WO2020211441A1 - 桥式电路软启动方法、控制器和设备 - Google Patents

桥式电路软启动方法、控制器和设备 Download PDF

Info

Publication number
WO2020211441A1
WO2020211441A1 PCT/CN2019/127901 CN2019127901W WO2020211441A1 WO 2020211441 A1 WO2020211441 A1 WO 2020211441A1 CN 2019127901 W CN2019127901 W CN 2019127901W WO 2020211441 A1 WO2020211441 A1 WO 2020211441A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
output
phase shift
bridge circuit
duty cycle
Prior art date
Application number
PCT/CN2019/127901
Other languages
English (en)
French (fr)
Inventor
宋江喜
袁金荣
黄猛
陈勇
刘爽
李秋莲
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020211441A1 publication Critical patent/WO2020211441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present disclosure relates to the field of control, and in particular to a bridge circuit soft start method, controller and equipment.
  • Bridge-type DC converters have been widely used in various occasions due to their large conversion power, large conversion voltage difference, and isolation. Because there are many energy storage capacitors in the topology of the bridge DC converter, the bridge DC converter must have a soft start function. In the technology known to the inventor, a current limiting resistor is connected in series on the input side or output side of the bridge DC converter to limit the starting current to achieve the purpose of soft starting.
  • a bridge circuit soft-start method which includes: outputting an initial control signal with an initial duty cycle to a bridge drive circuit of the bridge circuit; and gradually increasing the initial control signal of the initial control signal by a predetermined increment. Obtain the duty cycle control signal from the duty cycle. After stopping outputting the initial control signal, output the duty cycle control signal to the bridge drive circuit until the voltage output by the bridge circuit or the duty cycle of the duty cycle control signal meets the preset condition.
  • the initial duty cycle is greater than the ratio threshold, and the difference between the initial duty cycle and the ratio threshold is less than the ratio difference threshold, where the ratio threshold is the sum of the rising edge time and the falling edge time of the bridge drive circuit and the switch The ratio of the cycle time.
  • the bridge drive circuit includes an input side upper arm switch, an input side lower arm switch, an output side upper arm switch, and an output side lower arm switch;
  • the initial control signal includes an input side upper arm switch The first initial control signal output, the second initial control signal output to the output side upper arm switch, the third initial control signal output to the input side lower arm switch, the fourth initial control signal output to the output side lower arm switch Control signal;
  • the first initial control signal is consistent with the second initial control signal, and the third initial control signal is consistent with the fourth initial control signal;
  • the start edge of the first initial control signal is after the end edge of the third initial control signal, or , The end edge of the first initial control signal is before the start edge of the third initial control signal.
  • the process of gradually increasing the initial duty cycle by a predetermined increment it is determined whether the voltage output by the bridge circuit reaches the predetermined voltage; if the voltage output by the bridge circuit reaches the predetermined voltage, the current The duty cycle control signal controls the bridge drive circuit so that the bridge circuit outputs a stable voltage; if the voltage output by the bridge circuit does not reach the predetermined voltage, continue to increase the duty cycle of the duty cycle control signal until the duty cycle The duty ratio of the ratio control signal reaches the predetermined duty ratio.
  • the duty cycle of the duty cycle control signal when the duty cycle of the duty cycle control signal reaches the predetermined duty cycle, it is determined whether the voltage output by the bridge circuit reaches the predetermined voltage; if the voltage output by the bridge circuit does not reach the predetermined voltage, the output is stopped.
  • Duty cycle control signal and output a phase shift control signal to the bridge drive circuit until the voltage output by the bridge circuit reaches a predetermined voltage, where the duty cycle of the phase shift control signal is the predetermined duty cycle; wherein, the bridge drive The circuit includes an input side upper arm switch, an input side lower arm switch, an output side upper arm switch, and an output side lower arm switch.
  • the phase shift control signal includes: the first phase shift control output to the input side upper arm switch Signal, the second phase shift control signal output to the output side upper arm switch, the third phase shift control signal output to the input side lower arm switch, and the fourth phase shift control signal output to the output side lower arm switch;
  • the phase of the first phase shift control signal leads the phase of the second phase shift control signal
  • the third phase shift control signal leads the phase of the fourth phase shift control signal.
  • the phase difference between the first phase shift control signal and the second phase shift control signal, and the phase difference between the third phase shift control signal and the fourth phase shift control signal gradually increase in predetermined increments over time .
  • the first phase shift control signal and the third phase shift control signal are complementary signals; the second phase shift control signal and the fourth phase shift control signal are complementary signals.
  • the dead time of the duty cycle control signal is set; and/or when the duty cycle of the phase shift control signal is 1/2 , Set the dead time of the phase shift control signal.
  • a controller including: a signal determining unit configured to determine an initial duty ratio of the initial control signal, and gradually increase the initial duty ratio of the initial control signal by a predetermined increment Obtain the duty cycle control signal; the signal output unit is configured to output an initial control signal to the bridge drive circuit of the bridge circuit; after stopping the output of the initial control signal, output the duty cycle control signal to the bridge drive circuit until the bridge The duty cycle of the voltage or the duty cycle control signal output by the formula circuit meets the preset condition.
  • the voltage determining unit is configured to determine whether the voltage output by the bridge circuit reaches a predetermined voltage in the process of gradually increasing the duty cycle by a predetermined increment; wherein the signal output unit is configured to If the voltage output by the bridge circuit reaches the predetermined voltage, the bridge drive circuit is subsequently controlled with the current duty cycle control signal so that the bridge circuit outputs a stable voltage; the signal determining unit is configured to if the voltage output by the bridge circuit does not reach For a predetermined voltage, continue to increase the duty cycle of the duty cycle control signal until the duty cycle of the duty cycle control signal reaches the predetermined duty cycle.
  • the voltage determining unit is configured to determine whether the voltage output by the bridge circuit reaches the predetermined voltage when the duty ratio of the duty ratio control signal reaches the predetermined duty ratio; the signal determining unit is configured to determine whether the voltage output by the bridge circuit reaches the predetermined voltage; If the voltage output by the circuit does not reach the predetermined voltage, the phase shift control signal is determined, wherein the duty cycle of the phase shift control signal is the predetermined duty cycle; the signal output unit is configured to stop outputting the duty cycle control signal, and then send it to the bridge
  • the drive circuit outputs a phase shift control signal until the voltage output by the bridge circuit reaches a predetermined voltage; wherein, the bridge drive circuit includes an input side upper arm switch, an input side lower arm switch, an output side upper arm switch and an output side lower arm switch.
  • the bridge arm switch, the phase shift control signal includes: the first phase shift control signal output to the input side upper arm switch, the second phase shift control signal output to the output side upper arm switch, and the input side lower bridge arm switch output
  • a controller including: a memory; and a processor coupled to the memory, and the processor is configured to execute the above-mentioned method based on instructions stored in the memory.
  • a bridge circuit including the above-mentioned controller is also provided.
  • the bridge circuit is a bridge DC converter.
  • an electric device including the above-mentioned bridge circuit.
  • a computer-readable storage medium on which computer program instructions are stored, and when the instructions are executed by a processor, the steps of the foregoing method are implemented.
  • the duty cycle is gradually relaxed by a predetermined increment.
  • the voltage on the output side of the bridge circuit will rise slowly, that is, the bridge circuit is soft-started
  • the output voltage is slowly increased through software processing logic, which reduces the circuit loss.
  • Figure 1 is a schematic diagram of the topology of the bridge circuit.
  • FIG. 2 is a schematic flowchart of some embodiments of the disclosed bridge circuit soft start method.
  • Figure 3 is a schematic diagram of the initial control signal of the present disclosure.
  • FIG. 4 is a schematic flowchart of other embodiments of the bridge circuit soft start method of the present disclosure.
  • Figure 5 is a schematic diagram of a duty cycle control signal of the present disclosure.
  • Fig. 6 is a schematic diagram of a phase shift control signal of the present disclosure.
