WO2020211277A1 - Procédé d'évaluation de la complexité d'une structure géologique régionale - Google Patents

Procédé d'évaluation de la complexité d'une structure géologique régionale Download PDF

Info

Publication number
WO2020211277A1
WO2020211277A1 PCT/CN2019/105877 CN2019105877W WO2020211277A1 WO 2020211277 A1 WO2020211277 A1 WO 2020211277A1 CN 2019105877 W CN2019105877 W CN 2019105877W WO 2020211277 A1 WO2020211277 A1 WO 2020211277A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
area
region
complexity
cubic
Prior art date
Application number
PCT/CN2019/105877
Other languages
English (en)
Chinese (zh)
Inventor
吴财芳
蒋秀明
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2019429806A priority Critical patent/AU2019429806B2/en
Publication of WO2020211277A1 publication Critical patent/WO2020211277A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles

Definitions

  • the invention relates to the technical field of regional geological evaluation, in particular to a method for evaluating the complexity of regional geological structures.
  • the present invention provides a method for evaluating the complexity of regional geological structures.
  • the technical scheme adopted by the present invention is: a method for evaluating the complexity of regional geological structure, including the following steps:
  • Step 1 Establish a 3D geological model of the strata in the area to be evaluated
  • Step 2 using a box-counting dimension calculated out a region similar to a n-dimensional tomographic d i, and then obtaining the tomographic perspective dimension D ds, and obtains the fault intensity I;
  • Step 3 using a box-counting dimension method obtains a region similar to a n-dimensional folds Z i, and then obtains a perspective dimension D zs, and obtains the Gaussian curvature K of the fold surface;
  • Step 4 invasion index Q magmatic rocks strike the region of a n
  • Step 5 a n is obtained in the region of collapse column index M;
  • Step 6 Normalize the data
  • Step 7 Structure complexity level division.
  • step 1 the geological structures within the study area: faults, folds, magmatic rock masses, and collapsed columns are identified, and the areas on the horizontal plane are divided into a ⁇ a square grids, numbered a 1 ⁇ a n ;
  • the three-dimensional geological body is divided into cubic unit bodies of 1m ⁇ 1m ⁇ 1m, the secondary cubic unit bodies are divided in each unit body, and the statistics of the secondary cubic units passing through the fault plane in each unit body
  • the cell area of a n-dimensional tomographic perspective D ds On the surface of a cell in a n area, the cell area of a n-dimensional tomographic perspective D ds:
  • D ds for an area of the tomographic dimensional perspective; d i to be evaluated for the three-dimensional geological body region similar dimensional unit cube through the body slice; depth, m h i for the cubic unit cell; H is the total thickness of the stratum in the area to be evaluated; n is the number of faults in the area.
  • I is the intensity of the fault
  • S imax is the maximum projected area of a fault plane in a cubic unit on a vertical plane of the unit, in m 2
  • h i is the depth of the unit, in m, in units The depth of the center point of the grid is the value
  • H is the stratum thickness of the evaluation area, in m
  • i is the number of faults inside the area.
  • the three-dimensional geological body is divided into cubic unit bodies of 1m ⁇ 1m ⁇ 1m, the secondary cubic unit bodies are divided in each unit body, and the secondary cubic units passing through the fold surface in each unit body are counted.
  • the performance of the wrinkles in the three-dimensional stratum is a set of mutually parallel curved surfaces, and the stratum level passing through the cubic unit body is used to indicate the degree of wrinkle of the unit body.
  • K i is the Gaussian curvature of the cubic unit.
  • K of the total area of the Gaussian curvature of a n, k i for all Gaussian curvature folds the lower surface of the flat area a n, a depth, a unit for the cube m h i of the unit body; H region was to be evaluated
  • the total thickness of the formation, in m; n is the number of folds in the area.
  • Q is a n for the cell region magma intrusion index, V i for the volume of the cell magmatic intrusions, unit m 3; h i for the cell depth, unit m; H is the area to be evaluated The total thickness of the formation, in m; n is the number of magmatic intrusions in the unit area;
  • M being an area subsided column index
  • V i is the volume of the region of collapse column, m 3
  • h i is a subsided column depth, m
  • H for the region to be evaluated formation thickness, m
  • n for the Area The number of collapsed columns.
  • B is the fragmentation degree of the collapsed column, which is quantified by the present invention as 1: the formation is relatively complete; 2: the formation is in a fragmented state; 4: the formation and its fragmentation are basically invisible.
  • Xi ' is normalized formation parameters, x i is a cell region a n parameter, ⁇ is to be the evaluation area a 1 ⁇ a n data mean, ⁇ is to be evaluated area data a 1 ⁇ a n of standard deviation; and configuration complexity evaluation region to treat a 1 ⁇ a n were scored:
  • step 7 above divide the structure complexity level:
  • the present invention has the beneficial effects of constructing a three-dimensional model in the research area, using the idea of fractal and fractal dimensions, and using the box-marking dimension method to obtain the similar dimensions of each three-dimensional unit to represent the research area Considering the inclination angle of faults and folds at the same time, it cannot be reflected in the complex dimensions of the structural plane. Fault intensity and fold curvature are introduced to characterize regional structural complexity. Through the above steps, the structural complexity of the area can be obtained, so as to provide a certain basis for the later exploration and development of energy minerals.
  • a method for evaluating the complexity of regional geological structures including the following steps:
  • Step 1 Use the existing drilling data and logging interpretation and seismic data analysis of regional geology, and use the 3D geological modeling software Petrel to establish the 3D geological model of the area to be evaluated.
  • the geological structure in the study area faults, folds, The magmatic rock mass and collapse column are identified, and the area on the horizontal plane is divided into a ⁇ a square grids, numbered a 1 ⁇ a n ;
  • Step 2 The stratum undergoes strong tectonic movement and fracture displacement occurs.
  • step 2 find the intensity I of the fault:
  • I is the intensity of the fault
  • S imax is the maximum projected area of the fault plane in a cubic unit on a vertical plane of the unit, in m 2
  • h i is the depth of the unit, with the center of the unit The point depth is the value, in m
  • H is the thickness of the formation in the evaluation area, in m
  • i is the number of faults in the area.
  • Step 3 When the tectonic stress is not enough to crush the formation, folds will be formed. This is one of the important manifestations of the concentration of underground stress; the three-dimensional geological body is divided into cubic unit blocks of 1m ⁇ 1m ⁇ 1m, and the secondary cubic unit bodies are divided in each unit block, and the statistics of the fold surface passing through each unit body are counted.
  • the number of secondary cubic units N(c), reduce the number of secondary cubic units, and set c c 0 /2, c 0 /3, c 0 /4, c 0 /8 to obtain the corresponding N(c) value;
  • c c 0 /2, c 0 /3, c 0 /4, c 0 /8 to obtain the corresponding N(c) value;
  • D zs is the fold three-dimensional dimension of the area
  • Z i is the similar dimension of the cubic unit body through which the fold surface passes in the area in the three-dimensional geological body to be evaluated
  • h i is the depth of the cubic unit body in m
  • n is the number of folds in the area.
  • the performance characteristics of the folds in the three-dimensional stratum are a set of parallel curved surfaces, and the stratum level passing through the cubic unit body is used to express the degree of folds of the unit body.
  • K i is the Gaussian curvature of the cubic cell.
  • K of the total area of the Gaussian curvature of a n, k i for all Gaussian curvature folds the lower surface of the flat area a n, a depth, a unit for the cube m h i of the unit body; H region was to be evaluated the total thickness of the layer, unit m; n is the number of pleats in a n area.
  • Step 4 Effect of extent configured by intrusive magmatic index Q magmatite characterized region of a n:
  • Q is a n for the cell region magma intrusion index, V i for the volume of the magmatic intrusions of the unit body, the unit m 3; h i for the cell depth, unit m; H is the area to be evaluated The total thickness of the formation, in m; n is the number of magmatic intrusions in the unit area;
  • Step 5 Use the collapse column index M to characterize the structural complexity of the area
  • M being an area subsided column index
  • V i is the volume of the region of collapse column, m 3
  • h i is a subsided column depth, m
  • H for the region to be evaluated formation thickness, m
  • n for the Area The number of collapsed columns.
  • B is the fragmentation degree of the collapsed column, which is quantified by the present invention as 1: the formation is relatively complete; 2: the formation is in a fragmented state; 4: the formation and its fragmentation are basically invisible.
  • Step 6 The above-mentioned geological parameters of the strata have large differences due to their dimensions and magnitudes. Normalize the above-mentioned data:
  • Xi ' is normalized formation parameters, x i is a cell region a n parameter, ⁇ is to be the evaluation area a 1 ⁇ a n data mean, ⁇ is to be evaluated area data a 1 ⁇ a n of standard deviation; and configuration complexity evaluation region to treat a 1 ⁇ a n were scored:
  • Step 7 Divide the level of structural complexity:

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention concerne un procédé d'évaluation de la complexité d'une structure géologique régionale, comprenant : étape 1, établissement d'un modèle géologique tridimensionnel de strate d'une région à évaluer ; étape 2, résolution d'une dimension de similarité de défaut di d'une certaine région an au moyen d'un procédé de dimension de boîte, puis résolution d'une dimension tridimensionnelle de défaut Dds, et résolution de l'intensité I du défaut ; étape 3, résolution d'une dimension de similarité de pli Zi de ladite région an au moyen d'un procédé de dimension de boîte, puis résolution d'une dimension tridimensionnelle Dzs, et résolution d'une courbure gaussienne K d'une surface de pli ; étape 4, résolution d'un indice d'invasion Q de roche magmatique dans la région an ; étape 5, résolution d'un indice de colonne d'effondrement M de la région an ; étape 6, réalisation d'un traitement de normalisation sur les données ; et étape 7, réalisation d'une division de niveau de complexité de structure. La complexité de la structure régionale peut être obtenue au moyen des étapes, ce qui permet d'obtenir une certaine base destinée à une exploration et un développement de minéraux énergétiques ultérieurs.
PCT/CN2019/105877 2019-04-18 2019-09-16 Procédé d'évaluation de la complexité d'une structure géologique régionale WO2020211277A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019429806A AU2019429806B2 (en) 2019-04-18 2019-09-16 Method for evaluating degree of complexity of regional geological structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910312580.0 2019-04-18
CN201910312580.0A CN110007343B (zh) 2019-04-18 2019-04-18 一种区域地质构造复杂程度的评价方法

Publications (1)

Publication Number Publication Date
WO2020211277A1 true WO2020211277A1 (fr) 2020-10-22

Family

ID=67172769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105877 WO2020211277A1 (fr) 2019-04-18 2019-09-16 Procédé d'évaluation de la complexité d'une structure géologique régionale

Country Status (3)

Country Link
CN (1) CN110007343B (fr)
AU (1) AU2019429806B2 (fr)
WO (1) WO2020211277A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415582A (zh) * 2020-10-15 2021-02-26 山东大学 一种结构和波速随机布设的三维速度地质建模方法
CN114332401A (zh) * 2022-03-11 2022-04-12 四川省公路规划勘察设计研究院有限公司 一种三维地质模型的结构复杂度定量评估方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007343B (zh) * 2019-04-18 2021-01-29 中国矿业大学 一种区域地质构造复杂程度的评价方法
CN112987087B (zh) * 2021-02-20 2022-01-04 中南大学 微震监测/声发射破裂源时空分布状态与趋势的预警方法
CN112687001B (zh) * 2021-03-15 2021-06-01 四川省公路规划勘察设计研究院有限公司 三维地质结构模型随机生成及不确定性分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104239738A (zh) * 2014-09-28 2014-12-24 山东科技大学 一种底板原始导高带的预测方法
CN106934860A (zh) * 2017-01-12 2017-07-07 天津大学 一种基于t样条的三维地质建模方法
US20180128940A1 (en) * 2016-11-04 2018-05-10 Robert J. Ferderer Global Inversion of Gravity Data Using the Principle of General Local Isostasy for Lithospheric Modeling
CN109345119A (zh) * 2018-09-30 2019-02-15 山东科技大学 一种基于层次分析法的煤层顶板动力分区评价方法
CN109490985A (zh) * 2018-12-24 2019-03-19 桂林理工大学 一种地球物理勘测系统和方法
CN109598015A (zh) * 2018-10-08 2019-04-09 成都理工大学 碎裂结构岩体碎裂程度分级评价方法
CN110007343A (zh) * 2019-04-18 2019-07-12 中国矿业大学 一种区域地质构造复杂程度的评价方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052333A (en) * 1992-10-23 2000-04-18 Texaco Inc. Method for seismic antenna illumination of subterranean feature for display and evaluation
CN101853522B (zh) * 2010-04-30 2012-03-21 中国矿业大学(北京) 三维地质建模系统及其建模方法
US8892388B2 (en) * 2010-09-30 2014-11-18 Schlumberger Technology Corporation Box counting enhanced modeling
CN105243394B (zh) * 2015-11-03 2019-03-19 中国矿业大学 一种类不平衡对分类模型性能影响程度的评价方法
CN106019405B (zh) * 2016-05-13 2018-08-31 中国石油大学(北京) 储层裂缝建模方法及系统
CN107015275B (zh) * 2017-04-14 2019-04-19 中国矿业大学(北京) 陷落柱检测方法和装置
CN107193053B (zh) * 2017-07-12 2019-04-09 中国石油化工股份有限公司 山前推覆带火山岩区逆断层分单元垂向输导能力评价方法
CN107942381B (zh) * 2017-11-01 2020-01-10 中国矿业大学 一种致密油储层层理缝定量预测方法
CN108804849B (zh) * 2018-06-22 2022-04-26 西南石油大学 一种基于结构复杂度的岩石力学参数评价方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104239738A (zh) * 2014-09-28 2014-12-24 山东科技大学 一种底板原始导高带的预测方法
US20180128940A1 (en) * 2016-11-04 2018-05-10 Robert J. Ferderer Global Inversion of Gravity Data Using the Principle of General Local Isostasy for Lithospheric Modeling
CN106934860A (zh) * 2017-01-12 2017-07-07 天津大学 一种基于t样条的三维地质建模方法
CN109345119A (zh) * 2018-09-30 2019-02-15 山东科技大学 一种基于层次分析法的煤层顶板动力分区评价方法
CN109598015A (zh) * 2018-10-08 2019-04-09 成都理工大学 碎裂结构岩体碎裂程度分级评价方法
CN109490985A (zh) * 2018-12-24 2019-03-19 桂林理工大学 一种地球物理勘测系统和方法
CN110007343A (zh) * 2019-04-18 2019-07-12 中国矿业大学 一种区域地质构造复杂程度的评价方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415582A (zh) * 2020-10-15 2021-02-26 山东大学 一种结构和波速随机布设的三维速度地质建模方法
CN114332401A (zh) * 2022-03-11 2022-04-12 四川省公路规划勘察设计研究院有限公司 一种三维地质模型的结构复杂度定量评估方法

Also Published As

Publication number Publication date
CN110007343A (zh) 2019-07-12
AU2019429806A1 (en) 2020-11-05
CN110007343B (zh) 2021-01-29
AU2019429806B2 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020211277A1 (fr) Procédé d'évaluation de la complexité d'une structure géologique régionale
CN109447837B (zh) 一种矿区冲击地压的危险性评估方法
CN104730596B (zh) 一种基于多尺度因素约束的离散裂缝建模方法
CN106501856B (zh) 亚地震断层定量预测方法
CN104267435B (zh) 一种横观各向同性地层弹性系数的测井计算方法及装置
WO2014166244A1 (fr) Procédé d'évaluation de faiblesse de plancher de veine de charbon par rapport à une irruption d'eau
CN109993832B (zh) 一种综采工作面煤层精细化三维模型的构建方法
CN104992468A (zh) 缝洞型碳酸盐岩油气藏三维地质建模方法
CN102455438B (zh) 碳酸盐岩缝洞型储层体积预测方法
CN114663627A (zh) 一种基于三维点云数据库的矿山数字模型建立方法
CN113820750A (zh) 基于弹塑性力学定量预测泥岩构造裂缝的方法
CN111222254A (zh) 基于应力叠加法的工作面冲击地压危险等级划分方法和系统
CN115166853A (zh) 页岩气藏天然裂缝模型建立方法、装置、电子设备及介质
CN114169789A (zh) 基于层次分析和模糊综合评判的煤矿冲击地压预测方法
CN106199712B (zh) 一种确定压裂套管变形区域的方法及装置
Alade et al. Modified volumetric joint count to check for suitability of granite outcrops for dimension stone production
Long et al. Automatic identification of irregular rock blocks from 3D point cloud data of rock surface
CN102650617B (zh) 结构混凝土声波穿透移动单元体检测方法
CN107315880A (zh) 水平地震力作用下隧道直边墙三维破坏形状的定位方法
Li et al. Construction and application of prediction methods for coal texture of CBM reservoirs at the block scale
CN116559938A (zh) 一种油气藏裂缝模型建立方法及电子设备
Esmaeilzadeh et al. Shape effect of fractures on intensity and density of discreet fracture networks
Chertkov et al. Networks originating from the multiple cracking of different scales in rocks and swelling soils
CN114966842B (zh) 含煤地层断层的三维可视化模型的构建方法
Wang et al. DFN model validation and input parameter calibration for Hawkesbury Sandstone

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019429806

Country of ref document: AU

Date of ref document: 20190916

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924734

Country of ref document: EP

Kind code of ref document: A1