WO2020213103A1 - 表示デバイスの製造方法 - Google Patents

表示デバイスの製造方法 Download PDF

Info

Publication number
WO2020213103A1
WO2020213103A1 PCT/JP2019/016523 JP2019016523W WO2020213103A1 WO 2020213103 A1 WO2020213103 A1 WO 2020213103A1 JP 2019016523 W JP2019016523 W JP 2019016523W WO 2020213103 A1 WO2020213103 A1 WO 2020213103A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
forming
display device
forming step
manufacturing
Prior art date
Application number
PCT/JP2019/016523
Other languages
English (en)
French (fr)
Inventor
恵信 宮本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/016523 priority Critical patent/WO2020213103A1/ja
Publication of WO2020213103A1 publication Critical patent/WO2020213103A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present invention relates to a method for manufacturing a display device including a light emitting element.
  • Patent Document 1 discloses an organic EL device having a non-light emitting region inside a light emitting region.
  • the method for manufacturing a display device of the present invention includes a display area having a plurality of pixels, a frame area around the display area, and a non-display having an opening inside the display area.
  • a light emitting element forming step and a sealing layer forming step of forming the sealing layer on the light emitting element are provided, and the thin film transistor layer forming step comprises the inorganic insulation from the thin film transistor layer at a position corresponding to the opening.
  • the recess forming step of forming the recess from which the film has been removed is provided, and the light emitting element forming step is common to the first fitting step of fitting the first recess cover into the recess and the first fitting step.
  • a common functional layer film transistor forming step of forming a functional layer and a first removing step of removing the first concave portion cover from the concave portion are provided.
  • the sealing layer forming step the second concave portion cover is fitted into the concave portion.
  • a second fitting step of matching, a sealing layer forming step of forming the sealing layer following the second fitting step, and a second removing step of removing the second concave cover from the concave portion are performed. Be prepared.
  • the member formed in the display area can be easily removed from the position corresponding to the opening, and the occurrence of defects in the display area can be reduced in the process of forming the opening.
  • FIG. It is the schematic top view and schematic sectional view of the light emitting device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the manufacturing method of the display device which concerns on Embodiment 1. It is a process sectional view for demonstrating the manufacturing process before the forming process of a light emitting element in the manufacturing method of the display device which concerns on Embodiment 1. It is a flowchart which shows the formation process of a light emitting element in more detail in the manufacturing method of the display device which concerns on Embodiment 1.
  • FIG. It is a process sectional view for demonstrating the process of forming a light emitting element which concerns on Embodiment 1.
  • FIG. 5 is an enlarged cross-sectional view of an end portion of the first concave portion cover for showing the positional relationship between the end portion of the first concave portion cover according to the first embodiment and the layer above the resin layer. It is the schematic which shows the example of the open mask which concerns on Embodiment 1.
  • FIG. 5 is an enlarged cross-sectional view of an end portion of the first concave portion cover for showing the positional relationship between the end portion of the first concave portion cover according to the first embodiment and the layer above the resin layer.
  • FIG. 5 is an enlarged cross-sectional view of an end portion of the second concave portion cover for showing the positional relationship between the end portion of the second concave portion cover according to the first embodiment and the layer above the resin layer. It is a process sectional view for demonstrating the manufacturing process after the formation process of the sealing layer in the manufacturing method of the display device which concerns on Embodiment 1.
  • “same layer” means that they are formed of the same material in the same process. Further, the “lower layer” means that the layer is formed before the layer to be compared, and the “upper layer” means that the layer is formed after the layer to be compared. .. Further, in the present specification, the direction from the lower layer to the upper layer of the display device is upward.
  • FIG. 1A is a top view of the display device 2 according to the present embodiment.
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A.
  • the display device 2 includes a display area DA, a frame area NA1 adjacent to the display area DA, and a non-display area NA2 inside the display area DA. And have.
  • the display area DA has a plurality of pixels.
  • the non-display region NA2 has an opening H.
  • the display device 2 includes a thin film transistor layer 6, a light emitting element 8, and a sealing layer 10 on a resin film 4 which is a base material of the display device 2.
  • the display device 2 may be provided with a functional film or the like having an optical compensation function, a touch sensor function, a protection function, or the like, on the upper layer of the sealing layer 10.
  • the resin film 4 is formed of, for example, a resin material such as polyimide.
  • the display device 2 uses a flexible substrate such as a PET film formed on a lower layer of the resin film 4 or a rigid substrate such as a glass substrate as a substrate. You may have it.
  • the thin film transistor layer 6 includes a plurality of thin film transistors for driving the light emitting element 8 for each pixel.
  • the thin film transistor layer 6 contains at least an inorganic insulating film.
  • the inorganic insulating film included in the thin film transistor layer 6 is composed of, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof.
  • the thin film transistor layer 6 is a semiconductor layer having a channel region of the thin film transistor, a metal layer forming an electrode or wiring of the thin film transistor, or a flattening film for flattening an upper layer of these layers. It may be included.
  • the thin film transistor layer 6 includes two banks, an outer bank BK1 and an inner bank BK2.
  • the outer bank BK1 is formed in the frame area NA1 and is formed in a frame shape at a position surrounding the periphery of the display area DA.
  • the inner bank BK2 is formed in the non-display region NA2, and is formed in a circular shape at a position surrounding the periphery of the opening H.
  • the outer bank BK1 and the inner bank BK2 shown in FIG. 1B are each in one row, but in the present embodiment, the outer bank BK1 and the inner bank BK2 are each in a plurality of rows. May be good.
  • the light emitting element 8 includes the first electrode 12 and the functional layer 8f stacked in this order in order from the lower layer.
  • the functional layer 8f includes the common functional layer 14, the light emitting layer 16, the upper common functional layer 18, and the second electrode 19 in this order from the first electrode 12 side.
  • the light emitting element 8 is formed in the display region DA as shown in FIG. 1 (b).
  • the first electrode 12 may be a pixel electrode that is individually formed for each pixel in the display area DA.
  • each of the first electrodes 12 is electrically connected to each thin film transistor of the thin film transistor layer 6. Further, by driving each thin film transistor, the display device 2 drives the light emitting element 8 for each pixel.
  • the first electrode 12 may be the anode of the light emitting element 8.
  • the first electrode 12 may be formed by a conventionally known method.
  • the common functional layer 14 is formed on the upper layer of the first electrode 12 in common with a plurality of pixels.
  • the common functional layer 14 may include, for example, at least one of a hole transport layer and a hole injection layer.
  • the light emitting layer 16 is formed for each pixel of the display device 2 at a position overlapping each of the first electrodes 12 in the upper layer of the common functional layer 14. That is, the functional layer 8f further includes a light emitting layer 16 as an individual functional layer for each pixel of the display device 2 on the upper layer of the common functional layer 14.
  • the light emitting layer 16 may individually include a red light emitting layer that emits red, a green light emitting layer that emits green, and a blue light emitting layer that emits blue for each light emitting element.
  • the pixel including the red light emitting layer may be a red pixel
  • the pixel including the green light emitting layer may be a green pixel
  • the pixel including the blue light emitting layer may be a blue pixel.
  • the upper layer common functional layer 18 is formed in the upper layer of the light emitting layer 16 in common with a plurality of pixels.
  • the upper common functional layer 18 may include at least one of an electron transport layer and an electron injection layer.
  • the second electrode 19 is formed in the upper layer of the upper layer common functional layer 18 in common with a plurality of pixels.
  • the second electrode 19 is a counter electrode facing the first electrode 12, and in the present embodiment, the second electrode 19 is the first electrode.
  • the two electrodes 19 may be the cathode of the light emitting element 8.
  • the sealing layer 10 includes a first inorganic sealing film 20, an organic sealing film 22, and a second inorganic sealing film 24 in this order from the lower layer.
  • the first inorganic sealing film 20 and the second inorganic sealing film 24 are inorganic sealing insulating films included in the sealing layer 10, and are, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a silicon nitride film thereof. It can be composed of a laminated film.
  • the organic sealing film 22 can be made of a coatable photosensitive organic material such as polyimide or acrylic.
  • the first inorganic sealing film 20 and the second inorganic sealing film 24 have a function of preventing foreign substances such as water and oxygen from permeating into the light emitting element 8.
  • the first inorganic sealing film 20 and the second inorganic sealing film 24 are formed at positions where they overlap with the thin film transistor layer 6.
  • the first inorganic sealing film 20 and the second inorganic sealing film 24 are formed from the display region DA beyond the outer bank BK1 and the inner bank BK2.
  • the organic sealing film 22 has a function as a buffer layer when forming the second inorganic sealing film 24.
  • the organic sealing film 22 is formed at a position where it overlaps with the thin film transistor layer 6 like the first inorganic sealing film 20 and the second inorganic sealing film 24, but the inner side of the outer bank BK1 and the inner bank BK2 It is formed only on the outer side of.
  • FIG. 2 is a flowchart showing each manufacturing process of the display device 2 according to the present embodiment. Steps S1 to S2 shown in FIG. 2 will be described in more detail with reference to the process sectional view shown in FIG. In the subsequent process cross-sectional views including FIG. 3, the process cross-sectional view at the position corresponding to (b) of FIG. 1 is shown.
  • a resin film forming step of forming a resin film 4 on a translucent support substrate 26 is carried out (step S1). ..
  • a conventionally known film forming method can be adopted for forming the resin film 4 in step S1.
  • step S2 the thin film transistor layer forming step of forming the thin film transistor layer 6 on the upper layer of the resin film 4 is executed (step S2).
  • step S2 a bank forming step of forming the outer bank BK1 and the inner bank BK2 is also carried out.
  • a conventionally known film forming method can be adopted for the film forming of each layer in step S2.
