WO2020211699A1 - 微型led及其转移方法、微型led基板 - Google Patents

微型led及其转移方法、微型led基板 Download PDF

Info

Publication number
WO2020211699A1
WO2020211699A1 PCT/CN2020/084173 CN2020084173W WO2020211699A1 WO 2020211699 A1 WO2020211699 A1 WO 2020211699A1 CN 2020084173 W CN2020084173 W CN 2020084173W WO 2020211699 A1 WO2020211699 A1 WO 2020211699A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro led
micro
substrate
superconducting layer
superconducting
Prior art date
Application number
PCT/CN2020/084173
Other languages
English (en)
French (fr)
Inventor
李登仟
雷嗣军
高亮
孙艳生
余平甲
张国建
张徐
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020211699A1 publication Critical patent/WO2020211699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present disclosure relates to the field of display technology, in particular to a micro LED, a transfer method thereof, and a micro LED substrate.
  • a micro light-emitting diode is a light-emitting diode with a size of micrometers. Due to the small size of the micro LED, it can be used as a pixel on the display panel.
  • a display panel prepared by using micro LEDs can be called a micro LED display panel.
  • OLED Organic Light-Emitting Diode
  • micro LED display technology has become the current research focus in the field of display technology. Among them, how to realize the transfer of micro LEDs is a major technical bottleneck in the preparation of micro LED display panels.
  • the present disclosure provides a micro LED, a transfer method thereof, and a micro LED substrate.
  • the technical solution is as follows:
  • a micro LED including:
  • the superconducting layer is doped with non-superconducting materials.
  • the superconducting layer is located on the side opposite to the light emitting side of the light emitting body.
  • the preparation material of the superconducting layer includes at least one of a copper-based superconducting material and an iron-based superconducting material.
  • the preparation material of the superconducting layer includes copper oxide.
  • the content of the non-superconducting material in the superconducting layer is positively correlated with the weight of the micro LED.
  • the preparation material of the superconducting layer includes copper oxide, and the content of the non-superconducting material in the superconducting layer is positively correlated with the weight of the micro LED.
  • a micro LED substrate including: a substrate substrate and a micro LED located on one side of the substrate substrate, the micro LED includes the micro LED according to any one of the aspects, the micro LED The light-emitting side of the light-emitting body is located on the side of the light-emitting body away from the base substrate.
  • the superconducting layer in the micro LED is located on the opposite side of the light emitting side of the light emitting body, and the superconducting layer is in contact with the base substrate.
  • the micro LED substrate includes a plurality of the micro LEDs, and the arrangement of the plurality of micro LEDs on the base substrate is the same as the arrangement of a plurality of pixel regions in the array substrate.
  • a plurality of the micro LEDs are arranged in a one-to-one correspondence with the plurality of pixel regions.
  • a method for transferring micro LEDs includes:
  • micro LED substrate comprising the micro LED substrate according to any one of the other aspects
  • the target temperature is the superconducting critical temperature of the superconducting layer
  • the movement of the magnetic field is controlled to transfer the micro LED to the pixel area of the array substrate.
  • the applying a magnetic field to the position of the micro LED substrate in an environment lower than the target temperature includes:
  • a magnet is arranged on one side of the micro LED substrate so that the orthographic projection of the magnet on the micro LED substrate overlaps with the area where the micro LED is located;
  • the magnet is controlled to move away from the array substrate.
  • the array substrate is connected with a temperature controller, and after the micro LED is transferred to the pixel area of the array substrate, the method further includes:
  • the magnet is controlled to move away from the array substrate.
  • the micro LED substrate includes a plurality of the micro LEDs, and the arrangement of the plurality of micro LEDs on the base substrate is the same as the arrangement of a plurality of pixel regions in the array substrate;
  • the arranging a magnet on one side of the micro LED substrate so that the orthographic projection of the magnet on the micro LED substrate overlaps the area where the micro LED is located including:
  • a magnet is arranged on one side of the micro LED substrate, so that the orthographic projection of the magnet on the micro LED substrate covers the area where a plurality of the micro LEDs are located.
  • the magnet is an electromagnetic coil.
  • the preparation material of the superconducting layer includes copper oxide, and the target temperature is -78°C.
  • FIG. 1 is a schematic structural diagram of a micro LED provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of another micro LED structure provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of another micro LED structure provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the comparison of the superconducting material provided by the embodiments of the present disclosure in a normal state and a superconducting state in a magnetic field;
  • FIG. 5 is a schematic diagram of a superconducting material doped with a non-superconducting material in a magnetic field according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the force of the micro LED provided in an embodiment of the present disclosure in an external magnetic field
  • FIG. 8 is a schematic structural diagram of a micro LED substrate provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic top view of a micro LED substrate provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a process flow for transferring a micro LED provided by an embodiment of the present disclosure.
  • Fig. 1 is a schematic structural diagram of a micro LED provided by an embodiment of the present disclosure. As shown in Figure 1, the micro LED 10 includes:
  • the opposite sides of the light-emitting body usually one side is used for emitting light, and the other side is provided with electrodes for electrical connection with the thin film transistors in the array substrate.
  • the side of the light-emitting body for emitting light is called the light-emitting side of the light-emitting body, and the light-emitting surface corresponding to the light-emitting side may be a flat surface or a curved surface.
  • the superconductor 102 may be located on the opposite side of the light emitting side L of the light emitting body 101. Since the superconducting layer is located on the opposite side of the light emitting side of the light emitting body, the superconducting layer will not affect the normal light output of the light emitting body.
  • FIG. 2 is a schematic structural diagram of another micro LED provided by an embodiment of the present disclosure.
  • the superconducting layer 102 may be located on the light emitting side L of the light emitting body 101.
  • FIG. 3 is a schematic diagram of another micro LED structure provided by an embodiment of the present disclosure.
  • the superconducting layer 102 includes a first superconducting layer 1021 and a second superconducting layer 1022.
  • the first superconducting layer 1021 is located on the opposite side of the light emitting side L of the light emitting body 101
  • the second superconducting layer 1022 is located at The light-emitting side L of the light-emitting body 101. That is, both the light-emitting side and the side opposite to the light-emitting side of the light-emitting body may be provided with a superconducting layer.
  • the superconducting layer 102 is doped with non-superconducting materials. That is, the superconducting layer is prepared from superconducting materials doped with non-superconducting materials.
  • Superconducting materials have two states: normal state and superconducting state. When the temperature of the superconducting material is lower than or equal to the superconducting critical temperature, the superconducting material is in a superconducting state. When the temperature of the superconducting material is higher than the superconducting critical temperature, the superconducting material is in a normal state.
  • FIG. 4 is a schematic diagram of the comparison between the superconducting material provided by the embodiment of the present disclosure when it is in a normal state and a superconducting state in a magnetic field.
  • the magnetic field lines in the external magnetic field B can pass through the superconducting material.
  • the magnetic field lines in the external magnetic field B cannot pass through the superconducting material, but surround the superconducting material.
  • FIG. 5 is a schematic diagram of a superconducting material doped with a non-superconducting material in a magnetic field according to an embodiment of the present disclosure.
  • a part of the magnetic field lines in the external magnetic field B pass through the non-superconducting material, and the other part of the magnetic field lines surround the superconducting material.
  • the superconducting material doped with non-superconducting material is subjected to pinning force, that is, it is "quantum locked".
  • FIG. 6 is a schematic diagram of the force of the micro LED provided by an embodiment of the present disclosure in an external magnetic field.
  • the superconducting layer 102 when the superconducting layer 102 is in a superconducting state, the superconducting layer 102 is subjected to an upward pinning force F d in a magnetic field, and the micro LED is also subjected to its own gravity F g .
  • F d >F g the micro LED can float in the magnetic field.
  • the suspended micro LED moves synchronously with the external magnetic field under the action of the pinning force, so the transfer of the micro LED can be realized by the movement of the external magnetic field.
  • the pinning force received by the superconducting layer is negatively related to the purity of the superconducting layer, that is, when the content of non-superconducting materials in the superconducting layer is lower, the pinning force received by the superconducting layer is smaller.
  • the content of the non-superconducting material in the superconducting layer can be determined according to the weight of the micro LED, so that when the superconducting layer is in the superconducting state, the pinning force on the superconducting layer is greater than or equal to that of the micro LED. Weight, and then realize the transfer of micro LED by controlling the movement of the external magnetic field.
  • the content of non-superconducting materials in the superconducting layer is positively correlated with the weight of the micro LED.
  • the preparation material of the superconducting layer includes at least one of a copper-based superconducting material and an iron-based superconducting material.
  • the preparation material of the superconducting layer can be copper oxide doped with impurities.
  • copper oxide has a higher superconducting critical temperature, which is about -78°C, which is convenient to realize the superconducting state of the superconducting layer. Conversion.
  • the micro LED provided by the embodiments of the present disclosure includes a light-emitting body and a superconducting layer on the target side of the light-emitting body.
  • the superconducting layer can be brought into a superconducting state.
  • the superconducting layer will receive an upward pinning force, so that the micro LED is suspended in the magnetic field.
  • the suspended micro LED moves synchronously with the external magnetic field under the action of the pinning force, thereby realizing the transfer of the micro LED.
  • the embodiment of the present disclosure provides a micro LED substrate, which includes a base substrate and a micro LED located on one side of the base substrate.
  • the micro LED includes the micro LED 10 shown in any one of FIGS. 1 to 3.
  • the light-emitting side of the light-emitting body in the micro LED is located on the side of the light-emitting body away from the base substrate.
  • the micro LED substrate refers to a device for carrying micro LEDs.
  • FIG. 7 is a schematic structural diagram of a micro LED substrate provided by an embodiment of the present disclosure.
  • the micro LED substrate includes a base substrate 20 and a micro LED 10 located on one side of the base substrate 20.
  • the superconducting layer 102 in the micro LED 10 is located on the opposite side of the light emitting side L of the light emitting body 101.
  • the superconducting layer 102 in the micro LED 10 is in contact with the base substrate 20. It should be noted that the superconducting layer in the micro LED is in contact with the base substrate, which means that the superconducting layer of the micro LED is carried or overlapped on the base substrate instead of being fixedly connected to the base substrate.
  • FIG. 8 is a schematic top view of a micro LED substrate provided by an embodiment of the present disclosure.
  • the micro LED substrate includes a plurality of micro LEDs 10, and the arrangement of the plurality of micro LEDs 10 on the base substrate 20 is the same as the arrangement of the plurality of pixel regions in the array substrate.
  • the arrangement of multiple micro LEDs on the base substrate is the same as the arrangement of multiple pixel regions in the array substrate, which means that the distance between two adjacent micro LEDs on the base substrate is adjacent to that of the array substrate.
  • the distance between the two pixel areas is equal, and the size of the micro LED is equal to the size of the pixel area.
  • the cross section of the micro LED is square
  • the pixel area is also square
  • the side length of the cross section of the micro LED is equal to the side length of the pixel area.
  • the size of the micro LED is about 10 microns.
  • multiple micro LEDs in the micro LED substrate and multiple pixel regions in the array substrate are arranged in a one-to-one correspondence. It should be noted that when the multiple micro LEDs in the micro LED substrate are arranged in a one-to-one correspondence with the multiple pixel regions in the array substrate, the one-time transfer of the micro LEDs can be realized and the transfer efficiency of the micro LEDs can be improved.
  • the micro LED includes a light-emitting body and a superconducting layer located on the target side of the light-emitting body.
  • the superconducting layer can be brought into a superconducting state.
  • the superconducting layer will receive an upward pinning force, so that the micro LED is suspended in the magnetic field.
  • the suspended micro LED moves synchronously with the external magnetic field under the action of the pinning force, thereby realizing the transfer of the micro LED in the micro LED substrate.
  • Fig. 9 is a flow chart of a method for transferring micro LEDs according to an embodiment of the present disclosure. As shown in Figure 9, the method includes the following working processes:
  • step 901 a micro LED substrate is provided.
  • the micro LED substrate includes a base substrate and a micro LED located on one side of the base substrate.
  • the micro LED includes the micro LED 10 shown in any one of FIGS. 1 to 3.
  • the light-emitting side of the light-emitting body in the micro LED is located on the side of the light-emitting body away from the base substrate.
  • the micro LED substrate may be as shown in FIG. 7.
  • step 902 in an environment lower than the target temperature, a magnetic field is applied to the position of the micro LED substrate to subject the superconducting layer to an upward pinning force, so that the micro LED is suspended under the pinning force.
  • the target temperature Is the superconducting critical temperature of the superconducting layer.
  • placing the micro LED substrate in an environment lower than the target temperature can make the temperature of the superconducting layer in the micro LED lower than the superconducting critical temperature, and then make the superconducting layer in a superconducting state. After applying a magnetic field to the position of the micro LED substrate, the superconducting layer will receive an upward pinning force, which can make the micro LED levitate in the magnetic field and lock the micro LED at a fixed position in the magnetic field.
  • the preparation material of the superconducting layer includes at least one of a copper-based superconducting material and an iron-based superconducting material.
  • the preparation material of the superconducting layer may include copper oxide.
  • the above-mentioned target temperature is -78°C.
  • step 903 the magnetic field is controlled to move to transfer the micro LED to the pixel area of the array substrate.
  • the micro LED on the micro LED substrate is transferred to the pixel area of the array substrate, the micro LED can be further fixed on the array substrate by welding, and then packaged to obtain the micro LED display panel.
  • the method for transferring the micro LED provided by the embodiments of the present disclosure, by placing the micro LED substrate in an environment lower than the target temperature, the superconducting layer in the micro LED is in a superconducting state, and the micro LED substrate A magnetic field is applied to the position to make the micro LED levitate in the magnetic field under the action of the pinning force received by the superconducting layer.
  • the micro LED is moved synchronously with the magnetic field, so that the micro LED is transferred to the pixel area of the array substrate, and the effective transfer of the micro LED is realized.
  • the transfer process of the micro LED is simple and has high realizability.
  • the implementation process of step 902 includes: setting a magnet on one side of the micro LED substrate in an environment lower than the target temperature, so that the orthographic projection of the magnet on the micro LED substrate and the area where the micro LED is located overlap.
  • the implementation process of step 903 includes: controlling the magnet to move to the position where the array substrate is located.
  • the micro LED substrate includes a plurality of micro LEDs
  • the arrangement of the plurality of micro LEDs on the base substrate is consistent with the arrangement of the plurality of pixel regions in the array substrate.
  • a magnet can be arranged on one side of the micro LED substrate so that the orthographic projection of the magnet on the micro LED substrate covers the area where the multiple micro LEDs are located.
  • the simultaneous transfer of multiple micro LEDs can be realized by controlling the movement of the magnet. Since the position of each micro LED in the magnetic field is locked by the pinning force, the arrangement of the multiple micro LEDs floating in the magnetic field is still consistent with the arrangement of the multiple pixel regions in the array substrate.
  • controlling the movement of the magnetic field to transfer the micro LEDs to the array substrate only one of the micro LEDs needs to be aligned and placed in a pixel area on the array substrate, and the remaining micro LEDs will also be synchronized and placed in other pixel areas of the array substrate. Furthermore, it is possible to realize the massive transfer of micro LEDs to the array substrate.
  • the size of the magnet used can be determined according to the number of micro LEDs that need to be transferred at one time. The larger the volume of the magnet, the greater the number of micro LEDs transferred at one time.
  • the magnet may be an electromagnetic coil. The magnetic field intensity can be flexibly adjusted through the electromagnetic coil.
  • the above-mentioned transfer process of the micro LED is repeatedly performed, during which the magnet can be reused.
  • the micro LED is transferred to the array substrate, it is necessary to make the pinning force of the superconducting layer less than the gravity of the micro LED, and then control the magnet to move away from the array substrate.
  • the magnetic field strength of the magnet is adjusted so that the pinning force of the superconducting layer is less than the gravity of the micro LED.
  • the magnet is controlled to move away from the array substrate.
  • the magnetic field intensity of the magnet can be reduced to zero, so that the pinning force on the superconducting layer disappears, and then the magnet transfer is controlled. The position of the micro LED will not be affected, and the positioning on the array substrate can be effectively realized.
  • the array substrate may be connected with a temperature controller, and after the micro LEDs are transferred to the pixel area of the array substrate, the temperature of the array substrate is adjusted by the temperature controller to make the temperature of the array substrate high At the target temperature. The magnet is controlled to move away from the array substrate.
  • the temperature of the array substrate when the temperature of the array substrate is higher than the target temperature, through heat transfer, the temperature of the micro LED on the array substrate will also be higher than the target temperature. At this time, the superconducting layer in the micro LED is converted from a superconducting state. If it is a normal state and does not have diamagnetism, it will not receive pinning force in the magnetic field, and then the magnet transfer is controlled, the position of the micro LED will not be affected, and the positioning on the array substrate can be effectively realized.
  • the base substrate in the micro LED substrate can also be connected to a separate temperature controller, and the temperature of the base substrate is controlled by the temperature controller to always be lower than the target temperature to ensure that the superconducting layer in the micro LED is at The superconducting state can realize the effective transfer of the micro LED.
  • FIG. 10 is a schematic diagram of a process flow for transferring micro LEDs according to an embodiment of the present disclosure. As shown in Figure 10, the transfer process includes the following working processes:
  • the micro LED substrate and the array substrate 30 are placed in an environment below the target temperature.
  • the micro LED substrate includes a base substrate 20 and a micro LED 10 on one side of the base substrate 20.
  • a magnet M is provided on one side of the micro LED substrate, so that the superconducting layer 102 in the micro LED 10 is subjected to an upward pinning force, so that the micro LED 10 is suspended.
  • the magnet M may be arranged on the side of the micro LED 10 away from the base substrate 20; or, the magnet may also be arranged on the side of the base substrate away from the micro LED.
  • the N pole of the magnet is always far away from the micro LED, and the S pole of the magnet is always close to the micro LED, that is, the N pole of the magnet is far away from the micro LED relative to the S pole of the magnet.
  • the magnet M is controlled to move to the position where the array substrate 30 is located.
  • the method for transferring the micro LED provided by the embodiments of the present disclosure, by placing the micro LED substrate in an environment lower than the target temperature, the superconducting layer in the micro LED is in a superconducting state, and the micro LED substrate A magnetic field is applied to the position to make the micro LED levitate in the magnetic field under the action of the pinning force received by the superconducting layer.
  • the micro LED is moved synchronously with the magnetic field, so that the micro LED is transferred to the pixel area of the array substrate, and the effective transfer of the micro LED is realized.
  • the transfer process of the micro LED is simple and has high realizability. When a large-volume magnet is used to transfer the micro LED, the massive transfer of the micro LED can be realized and the transfer efficiency of the micro LED can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Led Device Packages (AREA)

Abstract

一种微型LED(10)及其转移方法、微型LED基板,属于显示技术领域。微型LED(10)包括:发光本体(101),以及位于所述发光本体(101)的相对两侧中的至少一侧的超导层(102),所述相对两侧包括所述发光本体(101)的出光侧(L);其中,所述超导层(102)中掺杂有非超导材料。通过外界磁场的移动实现微型LED(10)的转移。

Description

微型LED及其转移方法、微型LED基板
本公开要求于2019年04月17日提交的申请号为201910308734.9、发明名称为“微型LED及其转移方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种微型LED及其转移方法、微型LED基板。
背景技术
微型发光二极管(micro light-emitting diode,Micro LED)是一种尺寸为微米级的发光二极管。由于微型LED的尺寸较小,因此其可以作为显示面板上的像素。采用微型LED制备得到的显示面板可称为微型LED显示面板。与有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板相比,微型LED显示面板的使用寿命和可视角度均优于OLED显示面板,因此微型LED显示技术成为目前显示技术领域的研究重点。其中,如何实现微型LED的转移是制备微型LED显示面板的一大技术瓶颈。
发明内容
本公开提供了一种微型LED及其转移方法、微型LED基板。所述技术方案如下:
一方面,提供了一种微型LED,包括:
发光本体,以及位于所述发光本体的相对两侧中的至少一侧的超导层,所述相对两侧包括所述发光本体的出光侧;
其中,所述超导层中掺杂有非超导材料。
可选地,所述超导层位于所述发光本体的出光侧的对侧。
可选地所述超导层的制备材料包括铜基超导材料和铁基超导材料中的至少一种。
可选地,所述超导层的制备材料包括氧化铜。
可选地,所述超导层中非超导材料的含量与所述微型LED的重量正相关。
可选地,所述超导层的制备材料包括氧化铜,所述超导层中非超导材料的含量与所述微型LED的重量正相关。
另一方面,提供了一种微型LED基板,包括:衬底基板以及位于所述衬底基板一侧的微型LED,所述微型LED包括如一方面任一所述的微型LED,所述微型LED中的发光本体的出光侧位于所述发光本体远离所述衬底基板的一侧。
可选地,所述微型LED中的超导层位于所述发光本体的出光侧的对侧,所述超导层与所述衬底基板接触。
可选地,所述微型LED基板包括多个所述微型LED,多个所述微型LED在所述衬底基板上的排布方式与阵列基板中多个像素区域的排布方式相同。
可选地,多个所述微型LED与所述多个像素区域一一对应设置。
又一方面,提供了一种微型LED的转移方法,所述方法包括:
提供微型LED基板,所述微型LED基板包括如另一方面任一所述的微型LED基板;
在低于目标温度的环境中,向所述微型LED基板所在位置施加磁场,使微型LED中的超导层受到向上的钉扎力,以使所述微型LED在所述钉扎力的作用下悬浮,所述目标温度为所述超导层的超导临界温度;
控制所述磁场移动,以将所述微型LED转移至阵列基板的像素区域内。
可选地,所述在低于目标温度的环境中,向所述微型LED基板所在位置施加磁场,包括:
在所述微型LED基板的一侧设置磁体,使所述磁体在所述微型LED基板上的正投影与所述微型LED所在区域存在重合区域;
所述控制所述磁场移动,包括:
控制所述磁体向所述阵列基板所在位置移动。
可选地,在将所述微型LED转移至阵列基板的像素区域内之后,所述方法还包括:
调整所述磁体的磁场强度,使所述超导层受到的钉扎力小于所述微型LED的重力;
控制所述磁体向远离所述阵列基板的方向移动。
可选地,所述阵列基板连接有温度控制器,在将所述微型LED转移至阵列基板的像素区域内之后,所述方法还包括:
通过所述温度控制器调节所述阵列基板的温度,使所述阵列基板的温度高于所述目标温度;
控制所述磁体向远离所述阵列基板的方向移动。
可选地,所述微型LED基板包括多个所述微型LED,多个所述微型LED在所述衬底基板上的排布方式与所述阵列基板中多个像素区域的排布方式相同;
所述在所述微型LED基板的一侧设置磁体,使所述磁体在所述微型LED基板上的正投影与所述微型LED所在区域存在重合区域,包括:
在所述微型LED基板的一侧设置磁体,使所述磁体在所述微型LED基板上的正投影覆盖多个所述微型LED所在区域。
可选地,所述磁体为电磁线圈。
可选地,所述超导层的制备材料包括氧化铜,所述目标温度为-78℃。
附图说明
图1是本公开实施例提供的一种微型LED的结构示意图;
图2是本公开实施例提供的另一种微型LED的结构示意图;
图3是本公开实施例提供的又一种微型LED的结构示意图;
图4是本公开实施例提供的超导材料在磁场中处于正常态和超导态时的对比示意图;
图5是本公开实施例提供的掺杂有非超导材料的超导材料在磁场中的示意图;
图6是本公开实施例提供的微型LED在外界磁场中的受力示意图;
图7是本公开实施例提供的一种微型LED的转移方法流程图;
图8是本公开实施例提供的一种微型LED基板的结构示意图;
图9是本公开实施例提供的一种微型LED基板的俯视示意图;
图10是本公开实施例提供的一种转移微型LED的工艺流程示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种微型LED的结构示意图。如图1所示,该 微型LED10包括:
发光本体101,以及位于发光本体101的目标侧的超导层102,目标侧包括发光本体101的出光侧L以及发光本体101的出光侧L的对侧中的至少一个。也即是,超导层102位于发光本体101的相对两侧中的至少一侧,该相对两侧包括发光本体101的出光侧。当超导层为透明膜层时,超导层可以位于发光本体的出光侧。其中,发光本体的相对两侧中,通常一侧用于出光,另一侧设置有电极,用于与阵列基板中的薄膜晶体管电连接。本公开实施例中,发光本体用于出光的一侧称为发光本体的出光侧,该出光侧对应的出光面可以是平面或弧面。
参见图1,超导体102可以位于发光本体101的出光侧L的对侧。由于超导层位于发光本体的出光侧的对侧,因此该超导层不会影响发光本体的正常出光。
可选地,图2是本公开实施例提供的另一种微型LED的结构示意图。如图2所示,超导层102可以位于发光本体101的出光侧L。
可选地,图3是本公开实施例提供的又一种微型LED的结构示意图。如图3所示,超导层102包括第一超导层1021和第二超导层1022,第一超导层1021位于发光本体101的出光侧L的对侧,第二超导层1022位于发光本体101的出光侧L。也即是,发光本体的出光侧以及出光侧的对侧均可以设置有超导层。
其中,超导层102中掺杂有非超导材料。也即是,超导层由掺杂有非超导材料的超导材料制备得到。超导材料具有正常态和超导态这两种状态。当超导材料的温度低于或等于超导临界温度时,超导材料处于超导态。当超导材料的温度高于超导临界温度时,超导材料处于正常态。
需要说明的是,处于超导态的超导材料具有完全抗磁性(也可称为迈斯纳效应)。示例地,图4是本公开实施例提供的超导材料在磁场中处于正常态和超导态时的对比示意图。如图4所示,当超导材料处于正常态时,外界磁场B中的磁力线可穿过该超导材料。当超导材料处于超导态时,外界磁场B中的磁力线无法穿过该超导材料,而是从超导材料的周围环绕过去。
示例地,图5是本公开实施例提供的掺杂有非超导材料的超导材料在磁场中的示意图。如图5所示,当超导材料处于超导态时,外界磁场B中的一部分磁力线穿过非超导材料,另一部分磁力线从超导材料的周围环绕过去。此时,该掺杂有非超导材料的超导材料受到钉扎力,也即是被“量子锁定”。
本公开以下实施例均以如图1所示的微型LED为例进行说明。
图6是本公开实施例提供的微型LED在外界磁场中的受力示意图。如图6所示,当超导层102处于超导态时,超导层102在磁场中受到向上的钉扎力F d,微型LED还受到自身的重力F g。当F d>F g时,微型LED能够在磁场中悬浮。当外界磁场发生移动时,悬浮的微型LED在钉扎力的作用下与外界磁场发生同步移动,因此可通过外界磁场的移动实现微型LED的转移。
其中,超导层受到的钉扎力的大小与超导层的纯度负相关,也即是,当超导层中非超导材料的含量越低,超导层受到的钉扎力越小。在本公开实施例中,可根据微型LED的重量确定超导层中非超导材料的含量,以使超导层处于超导态时,超导层受到的钉扎力大于或等于微型LED的重量,进而实现通过控制外界磁场的移动进行微型LED的转移。可选地,超导层中非超导材料的含量与微型LED的重量正相关。
可选地,超导层的制备材料包括铜基超导材料和铁基超导材料中的至少一种。例如超导层的制备材料可以是掺杂有杂质的氧化铜,氧化铜相较于其他超导材料,其超导临界温度较高,约为-78℃,便于实现超导层的超导态转换。
综上所述,本公开实施例提供的微型LED,包括发光本体以及位于发光本体的目标侧的超导层。通过控制微型LED中超导层的温度,可以使该超导层进入超导态。当该超导层处于超导态,且微型LED处于磁场中时,超导层会受到向上的钉扎力,从而使微型LED在磁场中悬浮。当外界磁场发生移动时,悬浮的微型LED在钉扎力的作用下与外界磁场发生同步移动,进而实现微型LED的转移。
本公开实施例提供了一种微型LED基板,包括:衬底基板以及位于衬底基板一侧的微型LED。该微型LED包括如图1至图3任一所示的微型LED10。该微型LED中的发光本体的出光侧位于发光本体远离衬底基板的一侧。本公开实施例中,微型LED基板指用于承载微型LED的设备。
示例地,本公开实施例以微型LED基板包括如图1所示的微型LED10为例进行示例性说明。图7是本公开实施例提供的一种微型LED基板的结构示意图。如图7所示,微型LED基板包括衬底基板20以及位于衬底基板20一侧的微型LED10。微型LED10中的超导层102位于发光本体101的出光侧L的对侧。微型LED10中的超导层102与衬底基板20接触。需要说明的是,微型LED中的超导层与衬底基板接触,指微型LED的超导层承载于或搭接在衬底基板上,而 非与衬底基板固定连接。
可选地,图8是本公开实施例提供的一种微型LED基板的俯视示意图。如图8所示,该微型LED基板包括多个微型LED10,该多个微型LED10在衬底基板20上的排布方式与阵列基板中多个像素区域的排布方式相同。
其中,多个微型LED在衬底基板上的排布方式与阵列基板中多个像素区域的排布方式相同,指衬底基板上相邻两个微型LED之间的距离与阵列基板中相邻两个像素区域之间的距离相等,且微型LED的尺寸与像素区域的尺寸相等。例如,当微型LED的横截面为正方形时,像素区域也呈正方形,且微型LED的横截面的边长与像素区域的边长相等。微型LED的尺寸约在10微米左右。
可选地,微型LED基板中的多个微型LED与阵列基板中的多个像素区域一一对应设置。需要说明的是,当微型LED基板中的多个微型LED与阵列基板中的多个像素区域一一对应设置时,能够实现微型LED的一次性转移,提高微型LED的转移效率。
综上所述,本公开实施例提供的微型LED基板,其中的微型LED包括发光本体以及位于发光本体的目标侧的超导层。通过控制微型LED中超导层的温度,可以使该超导层进入超导态。当该超导层处于超导态,且微型LED处于磁场中时,超导层会受到向上的钉扎力,从而使微型LED在磁场中悬浮。当外界磁场发生移动时,悬浮的微型LED在钉扎力的作用下与外界磁场发生同步移动,进而实现对微型LED基板中的微型LED的转移。
图9是本公开实施例提供的一种微型LED的转移方法流程图。如图9所示,该方法包括以下工作过程:
在步骤901中,提供微型LED基板。
可选地,该微型LED基板包括衬底基板以及位于衬底基板一侧的微型LED。该微型LED包括如图1至图3任一所示的微型LED10。该微型LED中的发光本体的出光侧位于发光本体远离衬底基板的一侧。示例地,该微型LED基板可以如图7所示。
在步骤902中,在低于目标温度的环境中,向微型LED基板所在位置施加磁场,使超导层受到向上的钉扎力,以使微型LED在钉扎力的作用下悬浮,该目标温度为超导层的超导临界温度。
