WO2020211546A1 - 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统 - Google Patents

利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统 Download PDF

Info

Publication number
WO2020211546A1
WO2020211546A1 PCT/CN2020/077135 CN2020077135W WO2020211546A1 WO 2020211546 A1 WO2020211546 A1 WO 2020211546A1 CN 2020077135 W CN2020077135 W CN 2020077135W WO 2020211546 A1 WO2020211546 A1 WO 2020211546A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
parts
accounts
weight
steel slag
Prior art date
Application number
PCT/CN2020/077135
Other languages
English (en)
French (fr)
Inventor
王旭江
王文龙
李敬伟
毛岩鹏
张超
吴长亮
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/257,112 priority Critical patent/US11396478B2/en
Publication of WO2020211546A1 publication Critical patent/WO2020211546A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/434Preheating with addition of fuel, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement

Definitions

  • the invention belongs to the field of solid waste utilization, and specifically relates to a method and system for producing low-alkalinity, new mineral system sulfoaluminate cement by using steel slag.
  • Steel slag is the waste slag discharged during the steelmaking process. It mainly comes from the oxides formed after the oxidation of the elements contained in the molten iron and the scrap steel, the impurities brought in by the metal charge, and the added slag-forming agents such as limestone, fluorite, silica, etc., and Oxidizers, desulfurization products, and corroded furnace lining materials are about 15%-20% of steel output, and the main components are oxides such as calcium, iron, silicon, magnesium, aluminum, manganese, and phosphorus.
  • the main way to use steel slag in my country is to recycle it in iron and steel companies instead of lime as a solvent, and return it to a blast furnace or sintering furnace as raw material for ironmaking.
  • the main raw materials are bauxite, limestone and gypsum, which go through a series of links such as raw material selection, batching, crushing, grinding, calcination (1300-1350°C) and clinker grinding.
  • Sulphoaluminate clinker main mineral calcium aluminate phase sulfur, iron and dicalcium silicate phase, Al 2 O 3 in the clinker generally account for 28-40% wt, typically requires the use of Al 2 O 3
  • High-grade bauxite with a content greater than 55% wt is used as a raw material.
  • the purpose of the present invention is to provide a method and system for producing low-alkalinity, new mineral system sulfoaluminate cement by using steel slag.
  • the method breaks through the requirements for calcium, aluminum, and iron content in traditional sulfoaluminate cement production, and the clinker mineral system is significantly different from traditional sulfoaluminate cement clinker. This method can realize a large number of applications of solid waste steel slag.
  • the technical solution of the present invention is:
  • a method for producing low alkalinity, new mineral system sulfoaluminate cement using steel slag including the following steps:
  • the basicity coefficient of the raw meal is 0.81-0.9, and the homogenized raw meal contains 32-40 weight of CaO Parts, SiO 2 accounts for 6-12 parts by weight, Al 2 O 3 accounts for 20-28 parts by weight, Fe 2 O 3 accounts for 8-13 parts by weight, SO 3 accounts for 10-18 parts by weight, and the aluminum-sulfur ratio is 1.3-2.0;
  • the homogenized raw meal is transported to a rotary kiln for calcination, the calcination temperature is 1200°C-1270°C, and the calcination time is 20-60min to obtain cement clinker.
  • the calcium content and aluminum content are lower than the traditional process, while the iron content and sulfur content are significantly higher than the traditional process.
  • the content of Al 2 O 3 in the cement raw meal can be lower than the traditional production process, and the content of Fe 2 O 3 is higher than that of the traditional production process, so that low-grade aluminum-containing solid waste and high iron solid waste can be used for sulfur.
  • the production of aluminate cement further expands the scope of application of the process.
  • the solid phase reaction during the calcination process is likely to be incomplete, resulting in a large amount of non-hydraulic materials such as mayemite and affecting the performance of sulfoaluminate cement.
  • the inventor found that if the aluminum-sulfur ratio requirement in traditional production is broken during the compounding process, part of the mayehlenite can be converted into effective high-active minerals, thereby ensuring the mechanical properties of the sulphoaluminate cement.
  • a suitable aluminum-sulfur ratio can also induce a solid phase reaction in the raw meal calcination process, so that Fe can replace a certain amount of Al to generate calcium sulfoaluminate ferrite.
  • calcium sulfoaluminate ferrite is used as a component of sulfoaluminate cement, it can It can effectively replace calcium sulfoaluminate and play a key role in the early strength and high strength of cement.
  • the clinker mineral system of the present invention is calcium sulphoaluminate, sulphoaluminate ferric acid Calcium and yellow feldspar. Although there is a certain proportion of calcium aluminum yellow feldspar in the system, because it can ensure a sufficient share of high-performance hydraulic minerals, the performance of the system cement can be fully guaranteed.
  • the optimal calcination temperature is 1200°C-1270°C, which is much lower than the calcination temperature of traditional sulfoaluminate cement, which is conducive to energy saving and environmental protection.
  • CaO accounts for 36-38 parts by weight
  • SiO 2 accounts for 6-8 parts by weight
  • Al 2 O 3 accounts for 22-24 parts by weight
  • Fe 2 O 3 accounts for 10-13 parts by weight.
  • Parts, SO 3 accounts for 15-17 parts by weight.
  • the aluminum to sulfur ratio of the homogenized raw meal is 1.4-1.6.
  • the grinding fineness of the ground steel slag is within 10% of the 0.08mm square hole sieve.
  • the sieve residue is the mass percentage of the powdery material with a certain quality that remains on the sieve after being sieved on a standard sieve. It is the expression method of the fineness of the powdery material.
  • the fineness of the milled steel slag is 4%-8% on a 0.08mm square hole sieve.
  • the homogenization is grinding homogenization or homogenization treatment in a homogenization device.
  • Homogenization is the process of reducing the fluctuation amplitude of the chemical composition of the material and making the chemical composition of the material uniform by adopting certain technological measures.
  • the cement clinker contains calcium sulphoaluminate, glauconite and calcium sulphoaluminate as the main mineral phases, and the mass percentages are 40-65%, 5-20% and 10-25, respectively. %.
  • the second object of the present invention is to provide a system for producing low-alkalinity, new mineral system sulfoaluminate cement using steel slag, including a dryer, a grinding machine, batching equipment, homogenization equipment and a rotary kiln;
  • the dryer is used to dry steel slag, desulfurized gypsum, aluminum ash and calcium carbide slag;
  • the dried steel slag enters the grinder for grinding
  • the homogenized raw cement material is calcined in a rotary kiln to obtain cement clinker.
  • the invention breaks the limitations of traditional theories and processes on the alkalinity coefficient and calcium-sulfur ratio, reduces the content of alumina and calcium oxide in the raw meal, can directionally induce the solid phase reaction of the clinker production process, and make Fe replace a certain amount of Al to produce Calcium sulphoaluminate ferrite can improve the performance of sulphoaluminate cement, and at the same time can greatly increase the iron oxide content in the ingredients, and make a lot of use of solid waste steel slag; it can also directionally induce part of the yellow feldspar reaction to generate high-active minerals, ensuring sulphur aluminum The characteristics of early strength and high strength of salt cement. At the same time, because the content of calcium oxide in the ingredients is reduced, the dependence on high-calcium raw materials such as limestone can be reduced.
  • Figure 1 is a process flow diagram of Embodiment 1 of the production system of the present invention.
  • Figure 2 is a process flow diagram of Embodiment 2 of the production system of the present invention.
  • Figure 3 is an X-ray diffraction pattern of cement clinker prepared in Example 1 of the present invention.
  • a system for producing sulphoaluminate cement using steel slag includes a dryer, a primary grinding machine, a secondary grinding homogenizer, batching equipment and a rotary kiln; the dryer is used to treat steel slag , Desulfurization gypsum, aluminum ash and calcium carbide slag are dried; the dried steel slag is quantified by the batching equipment and then enters the primary grinder for grinding; in the batching equipment, the desulfurization gypsum, aluminum ash and calcium carbide slag are carried out according to the set ratio After mixing, it enters the secondary grinding machine and steel slag homogenizing and grinding; the homogenized raw cement material is calcined in the rotary kiln to obtain cement clinker.
  • the steel slag obtained by drying is ground.
  • the fineness of the ground steel slag is within 10% of the 0.08mm square hole sieve; then the desulfurized gypsum and aluminum Materials such as ash and calcium carbide slag are mixed in a certain proportion and then added to the grinder to be ground and homogenized together with steel slag.
  • the basicity coefficient of the homogenized cement raw meal is 0.81, and the homogenized raw meal contains 34 parts by weight of CaO , SiO 2 accounts for 6 parts by weight, Al 2 O 3 accounts for 25 parts by weight, Fe 2 O 3 accounts for 10 parts by weight, and SO 3 accounts for 17 parts by weight.
  • the materials obtained by homogenization are transported to a rotary kiln for calcination at a calcination temperature of 1250°C and a calcination time of 30 minutes to obtain cement clinker.
  • the main mineral composition of cement clinker is shown in Table 1.
  • the X-ray diffraction pattern of cement clinker is as follows Shown in Figure 3. Add 3% gypsum to the cement clinker and enter the cement grinder to grind to obtain sulfoaluminate cement.
  • the mechanical properties of the obtained sulfoaluminate cement are shown in Table 8.
  • the strength inspection standard is based on GB20472-2006 "Sulphoaluminate Cement".
  • the steel slag obtained by drying is ground.
  • the fineness of the ground steel slag is within 10% of the 0.08mm square hole sieve; then the desulfurized gypsum and aluminum Materials such as ash and calcium carbide slag are mixed in a certain proportion and then added to the grinder to be ground and homogenized together with steel slag.
  • the basicity coefficient of the homogenized cement raw meal is 0.9, and the homogenized raw meal contains 38 parts by weight of CaO , SiO 2 accounts for 8 parts by weight, Al 2 O 3 accounts for 22 parts by weight, Fe 2 O 3 accounts for 13 parts by weight, and SO 3 accounts for 15 parts by weight.
  • the homogenized materials are transported to the rotary kiln for calcination, the calcination temperature is 1220°C, the calcination time is 25min, and the cement clinker is obtained.
  • the main mineral composition of the cement clinker is shown in Table 2.
  • Add 5% gypsum to the cement clinker Enter the cement mill to grind to obtain sulphoaluminate cement.
  • the mechanical properties of the obtained sulphoaluminate cement are shown in Table 8.
  • the strength inspection standard is based on GB20472-2006 "Sulphoaluminate Cement".
  • a system for producing sulfoaluminate cement using steel slag includes a dryer, a grinder, batching equipment, homogenization equipment, and a rotary kiln; the dryer is used to treat steel slag, desulfurized gypsum, aluminum Ash and calcium carbide slag are dried; the dried steel slag enters the grinder for grinding; in the batching equipment, the steel slag, desulfurized gypsum, aluminum ash and calcium carbide slag are mixed according to the set ratio, and then enter the homogenization device for homogenization. Chemical treatment; the raw cement material after homogenization is calcined in a rotary kiln to obtain cement clinker.
  • the fineness of the ground steel slag is within 10% of the 0.08mm square hole sieve; then the desulfurized gypsum and aluminum Ash and calcium carbide slag are mixed in a certain proportion and then homogenized.
  • the alkalinity coefficient of the homogenized cement raw meal is 0.85.
  • the homogenized raw meal contains 36 parts by weight of CaO, 10 parts by weight of SiO 2 and Al 2 O 3 accounts for 24 parts by weight, Fe 2 O 3 accounts for 10 parts by weight, and SO 3 accounts for 15 parts by weight. Afterwards, the homogenized materials are transported to the rotary kiln for calcination.
  • the calcination temperature is 1230°C and the calcination time is 50 minutes to obtain cement clinker.
  • the main mineral composition of the cement clinker is shown in Table 3.
  • Add 4% gypsum to the cement clinker After that, it is pulverized in a cement mill to obtain sulfoaluminate cement.
  • the mechanical properties of the obtained sulfoaluminate cement are shown in Table 8.
  • the strength inspection standard is based on GB20472-2006 "Sulphoaluminate Cement".
  • Example 1 The difference from Example 1 is that in the homogenized raw meal, CaO accounts for 37 parts by weight, SiO 2 accounts for 6 parts by weight, Al 2 O 3 accounts for 20 parts by weight, Fe 2 O 3 accounts for 10 parts by weight, and SO 3 accounts for 19 parts. Parts by weight. Others are the same as in Example 1.
  • the main mineral composition of the prepared cement clinker is shown in Table 4, and the properties of the prepared sulfoaluminate cement are shown in Table 8.
  • Example 1 The difference from Example 1 is: in the homogenized raw meal, CaO accounts for 32 parts by weight, SiO 2 accounts for 7 parts by weight, Al 2 O 3 accounts for 30 parts by weight, Fe 2 O 3 accounts for 10 parts by weight, and SO 3 accounts for 15 parts. Parts by weight. Others are the same as in Example 1.
  • the main mineral composition in the prepared cement clinker is shown in Table 5, and the properties of the prepared sulfoaluminate cement are shown in Table 8.
  • Example 1 The difference from Example 1 is: the calcination temperature is 1300°C, and the others are the same as in Example 1.
  • the main mineral composition in the prepared cement clinker is shown in Table 6, and the properties of the prepared sulfoaluminate cement are shown in Table 8.
  • Example 1 The difference from Example 1 is: the calcination temperature is 1180°C, and everything else is the same as Example 1.
  • the main mineral composition of the prepared cement clinker is shown in Table 7, and the properties of the prepared sulfoaluminate cement are shown in Table 8.

Abstract

一种利用钢渣生产低碱度硫铝酸盐水泥的方法及系统,方法包括如下步骤:将粉磨后的钢渣与干燥的脱硫石膏、铝灰和电石渣按设定比例进行混匀均化;将均化后的生料输送至回转窑中进行煅烧,煅烧温度为1200℃-1270℃,煅烧时间为20-60min,得到水泥熟料;均化后的水泥生料的碱度系数为0.81-0.9,Fe 2O 3的含量为8-13%。该方法突破了传统硫铝酸盐水泥生产中对钙、铝、铁含量的要求,实现了对固废钢渣的大量应用。

Description

利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统 技术领域
本发明属于固体废弃物利用领域,具体涉及一种利用钢渣生产低碱度、新矿物体系的硫铝酸盐水泥的方法及系统。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
钢渣是炼钢过程中排出的废渣,其主要来源于铁水与废钢中所含元素氧化后形成的氧化物,金属炉料带入的杂质,加入的造渣剂如石灰石、萤石、硅石等,以及氧化剂、脱硫产物和被侵蚀的炉衬材料等,数量约为钢产量的15%-20%,主要成分是钙、铁、硅、镁、铝、锰、磷等氧化物。我国钢渣的主要利用途径是在钢铁公司内部自行循环使用,代替石灰作溶剂,返回高炉或烧结炉内作炼铁原料,也可用于公路路基、铁路路基以及改良土壤,或进行粉磨后作为水泥和混凝土的掺和料。但是以上利用方式利用的钢渣数量有限,随着钢铁工业的发展,钢渣的数量日益增多,许多钢厂已渣满为患,但是扩建渣场不但要占用宝贵的耕地、农田,而且会造成空气、水质的二次污染,严重破坏生态环境。
在传统的硫铝酸盐水泥生产中,主要原料为铝矾土、石灰石和石膏,经过生料选择、配料、破碎、粉磨、煅烧(1300-1350℃)和熟料粉磨等一系列环节制备得到硫铝酸盐水泥。硫铝酸盐水泥熟料主要矿物物相为硫铝酸钙、硅酸二钙和铁相,Al 2O 3在熟料中一般要占到28-40%wt,通常要求使用Al 2O 3含量大于55%wt的高品位铝矾土为原料。而且传统工艺中,为保证固相反应完全、生成有效矿相,需保证生料中高CaO含量,并将生料的碱度系数控制在0.95-0.98。为了保证硫铝酸钙的生成数量和质量,通常要控制Fe 2O 3含量在3%以下。另外,传统硫铝酸盐水泥生产中,通常都要避免钙铝黄长石在熟料矿物中的存在,因其不具有水硬性,为此都要保证生料中足够高的氧化钙含量,保证足够高的碱度系数。
发明内容
为了解决现有技术中存在的技术问题,本发明的目的是提供一种利用钢渣生产低碱度、新矿物体系的硫铝酸盐水泥的方法及系统。该方法突破了传统硫铝酸盐水泥生产中对钙、铝、铁含量的要求,熟料矿物体系与传统硫铝酸盐水泥熟料显著不同,该方法可实现对固废钢渣的大量应用。
为了解决以上技术问题,本发明的技术方案为:
一种利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法,包括如下步骤:
将粉磨后的钢渣与干燥的脱硫石膏、铝灰和电石渣按设定比例进行混匀均化,生料碱度系数为0.81-0.9,均化后的生料中CaO占32-40重量份,SiO 2占6-12重量份,Al 2O 3占20-28重量份,Fe 2O 3占8-13重量份,SO 3占10-18重量份,铝硫比为1.3-2.0;
将均化后的生料输送至回转窑中进行煅烧,煅烧温度为1200℃-1270℃,煅烧时间为20-60min,得到水泥熟料。
传统硫铝酸盐水泥生产过程中,如果水泥生料中Fe 2O 3的含量过高时,会生成作用较小的铁铝酸四钙,无法维持硫铝酸盐水泥早强、高强的特性。为了保证硫铝酸钙的生成数量和质量,通常需要控制水泥生料中Fe 2O 3的含量在3%以下,即水泥生料中仅能添加少量的含铁矿物。但是钢渣中Fe 2O 3的含量高达25%左右,如果严格控制Fe 2O 3的添加量时,制备硫铝酸盐水泥的过程中钢渣的掺用比例会受到很大限制。
均化后的生料中,钙含量和铝含量低于传统工艺,而铁含量与硫含量明显高于传统工艺。采用本发明的工艺,可以使得水泥生料中的Al 2O 3含量低于传统生产工艺,Fe 2O 3含量高于传统生产工艺,进而可以利用低品位含铝固废和高铁固废进行硫铝酸盐水泥的生产,进一步拓展了工艺的适用范围。
发明人发现,如果将钢渣作为硫铝酸盐水泥原料大量利用,可以通过生料化学组成和铝硫比等关键参数的控制,突破传统硫铝酸盐水泥生产工艺中的碱度系数要求,可将其降低至0.81-0.9;碱度系数降低减少了水泥生料中CaO的含量,进而降低了对石灰石等高钙原料的依赖。
但是如果水泥生料中CaO的含量偏低时容易造成煅烧过程中固相反应不完全,生成大量的钙铝黄长石等非水硬物质,影响硫铝酸盐水泥的性能。发明人经过反复试验发现,如果在配料时,打破传统生产中对铝硫比的要求,可促使一部分钙铝黄长石转化为有效高活性矿物,进而保证了硫铝酸盐水泥的力学性能。同时,合适铝硫比还可以在生料煅烧过程中定向诱导固相反应,使Fe取代一定数量的Al生成硫铝铁酸钙,硫铝铁酸钙作为硫铝酸盐水泥的成分时,可以有效替代硫铝酸钙,对水泥的早强、高强起到关键作用。因此,不同于常规的硫铝酸盐水泥以硫铝酸钙、硅酸二钙和少量铁相为主的熟料矿物体系,本发明的熟料矿物体系为硫铝酸钙、硫铝铁酸钙和钙铝黄长石。虽然体系中有一定比例的钙铝黄长石,但因为能够保证足够的高性能水硬性矿物的份额,该体系水泥的性能能够被充分保障。
此外,将该种配料的水泥生料进行煅烧时,煅烧的最佳温度为1200℃-1270℃,远低于 传统硫铝酸盐水泥的煅烧温度,有利于节能环保。
在一些实施例中,均化后的生料中CaO占36-38重量份,SiO 2占6-8重量份,Al 2O 3占22-24重量份,Fe 2O 3占10-13重量份,SO 3占15-17重量份。
在一些实施例中,均化后的生料的铝硫比为1.4-1.6。
在一些实施例中,粉磨后的钢渣的出磨细度为在0.08mm方孔筛的筛余为10%以内。
筛余为一定质量的粉状物料在标准筛上筛分后留在筛上部分占粉状物料总质量的质量百分数,是粉状物料细度的表示方法。
在一些实施例中,粉磨后的钢渣的出磨细度为在0.08mm方孔筛的筛余为4%-8%。
在一些实施例中,所述均化为粉磨均化或在均化设备中进行均化处理。
均化是通过采用一定的工艺措施,达到降低物料化学成分的波动振幅,使物料的化学成分均匀一致的过程。
在一些实施例中,水泥熟料中以硫铝酸钙、钙铝黄长石和硫铝铁酸钙为主要矿物相,所占质量百分比分别为40-65%,5-20%和10-25%。
本发明的第二个目的是提供一种利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的系统,包括烘干机、粉磨机、配料设备、均化设备和回转窑;
烘干机用于对钢渣、脱硫石膏、铝灰和电石渣进行烘干;
烘干后的钢渣进入粉磨机进行粉磨;
按设定比例在粉磨机中加入脱硫石膏、铝灰和电石渣等物料进行均化处理,或者在配料设备中,钢渣、脱硫石膏、铝灰和电石渣按设定比例进行混合,然后进入均化设备均化处理;
均化处理后的水泥生料进入回转窑中煅烧,得到水泥熟料。
本发明的有益效果为:
本发明打破传统理论和工艺对碱度系数和钙硫比的限制,降低生料中氧化铝和氧化钙的含量,可以定向诱导熟料生产过程的固相反应,使Fe取代一定数量的Al生成硫铝铁酸钙,提高硫铝酸盐水泥的性能,同时可大幅度提高配料中氧化铁含量,大量利用固废钢渣;还可以定向诱导部分钙铝黄长石反应生成高活性矿物,保证了硫铝酸盐水泥早强、高强的特性。同时,由于配料中氧化钙的含量降低,可以降低对石灰石等高钙原料的依赖。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明生产系统的实施例1的工艺流程图;
图2为本发明生产系统的实施例2的工艺流程图;
图3为本发明实施例1制备的水泥熟料的X射线衍射图谱。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例1
如图1所示,一种利用钢渣生产硫铝酸盐水泥的系统,包括烘干机、一次粉磨机、二次粉磨均化机,配料设备和回转窑;烘干机用于对钢渣、脱硫石膏、铝灰和电石渣进行烘干;烘干后的钢渣经配料设备定量后进入一次粉磨机进行粉磨;在配料设备中,脱硫石膏、铝灰和电石渣按设定比例进行混合,然后进入二次粉磨机与钢渣均化粉磨;均化处理后的水泥生料进入回转窑中煅烧,得到水泥熟料。
首先对所有原料进行烘干处理,将烘干得到的钢渣进行粉磨,粉磨后的钢渣的出磨细度为在0.08mm方孔筛的筛余为10%以内;然后将脱硫石膏、铝灰和电石渣等物料按一定比例混合后加入粉磨机中与钢渣一同粉磨均化,均化后的水泥生料的碱度系数为0.81,均化后的生料中CaO占34重量份,SiO 2占6重量份,Al 2O 3占25重量份,Fe 2O 3占10重量份,SO 3占17重量份。之后将均化得到的物料输送至回转窑进行煅烧,煅烧温度为1250℃,煅烧时间为30min,得到水泥熟料,水泥熟料的主要矿物组成见表1,水泥熟料的X射线衍射图谱如图3所示。将水泥熟料中加入3%石膏,进入水泥粉磨机粉磨,得到硫铝酸盐水泥,所得硫铝酸盐水泥的力学性能见表8。强度检验标准依据GB20472-2006《硫铝酸盐水泥》进行。
表1 水泥熟料中的主要矿物组成(wt%)
组分 硫铝酸钙 钙铝黄长石 硫铝铁酸钙
水泥熟料 56 20 17
实施例2
首先对所有原料进行烘干处理,将烘干得到的钢渣进行粉磨,粉磨后的钢渣的出磨细度为在0.08mm方孔筛的筛余为10%以内;然后将脱硫石膏、铝灰和电石渣等物料按一定比例混合后加入粉磨机中与钢渣一同粉磨均化,均化后的水泥生料的碱度系数为0.9,均化后的生料中CaO占38重量份,SiO 2占8重量份,Al 2O 3占22重量份,Fe 2O 3占13重量份,SO 3占15重量份。之后将均化得到的物料输送至回转窑进行煅烧,煅烧温度为1220℃,煅烧时间为25min,得到水泥熟料,水泥熟料的主要矿物组成见表2,将水泥熟料中加入5%石膏,进入水泥粉磨机粉磨,得到硫铝酸盐水泥,所得硫铝酸盐水泥的力学性能见表8。强度检验标准依据GB20472-2006《硫铝酸盐水泥》进行。
表2 水泥熟料中的主要矿物组成(wt%)
组分 硫铝酸钙 钙铝黄长石 硫铝铁酸钙
水泥熟料 62 6 23
实施例3
如图2所示,一种利用钢渣生产硫铝酸盐水泥的系统,包括烘干机、粉磨机、配料设备、均化设备和回转窑;烘干机用于对钢渣、脱硫石膏、铝灰和电石渣进行烘干;烘干后的钢渣进入粉磨机进行粉磨;在配料设备中,钢渣、脱硫石膏、铝灰和电石渣按设定比例进行混合,然后进入均化装置进行均化处理;均化处理后的水泥生料进入回转窑中煅烧,得到水泥熟料。
首先对所有原料进行烘干处理,将烘干得到的钢渣进行粉磨,粉磨后的钢渣的出磨细度为在0.08mm方孔筛的筛余为10%以内;然后将脱硫石膏、铝灰和电石渣等物料按一定比例混合后进行均化,均化后的水泥生料的碱度系数为0.85,均化后的生料中CaO占36重量份,SiO 2占10重量份,Al 2O 3占24重量份,Fe 2O 3占10重量份,SO 3占15重量份。之后将均化得到的物料输送至回转窑进行煅烧,煅烧温度为1230℃,煅烧时间为50min,得到水泥熟料,水泥熟料的主要矿物组成见表3,将水泥熟料中加入4%石膏后,进入水泥粉磨机粉磨,得到硫铝酸盐水泥,所得硫铝酸盐水泥的力学性能见表8。强度检验标准依据GB20472-2006《硫铝酸盐水泥》进行。
表3 水泥熟料中的主要矿物组成(wt%)
组分 硫铝酸钙 钙铝黄长石 硫铝铁酸钙
水泥熟料 65 13 19
对比例1
与实施例1的区别为:均化后的生料中CaO占37重量份,SiO 2占6重量份,Al 2O 3占20重量份,Fe 2O 3占10重量份,SO 3占19重量份。其他都与实施例1相同,制备的水泥熟料中的主要矿物组成见表4,制备的硫铝酸盐水泥的性能见表8。
表4 水泥熟料中的主要矿物组成(wt%)
组分 硫铝酸钙 钙铝黄长石 硫铝铁酸钙 无水硫酸钙
水泥熟料 49 5 15 9
对比例2
与实施例1的区别为:均化后的生料中CaO占32重量份,SiO 2占7重量份,Al 2O 3占30重量份,Fe 2O 3占10重量份,SO 3占15重量份。其他都与实施例1相同,制备的水泥熟料中的主要矿物组成见表5,制备的硫铝酸盐水泥的性能见表8。
表5 水泥熟料中的主要矿物组成(wt%)
组分 硫铝酸钙 钙铝黄长石 硫铝铁酸钙
水泥熟料 28 53 7
对比例3
与实施例1的区别为:煅烧的温度为1300℃,其他都与实施例1相同,制备的水泥熟料中的主要矿物组成见表6,制备的硫铝酸盐水泥的性能见表8。
表6 水泥熟料中的主要矿物组成(wt%)
组分 硫铝酸钙 钙铝黄长石 硫铝铁酸钙
水泥熟料 56 21 15
对比例4
与实施例1的区别为:煅烧的温度为1180℃,其他都与实施例1相同,制备的水泥熟料中的主要矿物组成见表7,制备的硫铝酸盐水泥的性能见表8。
表7 水泥熟料中的主要矿物组成(wt%)
组分 硫铝酸钙 钙铝黄长石 硫铝铁酸钙
水泥熟料 49 29 6
表8
Figure PCTCN2020077135-appb-000001
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种利用钢渣生产硫铝酸盐水泥的方法,其特征在于:包括如下步骤:
    将粉磨后的钢渣与干燥的脱硫石膏、铝灰和电石渣按设定比例进行混匀均化;
    将均化后的生料输送至回转窑中进行煅烧,煅烧温度为1200℃-1270℃,煅烧时间为20-60min,得到水泥熟料;
    均化后的水泥生料的碱度系数为0.81-0.9,生料中CaO占32-40重量份,SiO 2占6-12重量份,Al 2O 3占20-28重量份,Fe 2O 3占8-13重量份,SO 3占10-18重量份,铝硫比为1.3-2.0。
  2. 根据权利要求1所述的方法,其特征在于:均化后的生料中CaO占32-35重量份,SiO 2占6-12重量份,Al 2O 3占20-25重量份,Fe 2O 3占10-13重量份,SO 3占10-15重量份。
  3. 根据权利要求1所述的方法,其特征在于:均化后的生料的铝硫比为1.3-1.8。
  4. 根据权利要求1所述的方法,其特征在于:粉磨后的钢渣的出磨细度为在0.08mm方孔筛的筛余为10%以内。
  5. 根据权利要求4所述的方法,其特征在于:粉磨后的钢渣的出磨细度为在0.08mm方孔筛的筛余为4%-8%。
  6. 根据权利要求1所述的方法,其特征在于:所述均化为粉磨均化或在均化设备中进行均化处理。
  7. 根据权利要求1所述的方法,其特征在于:水泥熟料中以硫铝酸钙、钙铝黄长石和硫铝铁酸钙为主要矿物相,所占质量百分比分别为40-65%,5-20%和10-25%。
  8. 根据权利要求7所述的方法,其特征在于:水泥熟料中以硫铝酸钙、钙铝黄长石和硫铝铁酸钙为主要矿物相,所占质量百分比分别为50-65%,5-20%和15-25%。
  9. 根据权利要求1所述的方法,其特征在于:还包括将水泥熟料与石膏混合粉磨,制备硫铝酸盐水泥的步骤。
  10. 一种利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的系统,其特征在于:包括烘干机、粉磨机、配料设备、均化设备和回转窑;
    烘干机用于对钢渣、脱硫石膏、铝灰和电石渣进行烘干;
    烘干后的钢渣进入粉磨机进行粉磨;
    按设定比例在粉磨机中加入脱硫石膏、铝灰和电石渣等物料进行均化处理,或者在配料设备中,钢渣、脱硫石膏、铝灰和电石渣按设定比例进行混合,然后进入均化设备均化处理;
    均化处理后的水泥生料进入回转窑中煅烧,得到水泥熟料。
PCT/CN2020/077135 2019-04-15 2020-02-28 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统 WO2020211546A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/257,112 US11396478B2 (en) 2019-04-15 2020-02-28 Method and system for producing low-alkalinity sulphoaluminate cement with new mineral system using steel slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910300484.4A CN109987866B (zh) 2019-04-15 2019-04-15 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统
CN201910300484.4 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020211546A1 true WO2020211546A1 (zh) 2020-10-22

Family

ID=67133730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077135 WO2020211546A1 (zh) 2019-04-15 2020-02-28 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统

Country Status (3)

Country Link
US (1) US11396478B2 (zh)
CN (1) CN109987866B (zh)
WO (1) WO2020211546A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402180A (zh) * 2021-04-22 2021-09-17 刘新阳 一种热态增钙改性不锈钢渣及其使用方法
CN114455865A (zh) * 2022-02-21 2022-05-10 砼牛(上海)智能科技有限公司 一种矾土水泥生产方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987866B (zh) * 2019-04-15 2020-03-31 山东大学 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统
CN111848060A (zh) * 2020-05-25 2020-10-30 山东高速集团有限公司 一种固废基海工既有构筑物修复材料及其制备方法与应用
CN112723763A (zh) * 2020-12-30 2021-04-30 山东大学 利用高钙铁尾矿的生料、水泥熟料、负温工程材料及方法
CN112661426B (zh) * 2020-12-30 2022-06-07 山东大学 一种硫铝铁系水泥、其制备方法、系统和其在海洋工程材料中的应用
CN112759343B (zh) * 2020-12-31 2022-11-11 山东大学 一种固废基低碱度多孔生态透水混凝土及其制备方法
CN112794690B (zh) * 2020-12-31 2022-03-22 山东大学 一种免蒸养静压成型路面砖及其制备方法
CN112777989B (zh) * 2021-01-07 2022-12-09 山东大学 一种环保型路用透水混凝土及其制备方法和应用
CN113277758A (zh) * 2021-05-27 2021-08-20 江苏省沙钢钢铁研究院有限公司 一种低成本固废基硫铝酸盐水泥的制备方法
CN113461345B (zh) * 2021-07-23 2022-09-30 沈阳鑫博工业技术股份有限公司 一种利用电石渣焙烧生产电石用石灰及成型的装置与方法
CN114133196B (zh) * 2021-11-22 2023-04-11 云南森博混凝土外加剂有限公司 一种水泥灌浆料及其制备方法
CN114907086A (zh) * 2022-05-11 2022-08-16 内蒙古伊东冀东水泥有限公司 一种轨道交通专用水泥及其生产工艺
CN114918236B (zh) * 2022-05-11 2023-12-19 山东大学 一种垃圾焚烧飞灰水洗反应装置、处理系统及方法
CN116023048B (zh) * 2023-03-28 2023-06-16 湖南创速新材料有限公司 一种水泥熟料及利用其制备水泥的方法
CN116496011A (zh) * 2023-06-28 2023-07-28 矿冶科技集团有限公司 用于复合胶凝材料的活性激发剂、复合胶凝材料及其制备方法
CN116969703B (zh) * 2023-09-18 2023-12-19 常熟理工学院 一种利用锂渣和二次铝灰制备地质聚合硫铝酸盐水泥的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922622A (zh) * 2014-03-20 2014-07-16 山东大学 一种利用铝灰生产硫铝酸盐水泥的工艺
EP3081546A1 (en) * 2014-02-24 2016-10-19 Tangshan Polar Bear Building Materials Co., Ltd. Rapid-setting and hardening, high-belite sulfoaluminate cement clinker as well as application and production process thereof
CN106365477A (zh) * 2016-09-23 2017-02-01 金正大诺泰尔化学有限公司 一种制备高强度硫铝酸盐水泥联产硫酸的方法
CN106630703A (zh) * 2016-09-23 2017-05-10 金正大生态工程集团股份有限公司 一种分段煅烧制备高强度硫铝酸盐水泥联产硫酸的方法
CN106810294A (zh) * 2017-03-17 2017-06-09 山东卓联环保科技有限公司 一种利用固废制备环保建筑板材的系统和方法
CN106904849A (zh) * 2017-03-17 2017-06-30 山东大学 一种利用工业固废生产硫铝酸盐水泥联产硫酸的系统和方法
EP3199500A1 (en) * 2016-01-29 2017-08-02 Cimsa Cimento Sanayi Ve Ticaret Anonim Sirketi Calcium sulphoaluminate cement with mayenite phase
CN107056102A (zh) * 2017-03-17 2017-08-18 山东卓联环保科技有限公司 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法
CN109133684A (zh) * 2018-09-10 2019-01-04 西南科技大学 一种高铁贝利特硫铝酸盐水泥熟料及其制备方法
CN109987866A (zh) * 2019-04-15 2019-07-09 山东大学 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841756A (ja) * 1981-08-31 1983-03-11 松下電工株式会社 無機硬化体の製法
CN106866006B (zh) * 2017-03-17 2019-04-02 山东大学 有机废水协同工业固废制备硫铝酸盐水泥的系统及方法
CN107721214B (zh) * 2017-09-30 2021-10-15 北京工业大学 一种高铁铝酸盐-贝利特-硫铝酸盐水泥熟料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081546A1 (en) * 2014-02-24 2016-10-19 Tangshan Polar Bear Building Materials Co., Ltd. Rapid-setting and hardening, high-belite sulfoaluminate cement clinker as well as application and production process thereof
CN103922622A (zh) * 2014-03-20 2014-07-16 山东大学 一种利用铝灰生产硫铝酸盐水泥的工艺
EP3199500A1 (en) * 2016-01-29 2017-08-02 Cimsa Cimento Sanayi Ve Ticaret Anonim Sirketi Calcium sulphoaluminate cement with mayenite phase
CN106365477A (zh) * 2016-09-23 2017-02-01 金正大诺泰尔化学有限公司 一种制备高强度硫铝酸盐水泥联产硫酸的方法
CN106630703A (zh) * 2016-09-23 2017-05-10 金正大生态工程集团股份有限公司 一种分段煅烧制备高强度硫铝酸盐水泥联产硫酸的方法
CN106810294A (zh) * 2017-03-17 2017-06-09 山东卓联环保科技有限公司 一种利用固废制备环保建筑板材的系统和方法
CN106904849A (zh) * 2017-03-17 2017-06-30 山东大学 一种利用工业固废生产硫铝酸盐水泥联产硫酸的系统和方法
CN107056102A (zh) * 2017-03-17 2017-08-18 山东卓联环保科技有限公司 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法
CN109133684A (zh) * 2018-09-10 2019-01-04 西南科技大学 一种高铁贝利特硫铝酸盐水泥熟料及其制备方法
CN109987866A (zh) * 2019-04-15 2019-07-09 山东大学 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402180A (zh) * 2021-04-22 2021-09-17 刘新阳 一种热态增钙改性不锈钢渣及其使用方法
CN114455865A (zh) * 2022-02-21 2022-05-10 砼牛(上海)智能科技有限公司 一种矾土水泥生产方法