  • FIG. 7 is a schematic diagram of the output voltage working curve of the bridge circuit of the disclosure.
  • FIG. 8 is a schematic structural diagram of some embodiments of the controller of the disclosure.
  • FIG. 9 is a schematic structural diagram of other embodiments of the controller of the disclosure.
  • Fig. 10 is a schematic structural diagram of other embodiments of the controller of the present disclosure.
  • FIG. 11 is a schematic structural diagram of other embodiments of the controller of the disclosure.
  • auxiliary hardware circuits such as current-limiting resistors will produce losses, resulting in low system efficiency, and the current-limiting resistors are prone to aging and damage if they continue to work at high temperatures.
  • FIG. 1 is a schematic diagram of the topology of the bridge circuit.
  • the bridge circuit includes a main circuit, a voltage conditioning circuit, and a controller.
  • the main circuit is mainly responsible for the power change of the system, including the bridge drive circuit, clamping capacitor, isolation transformer, and energy storage inductor.
  • the bridge drive circuit includes an input side upper arm switch Q1, an output side upper arm switch Q2, an input side lower arm switch Q3, and an output side lower arm switch Q4;
  • the clamping capacitor includes a first capacitor C1, a second capacitor C2 ,
  • the energy storage inductor includes an inductor L1 and an inductor L2.
  • the two ends of the first capacitor C1 are connected in series with the input voltage terminal, the second capacitor C2 and the third capacitor C3 are connected in series, and then connected in parallel with the first capacitor C1; the first terminal of the upper arm switch Q1 on the input side is connected to the input side
  • the second end of the upper arm switch Q1 on the input side is connected to the first end of the primary side of the isolation transformer T, and the second end of the primary side of the isolation transformer T is connected between the second capacitor C2 and the third capacitor C3
  • the first end of the input side lower arm switch Q3 is connected to the second end of the input side upper arm switch Q1, and the second end of the input side lower arm switch Q3 is connected to the second end of the input side power supply.
  • the first end of the output side upper arm switch Q2 is connected to the first end of the output side lower arm switch Q4 through the fourth capacitor C4 and the fifth capacitor C5; the second end of the output side upper arm switch Q2 is connected to the output side lower
  • the second end of the bridge switch Q4 is connected to the first end of the secondary side of the isolation transformer through the first inductor L1, and the second end of the secondary side of the isolation transformer is connected to the fourth capacitor C4 and the fifth capacitor Between C5; the first end of the output-side lower-arm switch Q4 is used as one end of the output-side power supply, and the second end of the output-side lower-arm switch Q4 is used as the other end of the output-side power supply through the second inductor L2.
  • the voltage conditioning circuit 1 samples and regulates the output voltage, and uses the conditioned voltage as the reference basis for the soft-start voltage; the controller 2 obtains the output side voltage converted by the voltage conditioning circuit through the sampling module, and executes the soft-start logic, that is, to the input side
  • the bridge arm switch Q1, the output side upper arm switch Q2, the input side lower arm switch Q3, and the output side lower arm switch Q4 send control signals to complete the soft start of the bridge circuit.
  • the specific startup logic is as follows.
  • FIG. 2 is a schematic flowchart of some embodiments of the disclosed bridge circuit soft start method.
  • step 210 an initial control signal having an initial duty ratio is output to the bridge driving circuit of the bridge circuit.
  • the bridge circuit is, for example, a bridge DC converter.
  • the setting of the initial duty cycle determines the size of the starting impulse current of the bridge circuit. If the setting is too small and exceeds the resolution of the bridge drive circuit, the switching devices in the bridge drive circuit cannot be controlled. If it is set too much, it will cause a large The starting impulse current cannot meet the requirements of soft start, therefore, it is necessary to set a reasonable initial duty cycle.
  • the initial duty cycle is greater than the ratio threshold, and the difference between the initial duty cycle and the ratio threshold is less than the ratio difference threshold, where the ratio threshold is the sum of the rising edge time and the falling edge time of the bridge drive circuit and the switch
  • the ratio of the cycle time that is, the initial duty ratio is slightly larger than the ratio of the sum of the rising edge time and the falling edge time of the bridge drive circuit to the switching cycle time.
  • the initial control signal includes a first initial control signal T1 output to the upper arm switch on the input side, a second initial control signal T2 output to the upper arm switch on the output side, and output to the lower arm switch on the input side.
  • step 220 the initial duty cycle of the initial control signal is gradually increased by a predetermined increment to obtain the duty cycle control signal.
  • the duty cycle control signal is output to the bridge drive circuit until the bridge circuit The output voltage or the duty cycle of the duty cycle control signal meets the preset condition.
  • the duty cycle of the duty cycle control signal reaches the preset duty cycle, for example, when it reaches 1/2, the duty cycle of the duty cycle control signal is no longer adjusted. If the starting voltage of the bridge circuit is small, the duty cycle can be adjusted so that the output voltage reaches a stable voltage, and the purpose of soft starting can be achieved.
  • the duty cycle is gradually relaxed by a predetermined increment.
  • the voltage on the output side of the bridge circuit will rise slowly, that is, the bridge circuit is soft-started
  • the output voltage is slowly increased through software processing logic, which reduces the circuit loss.
  • FIG. 4 is a schematic flowchart of other embodiments of the bridge circuit soft start method of the present disclosure.
  • step 410 an initial control signal having an initial duty ratio is output to the bridge driving circuit of the bridge circuit.
  • step 420 the initial duty ratio of the initial control signal is gradually increased by a predetermined increment to obtain the duty ratio control signal, and after stopping the output of the initial control signal, the duty ratio control signal is output to the bridge drive circuit.
  • step 430 it is determined whether the voltage output by the bridge circuit reaches the predetermined voltage, if it reaches the predetermined voltage, step 440 is executed, otherwise, step 450 is executed.
  • step 440 the bridge drive circuit is subsequently controlled by the current duty cycle control signal, so that the bridge circuit outputs a stable voltage. That is, only by adjusting the duty cycle of the control signal, the soft start can be achieved.
  • step 450 continue to increase the duty ratio of the duty ratio control signal until the duty ratio of the duty ratio control signal reaches a predetermined duty ratio, for example, the predetermined duty ratio is 1/2.
  • the duty ratio control signal includes a first duty ratio control signal X1 output to the upper arm switch on the input side, a second duty ratio control signal X2 output to the upper arm switch on the output side, and The third duty ratio control signal X3 output by the side lower bridge arm switch, the fourth duty ratio control signal X4 output to the output side lower arm switch; the first duty ratio control signal X1 and the second duty ratio control signal X2 is consistent, the third duty ratio control signal X3 and the fourth duty ratio control signal X4 are consistent, and when the duty ratio of the duty ratio control signal reaches 1/2, the first duty ratio control signal X1 and the second The three duty cycle control signal X3 is complementary, and the second duty cycle control signal X2 and the fourth duty cycle control signal X4 are complementary.
  • step 460 when the duty ratio of the duty ratio control signal reaches the predetermined duty ratio, it is determined whether the voltage output by the bridge circuit reaches the predetermined voltage, if it reaches the predetermined voltage, step 440 is executed, otherwise, step 470 is executed.
  • step 470 after stopping the output of the duty cycle control signal, output the phase shift control signal to the bridge drive circuit until the voltage output by the bridge circuit reaches a predetermined voltage, wherein the duty cycle of the phase shift control signal is the predetermined duty cycle .
  • the phase shift control signal includes a first phase shift control signal Y1 output to the upper arm switch on the input side, a second phase shift control signal Y2 output to the upper arm switch on the output side, and a second phase shift control signal Y2 output to the lower arm switch on the input side.
  • the third phase shift control signal Y3 and the fourth phase shift control signal Y4 output to the output side lower arm switch.
  • the phase of the first phase shift control signal Y1 leads the phase of the second phase shift control signal Y2
  • the third phase shift control signal Y3 leads the phase of the fourth phase shift control signal Y4.
  • the phase difference between the first phase shift control signal Y1 and the second phase shift control signal Y2 is consistent with the phase difference between the third phase shift control signal Y3 and the fourth phase shift control signal Y4.
  • the first phase shift control signal Y1 and the third phase shift control signal Y3 are complementary signals; the second phase shift control signal Y2 and the fourth phase shift control signal Y4 are complementary signals.
