WO2020213167A1 - Semiconductor device, and manufacturing method for same - Google Patents

Semiconductor device, and manufacturing method for same Download PDF

Info

Publication number
WO2020213167A1
WO2020213167A1 PCT/JP2019/016873 JP2019016873W WO2020213167A1 WO 2020213167 A1 WO2020213167 A1 WO 2020213167A1 JP 2019016873 W JP2019016873 W JP 2019016873W WO 2020213167 A1 WO2020213167 A1 WO 2020213167A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wire
semiconductor device
shape
convex portion
Prior art date
Application number
PCT/JP2019/016873
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 河村
亮輔 安部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/016873 priority Critical patent/WO2020213167A1/en
Publication of WO2020213167A1 publication Critical patent/WO2020213167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same.
  • Electrodes are arranged on both the front and back surfaces of the semiconductor element.
  • wire bonding using a metal wire has been applied to electrical wiring with an electrode on the front surface side.
  • connection by wire bonding it is necessary to join a large number of wires to one electrode as the current capacity increases. Further, when a temperature cycle load is applied to the semiconductor element, thermal stress is generated due to the difference in linear expansion coefficient between different materials at the joint between the electrode and the wire. In this case, since the cross-sectional area of one wire is relatively small, the wire may be broken.
  • Japanese Patent Application Laid-Open No. 2009-147123 discloses a semiconductor device having a fillet shape confined inward at an intermediate portion in the thickness direction at a solder joint portion between an electrode and a bus bar. Has been done.
  • the wire is not fixed to the electrode of the semiconductor element. Therefore, the wires may be displaced during the transfer of the semiconductor element before the reflow process and during the reflow process, and as a result, the position of the solder may be displaced, or the shape of the end face of the solder may be different from the target shape.
  • the solder is misaligned or has a poor shape in this way, it becomes difficult to suppress damage to the electrodes of the semiconductor element, and as a result, the reliability of the semiconductor device is lowered.
  • the present invention has been made to solve the above problems, and an object of the present invention is to obtain a highly reliable semiconductor device.
  • a semiconductor device includes a semiconductor element, a bus bar, a connecting conductor, and a wire.
  • the semiconductor element has a first surface.
  • the semiconductor element includes an electrode formed on the first surface. Busbars are placed on the electrodes.
  • the connecting conductor is arranged between the electrode and the bus bar.
  • the connecting conductor connects the electrode and the bus bar.
  • the wire surrounds the connecting conductor and touches the end of the electrode on the first surface.
  • the wire is fixed to the semiconductor element in at least one region other than the electrode.
  • the wire is configured so that the distance between the surface of the wire and the surface of the electrode increases from the connection between the wire and the electrode toward the center of the electrode. At least a part of the outer peripheral portion of the connecting conductor is in contact with the surface of the wire and the surface of the electrode.
  • the method for manufacturing a semiconductor device includes a step of preparing a semiconductor element having a first surface.
  • the semiconductor element includes an electrode formed on the first surface.
  • the method for manufacturing a semiconductor device further includes a step of fixing a wire on the first surface of the semiconductor element. In the fixing step, the wire is fixed to the semiconductor element so as to surround the electrode and contact the end of the electrode.
  • the method for manufacturing a semiconductor device further includes a step of arranging a plate-shaped or paste-shaped connecting conductor on an electrode surrounded by wires, a step of arranging a bus bar on a connecting conductor, and a step of connecting. In the connecting process, the connecting conductor is heated and melted, and the bus bar and the electrode are connected by the connecting conductor.
  • FIG. It is a plan schematic diagram of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the line segment II-II of FIG. It is sectional drawing of the line segment III-III of FIG.
  • FIG. It is sectional drawing of the semiconductor device which concerns on Embodiment 2.
  • FIG. It is a schematic diagram for demonstrating the structure of the semiconductor device which concerns on Embodiment 3.
  • FIG. It is sectional drawing of the semiconductor device which concerns on Embodiment 4.
  • FIG. It is sectional drawing which shows the 1st modification of the semiconductor device which concerns on Embodiment 4.
  • FIG. It is sectional drawing which shows the 2nd modification of the semiconductor device which concerns on Embodiment 4.
  • FIG. It is a schematic diagram for demonstrating the structure of the semiconductor device which concerns on Embodiment 5.
  • FIG. 1 is a schematic plan view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the line segment II-II of FIG.
  • FIG. 3 is a schematic cross-sectional view taken along the line segments III-III of FIG.
  • FIG. 4 is a schematic diagram for explaining the configuration of the semiconductor device shown in FIG. The semiconductor device according to the present embodiment will be described with reference to FIGS. 1 to 4.
  • the semiconductor device shown in FIGS. 1 to 4 includes a semiconductor element 11, a bus bar 12, a connecting conductor 13, and a wire 14.
  • the semiconductor element 11 has a first surface 11a.
  • the semiconductor element 11 includes an electrode 21 formed on the first surface 11a and a convex portion 22.
  • a plurality of convex portions 22 are arranged so as to surround the electrodes 21.
  • four convex portions 22 are arranged so as to surround the electrodes 21.
  • the convex portions 22 are arranged on the outer periphery of the electrode 21 at intervals.
  • the planar shape of the electrode 21 is a quadrangular shape with curved corners.
  • the convex portion 22 is arranged in a region where the extension lines of the linear adjacent sides in the planar shape of the electrode 21 intersect.
  • the electrode 21 may be composed of a single conductor, but may include a plurality of layers as shown in FIG. As shown in FIG. 2, for example, the electrode 21 includes a first layer 16 which is a solder bonding electrode in contact with the first surface 11a and a second layer 15 which is a solder bonding plating film laminated on the first layer 16. including.
  • the first layer 16 may be made of any conductor, but may be made of, for example, aluminum.
  • the second layer 15 may be made of a material for improving the bondability with the connecting conductor 13. For example, when the bonded conductor is lead-free solder, a nickel plating film may be used as the second layer 15.
  • the convex portion 22 may have the same configuration as the electrode 21. That is, the convex portion 22 includes a first layer 18 which is an electrode for wire bonding in contact with the first surface 11a, and a second layer 17 which is a plating film for wire bonding laminated on the first layer 18.
  • the first layer 18 may be made of the same material as the first layer 16 of the electrode 21.
  • the second layer 17 may be made of the same material as the second layer 15 of the electrode 21.
  • the bus bar 12 is arranged on the electrode 21.
  • the connecting conductor 13 connects the electrode 21 and the bus bar 12.
  • the wire 14 includes linear wire members 14a and 14b.
  • the wire members 14a and 14b are arranged on the first surface 11a so as to surround the connecting conductor 13.
  • the wire members 14a and 14b are in contact with the end of the electrode 21 as shown in FIG.
  • the wire 14 is fixed to the convex portion 22 arranged at a position adjacent to the electrode 21. Specifically, the wire 14 is fixed to the semiconductor element 11 at a convex portion 22 which is at least one region other than the electrode 21. As shown in FIG. 2, two wire members 14a and 14b are fixed to one convex portion 22. Any method can be used for fixing the wire 14 to the convex portion 22, and for example, an ultrasonic joining method can be used. On the other hand, although the wire 14 is in contact with the surface of the electrode 21, it is not directly fixed by using an ultrasonic joining method or the like.
  • the wire 14 is arranged so that the distance between the surface of the wire 14 and the surface of the electrode 21 increases from the connection portion (non-fixed contact portion) between the wire 14 and the electrode 21 toward the central portion of the electrode 21.
  • the cross-sectional shape of the wire 14 in the direction orthogonal to the extending direction is circular.
  • At least a part of the outer peripheral portion of the connecting conductor 13 is in contact with the surface of the wire 14 and the surface of the electrode 21 as shown in FIG. That is, the outer peripheral portion of the connecting conductor 13 has an inclined surface whose thickness becomes thinner toward the outside. The inclined surface is along the surface of the wire 14.
  • ⁇ Manufacturing method of semiconductor devices> 5 to 7 are schematic plan views for explaining the manufacturing method of the semiconductor device shown in FIG. 1. The method for manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS. 4 and 5 to 7 described above.
  • the semiconductor element 11 includes an electrode 21 and a convex portion 22 formed on the first surface 11a.
  • the electrode 21 and the convex portion 22 are arranged at independent positions on the first surface 11a.
  • the convex portion 22 is arranged on the outer peripheral portion of the electrode 21. If there is one or more convex portions 22, they may be separated and arranged at a plurality of locations.
  • a step of fixing the wire 14 on the first surface 11a of the semiconductor element 11 is performed.
  • the wire 14 is fixed to the semiconductor element 11 so as to surround the electrode 21 and contact the end of the electrode 21.
  • the wire 14 is fixed to the convex portion 22 by an arbitrary fixing method.
  • the wire 14 is fixed to the convex portion 22 by using an ultrasonic joining method.
  • the wire 14 is arranged along the outer peripheral portion of the electrode 21.
  • the wire members 14a and 14b may be arranged so as to cover the outer peripheral portion of the electrode 21 as the whole wire 14.
  • the wire 14 and the convex portion 22 may be bonded and fixed by another method instead of ultrasonic bonding.
  • One or more wires 14 may be joined to each of the convex portions 22 having independent positions.
  • a step of arranging the plate-shaped or paste-shaped connecting conductor 13 on the electrode 21 surrounded by the wire 14 is carried out.
  • the connecting conductor 13 for example, lead-free solder can be used.
  • the connecting conductor 13 may not be in direct contact with the wire 14, but may be in contact with the wire 14.
  • the connecting conductor 13 is arranged on the upper surface of the electrode 21 surrounded by the wire 14, and the bus bar 12 is arranged on the upper surface of the connecting conductor 13.
  • a step of arranging the bus bar 12 on the connecting conductor 13 is carried out. At this time, it is preferable that the bus bar 12 comes into contact with the connecting conductor 13. That is, it is preferable that the height from the surface of the electrode 21 to the top of the connecting conductor 13 is higher than the height from the surface of the electrode 21 to the top of the wire 14.
  • the connecting conductor 13 is heated and melted, and the bus bar 12 and the electrode 21 are connected by the connecting conductor 13.
  • the semiconductor element 11 in which the bus bar 12 is laminated and arranged on the connecting conductor 13 as described above is arranged in the reflow furnace.
  • the connecting conductor 13 is heated and melted.
  • the melting point of the wire 14 is higher than the melting point of the plate-shaped or paste-shaped connecting conductor 13. Therefore, the wire 14 itself does not melt during the reflow process.
  • the connecting conductor 13 melts, the melted connecting conductor 13 wets and spreads on the surface of the electrode 21, and comes into contact with the surface of the wire 14 located on the end of the electrode 21. As a result, the angle of the end portion of the connecting conductor 13 in contact with the upper surface of the electrode 21 becomes smaller along the surface shape of the wire 14. After that, the semiconductor device including the semiconductor element 11 is taken out from the reflow furnace and cooled. As a result, the melted connecting conductor 13 can be solidified, and the electrode 21 and the bus bar 12 can be joined by the connecting conductor 13.
  • the semiconductor device includes a semiconductor element 11, a bus bar 12, a connecting conductor 13, and a wire 14.
  • the semiconductor element 11 has a first surface 11a.
  • the semiconductor element 11 includes an electrode 21 formed on the first surface 11a.
  • the bus bar 12 is arranged on the electrode 21.
  • the connecting conductor 13 is arranged between the electrode 21 and the bus bar 12.
  • the connecting conductor 13 connects the electrode 21 and the bus bar 12.
  • the wire 14 surrounds the connecting conductor 13 and contacts the end of the electrode 21 on the first surface 11a.
  • the wire 14 is fixed to the semiconductor element 11 in at least one region other than the electrode 21.
  • the wire 14 is configured so that the distance between the surface of the wire 14 and the surface of the electrode 21 increases from the connection portion between the wire 14 and the electrode 21 toward the central portion of the electrode 21. At least a part of the outer peripheral portion of the connecting conductor 13 is in contact with the surface of the wire 14 and the surface of the electrode 21.
  • the shape of the outer peripheral portion of the connecting conductor 13 can be made into a shape in which the thickness of the connecting conductor 13 becomes thinner as it approaches the outer peripheral end portion on the surface of the electrode 21. That is, the angle formed by the end surface of the connecting conductor 13 with the surface of the electrode 21 can be reduced. As a result, the thermal stress generated at the end of the connecting conductor 13 due to the thermal cycle load can be reduced. Therefore, when a thermal cycle load is applied to the semiconductor element 11, stress concentration at the end of the electrode 21 can be suppressed, and damage to the electrode 21 can be suppressed.
  • the wire 14 fixed to the semiconductor element 11 can suppress the occurrence of a problem that the pellets (for example, solder pellets) of the conductor to be the connecting conductor 13 are displaced from the electrode 21 in the manufacturing process of the semiconductor device. Further, by adjusting the surface shape of the wire 14, the shape of the outer peripheral portion of the connecting conductor 13 in contact with the surface of the wire 14 can be controlled as a result. Further, since the wire 14 is fixed to the semiconductor element 11 in a region different from that of the electrode 21, the wire 14 is caused by a step of fixing the wire 14 to the semiconductor element 11 (for example, an ultrasonic joining step) or a thermal cycle load. Even if the connection portion between the semiconductor element 11 and the semiconductor element 11 is damaged, the damage does not adversely affect the electrode 21.
  • a step of fixing the wire 14 to the semiconductor element 11 for example, an ultrasonic joining step
  • the material constituting the bus bar 12 is one selected from the group consisting of copper (Cu), copper alloy, and copper clad material. In this case, sufficient conductivity can be ensured in the bus bar connected to the electrode 21 of the semiconductor element 11.
  • the wire 14 includes a plurality of wire members 14a and 14b arranged so as to surround the connecting conductor 13.
  • the plurality of wire members 14a and 14b are fixed to the semiconductor element 11, respectively.
  • the shapes of the wire members 14a and 14b seen from the direction perpendicular to the first surface are linear or curved.
  • a wire 14 having an arbitrary planar shape can be obtained by combining a plurality of linear or curved wire members 14a and 14b according to the planar shape of the electrode 21 or the connecting conductor 13.
  • the cross-sectional shape of the wire 14 in the direction perpendicular to the extending direction is any one selected from the group consisting of a circular shape, a semicircular shape, an elliptical shape, and a trapezoidal shape.
  • the angle formed by the end face of the connecting conductor 13 and the surface of the electrode 21 can be arbitrarily set, or the shape of the end face of the connecting conductor 13 can be linear or arbitrary. It can be a curved surface with a curvature of.
  • the material constituting the wire 14 includes a conductor typified by a metal such as aluminum (Al).
  • a conductor typified by a metal such as aluminum (Al).
  • the semiconductor element 11 includes a convex portion 22 arranged at a position adjacent to the electrode 21 on the first surface 11a.
  • the wire 14 is fixed to the convex portion 22.
  • the wire 14 can be easily fixed to the semiconductor element 11 by fixing a part of the wire 14 to the convex portion 22.
  • the height of the convex portion 22 from the first surface 11a is preferably equal to the height of the electrode 21 from the first surface 11a.
  • the convex portion 22 may be made of the same material as the electrode 21.
  • the convex portion 22 may be formed of the same layer as the electrode 21.
  • the convex portion 22 includes a first convex portion 22 and a second convex portion 22 arranged at a distance from the first convex portion 22.
  • One or more places on the wire 14 are fixed to the first convex portion 22 and the second convex portion 22, respectively. In this case, since the wire 14 can be fixed to the semiconductor element 11 at the first convex portion 22 and the second convex portion 22, the wire 14 can be reliably fixed to the semiconductor element 11.
  • the method for manufacturing a semiconductor device includes a step of preparing a semiconductor element 11 having a first surface 11a.
  • the semiconductor element 11 includes an electrode 21 formed on the first surface 11a.
  • the method for manufacturing a semiconductor device further includes a step of fixing the wire 14 on the first surface 11a of the semiconductor element 11 as shown in FIG. In the fixing step, the wire 14 is fixed to the semiconductor element 11 so as to surround the electrode 21 and contact the end of the electrode 21.
  • a method for manufacturing a semiconductor device includes a step of arranging a plate-shaped or paste-shaped connecting conductor 13 on an electrode 21 surrounded by wires 14 as shown in FIG. 6, and a step of arranging the connecting conductor 13 on the connecting conductor 13 as shown in FIG. A step of arranging the bus bar 12 and a step of connecting the bus bar 12 are provided. In the connecting step, the connecting conductor 13 is heated and melted, and the bus bar 12 and the electrode 21 are connected by the connecting conductor 13.
  • the semiconductor device according to the present disclosure can be obtained. Further, when the semiconductor element 11 is transported to the reflow furnace for heating the connecting conductor 13 in the connecting step, or when the connecting conductor 13 is heated in the reflow furnace, the connecting conductor 13 before melting (for example, a plate, pellets or Consider a case where a stress is applied to the paste-like connecting conductor) in the direction toward the outside of the electrode 21. In this case, since the movement of the connecting conductor 13 is restricted by the wire 14, the connecting conductor 13 can be maintained in a state of being arranged on the electrode 21 even when the stress is applied. As a result, it is possible to prevent the connecting conductor 13 from being displaced.
  • the connecting conductor 13 before melting for example, a plate, pellets or Consider a case where a stress is applied to the paste-like connecting conductor
  • the wire 14 is fixed to the semiconductor element 11 in at least one region other than the electrode 21.
  • the connection portion between the wire 14 and the semiconductor element 11 is damaged due to the fixing process or the thermal cycle load.
  • the damage does not adversely affect the electrode 21.
  • FIG. 8 is a schematic cross-sectional view of the semiconductor device according to the second embodiment. Note that FIG. 8 corresponds to FIG.
  • the semiconductor device shown in FIG. 8 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the bus bar 12 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 8, the bus bar 12 has a laminated structure in which the first member 12a and the second member 12b are laminated.
  • the second member 12b may be a layer made of copper
  • the first member 12a may be any conductor.
  • the second member 12b may be a clad layer made of copper in which a copper layer is connected to the first member 12a. That is, the bus bar 12 may be a copper clad material. Further, copper or a copper alloy may be used as the material constituting the bus bar 12.
  • the structure of the bus bar 12 is not limited to the two-layer structure shown in FIG. 8, and a three-layer or more laminated structure may be adopted.
  • the material constituting the bus bar 12 is one selected from the group consisting of copper (Cu), a copper alloy, and a copper clad material. In this case, sufficient conductivity can be ensured in the bus bar 12 connected to the electrode 21 of the semiconductor element 11.
  • FIG. 9 is a schematic diagram for explaining the configuration of the semiconductor device according to the third embodiment.
  • the semiconductor device shown in FIG. 9 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 9, the wire member 14c in which the wire 14 is bent is included. More specifically, the wire 14 is composed of two bent wire members 14c. The wire member 14c is arranged at a position where it overlaps the outer circumference of the electrode 21 in a plan view.
  • the end of one wire member 14c is arranged to face the end of the other wire member 14c.
  • the end of one wire member 14c and the end of the other wire member 14c are fixed to the same convex portion 22.
  • the bent portion of the wire member 14c does not have to be particularly fixed to the semiconductor element 11.
  • the connecting conductor 13 is arranged in the region surrounded by the wire member 14c.
  • the cross-sectional shape of the wire member 14c in the direction perpendicular to the extending direction is, for example, a circular shape.
  • the wire 14 includes a plurality of wire members 14c arranged so as to surround the connecting conductor 13. Each of the plurality of wire members 14c is fixed to the semiconductor element 11. The shape of the wire member 14c seen from the direction perpendicular to the first surface 11a is curved.
  • one wire member 14c can be arranged so as to be located on the outer peripheral portion of the electrode 21 facing at least two directions in the plan view.
  • the number of wire members 14c used can be reduced as compared with the case where all linear wire members 14a and 14b are used.
  • the process of arranging the wire members 14c can be simplified as compared with the case of using the linear wire members 14a and 14b.
  • FIG. 10 is a schematic cross-sectional view of the semiconductor device according to the fourth embodiment.
  • FIG. 11 is a schematic cross-sectional view showing a first modification of the semiconductor device according to the fourth embodiment.
  • FIG. 12 is a schematic cross-sectional view showing a second modification of the semiconductor device according to the fourth embodiment. 10 to 12 correspond to FIG.
  • the semiconductor device shown in FIG. 10 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 10, the cross-sectional shape of the wire member 14d constituting the wire 14 in the direction orthogonal to the extending direction is a semicircular shape. The cross-sectional shape of the wire member 14d is curved on the electrode 21 side and linear on the bus bar 12 side. The end of the connecting conductor 13 is in contact with the wire 14. In this case, the contact angle with respect to the surface of the electrode 21 at the end of the connecting conductor 13 can be made smaller than that of the semiconductor device shown in FIG.
  • the semiconductor device shown in FIG. 11 basically has the same configuration as the semiconductor device shown in FIG. 10, but the structure of the wire 14 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 11, the cross-sectional shape of the wire member 14d constituting the wire 14 in the direction orthogonal to the extending direction is elliptical. In the semiconductor device shown in FIG. 11, the cross-sectional shape of the wire member 14e constituting the wire 14 is an elliptical shape having a long axis extending in a direction along the surface of the electrode 21. In this case as well, the same effect as that of the semiconductor device shown in FIG. 10 can be obtained.
  • the semiconductor device shown in FIG. 12 basically has the same configuration as the semiconductor device shown in FIG. 10, but the structure of the wire 14 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 12, the cross-sectional shape of the wire member 14d constituting the wire 14 in the direction orthogonal to the extending direction is trapezoidal. In the semiconductor device shown in FIG. 12, the cross-sectional shape of the wire member 14f constituting the wire 14 has a side extending obliquely with respect to the surface of the electrode 21 on the connecting conductor 13 side and the surface side of the electrode 21.
  • the angle of the side of the electrode 21 with respect to the surface for example, 30 ° or less, preferably 20 ° or less, more preferably 10 ° or less
  • the same effect as that of the semiconductor device shown in FIG. 10 can be obtained. be able to.
  • the side facing the surface of the electrode 21 extends in the direction along the surface of the electrode 21.
  • the side facing the bus bar 12 extends in the direction along the lower surface of the bus bar 12. Therefore, the adhesion between the contact portion between the wire member 14f and the surface of the electrode 21 and the contact portion between the wire member 14f and the bus bar 12 can be improved.
  • the cross-sectional shape in the direction perpendicular to the extending direction of the wire 14 is a group consisting of a circular shape, a semicircular shape, an elliptical shape, and a trapezoidal shape. It is any one selected from.
  • the angle formed by the end face of the connecting conductor 13 and the surface of the electrode 21 can be set to an arbitrary angle, or the shape of the end face of the connecting conductor 13 can be linear or arbitrary. It can be a curved surface with a curvature of.
  • the semiconductor device according to the present embodiment basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 is different from that of the semiconductor device shown in FIGS. 1 to 3. There is. That is, in the semiconductor device according to the present embodiment, a metal wire such as copper or gold is used as the wire 14 instead of an aluminum wire.
  • the melting point of the material constituting the wire 14 is higher than the melting point of the connecting conductor 13. In this case, the connecting conductor 13 melts during the reflow process, but the wire 14 does not. Therefore, similarly to the semiconductor devices shown in FIGS. 1 to 3, the angle of the end portion of the connecting conductor 13 with respect to the upper surface of the electrode 21 can be reduced.
  • the material constituting the wire 14 is any one selected from aluminum (Al), copper (Cu), and gold (Au). Including.
  • Al aluminum
  • Cu copper
  • Au gold
  • the wire 14 can also be used as a part of the conductor connecting the electrode 21 and the bus bar 12.
  • the shape of the end portion of the connecting conductor 13 can be made to follow the shape of the wire 14 when the connecting conductor 13 is reflowed. it can.
  • FIG. 13 is a schematic diagram for explaining the configuration of the semiconductor device according to the fifth embodiment.
  • the semiconductor device shown in FIG. 13 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 and the arrangement of the convex portions 22 are shown in FIGS. 1 to 3. It is different from semiconductor devices. That is, in the semiconductor device shown in FIG. 13, the wire 14 includes a wire member 14 g in which the wire 14 is bent in an annular shape. Only one convex portion 22 is arranged at a position separated from the outer circumference of the electrode 21. Both ends of the wire member 14g are arranged on one convex portion 22.
  • Both ends of the wire member 14g are fixed to the same convex portion 22. Any method can be used for fixing the wire member 14 g to the convex portion 22, but for example, an ultrasonic joining method may be used.
  • the wire member 14g has an annular shape along the outer circumference of the upper surface of the electrode 21. The wire member 14g is in contact with the outer periphery of the upper surface of the electrode 21, but is not fixed.
  • the wire 14 is a single wire member 14g that surrounds the outer circumference of the connecting conductor 13 (see FIG. 3).
  • the wire 14 can be installed along the outer circumference of the electrode 21 so that the arrangement of the connecting conductor 13 is restricted only by arranging one wire member 14g. Therefore, the step of arranging the wire 14 can be simplified.
  • FIG. 14 is a schematic diagram for explaining the configuration of the semiconductor device according to the seventh embodiment.
  • 15 to 18 are schematic views showing first to fourth modified examples of the semiconductor device according to the seventh embodiment. 14 to 18 correspond to FIG. 4.
  • the semiconductor device shown in FIG. 14 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIGS. 1 to 3. There is. That is, in the semiconductor device shown in FIG. 14, the planar shape of the convex portion 22 is an elliptical shape.
  • the planar shape of the convex portion 22 in the semiconductor device shown in FIG. 14 is an elliptical shape in which the minor axis is arranged so as to face the center of the electrode 21. From a different point of view, the planar shape of the convex portion 22 is an elliptical shape arranged so that the long axis extends in the direction along the outer circumference of the electrode 21.
  • the semiconductor device shown in FIG. 15 basically has the same configuration as the semiconductor device shown in FIG. 14, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 15, the planar shape of the convex portion 22 is a triangular shape which is an example of a polygonal shape.
  • the side of the convex portion 22 facing the electrode 21 in the planar shape extends in a direction intersecting the line segment toward the center of the electrode 21.
  • the two sides of the convex portion 22 other than the side facing the electrode 21 extend along the two linear sides in the planar shape of the electrode 21.
  • the semiconductor device shown in FIG. 16 basically has the same configuration as the semiconductor device shown in FIG. 14, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 16, the planar shape of the convex portion 22 is a shape in which the corners of the polygon are curved.
  • the planar shape of the convex portion 22 shown in FIG. 16 is specifically a shape in which the corner portions are curved in a rectangular shape.
  • the side of the convex portion 22 facing the electrode 21 in the planar shape extends in a direction intersecting the line segment toward the center of the electrode 21.
  • the semiconductor device shown in FIG. 17 basically has the same configuration as the semiconductor device shown in FIG. 14, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 17, the convex portion 22 is formed so as to surround the outer periphery of the electrode 21.
  • the convex portion 22 has an annular shape, and the outer line on the inner peripheral side in the planar shape of the convex portion 22 extends along the outer line at intervals from the outer line of the planar shape of the electrode 21.
  • the outer line on the outer peripheral side in the planar shape of the convex portion 22 is a quadrangular shape.
  • the semiconductor device shown in FIG. 18 basically has the same configuration as the semiconductor device shown in FIG. 17, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 18, the convex portion 22 is formed so as to surround the outer circumference of the electrode 21 in an annular shape.
  • the outer line on the outer peripheral side of the planar shape of the convex portion 22 extends along the outer line of the planar shape of the electrode 21.
  • the convex portion 22 extends in an annular shape, and the width of the convex portion 22 in the direction perpendicular to the extending direction of the convex portion 22 may be substantially the same in the circumferential direction.
  • the planar shape of the convex portion 22 is a circular shape shown in FIG. 4, an elliptical shape shown in FIG. 14, a polygonal shape shown in FIG. 15, and FIG.
  • the planar shape of the convex portion 22 can be appropriately selected according to the shape of the wire 14 and the planar shape of the electrode 21.
  • FIG. 19 is a schematic diagram for explaining the configuration of the semiconductor device according to the eighth embodiment.
  • 20 to 22 are schematic views showing first to third modified examples of the semiconductor device according to the eighth embodiment. Note that FIGS. 19 to 22 correspond to FIG.
  • the semiconductor device shown in FIG. 19 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 19, the planar shape of the electrode 21 is rectangular and the corners are curved. The planar shape of the electrode 21 shown in FIG. 19 has a larger ratio of the length of the long side to the short side than that of the electrode 21 shown in FIG.
  • the semiconductor device shown in FIG. 20 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 20, the planar shape of the electrode 21 is an octagonal shape, which is an example of a polygonal shape.
  • the convex portion 22 is arranged at a position facing one side in the planar shape of the electrode 21. The length of the side of the electrode 21 with which the convex portion 22 faces is shorter than the length of the other side of the electrode 21 with which the convex portion 22 does not face.
  • the semiconductor device shown in FIG. 21 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 21, the planar shape of the electrode 21 is circular.
  • the plurality of convex portions 22 are arranged at positions symmetrical with respect to the center of the electrode 21.
  • the semiconductor device shown in FIG. 22 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 22, the planar shape of the electrode 21 is elliptical.
  • the plurality of convex portions 22 are arranged at positions line-symmetrical with respect to each of the major axis and the minor axis in the planar shape of the electrode 21.
  • the planar shape of the electrode 21 is a circular shape shown in FIG. 21, a polygonal shape shown in FIG. 20, and a corner portion of the polygon shown in FIG. It is one selected from the group consisting of curved shapes.
  • the configuration according to the present disclosure can be applied to the semiconductor element 11 having electrodes 21 having various shapes.

Abstract

A highly reliable semiconductor device can be obtained. This semiconductor device is provided with a semiconductor element (11), a busbar (12), a connection conductor (13) and a wire (14). The semiconductor element (11) includes an electrode (21) formed on a first surface (11a). The busbar (12) is arranged on the electrode (21). The connection conductor (13) connects the electrode (21) and the busbar (12). The wire (14) surrounds the connection conductor (13) and contacts the end of the electrode (21). The wire (14) is fixed to the semiconductor element (11) in at least one region outside of the electrode (21). The wire is configured such that the distance between the surface of the wire (14) and the surface of the electrode (21) increases from the area of connection between the wire (14) and the electrode (21) towards the center of the electrode (21). At least part of the outer periphery of the connection conductor (13) contacts the aforementioned surface of the wire (14) and the aforementioned surface of the electrode (21).

Description

半導体装置およびその製造方法Semiconductor devices and their manufacturing methods
 この発明は、半導体装置およびその製造方法に関する。 The present invention relates to a semiconductor device and a method for manufacturing the same.
 従来、大電流用途に適した縦型の半導体素子が知られている。当該縦型の半導体素子では、半導体素子の表裏の両面にそれぞれ電極が配置されている。表面側の電極との電気配線には、従来金属ワイヤを用いたワイヤボンディングが適用されてきた。 Conventionally, vertical semiconductor devices suitable for high current applications are known. In the vertical semiconductor element, electrodes are arranged on both the front and back surfaces of the semiconductor element. Conventionally, wire bonding using a metal wire has been applied to electrical wiring with an electrode on the front surface side.
 ワイヤボンディングのよる接続では、大電流容量化にともない、1つの電極に対して多数のワイヤを接合する必要がある。また、半導体素子に温度サイクル負荷が加わった時、電極とワイヤとの接合部における異種材間の線膨張係数差に起因して熱応力が発生する。この場合、1本のワイヤの断面積が相対的に小さいため、ワイヤが破断する可能性があった。 In the connection by wire bonding, it is necessary to join a large number of wires to one electrode as the current capacity increases. Further, when a temperature cycle load is applied to the semiconductor element, thermal stress is generated due to the difference in linear expansion coefficient between different materials at the joint between the electrode and the wire. In this case, since the cross-sectional area of one wire is relatively small, the wire may be broken.
 そこで近年、ワイヤボンディング接続に代わり、銅製のバスバーと半導体素子の電極とをはんだ材を用いて接合する半導体装置が量産されている。このような構造にすることで、電気配線の省スペース化、配線と電極との接合面積の増加による接合強度の増加、配線内部の抵抗低減による電流密度の増加といった効果が期待できる。 Therefore, in recent years, instead of wire bonding connection, semiconductor devices for joining a copper bus bar and an electrode of a semiconductor element using a solder material have been mass-produced. With such a structure, effects such as space saving of electrical wiring, increase of joint strength by increasing the joint area between the wiring and the electrode, and increase of current density by reducing resistance inside the wiring can be expected.
 一方、このような半導体装置では、温度サイクル負荷に起因して、半導体素子においてバスバーと接続された電極の端部に応力が集中し、電極にき裂などの損傷が発生する場合があった。 On the other hand, in such a semiconductor device, stress may be concentrated on the end of the electrode connected to the bus bar in the semiconductor element due to the temperature cycle load, and damage such as cracks may occur in the electrode.
 このような電極の損傷を防止するため、例えば特開2009-147123号公報では、電極とバスバーとのはんだ接合部において、厚さ方向の中間部で内側に括れたフィレット形状を有する半導体装置が開示されている。 In order to prevent such damage to the electrodes, for example, Japanese Patent Application Laid-Open No. 2009-147123 discloses a semiconductor device having a fillet shape confined inward at an intermediate portion in the thickness direction at a solder joint portion between an electrode and a bus bar. Has been done.
 特開2009-147123号公報では、半導体素子の電極とバスバーとをはんだにより接合する際に、当該はんだの端面において内側に括れたフィレット形状を形成するため以下のようなプロセスを実施する。まず、電極上に配置された板状のはんだペレットを囲むように高融点金属ワイヤを配置する。はんだリフロー工程を実施することで、当該ワイヤの表面に溶融したはんだが沿うように流動した後はんだを固化する。その後、当該ワイヤを除去する。 In Japanese Patent Application Laid-Open No. 2009-147123, when the electrodes of a semiconductor element and the bus bar are joined by solder, the following process is carried out in order to form a fillet shape confined inward at the end face of the solder. First, a refractory metal wire is arranged so as to surround the plate-shaped solder pellets arranged on the electrode. By carrying out the solder reflow process, the molten solder flows along the surface of the wire and then the solder is solidified. Then, the wire is removed.
特開2009-147123号公報JP-A-2009-147123
 上述したプロセスでは、ワイヤは半導体素子の電極に固定されていない。このため、リフロー工程前の半導体素子の搬送時およびリフロー工程時にワイヤが位置ずれを生じ、結果的にはんだの位置がずれる、あるいははんだの端面形状が目標の形状と異なる形状となる恐れがある。このようにはんだの位置ずれや形状不良が起こると、半導体素子の電極の損傷を抑制することが難しくなり、結果的に半導体装置の信頼性が低下することになっていた。 In the process described above, the wire is not fixed to the electrode of the semiconductor element. Therefore, the wires may be displaced during the transfer of the semiconductor element before the reflow process and during the reflow process, and as a result, the position of the solder may be displaced, or the shape of the end face of the solder may be different from the target shape. When the solder is misaligned or has a poor shape in this way, it becomes difficult to suppress damage to the electrodes of the semiconductor element, and as a result, the reliability of the semiconductor device is lowered.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、信頼性の高い半導体装置を得ることである。 The present invention has been made to solve the above problems, and an object of the present invention is to obtain a highly reliable semiconductor device.
 本開示に従った半導体装置は、半導体素子と、バスバーと、接続導体と、ワイヤとを備える。半導体素子は、第1面を有する。半導体素子は第1面上に形成された電極を含む。バスバーは電極上に配置される。接続導体は、電極とバスバーとの間に配置される。接続導体は、電極とバスバーとを接続する。ワイヤは、第1面上において、接続導体を囲むとともに電極の端部に接する。ワイヤは電極以外の少なくとも1つの領域において半導体素子に固定されている。ワイヤと電極との接続部から電極の中央部に向かうについれ、ワイヤの表面と電極の表面との間の距離が大きくなるように、ワイヤは構成されている。接続導体の外周部の少なくとも一部は、ワイヤの上記表面と電極の上記表面とに接触している。 A semiconductor device according to the present disclosure includes a semiconductor element, a bus bar, a connecting conductor, and a wire. The semiconductor element has a first surface. The semiconductor element includes an electrode formed on the first surface. Busbars are placed on the electrodes. The connecting conductor is arranged between the electrode and the bus bar. The connecting conductor connects the electrode and the bus bar. The wire surrounds the connecting conductor and touches the end of the electrode on the first surface. The wire is fixed to the semiconductor element in at least one region other than the electrode. The wire is configured so that the distance between the surface of the wire and the surface of the electrode increases from the connection between the wire and the electrode toward the center of the electrode. At least a part of the outer peripheral portion of the connecting conductor is in contact with the surface of the wire and the surface of the electrode.
 本開示に従った半導体装置の製造方法は、第1面を有する半導体素子を準備する工程を備える。半導体素子は第1面上に形成された電極を含む。半導体装置の製造方法は、さらに、半導体素子の第1面上においてワイヤを固定する工程を備える。固定する工程では、ワイヤは電極を囲むとともに電極の端部に接するように半導体素子に固定される。半導体装置の製造方法は、さらに、ワイヤに囲まれた電極上に板状またはペースト状の接続導体を配置する工程と、続導体上にバスバーを配置する工程と、接続する工程とを備える。接続する工程では、接続導体を加熱して溶融させ、接続導体によりバスバーと電極とを接続する。 The method for manufacturing a semiconductor device according to the present disclosure includes a step of preparing a semiconductor element having a first surface. The semiconductor element includes an electrode formed on the first surface. The method for manufacturing a semiconductor device further includes a step of fixing a wire on the first surface of the semiconductor element. In the fixing step, the wire is fixed to the semiconductor element so as to surround the electrode and contact the end of the electrode. The method for manufacturing a semiconductor device further includes a step of arranging a plate-shaped or paste-shaped connecting conductor on an electrode surrounded by wires, a step of arranging a bus bar on a connecting conductor, and a step of connecting. In the connecting process, the connecting conductor is heated and melted, and the bus bar and the electrode are connected by the connecting conductor.
 上記によれば、信頼性の高い半導体装置が得られる。 According to the above, a highly reliable semiconductor device can be obtained.
