WO2020215878A1 - 屏下摄像组件及相应的有机发光二极管显示屏和终端设备 - Google Patents

屏下摄像组件及相应的有机发光二极管显示屏和终端设备 Download PDF

Info

Publication number
WO2020215878A1
WO2020215878A1 PCT/CN2020/076395 CN2020076395W WO2020215878A1 WO 2020215878 A1 WO2020215878 A1 WO 2020215878A1 CN 2020076395 W CN2020076395 W CN 2020076395W WO 2020215878 A1 WO2020215878 A1 WO 2020215878A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
under
screen
lens barrel
camera assembly
Prior art date
Application number
PCT/CN2020/076395
Other languages
English (en)
French (fr)
Inventor
郭美杉
杜佳玮
王俊
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2020215878A1 publication Critical patent/WO2020215878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • This application relates to optical imaging technology and display technology.
  • this application relates to under-screen camera components and corresponding organic light emitting diode display screens and terminal equipment.
  • the existing mobile phone terminals In order to meet the camera needs of customers, electronic terminals including mobile phones usually have camera functions. For this reason, the existing mobile phone terminals generally have front and rear camera modules, and the front camera modules are usually arranged on the same side of the display screen to satisfy the user's Selfie and other functions. However, as the screen-to-body ratio becomes larger, higher and higher requirements are placed on the layout of the front camera.
  • One technical direction is to arrange the front camera module on the top frame of the mobile phone to form a notch or water drop screen that is close to the full screen.
  • Another technical direction is: the use of telescopic camera modules to hide and use the camera.
  • the camera can be controlled to extend out of the housing of the mobile phone (or other electronic equipment) to take the picture; after the shooting is completed, the camera is retracted into the housing of the mobile phone (or other electronic equipment).
  • the camera is prone to be impacted by external forces during the continuous expansion and contraction process and when the camera is extended relative to the mobile phone (or other electronic equipment), which can cause damage to the front camera and difficult replacement.
  • punch screens or “punch screens.”
  • the technology is: punch through holes or blind holes in the display, and place the front camera module at the through holes or behind the blind holes. This technology can save the motor used to drive the camera to expand and contract, which helps to improve the reliability of the product.
  • the area of the "punch” or “punch” part of the display screen is relatively large (for example, the hole diameter of a circular hole is usually larger than 4mm), and this kind of hole will cause a negative user experience influences.
  • organic light-emitting diode displays ie OLED screens, where OLED is the abbreviation of Organic Light-Emitting Diode, and organic light-emitting diode displays are sometimes called organic electroluminescent displays
  • OLED screens can emit light without a backlight.
  • the OLED screen is transparent to a certain extent.
  • OLED screens have complex microstructures inside. These microstructures include, for example, a large number of light-emitting structures made on a substrate based on semiconductor processes and corresponding microcircuit structures for controlling the light-emitting structures .
  • the complex microstructure inside the screen causes the light transmittance of the OLED screen to be much lower than that of glass, resin and other lens materials. If the front camera module is arranged at the back end of the existing OLED screen, the OLED screen (although it has a certain light permeability) will still block the front camera module and cannot perform imaging.
  • the perforation scheme of the OLED screen is usually through holes, which can avoid the occlusion of the OLED screen and cause insufficient light intake of the camera module under the screen.
  • the prior art there is a solution for punching the backlight plate of the LCD screen, that is, the blind hole screen solution. In this solution, only the backlight plate of the LCD screen can be penetrated.
  • the thickness of the LCD screen itself is usually significantly greater than that of the OLED screen, which makes it difficult for terminal devices (such as mobile phones) equipped with under-screen camera modules to be thinner. Therefore, people may be more looking forward to an under-screen camera module solution based on OLED screens.
  • the present invention aims to provide a solution that can overcome at least one defect of the prior art.
  • an under-screen camera assembly which includes an organic light emitting diode display screen and a camera module.
  • the organic light emitting diode display screen has a first through hole.
  • the optical axis of the camera module is perpendicular to the surface of the organic light emitting diode display screen, and the camera module is arranged at the rear end of the first through hole, wherein the camera module includes The protruding portion of the first through hole and the main body portion located at the rear end of the protruding portion, the extending portion includes at least one first optical element, and the main body includes a plurality of second optical elements grouped together,
  • the first optical element different from the material of the second optical element and/or making the first optical element adopt a different supporting structure or support method from the second optical element, the The outer side surface of the extending portion is retracted toward the optical axis with respect to the outer side of the main body portion.
  • the at least one first optical element is a single first lens
  • the plurality of second optical elements includes a plurality of second lenses.
  • the at least one first optical element is a single color filter.
  • the at least one first optical element is a color filter and a first lens
  • the plurality of second optical elements includes a plurality of second lenses.
  • the first lens is a glass lens
  • the second lens is a plastic lens
  • the first lens and the second lens are installed in the same lens barrel that is integrally formed;
  • the lens barrel includes a first section received in the first through hole and a first section located in the first through hole The outer second section, wherein the outer side of the first lens bears against the inner side of the first section; relative to the outer side of the second section, the outer side of the first section faces The optical axis is retracted.
  • the thickness of the first section is smaller than the thickness of the second section.
  • the inner surface of the lens barrel has multiple steps, and the first lens and the second lens are assembled together by sequentially embedding the first lens and the second lens into the multiple steps .
  • the extending portion has a first lens barrel, and the first lens is installed in the first lens barrel; the main body portion has a second lens barrel, and the plurality of second lenses are installed in the first lens barrel. Inside the second lens barrel.
  • the first lens and the plurality of second lens groups Stand together.
  • the protruding portion and the main body are bonded after being actively calibrated, and the active calibration is a process of optimizing and adjusting the relative position of the protruding portion and the main body based on actual imaging results.
  • the extending portion and the central axis of the main body portion have an included angle that is not zero.
  • the outer surface of the first lens is not supported by the lens barrel.
  • the plurality of second lenses are assembled by the support of the lens barrel;
  • the first lens includes a first optical zone for imaging and a first structure zone surrounding the first optical zone, and The bottom surface of the first structure area is bonded to the top surface of the lens barrel.
  • the top surface of the lens barrel bears against the bottom surface of the organic light emitting diode display screen.
  • the organic light emitting diode display screen has a cover plate, the cover plate, the side wall of the first through hole, the top surface of the lens barrel, the top surface of the first lens, and the The glue materials together form a closed cavity.
  • the protruding portion and the main body are bonded after being actively calibrated, and the active calibration is a process of optimizing and adjusting the relative position of the protruding portion and the main body based on actual imaging results.
  • the extending portion and the central axis of the main body portion have an included angle that is not zero.
  • the plurality of second optical elements are assembled by the support of the lens barrel, and the bottom surface of the color filter is bonded to the top surface of the lens barrel.
  • the plurality of second optical elements are assembled by the support of the lens barrel, the organic light emitting diode display screen has a cover plate, and the top surface of the color filter is bonded to the bottom surface of the cover plate by optical glue .
  • the top surface of the lens barrel bears against the bottom surface of the organic light emitting diode display screen.
  • the organic light emitting diode display screen has a cover plate, the cover plate, the side wall of the first through hole, the top surface of the lens barrel, the end surface of the color filter (the end surface is the top surface or the bottom surface) ) And the glue used for bonding together form a closed cavity.
  • the side wall of the first through hole has a light absorption layer.
  • the top of the lens barrel serves as the diaphragm of the camera module.
  • the top of the lens barrel serves as the diaphragm of the camera module.
  • the top of the first lens barrel serves as the diaphragm of the camera module.
  • the organic light emitting diode display screen has a substrate, the substrate is provided with positioning marks, and the positioning marks are used to align the camera module with the through hole during an assembly process.
  • a terminal device which includes any of the above-mentioned under-screen camera components.
  • the camera module serves as a front camera module of the terminal device
  • the organic light emitting diode display screen serves as a display panel on the front of the terminal device.
  • This application can help reduce the size of the hole of the "punch screen” while ensuring the amount of light entering the camera module under the screen, thereby improving user experience.
  • the size of the hole here can be understood as: the size of the hole in the OLED display screen that the user can observe from the front when the display device is on.
  • the radial size of the first lens is reduced by replacing the material of the first lens at the foremost end with glass (or other material with a higher refractive index and suitable for molding into a lens). Therefore, under the premise that the optical design is unchanged or basically unchanged, the top of the camera module can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "perforated screen" and reducing the thickness of the terminal device.
  • the radial dimension of the top of the camera module is reduced by thinning the side wall of the lens barrel corresponding to the first lens at the front end, so that the optical design remains unchanged or basically unchanged.
  • the top of the camera module can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "punch screen" and reducing the thickness of the terminal device.
  • the first lens at the forefront of all lenses usually has a smaller radial size and lighter weight, so it will correspond to the first lens if possible.
  • the side wall of the lens barrel is thinned. Since the mass of the first lens is relatively light, the corresponding lens barrel can still effectively support the first lens after the side wall is thinned.
  • the lens barrel adopts a split design
  • the first lens is installed in a separate first lens barrel, and the remaining lenses (may be called second lenses) can be assembled together through the second lens barrel .
  • the first lens barrel does not need to support multiple lenses by itself, the thickness of its side wall can be reduced, so that the camera module can be made without changing the optical design.
  • the top of the group can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "perforated screen" and reducing the thickness of the terminal device.
  • the first lens adopts a design without a lens barrel. This design eliminates the need for the outer lens barrel of the first lens, so that the optical design can be unchanged or basically unchanged.
  • the top of the camera module can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "punch screen" and reducing the thickness of the terminal device.
  • the color filter can be placed in the front, that is, the color filter is arranged in the through hole of the OLED display screen.
  • This design allows the top of the camera module to extend into the through hole with a smaller aperture under the premise that the optical design remains unchanged or basically unchanged, thereby improving the visual experience of the "punch screen" and reducing the thickness of the terminal device .
  • the top surface of the lens barrel can be made to bear against the bottom surface of the OLED display screen, and combined with the cover plate on the top of the OLED display screen, the through hole can be constructed into a closed cavity.
  • the through hole can be constructed into a closed cavity.
  • This design of configuring the through hole into a closed cavity is particularly suitable for the case where the first lens adopts a barrelless design and the case where the color filter is placed in front.
  • a light-absorbing layer may be provided on the sidewall of the through hole. This design is particularly suitable for the case where the first lens adopts the design of no lens barrel and the case where the color filter is placed in front.
  • the light entrance surface of the camera module can be brought closer to the surface (front) of the OLED display screen, thereby reducing the transmission of external light to the camera module.
  • the transmission distance further increases the amount of light entering the camera module under the screen. In other words, for the same light intake requirement, this design can allow the OLED display to have a smaller through hole aperture.
  • the lens barrel adopts a split design, and the top of the lens barrel of the first lens serves as a diaphragm. This design can allow the OLED display to have a smaller through hole aperture.
  • the under-screen camera assembly of the present application is particularly suitable for use in smart phones, and the camera module in the under-screen camera assembly is particularly suitable as a front camera module of a smart phone.
  • Figure 1 shows a schematic cross-sectional view of an under-screen camera assembly according to an embodiment of the present application
  • FIG. 2 shows a schematic top view of the organic light emitting diode display screen in FIG. 1;
  • FIG. 3 shows a schematic cross-sectional view of a typical organic light emitting diode display screen 100
  • Figure 4 shows a schematic cross-sectional view of an under-screen camera assembly in an embodiment of the present application
  • FIG. 5 shows a schematic cross-sectional view of an under-screen camera assembly based on an embodiment of a split lens barrel in this application
  • FIG. 6 shows a schematic cross-sectional view of an under-screen camera assembly based on an embodiment of the color filter front design in this application
  • FIG. 7 shows a schematic cross-sectional view of an under-screen camera assembly according to another embodiment of the present application based on the color filter front design
  • FIG. 8 shows a schematic cross-sectional view of an under-screen camera assembly according to another embodiment of the present application based on the color filter front design
  • FIG. 9 shows a schematic cross-sectional view of an organic light emitting diode display screen in an embodiment of the present application.
