动感应信号S z
  17. 如权利要求15或16所述的控制电路,其特征在于,所述控制电路还包括滤波单元,所述滤波单元用于对所述振动感应信号S z作滤波处理。
  18. 如权利要求15至17中任一项所述的控制电路,其特征在于,所述控制电路还用于接收所述传感器通过所述第一端口输出的力感应信号S f,所述力感应信号S f用于指示所述传感器检测的力或形变;以及,
    判断所述力感应信号S f是否符合主动启动条件,在所述力感应信号S f符合主动启动条件的情况下,向所述传感器发送所述驱动信号S d
  19. 如权利要求18所述的控制电路,其特征在于,所述控制电路还包括第二放大单元,以用于放大所述力感应信号S f
  20. 如权利要求18或19所述的控制电路,其特征在于,所述控制电路具体用于:
    判断所述力感应信号S f是否符合计算启动条件,在所述力感应信号S f符合计算启动条件的情况下,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力;以及,
    判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,向所述传感器发送所述驱动信号S d
  21. 如权利要求18或19所述的控制电路,其特征在于,所述控制电路具体用于:
    在所述力感应信号S f符合计算启动条件的情况下,开启中断程序;以及,
    在开启中断程序后,根据所述力感应信号S f计算所述传感器所感应的力和/或加速力,并判断所述力和/或加速力是否符合所述主动启动条件,在所述力和/或加速力符合所述主动启动条件的情况下,在所述力和/或加速力符合所述主动启动条件的情况下,发送所述驱动信号S d
  22. 如权利要求15至21中任一项所述的控制电路,其特征在于,所述控制电路为所述控制电路的处理芯片。
  23. 如权利要求15至22中任一项所述的控制电路,其特征在于,所述控制电路为所述传感器的控制芯片。
  24. 一种触压按键组件,其特征在于,包括传感器、外壳和如权利要求15至23中任一项所述的控制电路,所述驱动信号S d用于驱动所述传感器带动所述外壳振动。
  25. 一种电子设备,包括如权利要求24所述的触压按键组件,其特征在于,所述外壳与所述电子设备的壳体贴合或者融为一体。
PCT/CN2020/086338 2019-04-25 2020-04-23 触压按键组件、控制电路和电子设备 WO2020216278A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/606,267 US11789546B2 (en) 2019-04-25 2020-04-23 Touch key assembly, control circuit, and electronic device
JP2021556901A JP2022529577A (ja) 2019-04-25 2020-04-23 タッチキーアセンブリ、制御回路、および電子デバイス
EP20795657.4A EP3937379A4 (en) 2019-04-25 2020-04-23 TOUCH SNAP BUTTON COMPONENT, CONTROL CIRCUIT AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910339870.4 2019-04-25
CN201910339870.4A CN110138372B (zh) 2019-04-25 2019-04-25 触压按键组件、控制电路和电子设备

Publications (1)

Publication Number Publication Date
WO2020216278A1 true WO2020216278A1 (zh) 2020-10-29

Family

ID=67571161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086338 WO2020216278A1 (zh) 2019-04-25 2020-04-23 触压按键组件、控制电路和电子设备

Country Status (5)

Country Link
US (1) US11789546B2 (zh)
EP (1) EP3937379A4 (zh)
JP (1) JP2022529577A (zh)
CN (1) CN110138372B (zh)
WO (1) WO2020216278A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11269415B2 (en) 2018-08-14 2022-03-08 Cirrus Logic, Inc. Haptic output systems
GB201817495D0 (en) 2018-10-26 2018-12-12 Cirrus Logic Int Semiconductor Ltd A force sensing system and method
CN110138372B (zh) * 2019-04-25 2021-04-09 华为技术有限公司 触压按键组件、控制电路和电子设备
US10976825B2 (en) 2019-06-07 2021-04-13 Cirrus Logic, Inc. Methods and apparatuses for controlling operation of a vibrational output system and/or operation of an input sensor system
CN111182099B (zh) * 2019-12-30 2021-05-07 海信电子科技(深圳)有限公司 一种终端
CN114077325B (zh) * 2020-08-12 2023-09-29 北京钛方科技有限责任公司 一种设备的传感装置、触碰检测方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258851A (ja) * 2003-02-25 2004-09-16 Citizen Watch Co Ltd タッチパネルユニット
CN105045430A (zh) * 2015-08-24 2015-11-11 联想(北京)有限公司 触摸检测装置、触摸检测方法以及电子设备
CN106155421A (zh) * 2016-09-09 2016-11-23 京东方科技集团股份有限公司 一种触控面板、触控显示装置及触控方法
CN106321953A (zh) * 2015-07-01 2017-01-11 Toto株式会社 使用于用水器具的触摸检测装置及供水开关装置
CN110138372A (zh) * 2019-04-25 2019-08-16 华为技术有限公司 触压按键组件、控制电路和电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546658A (en) 1984-02-24 1985-10-15 General Electric Company Piezoelectric force/pressure sensor
US4634917A (en) 1984-12-26 1987-01-06 Battelle Memorial Institute Active multi-layer piezoelectric tactile sensor apparatus and method
TW241352B (en) * 1994-03-30 1995-02-21 Whitaker Corp Reflective mode ultrasonic touch sensitive switch
JP2009232356A (ja) * 2008-03-25 2009-10-08 Nec Corp 携帯電話装置及びキー押下判定方法並びにキー押下判定プログラム
US8674941B2 (en) * 2008-12-16 2014-03-18 Dell Products, Lp Systems and methods for implementing haptics for pressure sensitive keyboards
JP5936374B2 (ja) 2011-02-15 2016-06-22 キヤノン株式会社 圧電振動型力センサ及びロボットハンド並びにロボットアーム
US10126807B2 (en) * 2014-02-18 2018-11-13 Cambridge Touch Technologies Ltd. Dynamic switching of power modes for touch screens using force touch
JP6290441B2 (ja) 2014-03-05 2018-03-07 メジャメント スペシャリティーズ, インコーポレイテッド コンタクトスイッチのための超音波および歪みデュアルモードセンサ
JP6770679B2 (ja) * 2015-07-01 2020-10-21 Toto株式会社 水周り器具に使用するタッチ検出装置、及びそれを備えた水栓装置
US11036318B2 (en) * 2015-09-30 2021-06-15 Apple Inc. Capacitive touch or proximity detection for crown
US10331265B2 (en) * 2016-03-31 2019-06-25 Sensel, Inc. Human-computer interface system
US10235552B2 (en) 2016-10-12 2019-03-19 Qualcomm Incorporated Hybrid capacitive and ultrasonic sensing
JP6731866B2 (ja) * 2017-02-06 2020-07-29 株式会社デンソーテン 制御装置、入力システムおよび制御方法
US20200100856A1 (en) * 2017-06-15 2020-04-02 Sony Corporation Information input apparatus and medical system
TWI637303B (zh) * 2017-10-11 2018-10-01 聯陽半導體股份有限公司 觸控裝置及觸控裝置的操作方法
US10782785B2 (en) * 2018-01-29 2020-09-22 Cirrus Logic, Inc. Vibro-haptic design and automatic evaluation of haptic stimuli

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258851A (ja) * 2003-02-25 2004-09-16 Citizen Watch Co Ltd タッチパネルユニット
CN106321953A (zh) * 2015-07-01 2017-01-11 Toto株式会社 使用于用水器具的触摸检测装置及供水开关装置
CN105045430A (zh) * 2015-08-24 2015-11-11 联想(北京)有限公司 触摸检测装置、触摸检测方法以及电子设备
CN106155421A (zh) * 2016-09-09 2016-11-23 京东方科技集团股份有限公司 一种触控面板、触控显示装置及触控方法
CN110138372A (zh) * 2019-04-25 2019-08-16 华为技术有限公司 触压按键组件、控制电路和电子设备

Also Published As

Publication number Publication date
US20220214754A1 (en) 2022-07-07
EP3937379A4 (en) 2022-04-27
JP2022529577A (ja) 2022-06-23
CN110138372B (zh) 2021-04-09
EP3937379A1 (en) 2022-01-12
CN110138372A (zh) 2019-08-16
US11789546B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2020216278A1 (zh) 触压按键组件、控制电路和电子设备
WO2020216137A1 (zh) 触压按键组件、控制电路及电子设备
AU2017241549B2 (en) Input device with force sensor
CN107710115B (zh) 触控响应模组、键盘、触控装置、具反馈功能的触控设备
CN209248472U (zh) 一种车载触摸屏的控制系统
CN106411310B (zh) 一种触摸按键、响应方法及系统
JP2009213126A (ja) 静電センサを用いたリモートコントロール装置および電子機器、ならびにスイッチの制御方法
JP2007157371A (ja) 静電容量型デジタル式タッチパネル
CN110289844B (zh) 触压按键组件、振动传感器组件和电子设备
EP3171255A1 (en) Touch display module, touch input unit, and touch input method
JP2002031574A (ja) 触覚センサ
CN112083828A (zh) 一种触摸屏防止误输入的方法、控制装置以及电子设备
CN103825991B (zh) 一种手持设备
JP2004355545A (ja) 静電容量型デジタル式タッチパネル装置
CN107102777A (zh) 机械按键组件、电子设备及机械按键组件的操作方法
Vracar et al. Capacitive pressure sensing based key in PCB technology for industrial applications
CN111782074A (zh) 触控面板及电子设备
CN209281420U (zh) 电子设备
CN201352784Y (zh) 整体式压电触摸按键
CN215932596U (zh) 触控感测装置以及电子设备
CN210954971U (zh) 可穿戴设备
CN211557245U (zh) 键盘
US20240080025A1 (en) Piezoelectric unit and input-output device
AU2018101271B4 (en) Input device with force sensor
CN201352785Y (zh) 压电薄膜式压电触摸按键

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556901

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020795657

Country of ref document: EP

Effective date: 20211005

NENP Non-entry into the national phase

Ref country code: DE