  • the phase difference between the first phase shift control signal Y1 and the second phase shift control signal Y2, and the phase difference between the third phase shift control signal Y3 and the fourth phase shift control signal Y4 increase with time in predetermined increments. For example, the phase difference gradually increases from 0 to q1.
  • q1 is ⁇ /2, for example.
  • the maximum phase difference is related to the load resistance.
  • the load resistance determines the power transmission capacity.
  • the phase shift angle is positive, the input power is positive, and the phase shift angle is ⁇ /2, The transmission power reaches the maximum forward direction.
  • the dead time of the duty cycle control signal is set. That is, the dead time of the first duty ratio control signal X1 and the third duty ratio control signal X3, and the dead time of the second duty ratio control signal X2 and the fourth duty ratio control signal X4 are appropriately increased.
  • the dead time of the phase shift control signal is set. That is, the dead time of the first phase shift control signal Y1 and the third phase shift control signal Y3, and the dead time of the second phase shift control signal Y2 and the fourth phase shift control signal Y4 are appropriately increased.
  • the dead time is related to the turn-on delay time and rise time of the selected switching device and the turn-off delay time and fall time.
  • FIG. 8 is a schematic structural diagram of some embodiments of the controller of the disclosure.
  • the controller includes a signal determining unit 810 and a signal output unit 820.
  • the signal determining unit 810 is configured to determine the initial duty ratio of the initial control signal, and gradually increase the initial duty ratio of the initial control signal by a predetermined increment to obtain the duty ratio control signal.
  • the initial duty cycle is greater than the ratio threshold, and the difference between the initial duty cycle and the ratio threshold is less than the ratio difference threshold, where the ratio threshold is the sum of the rising edge time and the falling edge time of the bridge drive circuit and the switch The ratio of the cycle time.
  • the initial control signal includes a first initial control signal T1 output to the upper arm switch on the input side, a second initial control signal T2 output to the upper arm switch on the output side, and output to the lower arm switch on the input side.
  • the signal output unit 820 is configured to output an initial control signal to the bridge drive circuit of the bridge circuit; after stopping the output of the initial control signal, output the duty cycle control signal to the bridge drive circuit until the voltage or duty cycle output by the bridge circuit
  • the duty ratio of the empty ratio control signal meets the preset condition.
  • the duty cycle of the duty cycle control signal reaches the preset duty cycle, for example, when it reaches 1/2, the duty cycle of the duty cycle control signal is no longer adjusted. If the starting voltage of the bridge circuit is small, the duty cycle can be adjusted so that the voltage output by the bridge circuit reaches a stable voltage, and the purpose of soft starting can be achieved.
  • the duty cycle is gradually relaxed by a predetermined increment.
  • the voltage on the output side of the bridge circuit will rise slowly, that is, the bridge circuit is soft-started
  • the output voltage is slowly increased through software processing logic, which reduces the circuit loss.
  • FIG. 9 is a schematic structural diagram of other embodiments of the controller of the disclosure.
  • the controller not only includes a signal determining unit 810 and a signal output unit 820, but also includes a voltage determining unit 910.
  • the voltage determining unit 910 is configured to determine whether the voltage output by the bridge circuit reaches a predetermined voltage in the process of increasing the duty ratio by a predetermined increment.
  • the signal output unit 820 is configured to, if the voltage output by the bridge circuit reaches a predetermined voltage, subsequently control the bridge drive circuit with the current duty cycle control signal, so that the bridge circuit outputs a stable voltage.
  • the signal determining unit 810 is configured to continue increasing the duty ratio of the duty ratio control signal if the voltage output by the bridge circuit does not reach the predetermined voltage, until the duty ratio of the duty ratio control signal reaches the predetermined duty ratio.
  • the voltage determining unit 910 is configured to determine whether the voltage output by the bridge circuit reaches the predetermined voltage when the duty ratio of the duty ratio control signal reaches the predetermined duty ratio.
  • the signal determining unit 810 is configured to determine the phase shift control signal if the voltage output by the bridge circuit does not reach the predetermined voltage, wherein the duty cycle of the phase shift control signal is the predetermined duty cycle; the signal output unit 820 is configured to stop After the duty cycle control signal is output, the phase shift control signal is output to the bridge drive circuit until the voltage output by the bridge circuit reaches a predetermined voltage.
  • the phase shift control signal includes a first phase shift control signal Y1 output to the upper arm switch on the input side, a second phase shift control signal Y2 output to the upper arm switch on the output side, and a second phase shift control signal Y2 output to the lower arm switch on the input side.
  • the third phase shift control signal Y3 and the fourth phase shift control signal Y4 output to the output side lower arm switch.
  • the phase of the first phase shift control signal Y1 leads the phase of the second phase shift control signal Y2
  • the third phase shift control signal Y3 leads the phase of the fourth phase shift control signal Y4.
  • the phase difference between the first phase shift control signal Y1 and the second phase shift control signal Y2, and the phase difference between the third phase shift control signal Y3 and the fourth phase shift control signal Y4 increase by a predetermined amount with time.
  • the amount increases.
  • the phase difference gradually increases from 0 to q1.
  • the first phase shift control signal Y1 and the third phase shift control signal Y3 are complementary signals; the second phase shift control signal Y2 and the fourth phase shift control signal Y4 are complementary signals.
  • the output voltage of the bridge circuit When setting the initial duty cycle, the output voltage of the bridge circuit is V1, and gradually increase the duty cycle of the signal. When the duty cycle of the signal reaches 1/2, the output voltage of the bridge circuit slowly increases to a stable voltage V2, through the setting of the phase shift angle, the output voltage of the bridge circuit is slowly increased from V2 to V3, thereby achieving the purpose of soft start.
  • This embodiment does not need to add auxiliary hardware circuits on the input side or output side, effectively reducing efficiency loss And the high temperature aging of the device.
  • the dead time of the duty cycle control signal is set. That is, the dead time of the first duty ratio control signal X1 and the third duty ratio control signal X3, and the dead time of the second duty ratio control signal X2 and the fourth duty ratio control signal X4 are appropriately increased.
  • the dead time of the phase shift control signal is set. That is, the dead time of the first phase shift control signal Y1 and the third phase shift control signal Y3, and the dead time of the second phase shift control signal Y2 and the fourth phase shift control signal Y4 are appropriately increased.
  • Fig. 10 is a schematic structural diagram of other embodiments of the controller of the present disclosure.
  • the controller includes a memory 1010 and a processor 1020.
  • the memory 1010 may be a magnetic disk, flash memory or any other non-volatile storage medium.
  • the memory 1010 is used to store instructions in the embodiments corresponding to FIGS. 2 and 4.
  • the processor 1020 is coupled to the memory 1010 and can be implemented as one or more integrated circuits, such as a microprocessor or a microcontroller.
  • the processor 1020 is used to execute instructions stored in the memory.
  • the controller 1100 includes a memory 1110 and a processor 1120.
  • the processor 1120 is coupled to the memory 1110 through the BUS bus 1130.
  • the controller 1100 can also be connected to an external storage device 1150 through a storage interface 1140 to call external data, and can also be connected to a network or another computer system (not shown) through a network interface 1160. No more detailed introduction here.
  • the data instructions are stored in the memory, and the above instructions are processed by the processor, which can achieve the purpose of soft start without adding auxiliary hardware circuits.
  • a bridge circuit is protected, and the bridge circuit includes the above-mentioned controller.
  • the bridge circuit is, for example, a bridge DC converter.
  • an electrical equipment is protected, and the electrical equipment includes the above-mentioned bridge circuit.
  • the electrical equipment is, for example, an air conditioner.
  • a computer-readable storage medium has computer program instructions stored thereon, and when the instructions are executed by a processor, the steps of the method in the embodiments corresponding to FIGS. 2 and 4 are implemented.
  • the embodiments of the present disclosure may be provided as methods, devices, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware.
  • the present disclosure may take the form of a computer program product implemented on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes. .
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

一种桥式电路软启动方法、控制器和设备,涉及控制领域。该方法包括:向桥式电路的桥式驱动电路输出具有初始占空比的初始控制信号(210);以预定增量逐渐增大初始控制信号的初始占空比得到占空比控制信号,在停止输出初始控制信号之后,向桥式驱动电路输出占空比控制信号,直到桥式电路输出的电压或占空比控制信号的占空比满足预设条件(220)。该方法能够降低桥式电路软启动过程中的电路损耗。

Description

桥式电路软启动方法、控制器和设备
相关申请的交叉引用
本申请是以CN申请号为201910312159.X,申请日为2019年4月18日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及控制领域,尤其涉及一种桥式电路软启动方法、控制器和设备。
背景技术
桥式直流变换器因其转换功率大,转换压差大,且兼具隔离作用,已大规模应用于各种场合。由于桥式直流变换器的拓扑存在很多储能电容,因此桥式直流变换器必须具备软启动功能。在发明人已知的技术中,是在桥式直流变换器的输入侧或者输出侧串入限流电阻,限制启动电流以达到软启动的目的。
发明内容
根据本公开一方面,提出一种桥式电路软启动方法,包括:向桥式电路的桥式驱动电路输出具有初始占空比的初始控制信号;以预定增量逐渐增大初始控制信号的初始占空比得到占空比控制信号,在停止输出初始控制信号之后,向桥式驱动电路输出占空比控制信号,直到桥式电路输出的电压或占空比控制信号的占空比满足预设条件。
在一些实施例中,初始占空比大于比值阈值,并且初始占空比与比值阈值之差小于比值差阈值,其中,比值阈值为桥式驱动电路的上升沿时间与下降沿时间之和与开关周期时间的比值。
在一些实施例中,桥式驱动电路包括输入侧上桥臂开关、输入侧下桥臂开关、输出侧上桥臂开关和输出侧下桥臂开关;初始控制信号包括向输入侧上桥臂开关输出的第一初始控制信号、向输出侧上桥臂开关输出的第二初始控制信号、向输入侧下桥臂开关输出的第三初始控制信号、向输出侧下桥臂开关输出的第四初始控制信号;第一初始控制信号和第二初始控制信号一致,第三初始控制信号和第四初始控制信号一致;第一初始控制信号的起始沿在第三初始控制信号的结束沿之后,或者,第一初始控制信号的结束沿在第三初始控制信号的起始沿之前。
在一些实施例中,在以预定增量逐渐增大初始占空比的过程中,判断桥式电路输出的电压是否达到预定电压;若桥式电路输出的电压达到预定电压,则后续以当前的占空比控制信号对桥式驱动电路进行控制,以便桥式电路输出稳定电压;若桥式电路输出的电压未达到预定电压,则继续增大占空比控制信号的占空比,直到占空比控制信号的占空比达到预定占空比。
在一些实施例中,在占空比控制信号的占空比达到预定占空比时,判断桥式电路输出的电压是否达到预定电压;若桥式电路输出的电压未达到预定电压,则停止输出占空比控制信号,并向桥式驱动电路输出移相控制信号,直到桥式电路输出的电压达到预定电压,其中,移相控制信号的占空比为预定占空比;其中,桥式驱动电路包括输入侧上桥臂开关、输入侧下桥臂开关、输出侧上桥臂开关和输出侧下桥臂开关,移相控制信号包括:向输入侧上桥臂开关输出的第一移相控制信号、向输出侧上桥臂开关输出的第二移相控制信号、向输入侧下桥臂开关输出的第三移相控制信号、向输出侧下桥臂开关输出的第四移相控制信号;第一移相控制信号的相位超前于第二移相控制信号的相位,第三移相控制信号超前于第四移相控制信号的相位。
在一些实施例中,第一移相控制信号与第二移相控制信号的相位差,以及第三移相控制信号与第四移相控制信号的相位差随着时间以预定增量逐渐增大。
在一些实施例中,第一移相控制信号与第三移相控制信号为互补信号;第二移相控制信号与第四移相控制信号为互补信号。
在一些实施例中,在占空比控制信号的占空比达到1/2时,设置占空比控制信号的死区时间;和/或在移相控制信号的占空比为1/2时,设置移相控制信号的死区时间。
根据本公开的另一方面,还提出一种控制器,包括:信号确定单元,被配置为确定初始控制信号的初始占空比,以及以预定增量逐渐增大初始控制信号的初始占空比得到占空比控制信号;信号输出单元,被配置为向桥式电路的桥式驱动电路输出初始控制信号;在停止输出初始控制信号之后,向桥式驱动电路输出占空比控制信号,直到桥式电路输出的电压或占空比控制信号的占空比满足预设条件。
在一些实施例中,电压判断单元,被配置为在以预定增量逐渐增大占空比的过程中,判断桥式电路输出的电压是否达到预定电压;其中,信号输出单元被配置为若桥式电路输出的电压达到预定电压,则后续以当前的占空比控制信号对桥式驱动电路进行控制,以便桥式电路输出稳定电压;信号确定单元被配置为若桥式电路输出的电压未达到预定电压,则继续增大占空比控制信号的占空比,直到占空比控制信号的占空 比达到预定占空比。
在一些实施例中,电压判断单元被配置为在占空比控制信号的占空比达到预定占空比时,判断桥式电路输出的电压是否达到预定电压;信号确定单元被配置为若桥式电路输出的电压未达到预定电压,则确定移相控制信号,其中,移相控制信号的占空比为预定占空比;信号输出单元被配置为停止输出占空比控制信号后,向桥式驱动电路输出移相控制信号,直到桥式电路输出的电压达到预定电压;其中,桥式驱动电路包括输入侧上桥臂开关、输入侧下桥臂开关、输出侧上桥臂开关和输出侧下桥臂开关,移相控制信号包括:向输入侧上桥臂开关输出的第一移相控制信号、向输出侧上桥臂开关输出的第二移相控制信号、向输入侧下桥臂开关输出的第三移相控制信号、向输出侧下桥臂开关输出的第四移相控制信号;第一移相控制信号的相位超前于第二移相控制信号的相位,第三移相控制信号超前于第四移相控制信号的相位。
根据本公开的另一方面,还提出一种控制器,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行如上述的方法。
根据本公开的另一方面,还提出一种桥式电路,包括上述的控制器。
在一些实施例中,桥式电路为桥式直流变换器。
根据本公开的另一方面,还提出一种用电设备,包括上述的桥式电路。
根据本公开的另一方面,还提出一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上述的方法的步骤。
本公开实施例中,在设置初始占空比以后,以预定增量逐渐放宽占空比,随着占空比的增加,桥式电路的输出侧电压会缓慢上升,即在桥式电路软启动过程中,通过软件处理逻辑缓慢提高输出侧电压,降低了电路损耗。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为桥式电路的拓扑示意图。
图2为本公开桥式电路软启动方法的一些实施例的流程示意图。
图3为本公开初始控制信号示意图。
图4为本公开桥式电路软启动方法的另一些实施例的流程示意图。
图5为本公开占空比控制信号示意图。
图6为本公开移相控制信号示意图。
图7为本公开桥式电路输出电压工作曲线示意图。
图8为本公开控制器的一些实施例的结构示意图。
图9为本公开控制器的另一些实施例的结构示意图。
图10为本公开控制器的另一些实施例的结构示意图。