需要说明的是,将微型LED基板置于低于目标温度的环境中,可以使微型 LED中的超导层的温度低于超导临界温度,进而使超导层处于超导态。在向微型LED基板所在位置施加磁场后,超导层会受到向上的钉扎力,该钉扎力能够使微型LED在磁场中悬浮,且将微型LED锁定在磁场中的某个固定位置。
可选地,超导层的制备材料包括铜基超导材料和铁基超导材料中的至少一种。例如超导层的制备材料可以包括氧化铜。当超导层的制备材料包括氧化铜时,上述目标温度为-78℃。
在步骤903中,控制磁场移动,以将微型LED转移至阵列基板的像素区域内。
可选地,在将微型LED基板上的微型LED转移至阵列基板的像素区域之后,可以进一步通过焊接的方式将微型LED固定在阵列基板上,然后封装得到微型LED显示面板。
综上所述,本公开实施例提供的微型LED的转移方法,通过将微型LED基板置于低于目标温度的环境中,使微型LED中的超导层处于超导态,同时向微型LED基板所在位置施加磁场,使微型LED在超导层受到的钉扎力的作用下在磁场中悬浮。通过控制磁场移动,使微型LED与磁场发生同步移动,以将微型LED转移至阵列基板的像素区域内,实现了微型LED的有效转移。该微型LED的转移过程简单,可实现性高。
可选地,步骤902的实现过程包括:在低于目标温度的环境中,在微型LED基板的一侧设置磁体,使磁体在微型LED基板上的正投影与微型LED所在区域存在重合区域。相应地,步骤903的实现过程包括:控制磁体向阵列基板所在位置移动。
可选地,当微型LED基板的结构如图8所示,即微型LED基板包括多个微型LED,该多个微型LED在衬底基板上的排布方式与阵列基板中多个像素区域的排布方式相同时,可以在微型LED基板的一侧设置磁体,使该磁体在微型LED基板上的正投影覆盖多个微型LED所在区域。
需要说明的是,当磁体在微型LED基板上的正投影覆盖多个微型LED所在区域时,通过控制磁体移动,能够实现多个微型LED的同时转移。由于每个微型LED在磁场中的位置由钉扎力锁定,因此在磁场中悬浮的多个微型LED的排列方式仍与阵列基板中的多个像素区域的排布方式一致。在控制磁场移动向阵列基板转移微型LED时,仅需将其中一个微型LED对准放置在阵列基板上的一个像素区域内,其余微型LED也将同步对准放置在阵列基板的其他像素区域内, 进而可以实现向阵列基板巨量转移微型LED。
在本公开实施例中,可根据一次需要转移的微型LED的数量确定采用的磁体的大小。磁体的体积越大,一次转移的微型LED的数量越多。可选地,磁体可以为电磁线圈。通过电磁线圈可灵活地调整磁场强度大小。
可选地,在通过磁体完成微型LED的一次转移后,重复执行上述微型LED的转移过程,在此过程中可重复使用该磁体。则在将微型LED转移至阵列基板上后,需使超导层所受的钉扎力小于微型LED的重力,再控制磁体向远离阵列基板的方向移动。
在一种可能的实现方式中,在将微型LED转移至阵列基板的像素区域内之后,通过调整磁体的磁场强度,使超导层受到的钉扎力小于微型LED的重力。控制磁体向远离阵列基板的方向移动。
需要说明的是,可以将磁体的磁场强度降低至零,使超导层受到的钉扎力消失,再控制磁体转移,微型LED的位置不会受到影响,可以有效实现在阵列基板上的定位。
在另一种可能的实现方式中,阵列基板可以连接有温度控制器,在将微型LED转移至阵列基板的像素区域内之后,通过该温度控制器调节阵列基板的温度,使阵列基板的温度高于目标温度。控制磁体向远离阵列基板的方向移动。
需要说明的是,当阵列基板的温度高于目标温度时,通过热传递,位于阵列基板上的微型LED的温度也会高于目标温度,此时微型LED中的超导层由超导态转换为正常态,不具备抗磁性,则在磁场中不会受到钉扎力,再控制磁体转移,微型LED的位置不会受到影响,可以有效实现在阵列基板上的定位。
可选地,微型LED基板中的衬底基板也可以连接有单独的温度控制器,通过该温度控制器控制该衬底基板的温度始终低于目标温度,以保证微型LED中的超导层处于超导态,进而能够实现微型LED的有效转移。
示例地,图10是本公开实施例提供的一种转移微型LED的工艺流程示意图。如图10所示,该转移过程包括以下工作过程:
在S1中,将微型LED基板和阵列基板30置于低于目标温度的环境中,该微型LED基板包括衬底基板20以及位于衬底基板20一侧的微型LED10。
在S2中,在微型LED基板的一侧设置磁体M,使微型LED10中超导层102受到向上的钉扎力,以使微型LED10悬浮。
可选地,如图10所示,磁体M可以设置在微型LED10远离衬底基板20 的一侧;或者,磁体也可以设置在衬底基板远离微型LED的一侧。其中,无论磁体位于微型LED基板的哪侧,磁体的N极始终远离微型LED,磁体的S极始终靠近微型LED,也即是,磁体的N极相对于磁体的S极远离微型LED。
在S3中,控制磁体M向阵列基板30所在位置移动。
在S4中,将微型LED10转移至阵列基板30的像素区域内后,控制磁体M向远离阵列基板30的方向移动。
综上所述,本公开实施例提供的微型LED的转移方法,通过将微型LED基板置于低于目标温度的环境中,使微型LED中的超导层处于超导态,同时向微型LED基板所在位置施加磁场,使微型LED在超导层受到的钉扎力的作用下在磁场中悬浮。通过控制磁场移动,使微型LED与磁场发生同步移动,以将微型LED转移至阵列基板的像素区域内,实现了微型LED的有效转移。该微型LED的转移过程简单,可实现性高。当选用体积较大的磁体转移微型LED时,可实现微型LED的巨量转移,提高微型LED的转移效率。
需要说明的是,本公开实施例提供的微型LED的转移方法的步骤先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本申请中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本公开实施例中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象 是一种“或”的关系。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (17)

  1. 一种微型LED,包括:
    发光本体(101),以及位于所述发光本体(101)的相对两侧中的至少一侧的超导层(102),所述相对两侧包括所述发光本体(101)的出光侧;
    其中,所述超导层(102)中掺杂有非超导材料。
  2. 根据权利要求1所述的微型LED,所述超导层(102)位于所述发光本体(101)的出光侧的对侧。
  3. 根据权利要求1或2所述的微型LED,所述超导层(102)的制备材料包括铜基超导材料和铁基超导材料中的至少一种。
  4. 根据权利要求3所述的微型LED,所述超导层(102)的制备材料包括氧化铜。
  5. 根据权利要求1至4任一所述的微型LED,所述超导层(102)中非超导材料的含量与所述微型LED的重量正相关。
  6. 根据权利要求2所述的微型LED,所述超导层(102)的制备材料包括氧化铜,所述超导层(102)中非超导材料的含量与所述微型LED的重量正相关。
  7. 一种微型LED基板,包括:衬底基板(20)以及位于所述衬底基板(20)一侧的微型LED(10),所述微型LED(10)包括如权利要求1至6任一所述的微型LED,所述微型LED(10)中的发光本体(101)的出光侧位于所述发光本体(101)远离所述衬底基板(20)的一侧。
  8. 根据权利要求7所述的微型LED基板,所述微型LED(10)中的超导层(102)位于所述发光本体(101)的出光侧的对侧,所述超导层(102)与所述衬底基板(20)接触。
  9. 根据权利要求7或8所述的微型LED基板,所述微型LED基板包括多个所述微型LED(10),多个所述微型LED(10)在所述衬底基板(20)上的排布方式与阵列基板中多个像素区域的排布方式相同。
  10. 根据权利要求9所述的微型LED基板,多个所述微型LED(10)与所述多个像素区域一一对应设置。
  11. 一种微型LED的转移方法,所述方法包括:
    提供微型LED基板,所述微型LED基板包括如权利要求7至9任一所述的微型LED基板;
    在低于目标温度的环境中,向所述微型LED基板所在位置施加磁场,使微型LED中的超导层受到向上的钉扎力,以使所述微型LED在所述钉扎力的作用下悬浮,所述目标温度为所述超导层的超导临界温度;
    控制所述磁场移动,以将所述微型LED转移至阵列基板的像素区域内。
  12. 根据权利要求11所述的微型LED的转移方法,所述在低于目标温度的环境中,向所述微型LED基板所在位置施加磁场,包括:
    在所述微型LED基板的一侧设置磁体,使所述磁体在所述微型LED基板上的正投影与所述微型LED所在区域存在重合区域;
    所述控制所述磁场移动,包括:
    控制所述磁体向所述阵列基板所在位置移动。
  13. 根据权利要求12所述的微型LED的转移方法,在将所述微型LED转移至阵列基板的像素区域内之后,所述方法还包括:
    调整所述磁体的磁场强度,使所述超导层受到的钉扎力小于所述微型LED的重力;
    控制所述磁体向远离所述阵列基板的方向移动。
  14. 根据权利要求12所述的微型LED的转移方法,所述阵列基板连接有 温度控制器,在将所述微型LED转移至阵列基板的像素区域内之后,所述方法还包括:
    通过所述温度控制器调节所述阵列基板的温度,使所述阵列基板的温度高于所述目标温度;
    控制所述磁体向远离所述阵列基板的方向移动。
  15. 根据权利要求12至14任一所述的微型LED的转移方法,所述微型LED基板包括多个所述微型LED,多个所述微型LED在所述衬底基板上的排布方式与所述阵列基板中多个像素区域的排布方式相同;
    所述在所述微型LED基板的一侧设置磁体,使所述磁体在所述微型LED基板上的正投影与所述微型LED所在区域存在重合区域,包括:
    在所述微型LED基板的一侧设置磁体,使所述磁体在所述微型LED基板上的正投影覆盖多个所述微型LED所在区域。
  16. 根据权利要求12至15任一所述的微型LED的转移方法,所述磁体为电磁线圈。
  17. 根据权利要求11至16任一所述的微型LED的转移方法,所述超导层的制备材料包括氧化铜,所述目标温度为-78℃。
PCT/CN2020/084173 2019-04-17 2020-04-10 微型led及其转移方法、微型led基板 WO2020211699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910308734.9 2019-04-17
CN201910308734.9A CN109980062B (zh) 2019-04-17 2019-04-17 微型led及其转移方法

Publications (1)

Publication Number Publication Date
WO2020211699A1 true WO2020211699A1 (zh) 2020-10-22

Family

ID=67085043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084173 WO2020211699A1 (zh) 2019-04-17 2020-04-10 微型led及其转移方法、微型led基板

Country Status (2)

Country Link
CN (1) CN109980062B (zh)
WO (1) WO2020211699A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980062B (zh) * 2019-04-17 2022-08-05 京东方科技集团股份有限公司 微型led及其转移方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288808A (ja) * 1987-05-22 1988-11-25 Hitachi Ltd 搬送装置
JPH0558451A (ja) * 1991-08-30 1993-03-09 Canon Inc 搬送装置
CN107863433A (zh) * 2017-11-07 2018-03-30 深圳市华星光电技术有限公司 显示器件及显示面板
CN208061578U (zh) * 2018-05-10 2018-11-06 京东方科技集团股份有限公司 支撑装置和显示设备
CN109065677A (zh) * 2018-08-17 2018-12-21 京东方科技集团股份有限公司 Micro-LED巨量转移方法及Micro-LED基板
TW201916320A (zh) * 2017-10-13 2019-04-16 行家光電股份有限公司 微元件之巨量排列方法及系統
CN109980062A (zh) * 2019-04-17 2019-07-05 京东方科技集团股份有限公司 微型led及其转移方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020147424A1 (en) * 2000-12-26 2002-10-10 Alvin Ostrow Transdermal magnetic drug delivery system and method
WO2010034159A1 (zh) * 2008-09-26 2010-04-01 Hsu Chen 具有光调变功能之半导体发光组件及其制造方法
US20180161095A1 (en) * 2015-05-26 2018-06-14 Georgia Tech Research Corporation Bioelectronic devices, systems, and uses thereof
US20180261570A1 (en) * 2017-03-13 2018-09-13 SelfArray, Inc. Methods and systems for parallel assembly, transfer, and bonding of ferromagnetic components
CN108682312B (zh) * 2018-05-12 2020-11-06 汕头超声显示器技术有限公司 一种led阵列装置的制造方法
CN208352323U (zh) * 2018-06-29 2019-01-08 江西兆驰半导体有限公司 一种发光二极管芯片转移装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288808A (ja) * 1987-05-22 1988-11-25 Hitachi Ltd 搬送装置
JPH0558451A (ja) * 1991-08-30 1993-03-09 Canon Inc 搬送装置
TW201916320A (zh) * 2017-10-13 2019-04-16 行家光電股份有限公司 微元件之巨量排列方法及系統
CN107863433A (zh) * 2017-11-07 2018-03-30 深圳市华星光电技术有限公司 显示器件及显示面板
CN208061578U (zh) * 2018-05-10 2018-11-06 京东方科技集团股份有限公司 支撑装置和显示设备
CN109065677A (zh) * 2018-08-17 2018-12-21 京东方科技集团股份有限公司 Micro-LED巨量转移方法及Micro-LED基板
CN109980062A (zh) * 2019-04-17 2019-07-05 京东方科技集团股份有限公司 微型led及其转移方法

Also Published As

Publication number Publication date
CN109980062A (zh) 2019-07-05
CN109980062B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN106935608B (zh) 微发光二极管阵列基板及显示面板
US20230049446A1 (en) Display apparatus using semiconductor light-emitting device
US10971654B2 (en) Display device using semiconductor light emitting device and method for manufacturing the same
US20230119947A1 (en) A substrate for manufacturing display device and a manufacturing method using the same
US20220328335A1 (en) Display device manufacturing method, and substrate for manufacture of display device
EP3876269B1 (en) Self-assembly apparatus and method for semiconductor light emitting device
KR102162739B1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
US20230084381A1 (en) Display device using semiconductor light-emitting devices
WO2020235732A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
US11869871B2 (en) Apparatus and method for self-assembling semiconductor light-emitting device
WO2021162159A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
US11798921B2 (en) Method for manufacturing display device and substrate for manufacturing display device
KR102126962B1 (ko) 마이크로-컴포넌트 디바이스의 대량 배열을 위한 방법 및 시스템
US10825702B2 (en) Method and device for self-assembling semiconductor light-emitting diodes
US12015106B2 (en) Display device using semiconductor light emitting device surrounded by conductive electrode and method for manufacturing the same
WO2020211699A1 (zh) 微型led及其转移方法、微型led基板
WO2021117974A1 (ko) 반도체 발광소자 공급 장치 및 공급 방법
EP3731276B1 (en) Apparatus and method for self-assembling of semiconductor light-emitting element
US20220278082A1 (en) Display device using semiconductor light-emitting elements and manufacturing method therefor
US20230078258A1 (en) Display device using semiconductor light-emitting element, and method for manufacturing same
KR102387811B1 (ko) 반도체 발광소자의 자가조립용 기판 척
EP4024440A1 (en) Apparatus and method for collecting semiconductor light emitting diodes
WO2019203404A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
Li et al. Transfer printed, vertical GaN-on-silicon micro-LED arrays with individually addressable cathodes
US20230069728A1 (en) Display device using semiconductor light emitting element, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791136

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20791136

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20791136

Country of ref document: EP

Kind code of ref document: A1