  • step S2 the recess forming step of forming the recess 6R shown in FIG. 3B is executed at the position corresponding to the opening H.
  • the recess 6R at least the inorganic insulating film is removed from the thin film transistor layer 6.
  • the semiconductor layer, the metal layer, and the flattening film are further removed from the thin film transistor layer 6.
  • step S2 includes a convex portion forming step of forming the convex portion 28 shown in FIG. 3B inside the concave portion 6R.
  • the convex portion 28 may be a part of any layer of the thin film transistor layer 6. That is, in the recess forming step, the recess 6R may be formed by removing each layer of the thin film transistor layer 6 except for the convex portion 28 from the position corresponding to the opening H.
  • step S3 a light emitting element forming step of forming the light emitting element 8 on the upper layer of the thin film transistor layer 6 is carried out.
  • the method of forming each layer in step S3 will be described in more detail with reference to FIGS. 4 to 7.
  • FIG. 4 is a flowchart showing a process of forming the light emitting element 8 in the present embodiment.
  • 5 to 7 are process cross-sectional views for explaining the light emitting element forming step in more detail, which is carried out based on the flowchart of FIG.
  • step S3- the first electrode 12 shown in FIG. 5A is formed on the thin film transistor layer 6 (step S3-).
  • the first fitting step of installing the first concave portion cover 30 shown in FIG. 5 (b) in the concave portion 6R is carried out (step S3-2). Since the first recess cover 30 has a shape corresponding to the recess 6R, in step S3-2, the first recess cover 30 is fitted into the recess 6R as shown in FIG. 5 (c).
  • FIG. 8A shows a top view of the first concave cover 30.
  • FIG. 8B shows a cross-sectional view taken along the line CC in FIG. 8A.
  • the first concave cover 30 has a first fixing portion 34 including a first opening 32.
  • the first fixing portion 34 is a concave portion formed in the first concave portion cover 30, and is formed, for example, by half-etching a part of the first concave portion cover 30. Further, for example, a part of the first fixing portion 34 is further etched to form the first opening 32.
  • the first opening 32 is formed at a position where it engages with the convex portion 28 in step S3-2.
  • the convex portion 28 may be the first convex portion that engages with the first concave portion cover 30 in the first fitting step, and the convex portion forming step described above is for forming the first convex portion. It may be the first convex portion forming step of.
  • the first concave cover 30 includes a plurality of first alignment marks 36.
  • the first alignment mark 36 is formed, for example, by half-etching a part of the first recessed cover 30 at a position other than the first fixing portion 34 of the first recessed cover 30.
  • the first alignment mark 36 may be used for alignment when the first concave portion cover 30 is fitted into the concave portion 6R in step S3-2. Specifically, in step S3-2, the first concave cover 30 may be aligned by observing the position of the convex portion 28 and the position of the first alignment mark 36.
  • the outer shape of the first concave cover 30 has a shape corresponding to the opening H.
  • the outer shape of the first concave cover 30 may be the star shape shown in FIG. 8 (c).
  • the outer shape of the first concave cover 30 may have the corrugated shape shown in FIG. 8D.
  • the number of the first fixed portion 34 and the first alignment mark 36 does not matter, and for example, as shown in FIG. 8D, a plurality of the first fixed portions 34 may be formed.
  • a plurality of the first fixed portions 34 may be formed, a plurality of the first openings 32 may be formed, and in step S2, the same number of convex portions 28 as the number of the first openings 32 may be formed. ..
  • the first concave cover 30 preferably contains a material having a low coefficient of thermal expansion, and may be particularly formed from a material containing an invar material. Since the first concave cover 30 contains the Invar material, the deformation of the first concave cover 30 is reduced even when the first concave cover 30 is exposed to a high temperature in the film forming process of each layer in the subsequent process. Will be done.
  • thermoplastic resin 38 may be, for example, an acrylic resin, and the softening temperature may be about 160 degrees Celsius.
  • FIG. 9A is a schematic enlarged view of region B in FIG. 5C.
  • the first concave cover 30 overlaps with the inner bank BK2 as shown in FIG. 9A.
  • the end of the first concave cover 30 exceeds the inner bank BK2 and overlaps with the first electrode 12.
  • the first electrode 12 and the first concave cover 30 are separated by a distance d1.
  • FIG. 9B is an enlarged view at a position corresponding to FIG. 9A in this modified example.
  • the first electrode 12 and the first concave cover 30 are in contact with each other.
  • the first concave cover 30 is provided with a notch 30A at the lower part of the end portion.
  • the notch 30A is formed so that the lower portion of the end portion of the first concave cover 30 has a reverse taper shape with respect to the resin film 4 side.
  • the first open mask 40 is installed, and the common functional layer 14 is formed by the vapor deposition method.
  • the common functional layer film forming step is carried out (step S3-4).
  • the first open mask 40 will be described in detail with reference to FIG. FIG. 10 is a schematic top view of the first open mask 40.
  • the first open mask 40 is a CMM (Common Metal Mask) containing a material such as an invar material.
  • the first open mask 40 includes a first open mask opening 40H corresponding to a position where the common functional layer 14 is formed. Therefore, as shown in FIG. 5D, the common functional layer 14 is not formed in each of the upper layers of the support substrate 26 on the frame region NA1 side of the first electrode 12.
  • the first open mask 40 may include a plurality of first open mask openings 40H. In this case, it is possible to form the common functional layer 14 corresponding to the plurality of display devices 2 by forming a film once using the first open mask 40.
  • the first open mask 40 overlaps with the outer bank BK1 when the first open mask 40 is arranged on the support substrate 26. Therefore, in step S3-4, the common functional layer 14 is not formed on the frame region NA1 that overlaps with the first open mask 40.
  • the first open mask 40 includes a single first open mask opening 40H corresponding to each display device 2. Therefore, in step S3-4, as shown in FIG. 5D, the common functional layer 14 is formed even at the position where it overlaps the recess 6R. However, the common functional layer 14 is not formed on the upper surface of the resin film 4 in the recess 6R, but instead is formed on the upper surface of the first recess cover 30.
  • Step S3-5 the convex portion 28 and the first concave portion cover 30 are released from being fixed via the thermoplastic resin 38.
  • the first removing step of removing the first concave cover 30 from the support substrate 26 by removing the first concave cover 30 from the concave 6R is performed (step). S3-6).
  • the first electrode 12 and the first concave cover 30 are separated by a distance d1.
  • the common functional layer 14 is cut off at the end of the first concave cover 30 or is extremely thin. Therefore, in step S3-6, the common functional layer 14 on the first electrode 12 and the common functional layer 14 on the first concave cover 30 can be easily separated.
  • the distance d1 is preferably larger than the film thickness of the common functional layer 14 in order to ensure that the common functional layer 14 is cut off at the end of the first concave cover 30.
  • the common functional layer 14 can be cut off at the end of the first concave cover 30.
  • the first open mask 40 may also be provided with a notch corresponding to the notch 30A at the lower part of the end portion. As a result, the common functional layer 14 is likely to be cut off at the end of the first open mask 40.
  • the common functional layer 14 can be formed only at the position including the light emitting region DA without forming the common functional layer 14 at the position including the frame area NA1 and the non-display area NA2.
  • a light emitting layer 16 is formed (step S3-7).
  • the light emitting layer 16 may be formed by performing step S3-7 a plurality of times according to the number of types of the light emitting layer 16. ..
  • the light emitting layer 16 may be formed by a vapor deposition step using a fine metal mask in which openings are formed at each formation position of each light emitting layer 16.
  • an island-shaped shielding portion can be formed at a position corresponding to the recess 6R of the fine metal mask. Therefore, step S3-7 can be carried out without using the first concave portion cover 30 so that the light emitting layer 16 is not formed at the position where it overlaps with the concave portion 6R.
  • the light emitting layer 16 when the light emitting layer 16 is a quantum dot light emitting layer, the light emitting layer 16 may be formed by photolithography using a coating material in which quantum dots are dispersed in a photosensitive resin and a photomask. Good. In this case, in the patterning step by photolithography, the light emitting layer 16 formed at a position overlapping the recess 6R can be removed. Therefore, step S3-7 can be carried out without using the first concave portion cover 30 so that the light emitting layer 16 is not formed at the position where it overlaps with the concave portion 6R.
  • the removal step of the first concave cover 30 may be omitted.
  • the third fitting step of installing the third concave cover 42 shown in FIG. 6 (d) in the concave portion 6R is performed (step S3-8).
  • the third concave cover 42 like the first concave cover 30, includes a third fixing portion 46 having a third opening 44 that engages with the convex portion 28, and a third alignment mark 48. .. Further, the outer shape of the third concave cover 42 may be the same as that of the first concave cover 30.
  • the convex portion 28 may be a third convex portion that engages with the third concave portion cover 42 in the third fitting step, and the convex portion forming step described above is for forming the third convex portion.
  • This may be the third convex portion forming step of the above.
  • the first convex portion may be the same as the third convex portion.
  • thermoplastic resin 38 in the third fixing portion 46 is cooled to solidify the thermoplastic resin 38.
  • the third concave cover 42 and the convex 28 are fixed to each other via the thermoplastic resin 38 to fix the third concave cover 42 to the support substrate 26 (step S3-9).
  • steps S3-8 and S3-9 may also be omitted.
  • a second open mask 50 is installed, and an upper layer common functional layer film forming step of forming the upper layer common functional layer 18 by a vapor deposition method is carried out (step S3-). 10).
  • the second open mask 50 may have the same configuration as the first open mask 40.
  • the second open mask 50 may also be provided with a notch corresponding to the notch 30A at the lower part of the end portion.
  • the upper layer common functional layer 18 is formed on the upper layer of the light emitting layer 16.
  • step S3-10 as in step S3-3, as shown in FIG. 7B, the upper layer common functional layer 18 is formed even at the position where it overlaps the recess 6R.
  • the upper common functional layer 18 is not formed on the upper surface of the resin film 4 in the recess 6R, but instead is formed on the upper surface of the third recess cover 42.
  • step S3-10 an upper common functional layer 18 is further formed on the upper surface of the common functional layer 14 formed at a position overlapping with the first concave cover 30. Be filmed.
  • Step S3-11 the convex portion 28 and the third concave portion cover 42 are released from being fixed via the thermoplastic resin 38.
  • step S3-12 the third removing step of removing the third concave cover 42 from the support substrate 26 by removing the third concave cover 42 from the concave 6R is performed (step). S3-12).
  • step S3-6 the third removal step may be regarded as the first removal step and carried out.
  • step S3-12 similarly to step S3-6, the upper common functional layer 18 on the first electrode 12 and the upper common functional layer 18 on the third concave cover 42 can be easily separated. Is. As described above, the upper layer common functional layer 18 can be formed only at the position including the light emitting region DA without forming the upper layer common functional layer 18 at the position including the frame region NA1 and the non-display region NA2.
  • the second electrode 19 is formed on the upper common functional layer 18 (step S3-13).
  • the second electrode 19 may be formed by the same method as the formation of the upper common functional layer 18.
  • step S3-13 following the third removal step, a fourth fitting step is carried out in which a fourth concave cover having the same shape as the third concave cover 42 is installed in the recess 6R.
  • the second electrode film forming step of installing the second open mask 50 and forming the film forming of the second electrode 19 by the vapor deposition method is carried out.
  • a fourth removing step of removing the fourth concave cover from the support substrate 26 is performed.
  • the step of forming the second electrode 19 is completed, and the step of forming the light emitting element is completed.
  • the film formation of the second electrode 19 may be performed after step S3-10. That is, the second open mask 50 may be used to continuously form the upper layer common functional layer 18 and the second electrode 19. In this case, the upper common functional layer 18 and the second electrode 19 formed on the third concave cover 42 are removed together by the third removing step. In this case, it becomes unnecessary to fit and remove the fourth concave cover, which leads to simplification of the light emitting element forming process.
  • FIG. 11 is a flowchart showing a step of forming the sealing layer 10 in the present embodiment.
  • 12 and 13 are process cross-sectional views for explaining the sealing layer forming step in more detail, which is carried out based on the flowchart of FIG.
  • the second fitting step of installing the second concave portion cover 52 shown in FIG. 12 (a) in the concave portion 6R is carried out (step S4-1).
  • the second concave cover 52 like the first concave cover 30, includes a second fixing portion 56 having a second opening 54 that engages with the convex portion 28, and a second alignment mark 58. ..
  • the second opening 54 is formed at a position where it engages with the convex portion 28 in step S4-1.
  • the convex portion 28 may be a second convex portion that engages with the second concave portion cover 52 in the second fitting step, and the convex portion forming step described above is for forming the second convex portion.
  • the second convex portion forming step may be performed.
  • the first convex portion may be the same as the second convex portion.
  • thermoplastic resin 38 in the second fixing portion 56 is cooled to solidify the thermoplastic resin 38.
  • the second concave portion cover 52 and the convex portion 28 are fixed to each other via the thermoplastic resin 38 to fix the second concave portion cover 52 to the support substrate 26 (step S4-2).
  • FIG. 14A is a schematic enlarged view of region D in FIG. 12B.
  • the second concave cover 52 By fixing the second concave cover 52 to the support substrate 26, the second concave cover 52 is arranged at a position included on the opening H side of the inner bank BK2 as shown in FIG. 14 (a). Will be done.
  • the end portion of the second concave cover 52 does not exceed the inner bank BK2 and overlaps with the thin film transistor layer 6.
  • the thin film transistor layer 6 and the second concave cover 52 are separated by a distance d2.
  • FIG. 14B is an enlarged view at a position corresponding to FIG. 14A in this modified example.
  • the thin film transistor layer 6 and the second concave cover 52 are in contact with each other.
  • the second concave cover 52 is provided with a notch 52A at the lower part of the end portion.
  • the notch 52A is formed so that the lower portion of the end portion of the second concave cover 52 has a reverse taper shape with respect to the resin film 4 side.
  • a CVD mask 60 is installed as shown in FIG. 12 (c), and a low temperature CVD method is used.
  • the first inorganic sealing film 20 is formed (step S4-3).
  • the CVD mask 60 is different from the first open mask 40 only in that when the CVD mask 60 is arranged on the support substrate 26, it overlaps with the frame region NA1 more than the outer bank BK1.
  • the CVD mask 60 may also be provided with a notch corresponding to the notch 30A at the lower part of the end portion.
  • step S4-3 the first inorganic sealing film 20 is formed even in a part of the frame region NA1 including the position where it overlaps with the outer bank BK1. However, the first inorganic sealing film 20 is not formed on the frame region NA1 side of the end of the thin film transistor layer 6.
  • step S4-3 as shown in FIG. 12C, the first inorganic sealing film 20 is formed even at a position where it overlaps the recess 6R. Further, in step S4-3, the first inorganic sealing film 20 is also formed on a part of the non-display region NA2 including the inner bank BK2. However, the first inorganic sealing film 20 is not formed on the upper surface of the resin film 4 in the recess 6R, but instead is formed on the upper surface of the second recess cover 52.
  • step S4-4 the CVD mask 60 is removed, and then the organic sealing film 22 is coated and formed as a sealing layer forming step (step S4-4).
  • the coating of the organic sealing film 22 may be carried out by using a conventionally known method. Since no mask or the like is used in step S4-4, the step of removing the second concave cover 52 prior to step S4-4 is not necessary.
  • the wet spread of the organic sealing film 22 is blocked by the outer bank BK1 and the inner bank BK2. Therefore, the organic sealing film 22 is formed on the light emitting region DA side of the outer bank BK1 and the inner bank BK2. In other words, the outer bank BK1 and the inner bank BK2 define the end of the organic sealing film 22.
  • a CVD mask 62 is installed, and the second inorganic sealing film 24 is formed by a low temperature CVD method (step S4-5). ).
  • the CVD mask 62 may have the same configuration as the CVD mask 60.
  • the CVD mask 62 may also be provided with a notch corresponding to the notch 30A at the lower part of the end portion. Therefore, in step S4-5, the second inorganic sealing film 24 is formed even in a part of the frame region NA1 including the position where it overlaps with the outer bank BK1. However, the second inorganic sealing film 24 is not formed on the frame region NA1 side of the end portion of the thin film transistor layer 6.
  • step S4-5 as shown in FIG. 13A, the second inorganic sealing film 24 is formed even at the position where it overlaps the recess 6R. Further, in step S4-5, the second inorganic sealing film 24 is also formed on a part of the non-display region NA2 including the inner bank BK2. However, the second inorganic sealing film 24 is not formed on the upper surface of the resin film 4 in the recess 6R, but instead is formed on the upper surface of the second recess cover 52.
  • the CVD mask 62 is removed, the thermoplastic resin 38 is irradiated with the laser beam L1, the thermoplastic resin 38 is heated, and the thermoplastic resin 38 is softened (step). S4-6). As a result, the convex portion 28 and the second concave portion cover 52 are released from being fixed via the thermoplastic resin 38.
  • the second removing step of removing the second concave cover 52 from the support substrate 26 by removing the second concave cover 52 from the concave 6R is performed (step). S4-7).
  • the thin film transistor layer 6 and the second concave cover 52 are separated by a distance d2.
  • the first inorganic sealing film 20 and the second inorganic sealing film 24 are stepped or extremely thin at the end of the second concave cover 52. Therefore, according to step S3-7, the first inorganic sealing film 20 and the second inorganic sealing film 24 on the thin film transistor layer 6 and the first inorganic sealing film 20 and the second inorganic sealing film 20 on the second concave cover 52.
  • the film 24 can be easily separated from the film 24.
  • the distance d2 is set to the first inorganic sealing film 20 and the second inorganic sealing film 20. It is preferably larger than the total thickness of the sealing film 24.
  • the first inorganic sealing film 20 and the second inorganic sealing film 24 are not formed at the positions including the frame area NA1 and the non-display area NA2, and only at the positions including the light emitting region DA.
  • the waterproof film 20 and the second inorganic sealing film 24 can be formed. With the above, the sealing layer forming step is completed.
  • step S5 is a laser lift-off step in which the resin film 4 and the support substrate 26 are peeled off by laser lift-off. Specifically, in step S5, the resin film 4 is irradiated with a laser from below the support substrate 26 to reduce the adhesion between the resin film 4 and the support substrate 26, and the resin film 4 and the support substrate 26 are separated from each other. Peel off.
  • the resin film 4 at the end of the recess 6R that is, the end of the thin film transistor layer 6 on the non-display region NA2 side is irradiated with the laser beam L2.
  • the opening forming step of forming the opening H shown in FIG. 15 (c) is carried out by laser-dividing the resin film 4 along the outer circumference of the recess 6R (step S6).
  • step S6 the convex portion 28 is removed together with the resin film 4.
  • the display device 2 shown in FIG. 15 (c) can be obtained.
  • the plurality of display devices 2 formed on the large-sized resin film 4 may be divided here by the laser division in step S6. Further, after performing step S6, a lower surface film such as a PET film may be attached to the lower layer of the resin film 4.
  • the opening forming step it is possible to form the opening by dividing only the resin film 4. Therefore, it is not necessary to separate the inorganic insulating film of the thin film transistor layer 6, or each layer of the light emitting element 8 or the sealing layer 10 except for the resin film 4 by a laser. Therefore, in the opening forming step, the occurrence of cracks in each layer of the display device 2 due to the laser division is reduced.
  • each layer of the light emitting element 8 or the sealing layer 10 formed at a position corresponding to the opening H is removed by using a laser or the like. There is no need for technically difficult processes such as.
  • the light emitting element 8 of the display device 2 according to each of the above-described embodiments may have flexibility and may be bendable.
  • the light emitting layer 16 may be a quantum dot layer provided with quantum dots, and the light emitting element 8 may be a QLED (Quantum dot Light Emitting Diode).
  • the light emitting layer 16 according to each of the above-described embodiments may be an organic layer. That is, the light emitting element 8 according to each of the above-described embodiments may be an OLED (Organic Light Emitting Diode).
  • the display device 2 according to each embodiment may be an organic EL (Electro Luminescence) display.
  • Display device 4 Resin film 6 Thin film transistor layer 8 Light emitting element 8f Functional layer 10 Sealing layer 12 First electrode 14 Common functional layer 16 Light emitting layer (individual functional layer) 18 Upper common functional layer 19 Second electrode 20 First inorganic sealing film 22 Organic sealing film 24 Second inorganic sealing film 26 Support substrate 28 Convex part 30 First concave part cover 38 Thermoplastic resin 42 Third concave part cover 52 Second 2 Concave cover BK1 Outer bank BK2 Inner bank DA Display area NA1 Frame area NA2 Non-display area H Opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

表示デバイス(2)の製造方法は、薄膜トランジスタ層(6)上に発光素子(8)を形成する発光素子形成工程と、前記発光素子上に封止層(10)を形成する封止層形成工程とを備える。前記発光素子形成工程は、第1凹部カバーを、前記薄膜トランジスタ層から無機絶縁膜が取り除かれた凹部に嵌め合わせる第1嵌合工程と、該第1嵌合工程に次いで、前記発光素子の共通機能層(14)を成膜する共通機能層成膜工程と、前記第1凹部カバーを前記凹部から除去する第1除去工程とを備える。前記封止層形成工程は、第2凹部カバーを前記凹部に嵌め合わせる第2嵌合工程と、該第2嵌合工程に次いで、前記封止層を成膜する封止層成膜工程と、前記第2凹部カバーを前記凹部から除去する第2除去工程とを備える。

Description

表示デバイスの製造方法
 本発明は、発光素子を備えた表示デバイスの製造方法に関する。
 特許文献1は、発光領域の内部に非発光領域を備えた有機EL装置を開示している。
日本国公開特許公報「特開2014-197623」
 特許文献1に記載されているような非発光領域に、カメラ等の外部実装機器を実装するための、開口部を設けることが考えられる。しかしながら、当該開口部を、レーザ分断を使用して形成する場合には、周囲の発光領域、あるいは封止膜等にクラック等の欠陥が生じる可能性がある。
 上記課題を解決するために、本発明の表示デバイスの製造方法は、複数の画素を有する表示領域と、該表示領域の周囲の額縁領域と、前記表示領域の内側の、開口部を有する非表示領域とを有し、下層から順に、基板と、無機絶縁膜を含む薄膜トランジスタ層と、第1電極、複数の画素に共通の共通機能層を含む機能層、および第2電極を含む発光素子と、無機封止絶縁膜を含む封止層とを備えた表示装置の製造方法であって、前記基板上に前記薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程と、前記薄膜トランジスタ層上に前記発光素子を形成する発光素子形成工程と、前記発光素子上に前記封止層を形成する封止層形成工程とを備え、前記薄膜トランジスタ層形成工程は、前記開口部に対応する位置に、前記薄膜トランジスタ層から前記無機絶縁膜が取り除かれた凹部を形成する凹部形成工程を備え、前記発光素子形成工程は、第1凹部カバーを前記凹部に嵌め合わせる第1嵌合工程と、該第1嵌合工程に次いで、前記共通機能層を成膜する共通機能層成膜工程と、前記第1凹部カバーを前記凹部から除去する第1除去工程とを備え、前記封止層形成工程は、第2凹部カバーを前記凹部に嵌め合わせる第2嵌合工程と、該第2嵌合工程に次いで、前記封止層を成膜する封止層成膜工程と、前記第2凹部カバーを前記凹部から除去する第2除去工程とを備える。
 上記構成により、開口部と対応する位置から、表示領域に形成される部材を容易に除去でき、開口部の形成工程において、表示領域への欠陥の発生を低減することができる。
実施形態1に係る発光デバイスの概略上面図および概略断面図である。 実施形態1に係る表示デバイスの製造方法を示すフローチャートである。 実施形態1に係る表示デバイスの製造方法における、発光素子の形成工程より以前の製造工程を説明するための工程断面図である。 実施形態1に係る表示デバイスの製造方法における、発光素子の形成工程をより詳細に示すフローチャートである。 実施形態1に係る発光素子の形成工程を説明するための工程断面図である。 実施形態1に係る発光素子の形成工程を説明するための別の工程断面図である。 実施形態1に係る発光素子の形成工程を説明するための別の工程断面図である。 実施形態1に係る第1凹部カバーの例を示す概略図である。 実施形態1に係る第1凹部カバーの端部と、樹脂層より上層との位置関係について示すための、第1凹部カバーの端部の拡大断面図である。 実施形態1に係るオープンマスクの例を示す概略図である。 実施形態1に係る表示デバイスの製造方法における、封止層の形成工程をより詳細に示すフローチャートである。 実施形態1に係る封止層の形成工程を説明するための工程断面図である。 実施形態1に係る封止層の形成工程を説明するための別の工程断面図である。 実施形態1に係る第2凹部カバーの端部と、樹脂層より上層との位置関係について示すための、第2凹部カバーの端部の拡大断面図である。 実施形態1に係る表示デバイスの製造方法における、封止層の形成工程より以降の製造工程を説明するための工程断面図である。
 〔実施形態1〕
 以下においては、「同層」とは同一プロセスにて同材料で形成されていることを意味する。また、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。また、本明細書においては、表示デバイスの下層から上層へ向かう方向を上方とする。
 本実施形態に係る表示デバイス2について、図1を参照して説明する。図1の(a)は、本実施形態に係る表示デバイス2の上面図である。図1の(b)は、図1の(a)におけるAA線矢視断面図である。
 本実施形態に係る表示デバイス2は、図1の(a)に示すように、表示領域DAと、当該表示領域DAの周囲に隣接する額縁領域NA1と、表示領域DAの内側の非表示領域NA2とを有する。表示領域DAは、複数の画素を有している。非表示領域NA2は、開口部Hを有している。
 図1の(b)を参照して、本実施形態に係る表示デバイス2の各層の構造をより詳細に説明する。
 本実施形態に係る表示デバイス2は、図1の(b)に示すように、表示デバイス2の基材である樹脂膜4上に、薄膜トランジスタ層6と、発光素子8と、封止層10とを、下層から順に備えている。表示デバイス2は、封止層10のさらに上層に、光学補償機能、タッチセンサ機能、保護機能等を有する機能フィルム等を備えていてもよい。
 樹脂膜4は、例えば、ポリイミド等の樹脂材料から形成される。本実施形態において、表示デバイス2は、樹脂膜4の他に、基材として、樹脂膜4のさらに下層に形成されたPETフィルム等の柔軟な基板、または、ガラス基材等の硬直な基板を備えていてもよい。
 薄膜トランジスタ層6は、発光素子8を画素ごとに駆動するための薄膜トランジスタを複数備える。薄膜トランジスタ層6は、少なくとも無機絶縁膜を含んでいる。薄膜トランジスタ層6が含む無機絶縁膜は、例えば、酸化シリコン膜、窒化シリコン膜、または、これらの積層膜によって構成される。また、本実施形態において、薄膜トランジスタ層6は、薄膜トランジスタのチャネル領域を有する半導体層、薄膜トランジスタの電極または配線等を形成する金属層、または、これらの層の上層を平坦化するための平坦化膜を含んでいてもよい。
 また、表示デバイス2は、薄膜トランジスタ層6は、外側バンクBK1と、内側バンクBK2との、2つのバンクを備えている。外側バンクBK1は、額縁領域NA1に形成され、表示領域DAの周囲を囲む位置に、枠状に形成されている。内側バンクBK2は、非表示領域NA2に形成され、開口部Hの周囲を囲む位置に、円状に形成されている。また、図1の(b)に示す、外側バンクBK1と内側バンクBK2とは、各々1列であるが、本実施形態においては、外側バンクBK1と内側バンクBK2とが、各々複数列であってもよい。
 発光素子8は、下層から順に、第1電極12と、機能層8fとをこの順に積層して含む。
機能層8fは、第1電極12側から順に、共通機能層14と、発光層16と、上層共通機能層18と、第2電極19とを積層して含む。発光素子8は、図1の(b)に示すように、表示領域DAにおいて形成されている。
 第1電極12は、表示領域DAの画素ごとに、個別に形成される、画素電極であってもよい。この場合、第1電極12のそれぞれは、薄膜トランジスタ層6の各薄膜トランジスタと電気的に接続している。さらに、各薄膜トランジスタを駆動することにより、表示デバイス2は、画素ごとに発光素子8を駆動する。本実施形態において、第1電極12は、発光素子8のアノードであってもよい。第1電極12は、従来公知の手法によって形成されてもよい。
 共通機能層14は、第1電極12の上層に、複数の画素に共通して形成されている。共通機能層14は、例えば、正孔輸送層、および正孔注入層の、少なくとも一方を含んでいてもよい。
 発光層16は、共通機能層14の上層において、第1電極12のそれぞれと重畳する位置に、表示デバイス2の画素ごとに形成される。すなわち、機能層8fは、さらに、共通機能層14の上層に、表示デバイス2の画素ごとに、個別機能層としての発光層16を備えている。
 本実施形態において、発光層16は、赤色を発する赤色発光層と、緑色を発する緑色発光層と、青色を発する青色発光層とを、発光素子ごとに個別に備えていてもよい。この場合、本実施形態においては、赤色発光層を含む画素を赤色画素、緑色発光層を含む画素を緑色画素、青色発光層を含む画素を青色画素としてもよい。
 上層共通機能層18は、発光層16の上層に、複数の画素に共通して形成されている。本実施形態において、上層共通機能層18は、電子輸送層および電子注入層の少なくとも一方を含んでいてもよい。
 第2電極19は、上層共通機能層18の上層に、複数の画素に共通して形成されている第2電極19は、第1電極12と対向する対向電極であり、本実施形態において、第2電極19は、発光素子8のカソードであってもよい。
 封止層10は、下層から順に、第1無機封止膜20と、有機封止膜22と、第2無機封止膜24とを備えている。第1無機封止膜20および第2無機封止膜24は、封止層10が備える無機封止絶縁膜であり、例えば、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜22は、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。
 第1無機封止膜20および第2無機封止膜24は、発光素子8への、水、酸素等の異物の浸透を防ぐ機能を有する。第1無機封止膜20および第2無機封止膜24は、薄膜トランジスタ層6と重畳する位置に形成される。第1無機封止膜20および第2無機封止膜24は、表示領域DAから、外側バンクBK1および内側バンクBK2を超えて形成されている。
 有機封止膜22は、第2無機封止膜24を形成する際のバッファ層としての機能を有する。有機封止膜22は、第1無機封止膜20および第2無機封止膜24と同様に、薄膜トランジスタ層6と重畳する位置に形成されているが、外側バンクBK1の内部側および内側バンクBK2の外部側のみに形成されている。
 次に、図2を参照し、本実施形態に係る表示デバイス2の製造方法について詳細に説明する。図2は、本実施形態に係る表示デバイス2の各製造工程を示すフローチャートである。図2に示すステップS1からステップS2までを、図3に示す工程断面図を参照してより詳細に説明する。なお、図3を含む、以降の工程断面図においては、何れも、図1の(b)に対応する位置における工程断面図を示している。
 はじめに、図3の(a)に示すように、透光性の支持基板26(例えば、マザーガラス基板)上に、樹脂膜4を成膜する、樹脂膜成膜工程を実施する(ステップS1)。ステップS1における樹脂膜4の成膜には、従来公知の成膜方法を採用できる。
 次いで、図3の(b)に示すように、樹脂膜4の上層に薄膜トランジスタ層6を形成する、薄膜トランジスタ層形成工程を実行する(ステップS2)。ステップS2においては、外側バンクBK1および内側バンクBK2を形成する、バンク形成工程を併せて実施する。ステップS2における各層の成膜には、従来公知の成膜方法を採用できる。
 ここで、ステップS2においては、開口部Hと対応する位置に、図3の(b)に示す、凹部6Rを形成する凹部形成工程を実行する。凹部6Rにおいて、薄膜トランジスタ層6からは、少なくとも無機絶縁膜が取り除かれている。なお、本実施形態における凹部6Rにおいて、薄膜トランジスタ層6からは、さらに、半導体層、金属層、および平坦化膜が取り除かれている。
 さらに、ステップS2は、凹部6Rの内部に、図3の(b)に示す、凸部28を形成する凸部形成工程を備えている。凸部28は、薄膜トランジスタ層6のうちの何れかの層の一部であってもよい。すなわち、凹部形成工程においては、凸部28を除く、薄膜トランジスタ層6の各層を、開口部Hと対応する位置から除去することにより、凹部6Rを形成してもよい。
 次いで、薄膜トランジスタ層6の上層に発光素子8を形成する、発光素子形成工程を実施する(ステップS3)。ステップS3における各層の形成方法について、図4から図7を参照して、より詳細に説明する。図4は、本実施形態における、発光素子8の形成工程について示すフローチャートである。図5から図7は、図4のフローチャートに基づいて実施される、発光素子形成工程をより詳細に説明するための工程断面図である。
 はじめに、図5の(a)に示す第1電極12を、薄膜トランジスタ層6上に形成する(ステップS3-)。次いで、図5の(b)に示す、第1凹部カバー30を、凹部6Rに設置する、第1嵌合工程を実施する(ステップS3-2)。第1凹部カバー30は、凹部6Rと対応する形状を有するため、ステップS3-2においては、図5の(c)に示すように、第1凹部カバー30が凹部6Rに嵌め合わせられる。
 第1凹部カバー30について、図8を参照してより詳細に説明する。図8の(a)は、第1凹部カバー30の上面図を示す。図8の(b)は、図8の(a)における、C-C線矢視断面図を示す。
 図8の(a)および図8の(b)に示すように、第1凹部カバー30は、第1開口32を含む第1固定部34を有している。第1固定部34は、第1凹部カバー30に形成された凹部であり、例えば、第1凹部カバー30の一部がハーフエッチングされることにより形成される。さらに、例えば、第1固定部34の一部を、さらにエッチングすることにより、第1開口32を形成する。
 第1開口32は、図5の(c)に示すように、ステップS3-2において、凸部28と係合する位置に形成されている。すなわち、凸部28は、第1嵌合工程において、第1凹部カバー30と係合する、第1凸部であってもよく、上述した凸部形成工程は、第1凸部を形成するための第1凸部形成工程であってもよい。
 また、第1凹部カバー30は、第1アライメントマーク36を複数備える。第1アライメントマーク36は、例えば、第1凹部カバー30の第1固定部34を除く位置において、第1凹部カバー30の一部がハーフエッチングされることにより形成される。
 第1アライメントマーク36は、ステップS3-2において、第1凹部カバー30を凹部6Rに嵌め合わせる際のアライメントに使用されてもよい。具体的には、ステップS3-2において、凸部28の位置と第1アライメントマーク36の位置とを観察することにより、第1凹部カバー30を位置合わせしてもよい。
 第1凹部カバー30の外形は、開口部Hと対応する形状を有している。例えば、開口部Hが星形の形状を有している場合、第1凹部カバー30の外形は、図8の(c)に示す星形であってもよい。また、開口部Hが波形の形状を有している場合、第1凹部カバー30の外形は、図8の(d)に示す波形であってもよい。
 また、第1固定部34および第1アライメントマーク36の個数は問われず、例えば、図8の(d)に示すように、第1固定部34は複数形成されていてもよい。第1固定部34が複数形成されている場合、第1開口32についても複数形成されていてもよく、ステップS2において、凸部28を第1開口32の個数と同じ個数だけ形成してもよい。
 本実施形態において、第1凹部カバー30は、熱膨張率が低い材料を含むことが好ましく、特に、インバー材を含む材料から形成されていてもよい。第1凹部カバー30がインバー材を含むことにより、後工程の各層の成膜工程において、高温下に第1凹部カバー30が曝された場合であっても、第1凹部カバー30の変形が低減される。
 次いで、図5の(c)に示すように、第1固定部34に、加熱して軟化させた熱可塑性樹脂38を流し込む。次いで、第1固定部34内の熱可塑性樹脂38を冷却し、当該熱可塑性樹脂38を固化させる。これにより、第1固定部34が、熱可塑性樹脂38によって、凹部6Rに対し押し付けられる。このようにして、第1凹部カバー30と凸部28とを、熱可塑性樹脂38を介して互いに固定することにより、第1凹部カバー30を支持基板26に対し固定する(ステップS3-3)。なお、熱可塑性樹脂38は、例えば、アクリル樹脂であってもよく、軟化温度が摂氏160度程度であってもよい。
 第1凹部カバー30を支持基板26に対し固定した際の、第1凹部カバー30の端部付近の構造を、図9の(a)を参照してより詳細に説明する。図9の(a)は、図5の(c)における、領域Bの概略拡大図である。
 第1凹部カバー30が支持基板26に対し固定されることにより、図9の(a)に示すように、第1凹部カバー30は、内側バンクBK2と重畳する。特に、第1凹部カバー30の端部は、内側バンクBK2を超えて、第1電極12と重畳する。ここで、第1電極12と第1凹部カバー30とは、距離d1だけ離間されている。
 〔変形例1〕
 本実施形態の変形例1においては、第1電極12と第1凹部カバー30とが接触していてもよい。本変形例において、第1凹部カバー30を支持基板26に対し固定した際の、第1凹部カバー30の端部付近の構造を、図9の(b)を参照してより詳細に説明する。図9の(b)は、本変形例における、図9の(a)に対応する位置における拡大図である。
 本変形例において、第1電極12と第1凹部カバー30とは接触している。ここで、第1凹部カバー30は、端部の下部に、切り欠き30Aを備えている。切り欠き30Aは、第1凹部カバー30の端部の下部が、樹脂膜4側に対し、逆テーパー形状となるように形成されている。
 本実施形態に係る発光素子8の形成工程の説明に戻ると、次いで、図5の(d)に示すように、第1オープンマスク40を設置し、蒸着方式により、共通機能層14を成膜する、共通機能層成膜工程を実施する(ステップS3-4)。第1オープンマスク40について、図10を参照して詳細に説明する。図10は、第1オープンマスク40の概略上面図である。
 第1オープンマスク40は、例えば、インバー材等の材料を含む、CMM(Common Metal Mask)である。第1オープンマスク40は、共通機能層14が形成される位置に対応する第1オープンマスク開口40Hを備える。このため、図5の(d)に示すように、第1電極12よりも額縁領域NA1側の、支持基板26の上層の各層には、共通機能層14が形成されない。
 第1オープンマスク40は、第1オープンマスク開口40Hを複数備えていてもよい。この場合、第1オープンマスク40を使用した一度の成膜により、複数の表示デバイス2に対応する共通機能層14の成膜を実施することができる。
 第1オープンマスク40は、第1オープンマスク40を支持基板26上に配置した場合、外側バンクBK1と重畳する。このため、ステップS3-4において、第1オープンマスク40と重畳する、額縁領域NA1には、共通機能層14が成膜されない。
 なお、第1オープンマスク40は、各表示デバイス2に対応する、単一の第1オープンマスク開口40Hをそれぞれ備えている。このため、ステップS3-4においては、図5の(d)に示すように、凹部6Rに重畳する位置においても、共通機能層14が成膜される。ただし、共通機能層14は、凹部6R内の樹脂膜4の上面には形成されず、代わりに、第1凹部カバー30の上面に成膜される。
 次いで、図6の(a)に示すように、第1オープンマスク40を除去し、熱可塑性樹脂38にレーザ光L1を照射して、熱可塑性樹脂38を加熱させ、熱可塑性樹脂38を軟化させる(ステップS3-5)。これにより、熱可塑性樹脂38を介した、凸部28と第1凹部カバー30との固定が解除される。
 ついで、図6の(b)に示すように、第1凹部カバー30を凹部6Rから除去することにより、第1凹部カバー30を支持基板26上から除去する、第1除去工程を実施する(ステップS3-6)。
 なお、第1凹部カバー30の端部においては、第1電極12と第1凹部カバー30との間は、距離d1だけ離間されている。このため、共通機能層14は、第1凹部カバー30の端部において段切れし、または極度に薄膜となっている。したがって、ステップS3-6により、第1電極12上の共通機能層14と、第1凹部カバー30上の共通機能層14とを、容易に分断することが可能である。第1凹部カバー30の端部における、共通機能層14の段切れを確実とするために、距離d1は、共通機能層14の膜厚よりも大きいことが好ましい。
 また、上述した変形例1においても、第1凹部カバー30が切り欠き30Aを有するために、第1凹部カバー30の端部における、共通機能層14の段切れを生じさせることができる。なお、第1オープンマスク40についても、端部の下部に、切り欠き30Aに相当する切り欠きを備えていてもよい。これにより、第1オープンマスク40の端部における、共通機能層14の段切れが生じやすくなる。
 以上により、額縁領域NA1および非表示領域NA2を含む位置に、共通機能層14を形成することなく、発光領域DAを含む位置のみに、共通機能層14を形成することができる。
 次いで、個別機能層成膜工程として、図6の(c)に示すように、発光層16を成膜する(ステップS3-7)。発光層16が、複数種の発光層を備えている場合には、発光層16の種類の数に応じて、複数回ステップS3-7を実施することにより、発光層16を形成してもよい。
 発光層16が有機発光層である場合、発光層16の形成は、各発光層16の形成位置ごとに開口が形成された、ファインメタルマスクを使用した蒸着工程により実施してもよい。この場合、ファインメタルマスクの、凹部6Rに対応する位置に、島状に遮蔽部を形成することができる。このため、第1凹部カバー30を使用せずに、凹部6Rと重畳する位置に発光層16を成膜しないように、ステップS3-7を実施することができる。
 また、発光層16が量子ドット発光層である場合、発光層16の形成は、感光性樹脂中に量子ドットを分散させた塗布材料と、フォトマスクとを使用した、フォトリソグラフィにより実施してもよい。この場合、フォトリソグラフィによるパターニング工程において、凹部6Rと重畳する位置に成膜された発光層16を除去することができる。このため、第1凹部カバー30を使用せずに、凹部6Rと重畳する位置に発光層16を成膜しないように、ステップS3-7を実施することができる。
 なお、発光層16の形成工程において、上述したファインメタルマスクまたはフォトマスクが、第1凹部カバー30と当接しない場合には、第1凹部カバー30の除去工程を省略してもよい。
 次いで、図6の(d)に示す、第3凹部カバー42を、凹部6Rに設置する、第3嵌合工程を実施する(ステップS3-8)。本実施形態において、第3凹部カバー42は、第1凹部カバー30と同様に、凸部28と係合する第3開口44を有する第3固定部46と、第3アライメントマーク48を備えている。また、第3凹部カバー42の外形は、第1凹部カバー30と同一であってもよい。
 すなわち、凸部28は、第3嵌合工程において、第3凹部カバー42と係合する、第3凸部であってもよく、上述した凸部形成工程は、第3凸部を形成するための第3凸部形成工程であってもよい。また、第1凸部は、第3凸部と同一であってもよい。
 次いで、図7の(a)に示すように、第3固定部46に、加熱して軟化させた熱可塑性樹脂38を流し込む。次いで、第3固定部46内の熱可塑性樹脂38を冷却し、当該熱可塑性樹脂38を固化させる。このようにして、第3凹部カバー42と凸部28とを、熱可塑性樹脂38を介して互いに固定することにより、第3凹部カバー42を支持基板26に対し固定する(ステップS3-9)。
 なお、ステップS3-6を省略した場合には、ステップS3-8およびステップS3-9についても省略してもよい。
 次いで、図7の(b)に示すように、第2オープンマスク50を設置し、蒸着方式により、上層共通機能層18を成膜する、上層共通機能層成膜工程を実施する(ステップS3-10)。第2オープンマスク50は、第1オープンマスク40と同一の構成を備えていてもよい。なお、第2オープンマスク50についても、端部の下部に、切り欠き30Aに相当する切り欠きを備えていてもよい。これにより、発光層16の上層に、上層共通機能層18が成膜される。
 ステップS3-10においては、ステップS3-3と同様、図7の(b)に示すように、凹部6Rに重畳する位置においても、上層共通機能層18が成膜される。ただし、上層共通機能層18は、凹部6R内の樹脂膜4の上面には形成されず、代わりに、第3凹部カバー42の上面に成膜される。
 なお、ステップS3-6を省略した場合には、ステップS3-10において、第1凹部カバー30と重畳する位置に成膜された、共通機能層14の上面に、さらに上層共通機能層18が成膜される。
 次いで、図7の(c)に示すように、第2オープンマスク50を除去し、熱可塑性樹脂38にレーザ光L1を照射して、熱可塑性樹脂38を加熱させ、熱可塑性樹脂38を軟化させる(ステップS3-11)。これにより、熱可塑性樹脂38を介した、凸部28と第3凹部カバー42との固定が解除される。
 ついで、図7の(d)に示すように、第3凹部カバー42を凹部6Rから除去することにより、第3凹部カバー42を支持基板26上から除去する、第3除去工程を実施する(ステップS3-12)。ここで、ステップS3-6を省略した場合は、第3除去工程を、第1除去工程とみなして実施してもよい。
 ステップS3-12においても、ステップS3-6と同様に、第1電極12上の上層共通機能層18と、第3凹部カバー42上の上層共通機能層18とを、容易に分断することが可能である。以上により、額縁領域NA1および非表示領域NA2を含む位置に、上層共通機能層18を形成することなく、発光領域DAを含む位置のみに、上層共通機能層18を形成することができる。
 次いで、図7の(e)に示すように、第2電極19を、上層共通機能層18上に形成する(ステップS3-13)。第2電極19の形成は、上層共通機能層18の形成と同一の手法によって形成してもよい。
 例えば、ステップS3-13においては、第3除去工程に次いで、第3凹部カバー42と同一形状の第4凹部カバーを、凹部6Rに設置する、第4嵌合工程を実施する。次いで、第2オープンマスク50を設置し、蒸着方式により、第2電極19を成膜する、第2電極成膜工程を実施する。次いで、第4凹部カバーを支持基板26上から除去する、第4除去工程を実施する。これにより、第2電極19の形成工程が完了し、発光素子形成工程が完了する。
 なお、第2電極19の成膜は、ステップS3-10に次いで実施してもよい。すなわち、第2オープンマスク50を使用して、上層共通機能層18の成膜と、第2電極19の成膜とを、連続して実施してもよい。この場合、第3除去工程により、第3凹部カバー42上に形成された上層共通機能層18と第2電極19とが併せて除去される。この場合、第4凹部カバーの嵌合および除去が不要となり、発光素子形成工程の簡素化につながる。
 次いで、発光素子8の上層に封止層10を形成する、封止層形成工程を実施する(ステップS4)。ステップS4における各層の形成方法について、図11から図13を参照して、より詳細に説明する。図11は、本実施形態における、封止層10の形成工程について示すフローチャートである。図12および図13は、図11のフローチャートに基づいて実施される、封止層形成工程をより詳細に説明するための工程断面図である。
 はじめに、図12の(a)に示す、第2凹部カバー52を、凹部6Rに設置する、第2嵌合工程を実施する(ステップS4-1)。本実施形態において、第2凹部カバー52は、第1凹部カバー30と同様に、凸部28と係合する第2開口54を有する第2固定部56と、第2アライメントマーク58を備えている。
 第2開口54は、図12の(b)に示すように、ステップS4-1において、凸部28と係合する位置に形成されている。すなわち、凸部28は、第2嵌合工程において、第2凹部カバー52と係合する、第2凸部であってもよく、上述した凸部形成工程は、第2凸部を形成するための第2凸部形成工程であってもよい。また、第1凸部は、第2凸部と同一であってもよい。
 次いで、図12の(b)に示すように、第2固定部56に、加熱して軟化させた熱可塑性樹脂38を流し込む。次いで、第2固定部56内の熱可塑性樹脂38を冷却し、当該熱可塑性樹脂38を固化させる。このようにして、第2凹部カバー52と凸部28とを、熱可塑性樹脂38を介して互いに固定することにより、第2凹部カバー52を支持基板26に対し固定する(ステップS4-2)。
 第2凹部カバー52を支持基板26に対し固定した際の、第2凹部カバー52の端部付近の構造を、図14の(a)を参照してより詳細に説明する。図14の(a)は、図12の(b)における、領域Dの概略拡大図である。
 第2凹部カバー52が支持基板26に対し固定されることにより、図14の(a)に示すように、第2凹部カバー52は、内側バンクBK2よりも開口部H側に含まれる位置に配置される。第2凹部カバー52の端部は、内側バンクBK2を超えず、薄膜トランジスタ層6と重畳する。ここで、薄膜トランジスタ層6と第2凹部カバー52とは、距離d2だけ離間されている。
 〔変形例2〕
 本実施形態の変形例2においては、薄膜トランジスタ層6と第2凹部カバー52とが接触していてもよい。本変形例において、第2凹部カバー52を支持基板26に対し固定した際の、第2凹部カバー52の端部付近の構造を、図14の(b)を参照してより詳細に説明する。図14の(b)は、本変形例における、図14の(a)に対応する位置における拡大図である。
 本変形例において、薄膜トランジスタ層6と第2凹部カバー52とは接触している。ここで、第2凹部カバー52は、端部の下部に、切り欠き52Aを備えている。切り欠き52Aは、第2凹部カバー52の端部の下部が、樹脂膜4側に対し、逆テーパー形状となるように形成されている。
 本実施形態に係る封止層10の形成工程の説明に戻ると、次いで、封止層形成工程として、図12の(c)に示すように、CVDマスク60を設置し、低温CVD法により、第1無機封止膜20の成膜を実施する(ステップS4-3)。
 CVDマスク60は、第1オープンマスク40と比較して、CVDマスク60を支持基板26上に配置した場合、外側バンクBK1よりも額縁領域NA1と重畳する点においてのみ相違する。なお、CVDマスク60についても、端部の下部に、切り欠き30Aに相当する切り欠きを備えていてもよい。
 このため、ステップS4-3においては、外側バンクBK1と重畳する位置を含む、額縁領域NA1の一部においても、第1無機封止膜20が成膜される。ただし、薄膜トランジスタ層6の端部よりも額縁領域NA1側においては、第1無機封止膜20は成膜されない。
 ステップS4-3においては、図12の(c)に示すように、凹部6Rに重畳する位置においても、第1無機封止膜20が成膜される。また、ステップS4-3においては、内側バンクBK2を含む、非表示領域NA2の一部においても、第1無機封止膜20が成膜される。ただし、第1無機封止膜20は、凹部6R内の樹脂膜4の上面には形成されず、代わりに、第2凹部カバー52の上面に成膜される。
 次いで、図12の(d)に示すように、CVDマスク60を除去し、次いで、封止層形成工程として、有機封止膜22の塗布形成を実施する(ステップS4-4)。有機封止膜22の塗布は、従来公知の手法を用いて実施してもよい。なお、ステップS4-4においては、マスク等を使用することがないため、ステップS4-4に先立って第2凹部カバー52を除去する工程は必要ない。
 ここで、有機封止膜22の濡れ広がりは、外側バンクBK1および内側バンクBK2によって堰き止められる。このため、有機封止膜22は外側バンクBK1および内側バンクBK2よりも発光領域DA側に形成される。換言すれば、外側バンクBK1および内側バンクBK2は、有機封止膜22の端部を規定している。
 次いで、封止層形成工程として、図13の(a)に示すように、CVDマスク62を設置し、低温CVD法により、第2無機封止膜24の成膜を実施する(ステップS4-5)。
 CVDマスク62は、CVDマスク60と同一の構成を有していてもよい。なお、CVDマスク62についても、端部の下部に、切り欠き30Aに相当する切り欠きを備えていてもよい。このため、ステップS4-5においては、外側バンクBK1と重畳する位置を含む、額縁領域NA1の一部においても、第2無機封止膜24が成膜される。ただし、薄膜トランジスタ層6の端部よりも額縁領域NA1側においては、第2無機封止膜24は成膜されない。
 ステップS4-5においては、図13の(a)に示すように、凹部6Rに重畳する位置においても、第2無機封止膜24が成膜される。また、ステップS4-5においては、内側バンクBK2を含む、非表示領域NA2の一部においても、第2無機封止膜24が成膜される。ただし、第2無機封止膜24は、凹部6R内の樹脂膜4の上面には形成されず、代わりに、第2凹部カバー52の上面に成膜される。
 次いで、図13の(b)に示すように、CVDマスク62を除去し、熱可塑性樹脂38にレーザ光L1を照射して、熱可塑性樹脂38を加熱させ、熱可塑性樹脂38を軟化させる(ステップS4-6)。これにより、熱可塑性樹脂38を介した、凸部28と第2凹部カバー52との固定が解除される。
 ついで、図13の(c)に示すように、第2凹部カバー52を凹部6Rから除去することにより、第2凹部カバー52を支持基板26上から除去する、第2除去工程を実施する(ステップS4-7)。
 なお、第2凹部カバー52の端部においては、薄膜トランジスタ層6と第2凹部カバー52との間は、距離d2だけ離間されている。このため、第1無機封止膜20および第2無機封止膜24は、第2凹部カバー52の端部において段切れし、または極度に薄膜となっている。したがって、ステップS3-7により、薄膜トランジスタ層6上の第1無機封止膜20および第2無機封止膜24と、第2凹部カバー52上の第1無機封止膜20および第2無機封止膜24とを、容易に分断することが可能である。第2凹部カバー52の端部における、第1無機封止膜20および第2無機封止膜24の段切れを確実とするために、距離d2は、第1無機封止膜20および第2無機封止膜24の合計膜厚よりも大きいことが好ましい。
 また、上述した変形例2においても、第2凹部カバー52が切り欠き52Aを有するために、第2凹部カバー52の端部における、第1無機封止膜20および第2無機封止膜24の段切れを生じさせることができる。
 以上により、額縁領域NA1および非表示領域NA2を含む位置に、第1無機封止膜20および第2無機封止膜24を形成することなく、発光領域DAを含む位置のみに、第1無機封止膜20および第2無機封止膜24を形成することができる。以上により、封止層形成工程が完了する。
 本実施形態における、表示デバイス2の製造方法のうち、封止層形成工程より以降の工程について、図15に示す工程断面図を参照して説明する。
 封止層形成工程に次いで、図15の(a)に示すように、樹脂膜4と、ガラス基板である支持基板26との剥離を実施する(ステップS5)。本実施形態において、ステップS5は、レーザリフトオフにより、樹脂膜4と支持基板26とを剥離する、レーザリフトオフ工程である。具体的には、ステップS5において、支持基板26より下方から、樹脂膜4にレーザを照射して、樹脂膜4と支持基板26との密着性を低下させ、樹脂膜4と支持基板26とを剥離する。
 次いで、図15の(b)に示すように、凹部6Rの端部、すなわち、非表示領域NA2側の薄膜トランジスタ層6の端部における樹脂膜4にレーザ光L2を照射する。これにより、凹部6Rの外周に沿って樹脂膜4をレーザ分断することにより、図15の(c)に示す、開口部Hを形成する、開口部形成工程を実施する(ステップS6)。ステップS6により、凸部28が、樹脂膜4とともに除去される。
 以上により、図15の(c)に示す表示デバイス2が得られる。なお、ステップS6におけるレーザ分断により、大判の樹脂膜4上に形成された複数の表示デバイス2を、ここに分断してもよい。また、ステップS6の実施後に、樹脂膜4の下層に、PETフィルム等の下面フィルムを貼り付けてもよい。
 本実施形態においては、開口部形成工程において、樹脂膜4のみの分断により、開口部を形成することが可能である。したがって、樹脂膜4を除く、例えば、薄膜トランジスタ層6の無機絶縁膜、あるいは、発光素子8または封止層10の各層を、レーザによって分断する必要がない。このために、開口部形成工程において、レーザ分断に伴う、表示デバイス2の各層へのクラックの発生が低減される。
 また、本実施形態において、開口部Hと対応する位置から、発光素子8または封止層10の各層を除去するために、凹部6Rと嵌合する凹部カバーを使用している。このために、本実施形態に係る表示デバイス2の製造方法は、開口部Hと対応する位置に成膜された、発光素子8または封止層10の各層を、レーザ等を使用して除去する等、技術的に困難である工程が必要ない。
 上述の各実施形態に係る表示デバイス2の発光素子8は、柔軟性を有し、屈曲可能であってもよい。上述の各実施形態においては、発光層16が、量子ドットを備えた量子ドット層であり、発光素子8が、QLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)であってもよい。また、例えば、上述の各実施形態に係る発光層16は、有機層であってもよい。すなわち、上述の各実施形態に係る発光素子8は、OLED(Organic Light Emitting Diode:有機発光ダイオード)であってもよい。この場合、各実施形態に係る表示デバイス2は、有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイであってもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
2   表示デバイス
4   樹脂膜
6   薄膜トランジスタ層
8   発光素子
8f  機能層
10  封止層
12  第1電極
14  共通機能層
16  発光層(個別機能層)
18  上層共通機能層
19  第2電極
20  第1無機封止膜
22  有機封止膜
24  第2無機封止膜
26  支持基板
28  凸部
30  第1凹部カバー
38  熱可塑性樹脂
42  第3凹部カバー
52  第2凹部カバー
BK1 外側バンク
BK2 内側バンク
DA  表示領域
NA1 額縁領域
NA2 非表示領域
H   開口部

Claims (20)

  1.  複数の画素を有する表示領域と、該表示領域の周囲の額縁領域と、前記表示領域の内側の、開口部を有する非表示領域とを有し、下層から順に、基板と、無機絶縁膜を含む薄膜トランジスタ層と、第1電極、複数の画素に共通の共通機能層を含む機能層、および第2電極を含む発光素子と、無機封止絶縁膜を含む封止層とを備えた表示装置の製造方法であって、
     前記基板上に前記薄膜トランジスタ層を形成する薄膜トランジスタ層形成工程と、前記薄膜トランジスタ層上に前記発光素子を形成する発光素子形成工程と、前記発光素子上に前記封止層を形成する封止層形成工程とを備え、
     前記薄膜トランジスタ層形成工程は、前記開口部に対応する位置に、前記薄膜トランジスタ層から前記無機絶縁膜が取り除かれた凹部を形成する凹部形成工程を備え、
     前記発光素子形成工程は、第1凹部カバーを前記凹部に嵌め合わせる第1嵌合工程と、該第1嵌合工程に次いで、前記共通機能層を成膜する共通機能層成膜工程と、前記第1凹部カバーを前記凹部から除去する第1除去工程とを備え、
     前記封止層形成工程は、第2凹部カバーを前記凹部に嵌め合わせる第2嵌合工程と、該第2嵌合工程に次いで、前記封止層を成膜する封止層成膜工程と、前記第2凹部カバーを前記凹部から除去する第2除去工程とを備えた表示デバイスの製造方法。
  2.  前記共通機能層は、正孔注入層および正孔輸送層の少なくとも一方を含む請求項1に記載の表示デバイスの製造方法。
  3.  前記薄膜トランジスタ層形成工程が、前記第1凹部カバーに係合する第1凸部を形成する第1凸部形成工程を備えた請求項1または2に記載の表示デバイスの製造方法。
  4.  前記第1嵌合工程において、前記第1凹部カバーと前記第1凸部とを、熱可塑性樹脂を介して互いに固定する請求項3に記載の表示デバイスの製造方法。
  5.  前記薄膜トランジスタ層形成工程が、前記第2凹部カバーに係合する第2凸部を形成する第2凸部形成工程を備えた請求項3または4に記載の表示デバイスの製造方法。
  6.  前記第2嵌合工程において、前記第2凹部カバーと前記第2凸部とを、熱可塑性樹脂を介して互いに固定する請求項5に記載の表示デバイスの製造方法。
  7.  前記第1凸部と前記第2凸部とが同一の凸部である請求項5または6に記載の表示デバイスの製造方法。
  8.  前記機能層が、前記共通機能層の上層に、前記画素ごとの個別機能層をさらに備え、
     前記発光素子形成工程が、前記第1除去工程に次いで、前記個別機能層を形成する個別機能層成膜工程をさらに備えた請求項3から7の何れか1項に記載の表示デバイスの製造方法。
  9.  前記機能層が、前記個別機能層の上層に、複数の前記画素に共通の上層共通機能層をさらに備え、
     前記発光素子形成工程が、前記個別機能層成膜工程に次いで、第3凹部カバーを前記凹部に嵌め合わせる第3嵌合工程と、該第3嵌合工程に次いで、前記上層共通機能層を成膜する上層共通機能層成膜工程と、前記第3凹部カバーを前記凹部から除去する第3除去工程とをさらに備えた請求項8に記載の表示デバイスの製造方法。
  10.  前記上層共通機能層は、電子輸送層および電子注入層の少なくとも一方を含む請求項9に記載の表示デバイスの製造方法。
  11.  前記薄膜トランジスタ層形成工程が、前記第3凹部カバーに係合する第3凸部を形成する第3凸部形成工程を備えた請求項9または10に記載の表示デバイスの製造方法。
  12.  前記第3嵌合工程において、前記第3凹部カバーと前記第3凸部とを、熱可塑性樹脂を介して互いに固定する請求項11に記載の表示デバイスの製造方法。
  13.  前記第1凸部と前記第3凸部とが同一の凸部である請求項11または12に記載の表示デバイスの製造方法。
  14.  前記個別機能層が発光層を含む請求項8から13の何れか1項に記載の表示デバイスの製造方法。
  15.  前記発光素子形成工程が、前記第1除去工程よりも後に、第4凹部カバーを前記凹部に嵌め合わせる第4嵌合工程と、該第4嵌合工程に次いで、前記第2電極を成膜する第2電極成膜工程と、前記第4凹部カバーを前記凹部から除去する第4除去工程とをさらに備えた請求項1から14の何れか1項に記載の表示デバイスの製造方法。
  16.  前記基板が樹脂膜を備え、
     前記薄膜トランジスタ層形成工程に先立って、ガラス基材上に前記樹脂膜を成膜する樹脂膜成膜工程をさらに備え、
     前記薄膜トランジスタ層形成工程において、前記薄膜トランジスタ層を、前記樹脂膜上に形成する請求項1から15の何れか1項に記載の表示デバイスの製造方法。
  17.  前記封止層形成工程に次いで、レーザリフトオフにより、前記ガラス基材を前記樹脂膜から剥離するレーザリフトオフ工程をさらに備えた請求項16に記載の表示デバイスの製造方法。
  18.  前記レーザリフトオフ工程に次いで、レーザ分断により、前記開口部を形成する開口部形成工程をさらに備えた請求項17に記載の表示デバイスの製造方法。
  19.  前記封止層が有機封止膜をさらに備え、
     前記薄膜トランジスタ層形成工程が、前記有機封止膜の端部を規定するバンクを形成するバンク形成工程を備え、
     前記バンクが、前記表示領域を囲む外側バンクと、前記開口部を囲む内側バンクとを含み、
     前記第1嵌合工程において、前記第1凹部カバーを、前記内側バンクと重畳する位置に設置する請求項1から18の何れか1項に記載の表示デバイスの製造方法。
  20.  前記第2嵌合工程において、該第2凹部カバーが前記内側バンクよりも前記開口部側に含まれるように、前記第2凹部カバーを設置する請求項19に記載の表示デバイスの製造方法。
PCT/JP2019/016523 2019-04-17 2019-04-17 表示デバイスの製造方法 WO2020213103A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016523 WO2020213103A1 (ja) 2019-04-17 2019-04-17 表示デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016523 WO2020213103A1 (ja) 2019-04-17 2019-04-17 表示デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2020213103A1 true WO2020213103A1 (ja) 2020-10-22

Family

ID=72837192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016523 WO2020213103A1 (ja) 2019-04-17 2019-04-17 表示デバイスの製造方法

Country Status (1)

Country Link
WO (1) WO2020213103A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230200109A1 (en) * 2021-12-16 2023-06-22 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel motherboard and method for manufacturing a display panel
US12150328B2 (en) * 2021-12-16 2024-11-19 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel motherboard and method for manufacturing a display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150201498A1 (en) * 2014-01-10 2015-07-16 Au Optronics Corp. Flexible display panel and method of fabricating flexible display panel
JP2016095389A (ja) * 2014-11-14 2016-05-26 株式会社ジャパンディスプレイ 表示装置の製造方法、表示装置の端子露出方法および表示装置
JP2017041339A (ja) * 2015-08-19 2017-02-23 株式会社ブイ・テクノロジー 有機el表示装置およびその製造方法
WO2019030858A1 (ja) * 2017-08-09 2019-02-14 シャープ株式会社 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150201498A1 (en) * 2014-01-10 2015-07-16 Au Optronics Corp. Flexible display panel and method of fabricating flexible display panel
JP2016095389A (ja) * 2014-11-14 2016-05-26 株式会社ジャパンディスプレイ 表示装置の製造方法、表示装置の端子露出方法および表示装置
JP2017041339A (ja) * 2015-08-19 2017-02-23 株式会社ブイ・テクノロジー 有機el表示装置およびその製造方法
WO2019030858A1 (ja) * 2017-08-09 2019-02-14 シャープ株式会社 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230200109A1 (en) * 2021-12-16 2023-06-22 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel motherboard and method for manufacturing a display panel
US12150328B2 (en) * 2021-12-16 2024-11-19 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel motherboard and method for manufacturing a display panel

Similar Documents

Publication Publication Date Title
US10615370B2 (en) Light-emitting display panel
WO2018158953A1 (ja) 表示装置およびその製造方法
JP6606432B2 (ja) 表示装置及びその製造方法
WO2018179047A1 (ja) 表示装置およびその製造方法
WO2021254033A1 (zh) 柔性显示基板及其制备方法、显示装置
JP6391917B2 (ja) 発光素子表示装置及びその製造方法
JP7374094B2 (ja) 表示基板およびその製造方法、表示パネルおよび表示装置
KR102237135B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP6823443B2 (ja) 表示装置およびその製造方法
KR20080092848A (ko) 표시 장치 및 그 제조 방법
JP2018049774A (ja) 表示装置
EP2728640B1 (en) Organic light emitting diode display device and method of fabricating the same
CN111755627A (zh) 显示装置、显示面板及其制造方法
WO2020220476A1 (zh) 阵列基板及其制造方法、及显示面板
US20060220016A1 (en) Light emitting display and method of manufacturing the same
JP2007286111A (ja) 有機el表示装置とその製造方法
CN113950712A (zh) 显示基板、显示面板、显示装置及显示面板的制造方法
WO2019180878A1 (ja) 表示デバイス、及び表示デバイスの製造方法
JP2011090925A (ja) 電気光学装置の製造方法
JP4606767B2 (ja) 表示装置用素子基板の製造方法
WO2018179133A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、成膜装置、コントローラ
WO2019030891A1 (ja) 可撓性表示装置及び可撓性表示装置の製造方法
WO2014162395A1 (ja) 発光装置
US20230345798A1 (en) Display substrate, manffacturing method thereof, and display device
WO2020213103A1 (ja) 表示デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP