WO2020212959A1 - 多核芯纤维复合材料内正交结构件、制作工艺和薄膜材料 - Google Patents

多核芯纤维复合材料内正交结构件、制作工艺和薄膜材料 Download PDF

Info

Publication number
WO2020212959A1
WO2020212959A1 PCT/IB2020/053723 IB2020053723W WO2020212959A1 WO 2020212959 A1 WO2020212959 A1 WO 2020212959A1 IB 2020053723 W IB2020053723 W IB 2020053723W WO 2020212959 A1 WO2020212959 A1 WO 2020212959A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
orthogonal
fiber composite
structural
composite material
Prior art date
Application number
PCT/IB2020/053723
Other languages
English (en)
French (fr)
Other versions
WO2020212959A4 (zh
Inventor
周杰里
Original Assignee
美国投资公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美国投资公司 filed Critical 美国投资公司
Priority to MX2021012486A priority Critical patent/MX2021012486A/es
Priority to AU2020259409A priority patent/AU2020259409A1/en
Priority to BR112021020199A priority patent/BR112021020199A2/pt
Priority to EP20790981.3A priority patent/EP3957456A4/en
Priority to JP2021560993A priority patent/JP2023503744A/ja
Priority to CA3172872A priority patent/CA3172872A1/en
Priority to KR1020217037217A priority patent/KR20220044433A/ko
Priority to CN202080043542.0A priority patent/CN114269538A/zh
Priority to SG11202111424VA priority patent/SG11202111424VA/en
Publication of WO2020212959A1 publication Critical patent/WO2020212959A1/zh
Publication of WO2020212959A4 publication Critical patent/WO2020212959A4/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/18Filling preformed cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • B29D99/0021Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with plain or filled structures, e.g. cores, placed between two or more plates or sheets, e.g. in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of fiber composite material processing and manufacturing, and specifically relates to orthogonal structural members, manufacturing processes and film materials in a multi-core fiber composite material.
  • the plates used as the floor, wall or ceiling of factory buildings or residential buildings, or the plates used as the shells of construction vehicles or industrial equipment are generally made of metal or non-metallic materials (such as plastic), and exist on site during installation.
  • metal or non-metallic materials such as plastic
  • these fiber composite sheet products also have many properties that are lacking in existing metal or plastic sheets, such as high tensile strength, good corrosion resistance, excellent earthquake resistance and impact resistance, etc. advantage.
  • high tensile strength good corrosion resistance
  • excellent earthquake resistance and impact resistance etc. advantage.
  • due to the limitations of structure and process there are still some problems in the use of existing fiber composite panels.
  • the existing fiber composite material blades are generally solid or hollow structures or split single-core structures.
  • problems such as insufficient stability.
  • the following takes the technical development status of wind turbine blades as an example to introduce the advantages and disadvantages of various existing technologies in detail.
  • the modern design concept is based on the wind wing as the basic structure of the blade, which has the disadvantages of not being able to effectively capture wind energy, requiring high wind speed (at least 22 mph), and excessive starting torque.
  • the current mainstream design scheme is to use airfoil blades with a half-core structure. Each blade includes two independently formed half blades, and the two half blades are bonded together by a foam material arranged between them.
  • the foamed plastic structure arranged in the middle of the wind blade can reduce vibration and noise and increase the stability of the wind blade.
  • this blade has disadvantages such as easy cracking along the joints and insufficient mechanical strength.
  • the present invention provides an orthogonal structure, a manufacturing process and a film material in a multi-core fiber composite material based on theoretical analysis and field practice.
  • the orthogonal structure in the multi-core fiber composite material can be Used as the blades of wind turbines of various scales and wind speeds or other panels with high strength requirements or other application environments, it is beneficial to improve the mechanical strength of the equipment, reduce the energy consumption of the equipment, expand the applicable scope of the equipment, and improve the current situation. The performance of the equipment or facilities.
  • the manufacturing process of the orthogonal structural member in the multi-core fiber composite material provided by the present invention is:
  • a manufacturing process for orthogonal structural members in a multi-core fiber composite material including: a step of preparing a core pre-plastic body, using a film material to make a foaming material container for holding the foaming material, and filling an appropriate amount of the foaming material Into the foamed material container, the pre-core plastic body is prepared; the pre-core plastic body molding step is to place the pre-core plastic body produced in the steps of preparing the pre-core plastic body into the mold according to a predetermined spatial layout,
  • the fiber material layer is used to encapsulate the core pre-plastic body; the fiber shell and the core structure are integrally formed to increase the temperature of the mold cavity, and under the action of the expansion pressure of the foam material, the core chamber wall and the structural panel are simultaneously formed , Forming a structural component shell including at least two core chambers; at the same time, the foam material in the plastic body before the core expands and fills
  • Each core chamber forms a multi-core space structure orthogonal to the structural panel in the core chamber wall.
  • the film material may be an optical film, a composite film, a superconducting film, a polyester film, a nylon film, and a plastic film in the prior art.
  • Films, fiber films, wax paper films, foaming material films, etc., as long as they have good molding properties, a core with a suitable shape can be prepared according to the specific structure of the orthogonal structure in the multi-core fiber composite material.
  • the pre-core plastic body can be applied to the preparation step of the pre-core plastic body.
  • the film material used in the manufacturing process of the orthogonal structural member in the multi-core fiber composite material provided in the present application includes a wax film resin layer, an adhesive resin layer and a foam material polymer resin mixture layer; and foam material polymerization
  • the material resin mixture layer is formed by coating a foam material polymer resin mixture, and the foam material polymer resin mixture contains a foam material with a volume fraction of not less than 65%.
  • the foaming material polymer resin mixture is preferably a resin gel containing a hydrocarbon solvent, such as ethylene-vinyl acetate copolymer, etc., to prevent the foaming material from degrading and shrinking during the heating and curing process of the fiber material layer; with wax film
  • the film material of the resin layer, the adhesive resin layer and the foamed material polymer resin mixture layer not only has good molding characteristics, but also can be made into a core with a suitable shape according to the specific structure of the orthogonal structure in the multi-core fiber composite material
  • the preplastic body can also prevent the foaming material from degrading and shrinking during the heating and curing process of the fiber material layer.
  • the film material used in the manufacturing process of the orthogonal structural member in the multi-core fiber composite material provided by the present invention includes a viscous adhesive layer and a water-insoluble wax film layer with a polymer adhesive;
  • the thick adhesive layer includes a solvent carrier, a foaming material, a non-water-soluble expandable viscous polymer adhesive and a heat-sensitive molding resin.
  • the foaming material is evenly distributed in the solvent carrier and the volume fraction in the solvent carrier is different. Less than 50%.
  • the monomer particles of the foaming material have a microcapsule structure, and the microcapsule structure includes a plastic capsule shell, and the capsule shell is encapsulated with hair ⁇ .
  • the orthogonal structural parts in the multi-core fiber composite material provided by the present invention are:
  • An orthogonal structural member in a multi-core fiber composite material including a shell, characterized in that: the shell includes a plurality of structural panels and at least two core chambers arranged between the structural panels, and the at least two core chambers A core chamber wall is arranged between every two adjacent core chambers, the core chamber wall is orthogonal to the structural panel, and the shell and the core chamber wall are made of carbon fiber material or glass fiber material;
  • the core chamber is provided with a core composed of foam plastic; the structural panel, the core chamber, the wall of the core chamber, and the core are integrally formed by the fiber material and the foam plastic thermoforming process.
  • the structural panel, the core chamber, the wall of the core chamber and the core adopt the orthogonal structural member in the multi-core fiber composite material described in any of the foregoing technical solutions
  • the manufacturing process is integrated.
  • the orthogonal structural member in the multi-core fiber composite material of the present invention is a blade structure, and the structural panel is a blade panel.
  • the shell has a fan-shaped shape, and the core chambers extend along the radial direction of the shell and are evenly distributed along the circumferential direction of the shell; or, the cores The chambers extend along the circumferential direction of the housing and are evenly distributed along the radial direction of the housing.
  • the orthogonal structural member in the multi-core fiber composite material is a plate structure
  • the structural panel is a plate panel
  • the core chambers are distributed in a honeycomb shape or are orthogonal or oblique. Intersecting grid-like distribution or strip-like distribution.
  • the core is filled with the core chamber.
  • the shell is a closed shell.
  • the film material used for processing the orthogonal structure in the multi-core fiber composite material provided by the present invention is:
  • a film material which is characterized in that it comprises a wax film resin layer, an adhesive resin layer and a foam material polymer resin mixture layer; the foam material polymer resin mixture layer is formed by coating the foam material polymer resin mixture ,
  • the foamed material polymer resin mixture contains foamed material with a volume fraction of not less than 65%.
  • a film material which is characterized in that it includes a viscous adhesive layer and a water-insoluble wax film layer with a polymer adhesive; the viscous adhesive layer includes a solvent carrier, a foaming material, Non-water-soluble expandable viscous polymer adhesive and heat-sensitive molding resin, the foaming material is uniformly distributed in the solvent carrier and the volume fraction in the solvent carrier is not less than 50%.
  • the orthogonal structure in the multi-core fiber composite material provided by the present application adopts the orthogonal space structure in the multi-core core and adopts the thermoforming process integrating the fiber shell and the core structure, so it has higher strength and more Good strength-to-weight ratio, better stability and shock resistance, and a more perfect space structure.
  • the multi-core fiber composite material blades and processing technology provided in this application solve the technical problems existing in the prior art and promote breakthrough progress in wind power generation and related technical fields.
  • the fiber shell and the plastic core can be integrated through the blade manufacturing process provided in this application Molding, due to multiple filling cores and multiple core chamber walls, not only effectively increases the overall mechanical strength of the blade, significantly reduces the vibration and noise during blade rotation, improves the stability of the blade during operation, and is also effective
  • the tightness of the connection between the blade fiber shell and the filling core is improved, and the overall reliability of the blade is improved.
  • the technical solution of multi-core integrated molding also makes the technical solution of the large-area blade structure a reality in terms of improving power generation efficiency and reducing starting torque.
  • Figure 1 The overall perspective view of the blade structure in the first preferred embodiment
  • Figure 2 Section A-A in Figure 2;
  • FIG. 3 Schematic diagram of the blade manufacturing process in the first preferred embodiment
  • Figure 4 The overall perspective view of the blade structure in the second preferred embodiment
  • Figure 5 A schematic diagram of the structure of the honeycomb core chamber in the third preferred embodiment
  • Figure 7 Schematic diagram of the three-layer film material structure
  • Figure 8 Schematic diagram of the two-layer film material structure.
  • Viscous adhesive layer B-non-water-soluble wax film layer with polymer adhesive
  • 110-structural panel 120-core room, 130-core room wall.
  • Preferred embodiment 1 Application of wind turbine blades
  • a preferred embodiment of the present application discloses a fan-shaped multi-core fiber composite material blade, which includes a closed shell 10, the shell 10 includes two structural panels 110 (that is, the blade When assembling the wind turbine rotor, the two structural panels 110 respectively form the front panel of the blade and the rear panel of the blade; the overall shape of the housing 10 is fan-shaped, and the surface area of the fan-shaped housing 10 is the same length as the existing one It is 6-10 times that of striped wind blades, which helps to increase the wind catching area of blades on a large scale.
  • the core chambers 120 extend along the radial direction of the housing 10 and are evenly distributed along the circumferential direction of the housing 10. Between every two adjacent core chambers 120 of the five core chambers 120, The core chamber wall 130, the core chamber wall 130 is orthogonal to the structural panel 110, the shell 10 and the core chamber wall 130 are made of carbon fiber composite materials; the core chamber 120 is provided with foam plastic The formed core 20, the core 20 is filled with the core chamber 120; the structural panel 110, the core chamber 120, the core chamber wall 130, and the core 20 are integrally formed by the fiber material and foam plastic thermoforming process shown in FIG. 3 , That is, it is integrally formed through the manufacturing process of orthogonal structural members in the multi-core fiber composite material claimed in this application.
  • the manufacturing process of the orthogonal structural member in the multi-core fiber composite material includes the following steps: a step of preparing the core pre-plastic body, using a film material to make a foam material container for holding the foam material , And fill an appropriate amount of foaming material into the foaming material container to obtain the core preplastic body.
  • the film material can be various films in the prior art, such as optical film, composite film, superconducting film, polyester film, nylon film, plastic film, fiber film, wax paper film, foam material film, etc., as long as It has good molding characteristics, and can be used to prepare a pre-core plastic body with a suitable shape according to the specific structure of the orthogonal structure in the multi-core fiber composite material, which can be used in the preparation step of the pre-core plastic body.
  • the film material used in this embodiment is a special film material independently innovated by the inventor. Please refer to Fig. 7, which includes a wax film resin layer, an adhesive resin layer and a foam material polymer resin mixture layer; foam material polymer resin The mixture layer is formed by coating a foamed material polymer resin mixture.
  • the foamed material polymer resin mixture contains a foamed material and a gel-type polymer resin, and the volume fraction of the foamed material is not less than 65%.
  • the gel-type polymer resin may be a resin gel containing a hydrocarbon solvent, such as ethylene-vinyl acetate copolymer or floor glue, joint sealant, etc.; it has a wax film resin layer, an adhesive resin layer, and a foaming material polymerization
  • the film material of the resin mixture layer not only has good molding characteristics, but also can prepare a core preplastic body with a suitable shape according to the specific structure of the orthogonal structure in the multi-core fiber composite material, and can also prevent the foaming material from being The fibrous material layer degrades and shrinks during heating and curing.
  • the thermal melting, forming and curing process of the fiber material layer often takes tens of minutes or even several hours, if the film material used for the core pre-plastic body does not have the function of preventing core degradation and shrinkage, the ideal multi-core fiber cannot be produced.
  • another special film material independently innovated by the inventor can also be used in the manufacturing process of the orthogonal structural member in the multi-core fiber composite material provided by the present invention.
  • FIG. 8 which includes a viscous shape.
  • the adhesive layer and the water-insoluble wax film layer with polymer adhesive, the viscous adhesive layer is coated on the water-insoluble wax film layer with polymer adhesive;
  • the joint layer includes a solvent carrier, a foaming material, a non-water-soluble expandable viscous polymer adhesive and a heat-sensitive molding resin;
  • the solvent carrier is a resin gel or floor glue, joint glue, etc., and the foaming material is uniform Distributed in the solvent carrier and the volume fraction in the solvent carrier is not less than 50%.
  • the film material with a viscous adhesive layer and a water-insoluble wax film layer with a polymer adhesive can also prevent the foaming material from degrading and shrinking during the heating and curing process of the fiber material layer, resulting in a perfect multi-core Orthogonal space architecture in the core.
  • the pre-core plastic bodies produced in the preparation steps of the pre-core plastic bodies are placed in the mold according to a predetermined spatial layout or a required spatial layout (in this embodiment, it extends in the radial direction) , Uniformly distributed along the circumferential direction), and completely encapsulated with a layer of fiber material.
  • the specific operation can be as follows: set a fiber material layer in the mold, put several pre-core plastic bodies produced in the pre-core plastic body preparation step into the mold according to the spatial layout shown in Figure 3, and use the fiber material layer to The pre-core plastic body is completely encapsulated; alternatively, several pre-core plastic bodies can be completely encapsulated according to the spatial layout shown in Figure 3 using a fiber material layer, and then the encapsulated pre-core plastic body together with the fibers The material layers are loaded into the mold together.
  • the integral molding step of the fiber shell and the core structure increases and decreases the temperature in the mold cavity to a melting temperature and a solidification temperature compatible with the fiber material layer and the foam material.
  • the core The core chamber wall 130 and the structural panel 110 are simultaneously molded to form a closed shell 10 including a plurality of core chambers 120; at the same time, the foam material in the pre-core plastic body expands to fill each core chamber 120 to form A multi-core space structure orthogonal to the structural panel 110 in the core room wall 130.
  • any foamed plastic material available in the prior art can be used as the core material in this application, as long as it can be achieved that a certain pressure can be maintained before the carbon fiber material or glass fiber material is solidified, so that the formed material in the thermoforming process
  • the inner wall of the core room 130 is orthogonal to the structural panel 110, which can be applied to the technical solution provided in this application and achieve the expected technical effect.
  • a foam material with a monomer particle size between 10-30 microns, a monomer density between 1.03 g/cm 3 and an expansion coefficient between 50-70 is used as the core Material, achieved a perfect synchronous molding effect of fiber shell and core structure.
  • the foam material used in this preferred embodiment can maintain a certain pressure before the carbon fiber material or glass fiber material is solidified (specifically, it can maintain a pressure of not less than 7kg/cm 2 before 70 ° C), so that it can be used in thermoforming
  • the core chamber wall 130 formed in the process may be internally orthogonal to the structural panel 110. If the foam material used cannot maintain a certain pressure before the fiber material is solidified, the core chamber wall will not be orthogonal or perpendicular to the structural panel, which will affect the technical performance of the finished product, such as wind resistance and starting torque. And low wind speed wind catching efficiency and other technical parameters.
  • any other foamed plastic, foamed plastic combination, or combination of foamed plastic and other materials that can be obtained in the prior art can maintain a certain pressure before the carbon fiber material or glass fiber material is cured.
  • the core chamber wall formed in the thermoforming process is orthogonal to the blade panel, it can be used as the core material in this application. Therefore, all replacements or deformations made with other foamed plastics, combinations of foamed plastics, or combinations of foamed plastics and other materials fall within the scope of the present invention.
  • the monomer particles of the foaming material used in the present application have a microcapsule structure, and the microcapsule structure includes a capsule shell made of plastic material, and the foam material is encapsulated in the capsule shell. Since the microcapsule particles are relatively uniformly dispersed, and the release of the foamed material after melting is relatively rapid and concentrated, the foamed material with the microcapsule structure has the technical characteristics of uniform heating, rapid heat conduction, and good foaming synchronization.
  • the volume and structure of wind blades also need to be constantly changed to adapt to the changes in scale and application scenarios. This puts forward higher requirements for wind blade R&D and manufacturers. Requirements. Different from the traditional strip-shaped blade design concept, the inventor of this application found that the high-strength, lightweight fan blades not only help improve the efficiency of wind energy capture, but also enable low wind speed, low altitude and low torque. Application becomes possible. On the premise that the blade lengths are equal, the effective wind catching area of the fan-shaped multi-core fiber composite material blade provided in this application is 6-10 times that of the traditional strip-shaped blade.
  • a traditional wind blade with a half-core structure has a power of 5 kW and a blade length of 9 feet as an example, and the surface area of the blade is about 15 square feet.
  • the length of the wind wing is only 2.5 feet under the premise of the same surface area of 15 square feet.
  • the fan-shaped multi-core fiber composite blade provided in this application can operate at a speed of 1000-1600 rpm at a wind speed of 11-13 mph, and provide wind power
  • the speed of the fan is 3000 rpm.
  • the orthogonal blades in the multi-core fiber composite material provided by the present invention can be extremely Normal operation at low wind speeds to maintain continuous energy output.
  • a blade with a multi-core structure and the core wall body orthogonal to the blade panel can be prepared.
  • the cross structure is currently the fiber composite blade structure with the highest strength and optimized strength-to-weight ratio. Taking the application of 685g total weight as an example, the thickness of the thickest part of the blade is 7mm, and the thickness of the thinnest part is 3mm.
  • the multi-core core space frame and the fiber shell are integrally formed through a fiber material and foam plastic thermoforming process.
  • the foam used to form the core can maintain a certain pressure before the carbon fiber material or glass fiber material is solidified, so that multiple core chamber walls can be simultaneously formed in the thermoforming process that are orthogonal to the blade panel.
  • the various fiber composite material processing techniques in the prior art cannot produce the fiber shell structure of the orthogonal blades in the multi-core fiber composite material and the core structure of the panel and the core chamber wall orthogonal to the multi-core fiber composite material provided by the present invention.
  • the fabricated strip-shaped blades also cannot reach the mechanical strength and the strength-to-weight ratio of the orthogonal blades in the multi-core fiber composite material provided by the present invention.
  • the large-area ultra-thin blade panel can be allowed to have sufficient strength to resist the pressure generated by the wind. .
  • This application uses high-density, low-weight foamed plastic as the core material of the core, and adopts fan-shaped large-area blades and an orthogonal internal space structure in the multi-core core, which effectively reduces the vibration and noise of the blades during high-speed operation , Improve the stability of the blade, and also have a strong wind energy capture capability and a small starting torque, which can be widely used in residential power generation and commercial office building power generation and other application environments.
  • Preferred Embodiment 2 Another application of wind turbine blades
  • Fig. 4 shows another embodiment of the orthogonal structure in the multi-core fiber composite material and the manufacturing process thereof.
  • the core chamber 120 in the casing 10 and the core 20 filled in the core chamber 120 are in a ring structure as a whole, and the core chamber 120 extends along the circumferential direction of the casing 10 and extends along the The radial direction of the housing 10 is evenly distributed.
  • the shape of the foam material container used to hold the foam material is also a ring structure; in the pre-core plastic body molding step, the core The pre-core plastic body also needs to be placed in a spatial layout uniformly distributed along the radial direction and extending along the circumferential direction.
  • Other aspects are the same as the preferred embodiment 1, and those skilled in the art can refer to the implementation.
  • a high-strength, light-weight inner orthogonal plate-shaped structural member is disclosed.
  • the plate-shaped inner orthogonal structural member can be a flat plate, an arc-shaped plate or a curved plate, and can be widely used. Used in the production of various panels such as the floor, wall, ceiling or shell structure of ships, vehicles, and equipment in rooms or factories.
  • the multiple core chambers in the housing have a honeycomb structure.
  • other multi-core space structures can be developed, such as orthogonal or oblique grid structures.
  • the multiple core chambers are evenly distributed in the shell, and the wall of the core chamber is orthogonal to the panel of the shell.
  • the foam material container used to contain the foam material is also a honeycomb unit structure; in the pre-core plastic body molding step, the pre-core plastic body The plastic body needs to be placed according to the spatial structure of the three-dimensional honeycomb and encapsulated with a layer of fiber material.
  • the other aspects are basically the same as the preferred embodiment 1 and the preferred embodiment 2, and those skilled in the art can refer to the implementation.
  • Preferred embodiment four application of conventional wind-knife type or strip-shaped wind turbine blades
  • the orthogonal blades in the multi-core fiber composite material disclosed in the preferred embodiment 1 and preferred embodiment 2 of the present application as the rotor blades of a wind power generator will undoubtedly achieve very beneficial technical effects.
  • the simplest and most feasible technical solution is to give the existing air knife blade a fiber composite material multi-core inner orthogonal structure, so that the existing air knife blade not only has the various advantages mentioned in this application, but also perfect Adapt to various supporting facilities already installed. Therefore, the manufacturing process of the orthogonal structure in the multi-core fiber composite material disclosed in this application and the direct application of the corresponding orthogonal structure in the multi-core fiber composite material to the traditional air knife blade also belong to the protection scope of this application.
  • FIG. 6 shows an irregularly curved structural member.
  • the irregularly curved structural member has an irregularly curved structural panel, and the irregularly curved structural member also has the protection required by this application. All the technical features of the orthogonal structure in the multi-core fiber composite material. Therefore, the understanding of the internal orthogonality described in this application is not only limited to the vertical structure of the planar structure panel, but should also include the orthogonal structure of the irregularly curved structure panel in a three-dimensional space.

Abstract

本发明属于纤维复合材料加工制造技术领域,具体涉及多核芯纤维复合材料内正交结构件、制作工艺和薄膜材料。一种多核芯纤维复合材料内正交结构件,包括壳体,壳体包括结构面板和设置在结构面板之间的至少两个核芯室,每两个相邻的核芯室之间设置有核芯室墙体,核芯室墙体垂直于结构面板;壳体和核芯室墙体的材质均为碳纤维材料或玻璃纤维材料;核芯室内设置有由泡沫塑料构成的核芯;结构面板、核芯室、核芯室墙体和核芯通过纤维材料和泡沫塑料热成型工艺一体成型。制作工艺包括核芯前塑体制备步骤、核芯前塑体装模步骤以及纤维壳体和核芯架构一体成型步骤。本发明提供的多核芯纤维复合材料内正交结构件,具有强度高、重量轻、稳定性好以及适用性强等技术效果。

Description

多核芯纤维复合材料内正交结构件、 制作工艺和薄膜材料 技术领域
本发明属于纤维复合材料加工制造技术领域, 具体涉及多核芯纤维复合材料内正交结构 件、 制作工艺和薄膜材料。
背景技术
随着世界经济水平和技术水平的不断发展, 人们对现有各种装备或场所的板材的强度和 重量以及使用性能等提出了更多的要求。 比如用作厂房或住宅地板、 壁板或顶棚的板材, 或 者用作工程车辆或工业设备壳体的板材, 一般是用金属或非金属材料 (比如塑胶) 制作而成 的, 在安装时候存在现场工人劳动负荷强、 易造成安全隐患以及施工难度大等技术问题; 在 使用过程中也存在易腐蚀、 易变形、 强度达不到要求、 抗震性能差等问题。 为了解决这些问 题, 厂商们纷纷研制出了基于纤维复合材料的替代品。 这些纤维复合材料的板材制品, 在具 有优异的机械强度之外, 还具有现有金属或塑料板材所欠缺的许多性能, 比如拉伸强度高、 耐腐蚀性好、 抗震性能和抗冲击性能优异等优点。 然而, 限于结构和工艺等方面的局限性, 现有纤维复合材料板材在使用过程中仍然存在一些问题。 比如在机翼和各种涡轮机叶片的应 用中, 现有纤维复合材料叶片一般为实体或空心结构或分体式单核心结构, 仍然存在重量不 够轻、 强度不够大、 抗震性能差、 启动扭矩过大以及稳定性不足等问题。 下面以风力发电机 叶片的技术发展现状为例, 对各种现有技术的优点和缺陷进行详细介绍。
在气候恶化和环境保护压力的推动下,人们对于清洁能源的需要将会迎来跳跃式的发展。 据国际风能委员会预计, 全球风能发电量将在 2022年增长至 1000GW, 风力发电设备的国际 市场是巨大的, 当前风叶的生产成本占到整个风力发电设备总成本的 15%左右, 这意味着风 叶这一风力发电设备的关键部件将会有 150亿美元的市场份额。
早期的风力发电设备由于采用单片式结构的风叶, 存在强度不够、容易折断失效等问题。 现代的设计理念是以风翼作为风叶的基础结构, 存在不能有效俘获风能、 要求风速较高 (至少 22英里 /小时) 以及启动扭矩过高等缺陷。 当前主流的设计方案是使用具有半核芯结 构的机翼型风叶, 每一个风叶包括两个独立成型的半风叶, 两个半风叶通过设置于其间的泡 沫材料粘接在一起。 设置在风叶中间的泡沫塑料结构可以起到降低震动、 噪音以及增加风叶 稳定性的效果。 但是由于采用了分体式的风叶结构, 这种风叶存在容易沿接缝处开裂以及机 械强度不足等弊端。据调查, 在大型风力发电机组上目前约有 100000只具有这种半核芯结构 的风叶需要维修或更换, 后期维护费用巨大。 另一方面, 由于家用能量的消耗巨大, 一些公司正在致力于开发低风速和低海拔的风能 解决方案。 举例而言, 假如一个美国家庭屋主每年的能量消耗费用包括燃油和燃气在内约为 15000美元, 而市场上目前 5 kW的风力发电机组的装机费用约为 7500美元, 如果这个家庭 选择使用风能的话, 那么他们每年将会从清洁能源的利用上获得 7500美元的收益。在居民住 宅和商业建筑中, 低速风能市场是巨大的, 但是目前还没有可行的解决方案。
在美国, 约有 7500万户独立住宅、 3000万户公寓楼和 600万的写字楼可以配备低速风 能发电设备, 潜在的市场收入超过 5600亿 /年。 美国大概有 7500万个独立居民住宅, 平均能 量消费为 2400美元 /年, 以装备风能发电设备可以产出约为年能量平均消费额 50%利润或者 说每年能够产出 1200美元收益计, 那么三年后全国每年的该项收益将会是 1800亿美元。 另 外的 300万户公寓楼住户, 以每栋公寓楼 20户计算, 平均能量消费是 20000美元 /年。 按照 10000美元 /年的收益计算, 市场需求是 3000亿美元 /年。 低风速低海拔的风能发电同样可以 在商业写字楼方面得到应用, 以平均 30600美元的能量消费计, 根据 2012年全美国一共 560 万栋商业写字楼的规模计算, 潜在的市场容量是 860亿美元 /年。
在清洁能源的倡议下, 各国政府会在不久的将来大力推进或者强制实施可再生能源的利 用, 因而, 研发一种高效率、 低能耗、 低故障率以及适用于低风速、 低海拔发电的风力发电 风叶将会具有巨大的社会意义和经济意义。 同时, 研发一种具有更高的机械强度、 更好的抗 震性能、 更完美的机械结构以及更加优异的强重比(强度 /重量)的结构件例如板材以及相应 的加工工艺对于社会经济和技术发展的进步性而言, 都有着非常重要的意义。
发明内容
针对现有技术中存在的技术问题, 本发明基于理论分析和现场实践, 提供了多核芯纤维 复合材料内正交结构件、 制作工艺以及薄膜材料, 该多核芯纤维复合材料内正交结构件可以 用作各种规模各种风速风力发电机组的风叶或者其他对强度要求较高的板材或其他应用环 境, 有利于提高设备的机械强度, 降低设备的能源消耗, 拓展设备的适用范围, 改善现有设 备或设施的使用性能。
本发明提供的多核芯纤维复合材料内正交结构件制作工艺为:
一种多核芯纤维复合材料内正交结构件制作工艺, 包括: 核芯前塑体制备步骤, 用薄膜 材料制作用来盛放发泡材料的发泡材料容器, 并将适量的发泡材料充填进发泡材料容器内, 制得核芯前塑体; 核芯前塑体装模步骤, 将若干个核芯前塑体制备步骤中制作的核芯前塑体 按照预定的空间布局置入模具, 并用纤维材料层封装所述核芯前塑体; 纤维壳体和核芯架构 一体成型步骤, 升高模腔温度, 在发泡材料膨胀压力的作用下, 核芯室墙体和结构面板同步 成型, 形成包括有至少两个核芯室的结构件壳体; 同时, 核芯前塑体内的发泡材料膨胀充填 每个核芯室, 形成核芯室墙体内正交于结构面板的多核芯空间架构。
优选地, 在本申请提供的多核芯纤维复合材料内正交结构件制作工艺中, 薄膜材料可以 是现有技术中包括诸如光学薄膜、 复合薄膜、 超导薄膜、 聚酯薄膜、 尼龙薄膜、 塑料薄膜、 纤维薄膜、 蜡纸薄膜、 发泡材料薄膜等在内的各种薄膜, 只要具有良好的塑型特性, 可以根 据多核芯纤维复合材料内正交结构件的具体结构制得具有适宜形状的核芯前塑体, 即可应用 于核芯前塑体制备步骤中。
进一步优选地, 本申请提供的多核芯纤维复合材料内正交结构件制作工艺中采用的薄膜 材料包括包括蜡膜树脂层、 粘接树脂层和发泡材料聚合物树脂混合物层; 发泡材料聚合物树 脂混合物层系由发泡材料聚合物树脂混合物涂覆而成, 发泡材料聚合物树脂混合物中包含体 积分数不低于 65%的发泡材料。 其中发泡材料聚合物树脂混合物优选为含有烃溶剂的树脂凝 胶, 如乙烯-醋酸乙烯共聚物等等, 用于防止发泡材料在纤维材料层加热和固化过程中降解和 收缩; 具备蜡膜树脂层、 粘接树脂层和发泡材料聚合物树脂混合物层的薄膜材料不但具有良 好的塑型特性, 可以根据多核芯纤维复合材料内正交结构件的具体结构制得具有适宜形状的 核芯前塑体, 还能够防止发泡材料在纤维材料层加热和固化过程中发生降解和收缩。
进一步优选地, 本发明提供的多核芯纤维复合材料内正交结构件制作工艺中采用的薄膜 材料包括粘稠状粘接物层和带有聚合物粘接剂的非水溶性蜡膜层; 粘稠状粘接物层包括溶剂 载体、 发泡材料、 非水溶性可膨胀粘稠状聚合物粘接剂和热敏性成型树脂, 发泡材料均匀分 布在溶剂载体内且在溶剂载体内的体积分数不低于 50%。
优选地, 在前述各种多核芯纤维复合材料内正交结构件制作工艺中, 发泡材料的单体颗 粒具有微胶囊结构, 微胶囊结构包括塑胶材质的胶囊壳体, 胶囊壳体内封装有发泡材料。
本发明提供的多核芯纤维复合材料内正交结构件为:
一种多核芯纤维复合材料内正交结构件, 包括壳体, 其特征在于: 壳体包括若干个结构 面板和设置在结构面板之间的至少两个核芯室, 至少两个核芯室中每两个相邻的核芯室之间 设置有核芯室墙体, 核芯室墙体内正交于结构面板, 壳体和核芯室墙体的材质均为碳纤维材 料或玻璃纤维材料; 核芯室内设置有由泡沫塑料构成的核芯; 结构面板、 核芯室、 核芯室墙 体和核芯通过纤维材料和泡沫塑料热成型工艺一体成型。
作为本发明多核芯纤维复合材料内正交结构件的优选, 结构面板、 核芯室、 核芯室墙体 和核芯通过前述任一技术方案所记载的多核芯纤维复合材料内正交结构件制作工艺一体成 型。
作为本发明多核芯纤维复合材料内正交结构件的优选, 该多核芯纤维复合材料内正交结 构件为叶片结构, 结构面板为叶片面板。 作为本发明多核芯纤维复合材料内正交结构件的优选, 壳体为扇面状造型, 核芯室沿着 壳体的径向延伸, 并沿着壳体的圆周方向均匀分布; 或者, 核芯室沿着壳体的圆周方向延伸, 并沿着壳体的径向均匀分布。
作为本发明多核芯纤维复合材料内正交结构件的优选, 该多核芯纤维复合材料内正交结 构件为板材结构, 结构面板为板材面板, 核芯室呈蜂窝状分布或呈正交或斜交的网格状分布 或呈条带状分布。
作为本发明多核芯纤维复合材料内正交结构件的优选, 核芯满充核芯室。
作为本发明多核芯纤维复合材料内正交结构件的优选, 壳体为封闭型壳体。
本发明提供的用于加工多核芯纤维复合材料内正交结构件的薄膜材料为:
一种薄膜材料, 其特征在于: 包括蜡膜树脂层、 粘接树脂层和发泡材料聚合物树脂混合 物层; 发泡材料聚合物树脂混合物层系由发泡材料聚合物树脂混合物涂覆而成, 发泡材料聚 合物树脂混合物中包含体积分数不低于 65%的发泡材料。或者, 一种薄膜材料, 其特征在于: 包括粘稠状粘接物层和带有聚合物粘接剂的非水溶性蜡膜层;粘稠状粘接物层包括溶剂载体、 发泡材料、 非水溶性可膨胀粘稠状聚合物粘接剂和热敏性成型树脂, 发泡材料均匀分布在溶 剂载体内且在溶剂载体内的体积分数不低于 50%。
本申请的技术效果主要体现在以下几个方面:
本申请提供的多核芯纤维复合材料内正交结构件, 由于采用了多核芯内正交空间结构, 以及采用了纤维壳体和核芯架构一体化的热成型工艺, 具有更高的强度、 更好的强重比, 更 优异的稳定性和抗震性, 以及更加完美的空间架构。 以风力发电机叶片的应用为例, 本申请 提供的多核芯纤维复合材料叶片以及加工工艺, 解决了现有技术中存在的技术问题, 促进了 风力发电以及相关技术领域的突破性进步。
第一, 突破现有技术中采用分体式条带状风叶的技术局限, 采用强度高、 重量轻的大面 积纤维叶片作为风叶, 在保证同等发电功率的前提下, 启动扭矩大幅降低, 有效捕风面积成 倍增长, 可以同时适用于在强风速和低风速的自然环境中使用, 有效提高了发电效率。
第二, 突破现有技术中分体式半核芯组装技术方案的技术局限, 采用一体成型的多核芯 内正交的技术方案, 纤维壳体和塑料核芯可以通过本申请提供的叶片制作工艺一体成型, 由 于具有多个充填核芯和多个核芯室墙体, 不但有效增加了叶片整体的机械强度, 显著降低了 叶片转动时候的震动和噪音, 提高了叶片运转时候的稳定性, 还有效提高了叶片纤维壳体和 充填核芯之间连接的紧密程度, 提高了叶片整体的可靠性。 另一方面, 多核芯一体成型的技 术方案, 还使得大面积叶片结构的技术方案在提高发电效率和降低启动扭矩方面的作用成为 现实。 第三, 突破现有技术中塑料核芯和叶片面板非正交结构的技术局限, 可以在纤维壳体和 多核芯同步成型的同时, 加工出核芯室墙体正交或垂直于叶片面板的多核芯空间架构, 这种 空间架构是理论上最有利于提高叶片抗压能力、 减少震动和降低运转噪音的最强和最完美结 构。 由于现有技术中并不存在本申请提供的多核芯纤维复合材料内正交结构件以及相应的制 作工艺, 本申请公开的技术方案填补了市场空白, 解决了现有技术中存在的技术问题, 具有 明显的技术进步性和社会经济环保意义。
为使本发明的技术方案及技术效果更加清楚、 明确, 以下结合说明书附图和具体实施方 式对本发明公开的多核芯纤维复合材料内正交结构件以及相应的制作工艺进行详细说明。 附图说明
图 1 : 优选实施例一中叶片结构整体透视图;
图 2: 图 2中 A-A截面图;
图 3: 优选实施例一中叶片制作工艺示意图;
图 4: 优选实施例二中叶片结构整体透视图;
图 5: 优选实施例三中蜂窝状核芯室结构示意图;
图 6: 本申请中内正交结构的含义说明图;
图 7: 三层薄膜材料结构示意图;
图 8: 两层薄膜材料结构示意图。
标识说明:
粘稠状粘接物层, B-带有聚合物粘接剂的非水溶性蜡膜层;
1 -蜡膜树脂层, 2 -粘接树脂层, 3 -发泡材料聚合物树脂混合物层;
10 -壳体, 20-核芯;
110 -结构面板, 120 -核芯室, 130-核芯室墙体。
具体实施方式
优选实施方式一: 风力发电机叶片的应用
请参阅图 1和图 2, 本申请优选实施例一中公开了一种扇面状多核芯纤维复合材料叶片, 其包括封闭型的壳体 10, 壳体 10包括两个结构面板 110 (也即叶片面板), 组装风力发电机 转子的时候, 两个结构面板 110分别形成风叶的前面板和风叶的后面板; 壳体 10整体造型为 扇面状, 扇面状壳体 10的表面积为现有同样长度条带状风叶的 6-10倍, 有利于大规模增加 叶片的捕风面积。
壳体 10内设置有五个锥体型的核芯室 120, 核芯室 120沿着壳体 10的径向方向延伸, 且沿着壳体 10的圆周方向均匀分布。五个核芯室 120中每两个相邻的核芯室 120之间设置有 核芯室墙体 130, 核芯室墙体 130内正交于结构面板 110, 壳体 10和核芯室墙体 130的材质 均为碳纤维材料复合材料; 核芯室 120内设置有由泡沫塑料形成的核芯 20, 核芯 20充满核 芯室 120; 结构面板 110、 核芯室 120、 核芯室墙体 130和核芯 20通过图 3所示的纤维材料 和泡沫塑料热成型工艺一体成型, 也即通过本申请要求保护的多核芯纤维复合材料内正交结 构件制作工艺一体成型。
请参阅图 3 , 本申请提供的多核芯纤维复合材料内正交结构件的制作工艺包括如下步骤: 核芯前塑体制备步骤, 用薄膜材料制作用来盛放发泡材料的发泡材料容器, 并将适量的发泡 材料充填进发泡材料容器内, 制得核芯前塑体。 其中薄膜材料可以是现有技术中包括诸如光 学薄膜、 复合薄膜、 超导薄膜、 聚酯薄膜、 尼龙薄膜、 塑料薄膜、 纤维薄膜、 蜡纸薄膜、 发 泡材料薄膜等在内的各种薄膜, 只要具有良好的塑型特性, 可以根据多核芯纤维复合材料内 正交结构件的具体结构制得具有适宜形状的核芯前塑体,即可应用于核芯前塑体制备步骤中。 本实施例中使用的薄膜材料为发明人自主创新的专用薄膜材料, 请参阅图 7, 其包括蜡膜树 脂层、 粘接树脂层和发泡材料聚合物树脂混合物层; 发泡材料聚合物树脂混合物层系由发泡 材料聚合物树脂混合物涂覆而成, 发泡材料聚合物树脂混合物中包含发泡材料和凝胶型聚合 物树脂且发泡材料的体积分数不低于 65%。 具体而言凝胶型聚合物树脂可以是含有烃溶剂的 树脂凝胶如乙烯-醋酸乙烯共聚物或地板胶、 填缝胶等等; 具备蜡膜树脂层、 粘接树脂层和发 泡材料聚合物树脂混合物层的薄膜材料不但具有良好的塑型特性, 可以根据多核芯纤维复合 材料内正交结构件的具体结构制得具有适宜形状的核芯前塑体, 并且还能够防止发泡材料在 纤维材料层加热和固化过程中发生降解和收缩。 由于纤维材料层的热熔、 成型和固化过程往 往需要几十分钟甚至若干个小时, 如果核芯前塑体使用的薄膜材料不具备防止核芯降解和收 缩功能, 则无法生成理想的多核芯纤维复合材料内正交空间架构。根据实际检测和理论分析, 薄膜材料中的发泡材料聚合物树脂混合物层的最优技术参数为: 导热系数 3W/m.K, 热容 lJ/g.K,介电强度 200 VAC/mil,工作温度介于 -68至 395华氏度之间,耗散因子 0.002 /100 kHz。 在一些改进的实施例中, 本发明提供的多核芯纤维复合材料内正交结构件制作工艺中还可以 采用发明人自主创新的另外一种专用薄膜材料, 请参阅图 8 , 其包括粘稠状粘接物层和带有 聚合物粘接剂的非水溶性蜡膜层, 粘稠状粘接物层涂覆在带有聚合物粘接剂的非水溶性蜡膜 层上; 粘稠状粘接物层包括溶剂载体、 发泡材料、 非水溶性可膨胀粘稠状聚合物粘接剂和热 敏性成型树脂; 其中溶剂载体为树脂凝胶或地板胶、 填缝胶等等, 发泡材料均匀分布在溶剂 载体内且在溶剂载体内的体积分数不低于 50%。 具有粘稠状粘接物层和带有聚合物粘接剂的 非水溶性蜡膜层的薄膜材料也能够防止发泡材料在纤维材料层加热和固化过程中发生降解和 收缩, 得到完美的多核芯内正交空间架构。 核芯前塑体装模步骤, 将若干个核芯前塑体制备步骤中制作的核芯前塑体按照预定的空 间布局或需要的空间布局置入模具(本实施例中为沿径向延伸、 沿着圆周方向均布), 并用纤 维材料层完全封装。 具体操作可以是: 在模具内设置纤维材料层, 将核芯前塑体制备步骤中 制作的若干个核芯前塑体按照图 3 中所示的空间布局置入模具内, 并用纤维材料层将核芯前 塑体完全封装; 或者, 也可以先使用纤维材料层将若干个核芯前塑体按照图 3 中所示的空间 布局完全封装, 然后再将封装后的核芯前塑体连同纤维材料层一起装入模具。
纤维壳体和核芯架构一体成型步骤, 将模腔内温度先后升高和降低至与纤维材料层和发 泡材料相适应的熔化温度和固化温度, 在发泡材料膨胀压力的作用下, 核芯室墙体 130和结 构面板 110同步成型, 形成包括有若干个核芯室 120的封闭型的壳体 10; 同时, 核芯前塑体 内的发泡材料膨胀充填每个核芯室 120, 形成核芯室墙体 130内正交于结构面板 110的多核 芯空间架构。
可以使用现有技术中可以得到的任何发泡塑料材料作为本申请中的核芯材料, 只要能够 实现可以在碳纤维材料或玻璃纤维材料固化前维持一定的压力, 以使得在热成型工艺中形成 的核芯室墙体 130 内正交于结构面板 110, 即可应用于本申请提供的技术方案, 并取得预期 的技术效果。 举例而言, 本优选实施例中采用单体粒径在 10-30 微米之间、 单体密度为 1.03g/cm3之间、 膨胀系数介于 50-70之间的发泡材料作为核芯材料, 取得了完美的纤维壳体 和核芯架构同步成型效果。 本优选实施例中使用的发泡材料可以在碳纤维材料或玻璃纤维材 料固化前维持一定的压力(具体为在 70°C前可以维持不低于 7kg/cm2的压强), 从而使得在热 成型工艺中形成的核芯室墙体 130可以内正交于结构面板 110。 如果使用的发泡材料不能在 纤维材料固化前维持一定的压力, 会使得核芯室墙体不能内正交或垂直于结构面板, 进而会 影响到成品的技术性能, 比如抗风强度、 启动扭矩和低风速捕风效率等技术参数。 不失一般 性, 任何其他现有技术中能够得到的发泡塑料、 发泡塑料组合或者发泡塑料和其他材料的组 合, 在满足可以在碳纤维材料或玻璃纤维材料固化前维持一定的压力, 以使得在热成型工艺 中形成的核芯室墙体内正交于叶片面板的前提下, 均可以作为本申请中的核芯材料。 因而, 所有采用其他发泡塑料、 发泡塑料组合或者发泡塑料和其他材料的组合进行的替换或变形, 均属于本发明要求保护的范围。 作为优选, 本申请使用的发泡材料的单体颗粒具有微胶囊结 构, 微胶囊结构包括塑胶材质的胶囊壳体, 胶囊壳体内封装有发泡材料。 由于微胶囊颗粒分 散比较均匀, 并且熔解后发泡材料的释放比较快速和集中, 因而具有微胶囊结构的发泡材料 具有受热均匀、 导热快速、 发泡同步性好等技术特点。
随着风力发电规模的不断增长和风力发电应用环境的不断发掘, 风叶的体积和结构也需 要不断的变化, 以适应规模和应用场景的变化, 这给风叶研发和制造厂商提出了更高的要求。 有别于传统的条带状叶片设计理念, 本申请的发明人发现, 高强度、 轻量级的扇形叶片不但 更加有助于提高风能的捕获效率, 还使得低风速、 低海拔和低扭矩的应用成为可能。 在叶片 长度相等的前提下, 本申请提供的扇面状多核芯纤维复合材料叶片的有效捕风面积是传统条 带状叶片捕风面积的 6-10倍。 现有技术中具有半核芯结构的传统风叶, 以功率为 5kW和风翼 长度为 9英尺为例, 叶片的表面积约为 15平方英尺。采用本申请提供的扇型多核芯纤维复合 材料叶片, 在同样是 15平方英尺的表面积的前提下, 风翼的长度仅为 2.5英尺。
据实际检测, 在 5kW发电机组的应用中, 本申请提供的扇面状多核芯纤维复合材料叶片 在 11-13英里 /小时的风速下, 能够以 1000-1600转 /分钟的速度运转, 而提供风力的风机的转 速为 3000转 /分钟。 并且, 在 3英里 /小时的风速条件下, 还具有 0.1NM的超低启动扭矩, 而 风机的总重仅为 15kg, 可见, 本发明提供的多核芯纤维复合材料内正交叶片, 可以在极低的 风速下正常运转, 维持持续的能量产出。
通过本发明提供的多核芯纤维复合材料内正交结构件制作工艺, 可以制备出具有多核芯 结构且核芯的墙体内正交于叶片面板的叶片, 这种多核芯墙体和面板内正交结构是目前强度 最高、 强重比最优化的纤维复合材料叶片结构。 以 685g总重的应用为例, 叶片的最厚处尺寸 为 7mm, 最薄处的厚度为 3mm。
本发明提供的多核芯纤维复合材料结构件及其制作工艺中, 多核芯空间架构和纤维壳体 通过纤维材料和泡沫塑料热成型工艺一体成型。 用于形成核芯的泡沫塑料可以在碳纤维材料 或玻璃纤维材料固化前维持一定的压力, 从而可以在热成型工艺中同步形成内正交于叶片面 板的多个核芯室墙体。
现有技术中的各种纤维复合材料加工工艺均无法生产出本发明提供的多核芯纤维复合材 料内正交叶片的纤维壳体结构以及面板和核芯室墙体正交的核芯结构, 所制作的条带状叶片 也达不到本发明提供的多核芯纤维复合材料内正交叶片的机械强度和强重比。 本发明提供的 多核芯纤维复合材料内正交叶片中, 由于核芯室墙体内正交于叶片的叶片面板, 可以允许大 面积超薄型的叶片面板具有足够的强度以抵抗风力产生的压力。
现有技术中的纤维热成型风叶制品中, 通过采用分立式半核芯叶片以及泡沫塑料充填结 构, 降低风叶的震动和噪音, 提高稳定性。 数十年来, 在纤维热成型工艺和风叶结构方面基 本没有什么创新, 造成近年来风力发电整体效率不高, 投入产出比较大, 以及不能适用于低 风速和低海拔发电的等新的应用需求。 本申请通过使用高密度、 低重量的发泡塑料作为核芯 的芯材, 以及采用扇形的大面积叶片和多核芯内正交的内部空间架构, 有效降低了叶片在高 速运转时候的震动和噪音, 提高了叶片的稳定性, 同时还具有强大的风能捕获能力以及很小 的启动扭矩, 可以广泛适用于住宅发电和商业写字楼发电等应用环境。 优选实施方式二: 风力发电机叶片的另一个应用
图 4所示为本申请多核芯纤维复合材料内正交结构件及其制作工艺的另一种实施方式。 在本优选实施例中, 壳体 10内的核芯室 120以及充填在核芯室 120内的核芯 20整体为环状 结构, 核芯室 120沿着壳体 10的圆周方向延伸, 且沿着壳体 10的径向均匀分布。 与叶片的 结构变化相适应, 在核芯前塑体制备步骤中, 用来盛放发泡材料的发泡材料容器的造型也为 环状结构; 在核芯前塑体装模步骤中, 核芯前塑体也需要按照沿着径向均布、 沿着圆周方向 延伸的空间布局放置。 其他方面与优选实施方式一相同, 所述领域技术人员可以参照实施。
优选实施例三: 厂房、 居室或其他板材的应用
在本发明另一个优选实施例中, 公开了一种强度高、 重量轻的内正交板状结构件, 该板 状内正交结构件可以是平板或弧形板或曲面板, 可以广泛用于制作各种板材比如居室或厂房 的地板、 壁板、 天花板或轮船、 车辆、 设备的外壳结构。 请参阅图 5 , 壳体内的多个核芯室 为蜂窝状结构, 在其他的实施例中, 当然还可以开发出其他的多核芯空间架构, 比如正交或 斜交的网格状结构等, 多个核芯室在壳体内均匀分布, 且核芯室墙体内正交于壳体的面板。 与结构变化相适应, 在核芯前塑体制备步骤中, 用来盛放发泡材料的发泡材料容器的造型也 为蜂巢单元结构; 在核芯前塑体装模步骤中, 核芯前塑体需要按照立体蜂窝的空间架构放置 并用纤维材料层封装。 其他方面与优选实施方式一和优选实施例二基本相同, 所述领域技术 人员可以参照实施。
优选实施例四: 常规风刀式或条带状风力发电机叶片的应用
将本申请优选实施例一和优选实施例二中公开的多核芯纤维复合材料内正交叶片用作风 力发电机的转子叶片, 无疑会取得十分有益的技术效果。 其中最为简单可行的的技术方案是 赋予现有的风刀叶片以纤维复合材料多核芯内正交结构, 使现有的风刀叶片既具有本申请前 已述及的各种优点, 又能完美适应已装机的各种配套设施。 因此, 本申请公开的多核芯纤维 复合材料内正交结构件制作工艺以及相应的多核芯纤维复合材料内正交结构件在传统风刀叶 片方面的直接应用, 同样也属于本申请的保护范围。
需要特别说明的是, 以上介绍的各种实施例以及变化的实施例, 大多数是基于平面型结 构面板的应用, 然而, 本申请提供的解决方案并不仅仅局限于平面型结构面板的应用, 请参 阅图 6, 图 6示出了一种不规则曲面型结构件, 在该不规则曲面型结构件中, 具有不规则曲 面型结构面板, 该不规则曲面型结构件同样具备本申请要求保护的多核芯纤维复合材料内正 交结构件的所有技术特征。 因而, 对本申请中所记载的内正交的理解, 也不仅仅限定于平面 型结构面板的垂直结构, 还应该包括不规则曲面型结构面板在三维空间内的正交结构。
以上结合说明书附图对本发明的优选实施例进行了详细阐述, 应该说明的是, 本发明的 保护范围包括但不限于上述实施例; 说明书附图中公开的具体结构也只是本发明的较佳实施 方式, 所述领域的技术人员还可以在此基础上开发出其他实施例, 任何不脱离本发明创新理 念的简单变形或等同替换, 均涵盖于本发明, 属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种多核芯纤维复合材料内正交结构件制作工艺, 包括:
核芯前塑体制备步骤, 用薄膜材料制作用来盛放发泡材料的发泡材料容器, 并将适量的发泡 材料充填进发泡材料容器内, 制得核芯前塑体;
核芯前塑体装模步骤, 将若干个核芯前塑体制备步骤中制作的核芯前塑体按照预定的空间布 局置入模具, 并用纤维材料层封装所述核芯前塑体;
纤维壳体和核芯架构一体成型步骤, 升高模腔温度, 在发泡材料膨胀压力的作用下, 核芯室 墙体 (130)和结构面板 (110) 同步成型, 形成包括有至少两个核芯室 (120) 的结构件壳体 (10); 同时, 所述核芯前塑体内的发泡材料膨胀充填每个所述核芯室(120), 形成核芯室墙 体 (130) 内正交于结构面板 (110) 的多核芯空间架构。
2、 根据权利要求 1多核芯纤维复合材料内正交结构件制作工艺, 其特征在于:
所述发泡材料的单体颗粒具有微胶囊结构, 所述微胶囊结构包括塑胶材质的胶囊壳体, 所述 胶囊壳体内封装有发泡材料。
3、 根据权利要求 1所述的多核芯纤维复合材料内正交结构件制作工艺, 其特征在于: 所述薄膜材料包括蜡膜树脂层 (1)、 粘接树脂层 (2) 和发泡材料聚合物树脂混合物层 (3); 所述发泡材料聚合物树脂混合物层(3)系由发泡材料聚合物树脂混合物涂覆而成, 所述发泡 材料聚合物树脂混合物中包含体积分数不低于 65%的发泡材料。
4、 根据权利要求 1所述的多核芯纤维复合材料内正交结构件制作工艺, 其特征在于: 所述薄膜材料包括粘稠状粘接物层 (A*) 和带有聚合物粘接剂的非水溶性蜡膜层 (B); 所述粘稠状粘接物层 (A*) 包括溶剂载体、 发泡材料、 非水溶性可膨胀粘稠状聚合物粘接剂 和热敏性成型树脂, 所述发泡材料均匀分布在所述溶剂载体内且在所述溶剂载体内的体积分 数不低于 50%。
5、 一种多核芯纤维复合材料内正交结构件, 包括壳体 (10), 其特征在于:
所述壳体 (10) 包括若干个结构面板 (110) 和设置在所述结构面板 (110) 之间的至少两个 核芯室 (120), 所述至少两个核芯室 (120) 中每两个相邻的核芯室 (120) 之间设置有核芯 室墙体 (130), 所述核芯室墙体 (130) 内正交于所述结构面板 (110), 所述壳体 (10)和所 述核芯室墙体 (130) 的材质均为碳纤维材料或玻璃纤维材料;
所述核芯室 (120) 内设置有由泡沫塑料构成的核芯 (20);
所述结构面板 (110)、 所述核芯室 (120)、 所述核芯室墙体 (130)和所述核芯 (20)通过纤 维材料和泡沫塑料热成型工艺一体成型。
6、 一种多核芯纤维复合材料内正交结构件, 包括壳体 (10), 其特征在于:
所述壳体 (10) 包括若干个结构面板 (110) 和设置在所述结构面板 (110) 之间的至少两个 核芯室 (120), 所述至少两个核芯室 (120) 中每两个相邻的核芯室 (120) 之间设置有核芯 室墙体 (130), 所述核芯室墙体 (130) 内正交于所述结构面板 (110), 所述壳体 (10)和所 述核芯室墙体 (130) 的材质均为碳纤维材料或玻璃纤维材料;
所述核芯室 (120) 内设置有由泡沫塑料构成的核芯 (20);
所述结构面板 (110)、 所述核芯室 (120)、 所述核芯室墙体 (130)和所述核芯 (20)通过权 利要求 1-4中任一项权利要求所述的多核芯纤维复合材料内正交结构件制作工艺一体成型。
I、 根据权利要求 5或 6所述的多核芯纤维复合材料内正交结构件, 其特征在于:
该多核芯纤维复合材料内正交结构件为叶片结构, 所述结构面板 (110) 为叶片面板; 或者, 该多核芯纤维复合材料内正交结构件为板材结构, 所述结构面板(110)为板材面板, 所述核 芯室 (120) 呈蜂窝状分布或呈正交或斜交的网格状分布或呈条带状分布。
8、 根据权利要求 5或 6所述的多核芯纤维复合材料内正交结构件, 其特征在于:
所述壳体 (10) 为扇面状造型, 所述核芯室 (120)沿着所述壳体 (10) 的径向延伸, 并沿着 所述壳体 (10) 的圆周方向均匀分布; 或者, 所述核芯室 (120)沿着所述壳体 (10) 的圆周 方向延伸, 并沿着所述壳体 (10) 的径向均匀分布。
9、 根据权利要求 5或 6所述的多核芯复合材料内正交结构件, 其特征在于: 所述核芯 (20) 满充所述核芯室 (120)。
10、 根据权利要求 5或 6所述的多核芯复合材料内正交结构件, 其特征在于: 所述壳体(10) 为圭寸闭型壳体。
I I、 一种薄膜材料, 其特征在于: 包括蜡膜树脂层 (1)、 粘接树脂层 (2)和发泡材料聚合物 树脂混合物层(3); 所述发泡材料聚合物树脂混合物层(3)系由发泡材料聚合物树脂混合物 涂覆而成, 所述发泡材料聚合物树脂混合物中包含体积分数不低于 65%的发泡材料。
12、 一种薄膜材料, 其特征在于: 包括粘稠状粘接物层 (A*) 和带有聚合物粘接剂的非水溶 性蜡膜层 (B); 所述粘稠状粘接物层 (A*) 包括溶剂载体、 发泡材料、 非水溶性可膨胀粘稠 状聚合物粘接剂和热敏性成型树脂, 所述发泡材料均匀分布在所述溶剂载体内且在所述溶剂 载体内的体积分数不低于 50%。
PCT/IB2020/053723 2019-04-18 2020-04-20 多核芯纤维复合材料内正交结构件、制作工艺和薄膜材料 WO2020212959A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2021012486A MX2021012486A (es) 2019-04-18 2020-04-20 Compuesto de fibra multicamara y proceso de fabricacion.
AU2020259409A AU2020259409A1 (en) 2019-04-18 2020-04-20 Orthogonal structural component in multi-core fiber composite material, manufacturing technique, and thin film material
BR112021020199A BR112021020199A2 (pt) 2019-04-18 2020-04-20 Membro estrutural ortogonal em um material compósito de fibra de múltiplas câmaras
EP20790981.3A EP3957456A4 (en) 2019-04-18 2020-04-20 ORTHOGONAL STRUCTURAL COMPONENT IN A MULTI-CORE FIBER COMPOSITE, PRODUCTION PROCESS AND THIN FILM MATERIAL
JP2021560993A JP2023503744A (ja) 2019-04-18 2020-04-20 多芯繊維複合材料における直交構造成分、製造技術、及び薄膜材料
CA3172872A CA3172872A1 (en) 2019-04-18 2020-04-20 Orthogonal structural component in multi-core fiber composite material, manufacturing technique, and thin film material
KR1020217037217A KR20220044433A (ko) 2019-04-18 2020-04-20 멀티-코어 섬유 복합재료내 직교 구조의 컴포넌트, 그의 제조방법 및 박막 필름재료
CN202080043542.0A CN114269538A (zh) 2019-04-18 2020-04-20 多核芯纤维复合材料内正交结构件、制作工艺和薄膜材料
SG11202111424VA SG11202111424VA (en) 2019-04-18 2020-04-20 Orthogonal structural component in multi-core fiber composite material, manufacturing technique, and thin film material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910311818.8 2019-04-18
CN201910311818.8A CN110065196A (zh) 2019-04-18 2019-04-18 一种多核芯纤维复合材料内正交结构件及其制作工艺

Publications (2)

Publication Number Publication Date
WO2020212959A1 true WO2020212959A1 (zh) 2020-10-22
WO2020212959A4 WO2020212959A4 (zh) 2020-12-03

Family

ID=67367982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/053723 WO2020212959A1 (zh) 2019-04-18 2020-04-20 多核芯纤维复合材料内正交结构件、制作工艺和薄膜材料

Country Status (12)

Country Link
EP (1) EP3957456A4 (zh)
JP (1) JP2023503744A (zh)
KR (1) KR20220044433A (zh)
CN (4) CN110065196A (zh)
AU (1) AU2020259409A1 (zh)
BR (1) BR112021020199A2 (zh)
CA (1) CA3172872A1 (zh)
CL (1) CL2021002719A1 (zh)
IL (1) IL287239A (zh)
MX (1) MX2021012486A (zh)
SG (1) SG11202111424VA (zh)
WO (1) WO2020212959A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065196A (zh) * 2019-04-18 2019-07-30 美国投资公司 一种多核芯纤维复合材料内正交结构件及其制作工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707537B1 (en) * 1993-06-15 1998-10-14 Novartis AG Packaging material comprising a water-soluble film
RU2350757C1 (ru) * 2007-09-21 2009-03-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Композиционная лопатка турбомашины
WO2015177473A1 (fr) * 2014-05-22 2015-11-26 Herakles Procédé de fabrication d'une aube de turbomachine en matériau composite, aube ainsi obtenue et turbomachine l'incorporant.
WO2017202827A1 (en) * 2016-05-23 2017-11-30 Taghleef Industries S.P.A. Con Socio Unico Multilayer film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330494A (en) * 1978-09-13 1982-05-18 Sekisui Kagaku Kogyo Kabushiki Kaisha Reinforced foamed resin structural material and process for manufacturing the same
JPH01209129A (ja) * 1988-02-17 1989-08-22 Nippon Steel Chem Co Ltd 軽量パネルおよびその製造方法
US5773121A (en) * 1994-07-29 1998-06-30 Isorca Inc. Syntactic foam core incorporating honeycomb structure for composites
CA2346952C (en) * 1998-10-23 2008-03-18 Vantico Ag Method for filling and reinforcing honeycomb sandwich panels
DE19860611C1 (de) * 1998-12-29 2000-03-23 Fraunhofer Ges Forschung Verfahren zur Herstellung von Formkörpern aus Polymer-Schaumpartikeln
JP2003025360A (ja) * 2001-07-17 2003-01-29 Howa Seni Kogyo Kk 自動車用サンシェード基材の製造方法
CN101067343B (zh) * 2007-04-10 2010-05-19 南京工业大学 格构增强型复合材料夹层结构
CN103072287A (zh) * 2013-01-06 2013-05-01 宁波锦浪新能源科技有限公司 纤维增强树脂基复合材料的风力发电机的风叶制造工艺
FR3001409B1 (fr) * 2013-01-29 2015-07-03 Herakles Procede de fabrication d'une structure alveolaire de forme courbee en materiau composite
CN105924667B (zh) * 2016-05-11 2019-02-26 合肥工业大学 一种环保微胶囊发泡剂及其制备方法
CN106995547A (zh) * 2017-04-14 2017-08-01 泉州市三生橡塑科技有限公司 一种eva微胶囊发泡母粒及制备工艺
CN108995253A (zh) * 2018-07-17 2018-12-14 大同京正复合材料科技有限公司 一种泡沫芯薄层复合材料杆件的制作
CN109514951A (zh) * 2018-09-26 2019-03-26 济南北方泰和新材料有限公司 纤维增强轻质夹芯复合材料及制备的地铁驾驶舱舱体
CN110065196A (zh) * 2019-04-18 2019-07-30 美国投资公司 一种多核芯纤维复合材料内正交结构件及其制作工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707537B1 (en) * 1993-06-15 1998-10-14 Novartis AG Packaging material comprising a water-soluble film
RU2350757C1 (ru) * 2007-09-21 2009-03-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Композиционная лопатка турбомашины
WO2015177473A1 (fr) * 2014-05-22 2015-11-26 Herakles Procédé de fabrication d'une aube de turbomachine en matériau composite, aube ainsi obtenue et turbomachine l'incorporant.
WO2017202827A1 (en) * 2016-05-23 2017-11-30 Taghleef Industries S.P.A. Con Socio Unico Multilayer film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957456A4 *

Also Published As

Publication number Publication date
CN114269538A (zh) 2022-04-01
CL2021002719A1 (es) 2022-09-09
CN110065196A (zh) 2019-07-30
CN111300718B (zh) 2023-10-13
MX2021012486A (es) 2022-01-24
KR20220044433A (ko) 2022-04-08
SG11202111424VA (en) 2021-11-29
WO2020212959A4 (zh) 2020-12-03
CA3172872A1 (en) 2020-10-22
EP3957456A1 (en) 2022-02-23
EP3957456A4 (en) 2023-11-22
CN111300718A (zh) 2020-06-19
IL287239A (en) 2021-12-01
CN212472175U (zh) 2021-02-05
AU2020259409A9 (en) 2022-03-03
JP2023503744A (ja) 2023-02-01
AU2020259409A1 (en) 2022-01-20
BR112021020199A2 (pt) 2022-04-19

Similar Documents

Publication Publication Date Title
CN101649818B (zh) 隔音降噪型风力发电机机舱罩
CN203361380U (zh) 一种超薄高效的永久性现浇砼复合保温模板
CN103273662A (zh) 低热膨胀碳纤维增强树脂基复合材料模具的制备方法
CN110130530B (zh) 一种建筑连锁砌块及其使用的保温砂浆
WO2020212959A1 (zh) 多核芯纤维复合材料内正交结构件、制作工艺和薄膜材料
CN103560332A (zh) 一种大口径高精度复合材料天线面的制造方法
CN107778025A (zh) 一种高抗震性水泥聚苯模壳混凝土墙体的制备方法
CN101713563A (zh) 一种储热与热缓释复合地板模块
CN206189725U (zh) 一种木塑蜂窝复合墙板
CN113103496A (zh) 多核芯纤维复合材料内正交结构件制作工艺、凝胶体发泡材料及其专用塑型装置
CN104459849B (zh) 太阳能聚光反射镜构件及其制备方法
CN208438808U (zh) 复合材料及其芯材
CN216076060U (zh) 一种建筑节能外墙保温装饰板结构
CN105479753B (zh) 曲面构型泡沫的制备方法及制备系统
CN114382246A (zh) 一种填充式保温装饰板结构及其制造方法
CN212641815U (zh) 一种仿古建筑用节能保温与装饰模块化墙体结构
CN206938084U (zh) 增强型蜂窝板
CN110759666A (zh) 一种轻质砂岩及其制造工艺
CN216865696U (zh) 一种轻质、隔音节能型建筑材料板
CN205617838U (zh) 一种环保节能的空心承重墙板装配式房屋
CN110096789A (zh) 一种导流罩刚度和稳定性确定方法
CN217870915U (zh) 一种抗热降温性好的建材
CN215977813U (zh) 一种适用于极寒地区的防潮防爆复合型壁板
CN117087259B (zh) 一种具有保温降噪功能的邮轮百叶窗
CN211774771U (zh) 装配式芯材防火保温钢丝网架墙板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3172872

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021560993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020790981

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020790981

Country of ref document: EP

Effective date: 20211118

ENP Entry into the national phase

Ref document number: 2020259409

Country of ref document: AU

Date of ref document: 20200420

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021020199

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021020199

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS:1. DOCUMENTO COMPLETO DA PRIORIDADE CN 201910311818.8, DE 18/04/2019 REIVINDICADA NO PCT IB2020/053723, DEVIDO A NAO APRESENTACAO DO CONTEUDO DO DOCUMENTO DE PRIORIDADE JUNTO AO REQUERIMENTO DE ENTRADA NA FASE NACIONAL E O MESMO TAMBEM NAO ESTAR DISPONIVEL NA BIBLIOTECA DIGITAL DA OMPI;2. TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE CN 201910311818.8 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O ART. 15 DA PORTARIA 39/2021. O DOCUMENTO APRESENTADO NAO ESTA TRADUZIDO;3. NOVAS FOLHAS DE (RELATORIO DESCRITIVO/REIVINDICACOES/DESENHO/RESUMO) ADAPTADAS AO ART. 40 DA INSTRUCAO NORMATIVA 31/

ENP Entry into the national phase

Ref document number: 112021020199

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211007

NENP Non-entry into the national phase

Ref country code: JP