  • FIG. 10 shows the detailed structure of the display layer, the buffer layer and other surrounding functional layers in FIG. 3;
  • Figure 11 shows a schematic diagram of a substrate of an OLED screen with positioning marks
  • FIG. 12 shows a schematic top view of an unevenly smaller thickness of the first section of the lens barrel
  • FIG. 13 shows a schematic cross-sectional view of an under-screen camera assembly based on another embodiment of a split lens barrel of the present application
  • FIG. 14 shows a schematic cross-sectional view of an under-screen camera assembly based on another embodiment of the split lens barrel of the present application
  • Figure 16 shows a schematic view of the sidewall of the first through hole being covered by the packaging material layer and the ink layer;
  • Fig. 17 shows the first lens in an embodiment of the present application.
  • Fig. 1 shows a schematic cross-sectional view of an under-screen camera assembly according to an embodiment of the present application.
  • the under-screen camera assembly includes an organic light emitting diode display screen 100 (ie, an OLED screen) and a camera module 200 located at the rear end of the organic light emitting diode display screen 100.
  • the optical axis ax of the camera module 200 is substantially perpendicular to the surface 101 of the organic light emitting diode display screen 100.
  • the “rear end” refers to the end of the imaging optical path of the camera module 200 close to the image side.
  • the camera module 200 is located at the rear end of the under-screen camera area 120 of the organic light emitting diode display screen 100.
  • the under-screen camera area 120 is an area in the organic light emitting diode display screen 100 that is adapted to the camera module 200.
  • FIG. 2 shows a schematic top view of the organic light emitting diode display screen in FIG. 1.
  • the display area of the organic light emitting diode display screen includes an under-screen camera area 120 and an off-screen camera area 110.
  • the under-screen camera area 120 may be circular, and its size may be adapted to the size of the camera module 200.
  • the under-screen camera area 120 may be surrounded by the non-under-screen camera area 110.
  • the organic light-emitting diode display screen 100 adopts a through-hole design, that is, a through-hole that penetrates the organic light-emitting diode display screen (the cover plate may not be penetrated, which will be described in further detail below).
  • the camera area 120 under the screen is described. To facilitate understanding, the structure of the organic light emitting diode display screen will be briefly described below.
  • FIG. 3 shows a schematic cross-sectional view of a typical organic light emitting diode display screen 100.
  • the organic light emitting diode display screen 100 includes: a substrate 131, a buffer layer 132, a display layer 133 located above the buffer layer 132, an encapsulation layer 134 covering the display layer 133, and a polarizer located above the encapsulation layer 134 A layer 135 and a cover plate 136 covering the polarizing layer 135.
  • FIG. 4 shows a schematic cross-sectional view of the under-screen camera assembly in an embodiment of the present application.
  • the under-screen camera assembly includes an organic light emitting diode display screen 100 and a camera module 200.
  • the organic light emitting diode display screen 100 has a first through hole 140, and the first through hole 140 forms the under-screen imaging area.
  • the optical axis of the camera module 200 is perpendicular to the surface of the organic light emitting diode display screen 100, and the camera module 200 is disposed at the rear end of the first through hole 140.
  • the camera module 200 includes an extending portion 210 extending into the first through hole 140 and a main body 220 located at the rear end of the extending portion 210 (wherein the main body 220 is located in the first through hole 140). external).
  • the extending portion 210 includes at least one first optical element 211, and the main body 220 includes a plurality of second optical elements 221 assembled together.
  • the at least one first optical element 211 is a single first lens
  • the plurality of second optical elements 221 include a plurality of second lenses.
  • the first lens is a glass lens
  • the second lens is a plastic lens.
  • the glass lens can be molded in a smaller size than the plastic lens, which helps to make the top of the camera module (the extending portion 210) extend into the first through hole 140 with a smaller aperture.
  • the radial size of the first lens is reduced by replacing the material of the first lens at the foremost with glass (or other material with a larger refractive index and suitable for molding into a lens), so that the optical design is not Under the premise of changing or basically unchanged, the top of the camera module can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "perforated screen" and reducing the thickness of the terminal device.
  • the first lens and the second lens are installed in the same lens barrel 230 integrally formed.
  • the lens barrel 230 includes a first section 231 received in the first through hole 140 and a second section 232 located outside the first through hole 140, wherein the outer surface of the first lens bears On the inner side of the first section 231. Relative to the outer side surface of the second segment, the outer side of the first segment is retracted toward the optical axis of the camera module.
  • the inner surface of the lens barrel may have multiple steps, and the first lens and the second lens may be sequentially embedded into the multiple steps (note that to simplify the drawing, the multiple steps are not shown in the figure). 4) to combine the first lens and the second lens together.
  • the camera module 200 can be divided into an extending part 210 and a main body 220.
  • the first section 231 and the first optical element 211 (for example, the first lens) installed in the first section 231 may constitute the extending portion 210 of the camera module 200, and the extending portion 210 extends into the first through hole Within 140.
  • the main body 220 is located outside the first through hole 140.
  • the main body 220 may include a second section 232 and a plurality of second optical elements 221 (such as second lenses) mounted on the second section 232, and may also include a photosensitive component (note that the photosensitive component is not shown in FIG. 4 ,
  • the photosensitive component may include photosensitive chips, circuit boards and color filters, etc.).
  • the radial dimension of the top of the camera module is reduced by thinning the side wall of the lens barrel corresponding to the first lens at the front end, so that the camera can be
  • the top of the module can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "perforated screen" and reducing the thickness of the terminal device.
  • the first lens at the forefront of all lenses usually has a smaller radial size and lighter weight, so there are conditions
  • the side wall of the lens barrel corresponding to the first lens is thinned. Since the mass of the first lens is relatively light, the corresponding lens barrel can still effectively support the first lens after the side wall is thinned.
  • the side wall thinning can be a uniform thinning, that is, the thickness of the lens barrel is uniformly reduced, or the thickness of a part of the lens barrel is reduced.
  • FIG. 12 shows a schematic top view of an unevenly smaller thickness of the first section of the lens barrel.
  • a circular lens barrel can be made first, and then at the first segment, the white part of the lens barrel material (ie, the removed part 231a) around the figure is removed based on the removal process (for example, cutting) to obtain a thinner
  • the shape of the first through hole of the display screen can match the shape of the first segment of the lens barrel after the thinning process.
  • the "thinned" lens barrel of the first segment can also be directly formed when the lens barrel is formed. For example, when the lens barrel is injection molded, the "thinned" lens barrel of the first segment is directly formed through the design of the mold.
  • the thickness of the first section is smaller than the thickness of the second section.
  • the thickness here refers to the radial dimension, that is, the dimension perpendicular to the optical axis of the camera module.
  • Figure 4 does not show the photosensitive component part of the camera module, that is, Figure 4 does not show the circuit board, photosensitive chip, color filter, lens holder and other common components assembled into the photosensitive component, these components Both can be a component of the camera module in this application.
  • FIG. 5 shows a schematic cross-sectional view of an under-screen camera assembly based on an embodiment of a split lens barrel in this application.
  • the under-screen camera assembly includes an organic light emitting diode display screen 100 and a camera module 200.
  • the organic light emitting diode display screen 100 has a first through hole 140, and the first through hole 140 forms an under-screen imaging area.
  • the optical axis of the camera module 200 is perpendicular to the surface of the organic light emitting diode display screen 100, and the camera module 200 is disposed at the rear end of the first through hole 140.
  • the camera module 200 includes an extending portion 210 extending into the first through hole 140 and a main body 220 located at the rear end of the extending portion 210, and the extending portion 210 includes at least one first optical element 211.
  • the main body 220 includes a plurality of second optical elements 221 grouped together. 5, in this embodiment, the at least one first optical element 211 is a single first lens, and the plurality of second optical elements 221 include a plurality of second lenses. In this embodiment, a split lens barrel structure is adopted.
  • the protruding portion 210 has a first lens barrel 241, and the first lens is installed in the first lens barrel 241; the main body 220 has a second lens barrel 242, and the plurality of Two lenses are installed in the second lens barrel 242.
  • the protruding portion 210 and the main body 220 may be bonded after being actively calibrated.
  • the active calibration is a process of optimizing and adjusting the relative positions of the protruding portion and the main portion based on actual imaging results.
  • the extending portion and the central axis of the main body portion may have an included angle that is not zero.
  • the lens barrel needs to reach a certain size in order to maintain the strength to form a stable and reliable lens group.
  • the split lens barrel split lens
  • the first lens barrel only needs to carry one or a small number of lenses, so it can be formed into a small head lens.
  • the diaphragm can be on the top of the first lens barrel or the top of the second lens barrel, and a lens barrel (the lens barrel is usually black to achieve a light absorption effect, so it can also be called a black object) or a spacer can serve as the diaphragm.
  • the thickness of the sidewall can be reduced, so that the optical design remains unchanged or basically Under the same premise, the top of the camera module can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "perforated screen" and reducing the thickness of the terminal device.
  • the first lens barrel 241 and the second lens barrel 242 can be assembled first, and then assembled into a complete camera module (including photosensitive components), and finally the camera module and the display screen are assembled in Together, a complete under-screen camera assembly is formed; it is also possible to assemble the first lens barrel 241 and the second lens barrel 242 to obtain a complete optical lens, then assemble the optical lens with the display screen, and finally assemble the photosensitive component To the rear end of the optical lens to form a complete under-screen camera assembly.
  • FIG. 13 shows a schematic cross-sectional view of an under-screen camera assembly based on another embodiment of a split lens barrel of the present application.
  • the extending portion 210 of the camera module 200 can be assembled with the display screen 100 first.
  • the top of the extending portion 210 can be attached to the bottom of the cover plate 136 of the display screen 100, while the outer side surface of the extending portion 210 and the inner wall 141 of the first through hole 140 of the display screen 100 are not attached.
  • the top surface of the extending portion 210 and the bottom surface of the cover plate 136 of the display screen 100 may be bonded by glue.
  • FIG. 14 shows a schematic cross-sectional view of an under-screen camera assembly based on another embodiment of the split lens barrel of the present application.
  • the extending portion 210 may be attached to the side wall 141 (inner wall) of the first through hole 140 through its outer side surface 211, and its top surface and the bottom surface of the display screen cover are not attached (or Say no to contact).
  • the protruding portion 210 can be placed in the first through hole 140 first, and its outer side surface 211 can be glued to the side wall 141 (inner wall) of the first through hole 140 of the display screen 100, and then the protruding portion The bottom surface of 210 and the top surface of the main body 220 are bonded to form a complete camera module (or under-screen camera assembly).
  • the bonding between the bottom surface of the protruding portion 210 and the top surface of the main body 220 can be completed based on the aforementioned active calibration technology, that is, after the relative positions of the protruding portion and the main portion are optimized and adjusted based on actual imaging results , And then glue the bottom surface of the extending portion 210 with the top surface of the main body 220.
  • FIG. 15 shows a schematic cross-sectional view of an under-screen camera assembly based on another embodiment of the split lens barrel of the present application.
  • the top surface of the extending portion 210 is attached to the bottom surface of the cover plate 136 of the display screen 100, and at the same time, its side wall (outer side) is attached to the inner wall 141 of the first through hole 140.
  • the protruding portion 210 can be simultaneously glued to the cover plate 136 of the display screen and the inner wall 141 of the first through hole 140 through the top surface and the side surface.
  • the protruding portion 210 and the display screen 100 can be bonded first, and then the protruding portion 210 and the main body 220 can be bonded to form a complete camera module (or under-screen camera assembly).
  • the bonding between the bottom surface of the protruding portion 210 and the top surface of the main body 220 can be completed based on the aforementioned active calibration technology, that is, after the relative positions of the protruding portion and the main portion are optimized and adjusted based on actual imaging results , And then glue the bottom surface of the extending part with the top surface of the main body.
  • the color filter 290 can also be installed between the first lens barrel 241 of the extending portion 210 and the second lens barrel 242 of the main body 220. Since the color filter 290 is placed in the front, it helps to reduce the back focus of the camera module 200, thereby helping to reduce the thickness of the terminal device (such as a smart phone).
  • the photosensitive component can be bonded to the second lens barrel 242 of the main body 220 first, and then bonded to the extending portion 241; the photosensitive component can also be bonded to the second lens barrel 242 of the main portion 220 and the extending portion 210. After the first lens barrel 241 is bonded, it is bonded with the second lens barrel 242.
  • a modified embodiment based on the embodiment in FIG. 5 is also provided.
  • the outer surface of the first lens has no lens barrel support (that is, the first lens barrel in FIG. 5 is eliminated).