Also Published As

Publication number Publication date
US11396478B2 (en) 2022-07-26
CN109987866B (zh) 2020-03-31
CN109987866A (zh) 2019-07-09
US20210130234A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2020211546A1 (zh) 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统
AU2014317427B2 (en) Fluxes/mineralizers for calcium sulfoaluminate cements
CN106277865B (zh) 一种硅酸盐水泥熟料的制备方法
CN104788032B (zh) 一种贝利特水泥及其制备方法
CN109081615B (zh) 一种基于工业废渣的道路硅酸盐水泥熟料及其制备方法
CN108726904A (zh) 一种道路缓凝水泥及其制备方法
CN100513341C (zh) 用高硅磷石膏生产水泥和硫酸的方法
CN105130220B (zh) 用废弃混凝土和污泥制生态水泥和活性砂的方法
WO2022142136A1 (zh) 一种硫铝铁系水泥、其制备方法、系统和其在海洋工程材料中的应用
CN101792274A (zh) 对中碱度钢渣进行在线高温重构的钙硅铝质性能调节材料及其应用
CN107721216B (zh) 一种利用高炉熔融渣液相烧成水泥熟料的工艺
CN104724959B (zh) 一种低热耗低硅率高强度的硅酸盐水泥熟料的制备方法
CN111187013A (zh) 一种环保型高强度水泥及其制备方法
CN110282898B (zh) 高性能矿物掺合料及其在混凝土中的应用
CN108328954A (zh) 碳铬渣基高强轻骨料及其工业化生产方法
CN113354311A (zh) 一种资源节约型低碳水泥熟料及其制备方法
CN105621910A (zh) 一种硫铝酸盐水泥熟料及其制备方法,硫铝酸盐水泥
CN111302677A (zh) 一种超硫酸盐水泥及其制备方法
CN102936104A (zh) 一种制备快硬早强水泥熟料的方法
CN113060953B (zh) 一种煤矸石高活性新材料的制备方法
CN104761160B (zh) 一种改性矿渣粉的制备方法
CN108821840A (zh) 煤矸石同时制备无磁和磁化枸溶性硅肥的工艺
CN106966617B (zh) 一次低温烧成贝利特-硫铝酸盐-硫铁铝酸盐-硫硅酸钙水泥熟料的方法
CN107382107B (zh) 一种利用镁渣、锰渣制备硫铝酸盐水泥熟料的方法
CN112279529A (zh) 一种利用转炉钢渣提高烧结水泥中硅和铝含量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790757

Country of ref document: EP

Kind code of ref document: A1