图11为本公开控制器的另一些实施例的结构示意图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
发明人发现,限流电阻等辅助硬件电路的持续接入会产生损耗,导致系统效率较低,并且限流电阻持续高温工作易老化损坏。
图1为桥式电路的拓扑示意图。桥式电路包括主电路、电压调理电路和控制器组成,其中,主电路主要负责系统的功率变化,包括桥式驱动电路、钳位电容、隔离变压器和储能电感。桥式驱动电路包括输入侧上桥臂开关Q1、输出侧上桥臂开关Q2、输入侧下桥臂开关Q3和输出侧下桥臂开关Q4;钳位电容包括第一电容器C1、第二电容器C2、第三电容器C3、第四电容器C4和第五电容器C5;储能电感包括电感器L1、电感器L2。
第一电容器C1的两端串接在输入电压端,第二电容器C2与第三电容器C3串联后,与第一电容器C1并联;输入侧上桥臂开关Q1的第一端与输入侧电源第一端连接,输入侧上桥臂开关Q1的第二端与隔离变压器T的初级侧的第一端连接,隔离变压器T的初级侧的第二端连接在第二电容器C2与第三电容器C3之间,输入侧下桥臂开关Q3的第一端与输入侧上桥臂开关Q1的第二端连接,输入侧下桥臂开关Q3的第二端与输入侧电源第二端连接。
输出侧上桥臂开关Q2的第一端通过第四电容器C4和第五电容器C5与输出侧下桥臂开关Q4的第一端连接;输出侧上桥臂开关Q2的第二端与输出侧下桥臂开关Q4的第二端连接,并通过第一电感器L1与隔离变压器的次级侧的第一端连接,隔离变压器的次级侧的第二端连接在第四电容器C4和第五电容器C5之间;输出侧下桥臂开关Q4的第一端作为输出侧电源的一端,输出侧下桥臂开关Q4的第二端通过第二电感器L2后作为输出侧电源的另一端。
电压调理电路1对输出电压采样并调理,将调理后的电压作为软启动电压的参考依据;控制器2通过采样模块获取电压调理电路转换的输出侧电压,执行软启动逻辑,即向输入侧上桥臂开关Q1、输出侧上桥臂开关Q2、输入侧下桥臂开关Q3和输出侧下桥臂开关Q4发送控制信号,完成桥式电路软启动。其中,具体启动逻辑如下所示。本领域的技术人员应当理解,上述桥式电路的拓扑仅用于举例,还可以有其他拓扑形式。
图2为本公开桥式电路软启动方法的一些实施例的流程示意图。
在步骤210,向桥式电路的桥式驱动电路输出具有初始占空比的初始控制信号。其中,桥式电路例如为桥式直流变换器。
初始占空比的设置决定桥式电路启动冲击电流的大小,如果设置过小超出桥式驱动电路的分辨能力,则无法控制桥式驱动电路中的开关器件,如果设置过大会导致产生很大的启动冲击电流,达不到软启动的要求,因此,需要设置合理的初始占空比。
在一些实施例中,初始占空比大于比值阈值,并且初始占空比与比值阈值之差小于比值差阈值,其中,比值阈值为桥式驱动电路的上升沿时间与下降沿时间之和与开关周期时间的比值,即初始占空比略大于桥式驱动电路的上升沿时间与下降沿时间之和与开关周期时间的比值。
在一些实施例中,初始控制信号包括向输入侧上桥臂开关输出的第一初始控制信号T1、向输出侧上桥臂开关输出的第二初始控制信号T2、向输入侧下桥臂开关输出的第三初始控制信号T3、向输出侧下桥臂开关输出的第四初始控制信号T4;第一初始控制信号T1和第二初始控制信号T2一致,第三初始控制信号T3和第四初始控制信号T4一致;第一初始控制信号T1的起始沿在第三初始控制信号T3的结束沿之后,或者,第一初始控制信号T1的结束沿在第三初始控制信号T3的起始沿之前,即T1与T3交错,T2和T4交错。
在步骤220,以预定增量逐渐增大初始控制信号的初始占空比得到占空比控制信号,在停止输出初始控制信号之后,向桥式驱动电路输出占空比控制信号,直到桥式电路输出的电压或占空比控制信号的占空比满足预设条件。在占空比控制信号的占空比达到预设占空比时,例如,在达到1/2时,则不再调节占空比控制信号的占空比。若桥式电路启动电压较小,则通过调整占空比,使得输出的电压达到稳定电压,则可以实现软启动的目的。
在上述实施例中,在设置初始占空比以后,以预定增量逐渐放宽占空比,随着占空比的增加,桥式电路的输出侧电压会缓慢上升,即在桥式电路软启动过程中,通过软件处理逻辑缓慢提高输出侧电压,降低了电路损耗。
图4为本公开桥式电路软启动方法的另一些实施例的流程示意图。
在步骤410,向桥式电路的桥式驱动电路输出具有初始占空比的初始控制信号。
在步骤420,以预定增量逐渐增大初始控制信号的初始占空比得到占空比控制信号,在停止输出初始控制信号之后,向桥式驱动电路输出占空比控制信号。
在步骤430,判断桥式电路输出的电压是否达到预定电压,若达到,则执行步骤440,否则,执行步骤450。
在步骤440,后续以当前的占空比控制信号对桥式驱动电路进行控制,以便桥式电路输出稳定电压。即仅通过调节控制信号的占空比,就能达到软启动的目的。
在步骤450,继续增大占空比控制信号的占空比,直到占空比控制信号的占空比达到预定占空比,预定占空比例如为1/2。
如图5所示,占空比控制信号包括向输入侧上桥臂开关输出的第一占空比控制信号X1、向输出侧上桥臂开关输出的第二占空比控制信号X2、向输入侧下桥臂开关输出的第三占空比控制信号X3、向输出侧下桥臂开关输出的第四占空比控制信号X4;第一占空比控制信号X1和第二占空比控制信号X2一致,第三占空比控制信号X3和第四占空比控制信号X4一致,并且,当占空比控制信号的占空比达到1/2时,第一占空比控制信号X1和第三占空比控制信号X3互补,第二占空比控制信号X2和第四占空比控制信号X4互补。
在步骤460,在占空比控制信号的占空比达到预定占空比时,判断桥式电路输出的电压是否达到预定电压,若达到则执行步骤440,否则,执行步骤470。
在步骤470,停止输出占空比控制信号后,向桥式驱动电路输出移相控制信号,直到桥式电路输出的电压达到预定电压,其中,移相控制信号的占空比为预定占空比。
其中,移相控制信号包括向输入侧上桥臂开关输出的第一移相控制信号Y1、向输出侧上桥臂开关输出的第二移相控制信号Y2、向输入侧下桥臂开关输出的第三移相控制信号Y3、向输出侧下桥臂开关输出的第四移相控制信号Y4。第一移相控制信号Y1的相位超前于第二移相控制信号Y2的相位,第三移相控制信号Y3超前于第四移相控制信号Y4的相位。其中,第一移相控制信号Y1与第二移相控制信号Y2的相位差,与第三移相控制信号Y3与第四移相控制信号Y4的相位差一致。
在一些实施例中,如图6所示,第一移相控制信号Y1与第三移相控制信号Y3为互补信号;第二移相控制信号Y2与第四移相控制信号Y4为互补信号。第一移相控制信号Y1与第二移相控制信号Y2的相位差,以及第三移相控制信号Y3与第四移相控制信号Y4的相位差随着时间以预定增量增大。例如相位差由0逐渐增大到q1。
在一些实施例中q1例如为π/2。其中,最大相位差与负载阻值有关,在输出电压一定的情况下,负载阻值确定功率的传输能力,在移相角为正时,输入功率为正,移相角为π/2时,传输功率达到正向最大。
如图7所示,在设定初始占空比时,桥式电路输出的电压为V1,逐渐增大信号的占空比,在信号的占空比达到1/2时,桥式电路输出的电压缓慢增加到稳定电压V2,再通过移相角的设置,使得桥式电路输出的电压由V2缓慢增加到V3,从而实现软启动的目的,该实施例无需在输入侧或者输出侧增加辅助硬件电路,有效减少效率损失和器件高温老化问题。
在一些实施例中,在占空比控制信号的占空比达到1/2时,设置占空比控制信号 的死区时间。即适当增加第一占空比控制信号X1与第三占空比控制信号X3死区时间,以及第二占空比控制信号X2与第四占空比控制信号X4的死区时间。
在一些实施例中,在移相控制信号的占空比为1/2时,设置移相控制信号的死区时间。即适当增加第一移相控制信号Y1与第三移相控制信号Y3的死区时间,以及第二移相控制信号Y2与第四移相控制信号Y4的死区时间。
其中,死区时间与选用的开关器件的开通延迟时间和上升时间以及关断的延迟时间和下降时间有关。
在上述实施例中,通过适当增加死区时间,能够避免桥式电路的上下桥臂直通的问题。
图8为本公开控制器的一些实施例的结构示意图。该控制器包括信号确定单元810和信号输出单元820。
信号确定单元810被配置为确定初始控制信号的初始占空比,以及以预定增量逐渐增大初始控制信号的初始占空比得到占空比控制信号。
在一些实施例中,初始占空比大于比值阈值,并且初始占空比与比值阈值之差小于比值差阈值,其中,比值阈值为桥式驱动电路的上升沿时间与下降沿时间之和与开关周期时间的比值。
在一些实施例中,初始控制信号包括向输入侧上桥臂开关输出的第一初始控制信号T1、向输出侧上桥臂开关输出的第二初始控制信号T2、向输入侧下桥臂开关输出的第三初始控制信号T3、向输出侧下桥臂开关输出的第四初始控制信号T4;第一初始控制信号T1和第二初始控制信号T2一致,第三初始控制信号T3和第四初始控制信号T4一致;第一初始控制信号T1的起始沿在第三初始控制信号T3的结束沿之后,或者,第一初始控制信号T1的结束沿在第三初始控制信号T3的起始沿之前。
信号输出单元820被配置为向桥式电路的桥式驱动电路输出初始控制信号;在停止输出初始控制信号之后,向桥式驱动电路输出占空比控制信号,直到桥式电路输出的电压或占空比控制信号的占空比满足预设条件。在占空比控制信号的占空比达到预设占空比时,例如,在达到1/2时,则不再调节占空比控制信号的占空比。若桥式电路启动电压较小,则通过调整占空比,使得桥式电路输出的电压达到稳定电压,则可以实现软启动的目的。
在上述实施例中,在设置初始占空比以后,以预定增量逐渐放宽占空比,随着占空比的增加,桥式电路的输出侧电压会缓慢上升,即在桥式电路软启动过程中,通过 软件处理逻辑缓慢提高输出侧电压,降低了电路损耗。
图9为本公开控制器的另一些实施例的结构示意图。该控制器除包括信号确定单元810和信号输出单元820,还包括电压判断单元910。
电压判断单元910被配置为在以预定增量增大占空比的过程中,判断桥式电路输出的电压是否达到预定电压。
其中,信号输出单元820被配置为若桥式电路输出的电压达到预定电压,则后续以当前的占空比控制信号对桥式驱动电路进行控制,以便桥式电路输出稳定电压。信号确定单元810被配置为若桥式电路输出的电压未达到预定电压,则继续增大占空比控制信号的占空比,直到占空比控制信号的占空比达到预定占空比。
在另一些实施例中,电压判断单元910被配置为在占空比控制信号的占空比达到预定占空比时,判断桥式电路输出的电压是否达到预定电压。
信号确定单元810被配置为若桥式电路输出的电压未达到预定电压,则确定移相控制信号,其中,移相控制信号的占空比为预定占空比;信号输出单元820被配置为停止输出占空比控制信号后,向桥式驱动电路输出移相控制信号,直到桥式电路输出的电压达到预定电压。
其中,移相控制信号包括向输入侧上桥臂开关输出的第一移相控制信号Y1、向输出侧上桥臂开关输出的第二移相控制信号Y2、向输入侧下桥臂开关输出的第三移相控制信号Y3、向输出侧下桥臂开关输出的第四移相控制信号Y4。第一移相控制信号Y1的相位超前于第二移相控制信号Y2的相位,第三移相控制信号Y3超前于第四移相控制信号Y4的相位。
在一些实施例中,第一移相控制信号Y1与第二移相控制信号Y2的相位差,以及第三移相控制信号Y3与第四移相控制信号Y4的相位差随着时间以预定增量增大。例如相位差由0逐渐增大到q1。第一移相控制信号Y1与第三移相控制信号Y3为互补信号;第二移相控制信号Y2与第四移相控制信号Y4为互补信号。
在设定初始占空比时,桥式电路输出的电压为V1,逐渐增大信号的占空比,在信号的占空比达到1/2时,桥式电路输出的电压缓慢增加到稳定电压V2,再通过移相角的设置,使得桥式电路输出的电压由V2缓慢增加到V3,从而实现软启动的目的,该实施例无需在输入侧或者输出侧增加辅助硬件电路,有效减少效率损失和器件高温老化问题。
在一些实施例中,在占空比控制信号的占空比达到1/2时,设置占空比控制信号 的死区时间。即适当增加第一占空比控制信号X1与第三占空比控制信号X3死区时间,以及第二占空比控制信号X2与第四占空比控制信号X4的死区时间。
在一些实施例中,在移相控制信号的占空比为1/2时,设置移相控制信号的死区时间。即适当增加第一移相控制信号Y1与第三移相控制信号Y3的死区时间,以及第二移相控制信号Y2与第四移相控制信号Y4的死区时间。
在上述实施例中,通过适当增加死区时间,能够避免桥式电路的上下桥臂直通的问题。
图10为本公开控制器的另一些实施例的结构示意图。该控制器包括存储器1010和处理器1020。其中:存储器1010可以是磁盘、闪存或其它任何非易失性存储介质。存储器1010用于存储图2、4所对应实施例中的指令。处理器1020耦接至存储器1010,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器1020用于执行存储器中存储的指令。
在一些实施例中,还可以如图11所示,该控制器1100包括存储器1110和处理器1120。处理器1120通过BUS总线1130耦合至存储器1110。该控制器1100还可以通过存储接口1140连接至外部存储装置1150以便调用外部数据,还可以通过网络接口1160连接至网络或者另外一台计算机系统(未标出)。此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,能够在不增加辅助硬件电路的情况下,达到软启动的目的。
在本公开的另一些实施例中,保护一种桥式电路,该桥式电路包括上述的控制器。
在一些实施例中,桥式电路例如为桥式直流变换器。
在本公开的另一些实施例中,保护一种用电设备,该电器设备包括上述的桥式电路。用电设备例如为空调等。
在另一些实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现图2、4所对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程 图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (16)

  1. 一种桥式电路软启动方法,包括:
    向所述桥式电路的桥式驱动电路输出具有初始占空比的初始控制信号;
    以预定增量逐渐增大所述初始控制信号的初始占空比得到占空比控制信号,在停止输出所述初始控制信号之后,向所述桥式驱动电路输出所述占空比控制信号,直到所述桥式电路输出的电压或所述占空比控制信号的占空比满足预设条件。
  2. 根据权利要求1所述的桥式电路软启动方法,其中,
    所述初始占空比大于比值阈值,并且所述初始占空比与所述比值阈值之差小于比值差阈值,其中,所述比值阈值为所述桥式驱动电路的上升沿时间与下降沿时间之和与开关周期时间的比值。
  3. 根据权利要求2所述的桥式电路软启动方法,其中,所述桥式驱动电路包括输入侧上桥臂开关、输入侧下桥臂开关、输出侧上桥臂开关和输出侧下桥臂开关;
    所述初始控制信号包括向所述输入侧上桥臂开关输出的第一初始控制信号、向所述输出侧上桥臂开关输出的第二初始控制信号、向所述输入侧下桥臂开关输出的第三初始控制信号、向所述输出侧下桥臂开关输出的第四初始控制信号;
    所述第一初始控制信号和所述第二初始控制信号一致,所述第三初始控制信号和所述第四初始控制信号一致;所述第一初始控制信号的起始沿在所述第三初始控制信号的结束沿之后,或者,所述第一初始控制信号的结束沿在所述第三初始控制信号的起始沿之前。
  4. 根据权利要求1-3任一所述的桥式电路软启动方法,其中,
    在以预定增量逐渐增大所述初始占空比的过程中,判断所述桥式电路输出的电压是否达到预定电压;
    若所述桥式电路输出的电压达到预定电压,则后续以当前的占空比控制信号对所述桥式驱动电路进行控制,以便所述桥式电路输出稳定电压;
    若所述桥式电路输出的电压未达到所述预定电压,则继续增大所述占空比控制信号的占空比,直到所述占空比控制信号的占空比达到预定占空比。
  5. 根据权利要求4所述的桥式电路软启动方法,还包括:
    在所述占空比控制信号的占空比达到预定占空比时,判断所述桥式电路输出的电压是否达到所述预定电压;
    若所述桥式电路输出的电压未达到所述预定电压,则停止输出所述占空比控制信号,并向所述桥式驱动电路输出移相控制信号,直到所述桥式电路输出的电压达到所述预定电压,其中,所述移相控制信号的占空比为所述预定占空比;
    其中,所述桥式驱动电路包括输入侧上桥臂开关、输入侧下桥臂开关、输出侧上桥臂开关和输出侧下桥臂开关,所述移相控制信号包括:向所述输入侧上桥臂开关输出的第一移相控制信号、向所述输出侧上桥臂开关输出的第二移相控制信号、向所述输入侧下桥臂开关输出的第三移相控制信号、向所述输出侧下桥臂开关输出的第四移相控制信号;
    所述第一移相控制信号的相位超前于所述第二移相控制信号的相位,所述第三移相控制信号超前于所述第四移相控制信号的相位。
  6. 根据权利要求5所述的桥式电路软启动方法,其中,
    所述第一移相控制信号与所述第二移相控制信号的相位差,以及所述第三移相控制信号与所述第四移相控制信号的相位差随着时间以预定增量逐渐增大。
  7. 根据权利要求5所述的桥式电路软启动方法,其中,
    所述第一移相控制信号与所述第三移相控制信号为互补信号;
    所述第二移相控制信号与所述第四移相控制信号为互补信号。
  8. 根据权利要求5所述的桥式电路软启动方法,其中,
    在所述占空比控制信号的占空比达到1/2时,设置所述占空比控制信号的死区时间;和/或
    在所述移相控制信号的占空比为1/2时,设置所述移相控制信号的死区时间。
  9. 一种控制器,包括:
    信号确定单元,被配置为确定初始控制信号的初始占空比,以及以预定增量逐渐 增大所述初始控制信号的初始占空比得到占空比控制信号;
    信号输出单元,被配置为向桥式电路的桥式驱动电路输出初始控制信号;在停止输出所述初始控制信号之后,向所述桥式驱动电路输出所述占空比控制信号,直到所述桥式电路输出的电压或所述占空比控制信号的占空比满足预设条件。
  10. 根据权利要求9所述的控制器,还包括:
    电压判断单元,被配置为在以预定增量逐渐增大所述占空比的过程中,判断所述桥式电路输出的电压是否达到预定电压;
    其中,所述信号输出单元被配置为若所述桥式电路输出的电压达到预定电压,则后续以当前的占空比控制信号对所述桥式驱动电路进行控制,以便所述桥式电路输出稳定电压;
    所述信号确定单元被配置为若所述桥式电路输出的电压未达到所述预定电压,则继续增大所述占空比控制信号的占空比,直到所述占空比控制信号的占空比达到预定占空比。
  11. 根据权利要求10所述的控制器,其中,
    所述电压判断单元被配置为在所述占空比控制信号的占空比达到预定占空比时,判断所述桥式电路输出的电压是否达到所述预定电压;
    所述信号确定单元被配置为若所述桥式电路输出的电压未达到所述预定电压,则确定移相控制信号,其中,所述移相控制信号的占空比为预定占空比;
    所述信号输出单元被配置为停止输出所述占空比控制信号后,向所述桥式驱动电路输出移相控制信号,直到所述桥式电路输出的电压达到所述预定电压;
    其中,所述桥式驱动电路包括输入侧上桥臂开关、输入侧下桥臂开关、输出侧上桥臂开关和输出侧下桥臂开关,所述移相控制信号包括:向所述输入侧上桥臂开关输出的第一移相控制信号、向所述输出侧上桥臂开关输出的第二移相控制信号、向所述输入侧下桥臂开关输出的第三移相控制信号、向所述输出侧下桥臂开关输出的第四移相控制信号;
    所述第一移相控制信号的相位超前于所述第二移相控制信号的相位,所述第三移相控制信号超前于所述第四移相控制信号的相位。
  12. 一种控制器,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至8任一项所述的桥式电路软启动方法。
  13. 一种桥式电路,包括权利要求9-12任一所述的控制器。
  14. 根据权利要求13所述的桥式电路,其中,所述桥式电路为桥式直流变换器。
  15. 一种用电设备,包括权利要求13或14所述的桥式电路。
  16. 一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现权利要求1至8任一项所述的桥式电路软启动方法。
PCT/CN2019/127901 2019-04-18 2019-12-24 桥式电路软启动方法、控制器和设备 WO2020211441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910312159.XA CN110011528B (zh) 2019-04-18 2019-04-18 桥式电路软启动方法、控制器和设备
CN201910312159.X 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020211441A1 true WO2020211441A1 (zh) 2020-10-22

Family

ID=67172742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127901 WO2020211441A1 (zh) 2019-04-18 2019-12-24 桥式电路软启动方法、控制器和设备

Country Status (2)

Country Link
CN (1) CN110011528B (zh)
WO (1) WO2020211441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011528B (zh) * 2019-04-18 2020-07-24 珠海格力电器股份有限公司 桥式电路软启动方法、控制器和设备
CN113972843B (zh) * 2021-10-25 2023-10-10 珠海格力电器股份有限公司 一种频率跟踪控制方法、装置及电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255315A1 (en) * 2010-04-16 2011-10-20 Tdk-Lambda Corporation Switching power supply device
CN104917388A (zh) * 2014-03-11 2015-09-16 丰田自动车株式会社 电力转换装置及其起动方法
CN107104588A (zh) * 2017-04-11 2017-08-29 山东大学 应用于直流配电网的隔离直流变换器软启动系统及方法
CN108880264A (zh) * 2018-06-28 2018-11-23 合肥工业大学 具备软启动功能的双有源桥直流变换器控制方法
CN110011528A (zh) * 2019-04-18 2019-07-12 珠海格力电器股份有限公司 桥式电路软启动方法、控制器和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120049820A1 (en) * 2010-08-30 2012-03-01 Intersil Americas Inc. Soft start method and apparatus for a bidirectional dc to dc converter
CN102290999B (zh) * 2011-08-15 2013-12-18 南京航空航天大学 一种多端口隔离双向dc-dc变换器
CN202444425U (zh) * 2012-03-12 2012-09-19 华北电力大学 一种光伏发电直流储能dc/dc双向变换器
CN103872920B (zh) * 2014-03-13 2016-10-05 北京理工大学 隔离式双向三电平变换器的漏感电流直接斜率控制方法
CN103916019B (zh) * 2014-04-22 2016-03-09 扬州大学 基于双有源桥变换器的直流母线建压装置及其启动方法
CN104506040B (zh) * 2014-09-22 2017-02-01 北京理工大学 同一占空比的双pwm加移相控制方法
CN104539164B (zh) * 2014-12-31 2017-09-26 北京理工大学 电流型双向dc‑dc变换器不等宽pwm加双移相控制方法
CN104578802B (zh) * 2015-01-20 2017-06-16 北京理工大学 一种电流型双向dc‑dc变换器的最佳电流波形控制方法
CN105305829B (zh) * 2015-09-25 2017-12-12 北京理工大学 电流型单向dc‑dc变换器及对称双pwm加移相控制方法
US10177671B2 (en) * 2016-12-07 2019-01-08 Carl David Klaes Modified dual active half bridge DC/DC converter with transformer DC bias
CN107294368B (zh) * 2017-05-26 2019-05-17 南京航空航天大学 一种电流源半桥双向直流变换器的启动控制方法
CN108377094B (zh) * 2018-04-09 2020-07-28 西安工业大学 一种适用于双有源桥软启动的死区调节控制方法
CN208452809U (zh) * 2018-06-20 2019-02-01 华盛新能源科技(深圳)有限公司 电动汽车电源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255315A1 (en) * 2010-04-16 2011-10-20 Tdk-Lambda Corporation Switching power supply device
CN104917388A (zh) * 2014-03-11 2015-09-16 丰田自动车株式会社 电力转换装置及其起动方法
CN107104588A (zh) * 2017-04-11 2017-08-29 山东大学 应用于直流配电网的隔离直流变换器软启动系统及方法
CN108880264A (zh) * 2018-06-28 2018-11-23 合肥工业大学 具备软启动功能的双有源桥直流变换器控制方法
CN110011528A (zh) * 2019-04-18 2019-07-12 珠海格力电器股份有限公司 桥式电路软启动方法、控制器和设备

Also Published As

Publication number Publication date
CN110011528B (zh) 2020-07-24
CN110011528A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
JP6594927B2 (ja) バスキャパシタの放電方法、コントローラ、dc−dcコンバータ及びインバータ
WO2020211441A1 (zh) 桥式电路软启动方法、控制器和设备
US20130194831A1 (en) Resonant converter with auxiliary resonant components and holdup time control circuitry
CN103633627A (zh) 一种四开关Buck-Boost变换器的过压保护控制方法及控制电路
US9000705B2 (en) Power controller
WO2016011893A1 (zh) 逆变器电路的过流保护系统和方法
EP3142217A1 (en) Charging circuit and mobile terminal
US9729043B2 (en) Power conversion apparatus and protection method thereof while feedback current signal being abnormal
CN106849692A (zh) 一种多态开关图腾柱电路的控制方法及装置
JP6141944B2 (ja) 5レベルインバータの動作モードを切り換える方法及び装置
CN110401337B (zh) 一种移相全桥变换器及其软启动方法与装置
CN204794688U (zh) 直流电源脉冲负载适配器
US10056774B2 (en) Discharge device
CN104283427A (zh) 全桥直流-直流变换器的原边电流控制方法
CN110299696B (zh) T型三电平变流器及其短路保护电路
WO2019058584A1 (ja) 絶縁型双方向dc/dc変換装置及び絶縁型双方向dc/dc変換回路の制御方法
TW201611495A (zh) 電源轉換器的控制電路及相關方法
JP6202196B2 (ja) 電源システム
CN201127004Y (zh) 一种开关电源电路及线性变压电路
CN104953823A (zh) 直流电源脉冲负载适配器
JP4570580B2 (ja) 誘導加熱調理器
JP2022111535A (ja) 電圧変換装置
CN115133799B (zh) 一种anpc型逆变器的控制方法及相关组件
CN115242111B (zh) 一种anpc型逆变器的控制方法及相关组件
JP5769330B1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924713

Country of ref document: EP

Kind code of ref document: A1