WO2020215863A1 - 基于内置摇摆柱的自复位导管架海洋平台结构系统 - Google Patents

基于内置摇摆柱的自复位导管架海洋平台结构系统 Download PDF

Info

Publication number
WO2020215863A1
WO2020215863A1 PCT/CN2020/075804 CN2020075804W WO2020215863A1 WO 2020215863 A1 WO2020215863 A1 WO 2020215863A1 CN 2020075804 W CN2020075804 W CN 2020075804W WO 2020215863 A1 WO2020215863 A1 WO 2020215863A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
jacket
damper
metal
fixed
Prior art date
Application number
PCT/CN2020/075804
Other languages
English (en)
French (fr)
Inventor
张纪刚
张君博
赵迪
刘锦昆
张宗峰
刘菲菲
贾栋
王胜
朱宝君
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to JP2021502838A priority Critical patent/JP7065465B2/ja
Publication of WO2020215863A1 publication Critical patent/WO2020215863A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto

Definitions

  • the invention belongs to the technical field of building structures for marine platforms, and relates to a self-resetting jacket marine platform structure system based on a built-in swing column.
  • the offshore platform is the main structural form of the medium-shallow offshore platform. It uses piles to pass through the pipe legs to fix the prefabricated jacket on the sea. Jackets and piles are the main load-bearing components, and other equipment floors and working areas are located on the platform. Under the dynamic loads of the marine environment such as wind, waves, currents, ice and earthquakes, the vibration response of the structure is very intense.
  • the swing column system is a new type of restorable anti-vibration structure, that is, a very rigid column is set on one side of the building, and the bottom of the column is connected to the foundation through a spherical hinge support, and the horizontal rigid chain rod is connected to the building.
  • the rocking structure system does not use the deformation of the structure itself to dissipate seismic energy, but relaxes the constraints of the structural system to form rocking members. Through the rocking of the structure, the structural deformation tends to be consistent, and the deformation is concentrated on the rocking column interface. Dampers are installed in the parts to consume.
  • the research results show that the swing column system can make the deformation zone between each layer of the structure uniform, effectively control the concentration of structural deformation, prevent the emergence of layer yield mechanism, and exert the overall anti-vibration and energy dissipation capabilities of the structure.
  • Tuned mass damper is a relatively mature passive control device in the field of structural vibration control.
  • TMD is composed of masses, springs and dampers.
  • the mass block adjusts its vibration frequency to near the frequency of the main structure and changes the resonance characteristics of the structure to achieve the purpose of vibration reduction.
  • the main working principle of the tuned mass damper is that when the structure is subjected to vibration, the rigidity or damping of the semi-active control system can be adjusted through a tiny external energy source to change the dynamic characteristics of the structure to reduce the vibration response of the structure.
  • the rocking column system and TMD have been applied to the building structure respectively, which has improved the overall vibration resistance and energy consumption of the building to a certain extent.
  • the existing scheme is only to set the rocking column on the side of the offshore platform where the rigidity is weaker, and can only control large displacement and large deformation in one direction.
  • the purpose of the present invention is to improve the use function of the current rocking system, optimize the arrangement position of the rocking member, increase the energy consumption capacity of the rocking system, and improve the seismic performance of the offshore platform system.
  • the self-resetting jacket marine platform structure system based on the built-in rocking column provided by the present invention can reasonably set the number and positions of the connecting devices connecting the rocking column and the platform according to actual needs, and can replace damaged parts at will after an earthquake.
  • the present invention provides a self-resetting jacket ocean platform structure system based on a built-in rocking column, which includes an ocean platform whose bottom end is fixedly arranged on a seabed foundation, and is characterized in that a rocking column is arranged between the jackets of the ocean platform ,
  • the bottom end of the rocking column and the seabed foundation are hinged through a spherical hinge support, the outer circumference of the side wall of the rocking column is fixed with a metal damper, and the metal damper and the jacket are hinged with several sets of rigid chain rods or fixed with several sets of springs;
  • the plane defined by the group of rigid chain rods or each group of springs is perpendicular to the central axis of the swing column.
  • the swing column includes an inner steel pipe column, an outer steel pipe sleeved on the sidewall and bottom of the inner steel pipe column, and a viscous damping material is filled between the inner steel pipe column and the outer steel pipe;
  • the outer pipe wall of the outer steel pipe is provided with a plurality of strip steel plates along the central axis direction, and the strip steel plates are evenly distributed along the outer pipe wall of the outer steel pipe.
  • the strip steel plate is provided with several groups of bolt holes along the central axis direction. The holes are respectively located in the plane defined by each group of rigid chain rods or each group of springs.
  • the swing column is fixed to the metal damper through bolt holes and high-strength bolts; the outer pipe base is welded to the bottom of the outer steel pipe, and the outer pipe base is fixed to the spherical hinge support .
  • a tuned mass damper is provided on the top of the rocking column, which includes a mass block, a damper spring, a damper, and a fixing piece.
  • the fixing piece is fixed on the top of the inner steel pipe column, and the mass block and the fixing piece are connected by a damper spring.
  • the two ends of the damper are respectively fixedly connected with the mass block and the fixed part, the damper is suspended between the mass block and the fixed part, and the bottom of the mass block is provided with smooth wheels.
  • the metal damper includes several sets of energy-consuming metal webs connected to the rocking column and an octagonal fixed steel ring arranged around the rocking column. Both ends of the energy-consuming metal webs are connected to the assembly groove plate and the assembly back respectively.
  • the board is integrally formed, and the assembly groove-shaped board is provided with grooves for the strip steel plate and bolt holes for the high-strength bolts;
  • the octagonal fixed steel ring is a hollow regular octagonal column structure, and the assembly back plate at the end of each group of energy-consuming metal webs is fixedly connected to the center of the side wall of the octagonal fixed steel ring.
  • one end of the spring is fixed to the spring assembly base, the spring assembly base is fixed to the center of the side wall of the octagonal fixed steel ring, the spring assembly base and the assembly back plate of the energy-consuming metal web are respectively located
  • the two sides of the side of the octagonal fixed steel ring are fastened; the other end of the spring is fixedly connected with the jacket through a fixed movable clamp.
  • the number of the strip-shaped steel plates is four; the number of each group of springs is four, and each group of springs is fixed to the metal dampers in a certain distance from top to bottom.
  • the hinged joint includes a single smooth convex tooth with a circular hole in the center, and a vertical single smooth
  • the assembly back plate with convex teeth, the vertical single smooth convex teeth and the assembly back plate are integrally formed, the assembly back plate and the side wall of the octagonal fixed steel ring are fixed in the center, the assembly back plate of the hinge joint and the energy-consuming metal web
  • the assembly back plates of the board are respectively located on the inner and outer sides of the side surface of the octagonal fixed steel ring to fasten the octagonal fixed steel ring;
  • the connecting head includes a single smooth convex tooth with a circular hole in the center, and a hinged movable clamp arranged in parallel with the single smooth convex tooth.
  • the inner diameter of the hinged movable clamp is the same as the outer diameter of the jacket, and the hinged movable clamp It is integrally formed with a single smooth convex tooth.
  • the rigid chain rod includes a metal double-sided double-branch smooth convex toothed rod and a bolt
  • the metal double-sided double-branch smooth convex toothed rod includes double-branch convex teeth at two ends that cooperate with a single smooth convex tooth, and a horizontal cross Rod, a rectangular connecting plate is arranged between the two double protruding teeth and the cross rod;
  • the double protruding teeth are provided with a circular hole that matches with the plug pins, and the plug pins respectively fix the double protruding teeth and the single smooth protruding teeth of the hinge joint and the connector;
  • the rectangular connecting plates are vertically arranged at the ends of the double convex teeth on the same side. Between the two rectangular connecting plates is a cross bar of the metal double-sided double smooth convex tooth bar. The side surface of the rectangular connecting plate is larger than the cross-section of the cross bar. .
  • the two ends of the metal double-sided double-branch smooth convex toothed rod have a stiffening plate at the upper and lower ends of the cross bar, and the stiffening plate is fixedly connected to the side of the rectangular connecting plate.
  • the number of the strip-shaped steel plates is four, the number of rigid chain rods in each group is two, and the two rigid chain rods in each group are arranged at 90° to each other, and the rigid chain rods of each group are arranged from top to bottom.
  • the metal dampers are fixed in turn.
  • the present invention can also be combined with other types of anti-seismic means, such as other types of energy dissipation damping dampers, such as corner dampers, etc., to achieve better anti-seismic effects.
  • other types of energy dissipation damping dampers such as corner dampers, etc.
  • the swing column of the present invention is not only limited to the use of the offshore platform structure system, but the device of the present invention can still be installed and applied in the frame structure of the civil engineering field.
  • the swing self-resetting component provided by the present invention can also be applied to common building structures such as shear wall structures, frame-shear wall structures, brick-concrete structures, steel structures, and steel-shaped steel concrete structures; at the same time, it can be arranged according to the full height of the building, and Can not be arranged according to the full height of the building, only arranged to several floors of the building.
  • the specific arrangement plan of the swing damping self-resetting component and the arrangement height of the swing column can completely depend on the needs of the owner.
  • the rocking self-resetting component should be arranged in the center of the building as much as possible, and no additional torsion will be generated under the action of ground vibration in any direction, so that the building will be stressed evenly.
  • the present invention makes full use of the advantages of the rocking column and the tuned mass damper TMD.
  • the rocking column is installed inside the platform with flexible layout and reasonable selection of the installation position. The change and impact on the original structure is small, and the original structure is not affected.
  • the rocking column is combined with the frame structure to form a rocking column assembly. Compared with the pure frame structure, this structure can enhance the integrity of the structure, and control the vibration of the platform in all directions, so that the jacket type offshore platform structure The overall force is applied to ensure that the structure of the offshore platform will not collapse due to partial yield failure, thereby achieving a better vibration reduction effect.
  • the swing column of the present invention adopts a casing composite structure, and the interlayer between the outer casing and the inner column is filled with viscoelastic damping material.
  • the energy consumption capacity of the swing column can be enhanced, thereby reducing the acceleration of the offshore platform structure, so as to ensure the comfort of the staff in the living area and the safe operation of the electronic equipment.
  • a tuned mass damper is installed on the top of the swing column.
  • the tuned mass damper is used to adjust the vibration frequency to near the frequency of the main structure to change the resonance characteristics of the structure to achieve a vibration reduction effect.
  • the structure vibration control is performed for the first natural frequency.
  • the facility can achieve a vibration reduction effect through parameter optimization and changing the structural resonance characteristics.
  • the energy-dissipating metal web of the metal damper is made of mild steel or steel with low yield point.
  • the energy dissipation device gives rigidity to the building, which is still in the elastic stage.
  • the displacement between the layers of the structure is large, and the energy dissipator installed on the structure yields earlier than the structure, and the metal damper starts to work through the shear hysteresis of the metal damper
  • Deformation (mainly) and bending deformation consume vibration energy, which can effectively reduce the related reaction and damage of the structure. Holes are provided at both ends of the metal damper to be bolted to both ends of the swing column and the platform, and it is easy to replace after yielding.
  • Figure 1 is one of the structural schematic diagrams of the self-resetting jacket offshore platform structure system of embodiment 1 of the present invention
  • FIG 2 is the second structural diagram of the self-resetting jacket offshore platform structure system of the first embodiment of the present invention.
  • FIG. 3 is the third structural diagram of the self-resetting jacket offshore platform structure system of the second embodiment of the present invention.
  • FIG. 4 is the fourth structural diagram of the self-resetting jacket offshore platform structure system of the second embodiment of the present invention.
  • Fig. 5 is a schematic cross-sectional view of A-A in Fig. 1;
  • Fig. 6 is a schematic cross-sectional view of B-B in Fig. 3;
  • FIG. 7 is a schematic diagram of the structure of a tuned mass damper according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a longitudinal cross-sectional structure of a swing column in Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of the structure of a swing column in Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of the connection between the swing column and the bottom structure of the foundation according to Embodiment 1 of the present invention.
  • Figure 11 is an N-direction view of the connection between the rocking column and the bottom of the foundation in Embodiment 1 of the present invention.
  • FIG. 12 is a schematic diagram of the structure of the swing column and the rigid chain rod of Embodiment 1 of the present invention.
  • FIG. 13 is a schematic diagram of the E-E cross-sectional view of the swing column and the rigid chain rod of Embodiment 1 of the present invention.
  • Figure 16 is a schematic diagram of the connection between the jacket of the offshore platform and the connector according to Embodiment 1 of the present invention.
  • Figure 17 is an N-direction view of the connection between the jacket of the offshore platform and the connector of the embodiment 1 of the present invention.
  • 19 is a schematic cross-sectional view of the swing column and spring E-E of the second embodiment of the present invention.
  • Fig. 21 is an N-direction view of the connection between the metal damper and the spring according to Embodiment 2 of the present invention.
  • FIG. 22 is a schematic diagram of the connection between the jacket of the offshore platform and the spring according to Embodiment 2 of the present invention.
  • FIG. 23 is an N-direction view of the connection between the jacket of the offshore platform and the spring of Embodiment 2 of the present invention.
  • FIG. 24 is a schematic diagram of the structure of the rigid chain rod of embodiment 1 of the present invention.
  • Figure 25 is an N-direction view of Figure 24;
  • Figure 26 is a schematic cross-sectional view of E-E in Figure 25;
  • 81-energy-consuming metal web 82-assembly grooved plate, 83-octagonal fixed steel ring, 84-high-strength bolt, 85-assembly back plate.
  • the base component that connects the rocking column and the seabed foundation used in the following embodiments is a spherical hinge support 7.
  • the spherical hinge support is a conventional flexural, damping, shock-absorbing and vibration isolation spherical hinge support, including an upper seat 71, a stainless steel slide 72, and a flat surface.
  • a fluorine plate 73, a spherical core 74, a spherical PTFE plate 75, a base 76 and a high-strength bolt 77 are composed.
  • the present invention provides a self-resetting jacket marine platform structure system based on a built-in rocking column, which includes a marine platform whose bottom end is fixedly arranged on a seabed foundation 5.
  • a rocking column 4 is arranged between the platform and the jacket 1 of the offshore platform.
  • the rocking column is assembled by a combined structure, including an inner steel pipe column 42, and an outer steel pipe 41 sleeved on the side wall and bottom of the inner steel pipe column. Slightly smaller than the inner diameter of the outer steel pipe, the gap between the inner steel pipe column and the outer steel pipe is filled with viscous damping material 43 to reduce the dynamic response of the rocking column structure under the horizontal external force.
  • strip steel plates 44 are welded on the outer pipe wall of the outer steel pipe along the central axis of the swing column.
  • the strip steel plates are evenly distributed along the outer pipe wall of the outer steel pipe.
  • the strip steel plates are provided with several sets of bolt holes 45 along the central axis.
  • the bolt holes are respectively located in the plane defined by each group of rigid chain rods or each group of springs.
  • the rocking column is fixed to the metal damper 8 through the bolt holes and high-strength bolts 84, and several sets of rigid chain rods 2 pass between the metal damper and the jacket. Articulated.
  • a square outer tube base 78 is welded to the bottom of the outer steel pipe, and the outer tube base and the upper base of the spherical hinge support are fixedly connected by high-strength bolts 77. The bending moment in all directions at the bottom of the rocking column can be released, the rocking column itself will not be damaged by bending, and the requirement for the bending resistance of the foundation is reduced.
  • a tuned mass damper 6 can be installed on the top of the rocking column according to actual conditions to further increase the energy consumption capacity of the rocking column structure.
  • the tuned mass damper includes a mass 61, a damper spring 62, a damper 63 and a fixing member 64.
  • the fixing member is welded to the top of the inner steel pipe column.
  • the mass and the fixing member are connected by a damper spring.
  • the two ends of the damper are respectively fixed. Connecting the mass block and the fixed part, the damper is suspended between the mass block and the fixed part, the bottom of the mass block is provided with smooth wheels, which can move along the top surface of the column.
  • the strip steel plate is fixed to the metal damper.
  • the metal damper includes several groups of energy-consuming metal webs 81 connected to the rocking column and an octagonal fixed steel ring 83 arranged around the rocking column.
  • the two ends of the energy-consuming metal webs are respectively assembled with
  • the groove-shaped plate 82 and the assembly back plate 85 are integrally formed, and the assembling groove-shaped plate is provided with grooves for matching strip steel plates and bolt holes for matching high-strength bolts.
  • the energy-consuming metal webs are assembled on the four strip steel plates of the rocking column. Near the end of the rocking column, they are clamped on the strip steel plate by high-strength bolts through the assembly channel plate, and the far end is connected with the octagonal fixed steel ring by the assembly back plate. .
  • the octagonal fixed steel ring is a hollow regular octagonal column structure, and the assembly back plate at the end of each group of energy-consuming metal webs is fixedly connected to the center of the side wall of the octagonal fixed steel ring.
  • the metal damper and the jacket of the offshore platform are hinged through several sets of rigid chain rods 2, and the connection between the rocking column and the jacket structure is facilitated by assembling the connecting pieces.
  • Each group of rigid chain rods are two rigid chain rods perpendicular to each other, which are connected with metal dampers in a certain distance from top to bottom.
  • the two ends of the rigid chain rod are respectively hinged with the metal damper and the jacket through the hinge joint 23 and the connecting head 27.
  • the hinge joint includes a single smooth convex tooth 221 with a circular hole 222 in the center, and a vertical single smooth convex
  • the assembly back plate 223 is set by the teeth, the vertical single smooth convex tooth is integrally formed with the assembly back plate, the assembly back plate is fixed to the center of the side wall of the octagonal fixed steel ring, the assembly back plate of the hinge joint and the energy-consuming metal web
  • the assembly back plates of the board are respectively located on the inner and outer sides of the side surface of the octagonal fixed steel ring to fasten the octagonal fixed steel ring.
  • the connector includes a single rounded convex tooth with a circular hole in the center, and a hinged movable clamp 225 arranged in parallel with a single rounded convex tooth.
  • the hinged movable clamp is opened and closed on the jacket through a rotating shaft 227, and then passed
  • the high-strength bolt 226 is fixed, and the hinged movable clamp is integrally formed with a single smooth convex tooth.
  • the rigid chain bar includes a metal double-sided double-branch smooth convex tooth bar 21 and a pin 22.
  • the metal double-sided double-branch smooth convex tooth bar includes double convex teeth at both ends that match a single smooth convex tooth, and a cross bar in the middle.
  • a rectangular connecting plate 25 is arranged between the two convex teeth and the cross bar.
  • the double protruding tooth is provided with a circular hole 24 that is matched with the pin, which fits the single smooth protruding tooth of the hinge joint and the connector, and the size of the hole is the same.
  • the circular hole has the freedom of relative rotation after being fixed by the plug. degree.
  • the rectangular connecting plates are vertically arranged at the ends of the double protruding teeth on the same side. Between the two rectangular connecting plates is a cross bar of the metal double-sided double smooth protruding tooth bar. The side surface of the rectangular connecting plate is larger than the cross-section of the cross bar.
  • a stiffening plate 26 is provided on the upper and lower ends of the cross bar of the metal double-sided double-supported round convex toothed rod. The stiffening plate is fixed to the side of the rectangular connecting plate to increase the strength of the rectangular connecting plate.
  • Step 1 Connect the rocking column to the subsea foundation.
  • the spherical hinge supports are embedded on the foundations of the four jacket centers.
  • the spherical hinge supports are anchored on the subsea base, and the bottom of the outer steel pipe of the swing column is bolted to the upper seat of the spherical hinge And then hinged on the subsea base through a spherical hinge.
  • the upper end of the rocking column is temporarily fixed for use.
  • Step 2 Assemble the connectors.
  • the end of the metal damper is equipped with an octagonal fixed steel ring for flexible selection of the installation position of the connecting rod and spring .
  • the metal damper is assembled at a certain distance, and the end of the metal damper is equipped with an octagonal fixed steel ring.
  • Step 3 Connect the rocking column and jacket.
  • the outer surface of the octagonal fixed steel ring is equipped with articulated joints, and the corresponding connector is installed on the jacket structure of the offshore platform. Connect the double convex teeth of the rigid chain rod with the single smooth convex teeth, and fix the pin through the circular hole.
  • the installation requires that the rigid chain rods of each layer should be kept in the same horizontal plane, which can realize the swing of the rocking column relative to the structural system of the offshore platform within the set angle range.
  • Step 4 Install the tuned mass damper on the top of the rocking column.
  • the rigid chain rod between the rocking column and the offshore platform has a relatively large impact on the vibration damping effect of the offshore platform.
  • the results show that the stiffness and number of connecting rods have a greater impact on the displacement and acceleration response of the offshore platform structure. When it reaches a certain value or is within a certain range, The effect of controlling the vibration of offshore platforms is the most obvious.
  • the appropriate rigid chain rod ideal stiffness should be calculated in actual engineering, allowing a small range of up and down fluctuations. If the rigidity of the rigid chain link is too large or too small, the coordinated deformation capacity between the rocking column and the platform structure will decrease, the energy consumption will be weakened, and the dynamic response of the structure will increase. The rigidity of the rigid chain link must also be considered comprehensively from the consideration of economic benefits and vibration reduction effects. Too much rigidity is bound to cause waste.
  • the self-resetting jacket offshore platform structure system of the present invention based on built-in swing columns differs from Embodiment 1 in that the metal damper and jacket are fixed by several sets of springs. Pick up.
  • One end of the spring is welded to the spring assembly base 224, the spring assembly base is fixed to the center of the side wall of the octagonal fixed steel ring, and the assembly back plates of the spring assembly base and the energy-consuming metal web are respectively located on the octagonal fixed steel On both sides of the side of the ring, fasten the octagonal fixed steel ring; the other end of the spring is welded and fixed to the movable clamp 228 to be fixed to the jacket.
  • the whole manufacturing process is simple assembly, and the construction is completed without affecting the use of the building, so the construction of the invention is more convenient;
  • the rocking column is a column, which can be reasonably selected and arranged flexibly inside the offshore platform, which neither affects the function of the offshore platform nor the aesthetics. Therefore, the layout of the invention is relatively flexible; the invention can select the rocking column according to the actual needs of the offshore platform The height of the device, the number and location of the connecting device, etc., and only the damaged component can be replaced after the component is damaged.
  • the present invention is more economical and reasonable; the present invention is equipped with a tuned mass damper and a metal damper, which has strong energy consumption capacity.
  • the seismic response of the building can be significantly reduced, and the invention has a recoverable function, so the invention has good energy consumption performance and recoverable performance.
  • the combined pipe column used has good mechanical properties and can provide the large rigidity required by the rocking structure.
  • the rocking column can swing around the bottom of the column in all directions, enabling the offshore platform to only follow the first mode shape Vibration limits the displacement between layers and makes the displacement angles of each layer consistent, which can well prevent the collapse of the offshore platform under seismic loads.
  • the tuned mass damper used can provide the damping and elasticity required by the rocking system.
  • the rocking column When the rocking column is displaced under the seismic load, it can dissipate the seismic energy well and reduce the damage to the offshore platform by the seismic action.
  • it has the characteristics of simple structure, easy installation, and economical and reasonable.
  • the adopted metal damper is provided with holes at both ends of the rocking column and the platform for bolt connection, and it is easy to replace after yielding.
  • the rigid chain rods, fabricated connectors, basic connectors and other components used also have the characteristics of simple structure, reasonable and easy to use, economical and reasonable, and easy to install.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Bridges Or Land Bridges (AREA)
  • Vibration Dampers (AREA)

Abstract

本发明属于海洋平台用的建筑结构技术领域,涉及基于内置摇摆柱的自复位导管架海洋平台结构系统。该系统包括海洋平台、刚性链杆、弹簧、摇摆柱、球铰支座、调谐质量阻尼器、金属阻尼器。海洋平台底端固定设置在地基上,摇摆柱设置在导管架内部中央位置,利用球铰支座铰接在海底基础上;摇摆柱采用新型套管结构体系,内柱与外管中间填充粘弹性阻尼材料,柱顶端设置调谐质量阻尼器;刚性拉杆或者弹簧连接摇摆柱和海洋平台,通过摇摆柱外金属阻尼器连接。该系统的摇摆柱控制海洋平台各个方向的大位移和大变形,使得层间变形趋于均匀,海洋平台结构整体受力,不会发生因局部屈曲破坏而导致海洋平台整体坍塌,从而取得更好的减振效果。

Description

基于内置摇摆柱的自复位导管架海洋平台结构系统 技术领域
本发明属于海洋平台用的建筑结构技术领域,涉及基于内置摇摆柱的自复位导管架海洋平台结构系统。
背景技术
我国海域有着丰富的油气资源。随着经济建设对能源的需求不断加大,海洋油气勘探开发具有良好的发展前景和巨大的发展潜力。海洋平台作为海洋资源开发的基础设施,导管式海洋平台是中浅海海洋平台的主要结构形式。它采用将桩穿过导管腿使预制的导管架固定在海上,导管架和桩是主要的承重部件,其它设备层及工作区则坐落在平台上。在风、浪、流、冰和地震等海洋环境动力荷载作用下,结构的振动反应十分剧烈。
摇摆柱体系是一种新型可恢复抗振结构,即在建筑物一侧设置一根刚度非常大的柱体,柱底部与基础通过球铰支座连接,用水平刚性链杆与建筑物相连,摇摆结构体系不是利用结构本身的变形来耗散地震能量,而是放松结构体系约束构成摇摆构件,通过结构构建的摇摆,使结构变形趋于一致,将变形集中在摇摆柱界面上,并在这些部位设置阻尼器来消耗。研究结果表明摇摆柱体系可以使结构各层层间变形区于均匀,有效控制结构变形的集中,可防止层屈服机制的出现,发挥结构整体抗振及耗能能力。
调谐质量阻尼器(简称TMD)是结构振动控制领域中较为成熟的一种被动控制装置,TMD由质量块、弹簧与阻尼器构成。由质量块将其振动频率调整至主结构频率附近,改变结构共振特性,以达到减振目的。调谐质量阻尼器的主要工作原理是结构受到振动作用时,通过微小的外部能源,调整半主动控制系统的刚度或者阻尼,使结构的动力特性改变,以减小结构的振动反应。
目前,摇摆柱体系和TMD已分別应用于建筑物结构中,在一定程度上提高了建筑整体的抗振及耗能能力。目前已有方案只是将摇摆柱设置在海洋平台刚度较弱的一侧,只能控制单方向的大位移和大变形。
发明内容
本发明的目的是为了完善目前摇摆体系的使用功能,优化摇摆构件的布置位置,增加摇摆体系的耗能能力,提高要海洋平台体系的抗震性能。本发明提供的基于内置摇摆柱的自复位导管架海洋平台结构系统,可以根据实际需求合理的设置连接摇摆柱和平台的连接装置数量及位置,可在震后随意更换受损部件。
本发明是采用以下的技术方案实现的:
本发明提供了一种基于内置摇摆柱的自复位导管架海洋平台结构系统,包括底端固定设置在海底基础上的海洋平台,其特征在于,所述海洋平台的导管架之间设置有摇摆柱,摇摆柱底端与海底基础通过球铰支座铰接,摇摆柱侧壁外周固接金属阻尼器,金属阻尼器与导管架之间通过若干组刚性链杆铰接或通过若干组弹簧固接;每组刚性链杆或每组弹簧限定的平面均垂直于摇摆柱的中轴线。
进一步地,所述摇摆柱包括内钢管柱、套设在内钢管柱侧壁和底部的外钢管,在内钢管柱和外钢管之间填充有粘滞性阻尼材料;
所述外钢管外管壁上沿中轴线向设置有若干条形钢板,条形钢板沿外钢管外管壁均匀分布,所述条形钢板沿中轴线方向设置有若干组螺栓孔,每组螺栓孔分别位于每组刚性链杆或每组弹簧限定的平面内,摇摆柱通过螺栓孔和高强螺栓固接金属阻尼器;外钢管底部焊有外管底座,外管底座与球铰支座固接。
进一步地,摇摆柱顶部设有调谐质量阻尼器,其包括质量块、阻尼器弹簧、阻尼器与固定件,固定件固接在内钢管柱顶部,质量块与固定件之间通过阻尼器弹簧连接,阻尼器两端分别固接质量块与固定件,阻尼器悬挂于质量块与固定件之间,质量块底部设有光滑轮子。
进一步地,所述金属阻尼器包括连接摇摆柱的若干组耗能金属腹板和围绕摇摆柱设置的八边形固定钢圈,耗能金属腹板的两端分别与装配槽形板、装配背板一体成型,装配槽形板上设置有配合条形钢板的凹槽和配合高强螺栓的螺栓孔;
所述八边形固定钢圈为中空正八角柱结构,每组耗能金属腹板端部的装配背板均与八边形固定钢圈的侧壁的中心固接。
进一步地,所述弹簧的一端固接弹簧装配基座,弹簧装配基座和八边形固定钢圈的侧壁的中心固接,弹簧装配基座和耗能金属腹板的装配背板分别位于八边形固定钢圈的侧面两侧,紧固八边形固定钢圈;弹簧的另一端通过固接活动式卡箍与导管架固接。
进一步地,所述条形钢板的数量为四条;每组弹簧的数量为四根,各组弹簧从上到下按一定距离依次固接金属阻尼器。
进一步地,所述刚性链杆两端分别通过铰接接头、连接头与金属阻尼器、导管架之间铰接,所述铰接接头包括中心开有圆形孔洞的单支圆滑凸齿、垂直单支圆滑凸齿设置的装配背板,垂直单支圆滑凸齿与装配背板一体成型,装配背板和八边形固定钢圈的侧壁的中心固接,铰接接头的装配背板和耗能金属腹板的装配背板分别位于八边形固定钢圈的侧面内外两侧,紧固八边形固定钢圈;
所述连接头包括中心开有圆形孔洞的单支圆滑凸齿、平行单支圆滑凸齿设置的铰接活动 式卡箍,铰接活动式卡箍内径与导管架外径相同,铰接活动式卡箍与单支圆滑凸齿一体成型。
进一步地,所述刚性链杆包括金属双侧双支圆滑凸齿杆和插销,金属双侧双支圆滑凸齿杆包括位于两端的配合单支圆滑凸齿的双支凸齿,以及中段的横杆,两个双支凸齿和横杆之间设置有矩形连接板;
所述双支凸齿设置有一个配合插销的圆形孔洞,插销分别固定双支凸齿和铰接接头、连接头的单支圆滑凸齿;
所述矩形连接板垂直设置于同侧的双支凸齿的末端,两个矩形连接板之间为金属双侧双支圆滑凸齿杆的横杆,矩形连接板的侧面大于横杆的横截面。
进一步地,所述金属双侧双支圆滑凸齿杆的横杆两端上下各有一个加劲板,加劲板与矩形连接板的侧面固接。
进一步地,所述条形钢板的数量为四条,每组刚性链杆的数量为两根,每组中两条刚性链杆互成90°排布,各组刚性链杆从上到下按一定距离依次固接金属阻尼器。
本发明还可与其他类型的抗震手段结合,如其他类型的消能减震阻尼器,例如转角阻尼器等,以达到更好的抗震效果。
本发明的摇摆柱不仅仅限制于海洋平台结构体系中使用,在土木工程领域的框架结构中依然可以安装应用本发明装置。本发明提供的摇摆自复位组件也可应用于剪力墙结构,框架-剪力墙结构,砖混结构,钢结构,型钢混凝土结构等常见建筑结构;同时,可按建筑物的全高布置,也可不按建筑物的全高布置,只布置到建筑物的若干层。摇摆阻尼自复位组件具体的布置方案和摇摆柱的布置高度,完全可以取决于业主的需求。
较佳的,摇摆自复位组件应尽量在建筑物中心位置布置,在任何方向上的地震动作用下,也不会产生额外的扭转作用,使建筑物受力均匀。
本发明的有益效果是:
(1)本发明充分利用了摇摆柱和调谐质量阻尼器TMD的优点,将摇摆柱安装在平台内部,布置灵活,可合理选择安装位置,对原结构的改变和影响较小,不影响原结构的正常使用,摇摆柱与框架结构相结合,构成摇摆柱组件,该结构与纯框架结构相比,可以増强结构的整体性,全方位的对平台进行振动控制,使导管架式海洋台结构整体受力、保证海洋平台结构不会因局部屈服破坏而导致海洋平台倒塌,从而取得更好的减振效果。
(2)本发明的摇摆柱采用套管组合结构,在外部套管和内部柱体之间的夹层填充粘弹性阻尼材料。可以增强摇摆柱的耗能能力,从而减小海洋平台结构的加速度,以保证生活区工作人员的舒适度以及电子设备的安全运行。
(3)摇摆柱顶部设有调谐质量阻尼器。利用调谐质量阻尼器将振动频率调整至主结构频率附近,改变结构共振特性,以达到减振效果。针对第一自振频率进行结构振动控制,该设施可以通过参数优化,通过改变结构共振特性,而达到减振效果。
(4)金属阻尼器的耗能金属腹板采用软钢或低屈服点的钢材制作而成,当出现小型振动时,结构层间位移很小,消能装置给予刚度给建筑,尚属于弹性阶段,保证结构具有一定的初始刚度;当出现大型振动时,结构层间位移较大,装置在结构上的消能器早于结构屈服,金属阻尼器开始工作,通过金属阻尼器的剪切滞回变形(主要)和弯曲变形消耗振动能量,从而可以有效的降低结构的相关反应和损伤。金属阻尼器两端设置孔洞与摇摆柱及平台两端进行螺栓连接,屈服后也便于更换。
(5)施加摇摆柱、调谐质量阻尼器、金属阻尼器可使导管架式海洋平台结构整体抵御外部荷载的能力增加,大大増加抵御冰荷载、浪荷载、风荷载以及地震荷载,甚至抵御海啸的能力也大大增强,不会因局部杆件的破坏而导致海洋平台结构的整体破坏。例如,以往渤海海洋平台结构被海冰推倒,就是因为导管架局部破坏屈服而倒塌,加上摇摆柱结构之后使海洋平台结构不会因冰荷载局部过大而产生过大变形,保证海洋平台结构变形的一致性和协调性,同时这样也有利于海洋平台内部的导油管不致破裂。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1为本发明实施例1自复位导管架海洋平台结构系统的结构示意图之一;
图2为本发明实施例1自复位导管架海洋平台结构系统的结构示意图之二;
图3为本发明实施例2自复位导管架海洋平台结构系统的结构示意图之三;
图4为本发明实施例2自复位导管架海洋平台结构系统的结构示意图之四;
图5为图1的A-A截面示意图;
图6为图3的B-B截面示意图;
图7为本发明实施例1的调谐质量阻尼器结构示意图;
图8为本发明实施例1摇摆柱纵向剖面结构示意图;
图9为本发明实施例1摇摆柱结构示意图;
图10为本发明实施例1的摇摆柱与基础底部结构连接示意图;
图11为本发明实施例1的摇摆柱与基础底部连接的N向视图;
图12为本发明实施例1的摇摆柱与刚性链杆结构示意图;
图13为本发明实施例1的摇摆柱与刚性链杆E-E截面示意图;
图14为本发明实施例1的金属阻尼器与铰接接头连接示意图;
图15为本发明实施例1的金属阻尼器与铰接接头连接N向视图;
图16为本发明实施例1的海洋平台导管架与连接头连接示意图;
图17为本发明实施例1的海洋平台导管架与连接头连接N向视图;
图18为本发明实施例2的摇摆柱与弹簧结构示意图;
图19为本发明实施例2的摇摆柱与弹簧E-E截面示意图;
图20为本发明实施例2的金属阻尼器与弹簧连接示意图;
图21为本发明实施例2的金属阻尼器与弹簧连接N向视图;
图22为本发明实施例2的海洋平台导管架与弹簧连接示意图;
图23为本发明实施例2的海洋平台导管架与弹簧连接N向视图;
图24为本发明实施例1的刚性链杆的结构示意图;
图25为图24的N向视图;
图26为图25的E-E截面示意图;
图中各标记如下:1-导管架、2-刚性链杆、3-弹簧、4-摇摆柱、5-海底基础、6-调谐质量阻尼器、7-球铰支座、8-金属阻尼器;
21-金属双侧双支圆滑凸齿杆、22-插销、23-铰接接头、24-圆形孔洞、25-矩形连接板、26-加劲板、27-连接头;
221-单支圆滑凸齿、222-圆形孔洞、223-装配背板、224-弹簧装配基座、225-铰接活动式卡箍、226-高强螺栓、227-转轴、228-固接活动式卡箍;
41-外钢管、42-内钢管柱、43-粘弹性阻尼材料、44-条形钢板、45-螺栓孔;
61-质量块、62-阻尼器弹簧、63-阻尼器、64-固定件;
71-上座、72-不锈钢滑板、73-平面四氟板、74-球芯、75-球面四氟板、76-底座、77-高强螺栓、78-外管底座;
81-耗能金属腹板、82-装配槽形板、83-八边形固定钢圈、84-高强螺栓、85-装配背板。
具体实施方式
为使本发明的目的、内容和有益效果更加清楚,结合附图和实施例对本发明的具体实施方式做进一步的详细描述如下。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
在本发明的描述中,需要说明的是,术语“竖直”、“上”、“下”、“水平”等指示的方位 或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”、“连通”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下列实施例采用的连接摇摆柱与海底基础的底座部件为球铰支座7,该球铰支座为常规抗弯阻尼减震隔振球铰支座,包括上座71、不锈钢滑板72、平面四氟板73、球芯74、球面四氟板75、底座76和高强螺栓77组成。
实施例1
如图1、图2、图5-17、图24-26所示,本发明提供一种基于内置摇摆柱的自复位导管架海洋平台结构系统,包括底端固定设置在海底基础5上的海洋平台,海洋平台的导管架1之间设置有摇摆柱4,摇摆柱采用组合结构组装而成,包括内钢管柱42、套设在内钢管柱侧壁和底部的外钢管41,内钢管柱直径要比外钢管内径略小,在内钢管柱和外钢管之间空隙中填充有粘滞性阻尼材料43,以减少摇摆柱结构在水平外力作用下的动力响应。
外钢管外管壁上沿摇摆柱中轴线方向焊接有四条条形钢板44,条形钢板沿外钢管外管壁均匀分布,所述条形钢板沿中轴线方向设置有若干组螺栓孔45,每组螺栓孔分别位于每组刚性链杆或每组弹簧限定的平面内,摇摆柱通过螺栓孔和高强螺栓84固接金属阻尼器8,金属阻尼器与导管架之间通过若干组刚性链杆2铰接。
外钢管底部焊有方形的外管底座78,外管底座与球铰支座的上座通过高强螺栓77固接。摇摆柱底部各个方向的弯矩均可以被释放,摇摆柱本身不会受弯破坏,对基础的抗弯承载力需求减小。
摇摆柱顶部可根据实际情况安装调谐质量阻尼器6,进一步增大摇摆柱结构的耗能能力。调谐质量阻尼器包括质量块61、阻尼器弹簧62、阻尼器63与固定件64,固定件焊接在内钢管柱顶部,质量块与固定件之间通过阻尼器弹簧连接,阻尼器两端分别固接质量块与固定件,阻尼器悬挂于质量块与固定件之间,质量块底部设有光滑轮子,可以沿着柱顶表面移动。
条形钢板固接金属阻尼器,金属阻尼器包括连接摇摆柱的若干组耗能金属腹板81和围绕摇摆柱设置的八边形固定钢圈83,耗能金属腹板的两端分别与装配槽形板82、装配背板85一体成型,装配槽形板上设置有配合条形钢板的凹槽和配合高强螺栓的螺栓孔。耗能金属腹 板组装在摇摆柱的四根条形钢板上,近摇摆柱端,通过装配槽形板通过高强螺栓夹在条形钢板上,远端采用装配背板连接八边形固定钢圈。
八边形固定钢圈为中空正八角柱结构,每组耗能金属腹板端部的装配背板均与八边形固定钢圈的侧壁的中心固接。
金属阻尼器与海洋平台的导管架之间通过若干组刚性链杆2铰接,通过装配连接件,方便实现摇摆柱和导管架结构的连接。每组刚性链杆为互相垂直的两根刚性链杆,从上倒下按一定距离依次连接金属阻尼器。
刚性链杆两端分别通过铰接接头23、连接头27与金属阻尼器、导管架之间铰接,所述铰接接头包括中心开有圆形孔洞222的单支圆滑凸齿221、垂直单支圆滑凸齿设置的装配背板223,垂直单支圆滑凸齿与装配背板一体成型,装配背板和八边形固定钢圈的侧壁的中心固接,铰接接头的装配背板和耗能金属腹板的装配背板分别位于八边形固定钢圈的侧面内外两侧,紧固八边形固定钢圈。
连接头包括中心开有圆形孔洞的单支圆滑凸齿、平行单支圆滑凸齿设置的铰接活动式卡箍225,铰接活动式卡箍通过转轴227开合套设在导管架上,再通过高强螺栓226固定,铰接活动式卡箍与单支圆滑凸齿一体成型。
刚性链杆包括金属双侧双支圆滑凸齿杆21和插销22,金属双侧双支圆滑凸齿杆包括位于两端的配合单支圆滑凸齿的双支凸齿,以及中段的横杆,两个双支凸齿和横杆之间设置有矩形连接板25。
双支凸齿设置有一个配合插销的圆形孔洞24,与铰接接头、连接头的单支圆滑凸齿刚好嵌固吻合,且孔洞尺寸相同,圆形孔洞内插入插销固定之后具有相对转动的自由度。
矩形连接板垂直设置于同侧的双支凸齿的末端,两个矩形连接板之间为金属双侧双支圆滑凸齿杆的横杆,矩形连接板的侧面大于横杆的横截面。金属双侧双支圆滑凸齿杆的横杆两端上下各有一个加劲板26,加劲板与矩形连接板的侧面固接,增加矩形连接板的强度。
本实施例结构系统的安装方式按照如下步骤:
步骤1:将摇摆柱连接在海底基础。
海洋平台整体施工架设的同时,在四个导管架中心位置的基础上埋设球铰支座,球铰支座锚固在海底基座上,摇摆柱外钢管底部采用螺栓连接在球铰支座的上座上,再通过球铰铰接在海底基座上。摇摆柱上端临时固定备用。
步骤2:装配连接件。
在摇摆柱外壁的四条条形钢板上,选择特定高度的螺栓孔,从上到下依次装配金属阻尼器,金属阻尼器末端装配八边形固定钢圈,以便灵活选择连接杆及弹簧的安装位置。按照一 定距离装配金属阻尼器,金属阻尼器末端装配八边形固定钢圈。
步骤3:连接摇摆柱及导管架。
八边形固定钢圈外表面装配铰接接头,海洋平台的导管架结构上对应安装连接头。将刚性链杆的双支凸齿与单支圆滑凸齿接好,将插销穿过圆形孔洞固定。安装要求每层刚性链杆要保持在同一水平面内,能够实现摇摆柱相对海洋平台结构体系在设定角度范围内的摆动。
步骤4:将调谐质量阻尼器安装在摇摆柱顶部。
摇摆柱与海洋平台之间的刚性链杆对于海洋平台的减振效果有比较大的影响。进行地震作用和冰力荷载下的数值仿真分析后,结果表明,连接杆的刚度和数量对海洋平台结构的位移和加速度反应有较大影响,当其达到某一值或在特定范围内时,对海洋平台振动的控制效果最为明显。
综合地震波、挤压冰荷载模拟结果,应实际工程计算出适当的刚性链杆理想刚度,允许有小范围的上下浮动。刚性链杆刚度过大或过小,均导致摇摆柱与平台结构之间的协调变形能力下降,耗能能力减弱,使得结构动力反应增大。刚性链杆刚度也要从考虑经济效益和减振效果综合考虑,刚度过大势必会造成浪费。随着刚性链杆增多,层间位移趋于均匀,对于不同高度的节点可以达到较好的减振效果;但是当刚性链杆超过一定数量后,摇摆柱体系已经完善,多余连接杆不能起到一定的耗能作用。
实施例2
如图3、4及图18-23所示本发明的基于内置摇摆柱的自复位导管架海洋平台结构系统,与实施例1的区别在于,金属阻尼器与导管架之间通过若干组弹簧固接。
弹簧的一端焊接弹簧装配基座224,弹簧装配基座和八边形固定钢圈的侧壁的中心固接,弹簧装配基座和耗能金属腹板的装配背板分别位于八边形固定钢圈的侧面两侧,紧固八边形固定钢圈;弹簧的另一端焊接固接活动式卡箍228,以与导管架固接。每组弹簧的数量为四根,四根弹簧互相成90°排列,各组弹簧从上到下按一定距离依次固接金属阻尼器。
与实施例1相比,本例所述技术方案中,弹性支撑通常用于设备柔性不足情况。在整个摇摆柱结构中,弹簧先承受外力荷载,随着弹簧变形的增加,弹簧储备更多的变性能,有效的增加设备的柔性、缓冲压力。为了使结构刚度得到充分利用,达到均衡的动力效果,本例在4个方向上均安装了弹簧支撑。一侧弹簧承受拉应力,对侧弹簧承受压应力,起全方位三维弹性支撑的作用。
本发明所述基于内置摇摆柱的导管架海洋平台结构体系及其安装方法,整个制作过程都是简单的拼装,在不影响建筑物使用的情况下完成施工,因此本发明施工较为便利;本发明摇摆柱为柱体,可在海洋平台内部合理选址灵活布置,既不影响海洋平台的功能作用,又不 影响美观,因此本发明布置较为灵活;本发明可按照海洋平台的实际需求选择摇摆柱的高度,以及连接装置的数量和位置等,且在部件受损后可以只更换受损部件,因此本发明较为经济合理;本发明加装调谐质量阻尼器、金属阻尼器,耗能能力强,能显著减小建筑物的地震响应,同时本发明具有可恢复功能,因此本发明具有良好的耗能性能和可恢复性能。
所采用的组合管柱体力学性能好,能提供摇摆结构所需要的大刚度,在海洋平台受到地震力作用时,摇摆柱能绕柱底各个方向摆动,能使海洋平台只按第一振型振动,限制其层间位移,使各层的层间位移角一致,能很好地防止海洋平台在地震荷载下的倒塌。
所采用的调谐质量阻尼器,能提供摇摆体系所需要的阻尼和弹性,当摇摆柱在地震荷载作用下发生位移时,能够很好地耗散地震能量,减小地震作用对海洋平台的破坏,另外其还具有构造简单安装简便、经济合理等特点。
所采用的金属阻尼器两端设置孔洞与摇摆柱及平台两端进行螺栓连接,屈服后也便于更换。
所采用的刚性链杆、装配式连接件、基础连接件等部件也具有构造简单、合理易用、经济合理、安装简便等特点。
当然,以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于内置摇摆柱的自复位导管架海洋平台结构系统,包括底端固定设置在海底基础(5)上的海洋平台,其特征在于,所述海洋平台的导管架(1)之间设置有摇摆柱(4),摇摆柱(4)底端与海底基础(5)通过球铰支座(7)铰接,摇摆柱(4)侧壁外周固接金属阻尼器(8),金属阻尼器(8)与导管架(1)之间通过若干组刚性链杆(2)铰接或通过若干组弹簧(3)固接;每组刚性链杆(2)或每组弹簧(3)限定的平面均垂直于摇摆柱(4)的中轴线。
  2. 根据权利要求1所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述摇摆柱(4)包括内钢管柱(42)、套设在内钢管柱(42)侧壁和底部的外钢管(41),在内钢管柱(42)和外钢管(41)之间填充有粘滞性阻尼材料(43);
    所述外钢管(41)外管壁上沿中轴线方向设置有若干条形钢板(44),条形钢板(44)沿外钢管(41)外管壁均匀分布,所述条形钢板(44)沿中轴线方向设置有若干组螺栓孔(45),每组螺栓孔(45)分别位于每组刚性链杆(2)或每组弹簧(3)限定的平面内,摇摆柱(4)通过螺栓孔(45)和高强螺栓(84)固接金属阻尼器(8);外钢管(41)底部焊有外管底座(78),外管底座(78)与球铰支座(7)固接。
  3. 根据权利要求2所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述摇摆柱(4)顶部设有调谐质量阻尼器(6),其包括质量块(61)、阻尼器弹簧(62)、阻尼器(63)与固定件(64),固定件(64)固接在内钢管柱(42)顶部,质量块(61)与固定件(64)之间通过阻尼器弹簧(62)连接,阻尼器(63)两端分别固接质量块(61)与固定件(64),阻尼器(63)悬挂于质量块(61)与固定件(64)之间,质量块(61)底部设有光滑轮子。
  4. 根据权利要求1-3任一项所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述金属阻尼器(8)包括连接摇摆柱(4)的若干组耗能金属腹板(81)和围绕摇摆柱(4)设置的八边形固定钢圈(83),耗能金属腹板(81)的两端分别与装配槽形板(82)、装配背板(85)一体成型,装配槽形板(82)上设置有配合条形钢板(44)的凹槽和配合高强螺栓(84)的螺栓孔;
    所述八边形固定钢圈(83)为中空正八角柱结构,每组耗能金属腹板(81)端部的装配背板(85)均与八边形固定钢圈(83)的侧壁的中心固接。
  5. 根据权利要求4所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述弹簧(3)的一端固接弹簧装配基座(224),弹簧装配基座(224)和八边形固定钢圈(83)的侧壁的中心固接,弹簧装配基座(224)和耗能金属腹板(81)的装配背板(85) 分别位于八边形固定钢圈(83)的侧面两侧,紧固八边形固定钢圈(83);弹簧(3)的另一端通过固接活动式卡箍(228)与导管架(1)固接。
  6. 根据权利要求5所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述条形钢板(44)的数量为四条;每组弹簧(3)的数量为四根,各组弹簧(3)从上到下按一定距离依次固接金属阻尼器(8)。
  7. 根据权利要求4所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述刚性链杆(2)两端分别通过铰接接头(23)、连接头(27)与金属阻尼器(8)、导管架(1)之间铰接,所述铰接接头(23)包括中心开有圆形孔洞(222)的单支圆滑凸齿(221)、垂直单支圆滑凸齿(221)设置的装配背板(223),垂直单支圆滑凸齿(221)与装配背板(223)一体成型,装配背板(223)和八边形固定钢圈(83)的侧壁的中心固接,铰接接头(23)的装配背板(223)和耗能金属腹板(81)的装配背板(85)分别位于八边形固定钢圈(83)的侧面内外两侧,紧固八边形固定钢圈(83);
    所述连接头(27)包括中心开有圆形孔洞(222)的单支圆滑凸齿(221)、平行单支圆滑凸齿(221)设置的铰接活动式卡箍(225),铰接活动式卡箍(225)内径与导管架(1)外径相同,铰接活动式卡箍(225)与单支圆滑凸齿(221)一体成型。
  8. 根据权利要求7所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述刚性链杆(2)包括金属双侧双支圆滑凸齿杆(21)和插销(22),金属双侧双支圆滑凸齿杆(21)包括位于两端的配合单支圆滑凸齿(221)的双支凸齿,以及中段的横杆,两个双支凸齿和横杆之间设置有矩形连接板(25);
    所述双支凸齿设置有一个配合插销(22)的圆形孔洞(24),插销(22)分别固定双支凸齿和铰接接头(23)、连接头(27)的单支圆滑凸齿(221);
    所述矩形连接板(25)垂直设置于同侧的双支凸齿的末端,两个矩形连接板(25)之间为金属双侧双支圆滑凸齿杆(21)的横杆,矩形连接板(25)的侧面大于横杆的横截面。
  9. 根据权利要求8任一项所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述金属双侧双支圆滑凸齿杆(21)的横杆两端上下各有一个加劲板(26),加劲板(26)与矩形连接板(25)的侧面固接。
  10. 根据权利要求7-9任一项所述的基于内置摇摆柱的自复位导管架海洋平台结构系统,其特征在于,所述条形钢板(44)的数量为四条,每组刚性链杆(2)的数量为两根,每组中两条刚性链杆(2)互成90°排布,各组刚性链杆(2)从上到下按一定距离依次固接金属阻尼器(8)。
PCT/CN2020/075804 2019-04-25 2020-02-19 基于内置摇摆柱的自复位导管架海洋平台结构系统 WO2020215863A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502838A JP7065465B2 (ja) 2019-04-25 2020-02-19 内蔵スイングポストに基づく自己復帰型パイプジャケットを備える海上プラットフォーム構造システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338795.XA CN109914372A (zh) 2019-04-25 2019-04-25 基于内置摇摆柱的自复位导管架海洋平台结构系统
CN201910338795.X 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020215863A1 true WO2020215863A1 (zh) 2020-10-29

Family

ID=66978463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075804 WO2020215863A1 (zh) 2019-04-25 2020-02-19 基于内置摇摆柱的自复位导管架海洋平台结构系统

Country Status (3)

Country Link
JP (1) JP7065465B2 (zh)
CN (1) CN109914372A (zh)
WO (1) WO2020215863A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837959A (zh) * 2022-05-23 2022-08-02 山东省章丘鼓风机股份有限公司 一种减振降噪渣浆泵
CN117005995A (zh) * 2023-09-13 2023-11-07 青岛理工大学 一种装配式韧性防御导管架海上风机及其制作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109914372A (zh) * 2019-04-25 2019-06-21 青岛理工大学 基于内置摇摆柱的自复位导管架海洋平台结构系统
CN110805156A (zh) * 2019-11-22 2020-02-18 山东彤创建筑科技有限公司 一种具有可更换弯曲阻尼器的弹性摇摆柱
CN114427587A (zh) * 2020-09-29 2022-05-03 中国石油化工股份有限公司 高耸设备减振用侧支撑连接结构
CN113152407B (zh) * 2020-11-20 2024-06-14 大连理工大学 一种伞状的水下竖向减震耗能装置
CN112281791B (zh) * 2020-11-20 2024-06-14 大连理工大学 一种具有水平向对称双伞面的水下耗能减震装置
CN112519970A (zh) * 2020-12-22 2021-03-19 大连理工大学 一种适用于海洋浮式结构的花瓣状水下耗能减振装置
CN112609658B (zh) * 2020-12-22 2024-06-14 大连理工大学 一种包含可收放型翼板的水下耗能减振装置
CN113106999B (zh) * 2021-03-21 2022-11-04 北京工业大学 一种附加粘滞阻尼器的海上风电导管架结构
CN113465966B (zh) * 2021-06-16 2022-06-07 天津大学 一种海上高耸塔器的混凝土柱式摇摆试验装置
CN114856085A (zh) * 2022-05-05 2022-08-05 广州大学 一种摆动式承载-减振/震双功能组合柱
CN114960410B (zh) * 2022-06-23 2023-01-17 中国十七冶集团有限公司 一种薄壁变径高桥墩结构及大跨径桥梁
CN116988937B (zh) * 2023-09-25 2023-12-15 上海勘测设计研究院有限公司 一种摇摆自复位风电塔架及摇摆自复位方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1585458A1 (ru) * 1988-09-07 1990-08-15 Бакинский Завод Глубоководных Оснований Устройство дл монтажа опорного блока морской платформы
CN103132597A (zh) * 2011-11-30 2013-06-05 青岛理工大学 摇摆墙结构体系以及采用该体系的海洋平台
CN203755279U (zh) * 2014-03-11 2014-08-06 青岛理工大学 基于调谐质量阻尼器和摇摆墙的自复位海洋平台
CN105220891A (zh) * 2015-09-21 2016-01-06 华东交通大学 一种钢筋混凝土框架抗震加固结构及其抗震加固方法
EP2514877B1 (en) * 2011-04-18 2016-08-17 GeoSea NV Jack-up offshore platform and method for reducing lateral oscillating movements thereof
CN109914372A (zh) * 2019-04-25 2019-06-21 青岛理工大学 基于内置摇摆柱的自复位导管架海洋平台结构系统
CN210140820U (zh) * 2019-04-25 2020-03-13 青岛理工大学 基于内置摇摆柱的自复位导管架海洋平台结构系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102129A (ja) * 1996-06-13 1998-01-06 Suzuki Sogyo Co Ltd 三次元防振パーツ
JP6792240B2 (ja) * 2016-11-07 2020-11-25 日本製鉄株式会社 鋼管杭の自沈防止装置、自沈防止構造及び自沈防止工法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1585458A1 (ru) * 1988-09-07 1990-08-15 Бакинский Завод Глубоководных Оснований Устройство дл монтажа опорного блока морской платформы
EP2514877B1 (en) * 2011-04-18 2016-08-17 GeoSea NV Jack-up offshore platform and method for reducing lateral oscillating movements thereof
CN103132597A (zh) * 2011-11-30 2013-06-05 青岛理工大学 摇摆墙结构体系以及采用该体系的海洋平台
CN203755279U (zh) * 2014-03-11 2014-08-06 青岛理工大学 基于调谐质量阻尼器和摇摆墙的自复位海洋平台
CN105220891A (zh) * 2015-09-21 2016-01-06 华东交通大学 一种钢筋混凝土框架抗震加固结构及其抗震加固方法
CN109914372A (zh) * 2019-04-25 2019-06-21 青岛理工大学 基于内置摇摆柱的自复位导管架海洋平台结构系统
CN210140820U (zh) * 2019-04-25 2020-03-13 青岛理工大学 基于内置摇摆柱的自复位导管架海洋平台结构系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837959A (zh) * 2022-05-23 2022-08-02 山东省章丘鼓风机股份有限公司 一种减振降噪渣浆泵
CN114837959B (zh) * 2022-05-23 2024-04-02 山东省章丘鼓风机股份有限公司 一种减振降噪渣浆泵
CN117005995A (zh) * 2023-09-13 2023-11-07 青岛理工大学 一种装配式韧性防御导管架海上风机及其制作方法
CN117005995B (zh) * 2023-09-13 2024-04-16 青岛理工大学 一种装配式韧性防御导管架海上风机的制作方法

Also Published As

Publication number Publication date
CN109914372A (zh) 2019-06-21
JP2021530637A (ja) 2021-11-11
JP7065465B2 (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2020215863A1 (zh) 基于内置摇摆柱的自复位导管架海洋平台结构系统
CN103243819B (zh) 装配式混凝土柱-钢梁耗能型节点连接装置
CN102828560B (zh) 用于装配式冷弯型钢结构连接的销轴法兰节点结构
CN103174235A (zh) 平面不规则结构抗扭转新型软钢耗能装置
CN113123454B (zh) 一种连柱式双耗能-装配式混凝土框架体系及施工方法
CN111236287B (zh) 用于快速建造的整体式基础承台
CN210140820U (zh) 基于内置摇摆柱的自复位导管架海洋平台结构系统
JP3828695B2 (ja) 三階建て住宅の制震壁
CN206128293U (zh) 一种适用于装配式结构的节点连接装置
Zeng et al. Shaking table test of a supertall building with hinged connections connecting a gravity load resisting system to a lateral force resisting system
Rogers et al. Impact of diaphragm behavior on the seismic design of low-rise steel buildings
CN215978599U (zh) 一种建筑结构设计梁柱加固结构
CN112031197B (zh) 一种新型减震耗能器装置
CN108625479B (zh) 一种具有环向肘节式复合减振支撑的双层网壳结构
CN112459584A (zh) 一种墙板拼接且地基减震的装配式框架结构
CN111691389A (zh) 一种新型组合导管架海洋平台
CN106049699A (zh) 一种具有交错金字塔型耗能单元的套管约束防屈曲支撑
CN113802911B (zh) 一种基于c形壳隔震层的类tmd结构体系
CN115522654B (zh) 一种用于摇摆墙底部的复合消能连接结构
CN220133162U (zh) 一种应用于隔震层的变阻尼限位阻尼器
CN217461012U (zh) 一种三维隔震系统
CN103590504A (zh) 类蜂窝型圆孔钢板阻尼器
CN114197678B (zh) 一种自复位抗弯受拉型sma黏弹性梁柱节点连接装置
CN219654007U (zh) 一种适用于混凝土结构的双层粘滞阻尼墙结构体系
CN219196828U (zh) 一种抗震加固房建基础结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20795958

Country of ref document: EP

Kind code of ref document: A1