  • the plurality of second lenses are still assembled by the support of the lens barrel.
  • the first lens includes a first optical zone for imaging and a first structure zone surrounding the first optical zone.
  • the bottom surface of the first structure zone is bonded to the top surface of the lens barrel. Since this design eliminates the lens barrel outside the first lens, the top of the camera module can be extended into the through hole with a smaller aperture under the premise that the optical design remains unchanged or basically unchanged, thereby improving the The “hole screen” visual experience and reduce the thickness of the terminal equipment.
  • FIG. 6 shows a schematic cross-sectional view of an under-screen camera assembly based on an embodiment of the color filter front design in the present application.
  • the under-screen camera assembly includes an organic light emitting diode display screen 100 and a camera module 200.
  • the organic light emitting diode display screen 100 has a first through hole 140, and the first through hole 140 forms an under-screen imaging area.
  • the optical axis of the camera module 200 is perpendicular to the surface of the organic light emitting diode display screen 100, and the camera module 200 is disposed at the rear end of the first through hole 140.
  • the camera module 200 includes an extending portion 210 extending into the first through hole 140 and a main body 220 located at the rear end of the extending portion 210, and the extending portion 210 includes at least one first optical element 211.
  • the main body 220 includes a plurality of second optical elements 221 grouped together.
  • the at least one first optical element 211 is a single color filter
  • the plurality of second optical elements 221 include a plurality of lenses, and these lenses are assembled by the support of the lens barrel 230.
  • the bottom surface of the color filter is bonded to the top surface of the lens barrel 230.
  • the color filter is in front, and the top of the lens barrel 230 serves as a diaphragm.
  • the color filter front can reduce the rear focus of the camera module lens and reduce the overall size of the camera module.
  • FIG. 7 shows a schematic cross-sectional view of an under-screen camera assembly according to another embodiment of the present application based on the color filter front design.
  • the color filter is in front, and the silk screen on the surface of the color filter is used as the diaphragm.
  • the light-absorbing layer 211a can be fabricated on the surface of the color filter based on the silk screen process, so as to prevent stray light.
  • FIG. 8 shows a schematic cross-sectional view of an under-screen camera assembly according to another embodiment of the present application based on a color filter front design.
  • the color filter in this embodiment is attached to the cover plate.
  • the plurality of second optical elements 221 are assembled by the support of the lens barrel 230
  • the organic light emitting diode display screen 100 has a cover plate 136
  • the color filter ie, FIG. 8
  • the top surface of the first optical element 211) shown in FIG. 2 is bonded to the bottom surface of the cover plate 136 by optical glue.
  • the top surface of the lens barrel 230 bears against the bottom surface of the organic light emitting diode display screen 100.
  • the cover plate 136, the side wall 141 of the first through hole 140, the top surface of the lens barrel 230, the bottom surface of the color filter and the glue for bonding together form a closed cavity.
  • the cover plate 136, the side wall 141 of the first through hole 140, the top surface of the lens barrel 230, and the first lens can jointly form a closed cavity.
  • the top surface of the lens barrel 230 refers to the outer surface of the top of the lens barrel including a stepped surface.
  • the cover plate 136, the side wall 141 of the first through hole 140, the top surface of the lens barrel, and the top of the first lens The surface and the glue used for bonding can form a closed cavity together.
  • the lens barrel includes a first lens barrel 231 and a second lens barrel 232, which are bonded to form a complete lens barrel.
  • the top surface of the lens barrel refers to the outer surface of the top of the lens barrel including a stepped surface.
  • the first lens is designed without a lens barrel, and a plurality of second lenses are assembled together by the lens barrel.
  • the first lens includes a first optical zone for imaging and a first structure zone surrounding the first optical zone.
  • the bottom surface of the first structure zone is bonded to the top surface of the lens barrel.
  • the top surface of the lens barrel bears against the bottom surface of the organic light emitting diode display screen.
  • the cover plate, the side wall of the first through hole, the top surface of the lens barrel, the top surface of the first lens, and the glue used for bonding may jointly form a closed cavity.
  • the color filter front design can be used in combination with the aforementioned first lens design.
  • the at least one first optical element of the protruding part may include a color filter and a first lens.
  • a color filter can be added in the through hole.
  • the color filter can be adhered to the bottom surface of the cover plate, or can be adhered to the top surface of the lens barrel or the first lens barrel. After the color filter is added, there are two first optical elements in the first through hole. In other words, the extending part of the camera module has two first optical elements.
  • the material of the first optical element may be different from that of the second optical element and/or the first optical element may be supported differently from the second optical element.
  • the structure or supporting manner is such that the outer side surface of the extending portion is retracted toward the optical axis relative to the outer side of the main body portion. Therefore, under the premise that the optical design is unchanged or basically unchanged, the top of the camera module can be extended into the through hole with a smaller aperture, thereby improving the visual experience of the "perforated screen" and reducing the thickness of the terminal device.
  • FIG. 9 shows a schematic cross-sectional view of an organic light emitting diode display screen in an embodiment of the present application.
  • the sidewall of the first through hole may have a light absorbing layer 139 (in addition to FIG. 9, you may also refer to FIGS. 4 to 8 ).
  • This design can suppress the stray light generated by the reflection and refraction of the sidewall of the first through hole.
  • the light absorption layer 139 is provided on the sidewall of the first through hole, which is particularly suitable for the case where the first lens adopts the design of no lens barrel and the case where the color filter is placed in front.
  • the ink layer is coated on the sidewall of the first through hole to form the light absorption layer.
  • Fig. 16 shows a schematic diagram of the sidewall of the first through hole being covered by the encapsulation material layer and the ink layer.
  • the sidewall of the first through hole may be covered with the packaging material layer, and then an ink layer may be coated on the packaging material layer to form the light absorption layer 139.
  • the packaging layer 134 may be bent downward and extend to the sidewall of the first through hole 140 to form the packaging material layer 134a.
  • the light-absorbing layer 139 can also be formed of a black glue material, which can be used as a glue material for bonding at the same time.
  • the black glue can be used to bond the top surface of the lens barrel to the bottom surface of the substrate, and to bond the outer side surface of the first lens barrel or the first optical element to the side wall of the first through hole. Bonding.
  • the cover plate in the organic light emitting diode display (ie, OLED screen), the cover plate may be a glass cover plate.
  • the holes that penetrate through the various functional layers of the display screen except the cover plate are usually called through holes in the industry, and this concept is used in this article.
  • the through hole of the organic light emitting diode display screen 100 does not penetrate the cover plate.
  • the through hole does not penetrate the cover plate, which can prevent debris from falling into the through hole and affecting the imaging of the camera module under the screen.
  • the substrate may be made of glass or transparent plastic.
  • the transparent plastic can be: polyethersulfone (PES), polyacrylate (PAR), polyetherimide (PEI), polyethylene naphthalate (PEN), polyethylene terephthalate Ester (PET), polyphenylene sulfide (PPS), polyallylate (polyallylate), polyimide, polycarbonate (PC), cellulose triacetate (TAC) and/or cellulose acetate propionate ( CAP) organic material selected from the group consisting of.
  • PES polyethersulfone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate Ester
  • PPS polyphenylene sulfide
  • PES polyallylate (polyallylate)
  • polyimide polyimide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • the display layer is a functional layer containing a pixel light emitting structure.
  • two electrode layers are arranged above and below the display layer. It should be noted that these two electrode layers are not shown in FIG. 3.
  • the two electrode layers are respectively referred to as a first electrode (or first electrode layer) and a second electrode (or second electrode layer).
  • the first electrode can be patterned.
  • FIG. 10 shows the detailed structure of the display layer, the buffer layer and other surrounding functional layers in FIG. 3.
  • the display layer 133 includes a first electrode 133b, a pixel layer 133a, and a second electrode 133c.
  • the pixel layer 133a may include a plurality of pixel light-emitting structures 138 and pixel definitions filling gaps between the plurality of pixel light-emitting structures 138. Structure 137. Further, the pixel light emitting structure 138 may include an electron injection layer, an electron transport layer, a light emitting material layer, a hole transport layer, and a hole injection layer. The first electrode and the second electrode may cover the electron injection layer and the hole injection layer, respectively. In this embodiment, the first electrode is a metal cathode, and the second electrode is an anode.
  • the anode can be indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide At least one material selected from the group consisting of (IGO) and aluminum oxide zinc (AZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • In2O3 indium oxide
  • IGO indium gallium oxide
  • IGO aluminum oxide zinc
  • the pixel electrodes all need to cover the surface of the light-emitting material, the anode is transparent, and the first electrode can be silver or silver alloy, etc., so that the cathode is not transparent (the cathode can also be non-transparent by plating a reflective film),
  • the cathode can also be non-transparent by plating a reflective film
  • all the light emitted by the light-emitting layer material is transmitted from the anode, and the drain electrode of the thin film transistor is connected to the first electrode so as to be connected to the pixel light-emitting structure, and the signal for driving light emission is transmitted to the display layer of the OLED screen.
  • the buffer layer 132 may be used as a barrier layer for reducing or preventing the diffusion of impurity ions into the display layer 133, and reducing or preventing external air or moisture from penetrating. Infiltrate through it.
  • the buffer layer 132 can also flatten the surface of the substrate.
  • the buffer layer usually also includes a TFT driving layer.
  • the TFT driving layer has a plurality of TFT units (ie, thin film transistors 132a) corresponding to the pixel light emitting structure to drive the pixel light emitting structure to emit light or turn off (sometimes it can also drive the pixel light emitting structure to change brightness).
  • the thin film transistor 132a may be formed on the body material of the buffer layer, and its source electrode or gate electrode is connected to the first electrode 133b of the display layer.
  • the encapsulation layer is a thin film encapsulation layer, which is located on the display layer.
  • the thin film encapsulation layer can be composed of an organic thin film and an inorganic thin film, or a plurality of organic and inorganic films are alternately stacked.
  • the function of the thin film encapsulation layer is to prevent the display layer from being affected by external moisture or oxygen.
  • the inorganic film stably blocks external moisture and oxygen, while the organic film can absorb the stress on the inorganic film to give the inorganic film flexibility.
  • the polarizing layer includes a polarizer and a quarter-wave plate, which are used to reduce the reflection of natural light and improve the contrast of the display screen.
  • the polarizing layer also includes a touch layer ( Or called the touch layer).
  • FIG. 11 shows a schematic diagram of a substrate of an OLED screen with positioning marks.
  • at least two positioning marks 150 may be provided on the substrate of the OLED screen, and the positioning marks 150 are used in the assembly process of the OLED screen and the camera module To improve the assembly accuracy (for example, improve the alignment accuracy of the through-light hole).
  • the positioning mark does not overlap with the projection of the camera module on the display screen, so that the camera module and the display screen can be adjusted in real time during assembly.
  • the camera module and the OLED screen can be glued and fixed on the contact surface, or the camera module can be closely attached to the OLED screen and bonded by side glue, or two places (contact surface and side) can be bonded at the same time.
  • the positioning mark can be an ink pattern, or can be realized by laser marking, or it can be formed by digging the base material of the OLED screen, or a special structure integrally formed with the base material.
  • a terminal device which includes the under-screen camera assembly described in any of the foregoing embodiments.
  • the camera module may be used as a front camera module of the terminal device, and the organic light emitting diode display screen may be used as a display panel on the front of the terminal device.
  • FIG. 17 shows the first lens in an embodiment of the present application.
  • the first optical element 211 is a first lens and the first lens is a bare lens (that is, the camera module adopts a split structure and the extension part does not have a first lens cylinder).
  • the first lens can be a molded glass lens.
  • the first lens includes a first optical zone 211a for imaging and a first structure zone 211b surrounding the first optical zone 211a.
  • the outer diameter D1 (outer diameter) of the first optical zone 211a may be 1.4 mm
  • the outer diameter D2 (outer diameter) of the first structure zone may be 2.5 mm. It should be noted that the outer diameter of the first optical zone is actually the inner diameter of the first structure zone.
  • the molded glass lens can have a smaller radial size than the injection molded lens, thus helping to reduce the aperture size of the display screen. It is easy to understand that when the outer diameter of the first structure area of the first lens is less than 2.5 mm, it is more helpful to reduce the size of the opening of the display screen.
  • the above-mentioned molded glass lens can also be used as the first optical element, so as to reduce the radial size of the first optical element, thereby helping to reduce the aperture size of the display screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了屏下摄像组件,包括有机发光二极管显示屏,其具有第一通孔;以及摄像模组,其设置于所述第一通孔的后端,其中,所述摄像模组包括伸入所述第一通孔的伸入部和位于所述伸入部后端的主体部,所述伸入部包括至少一个第一光学元件,所述主体部包括组立在一起的多个第二光学元件,并且,通过使所述第一光学元件不同于所述第二光学元件的制作材料和/或使所述第一光学元件采用不同于所述第二光学元件的支撑结构或支撑方式,来使所述伸入部的外侧面相对于所述主体部的外侧面向所述光轴缩进。本申请还提供了相应的终端设备。本申请可以在保证屏下摄像模组进光量的同时,帮助缩小"打孔屏"的孔的尺寸。

Description

屏下摄像组件及相应的有机发光二极管显示屏和终端设备
相关申请
本申请要求名称为“屏下摄像组件及相应的有机发光二极管显示屏和终端设备”、于2019年4月25日提交的中国专利申请号为201910339594.1的优先权,并在此通过引用包括该件申请的全部内容。
技术领域
本申请涉及光学成像技术和显示技术,特别地,本申请涉及屏下摄像组件及相应的有机发光二极管显示屏和终端设备。
背景技术
为满足客户的摄像需求,包括手机在内的电子终端通常具备摄像功能。为此,现有手机终端中一般具有前后摄像模组,前置摄像模组通常设置在显示屏的同侧,用于满足使用者的自拍等功能。然而,随着屏占比越来越大,对前置摄像头的布置也提出了越来越高的要求。
为减少摄像头对屏占比的影响,实现全面屏,不同厂家从不同的角度开发多种解决方案。一种技术方向是:将前置摄像模组布置在手机顶框,形成接近全面屏的刘海屏或水滴屏。另一种技术方向是:采用伸缩式的摄像模组以便隐藏和使用摄像头。当需要摄像时,可控制摄像头伸出手机(或其它电子设备)壳体之外进行拍摄;拍摄完毕后,摄像头缩回至手机(或其它电子设备)壳体中。然而,摄像头在不断的伸缩过程以及摄像头相对于手机(或其它电子设备)伸出时,容易受外力撞击而导致前置摄像损坏,并且更换困难。
近几个月,有厂家推出了屏下摄像方案,俗称“打孔屏”或“挖孔屏”。该项技术是:在显示屏打通孔或盲孔,将前置摄像模组置于通孔处或置于盲孔后方。这种技术可以省去用于带动摄像头伸缩的马达,有助于提升产品的可靠性。然而,在现有的技术条件下,显示屏的“打孔”或“挖孔”部分面积较大(例如圆形挖孔的孔径通常会大于4mm),这种挖孔会对用户体验造成负面影响。
显示技术领域,有机发光二极管显示屏(即OLED屏幕,其中OLED是Organic Light-Emitting Diode的缩写,有机发光二极管显示屏有时也被称为有机电致发光显示屏)不需要背光源即可发光,并且OLED屏幕在一定程度上是透明的。然 而,与玻璃、树脂等镜片材料不同,OLED屏幕内部具有复杂的微结构,这些微结构包括例如基于半导体工艺制作于基板上的大量发光结构及相应的用于对发光结构进行控制的微电路结构。屏幕内部的复杂微结构导致OLED屏幕的透光率远远小于玻璃、树脂等镜片材料。如果将前置摄像模组设置于现有的OLED屏幕的后端,OLED屏幕(尽管其具有一定的透光性)仍然会对前置摄像模组形成遮挡,无法进行成像。
现有的“打孔屏”技术中,OLED屏幕的打孔方案通常是打通孔,打通孔可以避免OLED屏幕的遮挡导致屏下摄像模组的进光量不足。另一方面,现有技术中还存在一种对LCD屏幕的背光源板进行打孔的方案,即盲孔屏方案。该方案中,可以仅打穿LCD屏幕的背光源板。然而,LCD屏幕本身的厚度通常明显大于OLED屏幕,这使得搭载屏下摄像模组的终端设备(例如手机)难以做薄。因此,人们可能会更加期待基于OLED屏幕的屏下摄像模组解决方案。为了进一步减小终端设备(例如手机)的厚度,人们还期待将前置摄像模组的一部分插入OLED屏幕的通孔中。然而,由于受到成像光路的光学原理的限制,为满足人们对成像质量的较高要求,前置摄像模组的径向尺寸(径向指垂直于光轴的方向)难以无限制地减小,这就导致OLED屏幕的通孔孔径较大。这种较大的通孔孔径导致屏幕显示的画面存在明显的挖孔,视觉体验不佳。
综上所述,当前市场上迫切需要一种可减小终端设备厚度以及可缩小打孔尺寸的屏下摄像解决方案。
发明内容
本发明旨在提供一种能够克服现有技术的至少一个缺陷的解决方案。
根据本发明的一个方面,提供了一种屏下摄像组件,其包括有机发光二极管显示屏和摄像模组。所述有机发光二极管显示屏具有第一通孔。所述摄像模组的光轴垂直于所述有机发光二极管显示屏的表面,并且所述摄像模组设置于所述第一通孔的后端,其中,所述摄像模组包括伸入所述第一通孔的伸入部和位于所述伸入部后端的主体部,所述伸入部包括至少一个第一光学元件,所述主体部包括组立在一起的多个第二光学元件,并且,通过使所述第一光学元件不同于所述第二光学元件的制作材料和/或使所述第一光学元件采用不同于所述第二光学元件的支撑结构或支撑方式,来使所述伸入部的外侧面相对于所述主体部的外侧面向所述光轴缩进。
其中,所述至少一个第一光学元件为单个第一透镜,所述多个第二光学元件包括多个第二透镜。
其中,所述至少一个第一光学元件为单个滤色片。
其中,所述至少一个第一光学元件为一个滤色片和一个第一透镜,所述多个第二光学元件包括多个第二透镜。
其中,所述第一透镜为玻璃透镜,所述第二透镜为塑料透镜。
其中,所述第一透镜和所述第二透镜安装于一体成型的同一镜筒内;所述镜筒包括容纳在所述第一通孔内的第一分段和位于所述第一通孔外的第二分段,其中所述第一透镜的外侧面承靠于所述第一分段的内侧面;相对于所述第二分段的外侧面,所述第一分段的外侧面向所述光轴缩进。
其中,所述第一分段的厚度小于所述第二分段的厚度。
其中,所述镜筒内侧面具有多级台阶,通过将所述第一透镜和所述第二透镜依次嵌入所述多级台阶来将所述第一透镜和所述第二透镜组立在一起。
其中,所述伸入部具有第一镜筒,所述第一透镜安装于所述第一镜筒内;所述主体部具有第二镜筒,所述多个第二透镜安装于所述第二镜筒内。
其中,通过粘结所述第二镜筒的顶面与所述第一镜筒和/或所述第一透镜的结构区的底面,使所述第一透镜和所述多个第二透镜组立在一起。
其中,所述伸入部与所述主体部经主动校准后粘合,所述主动校准是基于实际成像结果对所述伸入部与所述主体部的相对位置进行优化调整的过程。
其中,所述伸入部与所述主体部的中轴线具有不为零的夹角。
其中,所述第一透镜的外侧面无镜筒支撑。
其中,所述多个第二透镜通过镜筒的支撑实现组立;所述第一透镜包括用于成像的第一光学区和围绕在所述第一光学区周围的第一结构区,所述第一结构区的底面粘结于所述镜筒的顶面。
其中,所述镜筒的顶面承靠于所述有机发光二极管显示屏的底面。
其中,所述有机发光二极管显示屏具有盖板,所述盖板、所述第一通孔的侧壁、所述镜筒的顶面、所述第一透镜的顶面以及用于粘合的胶材共同构成封闭的腔体。
其中,所述伸入部与所述主体部经主动校准后粘合,所述主动校准是基于实际成像结果对所述伸入部与所述主体部的相对位置进行优化调整的过程。
其中,所述伸入部与所述主体部的中轴线具有不为零的夹角。
其中,所述多个第二光学元件通过镜筒的支撑实现组立,所述滤色片的底面粘结于所述镜筒的顶面。
其中,所述多个第二光学元件通过镜筒的支撑实现组立,所述有机发光二极管显示屏具有盖板,所述滤色片的顶面通过光学胶粘合于所述盖板的底面。
其中,所述镜筒的顶面承靠于所述有机发光二极管显示屏的底面。
其中,所述有机发光二极管显示屏具有盖板,所述盖板、所述第一通孔的侧壁、所述镜筒的顶面、所述滤色片的端面(端面为顶面或底面)以及用于粘合的胶材共同构成封闭的腔体。
其中,所述第一通孔侧壁具有吸光层。
其中,所述镜筒的顶部作为所述摄像模组的光阑。
其中,所述镜筒的顶部作为所述摄像模组的光阑。
其中,所述第一镜筒的顶部作为所述摄像模组的光阑。
其中,所述有机发光二极管显示屏具有基板,所述基板设置定位标记,所述定位标记用于在组装过程将所述摄像模组对准所述通孔。
根据本申请的另一方面,还提供了一种终端设备,其包括前文所述的任一屏下摄像组件。
其中,所述摄像模组作为所述终端设备的前置摄像模组,所述有机发光二极管显示屏作为所述终端设备正面的显示面板。
与现有技术相比,本申请具有下列至少一个技术效果:
1、本申请可以在保证屏下摄像模组进光量的同时,帮助缩小“打孔屏”的孔的尺寸,从而提升用户体验。这里孔的尺寸可以理解为:显示设备亮屏时,用户可从正面观察到的OLED显示屏中的孔的大小。
2、本申请的一些实施例中,通过将位于最前端的第一透镜的材质替换为玻璃(或折射率较大且适于成型为透镜的其它材质)来缩小第一透镜的径向尺寸,从而在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
3、本申请的一些实施例中,通过将对应于最前端的第一透镜的镜筒侧壁减薄来减小摄像模组顶部的径向尺寸,从而在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。需注意,对于常见的用于消费电子设备的摄像模组来说,所有透镜中位于最前端的第一透镜通常具有较小的径向尺寸且质量较轻,所 以有条件将对应于该第一透镜的镜筒侧壁减薄。由于第一透镜的质量较轻,因此对应的镜筒侧壁减薄后仍然可以有效地支撑该第一透镜。
4、本申请的一些实施例中,镜筒采用分体式设计,第一透镜安装于单独的第一镜筒,其余透镜(可称为第二透镜)则可以通过第二镜筒组立在一起。这种设计下,由于第一镜筒不需要通过自身的支撑作用来组立多个透镜,因此其侧壁厚度可以减小,从而在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
5、本申请的一些实施例中,第一透镜采用无镜筒设计,这种设计由于省去了第一透镜外围的镜筒,因此可以在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
6、本申请的一些实施例中,可以通过将滤色片前置,即将滤色片设置于OLED显示屏的通孔内。这种设计可以在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
7、本申请的一些实施例中,还可以通过在通孔侧壁设置吸光层来抑制折射和反射造成的杂散光。
8、本申请的一些实施例中,可以使镜筒的顶面承靠于OLED显示屏的底面,再结合OLED显示屏顶部的盖板,可以将所述通孔构造成一个封闭的腔体,以避免摄像模组的镜头(即光学系统)中进入污点。这种将所述通孔构造成封闭腔体的设计尤其适合第一透镜采用无镜筒设计的情形以及将滤色片前置的情形。
9、本申请的一些实施例中,可以在通孔侧壁设置吸光层,这一设计尤其适合第一透镜采用无镜筒设计的情形以及将滤色片前置的情形。
10、本申请的一些实施例中,通过将镜筒的顶部作为光阑,可以使得摄像模组的进光面更加接近OLED显示屏的表面(正面),从而减少外界光传输到摄像模组的传输距离,进而进一步地提高屏下摄像模组的进光量。换句话说,对于相同的进光量要求来说,这种设计可以允许OLED显示屏具有更小的通孔孔径。
11、本申请的一些实施例中,镜筒采用分体式设计,并且将第一透镜的镜筒的顶部作为光阑。这种设计可以允许OLED显示屏具有更小的通孔孔径。
12、本申请的屏下摄像组件特别适合用于智能手机,该屏下摄像组件中的摄像模组特别适于作为智能手机的前置摄像模组。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1示出了本申请的一个实施例的屏下摄像组件的剖面示意图;
图2示出了图1中的有机发光二极管显示屏的俯视示意图;
图3示出了一种典型的有机发光二极管显示屏100的剖面示意图;
图4示出了本申请一个实施例中的屏下摄像组件的剖面示意图;
图5示出了本申请中一个基于分体式镜筒的实施例的屏下摄像组件的剖面示意图;
图6示出了本申请中一个基于滤色片前置设计的实施例的屏下摄像组件的剖面示意图;
图7示出了本申请中另一个基于滤色片前置设计的实施例的屏下摄像组件的剖面示意图;
图8示出了本申请中又一个基于滤色片前置设计的实施例的屏下摄像组件的剖面示意图;
图9示出了本申请的一个实施例中的有机发光二极管显示屏的剖面示意图;
图10示出了图3中的显示层、缓冲层及周边其它功能层的细节结构;
图11示出了一个具有定位标记的OLED屏幕的基板的示意图;
图12示出了一种不均匀地较小镜筒第一分段厚度的俯视示意图;
图13示出了本申请的基于分体式镜筒的另一个实施例的屏下摄像组件的剖面示意图;
图14示出了本申请的基于分体式镜筒的又一个实施例的屏下摄像组件的剖面示意图;
图15示出了本申请的基于分体式镜筒的再一个实施例的屏下摄像组件的剖面示意图;
图16示出了由封装材料层和油墨层共同覆盖第一通孔侧壁的示意图;
图17示出了本申请的一个实施例中的第一透镜。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了本申请的一个实施例的屏下摄像组件的剖面示意图。参考图1,所述屏下摄像组件包括有机发光二极管显示屏100(即OLED屏幕)和位于该有机发光二极管显示屏100后端的摄像模组200。摄像模组200的光轴ax大致垂直于所 述有机发光二极管显示屏100的表面101。这里“后端”是指摄像模组200的成像光路中靠近像方的一端。所述摄像模组200位于有机发光二极管显示屏100的屏下摄像区域120的后端。其中,屏下摄像区域120是有机发光二极管显示屏100中与摄像模组200适配的一个区域。进一步地,图2示出了图1中的有机发光二极管显示屏的俯视示意图。参考图2,有机发光二极管显示屏的显示区域包括屏下摄像区域120和非屏下摄像区域110。屏下摄像区域120可以是圆形的,其尺寸可以与摄像模组200的尺寸适配。屏下摄像区域120可以被非屏下摄像区域110包围。
本申请中,有机发光二极管显示屏100采用了通孔设计,即利用贯穿有机发光二极管显示屏的通孔(其中盖板可以不被贯穿,对于这一点在下文中还有进一步地描述)来形成所述屏下摄像区域120。为便于理解,下面先对有机发光二极管显示屏的结构做简要描述。
图3示出了一种典型的有机发光二极管显示屏100的剖面示意图。参考图3,该有机发光二极管显示屏100包括:基板131、缓冲层132、位于缓冲层132上方的显示层133、覆盖所述显示层133的封装层134、位于所述封装层134上方的偏光层135以及覆盖在所述偏光层135上方的盖板136。
进一步地,图4示出了本申请一个实施例中的屏下摄像组件的剖面示意图。参考图4,本实施例中,屏下摄像组件包括有机发光二极管显示屏100和摄像模组200。其中,有机发光二极管显示屏100具有第一通孔140,该第一通孔140形成所述屏下摄像区域。摄像模组200的光轴垂直于所述有机发光二极管显示屏100的表面,并且所述摄像模组200设置于所述第一通孔140的后端。其中,所述摄像模组200包括伸入所述第一通孔140的伸入部210和位于所述伸入部210后端的主体部220(其中主体部220位于所述第一通孔140的外部)。所述伸入部210包括至少一个第一光学元件211,所述主体部220包括组立在一起的多个第二光学元件221。参考图4,本实施例中,所述至少一个第一光学元件211为单个第一透镜,所述多个第二光学元件221包括多个第二透镜。所述第一透镜为玻璃透镜,所述第二透镜为塑料透镜。玻璃镜片可以比塑料镜片以更小尺寸成型,因此有助于使摄像模组的顶部(伸入部210)伸入孔径更小的第一通孔140中。本实施例中,通过将位于最前端的第一透镜的材质替换为玻璃(或折射率较大且适于成型为透镜的其它材质)来缩小第一透镜的径向尺寸,从而在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
进一步地,仍然参考图4,在本申请的另一个实施例中,所述第一透镜和所述第二透镜安装于一体成型的同一镜筒230内。所述镜筒230包括容纳在所述第一通孔140内的第一分段231和位于所述第一通孔140外的第二分段232,其中所述第一透镜的外侧面承靠于所述第一分段231的内侧面。相对于所述第二分段的外侧面,所述第一分段的外侧面向所述摄像模组的光轴缩进。其中,所述镜筒内侧面可以具有多级台阶,通过将所述第一透镜和所述第二透镜依次嵌入所述多级台阶(需注意,为简化图面,多级台阶并未在图4中示出)来将所述第一透镜和所述第二透镜组立在一起。本实施例中,摄像模组200可以分为伸入部210和主体部220。第一分段231和安装于第一分段231的第一光学元件211(例如第一透镜)可以构成摄像模组200的伸入部210,该伸入部210伸入所述第一通孔140内。主体部220则位于第一通孔140外。主体部220可以包括第二分段232和安装在第二分段232的多个第二光学元件221(例如第二透镜),还可以包括感光组件(需注意图4中未示出了感光组件,感光组件可以包括感光芯片、线路板和滤色片等)。本实施例中,通过将对应于最前端的第一透镜的镜筒侧壁减薄来减小摄像模组顶部的径向尺寸,从而在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。需注意,对于常见的用于消费电子设备(尤其是智能手机)的摄像模组来说,所有透镜中位于最前端的第一透镜通常具有较小的径向尺寸且质量较轻,所以有条件将对应于该第一透镜的镜筒侧壁减薄。由于第一透镜的质量较轻,因此对应的镜筒侧壁减薄后仍然可以有效地支撑该第一透镜。在具体实现上,侧壁减薄可以是均匀的减薄,即,镜筒厚度均匀地减小,也可以是镜筒部分区域的厚度减小。比如,图12示出了一种不均匀地较小镜筒第一分段厚度的俯视示意图。参考图12,可以先制作圆形的镜筒,然后在第一分段处,基于去除工艺(例如切削)去掉图中四周白色部分的镜筒材料(即去除部分231a),从而获得减薄的镜筒第一分段231的外轮廓。相应地,显示屏的第一通孔的形状可以与经减薄处理后的镜筒第一分段的形状匹配。当然,第一分段“减薄”的镜筒也可以在镜筒成型时直接形成,比如,在注塑镜筒时,通过模具的设计,直接形成第一分段“减薄”的镜筒。
进一步地,仍然参考图4,在本申请的一个实施例中,所述第一分段的厚度小于所述第二分段的厚度。这里的厚度是指径向尺寸,即垂直于摄像模组光轴的方向的尺寸。
为简化图面,图4中并未示出摄像模组的感光组件部分,即图4中未示出线路 板、感光芯片、滤色片、镜座等组装成感光组件的常见部件,这些部件均可以是本申请中的摄像模组的组成部分。
进一步地,图5示出了本申请中一个基于分体式镜筒的实施例的屏下摄像组件的剖面示意图。参考图5,本实施例中,屏下摄像组件包括有机发光二极管显示屏100和摄像模组200。其中,有机发光二极管显示屏100具有第一通孔140,该第一通孔140形成屏下摄像区域。摄像模组200的光轴垂直于所述有机发光二极管显示屏100的表面,并且所述摄像模组200设置于所述第一通孔140的后端。其中,所述摄像模组200包括伸入所述第一通孔140的伸入部210和位于所述伸入部210后端的主体部220,所述伸入部210包括至少一个第一光学元件211,所述主体部220包括组立在一起的多个第二光学元件221。参考图5,本实施例中,所述至少一个第一光学元件211为单个第一透镜,所述多个第二光学元件221包括多个第二透镜。本实施例中采用了分体式镜筒结构。具体来说,所述伸入部210具有第一镜筒241,所述第一透镜安装于所述第一镜筒241内;所述主体部220具有第二镜筒242,所述多个第二透镜安装于所述第二镜筒242内。本实施例中,通过粘结所述第二镜筒242的顶面与所述第一镜筒241和/或所述第一透镜的结构区的底面,使所述第一透镜和所述多个第二透镜组立在一起。所述伸入部210与所述主体部220可以经主动校准后粘合,所述主动校准是基于实际成像结果对所述伸入部与所述主体部的相对位置进行优化调整的过程。作为主动校准的结果,所述伸入部与所述主体部的中轴线可以具有不为零的夹角。由于镜片数量较多,镜筒需达到一定尺寸才能保持强度以将多个镜片组立为稳定可靠的镜片组。而对于分体式镜筒(分体式镜头)来说,第一镜筒只需承载一个或数量较少镜片,因此则可成型为小头部镜头。光阑可在第一镜筒顶部或第二镜筒顶部,可以用镜筒(镜筒通常是黑色的以达到吸光效果,因此也可以被称为黑物)或隔圈充当光阑。综上所述,本实施例的这种设计下,由于第一镜筒不需要通过自身的支撑作用来组立多个透镜,因此其侧壁厚度可以减小,从而在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
图5所示的实施例中,可以先将第一镜筒241和第二镜筒242组装,进而组装成完整的摄像模组(含感光组件),最后再将摄像模组与显示屏组装在一起,构成完整的屏下摄像组件;也可以先将第一镜筒241和第二镜筒242组装,得到完整的光学镜头,然后将光学镜头与显示屏组装在一起,最后再将感光组件组装至光 学镜头的后端,从而构成完整的屏下摄像组件。
进一步地,图13示出了本申请的基于分体式镜筒的另一个实施例的屏下摄像组件的剖面示意图。参考图13,本实施例中,对于基于分体式镜筒的屏下摄像组件,可以先将所述摄像模组200的伸入部210与显示屏100组装。此时,伸入部210的顶部可以和显示屏100的盖板136的底部贴合,而伸入部210的外侧面和显示屏100的第一通孔140的内壁141不贴合。具体来说,伸入部210的顶面和显示屏100的盖板136的底面可以通过胶材粘合。
进一步地,图14示出了本申请的基于分体式镜筒的又一个实施例的屏下摄像组件的剖面示意图。参考图14,本实施例中,伸入部210可以通过其外侧面211和第一通孔140的侧壁141(内壁)贴合,而其顶面和显示屏盖板底面不贴合(或者说不接触)。具体实现上,可以先将伸入部210置于第一通孔140内并将其外侧面211与显示屏100的第一通孔140的侧壁141(内壁)胶合,然后再将伸入部210的底面与主体部220的顶面粘合构成完整的摄像模组(或屏下摄像组件)。其中,将伸入部210的底面与主体部220的顶面的粘结可以基于前述主动校准技术完成,即基于实际成像结果对所述伸入部与所述主体部的相对位置进行优化调整后,再将伸入部210的底面与主体部220的顶面粘合。
进一步地,图15示出了本申请的基于分体式镜筒的再一个实施例的屏下摄像组件的剖面示意图。参考图15,本实施例中,伸入部210顶面和显示屏100的盖板136的底面贴合,同时,其侧壁(外侧面)和第一通孔140的内壁141贴合。换句话说,伸入部210可以通过顶面和侧面同时与显示屏的盖板136和第一通孔140的内壁141的胶合。在具体实现上,可以先将伸入部210与显示屏100粘结,然后再将伸入部210与主体部220粘结,构成完整的摄像模组(或屏下摄像组件)。其中,将伸入部210的底面与主体部220的顶面的粘结可以基于前述主动校准技术完成,即基于实际成像结果对所述伸入部与所述主体部的相对位置进行优化调整后,再将伸入部的底面与主体部的顶面粘合。进一步地,本实施例中,还可以将滤色片290安装在伸入部210的第一镜筒241和主体部220的第二镜筒242之间。由于滤色片290被前置,所以有助于减小摄像模组200的后焦,从而帮助减小终端设备(例如智能手机)的厚度。上述实施例中,感光组件可以先与主体部220的第二镜筒242粘合,再与伸入部241粘合;感光组件也可以待主体部220的第二镜筒242与伸入部210的第一镜筒241粘合后,再与第二镜筒242粘合。
进一步地,在本申请的另一实施例中,还提供了一种基于图5实施例的变形 实施例。该变形实施例中,所述第一透镜的外侧面无镜筒支撑(即取消了图5中的第一镜筒)。所述多个第二透镜仍然通过镜筒的支撑实现组立。所述第一透镜包括用于成像的第一光学区和围绕在所述第一光学区周围的第一结构区,所述第一结构区的底面粘结于所述镜筒的顶面。这种设计由于省去了第一透镜外围的镜筒,因此可以在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
进一步地,图6示出了本申请中一个基于滤色片前置设计的实施例的屏下摄像组件的剖面示意图。参考图6,本实施例中,屏下摄像组件包括有机发光二极管显示屏100和摄像模组200。其中,有机发光二极管显示屏100具有第一通孔140,该第一通孔140形成屏下摄像区域。摄像模组200的光轴垂直于所述有机发光二极管显示屏100的表面,并且所述摄像模组200设置于所述第一通孔140的后端。其中,所述摄像模组200包括伸入所述第一通孔140的伸入部210和位于所述伸入部210后端的主体部220,所述伸入部210包括至少一个第一光学元件211,所述主体部220包括组立在一起的多个第二光学元件221。参考图6,本实施例中,所述至少一个第一光学元件211为单个滤色片,所述多个第二光学元件221包括多个透镜,这些透镜通过镜筒230的支撑实现组立,所述滤色片的底面粘结于所述镜筒230的顶面。本实施例中,滤色片前置,镜筒230顶部充当光阑。滤色片前置可降低摄像模组的镜头后焦,减小摄像模组的整体尺寸。
进一步地,图7示出了本申请中另一个基于滤色片前置设计的实施例的屏下摄像组件的剖面示意图。参考图7,本实施例中,滤色片前置,同时利用滤色片表面的丝印作为光阑。例如可以基于丝印工艺在滤色片的表面制作吸光层211a,从而起到防杂光的作用。
进一步地,图8示出了本申请中又一个基于滤色片前置设计的实施例的屏下摄像组件的剖面示意图。参考图8,本实施例中滤色片贴于盖板。具体来说,本实施例中,所述多个第二光学元件221通过镜筒230的支撑实现组立,所述有机发光二极管显示屏100具有盖板136,所述滤色片(即图8中所示的第一光学元件211)的顶面通过光学胶粘合于所述盖板136的底面。本实施例中,所述镜筒230的顶面承靠于所述有机发光二极管显示屏100的底面。所述盖板136、所述第一通孔140的侧壁141、所述镜筒230的顶面、所述滤色片的底面以及用于粘合的胶材共同构成封闭的腔体。
进一步地,仍然参考图4,在本申请的一个实施例中,所述盖板136、所述第 一通孔140的侧壁141、所述镜筒230的顶面、所述第一透镜的顶面以及用于粘合的胶材可以共同构成封闭的腔体。本实施例中,镜筒230的顶面是指包含了台阶面的镜筒顶部的外表面。
进一步地,仍然参考图5,在本申请的一个实施例中,所述盖板136、所述第一通孔140的侧壁141、所述镜筒的顶面、所述第一透镜的顶面以及用于粘合的胶材可以共同构成封闭的腔体。本实施例中,镜筒包括第一镜筒231和第二镜筒232,二者粘合后构成一个完整的镜筒。本实施例中,镜筒的顶面是指包含了台阶面的镜筒顶部的外表面。
进一步地,在本申请的一个实施例中,所述第一透镜采用无镜筒设计,多个第二透镜则通过镜筒组立在一起。所述第一透镜包括用于成像的第一光学区和围绕在所述第一光学区周围的第一结构区,所述第一结构区的底面粘结于所述镜筒的顶面。并且,所述镜筒的顶面承靠于所述有机发光二极管显示屏的底面。所述盖板、所述第一通孔的侧壁、所述镜筒的顶面、所述第一透镜的顶面以及用于粘合的胶材可以共同构成封闭的腔体。
进一步地,在本申请的一些实施例中,所述滤色片前置设计可以与前述第一透镜的设计结合起来使用。例如,所述伸入部的至少一个第一光学元件可以包括滤色片和一个第一透镜。具体来说,可以在图4或图5的实施例的基础上,在通孔内增加一滤色片。该滤色片可以粘附于盖板的底面,也可以粘附于镜筒或第一镜筒的顶面。在增加滤色片后,第一通孔中具有两个第一光学元件。换句话说,摄像模组的伸入部具有两个第一光学元件。
综上所述,本申请中,可以通过使所述第一光学元件的制作材料不同于所述第二光学元件和/或使所述第一光学元件采用不同于所述第二光学元件的支撑结构或支撑方式,来使所述伸入部的外侧面相对于所述主体部的外侧面向所述光轴缩进。从而在光学设计不变或基本不变的前提下,使摄像模组的顶部可以伸入孔径更小的通孔,进而改善“打孔屏”的视觉体验并减小终端设备的厚度。
进一步地,图9示出了本申请的一个实施例中的有机发光二极管显示屏的剖面示意图。参考图9,本实施例的显示屏中,所述第一通孔侧壁可以具有吸光层139(除图9外,也可以参考图4-图8)。这一设计可以抑制第一通孔侧壁的反射和折射产生的杂散光。特别地,在第一通孔侧壁设置吸光层139,特别适合第一透镜采用无镜筒设计的情形以及将滤色片前置的情形。在一个实施例中,所述在所述第一通孔的侧壁涂覆油墨层,以形成所述吸光层。图16示出了由封装材料层 和油墨层共同覆盖第一通孔侧壁的示意图。参考图16,在另一个实施例中,可以第一通孔侧壁覆盖封装材料层,然后再在封装材料层上涂覆油墨层,以形成所述吸光层139。本实施例中,封装层134可以向下弯折并延伸至第一通孔140侧壁,形成所述封装材料层134a。在其它实施例中,吸光层139还可以用黑色胶材来形成,该黑色胶材可以同时作为粘合用的胶材。例如在一些实施例中,该黑色胶材可用于将镜筒的顶面与基板的底面粘合,以及用于将第一镜筒或第一光学元件的外侧面与第一通孔的侧壁粘合。
进一步地,在本申请的一个实施例中,有机发光二极管显示屏(即OLED屏幕)中,盖板可以是玻璃盖板。需注意,对于贯穿显示屏除盖板以外的各个功能层的孔,业界通常称之为通孔,本文中沿用了这一概念。换句话说,本申请中,有机发光二极管显示屏100的通孔是不贯穿盖板的。通孔不贯穿盖板,可以避免杂物掉入通孔中,影响屏下摄像模组的成像。
进一步地,在本申请的一个实施例中,基板可以由玻璃或者透明塑料制成。其中,透明塑料可以是:聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚烯丙基化物(polyallylate)、聚酰亚胺、聚碳酸酯(PC)、三乙酸纤维素(TAC)和/或乙酸丙酸纤维素(CAP)组成的组中选择的有机材料。
进一步地,在本申请的一个实施例中,显示层是含有像素发光结构的功能层。通常来说,显示层的上方和下方设置两个电极层,需注意图3中并未示出这两个电极层。这里将两个电极层分别称为第一电极(或第一电极层)和第二电极(或第二电极层)。其中第一电极可被图案化。图10示出了图3中的显示层、缓冲层及周边其它功能层的细节结构。参考图10,显示层133包括第一电极133b、像素层133a与第二电极133c,像素层133a可以包括多个像素发光结构138和填充在所述多个像素发光结构138之间间隙的像素限定结构137。进一步地,像素发光结构138可以包括电子注入层、电子传输层、发光材料层和空穴传输层、空穴注入层。第一电极与第二电极可以分别覆盖电子注入层与空穴注入层。本实施例中,第一电极为金属阴极,第二电极为阳极,阳极可以采用氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟(In2O3)、氧化铟镓(IGO)和氧化铝锌(AZO)组成的组中选择的至少一种材料。像素电极均需覆盖发光材料表面,阳极具有透光性,而第一电极可以为银或银合金等,使得阴极不具有透光性(也可以通过镀反射膜使得阴极不具有透光性),进而使得发光层材料发出的光全部从阳极透出,薄膜 晶体管的漏电极与第一电极连接从而与像素发光结构导通,将驱动发光的信号传输到OLED屏幕的显示层。
进一步地,仍然参考图10,在本申请的一个实施例中,缓冲层132可以用作阻挡层,用于减少或防止杂质离子扩散到显示层133中、减少或防止外部的空气或湿气穿过其进行渗透。缓冲层132还可以使基底的表面平坦化。另外,缓冲层通常还包括TFT驱动层,TFT驱动层具有多个对应于像素发光结构的TFT单元(即薄膜晶体管132a)以便驱动所述像素发光结构发光或关闭(有时还可以驱动像素发光结构改变亮度)。薄膜晶体管132a可以形成在缓冲层的主体材料上,其源电极或栅电极与显示层的第一电极133b相连接。
进一步地,在本申请的一个实施例中,封装层(TFE)为薄膜封装层,其位于显示层之上。薄膜封装层可以由一有机薄膜和一无机薄膜组成,或者多个有机膜与无机膜交替堆叠而成。薄膜封装层作用是避免显示层受外部湿气或氧气的影响,其中无机膜稳定的阻挡外部湿气和氧气,而有机膜可以吸收无机膜上的应力以给予无机膜柔性。
进一步地,在本申请的一个实施例中,偏光层(POL)包括一偏光片和1/4波片,用于减少自然光的反射,提高显示屏对比度,通常偏光层还包括一触控层(或称为触摸层)。
进一步地,图11示出了一个具有定位标记的OLED屏幕的基板的示意图。参考图11,在本申请的一个实施例中,为便于组装屏下摄像组件,可以在OLED屏幕的基板设置至少两个定位标记150,该定位标记150用于OLED屏幕与摄像模组组装过程中的位置识别,以提高组装精度(例如提高通光孔的对准精度)。该定位标记与摄像模组在显示屏的投影不重叠,以便摄像模组和显示屏在组装时能实时校正位置。摄像模组与OLED屏幕可以在接触面设置胶材进行粘接固定,也可以摄像模组紧贴OLED屏幕,通过侧边粘胶来粘结,或者两处(接触面和侧面)同时粘接。定位标记可以为一油墨图案,或者可以激光打标实现,也可以为OLED屏幕的基材挖槽而成,或者是与基材一体成型的特殊结构。
进一步地,在本申请的一个实施例中,还提供了一种终端设备,其包括前文任意实施例所述的屏下摄像组件。其中,所述摄像模组可以作为所述终端设备的前置摄像模组,所述有机发光二极管显示屏可以作为所述终端设备正面的显示面板。
进一步地,图17示出了本申请的一个实施例中的第一透镜。本实施例中,所 述屏下摄像组件中,所述第一光学元件211为第一透镜且该第一透镜为裸镜片(即摄像模组采用分体式结构且伸入部不具有第一镜筒)。该第一透镜可以采用模造玻璃镜片。所述第一透镜包括用于成像的第一光学区211a和围绕所述第一光学区211a的第一结构区211b。其中第一光学区211a的外径D1(外直径)可以为1.4mm,第一结构区的外径D2(外直径)可以为2.5mm。需注意第一光学区的外径实际上就是第一结构区的内径。对于透镜组来说,模造玻璃镜片可以比注塑成型镜片具有更小的径向尺寸,因此有助于减小显示屏的开孔尺寸。容易理解,当第一透镜的第一结构区的外径小于2.5mm时,则更加有助于减小显示屏的开孔尺寸。在其它实施例中,上述模造玻璃镜片也可以作为第一光学元件,以便减小第一光学元件径向尺寸,从而帮助减小显示屏的开孔尺寸。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (29)

  1. 屏下摄像组件,其特征在于,包括:
    有机发光二极管显示屏,其具有第一通孔;以及
    摄像模组,其光轴垂直于所述有机发光二极管显示屏的表面,并且所述摄像模组设置于所述第一通孔的后端,
    其中,所述摄像模组包括伸入所述第一通孔的伸入部和位于所述伸入部后端的主体部,所述伸入部包括至少一个第一光学元件,所述主体部包括组立在一起的多个第二光学元件,并且,通过使所述第一光学元件不同于所述第二光学元件的制作材料和/或使所述第一光学元件采用不同于所述第二光学元件的支撑结构或支撑方式,来使所述伸入部的外侧面相对于所述主体部的外侧面向所述光轴缩进。
  2. 根据权利要求1所述的屏下摄像组件,其特征在于,所述至少一个第一光学元件为单个第一透镜,所述多个第二光学元件包括多个第二透镜。
  3. 根据权利要求1所述的屏下摄像组件,其特征在于,所述至少一个第一光学元件为单个滤色片。
  4. 根据权利要求1所述的屏下摄像组件,其特征在于,所述至少一个第一光学元件为一个滤色片和一个第一透镜,所述多个第二光学元件包括多个第二透镜。
  5. 根据权利要求2或4所述的屏下摄像组件,其特征在于,所述第一透镜为玻璃透镜,所述第二透镜为塑料透镜。
  6. 根据权利要求2或4所述的屏下摄像组件,其特征在于,所述第一透镜和所述第二透镜安装于一体成型的同一镜筒内;所述镜筒包括容纳在所述第一通孔内的第一分段和位于所述第一通孔外的第二分段,其中所述第一透镜的外侧面承靠于所述第一分段的内侧面;相对于所述第二分段的外侧面,所述第一分段的外侧面向所述光轴缩进。
  7. 根据权利要求6所述的屏下摄像组件,其特征在于,所述第一分段的厚度小于所述第二分段的厚度。
  8. 根据权利要求6所述的屏下摄像组件,其特征在于,所述镜筒内侧面具有多级台阶,通过将所述第一透镜和所述第二透镜依次嵌入所述多级台阶来将所述第一透镜和所述第二透镜组立在一起。
  9. 根据权利要求2或4所述的屏下摄像组件,其特征在于,所述伸入部具有第一镜筒,所述第一透镜安装于所述第一镜筒内;所述主体部具有第二镜筒,所述多个第二透镜安装于所述第二镜筒内。
  10. 根据权利要求9所述的屏下摄像组件,其特征在于,通过粘结所述第二镜筒的顶面与所述第一镜筒和/或所述第一透镜的结构区的底面,使所述第一透镜和所述多个第二透镜组立在一起。
  11. 根据权利要求9所述的屏下摄像组件,其特征在于,所述伸入部与所述主体部经主动校准后粘合,所述主动校准是基于实际成像结果对所述伸入部与所述主体部的相对位置进行优化调整的过程。
  12. 根据权利要求11所述的屏下摄像组件,其特征在于,所述伸入部与所述主体部的中轴线具有不为零的夹角。
  13. 根据权利要求2或4所述的屏下摄像组件,其特征在于,所述第一透镜的外侧面无镜筒支撑。
  14. 根据权利要求13所述的屏下摄像组件,其特征在于,所述多个第二透镜通过镜筒的支撑实现组立;所述第一透镜包括用于成像的第一光学区和围绕在所述第一光学区周围的第一结构区,所述第一结构区的底面粘结于所述镜筒的顶面。
  15. 根据权利要求14所述的屏下摄像组件,其特征在于,所述镜筒的顶面承靠于所述有机发光二极管显示屏的底面。
  16. 根据权利要求15所述的屏下摄像组件,其特征在于,所述有机发光二极管显示屏具有盖板,所述盖板、所述第一通孔的侧壁、所述镜筒的顶面、所述第一透镜的顶面以及用于粘合的胶材共同构成封闭的腔体。
  17. 根据权利要求14所述的屏下摄像组件,其特征在于,所述伸入部与所述主体部经主动校准后粘合,所述主动校准是基于实际成像结果对所述伸入部与所述主体部的相对位置进行优化调整的过程。
  18. 根据权利要求17所述的屏下摄像组件,其特征在于,所述伸入部与所述主体部的中轴线具有不为零的夹角。
  19. 根据权利要求3所述的屏下摄像组件,其特征在于,所述多个第二光学元件通过镜筒的支撑实现组立,所述滤色片的底面粘结于所述镜筒的顶面。
  20. 根据权利要求3所述的屏下摄像组件,其特征在于,所述多个第二光学元件通过镜筒的支撑实现组立,所述有机发光二极管显示屏具有盖板,所述滤色片的顶面通过光学胶粘合于所述盖板的底面。
  21. 根据权利要求19或20所述的屏下摄像组件,其特征在于,所述镜筒的顶面承靠于所述有机发光二极管显示屏的底面。
  22. 根据权利要求21所述的屏下摄像组件,其特征在于,所述有机发光二极管显示屏具有盖板,所述盖板、所述第一通孔的侧壁、所述镜筒的顶面、所述滤色片的顶面以及用于粘合的胶材共同构成封闭的腔体。
  23. 根据权利要求1所述的屏下摄像组件,其特征在于,所述第一通孔侧壁具有吸光层。
  24. 根据权利要求6所述的屏下摄像组件,其特征在于,所述镜筒的顶部作为所述摄像模组的光阑。
  25. 根据权利要求14所述的屏下摄像组件,其特征在于,所述镜筒的顶部作为所述摄像模组的光阑。
  26. 根据权利要求9所述的屏下摄像组件,其特征在于,所述第一镜筒的顶部作为所述摄像模组的光阑。
  27. 根据权利要求1所述的屏下摄像组件,其特征在于,所述有机发光二极管显示屏具有基板,所述基板设置定位标记,所述定位标记用于在组装过程将所述摄像模组对准所述通孔。
  28. 终端设备,其特征在于,包括权利要求1-27中任意一项所述的屏下摄像组件。
  29. 根据权利要求28所述的终端设备,其特征在于,所述摄像模组作为所述终端设备的前置摄像模组,所述有机发光二极管显示屏作为所述终端设备正面的显示面板。
PCT/CN2020/076395 2019-04-25 2020-02-24 屏下摄像组件及相应的有机发光二极管显示屏和终端设备 WO2020215878A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910339594.1A CN111866312A (zh) 2019-04-25 2019-04-25 屏下摄像组件及相应的有机发光二极管显示屏和终端设备
CN201910339594.1 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020215878A1 true WO2020215878A1 (zh) 2020-10-29

Family

ID=72941515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076395 WO2020215878A1 (zh) 2019-04-25 2020-02-24 屏下摄像组件及相应的有机发光二极管显示屏和终端设备

Country Status (2)

Country Link
CN (1) CN111866312A (zh)
WO (1) WO2020215878A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011588B2 (en) * 2019-08-26 2021-05-18 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display device
CN112929470A (zh) * 2021-01-20 2021-06-08 武汉科技大学 一种智能手机、前置摄像及显示补偿系统及封装方法
US20220094827A1 (en) * 2019-06-28 2022-03-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Cover plate assembly, display apparatus and electronic device
US11412120B2 (en) 2020-12-31 2022-08-09 Google Llc Reducing a hole-in-active-area size for flexible displays

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589589B (zh) * 2021-07-21 2022-12-23 武汉华星光电技术有限公司 显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292524B1 (en) * 2011-08-05 2012-10-23 Hon Hai Precision Industry Co., Ltd. Lens module and camera module having same
CN103913824A (zh) * 2012-12-31 2014-07-09 三星电子株式会社 拍摄镜头和使用所述拍摄镜头的拍摄设备
CN207067507U (zh) * 2017-07-25 2018-03-02 浙江舜宇光学有限公司 分体式镜头及摄像模组
CN107945683A (zh) * 2018-01-08 2018-04-20 陆少韬 应用到智能设备上的前端组件
CN208569148U (zh) * 2018-05-30 2019-03-01 宁波舜宇光电信息有限公司 光学镜头及摄像模组
CN208724047U (zh) * 2018-09-30 2019-04-09 Oppo(重庆)智能科技有限公司 镜头模组、摄像头模组及移动终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066610A (ja) * 2017-09-29 2019-04-25 ソニーセミコンダクタソリューションズ株式会社 撮像素子、撮像素子の製造方法、および、電子機器
CN107580092A (zh) * 2017-10-17 2018-01-12 黄河科技学院 具有透明屏幕下摄像头的全面屏手机及其操作方法
CN207528984U (zh) * 2017-10-25 2018-06-22 瑞声科技(新加坡)有限公司 镜头组件
CN208367291U (zh) * 2018-03-16 2019-01-11 宁波舜宇光电信息有限公司 光学镜头和摄像模组
CN108429835B (zh) * 2018-03-30 2020-03-24 Oppo广东移动通信有限公司 显示屏组件及移动终端
CN208433994U (zh) * 2018-04-26 2019-01-25 Oppo广东移动通信有限公司 终端显示屏组件及移动终端
CN208384291U (zh) * 2018-06-01 2019-01-15 Oppo广东移动通信有限公司 电子设备
CN208506341U (zh) * 2018-06-08 2019-02-15 宁波舜宇光电信息有限公司 光学镜头及摄像模组
CN208609068U (zh) * 2018-07-05 2019-03-15 北京小米移动软件有限公司 镜头、摄像头模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292524B1 (en) * 2011-08-05 2012-10-23 Hon Hai Precision Industry Co., Ltd. Lens module and camera module having same
CN103913824A (zh) * 2012-12-31 2014-07-09 三星电子株式会社 拍摄镜头和使用所述拍摄镜头的拍摄设备
CN207067507U (zh) * 2017-07-25 2018-03-02 浙江舜宇光学有限公司 分体式镜头及摄像模组
CN107945683A (zh) * 2018-01-08 2018-04-20 陆少韬 应用到智能设备上的前端组件
CN208569148U (zh) * 2018-05-30 2019-03-01 宁波舜宇光电信息有限公司 光学镜头及摄像模组
CN208724047U (zh) * 2018-09-30 2019-04-09 Oppo(重庆)智能科技有限公司 镜头模组、摄像头模组及移动终端

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220094827A1 (en) * 2019-06-28 2022-03-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Cover plate assembly, display apparatus and electronic device
US11011588B2 (en) * 2019-08-26 2021-05-18 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display device
US11412120B2 (en) 2020-12-31 2022-08-09 Google Llc Reducing a hole-in-active-area size for flexible displays
CN112929470A (zh) * 2021-01-20 2021-06-08 武汉科技大学 一种智能手机、前置摄像及显示补偿系统及封装方法
CN112929470B (zh) * 2021-01-20 2023-07-21 武汉科技大学 一种智能手机、前置摄像及显示补偿系统及封装方法

Also Published As

Publication number Publication date
CN111866312A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2020215878A1 (zh) 屏下摄像组件及相应的有机发光二极管显示屏和终端设备
WO2020215879A1 (zh) 屏下摄像组件及相应的有机发光二极管显示屏和终端设备
JP6817040B2 (ja) 表示装置及び電子機器
US11320681B2 (en) Display device and method of manufacturing the same
US20210367117A1 (en) Manufacturing method of display panel, display panel, and display device
TWI679630B (zh) 顯示裝置及顯示模組
CN106486611B (zh) 有机发光显示装置
US8534858B2 (en) Display device window protector having light-shielding film on inclined surface portion
US10522602B1 (en) Organic light-emitting display panel and display device
US10587738B2 (en) Display module and electronic device
WO2020108372A1 (zh) 显示面板及终端
US11005078B2 (en) Display apparatus
US20070035842A1 (en) Liquid-guide plate, backlight assembly and liquid crystal display having the same
TWI709793B (zh) 液晶顯示裝置
CN111312768A (zh) 显示基板及其制备方法、显示面板
CN109459883A (zh) 液晶显示器装置
WO2022222182A1 (zh) Oled显示面板和oled显示装置
WO2021068434A1 (zh) 背光模组、显示装置及背光模组的制作方法
WO2020133789A1 (zh) 一种显示面板及其终端器件
WO2023092680A1 (zh) 一种oled显示模组及显示终端
US11031443B2 (en) Organic light-emitting diode (OLED) display device including sensor disposed in groove of base substrate
TW201510816A (zh) 有機發光二極體顯示器
CN111787137A (zh) 显示装置
CN112864214B (zh) 显示模组及显示装置
WO2020192337A1 (zh) 屏下摄像组件及相应的终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794112

Country of ref document: EP

Kind code of ref document: A1