WO2020211420A1 - 热泵空调系统及其除霜控制方法 - Google Patents

热泵空调系统及其除霜控制方法 Download PDF

Info

Publication number
WO2020211420A1
WO2020211420A1 PCT/CN2019/126644 CN2019126644W WO2020211420A1 WO 2020211420 A1 WO2020211420 A1 WO 2020211420A1 CN 2019126644 W CN2019126644 W CN 2019126644W WO 2020211420 A1 WO2020211420 A1 WO 2020211420A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
heat
air conditioning
pump air
heat pump
Prior art date
Application number
PCT/CN2019/126644
Other languages
English (en)
French (fr)
Inventor
孟庆超
张瑞台
祝建军
张捷
国德防
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020211420A1 publication Critical patent/WO2020211420A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type

Definitions

  • the invention relates to the technical field of air conditioning, and specifically provides a heat pump air conditioning system and a defrosting control method thereof.
  • the heat pump air-conditioning system works as follows: the indoor ambient temperature is reduced or increased through the state conversion of high pressure/low pressure/gaseous/liquid refrigerant between the circulating pipelines, namely From the perspective of the indoor unit, the heat pump air conditioning system is in cooling or heating mode.
  • the heat pump air-conditioning system uses the heat source tower to directly collect low-grade outdoor heat, and uses the carrier medium (antifreeze) with a freezing point below 0°C to extract energy from the low-temperature air with high relative humidity for heating, which is the heat pump
  • the air conditioning system provides a stable source of heat. However, frosting may also occur during the operation of the heat source tower.
  • the frosting of the heat source tower will reduce the performance of the refrigeration system, thereby affecting the heating effect of the heat pump air conditioning system, reducing the comfort of the indoor environment, and affecting user experience. Therefore, when the heat pump air conditioning system is in heating mode, it is necessary to defrost the heat source tower in time and effectively.
  • the heat source tower includes a heating mechanism, a connecting pipe, and a heat exchanger.
  • the heating mechanism is connected to the heat exchanger through the connecting pipe.
  • the heat exchanger is frosted, the heat is exchanged through the heating mechanism.
  • the refrigerant in the device is heated to remove the frost on the heat exchange wall by heating.
  • the heating mechanism is in one-way communication with the heat exchanger through the connecting pipe, which results in uneven heating of the refrigerant in the heat exchanger. It is not possible to heat all the refrigerant in the heat exchanger to the preset temperature threshold in a short time, so The frost on the heat exchanger is removed in a short time, which reduces the defrosting efficiency, thus affecting the user experience.
  • the present invention provides a heat pump air conditioning system.
  • the heat pump air conditioning system includes a defrost circuit, a main Circuit and heat exchange circuit; the defrosting circuit includes a heat source tower, a heating mechanism and a first conveying mechanism that are connected end to end in turn.
  • the first conveying mechanism and the heating mechanism are set to: when the heat pump air conditioning system is in the defrosting mode, the first conveying mechanism It is used to circulate the refrigerant in the defrosting circuit, and the heating mechanism is used to heat the refrigerant in the defrosting circuit, thereby defrosting the heat source tower by heating;
  • the main circuit includes outdoor heat exchangers connected end to end in turn , Compressor, indoor heat exchanger and throttling mechanism.
  • the throttling mechanism is used to make the refrigerant flowing from the outdoor heat exchanger to the indoor heat exchanger or the refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger to the compressor;
  • the circuit includes a second conveying mechanism, an outdoor heat exchanger and a heat source tower, which are connected end to end in turn.
  • the second conveying mechanism and the outdoor heat exchanger are set to: when the heat pump air conditioning system is in heating mode, the second conveying mechanism is used to exchange The refrigerant in the heat circuit circulates, and the outdoor heat exchanger is used to exchange heat between the refrigerant in the heat exchange circuit and the refrigerant in the main circuit.
  • the defrosting circuit further includes a first electric valve and a second electric valve.
  • the first electric valve is connected between the outlet end of the first conveying mechanism and the inlet end of the heat source tower.
  • the electric valve is connected between the outlet end of the heat source tower and the inlet end of the heating mechanism; the first electric valve and the second electric valve are set to: when the heat pump air conditioning system is in the defrosting mode, the first electric valve and the second electric valve are in Open state; when the heat pump air conditioning system is in non-defrost mode, the first electric valve and the second electric valve are closed.
  • the heat source tower includes a shell, a heat exchanger arranged in the shell, and a fan.
  • the fan is used to provide heat exchange airflow for the heat exchanger.
  • the heat source tower further includes a wind pressure switch installed on the housing, and the wind pressure switch is used to selectively turn on the defrosting circuit according to the pressure difference between the inlet and outlet air of the heat exchanger.
  • the outdoor heat exchanger includes: a shell, the inside of the shell forms a heat exchange chamber; a first heat exchange pipeline, the first heat exchange pipeline is arranged in the heat exchange chamber, The second conveying mechanism is connected with the heat source tower through the first heat exchange pipeline; the second heat exchange pipeline is arranged in the heat exchange chamber, and the throttling mechanism is connected with the compressor through the second heat exchange pipeline .
  • the first heat exchange pipe is a serpentine pipe; and/or the second heat exchange pipe is a serpentine pipe.
  • the flow direction of the refrigerant in the first heat exchange pipeline is opposite to the flow direction of the refrigerant in the second heat exchange pipeline.
  • the heat exchange circuit further includes a third electric valve and a fourth electric valve, and the third electric valve is connected between the outlet end of the second conveying mechanism and the inlet end of the first heat exchange pipeline.
  • the fourth electric valve is connected between the outlet end of the first heat exchange pipeline and the inlet end of the heat source tower; the third and fourth electric valves are set to: when the heat pump air conditioning system is in heating mode, the third The electric valve and the fourth electric valve are in an open state; when the heat pump air conditioning system is in a defrosting mode, the third and fourth electric valve are in a closed state.
  • the present invention also provides a defrosting control method for a heat pump air conditioning system.
  • the heat pump air conditioning system includes a defrosting circuit, a main circuit, and a heat exchange circuit; the defrosting circuit includes a heat source tower and a heating mechanism connected end to end in sequence And the first conveying mechanism;
  • the main circuit includes an outdoor heat exchanger, a compressor, an indoor heat exchanger, and a throttling mechanism that are connected end to end in sequence;
  • the heat exchange loop includes a second conveying mechanism, an outdoor heat exchanger, and Heat source tower;
  • the heat source tower includes a shell and a heat exchanger arranged in the shell;
  • the defrosting control method includes the following steps: when the heat pump air conditioning system is in heating mode, obtain the air pressure difference and/or continuous Running time: According to the pressure difference between the inlet and outlet air and/or the continuous running time, judge whether the heat pump air conditioning system enters the defrost mode.
  • the step of "determining whether the heat pump air-conditioning system enters the defrost mode according to the difference between the inlet and outlet air pressure and/or the continuous operation time" specifically includes: determining whether the difference between the inlet and outlet air pressure is greater than or equal to Preset pressure difference threshold; and/or determine whether the continuous operation time is greater than or equal to the first preset time threshold; if the inlet and outlet air pressure difference is greater than or equal to the preset pressure difference threshold and/or the continuous operation time is greater than or equal to the first preset The time threshold makes the heat pump air conditioning system enter the defrost mode.
  • the step of "judges whether the heat pump air-conditioning system enters the defrost mode according to the pressure difference between the inlet and outlet air and/or the continuous operation time" also includes: if the pressure difference between the inlet and outlet air is less than the preset pressure If the difference threshold value or the continuous operation time is less than the first preset time threshold value, the heat pump air conditioning system is maintained in the heating mode and does not enter the defrost mode.
  • the defrosting circuit also includes a first electric valve and a second electric valve;
  • the heat exchange circuit also includes a third electric valve and a fourth electric valve; "make the heat pump air conditioning system enter the defrost
  • the steps of “mode” specifically include: closing the third electric valve, the fourth electric valve and the second conveying mechanism and opening the first electric valve, the second electric valve and the first conveying mechanism; turning on the heating mechanism so that the heat pump air conditioning system enters the Frost pattern.
  • the heat source tower further includes a wind pressure switch installed on the housing; after "turning on the heating mechanism to make the heat pump air conditioning system enter the defrosting mode", the defrosting control method further includes: Obtain the continuous heating time of the heating mechanism; determine whether the continuous heating time is greater than or equal to the second preset time threshold; if the continuous heating time is greater than or equal to the second preset time threshold, reset to the preset according to the opening of the wind pressure switch The opening threshold is used to selectively make the heat pump air conditioning system exit the defrost mode.
  • the defrosting control method further includes: if the continuous heating time is less than the second preset time threshold, then Keep the heat pump air conditioning system in defrost mode.
  • the step of "selectively exiting the defrosting mode of the heat pump air conditioning system according to whether the opening of the air pressure switch is reset to a preset opening threshold” specifically includes: The opening degree of resetting to the preset opening degree threshold will cause the heat pump air conditioning system to exit the defrost mode.
  • the step of "selectively exiting the defrosting mode of the heat pump air conditioning system according to whether the opening of the air pressure switch is reset to a preset opening threshold” also includes: if the air pressure switch The opening degree of is not reset to the preset opening degree threshold, so that the heat pump air conditioning system maintains the defrost mode.
  • the step of "exiting the heat pump air conditioning system from the defrosting mode” specifically includes: closing the heating mechanism; closing the first electric valve, the second electric valve and the first conveying mechanism and opening the third The electric valve, the fourth electric valve and the second conveying mechanism are used to make the heat pump air conditioning system exit the defrost mode.
  • the step of “obtaining the pressure difference between the inlet and outlet air of the heat exchanger” specifically includes: obtaining the inlet air pressure and outlet air pressure of the heat exchanger; Determine the pressure difference between the inlet and outlet air.
  • the heat pump air conditioning system includes a defrost circuit, a main circuit, and a heat exchange circuit, wherein the defrost circuit includes heat source towers connected end to end in sequence. , Heating mechanism and first conveying mechanism.
  • the first conveying mechanism can circulate the refrigerant in the defrost circuit to heat
  • the mechanism can heat the circulating refrigerant in the defrosting circuit, which improves the heating efficiency of the refrigerant in the defrosting circuit, and can heat all the refrigerant in the defrosting circuit to the preset temperature threshold in a short time, thereby
  • the frost on the heat source tower can be removed in a relatively short time, the defrosting efficiency of the heat source tower is improved, and the user experience is improved.
  • the heat exchange circuit includes a second conveying mechanism, an outdoor heat exchanger and a heat source tower connected end to end in sequence.
  • the heat pump air conditioning system When the heat pump air conditioning system is in heating mode, the low temperature and low pressure gaseous refrigerant flowing into the outdoor heat exchanger through the throttling mechanism and The high-pressure and high-temperature liquid refrigerant flowing into the outdoor heat exchanger from the heat source tower performs heat exchange in the outdoor heat exchanger, which increases the temperature of the low-temperature and low-pressure gaseous refrigerant flowing out of the outdoor heat exchanger, avoids frosting of the outdoor heat exchanger, and thus avoids Defrosting the outdoor heat exchanger realizes the continuous heat supply of the heat pump air conditioning system, and therefore improves the operating efficiency of the heat pump air conditioning system.
  • the present invention also provides a defrost control method for a heat pump air conditioning system.
  • the heat pump air conditioning system When the heat pump air conditioning system is in heating mode, the pressure difference between the inlet and outlet air of the heat exchanger is obtained; Continuous operation time: According to the pressure difference between the inlet and outlet air and/or the continuous operation time, it can accurately determine whether the heat exchanger needs to be defrosted, so that it can accurately determine whether the heat pump air conditioning system enters the defrost mode, avoiding the heat exchanger
  • the phenomenon of false defrosting when the degree of frosting is light, or the phenomenon of not defrosting when the degree of frosting of the heat exchanger is heavy, improves the defrosting performance of the heat pump air conditioning system, and therefore improves the user’s Use experience.
  • FIG. 1 is a schematic structural diagram of the heat pump air conditioning system of the present invention
  • FIG. 2 is a schematic structural diagram of the heat source tower of the present invention.
  • FIG. 3 is a schematic structural diagram of the outdoor heat exchanger of the present invention.
  • FIG. 4 is a flowchart of the defrost control method of the present invention.
  • Fig. 5 is a flowchart of a defrost control method according to an embodiment of the present invention.
  • heat source tower 111, shell; 112, heat exchanger; 113, fan; 114, wind pressure switch; 12, electric heater; 13, first water pump; 14, first electric valve; 15, second Electric valve; 21, outdoor heat exchanger; 211, shell; 212, first heat exchange pipeline; 213, second heat exchange pipeline; 22, compressor; 23, indoor heat exchanger; 24, throttle valve 31.
  • the term “inner” and other terms indicating the direction or positional relationship are based on the direction or positional relationship shown in the drawings. This is only for ease of description, rather than indicating or implying.
  • the device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present invention.
  • the terms “first”, “second”, “third”, and “fourth” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., it may be a fixed connection or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the present invention provides a heat pump air conditioning system, which aims to heat the circulating refrigerant in the defrosting circuit through an electric heater, thereby improving the heating efficiency of the refrigerant in the defrosting circuit.
  • the refrigerant in the defrosting circuit can be heated to the preset temperature threshold in a short time, so that the frost on the heat source tower can be removed in a short time, and the defrosting efficiency of the heat source tower is improved, thereby increasing user experience.
  • FIG. 1 is a schematic structural diagram of the heat pump air conditioning system of the present invention
  • Figure 2 is a schematic structural diagram of the heat source tower of the present invention
  • Figure 3 is a schematic structural diagram of the outdoor heat exchanger of the present invention
  • Figure 4 is the present invention
  • FIG. 5 is a flow chart of the defrosting control method of an embodiment of the present invention.
  • the heat pump air conditioning system includes a defrosting circuit, a main circuit, and a heat exchange circuit.
  • the defrosting circuit includes a heat source tower 11, an electric heater 12, and a first water pump 13 connected end to end in sequence.
  • the first water pump 13 When the heat pump air conditioning system is in the defrosting mode, the first water pump 13 is used to circulate the refrigerant in the defrosting circuit, and the electric heater 12 is used to heat the circulating refrigerant in the defrosting circuit, thereby heating
  • the heat source tower 11 performs defrosting.
  • the first conveying mechanism is not limited to the water pumps listed above, but may also be a circulating pump, a centrifugal pump, etc., no matter what conveying mechanism is adopted, as long as it can circulate the refrigerant in the defrosting circuit. .
  • the heating mechanism is not limited to the electric heater 12 listed above, but may be a photovoltaic heater, a gas fuel heater, etc., no matter what heating mechanism is adopted, as long as it can heat the refrigerant circulating in the defrosting circuit.
  • the defrosting circuit also includes a first electric valve 14 and a second electric valve 15.
  • the first electric valve 14 is connected to the outlet end of the first water pump 13 Between the inlet end of the heat source tower 11 and the second electric valve 15 is connected between the outlet end of the heat source tower 11 and the inlet end of the electric heater.
  • the first electric valve 14 and the second electric valve 15 are opened, so that the heat source tower 11, the electric heater 12 and the first water pump 13 are circulatedly connected, thereby opening the defrosting circuit and opening the first A water pump 13 causes the refrigerant in the defrosting circuit to circulate under the action of the first water pump 13.
  • the electric heater 12 can heat the refrigerant circulating in the defrosting circuit, and can heat the refrigerant in a short time.
  • the refrigerant in the defrosting circuit is all heated to the preset temperature threshold, so that the frost on the heat source tower 11 can be removed in a short time, which improves the defrosting efficiency of the heat source tower 11; when the heat pump air conditioning system is in heating mode , The first electric valve 14 and the second electric valve 15 are closed, so that the electric heater 12 and the first water pump 13 are not connected to the heat source tower 11, thereby closing the defrosting circuit, and closing the first water pump 13, so that the defrosting circuit The refrigerant inside does not flow.
  • the defrosting circuit may also only include the first electric valve 14 or the second electric valve 15, and the defrosting can be achieved by opening or closing the first electric valve 14 or the second electric valve 15
  • the connection of the circuit does not deviate from the principle of the present invention.
  • the first electric valve 14 and the second electric valve 15 may be water circuit electric valves, or other electric valves such as gas circuit electric valves and oil circuit electric valves.
  • the refrigerant in the defrosting circuit is a refrigerant, such as an aqueous solution of sodium chloride or calcium chloride, or an organic solution such as ethylene glycol and glycerol.
  • a refrigerant such as an aqueous solution of sodium chloride or calcium chloride, or an organic solution such as ethylene glycol and glycerol.
  • the heat source tower 11 includes a housing 111, a heat exchanger 112 arranged in the housing 111, and a fan 113.
  • the fan 113 can draw airflow into the housing from the air inlet of the housing 111.
  • the air drawn into the shell 111 exchanges heat with the heat exchanger 112, thereby providing the heat exchange air flow for the heat exchanger 112.
  • the heat exchanger 112 is a fin heat exchanger, and the heat exchanger 112 may also be a shell-and-tube heat exchanger, a plate heat exchanger, a spray heat exchanger, or other heat exchangers.
  • the heat source tower 11 further includes a wind pressure switch 114 installed on the housing 111.
  • the wind pressure switch 114 is used to selectively turn on the defrosting circuit according to the pressure difference between the inlet and outlet air of the heat exchanger 112.
  • the air pressure switch 114 turns on the defrosting circuit to defrost the heat exchanger 112; when the inlet and outlet air pressure difference of the heat exchanger 112 is less than the preset pressure difference At the threshold, the heat exchanger 112 does not need to be defrosted, and the wind pressure switch 114 closes the defrosting circuit.
  • the main circuit includes an outdoor heat exchanger 21, a compressor 22, an indoor heat exchanger 23, and a throttle valve 24, which are connected end to end in sequence. Therefore, the refrigerant flowing from the outdoor heat exchanger 21 to the indoor heat exchanger 23 or the refrigerant flowing from the indoor heat exchanger 23 to the outdoor heat exchanger 21 flows to the compressor 22.
  • the throttling mechanism is not limited to the throttling valve 24 listed above, but may also be a solenoid valve, capillary tube assembly, etc., no matter what throttling mechanism is adopted, as long as it can reduce the pressure of the refrigerant flowing into the compressor 22, thereby reducing the compressor 22 The exhaust temperature is sufficient.
  • the main circuit further includes a four-way valve (not shown in the figure).
  • the outdoor heat exchanger 21 and the indoor heat exchanger 23 are connected by a four-way valve.
  • the four-way valve can make the heat pump air-conditioning system in control by way of reversing. Heat mode or cooling mode.
  • Heat mode or cooling mode Those skilled in the art can imagine that if the heat pump air conditioning system only needs to operate in the heating mode or the cooling mode, and does not need to switch between the heating mode and the cooling mode, then other control valves, such as thermal expansion valves, Electronic expansion valve, solenoid valve, etc.
  • the refrigerant in the main circuit is a refrigerant, such as freon, saturated hydrocarbon, unsaturated hydrocarbon, and the like.
  • the heat exchange circuit includes a second water pump 31, the outdoor heat exchanger 21 and the heat source tower 11 connected end to end in sequence.
  • the second water pump 31 is used to circulate the refrigerant in the heat exchange circuit
  • the outdoor heat exchanger 21 is used to exchange heat between the refrigerant in the heat exchange circuit and the refrigerant in the main circuit.
  • the temperature of the low-temperature and low-pressure gaseous refrigerant flowing out of the outdoor heat exchanger 21 is increased, and the outdoor heat exchanger 21 is prevented from frosting, thereby avoiding the defrosting operation of the outdoor heat exchanger 21, and realizing the continuous heating of the heat pump air conditioning system , And therefore improve the operating efficiency of the heat pump air conditioning system.
  • the second conveying mechanism is not limited to the water pumps listed above, but may also be a circulating pump, a centrifugal pump, etc., no matter what conveying mechanism is adopted, as long as it can circulate the refrigerant in the heat exchange circuit. .
  • the outdoor heat exchanger 21 includes a housing 211, a first heat exchange pipe 212, and a second heat exchange pipe 213.
  • the inside of the housing 211 is formed Heat exchange chamber; the first heat exchange pipeline 212 is arranged in the heat exchange chamber, the second water pump 31 is connected to the heat source tower 11 through the first heat exchange pipeline 212; the second heat exchange pipeline 213 is arranged in the heat exchange chamber ,
  • the throttle valve 24 is connected to the compressor 22 through the second heat exchange pipeline 213.
  • the high-pressure and high-temperature liquid refrigerant flowing out of the heat source tower 11 in the heat exchange loop is transported to the heat exchange chamber through the first heat exchange pipeline 212, and the main The low-temperature and low-pressure gaseous refrigerant flowing out of the throttle valve 24 in the circuit is transported to the heat exchange chamber, so that the high-pressure, high-temperature liquid refrigerant and the low-temperature and low-pressure gaseous refrigerant pass through the first heat exchange pipeline 212 and the second heat exchange pipeline in the heat exchange chamber 213 conducts heat exchange in the form of heat convection and heat conduction, which improves the heat exchange efficiency, thereby improving the heating effect of the heat pump air conditioning system and improving the user experience.
  • the first heat exchange pipe 212 is a serpentine pipe
  • the second heat exchange pipe 213 is a serpentine pipe.
  • the serpentine pipe structure is adopted to extend the length of the first heat exchange pipe 212 and the second heat exchange pipe.
  • the length of the heat exchange pipeline 213 increases the heat exchange area of the outdoor heat exchanger 21, prolongs the residence time of the high-pressure, high-temperature liquid refrigerant in the outdoor heat exchanger 21, and the low-temperature and low-pressure gaseous refrigerant in the outdoor heat exchanger 21 Therefore, the heat exchange efficiency between the high-pressure, high-temperature, liquid refrigerant and the low-temperature, low-pressure gaseous refrigerant is improved, and the heating effect of the heat pump air conditioning system is further improved.
  • first heat exchange pipe 212 or the second heat exchange pipe 213 can be configured as a serpentine tube, and the first heat exchange pipe 212 or the second heat exchange pipe
  • the path 213 increases the heat exchange area of the outdoor heat exchanger 21, thereby increasing the heat exchange efficiency of the high-pressure, high-temperature liquid refrigerant and the low-temperature, low-pressure gaseous refrigerant. This change does not deviate from the principle of the present invention.
  • the flow direction of the refrigerant in the first heat exchange pipe 212 is opposite to the flow direction of the refrigerant in the second heat exchange pipe 213, so that the high-pressure, high-temperature, liquid refrigerant and the low-temperature, low-pressure gaseous refrigerant pass through the first heat exchange pipe 212
  • the heat exchange with the second heat exchange pipe 213 is performed in a countercurrent manner, and the heat exchange is performed in a countercurrent manner to further improve the heat exchange efficiency of the high-pressure, high-temperature liquid refrigerant and the low-temperature, low-pressure gaseous refrigerant.
  • the flow direction of the refrigerant in the first heat exchange pipe 212 and the flow direction of the refrigerant in the second heat exchange pipe 213 can also be the same, so that the high-pressure, high-temperature, liquid refrigerant and the low-temperature, low-pressure gaseous refrigerant pass through the first heat exchange pipe. 212 and the second heat exchange pipe 213 exchange heat in a parallel flow manner.
  • first heat exchange pipe 212 and the second heat exchange pipe 213 is not limited to the serpentine mechanism listed above, and the first heat exchange pipe 212 and the second heat exchange pipe 213 are also It can be a spiral structure, or a loop structure, etc., regardless of the structural design of the first heat exchange pipe 212 and the second heat exchange pipe 213, as long as the heat exchange area of the outdoor heat exchanger 21 can be increased to increase The heat exchange efficiency is sufficient.
  • the heat exchange circuit also includes a third electric valve 32 and a fourth electric valve 33, the third electric valve 32 is connected to the outlet end of the second water pump 31 Between the inlet end of the first heat exchange pipeline 212 and the fourth electric valve 33 is connected between the outlet end of the first heat exchange pipeline 212 and the inlet end of the heat source tower 11.
  • the third electric valve 32 and the fourth electric valve 33 are closed, so that the heat source tower 11 is disconnected from the outdoor heat exchanger 21, thus closing the heat exchange circuit, and then closing the second water pump 31, Make the refrigerant in the heat exchange circuit not flow, and open the first electric valve 14 and the second electric valve 15, so that the heat source tower 11, the electric heater 12 and the first water pump 13 are in circulation, thereby opening the defrosting circuit, and then opening The first water pump 13 causes the refrigerant in the defrosting circuit to circulate under the action of the first water pump 13.
  • the electric heater 12 can heat the refrigerant circulating in the defrosting circuit, thereby heating the heat source tower 11 Frost removal; when the heat pump air conditioning system is in heating mode, open the third electric valve 32 and the fourth electric valve 33, so that the heat source tower 11 is connected with the outdoor heat exchanger 21, thereby opening the heat exchange circuit, and then turning on the second water pump 31. Under the action of the second water pump 31, the refrigerant in the heat exchange circuit circulates, and the first electric valve 14 and the second electric valve 15 are closed, so that the electric heater 12 and the first water pump 13 are not connected to the heat source tower 11. The defrost circuit is closed, and then the first water pump 13 is turned off, so that the refrigerant in the defrost circuit does not flow.
  • substitution circuit may also only include the third electric valve 32 or the fourth electric valve 33, and heat exchange can be realized by opening or closing the third electric valve 32 or the fourth electric valve 33.
  • the connection of the circuit, this change does not deviate from the principle of the present invention.
  • the third electric valve 32 and the fourth electric valve 33 may be water circuit electric valves, or other electric valves such as air circuit electric valves and oil circuit electric valves.
  • the refrigerant in the heat exchange loop is a refrigerant, such as an aqueous solution of sodium chloride or calcium chloride, or an organic solution such as ethylene glycol and glycerol.
  • a refrigerant such as an aqueous solution of sodium chloride or calcium chloride, or an organic solution such as ethylene glycol and glycerol.
  • the present invention also provides a defrosting control method for a heat pump air conditioning system.
  • the heat pump air conditioning system includes the defrosting circuit, the main circuit, and the heat exchange circuit;
  • the defrosting circuit includes heat source towers connected end to end in sequence, The electric heater and the first water pump;
  • the main circuit includes the outdoor heat exchanger, the compressor, the indoor heat exchanger and the throttling mechanism which are connected end to end in sequence;
  • the heat exchange circuit includes the second water pump and the outdoor heat exchanger connected end to end in sequence
  • a heat source tower includes a shell and a heat exchanger arranged in the shell.
  • the defrost control method includes the following steps:
  • the step of "obtaining the air pressure difference between the inlet and outlet of the heat exchanger" specifically includes:
  • S12. Determine the pressure difference between the inlet and outlet air according to the inlet air pressure and the outlet air pressure.
  • step S12 the difference between the inlet air pressure and the outlet air pressure is used to accurately determine the difference between the inlet and outlet air pressures, which provides accurate data for the subsequent determination of whether the heat pump air conditioning system enters the defrost mode.
  • the heat pump air conditioning system includes a first pressure sensor and a second pressure sensor arranged on the heat exchanger, the first pressure sensor is used to detect the inlet air pressure of the heat exchanger, and the second pressure sensor is used to detect the heat exchanger Wind pressure.
  • the first pressure sensor and the second pressure sensor are infrared pressure sensors, and can also be other types of sensors, such as radio frequency sensors, etc. It should be noted that the method of detecting the inlet air pressure and outlet air pressure of the heat exchanger is not suitable for this The invention constitutes a limitation.
  • the step of "determining whether the heat pump air conditioning system enters the defrosting mode according to the pressure difference between the inlet and outlet air” specifically includes:
  • S21 Determine whether the pressure difference between the inlet and outlet air is greater than or equal to a preset pressure difference threshold
  • step S22 if the pressure difference between the inlet and outlet air is less than the preset pressure difference threshold, the air pressure loss of the heat exchanger is small, it can be considered that the heat exchanger is not frosted or the thickness of the frost is thin, and the heat exchanger is not If the blockage or blockage is light, and the heat exchanger can operate normally without defrosting operation, the heat pump air conditioning system is maintained in heating mode and does not enter the defrosting mode; in step S23, if the pressure difference between the inlet and outlet air is greater than or equal to the preset pressure The difference threshold, the air pressure loss of the heat exchanger is large, it can be considered that the thickness of the heat exchanger is thicker, the heat exchanger block is serious, and the heat exchanger can not operate normally and needs to be defrosted, so the heat pump air conditioning system enters Defrost mode.
  • the preset pressure difference threshold may be the lowest pressure difference at which the heat exchanger cannot operate normally.
  • the preset pressure difference threshold is not limited to the pressure difference in the above examples, but may also be other pressure differences, such as the pressure difference obtained by those skilled in the art based on experiments under specific working conditions, or the empirical pressure difference obtained based on experience. As long as the boundary point determined by the preset pressure difference threshold can meet the requirement of judging whether the heat exchanger needs to be defrosted.
  • the defrost control method includes the following steps:
  • the step of "judging whether the heat pump air conditioning system enters the defrosting mode according to the continuous operation time” specifically includes:
  • step S22 if the continuous operation time is less than the first preset time threshold, it can be considered that the continuous operation time of the heat exchanger is relatively short, the heat exchanger has not formed frost or the frost thickness is thin, and the heat exchanger can be normal If the operation does not require defrosting operation, the heat pump air-conditioning system is maintained in heating mode without entering the defrosting mode; in step S23, if the continuous operation time is greater than or equal to the first preset time threshold, it can be considered that the heat exchanger is continuously operating The time is longer, the frost thickness of the heat exchanger is thick, and the heat exchanger can not operate normally and needs to be defrosted, so the heat pump air conditioning system enters the defrost mode.
  • the first preset time threshold may be the longest time that the heat exchanger can operate normally.
  • the first preset time threshold is not limited to the time listed above, but can also be other times, such as the experimental time obtained by those skilled in the art based on experiments under specific working conditions, or the empirical time obtained based on experience, as long as it satisfies
  • the demarcation point determined by the first preset time threshold can meet the requirement of judging whether the heat exchanger needs to be defrosted.
  • the defrost control method includes the following steps:
  • the step of "determining whether the heat pump air conditioning system enters the defrost mode according to the pressure difference between the inlet and outlet air and the continuous operation time” specifically includes:
  • S21 Determine whether the pressure difference between the inlet and outlet air is greater than or equal to a preset pressure difference threshold
  • the defrosting circuit also includes a first electric valve and a second electric valve;
  • the heat exchange circuit also includes a third electric valve and a fourth electric valve; in the above step S23 or S25, "use The steps for the heat pump air conditioning system to enter the defrost mode include:
  • the fan of the indoor heat exchanger is controlled to stop and the fan of the heat source tower is controlled to start for 1 minute (the duration is not limited to 1 minute, and those skilled in the art can flexibly adjust and set the duration ), close the third electric valve and the fourth electric valve, so that the heat source tower is disconnected from the outdoor heat exchanger, thus closing the heat exchange circuit, and then the second water pump, so that the refrigerant in the heat exchange circuit does not flow, and open the first An electric valve and a second electric valve make the heat source tower, the electric heater and the first water pump circulate in communication, thereby opening the defrosting circuit, and then turning on the first water pump. Under the action of the first water pump, the refrigerant in the defrosting circuit Circulating flow. At this time, the electric heater can heat the circulating refrigerant in the defrosting circuit to remove the frost on the heat source tower.
  • the heat source tower also includes a wind pressure switch installed on the housing; after step S232 "turn on the electric heater so that the heat pump air conditioning system enters the defrost mode", the defrost control method also include:
  • step S33 if the continuous heating time is less than the second preset time threshold, indicating that the frost on the heat exchanger has not been removed or has not been completely removed, the heat pump air conditioning system is maintained in the defrost mode; step S34 If the continuous heating time is greater than or equal to the second preset time threshold, it indicates that the frost on the heat exchanger has been removed.
  • the opening degree of the wind pressure switch is further investigated, and The opening degree of the wind pressure switch is used to determine whether the air conditioner exits the defrost mode, which ensures that the frost on the heat exchanger is completely removed before exiting the defrost mode.
  • the second preset time threshold may be the shortest time for the frost on the heat exchanger to be completely removed.
  • the second preset time threshold is not limited to the time listed above, but can also be other times, for example, the experimental time obtained by those skilled in the art based on experiments under specific working conditions, or the empirical time obtained based on experience, as long as it satisfies
  • the demarcation point determined by the second preset time threshold can meet the requirement of judging whether the air conditioner needs to exit the defrost.
  • the step of “selectively exiting the defrosting mode of the heat pump air conditioning system according to whether the opening degree of the wind pressure switch is reset to the preset opening degree threshold” specifically includes:
  • S341 Judge whether the opening degree of the air pressure switch is reset to a preset opening degree threshold
  • step S342 if the opening of the wind pressure switch is not reset to the preset opening threshold, it means that the frost on the heat exchanger has not been removed or has not been completely removed, and the heat exchanger is still blocked. If the heat exchanger still cannot operate normally, the heat pump air conditioning system is maintained in the defrost mode; in step S343, if the opening of the air pressure switch is reset to the preset opening threshold, it means that the frost on the heat exchanger has been completely removed and the heat There is no blockage of the exchanger and the heat exchanger can operate normally, so that the heat pump air conditioning system exits the defrost mode, which not only ensures that the frost on the heat exchanger is completely removed, but also prevents the frost on the heat exchanger from being completely removed.
  • the phenomenon that the heat pump air conditioning system is still running in defrost mode, or the phenomenon that the frost on the heat exchanger has not been completely removed and the heat pump air conditioning system has exited the defrost mode improves the defrost performance of the heat pump air conditioning system, and therefore improves Improve the user experience.
  • the preset opening threshold may be the minimum opening at which the frost on the heat exchanger is completely removed.
  • the preset opening threshold is not limited to the openings listed above, and can also be other openings, such as experimental openings obtained by those skilled in the art based on experiments under specific working conditions, or empirical openings obtained based on experience , As long as the demarcation point determined by the preset opening threshold can meet the requirement of judging whether the air conditioner needs to exit the defrost.
  • the step of "exiting the heat pump air conditioning system from the defrosting mode” specifically includes:
  • the third electric valve and the fourth electric valve are opened to make the heat source tower communicate with the outdoor heat exchanger, thereby opening the heat exchange circuit, and then turning on the second water pump.
  • the refrigerant in the heat exchange circuit circulates, and the first electric valve and the second electric valve are closed, so that the electric heater and the first water pump are not connected to the heat source tower, thus closing the defrosting circuit, and then closing the first A water pump prevents the refrigerant in the defrost circuit from flowing, thereby exiting the defrost mode.
  • the time after exiting the defrosting mode is not limited to 1 min, those skilled in the art can flexibly adjust and set the time
  • control the fan of the indoor heat exchanger to start and control the fan of the heat source tower to start so that The heat pump air conditioning system enters heating mode.
  • FIG. 5 is a flowchart of a defrost control method according to an embodiment of the present invention.
  • the process of the defrosting control method for air conditioner of the present invention may be:
  • S21 Determine whether the pressure difference between the inlet and outlet air is greater than or equal to a preset pressure difference threshold
  • combination of method steps of the present invention is not limited to the above-listed combination. Those skilled in the art can flexibly adjust the combination of the above method steps in practical applications. No matter what combination of method steps is used, as long as it can be The scale attached to the heating element can be removed.

Abstract

一种热泵空调系统及其除霜控制方法,旨在解决现有热泵空调系统的热源塔的除霜效率较低的问题。热泵空调系统包括除霜回路、主回路和换热回路;除霜回路包括依次首尾相接的热源塔、加热机构和第一输送机构;当热泵空调系统处于除霜模式时,第一输送机构用于使除霜回路内的冷媒循环流动,加热机构用于对除霜回路内的冷媒进行加热,从而以加热的方式对热源塔进行除霜。除霜控制方法根据进出风压差和/或连续运行时间来判断是否使热泵空调系统进入除霜模式。通过加热机构对除霜回路内循环流动的冷媒进行加热,提高了对除霜回路内的冷媒的加热效率,进而提高了热源塔的除霜效率。

Description

热泵空调系统及其除霜控制方法 技术领域
本发明涉及空调技术领域,具体提供一种热泵空调系统及其除霜控制方法。
背景技术
热泵空调系统作为一种能够调节室内环境温度的系统,其工作原理为:通过制冷剂在循环管路之间通过高压/低压/气态/液态的状态转换来使得室内环境温度降低或者升高,即从室内机的角度来看,热泵空调系统处于制冷或者制热模式。在制热模式下,热泵空调系统利用热源塔直接采集室外低品位热量,利用冰点低于0℃的载体介质(防冻液),从相对湿度较高的低温空气中提取能量进行供热,为热泵空调系统提供稳定的热量来源。但是,热源塔在运行的过程中也会出现结霜现象,热源塔结霜会导致制冷系统的性能下降,从而影响热泵空调系统的制热效果,降低了室内环境的舒适性,影响用户体验。因此,在热泵空调系统处于制热工况的情形下,需要对热源塔进行及时而有效的除霜。
为了解决上述问题,现有技术中,热源塔包括加热机构、连通管和热交换器,加热机构通过连通管和热交换器连通,当热交换器出现结霜现象时,通过加热机构将热交换器内的冷媒加热,以加热的方式将换热壁上的结霜除去。但是,加热机构通过连通管与热交换器单向连通,从而导致热交换器内的冷媒受热不均匀,无法在短时间内将热交换器内的冷媒全部加热至预设温度阈值,从而无法在短时间内将热交换器上的霜除去,降低了除霜效率,从而影响了用户体验。
因此,本领域需要一种新的热泵空调系统及其除霜控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有热泵空调系统的热源塔的除霜效率较低的问题,本发明提供了一种热泵空调系统, 该热泵空调系统包括除霜回路、主回路和换热回路;除霜回路包括依次首尾相接的热源塔、加热机构和第一输送机构,第一输送机构和加热机构设置为:当热泵空调系统处于除霜模式时,第一输送机构用于使除霜回路内的冷媒循环流动,加热机构用于对除霜回路内的冷媒进行加热,从而以加热的方式对热源塔进行除霜;主回路包括依次首尾相接的室外换热器、压缩机、室内换热器和节流机构,节流机构用于使从室外换热器流向室内换热器的冷媒或者从室内换热器流向室外换热器的冷媒流向压缩机;换热回路包括依次首尾相接的第二输送机构、室外换热器和热源塔,第二输送机构和室外换热器设置为:当热泵空调系统处于制热模式时,第二输送机构用于使换热回路内的冷媒循环流动,室外换热器用于使换热回路内的冷媒与主回路内的冷媒进行热交换。
在上述热泵空调系统的优选技术方案中,除霜回路还包括第一电动阀和第二电动阀,第一电动阀连接在第一输送机构的出口端和热源塔的进口端之间,第二电动阀连接在热源塔的出口端和加热机构的进口端之间;第一电动阀和第二电动阀设置为:当热泵空调系统处于除霜模式时,第一电动阀和第二电动阀处于打开状态;当热泵空调系统处于非除霜模式时,第一电动阀和第二电动阀处于关闭状态。
在上述热泵空调系统的优选技术方案中,热源塔包括外壳、设置在外壳内的热交换器以及风机,风机用于为热交换器提供换热气流。
在上述热泵空调系统的优选技术方案中,热源塔还包括安装于外壳上的风压开关,风压开关用于根据热交换器的进出风压差来选择性地开启除霜回路。
在上述热泵空调系统的优选技术方案中,室外换热器包括:壳体,壳体的内部形成热交换腔室;第一换热管路,第一换热管路设置在热交换腔室内,第二输送机构通过第一换热管路与热源塔连接;第二换热管路,第二换热管路设置在热交换腔室内,节流机构通过第二换热管路与压缩机连接。
在上述热泵空调系统的优选技术方案中,第一换热管路为蛇形管;并且/或者第二换热管路为蛇形管。
在上述热泵空调系统的优选技术方案中,第一换热管路内的冷媒的流动方向与第二换热管路内的冷媒的流动方向相反。
在上述热泵空调系统的优选技术方案中,换热回路还包括第三电动阀和第四电动阀,第三电动阀连接在第二输送机构的出口端和第一换热管路的进口端之间,第四电动阀连接在第一换热管路的出口端和热源塔的进口端之间;第三电动阀和第四电动阀设置为:当热泵空调系统处于制热模式时,第三电动阀和第四电动阀处于打开状态;当热泵空调系统处于除霜模式时,第三电动阀和第四电动阀处于关闭状态。
此外,本发明还提供了一种用于热泵空调系统的除霜控制方法,该热泵空调系统包括除霜回路、主回路和换热回路;除霜回路包括依次首尾相接的热源塔、加热机构和第一输送机构;主回路包括依次首尾相接的室外换热器、压缩机、室内换热器和节流机构;换热回路包括依次首尾相接的第二输送机构、室外换热器和热源塔;热源塔包括外壳以及设置在外壳内的热交换器;除霜控制方法包括下列步骤:在热泵空调系统处于制热模式的情形下,获取热交换器的进出风压差和/或连续运行时间;根据进出风压差和/或连续运行时间,判断是否使热泵空调系统进入除霜模式。
在上述除霜控制方法的优选技术方案中,“根据进出风压差和/或连续运行时间,判断是否使热泵空调系统进入除霜模式”的步骤具体包括:判断进出风压差是否大于或等于预设压差阈值;和/或判断连续运行时间是否大于或等于第一预设时间阈值;如果进出风压差大于或等于预设压差阈值和/或连续运行时间大于或等于第一预设时间阈值,则使热泵空调系统进入除霜模式。
在上述除霜控制方法的优选技术方案中,“根据进出风压差和/或连续运行时间,判断是否使热泵空调系统进入除霜模式”的步骤还包括:如果进出风压差小于预设压差阈值,或者连续运行时间小于第一预设时间阈值,则使热泵空调系统维持制热模式,不进入除霜模式。
在上述除霜控制方法的优选技术方案中,除霜回路还包括第一电动阀和第二电动阀;换热回路还包括第三电动阀和第四电动阀;“使热泵空调系统进入除霜模式”的步骤具体包括:关闭第三电动阀、第四电动阀和第二输送机构并打开第一电动阀、第二电动阀和第一输送机构;打开加热机构,以使热泵空调系统进入除霜模式。
在上述除霜控制方法的优选技术方案中,热源塔还包括安装于外壳上的风压开关;在“打开加热机构,以使热泵空调系统进入除霜模式”之后,除霜控制方法还包括:获取加热机构的持续加热时间;判断持续加热时间是否大于或等于第二预设时间阈值;如果持续加热时间大于或等于第二预设时间阈值,则根据风压开关的开度是否复位至预设开度阈值来选择性地使热泵空调系统退出除霜模式。
在上述除霜控制方法的优选技术方案中,在“打开加热机构,以使热泵空调系统进入除霜模式”之后,除霜控制方法还包括:如果持续加热时间小于第二预设时间阈值,则使热泵空调系统维持除霜模式。
在上述除霜控制方法的优选技术方案中,“根据风压开关的开度是否复位至预设开度阈值来选择性地使热泵空调系统退出除霜模式”的步骤具体包括:如果风压开关的开度复位至预设开度阈值,则使热泵空调系统退出除霜模式。
在上述除霜控制方法的优选技术方案中,“根据风压开关的开度是否复位至预设开度阈值来选择性地使热泵空调系统退出除霜模式”的步骤还包括:如果风压开关的开度未复位至预设开度阈值,则使热泵空调系统维持除霜模式。
在上述除霜控制方法的优选技术方案中,“使热泵空调系统退出除霜模式”的步骤具体包括:关闭加热机构;关闭第一电动阀、第二电动阀和第一输送机构并打开第三电动阀、第四电动阀和第二输送机构,以使热泵空调系统退出除霜模式。
在上述除霜控制方法的优选技术方案中,“获取热交换器的进出风压差”的步骤具体包括:获取热交换器的进风压力和出风压力;根据进风压力和出风压力来确定进出风压差。
本领域技术人员能够理解的是,在本发明的热泵空调系统的优选技术方案中,热泵空调系统包括除霜回路、主回路和换热回路,其中,除霜回路包括依次首尾相接的热源塔、加热机构和第一输送机构。与现有的加热机构通过连通管与热交换器单向连通的技术方案相比,本发明的热泵空调系统处于除霜模式时,第一输送机构能够使除霜回路内的冷媒循环流动,加热机构能够对除霜回路内循环流动的冷媒进行加热,提高了对除霜回路内的冷媒的加热效率,能够在较短的时间内将除霜回 路内的冷媒全部加热至预设温度阈值,从而能够在较短的时间内将热源塔上的霜除去,提高了热源塔的除霜效率,进而提高了用户体验。
进一步地,换热回路包括依次首尾相接的第二输送机构、室外换热器和热源塔,当热泵空调系统处于制热模式时,经节流机构流入室外换热器的低温低压气态冷媒与从热源塔流入室外换热器的高压高温液态冷媒在室外换热器进行热交换,提高了从室外换热器流出的低温低压气态冷媒的温度,避免了室外换热器结霜,从而避免了对室外换热器进行除霜操作,实现了热泵空调系统的连续供热,并因此提高了热泵空调系统的运行效率。
此外,本发明还提供了一种用于热泵空调系统的除霜控制方法,在热泵空调系统处于制热模式的情形下,获取热交换器的进出风压差;和/或获取热交换器的连续运行时间;根据进出风压差和/或连续运行时间,能够准确地判断热交换器是否需要进行除霜,从而能够准确地判断是否使热泵空调系统进入除霜模式,避免了在热交换器结霜程度较轻的情况下出现误除霜的现象、或者在热交换器结霜程度较重的情况下未除霜的现象,提高了热泵空调系统的除霜性能,并因此提高了用户的使用体验。
附图说明
图1是本发明的热泵空调系统的结构示意图;
图2是本发明的热源塔的结构示意图;
图3是本发明的室外换热器的结构示意图;
图4是本发明的除霜控制方法的流程图;
图5是本发明的一种实施例的除霜控制方法的流程图。
其中,11、热源塔;111、外壳;112、热交换器;113、风机;114、风压开关;12、电加热器;13、第一水泵;14、第一电动阀;15、第二电动阀;21、室外换热器;211、壳体;212、第一换热管路;213、第二换热管路;22、压缩机;23、室内换热器;24、节流阀;31、第二水泵;32、第三电动阀;33、第四电动阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“内”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
基于背景技术中提出的技术问题,本发明提供了一种热泵空调系统,旨在通过电加热器对除霜回路内循环流动的冷媒进行加热,提高了对除霜回路内的冷媒的加热效率,能够在较短的时间内将除霜回路内的冷媒全部加热至预设温度阈值,从而能够在较短的时间内将热源塔上的霜除去,提高了热源塔的除霜效率,进而提高了用户体验。
参见图1至图5,图1是本发明的热泵空调系统的结构示意图;图2是本发明的热源塔的结构示意图;图3是本发明的室外换热器的结构示意图;图4是本发明的除霜控制方法的流程图;图5是本发明的一种实施例的除霜控制方法的流程图。如图1所示,热泵空调系统包括除霜回路、主回路和换热回路,除霜回路包括依次首尾相接的热源塔11、电加热器12和第一水泵13。当热泵空调系统处于除霜模式时,第一水泵13用于使除霜回路内的冷媒循环流动,电加热器12用于对除霜回路内循环流动的冷媒进行加热,从而以加热的方式对热源塔11进行除霜。本领域技术人员能够想到的是,第一输送机构不限于上述列举的水泵,也可以是循环泵、离心泵等,无论采取何种输送机构,只要能够使除霜回路内的冷媒循环流动即可。此外,加热机构不限于上述列举的电加热 器12,也可以是光伏加热器、燃气燃油加热器等,无论采取何种加热机构,只要能够对除霜回路内循环流动的冷媒进行加热即可。
为了选择性地使热泵空调系统进入除霜模式,如图1所示,除霜回路还包括第一电动阀14和第二电动阀15,第一电动阀14连接在第一水泵13的出口端和热源塔11的进口端之间,第二电动阀15连接在热源塔11的出口端和电加热器的进口端之间。当热泵空调系统处于除霜模式时,打开第一电动阀14和第二电动阀15,使得热源塔11、电加热器12和第一水泵13循环连通,从而打开了除霜回路,并打开第一水泵13,在第一水泵13的作用下使得除霜回路内的冷媒循环流动,此时,电加热器12能够对除霜回路内循环流动的冷媒进行加热,能够在较短的时间内将除霜回路内的冷媒全部加热至预设温度阈值,从而能够在较短的时间内将热源塔11上的霜除去,提高了热源塔11的除霜效率;当热泵空调系统处于制热模式时,关闭第一电动阀14和第二电动阀15,使得电加热器12和第一水泵13均与热源塔11不连通,从而关闭了除霜回路,并关闭第一水泵13,使得除霜回路内的冷媒不流动。当然,本领域技术人员能够想到的是,除霜回路也可以只包括第一电动阀14或者第二电动阀15,通过打开或者关闭第一电动阀14或者第二电动阀15就能够实现除霜回路的连通,这种改变并不偏离本发明的原理。
优选地,第一电动阀14和第二电动阀15可以是水路电动阀,也可以是气路电动阀、油路电动阀等其它电动阀。
优选地,除霜回路内的冷媒为载冷剂,例如氯化钠或氯化钙水溶液,或乙二醇、丙三醇等有机溶液。
在一种较佳的实施方式中,如图2所示,热源塔11包括外壳111、设置在外壳111内的热交换器112以及风机113,风机113能够将气流从外壳111的进风口吸入外壳111内,吸入外壳111内的气流与热交换器112进行换热,从而为热交换器112提供了换热气流。
优选地,热交换器112为翅片式换热器,热交换器112也可以是管壳式换热器、板式换热器、喷淋式换热器等其他换热器。
优选地,热源塔11还包括安装于外壳111上的风压开关114,风压开关114用于根据热交换器112的进出风压差来选择性地开启除霜回路,当热交换器112的进出风压差大于或等于预设压差阈值时,风压 开关114则开启除霜回路,以对热交换器112进行除霜操作;当热交换器112的进出风压差小于预设压差阈值时,热交换器112不需要除霜,风压开关114则关闭除霜回路。
在一种较佳的实施方式中,如图1所示,主回路包括依次首尾相接的室外换热器21、压缩机22、室内换热器23和节流阀24,节流阀24用于使从室外换热器21流向室内换热器23的冷媒或者从室内换热器23流向室外换热器21的冷媒流向压缩机22。当然,节流机构不限于上述列举的节流阀24,也可以是电磁阀、毛细管组件等,无论采取何种节流机构,只要能够降低流入压缩机22的冷媒的压力,从而降低压缩机22的排气温度即可。
优选地,主回路还包括四通阀(图中未示出),室外换热器21和室内换热器23通过四通阀连接,四通阀能够通过换向的方式使热泵空调系统处于制热模式或制冷模式。本领域技术人员能够想到的是,如果热泵空调系统只需要运行制热模式或者是制冷模式,不需要就行制热模式和制冷模式的转换,那么也可以采用其他的控制阀,例如热力膨胀阀、电子膨胀阀、电磁阀等。
优选地,主回路内的冷媒为制冷剂,例如氟利昂、饱和碳氢化合物和不饱和碳氢化合物等。
在一种较佳的实施方式中,如图1所示,换热回路包括依次首尾相接的第二水泵31、上述室外换热器21和上述热源塔11。当热泵空调系统处于制热模式时,第二水泵31用于使换热回路内的冷媒循环流动,室外换热器21用于使换热回路内的冷媒与主回路内的冷媒进行热交换,提高了从室外换热器21流出的低温低压气态冷媒的温度,避免了室外换热器21结霜,从而避免了对室外换热器21进行除霜操作,实现了热泵空调系统的连续供热,并因此提高了热泵空调系统的运行效率。本领域技术人员能够想到的是,第二输送机构不限于上述列举的水泵,也可以是循环泵、离心泵等,无论采取何种输送机构,只要能够使换热回路内的冷媒循环流动即可。
为了提高室外换热器21的换热效果,如图3所示,室外换热器21包括壳体211、第一换热管路212和第二换热管路213,壳体211的内部形成热交换腔室;第一换热管路212设置在热交换腔室内,第二 水泵31通过第一换热管路212与热源塔11连接;第二换热管路213设置在热交换腔室内,节流阀24通过第二换热管路213与压缩机22连接。当热泵空调系统处于制热模式时,通过第一换热管路212将换热回路内从热源塔11流出的高压高温液态冷媒输送至热交换腔室内,通过第二换热管路213将主回路内从节流阀24流出的低温低压气态冷媒输送至热交换腔室内,使得高压高温液态冷媒与低温低压气态冷媒在热交换腔室内通过第一换热管路212和第二换热管路213以热对流以及热传导的方式进行热交换,提高了热交换效率,从而提高了热泵空调系统的制热效果,改善了用户的使用体验。
为了进一步提高热交换效率,第一换热管路212为蛇形管,第二换热管路213为蛇形管,采用蛇形管结构延长了第一换热管路212的长度以及第二换热管路213的长度,从而增大了室外换热器21的换热面积,延长了高压高温液态冷媒在室外换热器21内的停留时间以及低温低压气态冷媒在室外换热器21内的停留时间,并因此提高了高压高温液态冷媒与低温低压气态冷媒的热交换效率,进一步提高了热泵空调系统的制热效果。当然,本领域技术人员能够想到的是,也可以只将第一换热管路212或者第二换热管路213设置为蛇形管,通过第一换热管路212或者第二换热管路213来增大了室外换热器21的换热面积,进而提高高压高温液态冷媒与低温低压气态冷媒的热交换效率,这种改变并不偏离本发明的原理。
优选地,第一换热管路212内的冷媒的流动方向与第二换热管路213内的冷媒的流动方向相反,使得高压高温液态冷媒与低温低压气态冷媒通过第一换热管路212和第二换热管路213以逆流的方式进行热交换,采用逆流的方式进行热交换进一步提高了高压高温液态冷媒与低温低压气态冷媒热交换效率。当然,第一换热管路212内的冷媒的流动方向与第二换热管路213内的冷媒的流动方向也可以相同,使得高压高温液态冷媒与低温低压气态冷媒通过第一换热管路212和第二换热管路213以并流的方式进行热交换。
此外,需要进一步说明的是,第一换热管路212和第二换热管路213的结构不限于上述列举的蛇形机构,第一换热管路212和第二换热管路213也可以是螺旋形结构、或者回形结构等,无论第一换热管 路212和第二换热管路213采用何种结构设计,只要能够满足增大室外换热器21的换热面积以提高热交换效率的要求即可。
为了选择性地使热泵空调系统进入除霜模式,如图1所示,换热回路还包括第三电动阀32和第四电动阀33,第三电动阀32连接在第二水泵31的出口端和第一换热管路212的进口端之间,第四电动阀33连接在第一换热管路212的出口端和热源塔11的进口端之间。当热泵空调系统处于除霜模式时,关闭第三电动阀32和第四电动阀33,使得热源塔11与室外换热器21不连通,从而关闭了换热回路,再关闭第二水泵31,使得换热回路内的冷媒不流动,并打开第一电动阀14和第二电动阀15,使得热源塔11、电加热器12和第一水泵13循环连通,从而打开了除霜回路,再打开第一水泵13,在第一水泵13的作用下使得除霜回路内的冷媒循环流动,此时,电加热器12能够对除霜回路内循环流动的冷媒进行加热,从而将热源塔11上的霜除去;当热泵空调系统处于制热模式时,打开第三电动阀32和第四电动阀33,使得热源塔11与室外换热器21连通,从而打开了换热回路,再打开第二水泵31,在第二水泵31的作用下使得换热回路内的冷媒循环流动,并关闭第一电动阀14和第二电动阀15,使得电加热器12和第一水泵13均与热源塔11不连通,从而关闭了除霜回路,再关闭第一水泵13,使得除霜回路内的冷媒不流动。当然,本领域技术人员能够想到的是,换人回路也可以只包括第三电动阀32或者第四电动阀33,通过打开或者关闭第三电动阀32或者第四电动阀33就能够实现换热回路的连通,这种改变并不偏离本发明的原理。
优选地,第三电动阀32和第四电动阀33可以是水路电动阀,也可以是气路电动阀、油路电动阀等其它电动阀。
优选地,换热回路内的冷媒为载冷剂,例如氯化钠或氯化钙水溶液,或乙二醇、丙三醇等有机溶液。
此外,需要进一步说明的是,当热泵空调系统处于制冷模式时,关闭第三电动阀32和第四电动阀33,使得热源塔11与室外换热器21不连通,从而关闭了换热回路,再关闭第二水泵31,使得换热回路内的冷媒不流动;并关闭第一电动阀14和第二电动阀15,使得电加热器12和第一水泵13均与热源塔11不连通,从而关闭了除霜回路,再关闭第一水泵13,使得除霜回路内的冷媒不流动,从而关闭了除霜回路。
此外,本发明还提供了一种用于热泵空调系统的除霜控制方法,热泵空调系统包括上述除霜回路、上述主回路和上述换热回路;除霜回路包括依次首尾相接的热源塔、电加热器和第一水泵;主回路包括依次首尾相接的室外换热器、压缩机、室内换热器和节流机构;换热回路包括依次首尾相接的第二水泵、室外换热器和热源塔;热源塔包括外壳以及设置在外壳内的热交换器。如图4所示,在一种较佳的实施方式中,除霜控制方法包括下列步骤:
S1、在热泵空调系统处于制热模式的情形下,获取热交换器的进出风压差;
S2、根据进出风压差,判断是否使热泵空调系统进入除霜模式。
优选地,上述步骤S1中,“获取热交换器的进出风压差”的步骤具体包括:
S11、获取热交换器的进风压力和出风压力;
S12、根据进风压力和出风压力来确定进出风压差。
具体而言,步骤S12中,通过进风压力和出风压力的差值来准确地确定进出风压差,为后续判断热泵空调系统是否进入除霜模式提供了准确的数据。
优选地,热泵空调系统包括设置在热交换器上的第一压力传感器和第二压力传感器,第一压力传感器用于检测热交换器的进风压力,第二压力传感器用于检测热交换器的出风压力。其中,第一压力传感器和第二压力传感器为红外压力传感器,也可以是其他类型的传感器,如射频传感器等,需要说明的是热交换器的进风压力和出风压力的检测方法不应对本发明构成限制。
优选地,上述步骤S2中,“根据进出风压差,判断是否使热泵空调系统进入除霜模式”的步骤具体包括:
S21、判断进出风压差是否大于或等于预设压差阈值;
S22、如果进出风压差小于预设压差阈值,则使热泵空调系统维持制热模式,不进入除霜模式;
S23、如果进出风压差大于或等于预设压差阈值,则使热泵空调系统进入除霜模式。
具体而言,步骤S22中,如果进出风压差小于预设压差阈值,热交换器的风压损失较小,可以认为热交换器未结霜或者结霜厚度较薄,热交换器未被堵塞或者堵塞较轻,热交换器能正常运行不需要进行除霜操作,则使热泵空调系统维持制热模式,不进入除霜模式;步骤S23中,如果进出风压差大于或等于预设压差阈值,热交换器的风压损失较大,可以认为热交换器结霜厚度较厚,热交换器堵塞较严重,热交换器能够无法正常运行需要进行除霜操作,则使热泵空调系统进入除霜模式。
上述过程中,通过预设压差阈值的设定,给出了热泵空调系统是否进入除霜模式的结论。其中,预设压差阈值可以为热交换器无法正常运行的最低压差。当然,预设压差阈值不限于上述举例的压差,还可以为其他压差,例如本领域技术人员在特定工况下根据实验得出的压差,或者根据经验得出的经验压差,只要满足由预设压差阈值确定的分界点能够满足判断热交换器是否需要进行除霜的要求即可。
作为一种替代的实施方试,除霜控制方法包括下列步骤:
S1、在热泵空调系统处于制热模式的情形下,获取热交换器的连续运行时间;
S2、根据连续运行时间,判断是否使热泵空调系统进入除霜模式。
优选地,上述步骤S2中,“根据连续运行时间,判断是否使热泵空调系统进入除霜模式”的步骤具体包括:
S21、判断连续运行时间是否大于或等于第一预设时间阈值;
S22、如果连续运行时间小于第一预设时间阈值,则使热泵空调系统维持制热模式,不进入除霜模式;
S23、如果连续运行时间大于或等于第一预设时间阈值,则使热泵空调系统进入除霜模式。
具体而言,步骤S22中,如连续运行时间小于第一预设时间阈值,可以认为热交换器连续运行的时间较短,热交换器尚未结霜或者结霜厚度较薄,热交换器能正常运行不需要进行除霜操作,则使热泵空调系统维持制热模式,不进入除霜模式;步骤S23中,如果连续运行时间大于或等于第一预设时间阈值,可以认为热交换器连续运行的时间较 长,热交换器结霜厚度较厚,热交换器能够无法正常运行需要进行除霜操作,则使热泵空调系统进入除霜模式。
在上述过程中,通过第一预设时间阈值的设定,给出了热泵空调系统是否进入除霜模式的结论。其中,第一预设时间阈值可以为热交换器能够正常运行的最长时间。当然第一预设时间阈值不限于上述列举的时间,还可以为其他的时间,例如本领域技术人员在特定工况下根据实验得出的实验时间,或者根据经验得出的经验时间,只要满足由第一预设时间阈值确定的分界点能够满足判断热交换器是否需要进行除霜的要求即可。
作为又一种替代的实施方试,除霜控制方法包括下列步骤:
S1、在热泵空调系统处于制热模式的情形下,获取热交换器的进出风压差和连续运行时间;
S2、根据进出风压差和连续运行时间,判断是否使热泵空调系统进入除霜模式。
优选地,上述步骤S2中,“根据进出风压差和连续运行时间,判断是否使热泵空调系统进入除霜模式”的步骤具体包括:
S21、判断进出风压差是否大于或等于预设压差阈值;
S22、如果进出风压差小于预设压差阈值,则使热泵空调系统维持制热模式,不进入除霜模式;
S23、如果进出风压差大于或等于预设压差阈值,则判断连续运行时间是否大于或等于第一预设时间阈值;
S24、如果连续运行时间小于第一预设时间阈值,则使热泵空调系统维持制热模式,不进入除霜模式;
S25、如果连续运行时间大于或等于第一预设时间阈值,则使热泵空调系统进入除霜模式。
在一种较佳的实施方试中,除霜回路还包括第一电动阀和第二电动阀;换热回路还包括第三电动阀和第四电动阀;上述步骤S23或S25中,“使热泵空调系统进入除霜模式”的步骤具体包括:
S231、关闭第三电动阀、第四电动阀和第二水泵并打开第一电动阀、第二电动阀和第一水泵;
S232、打开电加热器,以使热泵空调系统进入除霜模式。
具体而言,当满足除霜条件时,控制室内换热器的风机停机并控制热源塔的风机开机,持续1min后(持续时间不限于1min,本领域技术人员可以灵活地调整和设置该持续时间),关闭第三电动阀和第四电动阀,使得热源塔与室外换热器不连通,从而关闭了换热回路,再关闭第二水泵,使得换热回路内的冷媒不流动,并打开第一电动阀和第二电动阀,使得热源塔、电加热器和第一水泵循环连通,从而打开了除霜回路,再打开第一水泵,在第一水泵的作用下使得除霜回路内的冷媒循环流动,此时,电加热器能够对除霜回路内循环流动的冷媒进行加热,从而将热源塔上的霜除去。
在一种较佳的实施方试中,热源塔还包括安装于外壳上的风压开关;在步骤S232“打开电加热器,以使热泵空调系统进入除霜模式”之后,除霜控制方法还包括:
S31、获取电加热器的持续加热时间;
S32、判断持续加热时间是否大于或等于第二预设时间阈值;
S33、如果持续加热时间小于第二预设时间阈值,则使热泵空调系统维持除霜模式;
S34、如果持续加热时间大于或等于第二预设时间阈值,则根据风压开关的开度是否复位至预设开度阈值来选择性地使热泵空调系统退出除霜模式。
具体而言,步骤S33中,如果持续加热时间小于第二预设时间阈值,说明热交换器上的霜还未被除去或者还未被完全除去,则使热泵空调系统维持除霜模式;步骤S34中,如果持续加热时间大于或等于第二预设时间阈值,说明热交换器上的霜已经被除去,为了保证热交换器上的霜被完全除去,则进一步考察风压开关的开度,并通过风压开关的开度来判断空调是否退出除霜模式,确保了热交换器上的霜在完全除去的情况下才退出除霜模式。
在上述过程中,通过第二预设时间阈值的设定,初步给出了热泵空调系统是否退出除霜模式的结论。其中,第二预设时间阈值可以为热交换器上的霜被完全除去的最短时间。当然第二预设时间阈值不限于上述列举的时间,还可以为其他的时间,例如本领域技术人员在特定工况下根据实验得出的实验时间,或者根据经验得出的经验时间,只要 满足由第二预设时间阈值确定的分界点能够满足判断空调是否需要退出除霜的要求即可。
优选地,上述步骤S34中,“根据风压开关的开度是否复位至预设开度阈值来选择性地使热泵空调系统退出除霜模式”的步骤具体包括:
S341、判断风压开关的开度是否复位至预设开度阈值;
S342、如果风压开关的开度未复位至预设开度阈值,则使热泵空调系统维持除霜模式;
S343、如果风压开关的开度复位至预设开度阈值,则使热泵空调系统退出除霜模式。
具体而言,步骤S342中,如果风压开关的开度未复位至预设开度阈值,说明热交换器上的霜还未被除去或者还未被完全除去,热交换器还存在堵塞情况,热交换器还不能正常运行,则使热泵空调系统维持除霜模式;步骤S343中,如果风压开关的开度复位至预设开度阈值,说明热交换器上的霜已经被完全除去,热交换器不存在堵塞情况,热交换器能正常运行,则使热泵空调系统退出除霜模式,不仅能够保证热交换器上的霜被完全除去,而且还避免了热交换器上的霜已经被完全除去而热泵空调系统还在运行除霜模式的现象,或者热交换器上的霜尚未被完全除去而热泵空调系统已经退出除霜模式的现象,提高了热泵空调系统的除霜性能,并因此提高了用户的使用体验。
在上述过程中,通过预设开度阈值的设定,进一步给出了热泵空调系统是否退出除霜模式的结论。其中,预设开度阈值可以为热交换器上的霜被完全除去的最小开度。当然预设开度阈值不限于上述列举的开度,还可以为其他的开度,例如本领域技术人员在特定工况下根据实验得出的实验开度,或者根据经验得出的经验开度,只要满足由预设开度阈值确定的分界点能够满足判断空调是否需要退出除霜的要求即可。
优选地,上述步骤S343中,“使热泵空调系统退出除霜模式”的步骤具体包括:
S3431、关闭电加热器;
S3432、关闭第一电动阀、第二电动阀和第一水泵并打开第三电动阀、第四电动阀和第二水泵,以使热泵空调系统退出除霜模式。
具体而言,当满足退出除霜条件时,打开第三电动阀和第四电动阀,使得热源塔与室外换热器连通,从而打开了换热回路,再打开第二水泵,在第二水泵的作用下使得换热回路内的冷媒循环流动,并关闭第一电动阀和第二电动阀,使得电加热器和第一水泵均与热源塔不连通,从而关闭了除霜回路,再关闭第一水泵,使得除霜回路内的冷媒不流动,从而退出除霜模式。在退出除霜模式1min后(退出除霜模式后的时间不限于1min,本领域技术人员可以灵活地调整和设置该时间),控制室内换热器的风机开机并控制热源塔的风机开机,使热泵空调系统进入制热模式。
下面参照图5,图5是本发明的一种实施例的除霜控制方法的流程图。
如图5所示,在一种可能的实施方式中,本发明的用于空调的除霜控制方法的流程可以是:
S11、在热泵空调系统处于制热模式的情形下,获取热交换器的进风压力和出风压力;
S12、根据进风压力和出风压力来确定进出风压差;
S21、判断进出风压差是否大于或等于预设压差阈值;
S22、若否,则使热泵空调系统维持制热模式,不进入除霜模式;
S231、若是,则关闭第三电动阀、第四电动阀和第二水泵并打开第一电动阀、第二电动阀和第一水泵;
S232、打开电加热器,以使热泵空调系统进入除霜模式;
S31、获取电加热器的持续加热时间;
S32、判断持续加热时间是否大于或等于第二预设时间阈值;
S33、若否,则使热泵空调系统维持除霜模式;
S341、若是,则判断风压开关的开度是否复位至预设开度阈值;
S342、若否,则使热泵空调系统维持除霜模式;
S3431、若是,则关闭电加热器;
S3432、关闭第一电动阀、第二电动阀和第一水泵并打开第三电动阀、第四电动阀和第二水泵,以使热泵空调系统退出除霜模式。
此外,本发明的方法步骤的组合方式不限于上述列举的组合方式,本领域技术人员可以在实际应用中灵活地调整上述方法步骤的组合方式,无论采用何种方法步骤的组合方式,只要能够将附着在加热元件上的水垢祛除即可。
应该指出的是,上述实施例只是本发明的一种较佳的实施方式中,仅用来阐述本发明方法的原理,并非旨在限制本发明的保护范围,在实际应用中,本领域技术人员可以根据需要而将上述功能分配由不同的步骤来完成,即将本发明实施例中的步骤再分解或者组合。例如,上述实施例的步骤可以合并为一个步骤,也可以进一步拆分成多个子步骤,以完成以上描述的全部或者部分功能。对于本发明实施例中涉及的步骤的名称,其仅仅是为了区分各个步骤,不视为对本发明的限制。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (18)

  1. 一种热泵空调系统,其特征在于,所述热泵空调系统包括除霜回路、主回路和换热回路;
    所述除霜回路包括依次首尾相接的热源塔、加热机构和第一输送机构,所述第一输送机构和所述加热机构设置为:当所述热泵空调系统处于除霜模式时,所述第一输送机构用于使所述除霜回路内的冷媒循环流动,所述加热机构用于对所述除霜回路内的冷媒进行加热,从而以加热的方式对所述热源塔进行除霜;
    所述主回路包括依次首尾相接的室外换热器、压缩机、室内换热器和节流机构,所述节流机构用于使从所述室外换热器流向所述室内换热器的冷媒或者从所述室内换热器流向所述室外换热器的冷媒流向所述压缩机;
    所述换热回路包括依次首尾相接的第二输送机构、所述室外换热器和所述热源塔,所述第二输送机构和所述室外换热器设置为:当所述热泵空调系统处于制热模式时,所述第二输送机构用于使所述换热回路内的冷媒循环流动,所述室外换热器用于使所述换热回路内的冷媒与所述主回路内的冷媒进行热交换。
  2. 根据权利要求1所述的热泵空调系统,其特征在于,所述除霜回路还包括第一电动阀和第二电动阀,所述第一电动阀连接在所述第一输送机构的出口端和所述热源塔的进口端之间,所述第二电动阀连接在所述热源塔的出口端和所述加热机构的进口端之间;
    所述第一电动阀和所述第二电动阀设置为:当所述热泵空调系统处于除霜模式时,所述第一电动阀和所述第二电动阀处于打开状态;当所述热泵空调系统处于非除霜模式时,所述第一电动阀和所述第二电动阀处于关闭状态。
  3. 根据权利要求1所述的热泵空调系统,其特征在于,所述热源塔包括外壳、设置在所述外壳内的热交换器以及风机,所述风机用于为所述热交换器提供换热气流。
  4. 根据权利要求3所述的热泵空调系统,其特征在于,所述热源塔还包括安装于所述外壳上的风压开关,所述风压开关用于根据所述热交换器的进出风压差来选择性地开启所述除霜回路。
  5. 根据权利要求1所述的热泵空调系统,其特征在于,所述室外换热器包括:
    壳体,所述壳体的内部形成热交换腔室;
    第一换热管路,所述第一换热管路设置在所述热交换腔室内,所述第二输送机构通过所述第一换热管路与所述热源塔连接;
    第二换热管路,所述第二换热管路设置在所述热交换腔室内,所述节流机构通过所述第二换热管路与所述压缩机连接。
  6. 根据权利要求5所述的热泵空调系统,其特征在于,所述第一换热管路为蛇形管;并且/或者所述第二换热管路为蛇形管。
  7. 根据权利要求5所述的热泵空调系统,其特征在于,所述第一换热管路内的冷媒的流动方向与所述第二换热管路内的冷媒的流动方向相反。
  8. 根据权利要求7所述的热泵空调系统,其特征在于,所述换热回路还包括第三电动阀和第四电动阀,所述第三电动阀连接在所述第二输送机构的出口端和所述第一换热管路的进口端之间,所述第四电动阀连接在所述第一换热管路的出口端和所述热源塔的进口端之间;
    所述第三电动阀和所述第四电动阀设置为:当所述热泵空调系统处于制热模式时,所述第三电动阀和所述第四电动阀处于打开状态;当所述热泵空调系统处于除霜模式时,所述第三电动阀和所述第四电动阀处于关闭状态。
  9. 一种用于热泵空调系统的除霜控制方法,其特征在于,所述热泵空调系统包括除霜回路、主回路和换热回路;所述除霜回路包括依次首 尾相接的热源塔、加热机构和第一输送机构;所述主回路包括依次首尾相接的室外换热器、压缩机、室内换热器和节流机构;所述换热回路包括依次首尾相接的第二输送机构、所述室外换热器和所述热源塔;所述热源塔包括外壳以及设置在所述外壳内的热交换器;
    所述除霜控制方法包括下列步骤:
    在所述热泵空调系统处于制热模式的情形下,获取所述热交换器的进出风压差和/或连续运行时间;
    根据所述进出风压差和/或所述连续运行时间,判断是否使所述热泵空调系统进入除霜模式。
  10. 根据权利要求9所述的除霜控制方法,其特征在于,“根据所述进出风压差和/或所述连续运行时间,判断是否使所述热泵空调系统进入除霜模式”的步骤具体包括:
    判断所述进出风压差是否大于或等于预设压差阈值;和/或
    判断所述连续运行时间是否大于或等于第一预设时间阈值;
    如果所述进出风压差大于或等于所述预设压差阈值和/或所述连续运行时间大于或等于所述第一预设时间阈值,则使所述热泵空调系统进入除霜模式。
  11. 根据权利要求10所述的除霜控制方法,其特征在于,“根据所述进出风压差和/或所述连续运行时间,判断是否使所述热泵空调系统进入除霜模式”的步骤还包括:
    如果所述进出风压差小于所述预设压差阈值,或者所述连续运行时间小于所述第一预设时间阈值,则使所述热泵空调系统维持制热模式,不进入除霜模式。
  12. 根据权利要求10所述的除霜控制方法,其特征在于,所述除霜回路还包括第一电动阀和第二电动阀;所述换热回路还包括第三电动阀和第四电动阀;
    “使所述热泵空调系统进入除霜模式”的步骤具体包括:
    关闭所述第三电动阀、所述第四电动阀和所述第二输送机构并打开 所述第一电动阀、所述第二电动阀和所述第一输送机构;
    打开所述加热机构,以使所述热泵空调系统进入除霜模式。
  13. 根据权利要求12所述的除霜控制方法,其特征在于,所述热源塔还包括安装于所述外壳上的风压开关;
    在“打开所述加热机构,以使所述热泵空调系统进入除霜模式”之后,所述除霜控制方法还包括:
    获取所述加热机构的持续加热时间;
    判断所述持续加热时间是否大于或等于第二预设时间阈值;
    如果所述持续加热时间大于或等于所述第二预设时间阈值,则根据所述风压开关的开度是否复位至预设开度阈值来选择性地使所述热泵空调系统退出除霜模式。
  14. 根据权利要求13所述的除霜控制方法,其特征在于,在“打开所述加热机构,以使所述热泵空调系统进入除霜模式”之后,所述除霜控制方法还包括:
    如果所述持续加热时间小于所述第二预设时间阈值,则使所述热泵空调系统维持除霜模式。
  15. 根据权利要求13所述的除霜控制方法,其特征在于,“根据所述风压开关的开度是否复位至预设开度阈值来选择性地使所述热泵空调系统退出除霜模式”的步骤具体包括:
    如果所述风压开关的开度复位至所述预设开度阈值,则使所述热泵空调系统退出除霜模式。
  16. 根据权利要求15所述的除霜控制方法,其特征在于,“根据所述风压开关的开度是否复位至预设开度阈值来选择性地使所述热泵空调系统退出除霜模式”的步骤还包括:
    如果所述风压开关的开度未复位至所述预设开度阈值,则使所述热泵空调系统维持除霜模式。
  17. 根据权利要求15所述的除霜控制方法,其特征在于,“使所述热泵空调系统退出除霜模式”的步骤具体包括:
    关闭所述加热机构;
    关闭所述第一电动阀、所述第二电动阀和所述第一输送机构并打开所述第三电动阀、所述第四电动阀和所述第二输送机构,以使所述热泵空调系统退出除霜模式。
  18. 根据权利要求9所述的除霜控制方法,其特征在于,“获取热交换器的进出风压差”的步骤具体包括:
    获取所述热交换器的进风压力和出风压力;
    根据所述进风压力和所述出风压力来确定所述进出风压差。
PCT/CN2019/126644 2019-04-15 2019-12-19 热泵空调系统及其除霜控制方法 WO2020211420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910301033.2A CN110068086A (zh) 2019-04-15 2019-04-15 热泵空调系统及其除霜控制方法
CN201910301033.2 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020211420A1 true WO2020211420A1 (zh) 2020-10-22

Family

ID=67367778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126644 WO2020211420A1 (zh) 2019-04-15 2019-12-19 热泵空调系统及其除霜控制方法

Country Status (2)

Country Link
CN (1) CN110068086A (zh)
WO (1) WO2020211420A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068086A (zh) * 2019-04-15 2019-07-30 青岛海尔空调电子有限公司 热泵空调系统及其除霜控制方法
CN110850717B (zh) * 2019-11-19 2022-05-20 浙江工业大学 利用风机电流的神经网络热泵除霜控制装置及控制方法
CN111503814B (zh) * 2020-03-27 2022-03-29 宁波奥克斯电气股份有限公司 防凝露控制方法、装置及空调器
CN112303948A (zh) * 2020-09-29 2021-02-02 青岛海尔空调电子有限公司 多级换热系统
CN112303816B (zh) * 2020-09-29 2021-12-14 东风汽车集团有限公司 一种室外换热器结霜识别方法及除霜控制方法
CN112303825A (zh) * 2020-09-30 2021-02-02 青岛海尔空调电子有限公司 热源塔的除霜控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233475A (ja) * 2004-02-18 2005-09-02 Ebara Refrigeration Equipment & Systems Co Ltd ヒートポンプシステム
CN101270941A (zh) * 2008-05-21 2008-09-24 刘秋克 一种热源塔热泵
CN101865569A (zh) * 2010-05-02 2010-10-20 山东富尔达空调设备有限公司 一种高效节能的空气源热泵及其使用方法
CN201740227U (zh) * 2010-07-23 2011-02-09 荣飞 水源热泵热水装置
CN103363614A (zh) * 2012-03-26 2013-10-23 珠海格力电器股份有限公司 风冷冷热水空调机组及其除霜控制方法和装置
CN103528291A (zh) * 2013-10-14 2014-01-22 中国科学院广州能源研究所 无霜热泵系统中的水溶性防冻液的太阳能再生系统
CN103604243A (zh) * 2013-11-12 2014-02-26 清华大学 一种喷淋型空气源吸收式热泵
CN106288144A (zh) * 2016-07-26 2017-01-04 广东美的暖通设备有限公司 空调器及其除霜方法
CN205909384U (zh) * 2016-07-25 2017-01-25 湖南大学 一种采用无盐式外辅热防融霜装置的热源塔热泵
CN110068086A (zh) * 2019-04-15 2019-07-30 青岛海尔空调电子有限公司 热泵空调系统及其除霜控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123193B (zh) * 2013-03-26 2014-10-29 长沙鹞翔科技有限公司 一种用于闭式热源塔的融霜装置
CN109059142A (zh) * 2018-06-19 2018-12-21 浙江理工大学 热源塔多联机空调系统装置及方法
CN109028639B (zh) * 2018-07-03 2019-10-22 浙江国祥股份有限公司 一种空气源热泵的除霜控制方法及空气源热泵
CN109442789B (zh) * 2018-10-31 2024-01-19 广东恒泰制冷科技有限公司 热源塔热泵组合式空调系统
CN210118911U (zh) * 2019-04-15 2020-02-28 青岛海尔空调电子有限公司 热泵空调系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233475A (ja) * 2004-02-18 2005-09-02 Ebara Refrigeration Equipment & Systems Co Ltd ヒートポンプシステム
CN101270941A (zh) * 2008-05-21 2008-09-24 刘秋克 一种热源塔热泵
CN101865569A (zh) * 2010-05-02 2010-10-20 山东富尔达空调设备有限公司 一种高效节能的空气源热泵及其使用方法
CN201740227U (zh) * 2010-07-23 2011-02-09 荣飞 水源热泵热水装置
CN103363614A (zh) * 2012-03-26 2013-10-23 珠海格力电器股份有限公司 风冷冷热水空调机组及其除霜控制方法和装置
CN103528291A (zh) * 2013-10-14 2014-01-22 中国科学院广州能源研究所 无霜热泵系统中的水溶性防冻液的太阳能再生系统
CN103604243A (zh) * 2013-11-12 2014-02-26 清华大学 一种喷淋型空气源吸收式热泵
CN205909384U (zh) * 2016-07-25 2017-01-25 湖南大学 一种采用无盐式外辅热防融霜装置的热源塔热泵
CN106288144A (zh) * 2016-07-26 2017-01-04 广东美的暖通设备有限公司 空调器及其除霜方法
CN110068086A (zh) * 2019-04-15 2019-07-30 青岛海尔空调电子有限公司 热泵空调系统及其除霜控制方法

Also Published As

Publication number Publication date
CN110068086A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2020211420A1 (zh) 热泵空调系统及其除霜控制方法
KR100821728B1 (ko) 공기 조화 시스템
CN110425112B (zh) 防压缩机液击的空调及防压缩机液击的控制方法
CN101975422A (zh) 冷暖型空调器及其除霜方法
JP2007051825A (ja) 空気調和装置
WO2021169261A1 (zh) 一种空调机及实现其在制热时除霜的控制方式
CN104990321A (zh) 一种空调器及其化霜方法
CN203908148U (zh) 空调系统
CN112880132B (zh) 用于空调系统除霜控制的方法及装置、空调系统
CN104833152A (zh) 一种防液击空调除霜系统
CN112880131B (zh) 用于空调系统除霜控制的方法及装置、空调系统
CN106152641A (zh) 空调冰箱精确除霜智能控制方法及系统
CN210118911U (zh) 热泵空调系统
WO2021093228A1 (zh) 热泵系统及热泵系统的控制方法
CN210179952U (zh) 热源塔系统
KR100712196B1 (ko) 히트펌프 시스템 및 실외기 제상 방법
EP2375187B1 (en) Heat pump apparatus and operation control method of heat pump apparatus
CN107906811B (zh) 热泵机组防冷冻控制方法
WO2020233112A1 (zh) 热源塔系统
CN111637593A (zh) 一种能延缓结霜的空调器及其控制方法
CN114413416B (zh) 一种多联机空调除霜控制方法、存储介质及多联机空调
CN110553328A (zh) 空调系统及其控制方法
CN201583048U (zh) 一种热泵热水器
CN211876410U (zh) 一种空调机
CN211424782U (zh) 热氟除霜装置及空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924799

Country of ref document: EP

Kind code of ref document: A1