実施の形態1に係る半導体装置の平面模式図である。It is a plan schematic diagram of the semiconductor device which concerns on Embodiment 1. FIG. 図1の線分II-IIにおける断面模式図である。It is sectional drawing of the line segment II-II of FIG. 図1の線分III-IIIにおける断面模式図である。It is sectional drawing of the line segment III-III of FIG. 図1に示した半導体装置の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the semiconductor device shown in FIG. 図1に示した半導体装置の製造方法を説明するための平面模式図である。It is a plan schematic diagram for demonstrating the manufacturing method of the semiconductor device shown in FIG. 図1に示した半導体装置の製造方法を説明するための平面模式図である。It is a plan schematic diagram for demonstrating the manufacturing method of the semiconductor device shown in FIG. 図1に示した半導体装置の製造方法を説明するための平面模式図である。It is a plan schematic diagram for demonstrating the manufacturing method of the semiconductor device shown in FIG. 実施の形態2に係る半導体装置の断面模式図である。It is sectional drawing of the semiconductor device which concerns on Embodiment 2. FIG. 実施の形態3に係る半導体装置の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the semiconductor device which concerns on Embodiment 3. 実施の形態4に係る半導体装置の断面模式図である。It is sectional drawing of the semiconductor device which concerns on Embodiment 4. FIG. 実施の形態4に係る半導体装置の第1変形例を示す断面模式図である。It is sectional drawing which shows the 1st modification of the semiconductor device which concerns on Embodiment 4. FIG. 実施の形態4に係る半導体装置の第2変形例を示す断面模式図である。It is sectional drawing which shows the 2nd modification of the semiconductor device which concerns on Embodiment 4. FIG. 実施の形態5に係る半導体装置の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the semiconductor device which concerns on Embodiment 5. 実施の形態7に係る半導体装置の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the semiconductor device which concerns on Embodiment 7. 実施の形態7に係る半導体装置の第1変形例を示す模式図である。It is a schematic diagram which shows the 1st modification of the semiconductor device which concerns on Embodiment 7. 実施の形態7に係る半導体装置の第2変形例を示す模式図である。It is a schematic diagram which shows the 2nd modification of the semiconductor device which concerns on Embodiment 7. 実施の形態7に係る半導体装置の第3変形例を示す模式図である。It is a schematic diagram which shows the 3rd modification of the semiconductor device which concerns on Embodiment 7. 実施の形態7に係る半導体装置の第4変形例を示す模式図である。It is a schematic diagram which shows the 4th modification of the semiconductor device which concerns on Embodiment 7. 実施の形態8に係る半導体装置の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the semiconductor device which concerns on Embodiment 8. 実施の形態8に係る半導体装置の第1変形例を示す模式図である。It is a schematic diagram which shows the 1st modification of the semiconductor device which concerns on Embodiment 8. 実施の形態8に係る半導体装置の第2変形例を示す模式図である。It is a schematic diagram which shows the 2nd modification of the semiconductor device which concerns on Embodiment 8. 実施の形態8に係る半導体装置の第3変形例を示す模式図である。It is a schematic diagram which shows the 3rd modification of the semiconductor device which concerns on Embodiment 8.
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described. The same reference number will be assigned to the same configuration, and the description will not be repeated.
 実施の形態1.
 <半導体装置の構成>
 図1は、実施の形態1に係る半導体装置の平面模式図である。図2は、図1の線分II-IIにおける断面模式図である。図3は、図1の線分III-IIIにおける断面模式図である。図4は、図1に示した半導体装置の構成を説明するための模式図である。図1から図4を参照しながら、本実施の形態に係る半導体装置を説明する。
Embodiment 1.
<Semiconductor device configuration>
FIG. 1 is a schematic plan view of the semiconductor device according to the first embodiment. FIG. 2 is a schematic cross-sectional view of the line segment II-II of FIG. FIG. 3 is a schematic cross-sectional view taken along the line segments III-III of FIG. FIG. 4 is a schematic diagram for explaining the configuration of the semiconductor device shown in FIG. The semiconductor device according to the present embodiment will be described with reference to FIGS. 1 to 4.
 図1~図4に示した半導体装置は、半導体素子11と、バスバー12と、接続導体13と、ワイヤ14とを備える。半導体素子11は、第1面11aを有する。半導体素子11は第1面11a上に形成された電極21と、凸部22とを含む。凸部22は電極21を囲むように複数個配置されている。図1から図4に示した半導体装置では、凸部22は電極21を囲むように4つ配置されている。凸部22は電極21の外周に間隔を隔てて配置されている。電極21の平面形状は図4に示すように角部が曲線状にされた四角形状である。凸部22は電極21の平面形状における直線状の隣り合う辺の延長線が交差する領域に配置されている。 The semiconductor device shown in FIGS. 1 to 4 includes a semiconductor element 11, a bus bar 12, a connecting conductor 13, and a wire 14. The semiconductor element 11 has a first surface 11a. The semiconductor element 11 includes an electrode 21 formed on the first surface 11a and a convex portion 22. A plurality of convex portions 22 are arranged so as to surround the electrodes 21. In the semiconductor device shown in FIGS. 1 to 4, four convex portions 22 are arranged so as to surround the electrodes 21. The convex portions 22 are arranged on the outer periphery of the electrode 21 at intervals. As shown in FIG. 4, the planar shape of the electrode 21 is a quadrangular shape with curved corners. The convex portion 22 is arranged in a region where the extension lines of the linear adjacent sides in the planar shape of the electrode 21 intersect.
 電極21は単一の導電体から構成されていてもよいが、図2に示すように複数の層を含んでいてもよい。図2に示すように、たとえば電極21は第1面11aに接するはんだ接合用電極である第1層16と、第1層16上に積層されたはんだ接合用めっき膜である第2層15とを含む。第1層16は、任意の導電体により構成されていてもよいが、たとえばアルミニウムにより構成されていてもよい。第2層15は、接続導体13との接合性を向上させるための材料により構成されていてもよい。たとえば、接合導体が鉛フリーはんだである場合、第2層15としてニッケルめっき膜を用いてもよい。 The electrode 21 may be composed of a single conductor, but may include a plurality of layers as shown in FIG. As shown in FIG. 2, for example, the electrode 21 includes a first layer 16 which is a solder bonding electrode in contact with the first surface 11a and a second layer 15 which is a solder bonding plating film laminated on the first layer 16. including. The first layer 16 may be made of any conductor, but may be made of, for example, aluminum. The second layer 15 may be made of a material for improving the bondability with the connecting conductor 13. For example, when the bonded conductor is lead-free solder, a nickel plating film may be used as the second layer 15.
 凸部22は電極21と同様の構成を備えていてもよい。すなわち凸部22は第1面11aに接するワイヤ接合用電極である第1層18と、第1層18上に積層されたワイヤ接合用めっき膜である第2層17とを含む。第1層18は電極21の第1層16と同じ材料により構成されていてもよい。第2層17は電極21の第2層15と同じ材料により構成されていてもよい。 The convex portion 22 may have the same configuration as the electrode 21. That is, the convex portion 22 includes a first layer 18 which is an electrode for wire bonding in contact with the first surface 11a, and a second layer 17 which is a plating film for wire bonding laminated on the first layer 18. The first layer 18 may be made of the same material as the first layer 16 of the electrode 21. The second layer 17 may be made of the same material as the second layer 15 of the electrode 21.
 バスバー12は電極21上に配置される。接続導体13により、電極21とバスバー12とが接続される。ワイヤ14は、直線状のワイヤ部材14a、14bを含む。ワイヤ部材14a、14bは第1面11a上において、接続導体13を囲む用に配置される。ワイヤ部材14a、14bは図3に示すように電極21の端部に接する。 The bus bar 12 is arranged on the electrode 21. The connecting conductor 13 connects the electrode 21 and the bus bar 12. The wire 14 includes linear wire members 14a and 14b. The wire members 14a and 14b are arranged on the first surface 11a so as to surround the connecting conductor 13. The wire members 14a and 14b are in contact with the end of the electrode 21 as shown in FIG.
 電極21に隣接する位置に配置された凸部22にワイヤ14が固定されている。具体的には、ワイヤ14は電極21以外の少なくとも1つの領域である凸部22において半導体素子11に固定されている。図2に示すように、1つの凸部22に対して2つのワイヤ部材14a、14bが固定されている。ワイヤ14を凸部22に固定する方法は、任意の方法を用いることができるが、たとえば超音波接合法を用いることができる。一方、ワイヤ14は電極21の表面に接触はしているものの、超音波接合法などにを用いて直接的に固定されてはいない。 The wire 14 is fixed to the convex portion 22 arranged at a position adjacent to the electrode 21. Specifically, the wire 14 is fixed to the semiconductor element 11 at a convex portion 22 which is at least one region other than the electrode 21. As shown in FIG. 2, two wire members 14a and 14b are fixed to one convex portion 22. Any method can be used for fixing the wire 14 to the convex portion 22, and for example, an ultrasonic joining method can be used. On the other hand, although the wire 14 is in contact with the surface of the electrode 21, it is not directly fixed by using an ultrasonic joining method or the like.
 ワイヤ14と電極21との接続部(固定されていない接触部)から電極21の中央部に向かうについれ、ワイヤ14の表面と電極21の表面との間の距離が大きくなるように、ワイヤ14は構成されている。具体的には、図2および図3に示すように、ワイヤ14の延在方向に直交する方向における断面形状は円形状となっている。接続導体13の外周部の少なくとも一部は、図3に示すようにワイヤ14の上記表面と電極21の上記表面とに接触している。つまり、接続導体13の外周部は、外側に向かうにつれてその厚みが薄くなるような傾斜面を有する。当該傾斜面はワイヤ14の表面に沿っている。 The wire 14 is arranged so that the distance between the surface of the wire 14 and the surface of the electrode 21 increases from the connection portion (non-fixed contact portion) between the wire 14 and the electrode 21 toward the central portion of the electrode 21. Is configured. Specifically, as shown in FIGS. 2 and 3, the cross-sectional shape of the wire 14 in the direction orthogonal to the extending direction is circular. At least a part of the outer peripheral portion of the connecting conductor 13 is in contact with the surface of the wire 14 and the surface of the electrode 21 as shown in FIG. That is, the outer peripheral portion of the connecting conductor 13 has an inclined surface whose thickness becomes thinner toward the outside. The inclined surface is along the surface of the wire 14.
 <半導体装置の製造方法>
 図5から図7は、図1に示した半導体装置の製造方法を説明するための平面模式図である。上述した図4および図5から図7を参照しながら、図1に示した半導体装置の製造方法を説明する。
<Manufacturing method of semiconductor devices>
5 to 7 are schematic plan views for explaining the manufacturing method of the semiconductor device shown in FIG. 1. The method for manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS. 4 and 5 to 7 described above.
 図1に示した半導体装置の製造方法では、まず図4に示すように第1面11aを有する半導体素子11を準備する工程を実施する。当該準備する工程において、半導体素子11は第1面11a上に形成された電極21および凸部22を含む。電極21と凸部22とは第1面11a上においてそれぞれ独立した位置に配置されている。図4に示すように、凸部22は、電極21の外周部に配置する。なお、凸部22は1箇所以上あれば、複数箇所に分離して配置してもよい。 In the method for manufacturing a semiconductor device shown in FIG. 1, first, as shown in FIG. 4, a step of preparing a semiconductor element 11 having a first surface 11a is carried out. In the preparation step, the semiconductor element 11 includes an electrode 21 and a convex portion 22 formed on the first surface 11a. The electrode 21 and the convex portion 22 are arranged at independent positions on the first surface 11a. As shown in FIG. 4, the convex portion 22 is arranged on the outer peripheral portion of the electrode 21. If there is one or more convex portions 22, they may be separated and arranged at a plurality of locations.
 次に、図5に示すように半導体素子11の第1面11a上においてワイヤ14を固定する工程を実施する。固定する工程では、ワイヤ14は電極21を囲むとともに電極21の端部に接するように半導体素子11に固定される。ワイヤ14は凸部22に対して任意の固定方法により固定されるが、たとえば超音波接合法を用いてワイヤ14を凸部22に固定する。ワイヤ14を固定するとき、ワイヤ14は、電極21の外周部に沿うように配置する。ワイヤ14を構成する複数のワイヤ部材14a、14bを配置する場合、ワイヤ14全体として電極21の外周部を覆うように当該ワイヤ部材14a、14b配置すればよい。なお、ワイヤ14と凸部22とは超音波接合ではなく、他の方法により接合・固着されていてもよい。位置が独立した凸部22のそれぞれにつき、ワイヤ14を1箇所以上接合してもよい。 Next, as shown in FIG. 5, a step of fixing the wire 14 on the first surface 11a of the semiconductor element 11 is performed. In the fixing step, the wire 14 is fixed to the semiconductor element 11 so as to surround the electrode 21 and contact the end of the electrode 21. The wire 14 is fixed to the convex portion 22 by an arbitrary fixing method. For example, the wire 14 is fixed to the convex portion 22 by using an ultrasonic joining method. When fixing the wire 14, the wire 14 is arranged along the outer peripheral portion of the electrode 21. When a plurality of wire members 14a and 14b constituting the wire 14 are arranged, the wire members 14a and 14b may be arranged so as to cover the outer peripheral portion of the electrode 21 as the whole wire 14. The wire 14 and the convex portion 22 may be bonded and fixed by another method instead of ultrasonic bonding. One or more wires 14 may be joined to each of the convex portions 22 having independent positions.
 次に、図6に示すようにワイヤ14に囲まれた電極21上に板状またはペースト状の接続導体13を配置する工程を実施する。接続導体13としては、たとえば鉛フリーはんだを用いることができる。このとき、接続導体13はワイヤ14と直接的に接触していなくてもよいが、接触していてもよい。接続導体13をワイヤ14で囲われた電極21上面に配置し、接続導体13上面にバスバー12を配置する。 Next, as shown in FIG. 6, a step of arranging the plate-shaped or paste-shaped connecting conductor 13 on the electrode 21 surrounded by the wire 14 is carried out. As the connecting conductor 13, for example, lead-free solder can be used. At this time, the connecting conductor 13 may not be in direct contact with the wire 14, but may be in contact with the wire 14. The connecting conductor 13 is arranged on the upper surface of the electrode 21 surrounded by the wire 14, and the bus bar 12 is arranged on the upper surface of the connecting conductor 13.
 次に、図7に示すように接続導体13上にバスバー12を配置する工程を実施する。このとき、バスバー12は接続導体13と接触することが好ましい。つまり、電極21の表面からワイヤ14の頂部までの高さより、電極21の表面から接続導体13の頂部までの高さの方が高くなっていることが好ましい。 Next, as shown in FIG. 7, a step of arranging the bus bar 12 on the connecting conductor 13 is carried out. At this time, it is preferable that the bus bar 12 comes into contact with the connecting conductor 13. That is, it is preferable that the height from the surface of the electrode 21 to the top of the connecting conductor 13 is higher than the height from the surface of the electrode 21 to the top of the wire 14.
 次に、接続する工程を実施する。リフロー工程である当該接続する工程では、接続導体13を加熱して溶融させ、接続導体13によりバスバー12と電極21とを接続する。具体的には、上記のように接続導体13上にバスバー12が積層配置された半導体素子11を、リフロー炉内に配置する。リフロー炉により半導体素子全体を加熱することで、接続導体13を加熱して溶融させる。ワイヤ14の融点は板状またはペースト状の接続導体13の融点より高い。そのため、リフロー工程中において、ワイヤ14自身は溶けない。接続導体13が溶融すると、溶融した接続導体13が電極21表面において濡れ広がり、電極21の端部上に位置するワイヤ14の表面に接触する。この結果、ワイヤ14の表面形状に沿って、電極21上面と接する接続導体13の端部の角度が小さくなる。その後、リフロー炉から半導体素子11を含む半導体装置を取り出し冷却する。この結果、溶融していた接続導体13を固化させ、電極21とバスバー12とを接続導体13により接合できる。 Next, carry out the connecting process. In the connecting step, which is a reflow step, the connecting conductor 13 is heated and melted, and the bus bar 12 and the electrode 21 are connected by the connecting conductor 13. Specifically, the semiconductor element 11 in which the bus bar 12 is laminated and arranged on the connecting conductor 13 as described above is arranged in the reflow furnace. By heating the entire semiconductor element in the reflow furnace, the connecting conductor 13 is heated and melted. The melting point of the wire 14 is higher than the melting point of the plate-shaped or paste-shaped connecting conductor 13. Therefore, the wire 14 itself does not melt during the reflow process. When the connecting conductor 13 melts, the melted connecting conductor 13 wets and spreads on the surface of the electrode 21, and comes into contact with the surface of the wire 14 located on the end of the electrode 21. As a result, the angle of the end portion of the connecting conductor 13 in contact with the upper surface of the electrode 21 becomes smaller along the surface shape of the wire 14. After that, the semiconductor device including the semiconductor element 11 is taken out from the reflow furnace and cooled. As a result, the melted connecting conductor 13 can be solidified, and the electrode 21 and the bus bar 12 can be joined by the connecting conductor 13.
 <作用効果>
 上述した半導体装置の特徴的な構成を要約すれば、本開示に従った半導体装置は、半導体素子11と、バスバー12と、接続導体13と、ワイヤ14とを備える。半導体素子11は、第1面11aを有する。半導体素子11は第1面11a上に形成された電極21を含む。バスバー12は電極21上に配置される。接続導体13は、電極21とバスバー12との間に配置される。接続導体13は、電極21とバスバー12とを接続する。ワイヤ14は、第1面11a上において、接続導体13を囲むとともに電極21の端部に接する。ワイヤ14は電極21以外の少なくとも1つの領域において半導体素子11に固定されている。ワイヤ14と電極21との接続部から電極21の中央部に向かうについれ、ワイヤ14の表面と電極21の表面との間の距離が大きくなるように、ワイヤ14は構成されている。接続導体13の外周部の少なくとも一部は、ワイヤ14の上記表面と電極21の上記表面とに接触している。
<Effect>
To summarize the characteristic configurations of the semiconductor device described above, the semiconductor device according to the present disclosure includes a semiconductor element 11, a bus bar 12, a connecting conductor 13, and a wire 14. The semiconductor element 11 has a first surface 11a. The semiconductor element 11 includes an electrode 21 formed on the first surface 11a. The bus bar 12 is arranged on the electrode 21. The connecting conductor 13 is arranged between the electrode 21 and the bus bar 12. The connecting conductor 13 connects the electrode 21 and the bus bar 12. The wire 14 surrounds the connecting conductor 13 and contacts the end of the electrode 21 on the first surface 11a. The wire 14 is fixed to the semiconductor element 11 in at least one region other than the electrode 21. The wire 14 is configured so that the distance between the surface of the wire 14 and the surface of the electrode 21 increases from the connection portion between the wire 14 and the electrode 21 toward the central portion of the electrode 21. At least a part of the outer peripheral portion of the connecting conductor 13 is in contact with the surface of the wire 14 and the surface of the electrode 21.
 このようにすれば、接続導体13の外周部の形状を、電極21の表面における外周端部に近づくにつれて、接続導体13の厚みが薄くなる形状とすることができる。つまり、接続導体13の端面が電極21表面となす角度を小さくできる。この結果、接続導体13の端部において熱サイクル負荷に起因して発生する熱応力を小さくできる。そのため、半導体素子11に熱サイクル負荷が加えられた場合に、電極21端部での応力集中を抑制でき、当該電極21での損傷の発生を抑制できる。 In this way, the shape of the outer peripheral portion of the connecting conductor 13 can be made into a shape in which the thickness of the connecting conductor 13 becomes thinner as it approaches the outer peripheral end portion on the surface of the electrode 21. That is, the angle formed by the end surface of the connecting conductor 13 with the surface of the electrode 21 can be reduced. As a result, the thermal stress generated at the end of the connecting conductor 13 due to the thermal cycle load can be reduced. Therefore, when a thermal cycle load is applied to the semiconductor element 11, stress concentration at the end of the electrode 21 can be suppressed, and damage to the electrode 21 can be suppressed.
 さらに、半導体素子11に固定されたワイヤ14により、半導体装置の製造工程において接続導体13となるべき導体のペレット(たとえばはんだペレット)などが電極21上からずれるといった問題の発生を抑制できる。また、ワイヤ14の表面形状を調整することで、結果的に当該ワイヤ14の表面に接触している接続導体13の外周部の形状を制御できる。さらに、ワイヤ14を電極21とは異なる領域で半導体素子11に固定しているので、当該ワイヤ14を半導体素子11に固定する工程(たとえば超音波接合工程)や熱サイクル負荷に起因してワイヤ14と半導体素子11との接続部に損傷が発生したとしても、当該損傷が電極21に悪影響を及ぼすことはない。 Further, the wire 14 fixed to the semiconductor element 11 can suppress the occurrence of a problem that the pellets (for example, solder pellets) of the conductor to be the connecting conductor 13 are displaced from the electrode 21 in the manufacturing process of the semiconductor device. Further, by adjusting the surface shape of the wire 14, the shape of the outer peripheral portion of the connecting conductor 13 in contact with the surface of the wire 14 can be controlled as a result. Further, since the wire 14 is fixed to the semiconductor element 11 in a region different from that of the electrode 21, the wire 14 is caused by a step of fixing the wire 14 to the semiconductor element 11 (for example, an ultrasonic joining step) or a thermal cycle load. Even if the connection portion between the semiconductor element 11 and the semiconductor element 11 is damaged, the damage does not adversely affect the electrode 21.
 上記半導体装置において、バスバー12を構成する材料は、銅(Cu)、銅合金、銅クラッド材からなる群から選択される1つである。この場合、半導体素子11の電極21と接続されたバスバーにおいて十分な導電性を確保できる。 In the above semiconductor device, the material constituting the bus bar 12 is one selected from the group consisting of copper (Cu), copper alloy, and copper clad material. In this case, sufficient conductivity can be ensured in the bus bar connected to the electrode 21 of the semiconductor element 11.
 上記半導体装置において、ワイヤ14は、接続導体13を囲むように配置された複数のワイヤ部材14a、14bを含む。複数のワイヤ部材14a、14bはそれぞれ半導体素子11に固定される。第1面に垂直な方向から見たワイヤ部材14a、14bの形状は直線状または曲線状である。 In the semiconductor device, the wire 14 includes a plurality of wire members 14a and 14b arranged so as to surround the connecting conductor 13. The plurality of wire members 14a and 14b are fixed to the semiconductor element 11, respectively. The shapes of the wire members 14a and 14b seen from the direction perpendicular to the first surface are linear or curved.
 この場合、電極21または接続導体13の平面形状にあわせて、直線状または曲線状のワイヤ部材14a、14bを複数組み合わせて任意の平面形状のワイヤ14を得ることができる。 In this case, a wire 14 having an arbitrary planar shape can be obtained by combining a plurality of linear or curved wire members 14a and 14b according to the planar shape of the electrode 21 or the connecting conductor 13.
 上記半導体装置において、ワイヤ14の延在方向に垂直な方向における断面形状は、円形状、半円形状、楕円形状、および台形状からなる群から選択されるいずれか1つである。この場合、ワイヤ14の断面形状を適宜選択することで、当該接続導体13の端面と電極21表面とのなす角度を任意に角度に設定したり、接続導体13の端面の形状を直線状または任意の曲率の曲面状とすることができる。 In the above semiconductor device, the cross-sectional shape of the wire 14 in the direction perpendicular to the extending direction is any one selected from the group consisting of a circular shape, a semicircular shape, an elliptical shape, and a trapezoidal shape. In this case, by appropriately selecting the cross-sectional shape of the wire 14, the angle formed by the end face of the connecting conductor 13 and the surface of the electrode 21 can be arbitrarily set, or the shape of the end face of the connecting conductor 13 can be linear or arbitrary. It can be a curved surface with a curvature of.
 上記半導体装置において、ワイヤ14を構成する材料は、たとえばアルミニウム(Al)などの金属に代表される導電体を含む。このようにワイヤ14を構成する材料を導電体とすることで、ワイヤ14も電極21とバスバー12とを接続する導体の一部として利用できる。 In the above semiconductor device, the material constituting the wire 14 includes a conductor typified by a metal such as aluminum (Al). By using the material constituting the wire 14 as the conductor in this way, the wire 14 can also be used as a part of the conductor connecting the electrode 21 and the bus bar 12.
 上記半導体装置において、半導体素子11は、第1面11a上において電極21に隣接する位置に配置された凸部22を含む。ワイヤ14は凸部22に固定されている。この場合、凸部22にワイヤ14の一部を固定することで、ワイヤ14を半導体素子11に容易に固定できる。第1面11aからの凸部22の高さは第1面11aからの電極21の高さと同等とすることが好ましい。凸部22は電極21と同じ材料により構成されていてもよい。凸部22は電極21と同一レイヤにより構成されていてもよい。 In the above semiconductor device, the semiconductor element 11 includes a convex portion 22 arranged at a position adjacent to the electrode 21 on the first surface 11a. The wire 14 is fixed to the convex portion 22. In this case, the wire 14 can be easily fixed to the semiconductor element 11 by fixing a part of the wire 14 to the convex portion 22. The height of the convex portion 22 from the first surface 11a is preferably equal to the height of the electrode 21 from the first surface 11a. The convex portion 22 may be made of the same material as the electrode 21. The convex portion 22 may be formed of the same layer as the electrode 21.
 上記半導体装置において、凸部22は、第1凸部22と、当該第1凸部22と間隔を隔てて配置された第2凸部22とを含む。第1凸部22および第2凸部22には、それぞれワイヤ14における1カ所以上が固定されている。この場合、第1凸部22と第2凸部22とにおいてワイヤ14を半導体素子11に固定できるので、半導体素子11にワイヤ14を確実に固定できる。 In the semiconductor device, the convex portion 22 includes a first convex portion 22 and a second convex portion 22 arranged at a distance from the first convex portion 22. One or more places on the wire 14 are fixed to the first convex portion 22 and the second convex portion 22, respectively. In this case, since the wire 14 can be fixed to the semiconductor element 11 at the first convex portion 22 and the second convex portion 22, the wire 14 can be reliably fixed to the semiconductor element 11.
 本開示に従った半導体装置の製造方法は、第1面11aを有する半導体素子11を準備する工程を備える。半導体素子11は第1面11a上に形成された電極21を含む。半導体装置の製造方法は、さらに、図5に示すように半導体素子11の第1面11a上においてワイヤ14を固定する工程を備える。固定する工程では、ワイヤ14は電極21を囲むとともに電極21の端部に接するように半導体素子11に固定される。半導体装置の製造方法は、さらに、図6に示すようにワイヤ14に囲まれた電極21上に板状またはペースト状の接続導体13を配置する工程と、図7に示すように接続導体13上にバスバー12を配置する工程と、接続する工程とを備える。接続する工程では、接続導体13を加熱して溶融させ、接続導体13によりバスバー12と電極21とを接続する。 The method for manufacturing a semiconductor device according to the present disclosure includes a step of preparing a semiconductor element 11 having a first surface 11a. The semiconductor element 11 includes an electrode 21 formed on the first surface 11a. The method for manufacturing a semiconductor device further includes a step of fixing the wire 14 on the first surface 11a of the semiconductor element 11 as shown in FIG. In the fixing step, the wire 14 is fixed to the semiconductor element 11 so as to surround the electrode 21 and contact the end of the electrode 21. Further, a method for manufacturing a semiconductor device includes a step of arranging a plate-shaped or paste-shaped connecting conductor 13 on an electrode 21 surrounded by wires 14 as shown in FIG. 6, and a step of arranging the connecting conductor 13 on the connecting conductor 13 as shown in FIG. A step of arranging the bus bar 12 and a step of connecting the bus bar 12 are provided. In the connecting step, the connecting conductor 13 is heated and melted, and the bus bar 12 and the electrode 21 are connected by the connecting conductor 13.
 このようにすれば、本開示に係る半導体装置を得ることができる。また、接続する工程において接続導体13を加熱するためのリフロー炉まで半導体素子11を搬送する時、あるいはリフロー炉において接続導体13を加熱する時において、溶融前の接続導体13(たとえば板、ペレットまたはペースト状の接続導体)に電極21外部へ向かう方向の応力が加えられる場合を考える。この場合、接続導体13はワイヤ14によりその移動が規制されているため、当該応力が加えられたとしても接続導体13が電極21上に配置された状態を維持できる。この結果、接続導体13が位置ずれすることを抑制できる。 By doing so, the semiconductor device according to the present disclosure can be obtained. Further, when the semiconductor element 11 is transported to the reflow furnace for heating the connecting conductor 13 in the connecting step, or when the connecting conductor 13 is heated in the reflow furnace, the connecting conductor 13 before melting (for example, a plate, pellets or Consider a case where a stress is applied to the paste-like connecting conductor) in the direction toward the outside of the electrode 21. In this case, since the movement of the connecting conductor 13 is restricted by the wire 14, the connecting conductor 13 can be maintained in a state of being arranged on the electrode 21 even when the stress is applied. As a result, it is possible to prevent the connecting conductor 13 from being displaced.
 上記半導体装置の製造方法において、固定する工程では、ワイヤ14は電極21以外の少なくとも1つの領域において半導体素子11に固定されている。この場合、ワイヤ14を電極21とは異なる領域で半導体素子11に固定しているので、固定する工程や熱サイクル負荷に起因してワイヤ14と半導体素子11との接続部に損傷が発生したとしても、当該損傷が電極21に悪影響を及ぼすことはない。 In the process of fixing the semiconductor device, the wire 14 is fixed to the semiconductor element 11 in at least one region other than the electrode 21. In this case, since the wire 14 is fixed to the semiconductor element 11 in a region different from the electrode 21, it is assumed that the connection portion between the wire 14 and the semiconductor element 11 is damaged due to the fixing process or the thermal cycle load. However, the damage does not adversely affect the electrode 21.
 実施の形態2.
 <半導体装置の構成>
 図8は、実施の形態2に係る半導体装置の断面模式図である。なお、図8は図2に対応する。図8に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、バスバー12の構造が図1~図3に示した半導体装置と異なっている。すなわち、図8に示した半導体装置では、バスバー12が第1部材12aと第2部材12bとが積層した積層構造となっている。たとえば、第2部材12bは銅からなる層であり、第1部材12aは任意の導電体であってもよい。第2部材12bは第1部材12aに銅層が接続された銅からなるクラッド層であってもよい。すなわちバスバー12は銅クラッド材であってもよい。また、バスバー12を構成する材料として銅または銅合金を用いてもよい。バスバー12の構成として、図8に示した2層構造の積層構造に限らず、3層以上の積層構造を採用してもよい。
Embodiment 2.
<Semiconductor device configuration>
FIG. 8 is a schematic cross-sectional view of the semiconductor device according to the second embodiment. Note that FIG. 8 corresponds to FIG. The semiconductor device shown in FIG. 8 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the bus bar 12 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 8, the bus bar 12 has a laminated structure in which the first member 12a and the second member 12b are laminated. For example, the second member 12b may be a layer made of copper, and the first member 12a may be any conductor. The second member 12b may be a clad layer made of copper in which a copper layer is connected to the first member 12a. That is, the bus bar 12 may be a copper clad material. Further, copper or a copper alloy may be used as the material constituting the bus bar 12. The structure of the bus bar 12 is not limited to the two-layer structure shown in FIG. 8, and a three-layer or more laminated structure may be adopted.
 <作用効果>
 上述した半導体装置の特徴的な構成を要約すれば、上記半導体装置において、バスバー12を構成する材料は、銅(Cu)、銅合金、銅クラッド材からなる群から選択される1つである。この場合、半導体素子11の電極21と接続されたバスバー12において十分な導電性を確保できる。
<Effect>
To summarize the characteristic configurations of the above-mentioned semiconductor device, in the above-mentioned semiconductor device, the material constituting the bus bar 12 is one selected from the group consisting of copper (Cu), a copper alloy, and a copper clad material. In this case, sufficient conductivity can be ensured in the bus bar 12 connected to the electrode 21 of the semiconductor element 11.
 実施の形態3.
 <半導体装置の構成>
 図9は、実施の形態3に係る半導体装置の構成を説明するための模式図である。なお図9は図5に対応する。図9に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、ワイヤ14の構造が図1~図3に示した半導体装置と異なっている。すなわち、図9に示した半導体装置では、ワイヤ14が屈曲したワイヤ部材14cを含む。より具体的には、ワイヤ14は2本の屈曲したワイヤ部材14cにより構成されている。ワイヤ部材14cは電極21の外周と平面視において重なる位置に配置されている。異なる観点から言えば、一方のワイヤ部材14cの端部は、他方のワイヤ部材14cの端部に面するように配置されている。一方のワイヤ部材14cの端部と他方のワイヤ部材14cの端部とは、同一の凸部22に固定されている。なお、ワイヤ部材14cの屈曲部は特に半導体素子11に対して固定されていなくてもよい。このワイヤ部材14cにより囲まれた領域に接続導体13が配置される。ワイヤ部材14cの延在方向に垂直な方向の断面形状はたとえば円形状である。
Embodiment 3.
<Semiconductor device configuration>
FIG. 9 is a schematic diagram for explaining the configuration of the semiconductor device according to the third embodiment. Note that FIG. 9 corresponds to FIG. The semiconductor device shown in FIG. 9 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 9, the wire member 14c in which the wire 14 is bent is included. More specifically, the wire 14 is composed of two bent wire members 14c. The wire member 14c is arranged at a position where it overlaps the outer circumference of the electrode 21 in a plan view. From a different point of view, the end of one wire member 14c is arranged to face the end of the other wire member 14c. The end of one wire member 14c and the end of the other wire member 14c are fixed to the same convex portion 22. The bent portion of the wire member 14c does not have to be particularly fixed to the semiconductor element 11. The connecting conductor 13 is arranged in the region surrounded by the wire member 14c. The cross-sectional shape of the wire member 14c in the direction perpendicular to the extending direction is, for example, a circular shape.
 <作用効果>
 上記半導体装置において、ワイヤ14は、接続導体13を囲むように配置された複数のワイヤ部材14cを含む。複数のワイヤ部材14cはそれぞれ半導体素子11に固定される。第1面11aに垂直な方向から見たワイヤ部材14cの形状は曲線状である。
<Effect>
In the semiconductor device, the wire 14 includes a plurality of wire members 14c arranged so as to surround the connecting conductor 13. Each of the plurality of wire members 14c is fixed to the semiconductor element 11. The shape of the wire member 14c seen from the direction perpendicular to the first surface 11a is curved.
 このように、曲線状のワイヤ部材14cを用いる場合、電極21の平面視における外形の少なくとも2方向に面する外周部上に位置するように1つのワイヤ部材14cを配置することができるので、たとえば図5に示すようにすべて直線状のワイヤ部材14a、14bを用いる場合より使用するワイヤ部材14cの本数を低減できる。この結果、ワイヤ部材14cを配置する工程をすべて直線状のワイヤ部材14a、14bを用いる場合より簡略化できる。 As described above, when the curved wire member 14c is used, one wire member 14c can be arranged so as to be located on the outer peripheral portion of the electrode 21 facing at least two directions in the plan view. As shown in FIG. 5, the number of wire members 14c used can be reduced as compared with the case where all linear wire members 14a and 14b are used. As a result, the process of arranging the wire members 14c can be simplified as compared with the case of using the linear wire members 14a and 14b.
 実施の形態4.
 <半導体装置の構成および作用効果>
 図10は、実施の形態4に係る半導体装置の断面模式図である。図11は、実施の形態4に係る半導体装置の第1変形例を示す断面模式図である。図12は、実施の形態4に係る半導体装置の第2変形例を示す断面模式図である。図10~図12は図3に対応する。
Embodiment 4.
<Structure and effect of semiconductor devices>
FIG. 10 is a schematic cross-sectional view of the semiconductor device according to the fourth embodiment. FIG. 11 is a schematic cross-sectional view showing a first modification of the semiconductor device according to the fourth embodiment. FIG. 12 is a schematic cross-sectional view showing a second modification of the semiconductor device according to the fourth embodiment. 10 to 12 correspond to FIG.
 図10に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、ワイヤ14の構造が図1~図3に示した半導体装置と異なっている。すなわち、図10に示した半導体装置では、ワイヤ14を構成するワイヤ部材14dの延在方向に直交する方向における断面形状が半円形状となっている。ワイヤ部材14dの断面形状は、電極21側が曲線状となり、バスバー12側が直線状となっている。接続導体13の端部はワイヤ14に接触している。この場合、図1に示した半導体装置より、接続導体13の端部における電極21表面に対する接触角度を小さくできる。ここで、接続導体13の電極21表面に垂直な方向における断面の端部での角度を小さくすればするほど、電極21の第2層15上面側の接続導体13の上記端部での応力集中を抑制できる。このため、半導体素子11に温度サイクル負荷が加えられた時の電極21(特に第1層16)に生じる熱応力を低減することができる。その結果、電極21が損傷・破損するのを防ぐことができる。 The semiconductor device shown in FIG. 10 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 10, the cross-sectional shape of the wire member 14d constituting the wire 14 in the direction orthogonal to the extending direction is a semicircular shape. The cross-sectional shape of the wire member 14d is curved on the electrode 21 side and linear on the bus bar 12 side. The end of the connecting conductor 13 is in contact with the wire 14. In this case, the contact angle with respect to the surface of the electrode 21 at the end of the connecting conductor 13 can be made smaller than that of the semiconductor device shown in FIG. Here, the smaller the angle at the end of the cross section of the connecting conductor 13 in the direction perpendicular to the surface of the electrode 21, the more the stress concentration at the end of the connecting conductor 13 on the upper surface side of the second layer 15 of the electrode 21. Can be suppressed. Therefore, it is possible to reduce the thermal stress generated in the electrode 21 (particularly the first layer 16) when the temperature cycle load is applied to the semiconductor element 11. As a result, it is possible to prevent the electrode 21 from being damaged or damaged.
 図11に示す半導体装置は、基本的には図10に示した半導体装置と同様の構成を備えるが、ワイヤ14の構造が図10に示した半導体装置と異なっている。すなわち、図11に示した半導体装置では、ワイヤ14を構成するワイヤ部材14dの延在方向に直交する方向における断面形状が楕円形状となっている。図11に示した半導体装置では、ワイヤ14を構成するワイヤ部材14eの断面形状が、電極21の表面に沿った方向に長軸が延びている楕円形状となっている。この場合も、図10に示した半導体装置と同様の効果を得ることができる。 The semiconductor device shown in FIG. 11 basically has the same configuration as the semiconductor device shown in FIG. 10, but the structure of the wire 14 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 11, the cross-sectional shape of the wire member 14d constituting the wire 14 in the direction orthogonal to the extending direction is elliptical. In the semiconductor device shown in FIG. 11, the cross-sectional shape of the wire member 14e constituting the wire 14 is an elliptical shape having a long axis extending in a direction along the surface of the electrode 21. In this case as well, the same effect as that of the semiconductor device shown in FIG. 10 can be obtained.
 図12に示す半導体装置は、基本的には図10に示した半導体装置と同様の構成を備えるが、ワイヤ14の構造が図10に示した半導体装置と異なっている。すなわち、図12に示した半導体装置では、ワイヤ14を構成するワイヤ部材14dの延在方向に直交する方向における断面形状が台形状となっている。図12に示した半導体装置では、ワイヤ14を構成するワイヤ部材14fの断面形状が、電極21の表面に対して斜めに延びる辺を接続導体13側かつ電極21の表面側に有している。この場合、電極21の表面に対する上記辺の角度を小さくする(たとえば30°以下、好ましくは20°以下、さらに好ましくは10°以下)ことで、図10に示した半導体装置と同様の効果を得ることができる。 The semiconductor device shown in FIG. 12 basically has the same configuration as the semiconductor device shown in FIG. 10, but the structure of the wire 14 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 12, the cross-sectional shape of the wire member 14d constituting the wire 14 in the direction orthogonal to the extending direction is trapezoidal. In the semiconductor device shown in FIG. 12, the cross-sectional shape of the wire member 14f constituting the wire 14 has a side extending obliquely with respect to the surface of the electrode 21 on the connecting conductor 13 side and the surface side of the electrode 21. In this case, by reducing the angle of the side of the electrode 21 with respect to the surface (for example, 30 ° or less, preferably 20 ° or less, more preferably 10 ° or less), the same effect as that of the semiconductor device shown in FIG. 10 can be obtained. be able to.
 また、ワイヤ部材14fの断面形状において、電極21の表面に面する辺は電極21の表面に沿った方向に延びている。ワイヤ部材14fの断面形状において、バスバー12に面する辺はバスバー12の下面に沿った方向に延びている。このため、ワイヤ部材14fと電極21の表面との接触部分およびワイヤ部材14fとバスバー12との接触部分の密着性を高めることができる。 Further, in the cross-sectional shape of the wire member 14f, the side facing the surface of the electrode 21 extends in the direction along the surface of the electrode 21. In the cross-sectional shape of the wire member 14f, the side facing the bus bar 12 extends in the direction along the lower surface of the bus bar 12. Therefore, the adhesion between the contact portion between the wire member 14f and the surface of the electrode 21 and the contact portion between the wire member 14f and the bus bar 12 can be improved.
 上述した半導体装置の特徴的な構成を要約すれば、上記半導体装置において、ワイヤ14の延在方向に垂直な方向における断面形状は、円形状、半円形状、楕円形状、および台形状からなる群から選択されるいずれか1つである。この場合、ワイヤ14の断面形状を適宜選択することで、当該接続導体13の端面と電極21表面とのなす角度を任意の角度に設定したり、接続導体13の端面の形状を直線状または任意の曲率の曲面状としたりすることができる。 To summarize the characteristic configurations of the above-mentioned semiconductor device, in the above-mentioned semiconductor device, the cross-sectional shape in the direction perpendicular to the extending direction of the wire 14 is a group consisting of a circular shape, a semicircular shape, an elliptical shape, and a trapezoidal shape. It is any one selected from. In this case, by appropriately selecting the cross-sectional shape of the wire 14, the angle formed by the end face of the connecting conductor 13 and the surface of the electrode 21 can be set to an arbitrary angle, or the shape of the end face of the connecting conductor 13 can be linear or arbitrary. It can be a curved surface with a curvature of.
 実施の形態5.
 <半導体装置の構成及び作用効果>
 本実施の形態に係る半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、ワイヤ14の構造が図1~図3に示した半導体装置と異なっている。すなわち、本実施の形態に係る半導体装置では、ワイヤ14としてアルミニウムワイヤではなく、銅、金といった金属ワイヤを用いる。ワイヤ14を構成する材料の融点は接続導体13の融点より高い。この場合、リフロー工程時に接続導体13は溶融するがワイヤ14は溶融しない。したがって、図1~図3に示した半導体装置と同様に、電極21の上面に対する接続導体13の端部の角度を小さくすることができる。
Embodiment 5.
<Structure and effect of semiconductor devices>
The semiconductor device according to the present embodiment basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 is different from that of the semiconductor device shown in FIGS. 1 to 3. There is. That is, in the semiconductor device according to the present embodiment, a metal wire such as copper or gold is used as the wire 14 instead of an aluminum wire. The melting point of the material constituting the wire 14 is higher than the melting point of the connecting conductor 13. In this case, the connecting conductor 13 melts during the reflow process, but the wire 14 does not. Therefore, similarly to the semiconductor devices shown in FIGS. 1 to 3, the angle of the end portion of the connecting conductor 13 with respect to the upper surface of the electrode 21 can be reduced.
 上述した半導体装置の特徴的な構成を要約すれば、上記半導体装置において、ワイヤ14を構成する材料が、アルミニウム(Al)、銅(Cu)、金(Au)から選択されるいずれか1つを含む。このようにワイヤ14を構成する材料を導電性を有する金属とすることで、ワイヤ14も電極21とバスバー12とを接続する導体の一部として利用できる。また、ワイヤ14を構成する材料として接続導体13の融点より高い融点を有する材料を選択することで、接続導体13のリフロー時に接続導体13の端部の形状をワイヤ14の形状に沿わせることができる。 To summarize the characteristic configuration of the above-mentioned semiconductor device, in the above-mentioned semiconductor device, the material constituting the wire 14 is any one selected from aluminum (Al), copper (Cu), and gold (Au). Including. By making the material constituting the wire 14 a conductive metal in this way, the wire 14 can also be used as a part of the conductor connecting the electrode 21 and the bus bar 12. Further, by selecting a material having a melting point higher than the melting point of the connecting conductor 13 as the material constituting the wire 14, the shape of the end portion of the connecting conductor 13 can be made to follow the shape of the wire 14 when the connecting conductor 13 is reflowed. it can.
 実施の形態6.
 <半導体装置の構成>
 図13は、実施の形態5に係る半導体装置の構成を説明するための模式図である。なお、図13は図5に対応する。図13に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、ワイヤ14の構造および凸部22の配置が図1~図3に示した半導体装置と異なっている。すなわち、図13に示した半導体装置では、ワイヤ14が環状に屈曲したワイヤ部材14gを含む。凸部22は電極21の外周から間隔を隔てた位置に1つだけ配置されている。ワイヤ部材14gの両端は1つの凸部22上に配置されている。ワイヤ部材14gの両端は同じ凸部22に固定されている。ワイヤ部材14gの凸部22に対する固定方法は、任意の方法を用いることができるが、例えば超音波接合法を用いてもよい。ワイヤ部材14gは電極21の上面の外周に沿った環状の形状を有する。ワイヤ部材14gは、電極21の上面の外周に接触するが固着されてはいない。
Embodiment 6.
<Semiconductor device configuration>
FIG. 13 is a schematic diagram for explaining the configuration of the semiconductor device according to the fifth embodiment. Note that FIG. 13 corresponds to FIG. The semiconductor device shown in FIG. 13 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the wire 14 and the arrangement of the convex portions 22 are shown in FIGS. 1 to 3. It is different from semiconductor devices. That is, in the semiconductor device shown in FIG. 13, the wire 14 includes a wire member 14 g in which the wire 14 is bent in an annular shape. Only one convex portion 22 is arranged at a position separated from the outer circumference of the electrode 21. Both ends of the wire member 14g are arranged on one convex portion 22. Both ends of the wire member 14g are fixed to the same convex portion 22. Any method can be used for fixing the wire member 14 g to the convex portion 22, but for example, an ultrasonic joining method may be used. The wire member 14g has an annular shape along the outer circumference of the upper surface of the electrode 21. The wire member 14g is in contact with the outer periphery of the upper surface of the electrode 21, but is not fixed.
 <作用効果>
 上記半導体装置の特徴的な構成を要約すれば、上記半導体装置において、ワイヤ14は、接続導体13(図3参照)の外周を囲む1本のワイヤ部材14gである。この場合、1本のワイヤ部材14gを配置するだけで接続導体13の配置を規制するように、電極21の外周に沿ってワイヤ14を設置できる。このため、ワイヤ14を配置する工程を簡略化できる。
<Effect>
To summarize the characteristic configuration of the semiconductor device, in the semiconductor device, the wire 14 is a single wire member 14g that surrounds the outer circumference of the connecting conductor 13 (see FIG. 3). In this case, the wire 14 can be installed along the outer circumference of the electrode 21 so that the arrangement of the connecting conductor 13 is restricted only by arranging one wire member 14g. Therefore, the step of arranging the wire 14 can be simplified.
 実施の形態7.
 <半導体装置の構成および作用効果>
 図14は、実施の形態7に係る半導体装置の構成を説明するための模式図である。図15から図18は、実施の形態7に係る半導体装置の第1変形例から第4変形例を示す模式図である。なお図14~図18は図4に対応する。
Embodiment 7.
<Structure and effect of semiconductor devices>
FIG. 14 is a schematic diagram for explaining the configuration of the semiconductor device according to the seventh embodiment. 15 to 18 are schematic views showing first to fourth modified examples of the semiconductor device according to the seventh embodiment. 14 to 18 correspond to FIG. 4.
 図14に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、凸部22の構造が図1~図3に示した半導体装置と異なっている。すなわち、図14に示した半導体装置では、凸部22の平面形状が楕円形状となっている。図14に示した半導体装置における凸部22の平面形状は、短軸が電極21の中心に向かうように配置された楕円形状である。異なる観点から言えば、上記凸部22の平面形状は、電極21の外周に沿った方向に長軸が延びるように配置された楕円形状である。 The semiconductor device shown in FIG. 14 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIGS. 1 to 3. There is. That is, in the semiconductor device shown in FIG. 14, the planar shape of the convex portion 22 is an elliptical shape. The planar shape of the convex portion 22 in the semiconductor device shown in FIG. 14 is an elliptical shape in which the minor axis is arranged so as to face the center of the electrode 21. From a different point of view, the planar shape of the convex portion 22 is an elliptical shape arranged so that the long axis extends in the direction along the outer circumference of the electrode 21.
 図15に示す半導体装置は、基本的には図14に示した半導体装置と同様の構成を備えるが、凸部22の構造が図14に示した半導体装置と異なっている。すなわち、図15に示した半導体装置では、凸部22の平面形状が多角形状の一例である三角形状となっている。凸部22の平面形状における電極21に面する辺は、電極21の中心に向かう線分に対して交差する方向に延びている。凸部22の上記電極21に面する辺以外の2辺は、電極21の平面形状における直線状の2辺に沿ってそれぞれ延びている。 The semiconductor device shown in FIG. 15 basically has the same configuration as the semiconductor device shown in FIG. 14, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 15, the planar shape of the convex portion 22 is a triangular shape which is an example of a polygonal shape. The side of the convex portion 22 facing the electrode 21 in the planar shape extends in a direction intersecting the line segment toward the center of the electrode 21. The two sides of the convex portion 22 other than the side facing the electrode 21 extend along the two linear sides in the planar shape of the electrode 21.
 図16に示す半導体装置は、基本的には図14に示した半導体装置と同様の構成を備えるが、凸部22の構造が図14に示した半導体装置と異なっている。すなわち、図16に示した半導体装置では、凸部22の平面形状が多角形の角部が曲線状とされた形状となっている。図16に示した凸部22の平面形状は、具体的には四角形状において角部が曲線状となっている形状である。凸部22の平面形状における電極21に面する辺は、電極21の中心に向かう線分に対して交差する方向に延びている。 The semiconductor device shown in FIG. 16 basically has the same configuration as the semiconductor device shown in FIG. 14, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 16, the planar shape of the convex portion 22 is a shape in which the corners of the polygon are curved. The planar shape of the convex portion 22 shown in FIG. 16 is specifically a shape in which the corner portions are curved in a rectangular shape. The side of the convex portion 22 facing the electrode 21 in the planar shape extends in a direction intersecting the line segment toward the center of the electrode 21.
 図17に示す半導体装置は、基本的には図14に示した半導体装置と同様の構成を備えるが、凸部22の構造が図14に示した半導体装置と異なっている。すなわち、図17に示した半導体装置では、凸部22が電極21の外周を囲むように形成されている。凸部22は環状の形状を有し、凸部22の平面形状における内周側の外形線は電極21の平面形状の外形線と間隔を隔てて当該外形線に沿って延びている。凸部22の平面形状における外周側の外形線は、四角形状である。 The semiconductor device shown in FIG. 17 basically has the same configuration as the semiconductor device shown in FIG. 14, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 17, the convex portion 22 is formed so as to surround the outer periphery of the electrode 21. The convex portion 22 has an annular shape, and the outer line on the inner peripheral side in the planar shape of the convex portion 22 extends along the outer line at intervals from the outer line of the planar shape of the electrode 21. The outer line on the outer peripheral side in the planar shape of the convex portion 22 is a quadrangular shape.
 図18に示す半導体装置は、基本的には図17に示した半導体装置と同様の構成を備えるが、凸部22の構造が図17に示した半導体装置と異なっている。すなわち、図18に示した半導体装置では、凸部22が電極21の外周を環状に囲むように形成されている。凸部22の平面形状における外周側の外形線は、電極21の平面形状の外形線に沿って延びている。凸部22は環状に延び、当該凸部22の延在方向に垂直な方向における凸部22の幅は実質的に周方向において同じであってもよい。 The semiconductor device shown in FIG. 18 basically has the same configuration as the semiconductor device shown in FIG. 17, but the structure of the convex portion 22 is different from that of the semiconductor device shown in FIG. That is, in the semiconductor device shown in FIG. 18, the convex portion 22 is formed so as to surround the outer circumference of the electrode 21 in an annular shape. The outer line on the outer peripheral side of the planar shape of the convex portion 22 extends along the outer line of the planar shape of the electrode 21. The convex portion 22 extends in an annular shape, and the width of the convex portion 22 in the direction perpendicular to the extending direction of the convex portion 22 may be substantially the same in the circumferential direction.
 上述した半導体装置の特徴的な構成を要約すれば、上記半導体装置において、凸部22の平面形状は、図4に示す円形状、図14に示す楕円形状、図15に示す多角形状、図16に示す多角形の角部が曲線状とされた形状、図17に示す電極21の外周を環状に囲むとともに最外周が多角形である形状、図18に示す電極21の外周を環状に囲むとともに最外周が多角形であり当該多角形の角部が曲線状とされた形状からなる群から選択された1つである。この場合、ワイヤ14の形状や電極21の平面形状に合わせて、凸部22の平面形状を適宜選択することができる。 To summarize the characteristic configurations of the above-mentioned semiconductor device, in the above-mentioned semiconductor device, the planar shape of the convex portion 22 is a circular shape shown in FIG. 4, an elliptical shape shown in FIG. 14, a polygonal shape shown in FIG. 15, and FIG. The shape in which the corners of the polygon shown in FIG. 17 are curved, the shape in which the outer periphery of the electrode 21 shown in FIG. 17 is circularly surrounded and the outermost circumference is polygonal, and the outer periphery of the electrode 21 shown in FIG. It is one selected from a group consisting of a polygon whose outermost circumference is a polygon and whose corners are curved. In this case, the planar shape of the convex portion 22 can be appropriately selected according to the shape of the wire 14 and the planar shape of the electrode 21.
 実施の形態8.
 <半導体装置の構成および作用効果>
 図19は、実施の形態8に係る半導体装置の構成を説明するための模式図である。図20から図22は、実施の形態8に係る半導体装置の第1変形例から第3変形例を示す模式図である。なお、図19~図22は図4に対応する。
Embodiment 8.
<Structure and effect of semiconductor devices>
FIG. 19 is a schematic diagram for explaining the configuration of the semiconductor device according to the eighth embodiment. 20 to 22 are schematic views showing first to third modified examples of the semiconductor device according to the eighth embodiment. Note that FIGS. 19 to 22 correspond to FIG.
 図19に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、電極21の構造が図1~図3に示した半導体装置と異なっている。すなわち、図19に示した半導体装置では、電極21の平面形状が長方形状であって角部が曲線状となった形状である。図19に示した電極21の平面形状は、図4に示した電極21と比べて、短辺に対する長辺の長さの比が大きくなっている。 The semiconductor device shown in FIG. 19 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 19, the planar shape of the electrode 21 is rectangular and the corners are curved. The planar shape of the electrode 21 shown in FIG. 19 has a larger ratio of the length of the long side to the short side than that of the electrode 21 shown in FIG.
 図20に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、電極21の構造が図1~図3に示した半導体装置と異なっている。すなわち、図20に示した半導体装置では、電極21の平面形状が多角形状の一例である八角形状となっている。電極21の平面形状における1辺と対向する位置に凸部22が配置されている。凸部22が対向する電極21の辺の長さは、凸部22が面していない電極21の他の辺の長さより短い。 The semiconductor device shown in FIG. 20 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 20, the planar shape of the electrode 21 is an octagonal shape, which is an example of a polygonal shape. The convex portion 22 is arranged at a position facing one side in the planar shape of the electrode 21. The length of the side of the electrode 21 with which the convex portion 22 faces is shorter than the length of the other side of the electrode 21 with which the convex portion 22 does not face.
 図21に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、電極21の構造が図1~図3に示した半導体装置と異なっている。すなわち、図21に示した半導体装置では、電極21の平面形状が円形状となっている。複数の凸部22は、電極21の中心から見て対称な位置に配置されている。 The semiconductor device shown in FIG. 21 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 21, the planar shape of the electrode 21 is circular. The plurality of convex portions 22 are arranged at positions symmetrical with respect to the center of the electrode 21.
 図22に示した半導体装置は、基本的には図1~図3に示した半導体装置と同様の構成を備えるが、電極21の構造が図1~図3に示した半導体装置と異なっている。すなわち、図22に示した半導体装置では、電極21の平面形状が楕円形状となっている。複数の凸部22は、電極21の平面形状における長軸および短軸のそれぞれに対して線対称な位置に配置されている。 The semiconductor device shown in FIG. 22 basically has the same configuration as the semiconductor device shown in FIGS. 1 to 3, but the structure of the electrode 21 is different from that of the semiconductor device shown in FIGS. 1 to 3. .. That is, in the semiconductor device shown in FIG. 22, the planar shape of the electrode 21 is elliptical. The plurality of convex portions 22 are arranged at positions line-symmetrical with respect to each of the major axis and the minor axis in the planar shape of the electrode 21.
 上述した半導体装置の特徴的な構成を要約すれば、上記半導体装置において、電極21の平面形状は、図21に示す円形状、図20に示す多角形状、図19に示す多角形の角部が曲線状とされた形状からなる群から選択された1つである。この場合、様々な形状の電極21を有する半導体素子11に本開示に係る構成を適用できる。 To summarize the characteristic configurations of the above-mentioned semiconductor device, in the above-mentioned semiconductor device, the planar shape of the electrode 21 is a circular shape shown in FIG. 21, a polygonal shape shown in FIG. 20, and a corner portion of the polygon shown in FIG. It is one selected from the group consisting of curved shapes. In this case, the configuration according to the present disclosure can be applied to the semiconductor element 11 having electrodes 21 having various shapes.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態の少なくとも2つを組み合わせてもよい。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. As long as there is no contradiction, at least two of the embodiments disclosed this time may be combined. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 11 半導体素子、11a 第1面、12 バスバー、12a 第1部材、12b 第2部材、13 接続導体、14 ワイヤ、14a~14g ワイヤ部材、15,17 第2層、16,18 第1層、21 電極、22 凸部。 11 Semiconductor element, 11a 1st surface, 12 Bus bar, 12a 1st member, 12b 2nd member, 13 Connecting conductor, 14 Wire, 14a-14g Wire member, 15, 17 2nd layer, 16, 18 1st layer, 21 Electrode, 22 convex part.

Claims (10)

  1.  第1面を有する半導体素子を備え、前記半導体素子は前記第1面上に形成された電極を含み、さらに、
     前記電極上に配置されたバスバーと、
     前記電極と前記バスバーとの間に配置され、前記電極と前記バスバーとを接続する接続導体と、
     前記第1面上において、前記接続導体を囲むとともに前記電極の端部に接するワイヤとを備え、
     前記ワイヤは前記電極以外の少なくとも1つの領域において前記半導体素子に固定されており、
     前記ワイヤと前記電極との接続部から前記電極の中央部に向かうについれ、前記ワイヤの表面と前記電極の表面との間の距離が大きくなるように、前記ワイヤは構成されており、
     前記接続導体の外周部の少なくとも一部は、前記ワイヤの前記表面と前記電極の前記表面とに接触している、半導体装置。
    A semiconductor device having a first surface is provided, the semiconductor element includes an electrode formed on the first surface, and further.
    The bus bar arranged on the electrode and
    A connecting conductor arranged between the electrode and the bus bar and connecting the electrode and the bus bar,
    On the first surface, a wire that surrounds the connecting conductor and is in contact with the end of the electrode is provided.
    The wire is fixed to the semiconductor element in at least one region other than the electrode.
    The wire is configured so that the distance between the surface of the wire and the surface of the electrode increases from the connection portion between the wire and the electrode toward the central portion of the electrode.
    A semiconductor device in which at least a part of the outer peripheral portion of the connecting conductor is in contact with the surface of the wire and the surface of the electrode.
  2.  前記バスバーを構成する材料は、銅、銅合金、銅クラッド材からなる群から選択される1つである、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the material constituting the bus bar is one selected from the group consisting of copper, a copper alloy, and a copper clad material.
  3.  前記ワイヤは、前記接続導体を囲むように配置された複数のワイヤ部材を含み、
     前記複数のワイヤ部材はそれぞれ前記半導体素子に固定され、
     前記第1面に垂直な方向から見た前記ワイヤ部材の形状は直線状または曲線状である、請求項1または請求項2に記載の半導体装置。
    The wire comprises a plurality of wire members arranged so as to surround the connecting conductor.
    The plurality of wire members are fixed to the semiconductor element, respectively, and
    The semiconductor device according to claim 1 or 2, wherein the shape of the wire member when viewed from a direction perpendicular to the first surface is linear or curved.
  4.  前記ワイヤの延在方向に垂直な方向における断面形状は、円形状、半円形状、楕円形状、および台形状からなる群から選択されるいずれか1つである、請求項1から請求項3のいずれか1項に記載の半導体装置。 Claims 1 to 3, wherein the cross-sectional shape in the direction perpendicular to the extending direction of the wire is any one selected from the group consisting of a circular shape, a semicircular shape, an elliptical shape, and a trapezoidal shape. The semiconductor device according to any one item.
  5.  前記ワイヤを構成する材料が、アルミニウム、銅、金から選択されるいずれか1つを含む、請求項1から請求項4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein the material constituting the wire includes any one selected from aluminum, copper, and gold.
  6.  前記半導体素子は、前記第1面上において前記電極に隣接する位置に配置された凸部を含み、
     前記ワイヤは前記凸部に固定されている、請求項1から請求項5のいずれか1項に記載の半導体装置。
    The semiconductor element includes a convex portion arranged at a position adjacent to the electrode on the first surface.
    The semiconductor device according to any one of claims 1 to 5, wherein the wire is fixed to the convex portion.
  7.  前記凸部は、第1凸部と、前記第1凸部と間隔を隔てて配置された第2凸部とを含み、
     前記第1凸部および前記第2凸部には、それぞれ前記ワイヤにおける1カ所以上が固定されている、請求項6に記載の半導体装置。
    The convex portion includes a first convex portion and a second convex portion arranged at a distance from the first convex portion.
    The semiconductor device according to claim 6, wherein one or more places of the wire are fixed to the first convex portion and the second convex portion, respectively.
  8.  前記凸部の平面形状は、円形状、楕円形状、多角形状、多角形の角部が曲線状とされた形状、前記電極の外周を環状に囲むとともに最外周が多角形である形状、前記電極の外周を環状に囲むとともに最外周が多角形であり前記多角形の角部が曲線状とされた形状からなる群から選択された1つである、請求項6または請求項7に記載の半導体装置。 The planar shape of the convex portion is a circular shape, an elliptical shape, a polygonal shape, a shape in which the corners of the polygon are curved, a shape that surrounds the outer circumference of the electrode in an annular shape and the outermost circumference is a polygon, and the electrode. The semiconductor according to claim 6 or 7, which is one selected from the group consisting of a shape that encloses the outer circumference of the surface in a ring shape and has a polygonal outermost circumference and curved corners of the polygon. apparatus.
  9.  前記電極の平面形状が、円形状、多角形状、多角形の角部が曲線状とされた形状からなる群から選択された1つである、請求項1から請求項8のいずれか1項に記載の半導体装置。 According to any one of claims 1 to 8, the planar shape of the electrode is one selected from the group consisting of a circular shape, a polygonal shape, and a shape in which the corners of the polygon are curved. The described semiconductor device.
  10.  第1面を有する半導体素子を準備する工程を備え、前記半導体素子は前記第1面上に形成された電極を含み、さらに、
     前記半導体素子の前記第1面上においてワイヤを固定する工程を備え、
     前記固定する工程では、前記ワイヤは前記電極を囲むとともに前記電極の端部に接するように前記半導体素子に固定され、さらに、
     前記ワイヤに囲まれた前記電極上に板状またはペースト状の接続導体を配置する工程と、
     前記接続導体上にバスバーを配置する工程と、
     前記接続導体を加熱して溶融させ、前記接続導体により前記バスバーと前記電極とを接続する工程と、を備える、半導体装置の製造方法。
    A step of preparing a semiconductor element having a first surface is provided, the semiconductor element includes an electrode formed on the first surface, and further.
    A step of fixing a wire on the first surface of the semiconductor element is provided.
    In the fixing step, the wire is fixed to the semiconductor element so as to surround the electrode and be in contact with the end of the electrode, and further.
    A step of arranging a plate-shaped or paste-shaped connecting conductor on the electrode surrounded by the wire, and
    The process of arranging the bus bar on the connecting conductor and
    A method for manufacturing a semiconductor device, comprising a step of heating and melting the connecting conductor and connecting the bus bar and the electrode by the connecting conductor.
PCT/JP2019/016873 2019-04-19 2019-04-19 Semiconductor device, and manufacturing method for same WO2020213167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016873 WO2020213167A1 (en) 2019-04-19 2019-04-19 Semiconductor device, and manufacturing method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016873 WO2020213167A1 (en) 2019-04-19 2019-04-19 Semiconductor device, and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2020213167A1 true WO2020213167A1 (en) 2020-10-22

Family

ID=72837209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016873 WO2020213167A1 (en) 2019-04-19 2019-04-19 Semiconductor device, and manufacturing method for same

Country Status (1)

Country Link
WO (1) WO2020213167A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138470A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Semiconductor element, semiconductor device and semiconductor device manufacturing method
WO2015107871A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Semiconductor device
WO2018020640A1 (en) * 2016-07-28 2018-02-01 三菱電機株式会社 Semiconductor device
WO2018179023A1 (en) * 2017-03-27 2018-10-04 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138470A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Semiconductor element, semiconductor device and semiconductor device manufacturing method
WO2015107871A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Semiconductor device
WO2018020640A1 (en) * 2016-07-28 2018-02-01 三菱電機株式会社 Semiconductor device
WO2018179023A1 (en) * 2017-03-27 2018-10-04 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP5887901B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2012157584A1 (en) Semiconductor device and manufacturing method thereof
JP5870669B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6780394B2 (en) Electronic components
US9774769B2 (en) Mounted electronic component including connection portions
JPH0245969A (en) Lead frame and semiconductor device consisting of lead frame therefor and manufacture thereof
JP2007324604A (en) Bonding junction and method of bonding two contact surfaces
CN108352215B (en) Conductive member and method for manufacturing conductive member
JP4814196B2 (en) Circuit board
US8889996B2 (en) Cable connection structure and cable connection method
JP2006339174A (en) Semiconductor device
WO2020213167A1 (en) Semiconductor device, and manufacturing method for same
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP4919614B2 (en) Solar cell device and method for manufacturing solar cell device
JP2010050364A (en) Semiconductor device
JP2016219681A (en) Structure and method for joining metal wiring
US20170374742A1 (en) Composite wiring board and method for manufacturing composite wiring board
JP6586352B2 (en) Manufacturing method of semiconductor device
JP4765918B2 (en) Manufacturing method of semiconductor device
JP6316219B2 (en) Power semiconductor module
JP2010199191A (en) Semiconductor package and method of manufacturing semiconductor package
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP6304085B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20190118309A1 (en) Joint structure, electronic component module, electronic component unit, and method of manufacturing electronic component unit
CN110783306A (en) Substrate connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP