WO2020211263A1 - 一种多光源共光路的照明系统 - Google Patents

一种多光源共光路的照明系统 Download PDF

Info

Publication number
WO2020211263A1
WO2020211263A1 PCT/CN2019/104503 CN2019104503W WO2020211263A1 WO 2020211263 A1 WO2020211263 A1 WO 2020211263A1 CN 2019104503 W CN2019104503 W CN 2019104503W WO 2020211263 A1 WO2020211263 A1 WO 2020211263A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source module
emitting area
heat dissipation
Prior art date
Application number
PCT/CN2019/104503
Other languages
English (en)
French (fr)
Inventor
李伟民
金志樑
熊大曦
杨斐
Original Assignee
中国科学院苏州生物医学工程技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920507897.5U external-priority patent/CN210323555U/zh
Priority claimed from CN201910299114.3A external-priority patent/CN109901278B/zh
Application filed by 中国科学院苏州生物医学工程技术研究所 filed Critical 中国科学院苏州生物医学工程技术研究所
Priority to JP2021600155U priority Critical patent/JP3237015U/ja
Publication of WO2020211263A1 publication Critical patent/WO2020211263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • This application belongs to the field of lighting technology, and specifically relates to a lighting system with multiple light sources sharing a light path.
  • the Chinese invention patent with publication number CN109185730 A discloses a multi-spectral light source system, which uses dichroic mirrors to coaxially process several different wavelengths of light and irradiate them at the same position to perform multiple wavelengths of light. ⁇ .
  • dichroic mirrors to coaxially process several different wavelengths of light and irradiate them at the same position to perform multiple wavelengths of light. ⁇ .
  • the Chinese invention patent with publication number CN 108050429 A discloses an LED multi-spectral common light path light source lighting device, which can realize the movement of the center point of LED chips of different wavelengths through a mobile station, so as to achieve the optical axis of the optical element. The effect of coincidence.
  • its adjustment method is single, which is difficult to meet the switching of multiple application scenarios.
  • the technical problem to be solved by this application is to provide a lighting system with multiple light sources and a common light path.
  • An illumination system with multiple light sources sharing a light path comprising: an optical system, at least one light source module and at least one driving system, the optical axis of the optical system and the light from the light emitting area in one of the light source modules Coaxially, the driving system is connected with the light source module and drives the light source module to move.
  • optical axis of the optical system is coaxial with the central light ray of the light-emitting area in one of the light source modules.
  • the driving system is connected to the light source module through a mounting board, and drives the light source module to move.
  • the plane where the rotation center of the drive system is located is perpendicular to the plane where the light-emitting area is located.
  • a plurality of the light-emitting areas are arranged in an arc manner.
  • the radius of rotation R of the light-emitting area, the angle ⁇ of the light-emitting area, and the side length of the light-emitting area satisfy:
  • rotation axis of the driving system is arranged parallel to the plane where the light-emitting area is located.
  • the light source module or the light emitting area in the light source module is arranged on the circumferential surface of the mounting plate along the circumferential direction.
  • the radius of rotation R of the light-emitting area, the angle ⁇ of the light-emitting area, and the side length of the light-emitting area satisfy:
  • the driving system includes a stepping motor, a servo motor, a motor and an encoder, a rotating cylinder or a rotating hydraulic cylinder.
  • the driving system can also be equipped with a screw and a screw sleeve, wherein the rotation shaft of the driving system is connected with the screw, and the screw sleeve used in conjunction with the screw is connected with the mounting plate.
  • the light emitting areas in one of the light source modules are linearly arranged, and the central light of the light emitting area is arranged in parallel with the screw.
  • the minimum installation distance ⁇ of the chip in the light source module satisfies:
  • is the minimum installation distance of the chip in the light source module
  • a and b are the side lengths of adjacent light-emitting areas
  • is the minimum angle that the drive system can rotate
  • P is the pitch of the screw.
  • a main drive system is also configured, wherein the rotation shaft of the main drive system is connected to a connecting frame, and at least one of the The light source module; other rotating shafts of the drive system are connected to the corresponding light source modules.
  • the present application also includes a heat dissipation system, one side of the heat dissipation system is connected with the rotation shaft of the drive system, and the other side is connected with the light source module; or, the mounting board is replaced with a heat dissipation system system.
  • the light source module is correspondingly installed on a heat sink in the heat dissipation system.
  • each of the light-emitting areas includes one or more combinations of solid-state light sources, LED chips, vcsel chips, OLED or LD chips.
  • the optical system is configured with a plurality of optical sub-systems, wherein the center of one of the optical sub-systems is arranged coaxially with the center of the light-emitting area, and the centers of the plurality of the optical sub-systems are located on the same circle.
  • a power rotating device is also arranged at the center of the optical system.
  • This application uses the method of sharing the light path to realize that the light sources in the light-emitting areas of different forms of packaging can emit the emitted light in a coaxial form, thereby realizing the light path combination of different light sources, and greatly improving the installation and adjustment cost. ;
  • This application can not only bring higher light power to lighting systems such as fluorescent microscopic lighting, but also greatly reduce the cost of the lighting system.
  • Fig. 1 A structural diagram of one embodiment of an illumination system with multiple light sources sharing a light path according to the present application;
  • FIG. 1 Rotation diagram of the structure shown in Figure 1;
  • FIG. 3 Working principle diagram of the structure shown in Figure 2;
  • Fig. 4 A structural diagram of an embodiment of an illumination system with multiple light sources sharing a light path according to the present application
  • FIG. 5 Rotation mode diagram of the structure shown in Figure 4;
  • Figure 6 The working principle diagram of the structure shown in Figure 5;
  • Fig. 7 A structural diagram of one embodiment of the lighting system with multiple light sources sharing a light path according to the present application
  • Figure 8 The rotation mode diagram of the structure shown in Figure 7;
  • FIG. 9 Working principle diagram of the structure shown in Figure 8.
  • Fig. 10 A structural diagram of one embodiment of the illumination system with multiple light sources and common light path according to the present application;
  • Fig. 11 A structural diagram of one embodiment of the illumination system with multiple light sources and common light path according to the present application;
  • Fig. 12 A structural diagram of one embodiment of an illumination system with multiple light sources and a common light path according to the present application;
  • Fig. 13 A structural diagram of one embodiment of the lighting system with multiple light sources and common light path according to the present application;
  • Fig. 14 A structural diagram of one embodiment of the illumination system with multiple light sources and common light path according to the present application;
  • Fig. 15 A structural diagram of one embodiment of the lighting system with multiple light sources and a common light path according to the present application;
  • Fig. 16 Structure diagram of one embodiment of the lighting system with multiple light sources and common light path according to the present application;
  • Fig. 17 A structural diagram of one embodiment of an illumination system with multiple light sources and a common light path according to the present application;
  • Fig. 18 A structural diagram of one embodiment of an illumination system with multiple light sources and a common light path according to the present application;
  • Fig. 19 A structural diagram of one embodiment of an illumination system with multiple light sources sharing a light path according to the present application;
  • Fig. 20 A schematic diagram of the structure when multiple sets of optical subsystems are configured in one of the embodiments of the illumination system with multiple light sources and common optical paths according to the present application;
  • Figure 21 A schematic diagram of the planar structure of the optical system as shown in Figure 20;
  • Figure 22 Structure diagram 1 of the optical lens group in this application.
  • Fig. 23 Structure diagram 2 of the optical lens group in the present application.
  • Fig. 24 Structure diagram 3 of the optical lens group in the present application.
  • Figure 25 A schematic diagram of the structure of the optical fiber in this application.
  • Figure 26 A schematic diagram of the structure of the total internal reflector in this application.
  • An illumination system with multiple light sources sharing a light path includes: an optical system 10, at least one light source module 20, and at least one driving system 40.
  • the optical axis of the optical system 10 and one of the light source modules 20 emit light.
  • the light rays in the area 21 are coaxial, and the driving system 40 is connected to the light source module 20 and drives the light source module 20 to move.
  • the optical axis of the optical system 10 is coaxial with the central light ray of the light-emitting area 21 in one of the light source modules 20.
  • the central ray of the light-emitting area 21 can be understood as the maximum light intensity contained in a circle formed by taking a certain point on the plane of the light-emitting area 21 as the center and taking the diameter of the optical system 10 as the diameter. Energy, for example, can include 70%, 80% or more than 90% of the light intensity energy.
  • the center of the circle may be on the mounting surface where the light-emitting area 21 is located, or on a plane other than the mounting surface where the light-emitting area 21 is located.
  • the regular light-emitting area 21 can be arranged in a rectangular array, a circular array, or a triangular array, etc., and the irregular light-emitting area 21 can be arranged in an L-shaped arrangement, a P-shaped arrangement, etc.
  • the above are only examples.
  • the light-emitting area 21 is arranged regularly or irregularly, but it does not limit the protection scope of the present application.
  • the center of the optical system 10 is located at the central light of the middle light-emitting area 21.
  • the initial position of the present application is preferably set so that the central light of the light-emitting area 21 in the middle of the light source module 20 is coaxial with the optical system 10, and the front (reverse) turns over a certain angle, so that the two adjacent light-emitting areas 21 Switch.
  • the function of the rotation axis of the driving system 40 is to move the center of the light-emitting area 21 of the required light source to the optical axis of the optical system 10.
  • the driving system 40 is connected to the light source module 20 through a mounting board, and drives the light source module 20 to move.
  • the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30.
  • the heat dissipation system 30 is configured to prevent the light source module 20 from generating a large amount of heat during operation, thereby affecting the efficiency of the chip.
  • the heat sink in the heat dissipation system 30 must be arranged in close contact with the light source module 20 to conduct away the heat generated by the light source module 20 in time.
  • air cooling or water cooling can be used to accelerate heat dissipation.
  • the light source module 20 is provided with a plurality of light emitting areas 21, wherein each light emitting area 21 includes: a single LED chip, multiple LED chips, vcsel chips, fixed light sources or LD chips.
  • the driving system 40 includes a stepping motor, a servo motor, a motor and an encoder, a rotating cylinder or a rotating hydraulic cylinder, and of course manual operation can also be adopted.
  • the rotation center of the driving system 40 must be coaxial with the arc center where the light-emitting area 21 is located. At this time, the driving system 40 rotates at an angle equal to the light-emitting area 21 to realize the rotation of the light source module 20 , So as to realize the switching of the light source of the light-emitting area 21.
  • the drive system 40 can also be equipped with a screw 401 and a screw sleeve 402, wherein the rotating shaft of the drive system 40 is connected to the screw 401, and the screw sleeve 402 used in conjunction with the screw 401 and the heat dissipation system 30. Or connect with the mounting board.
  • a main drive system 40' is also configured, wherein the rotating shaft of the main drive system 40' is connected to the connecting frame 50, and at least One of the light source modules 20, the main driving system 40' drives the connecting frame 50 and the light source module 20 installed on the connecting frame 50 to move together; the rotation axis of the driving system 40 The correspondingly arranged light source module 20 is connected, and the driving system 40 drives the correspondingly arranged light source module 20 to move.
  • the present application also includes a heat dissipation system 30, one side of the heat dissipation system 30 is connected with the rotation shaft of the driving system 40, and the other side is connected with the light source module 20.
  • the mounting board can also be replaced with the heat dissipation system 30.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is The central light rays of the light-emitting area 21 in the light source module 20 are coaxial.
  • the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30.
  • the driving system 40 is connected to the heat dissipation system 30 and drives all The heat dissipation system 30 moves, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light emitting area 21 in the light source module 20, and finally moving the center of the light emitting area 21 of the required light source To the optical axis of the optical system 10.
  • the structure shown in this embodiment is a plane rotating structure A.
  • the plane where the rotation center of the drive system 40 is located is perpendicular to the plane where the light-emitting area 21 is located.
  • the rotation axis of the driving system 40 is coaxial with the arc center where the light-emitting area 21 is located, and the switching between two adjacent light-emitting areas 21 is realized by controlling the forward or reverse rotation of the rotation axis.
  • each box represents a light-emitting area 21, and each light-emitting area 21 may include: solid state One or more combinations of light source, LED chip, vcsel chip, OLED or LD chip.
  • the radius of rotation R of the light-emitting area 21, the angle ⁇ of the light-emitting area 21, and the side length of the light-emitting area 21 satisfy:
  • is the minimum mounting distance of the chip in the light source module 20; a and b are the side lengths of the adjacent light-emitting areas 21; R is the radius of rotation of the light-emitting areas 21; ⁇ is the angle of the light-emitting areas 21, which is also the The minimum rotation angle of the light source module 20.
  • a and b can be the same or different values.
  • different types of drive systems 40 have different minimum rotatable angles.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a drive system 40.
  • the optical axis of the optical system 10 and the The central light rays of the light-emitting area 21 in the light source module 20 are coaxial.
  • the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30.
  • the driving system 40 is connected to the heat dissipation system 30 and drives all The heat dissipation system 30 moves, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light emitting area 21 in the light source module 20, and finally moving the center of the light emitting area 21 of the required light source To the optical axis of the optical system 10.
  • the structure shown in this embodiment is a roller rotating structure B.
  • the plane where the rotation center of the drive system 40 is located is parallel to the plane where the light-emitting area 21 is located.
  • the light source module 20 or the light emitting area 21 in the light source module 20 is evenly arranged on the circumferential surface of the heat dissipation system 30 along the circumferential direction, wherein each box represents a light emitting area 21.
  • Each of the light-emitting areas 21 may include one or more combinations of solid-state light sources, LED chips, vcsel chips, OLED or LD chips.
  • the rotation axis of the driving system 40 is coaxial with the arc center where the light-emitting area 21 is located, and the switching between two adjacent light-emitting areas 21 is realized by controlling the forward or reverse rotation of the rotation axis.
  • the radius of rotation R of the light-emitting area 21, the angle ⁇ of the light-emitting area 21, and the side length of the light-emitting area 21 satisfy:
  • is the minimum mounting distance of the chip in the light source module 20; a and b are the side lengths of the adjacent light-emitting areas 21; R is the radius of rotation of the light-emitting areas 21; ⁇ is the angle of the light-emitting areas 21, which is also the The minimum rotation angle of the light source module 20.
  • a and b can be the same or different values.
  • different types of drive systems 40 have different minimum rotatable angles.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is The central light rays of the light-emitting area 21 in the light source module 20 are coaxial.
  • the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30.
  • the driving system 40 is connected to the heat dissipation system 30 and drives all The heat dissipation system 30 moves, thereby driving the movement of the light source module 20 fixed on the heat sink, and further realizes the movement switching of the light emitting area 21 in the light source module 20.
  • the structure shown in this embodiment is a translational reciprocating structure C.
  • the drive system 40 can also be configured with a screw 401 and a screw sleeve 402, wherein the rotation shaft of the drive system 40 is connected to the screw 401, and the screw sleeve 402 used in conjunction with the screw 401 Connect with the heat dissipation system 30.
  • the driving system 40 drives the screw 401 to rotate, the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating movement, and the screw sleeve 402 is connected to the heat dissipation system 30 to realize the translational reciprocating movement of the heat dissipation system 30, thereby achieving the The movement of the light-emitting area 21 is switched.
  • the light-emitting areas 21 in the light source module 20 are linearly arranged, and the central light of the light-emitting areas 21 is arranged in parallel with the screw 401.
  • the minimum installation distance ⁇ of the chip in the light source module 20 satisfies:
  • is the minimum installation distance of the chips in the light source module 20
  • a and b are the side lengths of the adjacent light-emitting areas 21
  • is the minimum angle at which the driving system 40 can rotate
  • P is the pitch of the screw 401.
  • a and b can be the same or different values.
  • this embodiment is a structure formed by combining on the basis of the first embodiment, that is, a plane rotating structure A (a movement mode driven by the drive system 40) and a plane rotating structure A (The combination of the movement mode driven by the main drive system 40'), which is driven by the main drive system 40' to drive the required plane rotating structure A to the starting position through the connecting frame 50, and then the required plane rotating structure
  • the driving of the driving system 40 arranged inside A switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , So as to drive the movement of the light source module 20 fixed on the heat sink, and then realize the movement switching of the light-emitting area 21 in the light source module 20, and finally move the center of the light-emitting area 21 of the required light source to the light of the optical system 10 On the axis.
  • this embodiment when there are three lighting systems, then this embodiment is also configured with a main drive system 40', the rotating shaft of the main drive system 40' is connected to the connecting frame 50, so The above-mentioned three heat dissipation systems 30 are also installed on the connecting frame 50, and the main driving system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat dissipation system 30
  • the driving system 40 drives the heat dissipation system 30 corresponding to it to move, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20, and the required light source
  • the center of the light-emitting area 21 moves
  • the present embodiment is a structure formed by combining on the basis of the second embodiment, namely, the roller rotating structure B (movement mode driven by the drive system 40) and the plane rotating structure A ( The combination of the movement mode driven by the main drive system 40'), which is driven by the main drive system 40' through the connecting frame 50 to drive the required roller rotating structure B to switch to the starting position, and then the required roller rotating structure
  • the driving of the driving system 40 arranged inside B switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , So as to drive the movement of the light source module 20 fixed on the heat sink, and then realize the movement switching of the light-emitting area 21 in the light source module 20, and finally move the center of the light-emitting area 21 of the required light source to the light of the optical system 10 On the axis.
  • this embodiment when the lighting system is provided with three, then this embodiment is also configured with a main driving system 40', the rotating shaft of the main driving system 40' is connected to the connecting frame 50, and the The above-mentioned three heat dissipation systems 30 are also installed on the connecting frame 50, and the main driving system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat sink fixed on the heat sink.
  • the movement of the light source module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20;
  • the rotation axis of the other driving system 40 is connected to the corresponding heat dissipation system 30, and the driving system 40 drives the heat dissipation system 30 corresponding to it to move, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment is a structure formed by a combination on the basis of the third embodiment, that is, a translational reciprocating structure C (movement mode driven by the drive system 40) and a planar rotating structure A (The combination of the movement mode driven by the main drive system 40'), which is driven by the main drive system 40' to drive the required translational reciprocating structure C to the starting position through the connecting frame 50, and then the required translational reciprocating structure
  • the driving of the driving system 40 arranged inside C switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , So as to drive the movement of the light source module 20 fixed on the heat sink, and thereby realize the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment when the lighting system is provided with three, then this embodiment is also configured with a main driving system 40', the rotating shaft of the main driving system 40' is connected to the connecting frame 50, and the The above-mentioned three heat dissipation systems 30 are also installed on the connecting frame 50, and the main driving system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat sink fixed on the heat sink.
  • the movement of the light source module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20;
  • the rotation axis of the other driving system 40 is connected to the corresponding heat dissipation system 30, and the driving system 40 drives the heat dissipation system 30 corresponding to it to move, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • the drive system 40 is further configured with a screw 401 and a screw sleeve 402, wherein the rotation shaft of the drive system 40 is connected with the screw 401, and the screw sleeve 402 used in conjunction with the screw 401 is The heat dissipation system 30 is connected.
  • the driving system 40 drives the screw 401 to rotate.
  • the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating motion.
  • the screw sleeve 402 is directly connected to the heat dissipation system 30, thereby realizing the translational reciprocating motion of the heat dissipation system 30, thereby realizing the light source module 20
  • the movement of the middle light emitting area 21 is switched.
  • this embodiment is a structure formed by combining on the basis of the first embodiment, that is, a planar rotating structure A (a movement mode driven by the drive system 40) and a roller rotating structure B ( Driven by the main drive system 40'), it is driven by the main drive system 40' to drive the required plane rotating structure A to switch to the starting position through the connecting frame 50, and then the required plane rotating structure
  • the driving of the driving system 40 arranged inside the A structure switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , Thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment when the lighting system is provided with three, then this embodiment is also configured with a main driving system 40', the rotating shaft of the main driving system 40' is connected to the connecting frame 50, and the The above-mentioned three heat dissipation systems 30 are also installed on the connecting frame 50, and the main driving system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat sink fixed on the heat sink.
  • the movement of the light source module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20;
  • the rotation axis of the other driving system 40 is connected to the corresponding heat dissipation system 30, and the driving system 40 drives the heat dissipation system 30 corresponding to it to move, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • the present embodiment is a structure formed by combining on the basis of the second embodiment, namely, the roller rotating structure B (movement mode driven by the drive system 40) and the roller rotating structure B ( The combination of the movement mode driven by the main drive system 40'), which is driven by the main drive system 40' through the connecting frame 50 to drive the required roller rotating structure B to switch to the starting position, and then the required roller rotating structure
  • the driving of the driving system 40 arranged inside B switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , Thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment when the lighting system is provided with three, then this embodiment is also configured with a main driving system 40', the rotating shaft of the main driving system 40' is connected to the connecting frame 50, and the The above-mentioned three heat dissipation systems 30 are also installed on the connecting frame 50, and the main driving system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat sink fixed on the heat sink.
  • the movement of the light source module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20; the rotation axis of the other driving system 40 is connected to the corresponding heat dissipation system 30, and the driving system 40 drives the heat dissipation system 30 corresponding to it to move, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement of the light-emitting area 21 in the light source module 20.
  • this embodiment is a structure formed by combining on the basis of the third embodiment, namely, the translational reciprocating structure C (movement mode driven by the drive system 40) and the roller rotating structure B ( The combination of the movement mode driven by the main drive system 40'), which is driven by the main drive system 40' to drive the required translational reciprocating structure C to the starting position through the connecting frame 50, and then the required translational reciprocating structure
  • the driving of the driving system 40 arranged inside C switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources in the same light path in this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the center of the optical system 10 and the light-emitting area 21 in one of the light source modules 20 The light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move, Thus, the movement of the light source module 20 fixed on the heat sink is driven, and the movement of the light-emitting area 21 in the light source module 20 is switched.
  • this embodiment when the lighting system is provided with three, then this embodiment is also configured with a main driving system 40', the rotating shaft of the main driving system 40' is connected to the connecting frame 50, and the The above-mentioned three heat dissipation systems 30 are also installed on the connecting frame 50, and the main driving system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat sink fixed on the heat sink.
  • the movement of the light source module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20; the rotation axis of the other driving system 40 is connected to the corresponding heat dissipation system 30, and the driving system 40 drives the heat dissipation system 30 corresponding to it to move, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement of the light-emitting area 21 in the light source module 20.
  • the drive system 40 is further configured with a screw 401 and a screw sleeve 402, wherein the rotation shaft of the drive system 40 is connected with the screw 401, and the screw sleeve 402 used in conjunction with the screw 401 is The heat dissipation system 30 is connected.
  • the driving system 40 drives the screw 401 to rotate.
  • the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating motion.
  • the screw sleeve 402 is directly connected to the heat dissipation system 30, thereby realizing the translational reciprocating motion of the heat dissipation system 30, thereby realizing the light source module 20
  • the movement of the middle light emitting area 21 is switched.
  • this embodiment is a structure formed on the basis of the combination of the first embodiment and the third embodiment, that is, the planar rotating structure A (movement mode driven by the driving system 40) and the translational reciprocating The combination of type structure C (movement mode driven by the main drive system 40'), which is driven by the main drive system 40' through the connecting frame 50 to drive the required plane rotating structure A to switch to the starting position, and then the required The driving of the driving system 40 disposed inside the planar rotating structure A switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , Thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment when there are three lighting systems, then this embodiment is also configured with a main driving system 40', the main driving system 40' is connected to the connecting frame 50, and the connecting frame 50
  • the above-mentioned two heat dissipation systems 30 are also installed on the main drive system 40', and the main drive system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat sink fixed on the heat sink.
  • the movement of the light source module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20; the rotation axis of the other driving system 40 is connected with the corresponding heat dissipation system 30, and the driving system 40 drives The heat dissipation system 30 provided corresponding thereto moves, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • the main driving system 40' is further equipped with a screw 401 and a screw sleeve 402, wherein the rotating shaft of the driving system 40 is connected to the screw 401, and the screw sleeve used in conjunction with the screw 401 402 is connected with the connecting frame 50.
  • the main drive system 40' drives the screw 401 to rotate.
  • the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating movement.
  • the screw sleeve 402 is connected to the connecting frame 50 to realize the translational reciprocating movement of the heat dissipation system 30, thereby realizing the light source module
  • the movement of the light-emitting area 21 in 20 is switched.
  • this embodiment is a structure formed on the basis of the combination of the second and the third embodiments, namely, the roller rotating structure B (movement mode driven by the driving system 40) and the translational reciprocating
  • the combination of the type structure C (movement mode driven by the main drive system 40') which is driven by the main drive system 40' through the connecting frame 50 to drive the required roller rotating structure B to switch to the starting position, and then the required
  • the driving of the drive system 40 arranged inside the roller rotating structure B switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , Thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment when the lighting system is provided with one, then this embodiment is also configured with a main driving system 40', the main driving system 40' is connected to the connecting frame 50, and the connecting frame 50
  • the heat dissipation system 30 is also installed on the main drive system 40', and the main drive system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the light source module fixed on the heat sink
  • the movement of the group 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20;
  • the rotation axis of the other driving system 40 is connected to the corresponding heat dissipation system 30, and the driving system 40 drives the
  • the corresponding heat dissipation system 30 moves, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • the main driving system 40' is further equipped with a screw 401 and a screw sleeve 402, wherein the rotating shaft of the driving system 40 is connected to the screw 401, and the screw sleeve used in conjunction with the screw 401 402 is connected with the connecting frame 50.
  • the main drive system 40' drives the screw 401 to rotate.
  • the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating movement.
  • the screw sleeve 402 is connected to the connecting frame 50 to realize the translational reciprocating movement of the heat dissipation system 30, thereby realizing the light source module
  • the movement of the light-emitting area 21 in 20 is switched.
  • this embodiment is a structure formed by combining on the basis of the third embodiment, that is, the translational reciprocating structure C (movement mode driven by the drive system 40) and the translational reciprocating structure C ( The combination of the movement mode driven by the main drive system 40'), which is driven by the main drive system 40' to drive the required translational reciprocating structure C to the starting position through the connecting frame 50, and then the required translational reciprocating structure
  • the driving of the driving system 40 arranged inside C switches the desired light-emitting area 21 to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , Thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment when the lighting system is provided with one, then this embodiment is also configured with a main driving system 40', the main driving system 40' is connected to the connecting frame 50, and the connecting frame 50
  • the heat dissipation system 30 is also installed on the main drive system 40', and the main drive system 40' drives the connection frame 50 and the heat dissipation system 30 installed on the connection frame 50 to move together, thereby driving the light source fixed on the heat sink
  • the movement of the module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20;
  • the other driving system 40 is connected to the corresponding heat dissipation system 30, and the driving system 40 drives the corresponding setting
  • the heat dissipation system 30 moves, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • the main drive system 40' is further equipped with a screw 401 and a screw sleeve 402, wherein the rotation shaft of the main drive system 40' is connected to the screw 401, and is used in conjunction with the screw 401
  • the screw sleeve 402 is connected with the connecting frame 50.
  • the main drive system 40' drives the screw 401 to rotate.
  • the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating movement.
  • the screw sleeve 402 is connected to the connecting frame 50 to realize the translational reciprocating movement of the heat dissipation system 30, thereby realizing the light source module
  • the movement of the light-emitting area 21 in 20 is switched.
  • the drive system 40 is also equipped with a screw 401 and a screw sleeve 402, wherein the rotating shaft of the drive system 40 is connected to the screw 401, and the screw sleeve used in conjunction with the screw 401 402 is connected to the heat dissipation system 30.
  • the driving system 40 drives the screw 401 to rotate, the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating movement, and the screw sleeve 402 is connected to the heat dissipation system 30 to realize the translational reciprocating movement of the heat dissipation system 30, thereby achieving the The movement of the light-emitting area 21 is switched.
  • this embodiment is a structure formed by combining the first, second, and third embodiments, that is, the planar rotating structure A (movement mode driven by the drive system 40). ), the combination of roller rotating structure B (movement mode driven by the drive system 40) and translational reciprocating structure C (movement mode driven by the main drive system 40'), which is driven by the main drive system 40',
  • the connecting frame 50 drives the required plane rotating structure A or roller rotating structure B to switch to the starting position, and then the drive system 40 configured inside the required plane rotating structure A or roller rotating structure B will be The light-emitting area 21 is switched to a position coaxial with the optical axis of the optical system 10.
  • the illumination system with multiple light sources sharing the optical path of this embodiment includes: an optical system 10, a light source module 20, a heat dissipation system 30, and a driving system 40.
  • the optical axis of the optical system 10 is related to the light-emitting area of one of the light source modules 20 21.
  • the central light rays are coaxial, and the light source module 20 is correspondingly installed on the heat sink in the heat dissipation system 30; wherein, the driving system 40 is connected to the heat dissipation system 30 and drives the heat dissipation system 30 to move , So as to drive the movement of the light source module 20 fixed on the heat sink, and thereby realize the movement switching of the light-emitting area 21 in the light source module 20.
  • this embodiment when there are two lighting systems, then this embodiment is also configured with a main driving system 40', the main driving system 40' is connected to the connecting frame 50, and the connecting frame
  • the heat dissipation system 30 described above is also installed on the 50, and the main drive system 40' drives the connecting frame 50 and the heat dissipation system 30 installed on the connecting frame 50 to move together, thereby driving the heat sink fixed on the heat sink.
  • the movement of the light source module 20 further realizes the movement switching of the light-emitting area 21 in the light source module 20; the other driving systems 40 are connected to the corresponding heat dissipation system 30, and the driving system 40 drives the corresponding settings
  • the heat dissipation system 30 moves, thereby driving the movement of the light source module 20 fixed on the heat sink, thereby realizing the movement switching of the light-emitting area 21 in the light source module 20.
  • the main drive system 40' is further equipped with a screw 401 and a screw sleeve 402, wherein the rotation shaft of the main drive system 40' is connected to the screw 401, and is used in conjunction with the screw 401
  • the screw sleeve 402 is connected with the connecting frame 50.
  • the main drive system 40' drives the screw 401 to rotate.
  • the screw sleeve 402 and the screw 401 are threaded to achieve translational reciprocating movement.
  • the screw sleeve 402 is connected to the connecting frame 50 to realize the translational reciprocating movement of the heat dissipation system 30, thereby realizing the light source module
  • the movement of the light-emitting area 21 in 20 is switched.
  • the plane rotating structure A is the basic structure (of course, it can also be the roller rotating structure B, the translational reciprocating structure C, or a combination of these three basic structures), and it is configured with an optical system containing multiple optical subsystems.
  • the rotating shaft in the power rotating device 60 is connected to the center of the optical system seat 11. Under the power of the power rotating device 60, the center of the light-emitting area 21 of the required light source can be moved to the required optical element.
  • the optical axis of the system On the optical axis of the system.
  • the center of one of the optical sub-systems is coaxially arranged with the central light of the light-emitting area 21, and the centers of a plurality of the optical sub-systems are located on the same circle, wherein the center of the optical system 10 A power rotating device 60 is also arranged at the location.
  • this application only discloses an implementation using four optical sub-systems 101/102/103/104.
  • the number of the optical sub-systems does not limit the protection scope of this application.
  • the position of the optical subsystem 101 is initially coaxial with the center of the light-emitting area 21, and the centers of the optical subsystem 102, the optical subsystem 103, and the optical subsystem 104 are on the same circle as the optical subsystem 101. It can be switched by rotating the power rotating device 60 at the center of the circle.
  • optical system 10 can be rotated by mechanical switching, such as electric, manual, pneumatic, and hydraulic switching.
  • the optical system 10 includes: an optical lens group (as shown in FIG. 22 to FIG. 24), an optical fiber (as shown in FIG. 25), and a total internal reflector (as shown in FIG. 26).
  • the optical lens group may be a lens combination (as shown in FIG. 22), an adjustable focus lens combination (as shown in FIG. 23) or a TIR lens (as shown in FIG. 24).
  • This embodiment only illustrates the above specific
  • the optical lens combination is not limited to the above-mentioned specific structure, and the examples do not limit the protection scope of the application.
  • the combination of three or more basic structures can be combined to derive more complex structure lighting devices.
  • the combined structure can be the same basic structure or a different basic structure, and the combination form disclosed above does not limit the protection scope of the present application.
  • This application uses the method of sharing the light path to realize that the light sources in the light-emitting areas of different forms of packaging can emit the emitted light in a coaxial form, thereby realizing the light path combination of different light sources, and greatly improving the installation and adjustment cost. ;
  • This application can not only bring higher light power to lighting systems such as fluorescent microscopic lighting, but also greatly reduce the cost of the lighting system.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

一种多光源共光路的照明系统,照明系统包括:光学系统(10),至少一个光源模组(20)以及至少一个驱动系统(40),光学系统(10)的中心与其中一个光源模组(20)中发光区域(21)的光线共轴,光源模组(20)对应安装在散热系统(30)上,驱动系统(40)与光源模组(20)连接,并驱动光源模组(20)运动。通过共光路的方法,实现不同形式封装的发光区域(21)内的光源能够以共轴的形式出射所发出的光,从而实现不同光源的光路合束,在装调和成本上都有很大的改善;不仅能够给荧光显微照明等照明系统带来更高的光功率,还能大大降低照明系统的成本。

Description

一种多光源共光路的照明系统 技术领域
本申请属于照明技术领域,具体涉及一种多光源共光路的照明系统。
背景技术
现有的荧光显微照明光源,通常采用:如氙灯、卤素灯等宽谱段光源,其通过多个不同波段的滤光片盒块,实现不同波长的光激发。但其尚存在一些技术缺陷:其能量利用率很低,每个激发光只占整个光能量的很少一部分,而且不同波段的滤光片盒块会增加系统体积,昂贵的光学元器件进一步提高了整机的成本。目前,已被能耗低且体积小的LED光源替代,但是LED光源本身发出的光是窄带光谱,需要多个波段的LED光源组合才能满足荧光显微镜的照明应用。
公开号为CN109185730 A的中国发明专利,其公开了一种多光谱光源系统,其通过二向色镜,将几种不同波段的光做同轴处理并照射在同一位置,以进行多个波段光的合束。但是,要保证各个波段的光在出射方向上光轴一致,其装调难度较大且成本高。
公开号为CN 108050429 A的中国发明专利,其公开了一种LED多光谱共光路光源照明装置,其通过移动台可实现不同波段的LED芯片的中心点的移动,从而达到与光学元件的光轴重合的效果。但是,其调节方式单一,难以满足多种应用场景的切换使用。
申请内容
针对上述现有技术的缺点或不足,本申请要解决的技术问题是提供一种多光源共光路的照明系统。
为解决上述技术问题,本申请通过以下技术方案来实现:
一种多光源共光路的照明系统,所述照明系统包括:光学系统,至少一个光源模组以及至少一个驱动系统,所述光学系统的光轴与其中一个所述光源模组中发光区域的光线共轴,所述驱动系统与所述光源模组连接,并驱动所述光源模组运动。
进一步地,所述光学系统的光轴与其中一个所述光源模组中发光区域的中心光线共轴。
进一步地,所述驱动系统通过一安装板与所述光源模组连接,并驱动所述光源模组运动。
进一步地,所述驱动系统的转动中心所在的平面与所述发光区域所在的平面垂直设置。
进一步地,多个所述发光区域按弧形方式布设。
进一步地,所述发光区域的旋转半径R、所述发光区域的夹角θ以及所述发光区域的边长满足:
Figure PCTCN2019104503-appb-000001
即,
Figure PCTCN2019104503-appb-000002
其中,δ为光源模组中芯片的最小安装距离;a、b为相邻发光区域的边长;R为发光区域的旋转半径;θ为发光区域的夹角,同时也是所述光源模组的最小旋转角度。
进一步地,所述驱动系统的转动轴与所述发光区域所在的平面平行设置。
进一步地,所述光源模组或所述光源模组中的发光区域沿周向布设在所述安装板的圆周面上。
进一步地,所述发光区域的旋转半径R、所述发光区域的夹角θ以及所述发光区域的边长满足:
Figure PCTCN2019104503-appb-000003
即,
Figure PCTCN2019104503-appb-000004
其中,δ为光源模组中芯片的最小安装距离;a、b为相邻发光区域的边长;R为发光区域的旋转半径;θ为发光区域的夹角,同时也是所述光源模组的最小旋转角度。
进一步地,所述驱动系统可旋转的最小角度α与所述光源模组的最小旋转角度θ满足:θ=N·α,其中,N≥1。
进一步地,所述驱动系统包括步进电机、伺服电机、电机和编码器、旋转气缸或旋转液压缸。
进一步地,所述驱动系统还可配置螺杆以及螺杆套,其中,所述驱动系统的转动轴与所述螺杆连接,与所述螺杆配合使用的螺杆套与所述安装板连接。
进一步地,其中一个所述光源模组中的发光区域呈线性排列,且所述发光区域的中心光线与所述螺杆平行设置。
进一步地,所述光源模组中芯片的最小安装距离δ满足:
Figure PCTCN2019104503-appb-000005
即,
Figure PCTCN2019104503-appb-000006
其中,δ为光源模组中芯片的最小安装距离,a、b为相邻发光区域的边长,α为驱动系统可旋转的最小角度,P为螺杆的螺距。
进一步地,所述照明系统的设置数量为至少两个时,还配置有一主驱动系统,其中,所述主驱动系统的转动轴与连接架连接,所述连接架上还安装有至少一个所述光源模组;其他所述驱动系统的转动轴则与其对应设置的所述光源模组连接。
进一步地,本申请还包括一散热系统,所述散热系统的一侧与所述驱动系统的转动轴连接,其另一侧与所述光源模组连接;或,将所述安装板替换为散热系统。
进一步地,所述光源模组对应安装在所述散热系统中的热沉上。
进一步地,每个所述发光区域包括:固态光源、LED芯片、vcsel芯片、OLED或LD芯片中的一种或多种组合。
进一步地,所述光学系统配置有多个光学子系统,其中一个所述光学子系统的中心与所述发光区域的中心共轴设置,多个所述光学子系统的中心位于同一圆周上。
进一步地,所述光学系统的中心位置处还配置有动力旋转装置。
与现有技术相比,本申请具有如下技术效果:
本申请通过共光路的方法,实现不同形式封装的发光区域内的光源能够以共轴的形式出射所发出的光,从而实现不同光源的光路合束,在装调和成本上都有很大的改善;本申请不仅能够给荧光显微照明等照明系统带来更高的光功率,还能大大降低照明系统的成本。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1:本申请多光源共光路的照明系统其中一实施方式的结构图;
图2:如图1所示结构的转动方式图;
图3:如图2所示结构的工作原理图;
图4:本申请多光源共光路的照明系统一实施方式的结构图;
图5:如图4所示结构的转动方式图;
图6:如图5所示结构的工作原理图;
图7:本申请多光源共光路的照明系统其中一实施方式的结构图;
图8:如图7所示结构的转动方式图;
图9:如图8所示结构的工作原理图;
图10:本申请多光源共光路的照明系统其中一实施方式的结构图;
图11:本申请多光源共光路的照明系统其中一实施方式的结构图;
图12:本申请多光源共光路的照明系统其中一实施方式的结构图;
图13:本申请多光源共光路的照明系统其中一实施方式的结构图;
图14:本申请多光源共光路的照明系统其中一实施方式的结构图;
图15:本申请多光源共光路的照明系统其中一实施方式的结构图;
图16:本申请多光源共光路的照明系统其中一实施方式的结构图;
图17:本申请多光源共光路的照明系统其中一实施方式的结构图;
图18:本申请多光源共光路的照明系统其中一实施方式的结构图;
图19:本申请多光源共光路的照明系统其中一实施方式的结构图;
图20:本申请多光源共光路的照明系统其中一实施方式中配置有多组光学子系统时的结构示意图;
图21:如图20所示的光学系统的平面结构示意图;
图22:本申请中光学透镜组的结构示意图一;
图23:本申请中光学透镜组的结构示意图二;
图24:本申请中光学透镜组的结构示意图三;
图25:本申请中光纤的结构示意图;
图26:本申请中全内反射器的结构示意图。
具体实施方式
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
本申请一种多光源共光路的照明系统,包括:光学系统10,至少一个光源模组20以及至少一个驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的光线共轴,所述驱动系统40与所述光源模组20连接,并驱动所述光源模组20运动。
进一步地,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴。其中,所述发光区域21的中心光线可理解为,以所述发光区域21所在平面上的某一点为圆心,以所述光学系统10的直径为直径所形成的圆所包含的最多的光强能量,如可以包含70%、80%或者90%以上的光强能量。针对规则或不规则布设的所述发光区域21而言,上述圆心可以在所述发光区域21所在的安装面上,亦可在所述发光区域21所在安装面以外的平面上。其中,规则的所述发光区域21可以为矩形阵列布设,环形 阵列布设,三角形阵列布设等等,不规则的所述发光区域21可以为L型布设、P型布设等等,上述仅仅实例了一些规则或不规则设置的所述发光区域21,但其并不对本申请的保护范围造成限定。
为了控制的方便以及结构的对称,光学系统10的中心位于中间发光区域21的中心光线处最佳。本申请的初始位置优选设定为所述光源模组20中间发光区域21的中心光线与所述光学系统10共轴,正(反)转过一定角,可实现相邻两个发光区域21的切换。其中,所述驱动系统40的转动轴的作用是将所需光源的发光区域21中心运动至光学系统10的光轴上。
其中,在本实施例中,所述驱动系统40通过一安装板与所述光源模组20连接,并驱动所述光源模组20运动。
其中,所述光源模组20对应安装在所述散热系统30中的热沉上。所述散热系统30的设置是为了防止所述光源模组20工作时产生大量的热,从而影响芯片的效率。
其中,在具体实施时,所述散热系统30中的热沉须与所述光源模组20紧贴设置,以及时导走所述光源模组20的所产生的热。当然,为了得到更好的散热效果,可以采用风冷或水冷的方式加速散热。
所述光源模组20设有多个发光区域21,其中,每个所述发光区域21包括:单颗LED芯片、多颗LED芯片、vcsel芯片、固定光源或LD芯片。
所述驱动系统40包括步进电机、伺服电机、电机和编码器、旋转气缸或旋转液压缸,当然亦可采用手动操作。
所述驱动系统40的旋转中心须与发光区域21所在圆弧中心共轴,此时所述驱动系统40转动与所述发光区域21等分的角度,即可实现所述光源模组20的旋转,从而实现所述发光区域21光源的切换。
当然,所述驱动系统40还可配置螺杆401以及螺杆套402,其中,所述驱动系统40的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与所述散热系统30、或与所述安装板连接。
所述照明系统的设置数量为至少两个时,还配置有一主驱动系统40’,其中,所述主驱动系统40’的转动轴与连接架50连接,所述连接架50上还安装有至少一个所述光源模组20,则所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述光源模组20一起运动;所述驱动系统40的转动轴则与其对应设置的所述光源模组20连接,所述驱动系统40则驱动与其对应设置的光源模组20运动。本申请还包括一散热系统30,所述散热系统30的一侧与所述驱动系统40的转动轴连接,其另一侧与所述光源模组20连接。
当然,在本申请中,亦可将所述安装板替换为散热系统30。
以下实施例仅仅示意了本申请仅设有散热系统30,并没有设置安装板的情况,但本领域技术人员能够根据上文描述,清楚地理解本申请单独设有安装板,单独设置散热系统30以及同时设置安装板以及散热系统30的实施方式。
实施例一
如图1至图3所示,本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换,最终将所需光源的发光区域21中心运动至光学系统10的光轴上。
其中,如图1所示,本实施例所示的结构为平面旋转式结构A。
在本实施例中,所述驱动系统40的转动中心所在的平面与所述发光区域21所在的平面垂直设置。
所述驱动系统40的转动轴与发光区域21所在的圆弧中心共轴,通过控制转动轴的正转或反转,实现相邻两个发光区域21的切换。
如图2所示,在本实施例中,多个所述发光区域21优选地按弧形方式布设,其中,每一个方框代表一个发光区域21,每一个所述发光区域21可包括:固态光源、LED芯片、vcsel芯片、OLED或LD芯片中的一种或多种组合。
如图3所示,所述发光区域21的旋转半径R、所述发光区域21的夹角θ以及所述发光区域21的边长满足:
Figure PCTCN2019104503-appb-000007
即,
Figure PCTCN2019104503-appb-000008
其中,δ为光源模组20中芯片的最小安装距离;a、b为相邻发光区域21的边长;R为发光区域21的旋转半径;θ为发光区域21的夹角,同时也是所述光源模组20的最小旋转角度。其中,a和b可为相同或不同的数值。
所述驱动系统40可旋转的最小角度α与所述光源模组20的最小旋转角度θ满足:θ=N·α,其中,N≥1。其中,不同类型的驱动系统40的可旋转的最小角度亦不同。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例二
如图4至图6所示,本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组 20的运动,进而实现所述光源模组20中发光区域21的运动切换,最终将所需光源的发光区域21中心运动至光学系统10的光轴上。
其中,如图4所示,本实施例所示的结构为滚轮旋转式结构B。
在本实施例中,所述驱动系统40的转动中心所在的平面与所述发光区域21所在的平面平行设置。
如图5所示,所述光源模组20或所述光源模组20中的发光区域21沿周向均匀布设在所述散热系统30的圆周面上,其中,每一个方框代表一个发光区域21,每一个所述发光区域21可包括:固态光源、LED芯片、vcsel芯片、OLED或LD芯片中的一种或多种组合。
所述驱动系统40的转动轴与发光区域21所在的圆弧中心共轴,通过控制转动轴的正转或反转,实现相邻两个发光区域21的切换。
如图6所示,所述发光区域21的旋转半径R、所述发光区域21的夹角θ以及所述发光区域21的边长满足:
Figure PCTCN2019104503-appb-000009
即,
Figure PCTCN2019104503-appb-000010
其中,δ为光源模组20中芯片的最小安装距离;a、b为相邻发光区域21的边长;R为发光区域21的旋转半径;θ为发光区域21的夹角,同时也是所述光源模组20的最小旋转角度。其中,a和b可为相同或不同的数值。
所述驱动系统40可旋转的最小角度α与所述光源模组20的最小旋转角度θ满足:θ=N·α,其中,N≥1。其中,不同类型的驱动系统40的可旋转的最小角度亦不同。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例三
如图7至图9所示,本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,本实施例所示的结构为平移往复式结构C。
在本实施例中,所述驱动系统40还可配置有螺杆401以及螺杆套402,其中,所述驱动系统40的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与所述散热系统30连接。所述驱动系统40带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与散热系统30连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
如图8所示,在本实施例中,所述光源模组20中的发光区域21呈线性排列,且所述发光区域21的中心光线与所述螺杆401平行设置。
如图9所示,所述光源模组20中芯片的最小安装距离δ满足:
Figure PCTCN2019104503-appb-000011
即,
Figure PCTCN2019104503-appb-000012
其中,δ为光源模组20中芯片的最小安装距离,a、b为相邻发光区域21边长,α为驱动系统40可旋转的最小角度,P为螺杆401的螺距。其中,a和b可为相同或不同的数值。
当然,在具体应用时,可以通过实施例三所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例四
如图10所示,本实施例是在实施例一的基础上进行的组合而形成的结构, 即,平面旋转式结构A(在驱动系统40驱动下的运动方式)与平面旋转式结构A(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需平面旋转式结构A切换到起始位置,然后所需平面旋转式结构A内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换,最终将所需光源的发光区域21中心运动至光学系统10的光轴上。
其中,在本实施例中,当所述照明系统设三个时,那么,本实施例还配置有一为主驱动系统40’,所述主驱动系统40’的转动轴与连接架50连接,所述连接架50上还安装有上述三个散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40的转动轴直接与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换,将所需光源的发光区域21中心运动至光学系统10的光轴上。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例五
如图11所示,本实施例是在实施例二的基础上进行的组合而形成的结构,即,滚轮旋转式结构B(在驱动系统40驱动下的运动方式)与平面旋转式结构A(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需滚轮旋转式结构B切换到起始位置,然后所需滚轮旋转式结构B内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换,最终将所需光源的发光区域21中心运动至光学系统10的光轴上。
其中,在本实施例中,当所述照明系统设三个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’的转动轴与连接架50连接,所述连接架50上还安装有上述三个散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40的转动轴与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限 定。
实施例六
如图12所示,本实施例是在实施例三的基础上进行的组合而形成的结构,即,平移往复式结构C(在驱动系统40驱动下的运动方式)与平面旋转式结构A(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需平移往复式结构C切换到起始位置,然后所需平移往复式结构C内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设三个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’的转动轴与连接架50连接,所述连接架50上还安装有上述三个散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40的转动轴与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
在本实施例中,所述驱动系统40还配置有螺杆401以及螺杆套402,其 中,所述驱动系统40的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与所述散热系统30连接。所述驱动系统40带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与散热系统30直接连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例七
如图13所示,本实施例是在实施例一的基础上进行的组合而形成的结构,即,平面旋转式结构A(在驱动系统40驱动下的运动方式)与滚轮旋转式结构B(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需平面旋转式结构A切换到起始位置,然后所需平面旋转式结A构内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设三个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’的转动轴与连接架50连接,所述连接架50上还安装有上述三个散热系统30,所述主驱动系统40’则驱动 连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40的转动轴与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例八
如图14所示,本实施例是在实施例二的基础上进行的组合而形成的结构,即,滚轮旋转式结构B(在驱动系统40驱动下的运动方式)与滚轮旋转式结构B(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需滚轮旋转式结构B切换到起始位置,然后所需滚轮旋转式结构B内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设三个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’的转动轴与连接架50连接,所 述连接架50上还安装有上述三个散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40的转动轴与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例九
如图15所示,本实施例是在实施例三的基础上进行的组合而形成的结构,即,平移往复式结构C(在驱动系统40驱动下的运动方式)与滚轮旋转式结构B(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需平移往复式结构C切换到起始位置,然后所需平移往复式结构C内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的中心与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设三个时,那么,本实施例还配 置有一主驱动系统40’,所述主驱动系统40’的转动轴与连接架50连接,所述连接架50上还安装有上述三个散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40的转动轴与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
在本实施例中,所述驱动系统40还配置有螺杆401以及螺杆套402,其中,所述驱动系统40的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与所述散热系统30连接。所述驱动系统40带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与散热系统30直接连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例十
如图16所示,本实施例是在实施例一和实施例三的基础上进行的组合而形成的结构,即,平面旋转式结构A(在驱动系统40驱动下的运动方式)与平移往复式结构C(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需平面旋转式结构A切换到起始位置,然后所需平面旋转式结构A内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设三个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’与连接架50连接,所述连接架50上还安装有上述两个散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40的转动轴与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
在本实施例中,所述主驱动系统40’还配置有螺杆401以及螺杆套402,其中,所述驱动系统40的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与连接架50连接。所述主驱动系统40’带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与连接架50连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例十一
如图17所示,本实施例是在实施例二和实施例三的基础上进行的组合而形成的结构,即,滚轮旋转式结构B(在驱动系统40驱动下的运动方式)与平移往复式结构C(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需滚轮旋转式结构B切换到起始位置,然后所需滚轮旋转式结构B内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设有一个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’与连接架50连接,所述连接架50上还安装有上述散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;另一个所述驱动系统40的转动轴与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
在本实施例中,所述主驱动系统40’还配置有螺杆401以及螺杆套402,其中,所述驱动系统40的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与连接架50连接。所述主驱动系统40’带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与连 接架50连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例十二
如图18所示,本实施例是在实施例三的基础上进行的组合而形成的结构,即,平移往复式结构C(在驱动系统40驱动下的运动方式)与平移往复式结构C(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需平移往复式结构C切换到起始位置,然后所需平移往复式结构C内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设有一个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’与连接架50连接,所述连接架50上还安装有上述散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;另外一个所述驱动系统40与其对应设置的所述散热系统30连接, 所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
在本实施例中,所述主驱动系统40’还配置有螺杆401以及螺杆套402,其中,所述主驱动系统40’的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与连接架50连接。所述主驱动系统40’带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与连接架50连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
当然,在本实施例中,所述驱动系统40亦配置有螺杆401以及螺杆套402,其中,所述驱动系统40的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与散热系统30连接。所述驱动系统40带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与散热系统30连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行限定。
实施例十三
如图19所示,本实施例是在实施例一、实施例二以及实施例三的基础上进行的组合而形成的结构,即,平面旋转式结构A(在驱动系统40驱动下的运动方式)、滚轮旋转式结构B(在驱动系统40驱动下的运动方式)与平移往复式结构C(在主驱动系统40’驱动下的运动方式)的组合,其通过主驱动系统40’的驱动,通过连接架50带动所需平面旋转式结构A或滚轮旋转 式结构B切换到起始位置,然后在所需平面旋转式结构A或滚轮旋转式结构B内部配置的驱动系统40的驱动,将所需发光区域21切换到与光学系统10光轴共轴的位置。
本实施例多光源共光路的照明系统,包括:光学系统10,光源模组20,散热系统30以及驱动系统40,所述光学系统10的光轴与其中一个所述光源模组20中发光区域21的中心光线共轴,所述光源模组20对应安装在所述散热系统30中的热沉上;其中,所述驱动系统40与所述散热系统30连接,并驱动所述散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
其中,在本实施例中,当所述照明系统设有两个时,那么,本实施例还配置有一主驱动系统40’,所述主驱动系统40’与连接架50连接,所述连接架50上还安装有上述散热系统30,所述主驱动系统40’则驱动连接架50以及安装在所述连接架50上的所述散热系统30一起运动,从而带动固定在热沉上的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换;其他所述驱动系统40与其对应设置的所述散热系统30连接,所述驱动系统40则驱动与其对应设置的散热系统30运动,从而带动固定在热沉的所述光源模组20的运动,进而实现所述光源模组20中发光区域21的运动切换。
在本实施例中,所述主驱动系统40’还配置有螺杆401以及螺杆套402,其中,所述主驱动系统40’的转动轴与所述螺杆401连接,与所述螺杆401配合使用的螺杆套402与连接架50连接。所述主驱动系统40’带动螺杆401转动,螺杆套402与螺杆401螺纹配合,实现平移往复运动,螺杆套402与连接架50连接,从而实现散热系统30的平移往复运动,进而实现光源模组20中发光区域21的运动切换。
当然,在具体应用时,可以通过上述实施例一所示的结构进行组合以衍生出多种运动实现方式,以上公开的组合形式并不对本申请的保护范围进行 限定。
如图20所示,本申请的一种基本实现形式与多组光学系统的组合示意图。其中,以平面旋转式结构A为基本结构(当然亦可为滚轮旋转式结构B、平移往复式结构C或者这三种基本结构的组合结构),且其配置有含有多个光学子系统的光学系统10,其中,所述光学系统10安装在光学系统座11上。动力旋转装置60中的转动轴连接在所述光学系统座11的中心上,在所述动力旋转装置60的动力作用下,可将所需光源的发光区域21的中心运动至所需要的光学子系统的光轴上。
作为进一步地改进,其中一个所述光学子系统的中心与所述发光区域21的中心光线共轴设置,多个所述光学子系统的中心位于同一圆周上,其中,所述光学系统10的中心位置处还配置有动力旋转装置60。
如图21所示,本申请仅仅公开了采用4个光学子系统101/102/103/104的实施方式,当然,所述光学子系统的设置数量并不对本申请的保护范围造成限定。
其中一示例为,所述光学子系统101的位置为初始默认与发光区域21中心光线共轴,光学子系统102、光学子系统103、光学子系统104的中心与光学子系统101在同一个圆周上,通过圆周中心的动力旋转装置60旋转即可进行切换。
当然,所述光学系统10可以采用机械切换的方式进行旋转,如电动,手动,气动以及液动等切换方式。
在本实施例中,所述光学系统10包括:光学透镜组(如图22至图24所示)、光纤(如图25所示)和全内反射器(如图26所示)。
其中,所述光学透镜组可以是透镜组合(如图22所示)、可调焦透镜组合(如图23所示)或者TIR透镜(如图24所示),本实施例仅仅示意了上述具体的光学透镜组合,但不限于上述具体结构,其实例并不对本申请的保护范围造成限定。
具体实施时,以三种或者三种以上的基本结构(平面旋转式结构A、滚轮旋转式结构B以及平移往复式结构C所示的基本结构)进行组合可以衍生更多复杂结构的照明装置,当然,该组合结构可以是相同的基本结构,也可以是不同的基本结构,以上公开的组合形式并不对本申请的保护范围进行限定。
本申请通过共光路的方法,实现不同形式封装的发光区域内的光源能够以共轴的形式出射所发出的光,从而实现不同光源的光路合束,在装调和成本上都有很大的改善;本申请不仅能够给荧光显微照明等照明系统带来更高的光功率,还能大大降低照明系统的成本。
以上实施例仅用以说明本申请的技术方案而非限定,参照较佳实施例对本申请进行了详细说明。本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围内。

Claims (20)

  1. 一种多光源共光路的照明系统,其特征在于,
    所述照明系统包括:光学系统,至少一个光源模组以及至少一个驱动系统,所述光学系统的光轴与其中一个所述光源模组中发光区域的光线共轴,所述驱动系统与所述光源模组连接,并驱动所述光源模组运动。
  2. 根据权利要求1所述的照明系统,其特征在于,所述光学系统的光轴与其中一个所述光源模组中发光区域的中心光线共轴。
  3. 根据权利要求1所述的照明系统,其特征在于,所述驱动系统通过一安装板与所述光源模组连接,并驱动所述光源模组运动。
  4. 根据权利要求1所述的照明系统,其特征在于,所述驱动系统的转动中心所在的平面与所述发光区域所在的平面垂直设置。
  5. 根据权利要求2所述的照明系统,其特征在于,多个所述发光区域按弧形方式布设。
  6. 根据权利要求1或2或3所述的照明系统,其特征在于,
    所述发光区域的旋转半径R、所述发光区域的夹角θ以及所述发光区域的边长满足:
    Figure PCTCN2019104503-appb-100001
    即,
    Figure PCTCN2019104503-appb-100002
    其中,δ为光源模组中芯片的最小安装距离;a、b为相邻发光区域的边长;R为发光区域的旋转半径;θ为发光区域的夹角,同时也是所述光源模组的最小旋转角度。
  7. 根据权利要求4所述的照明系统,其特征在于,所述光源模组或所述光源模组中的发光区域沿周向布设在所述安装板的圆周面上。
  8. 根据权利要求1所述的照明系统,其特征在于,所述驱动系统的转动中心 所在的平面与所述发光区域所在的平面平行设置。
  9. 根据权利要求1或6或7或8所述的照明系统,其特征在于,
    所述发光区域的旋转半径R、所述发光区域的夹角θ以及所述发光区域的边长满足:
    Figure PCTCN2019104503-appb-100003
    即,
    Figure PCTCN2019104503-appb-100004
    其中,δ为光源模组中芯片的最小安装距离;a、b为相邻发光区域的边长;R为发光区域的旋转半径;θ为发光区域的夹角,同时也是所述光源模组的最小旋转角度。
  10. 根据权利要求6或9所述的照明系统,其特征在于,所述驱动系统可旋转的最小角度α与所述光源模组的最小旋转角度θ满足:θ=N·α,其中,N≥1。
  11. 根据权利要求1至10任一项所述的照明系统,其特征在于,所述驱动系统包括:步进电机、伺服电机、电机和编码器、旋转气缸或旋转液压缸。
  12. 根据权利要求1所述的照明系统,其特征在于,所述驱动系统还可配置螺杆以及螺杆套,其中,所述驱动系统的转动轴与所述螺杆连接,与所述螺杆配合使用的螺杆套与所述散热系统连接。
  13. 根据权利要求12所述的照明系统,其特征在于,其中一个所述光源模组中的发光区域呈线性排列,且所述发光区域的中心光线与所述螺杆平行设置。
  14. 根据权利要求12或13所述的照明系统,其特征在于,所述光源模组中芯片的最小安装距离δ满足:
    Figure PCTCN2019104503-appb-100005
    即,
    Figure PCTCN2019104503-appb-100006
    其中,δ为光源模组中芯片的最小安装距离,a、b为相邻发光区域的边长,α为驱动系统可旋转的最小角度,P为螺杆的螺距。
  15. 根据权利要求1至14任一项所述的照明系统,其特征在于,所述照明系统的设置数量为至少两个时,还配置有一主驱动系统,其中,所述主驱动系统的转动轴与连接架连接,所述连接架上还安装有至少一个所述光源模组;其他所述驱动系统的转动轴则与其对应设置的所述光源模组连接。
  16. 根据权利要求1至15任一项所述的照明系统,其特征在于,还包括一散热系统,所述散热系统的一侧与所述驱动系统的转动轴连接,其另一侧与所述光源模组连接;或,将所述安装板替换为散热系统。
  17. 根据权利要求16所述的照明系统,其特征在于,所述光源模组对应安装在所述散热系统中的热沉上。
  18. 根据权利要求1至17任一项所述的照明系统,其特征在于,每个所述发光区域包括:固态光源、LED芯片、vcsel芯片、OLED或LD芯片中的一种或多种组合。
  19. 根据权利要求1至18任一项所述的照明系统,其特征在于,所述光学系统配置有多个光学子系统,其中一个所述光学子系统的中心与所述发光区域的中心共轴设置,多个所述光学子系统的中心位于同一圆周上。
  20. 根据权利要求19所述的照明系统,其特征在于,所述光学系统的中心位置处还配置有动力旋转装置。
PCT/CN2019/104503 2019-04-15 2019-09-05 一种多光源共光路的照明系统 WO2020211263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021600155U JP3237015U (ja) 2019-04-15 2019-09-05 多光源共通光路型の照明システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910299114.3 2019-04-15
CN201920507897.5U CN210323555U (zh) 2019-04-15 2019-04-15 一种多光源共光路的照明系统
CN201920507897.5 2019-04-15
CN201910299114.3A CN109901278B (zh) 2019-04-15 2019-04-15 一种多光源共光路的照明系统

Publications (1)

Publication Number Publication Date
WO2020211263A1 true WO2020211263A1 (zh) 2020-10-22

Family

ID=72838023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104503 WO2020211263A1 (zh) 2019-04-15 2019-09-05 一种多光源共光路的照明系统

Country Status (2)

Country Link
JP (1) JP3237015U (zh)
WO (1) WO2020211263A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575577B2 (en) * 2001-10-05 2003-06-10 Richard S. Beliveau Multiple light valve lighting device or apparatus with wide color palette and improved contrast ratio
CN105465745A (zh) * 2015-12-31 2016-04-06 中国科学院苏州生物医学工程技术研究所 多波段荧光照明装置
CN106019548A (zh) * 2016-06-24 2016-10-12 宁波舜宇仪器有限公司 荧光显微镜光源和滤色镜模组联动装置
CN205720858U (zh) * 2016-06-24 2016-11-23 宁波舜宇仪器有限公司 荧光显微镜光源和滤色镜模组联动装置
CN108050429A (zh) * 2017-12-12 2018-05-18 苏州科医世凯半导体技术有限责任公司 一种led多光谱共光路光源照明装置
CN108761756A (zh) * 2018-07-13 2018-11-06 广州市明美光电技术有限公司 多波段led荧光显微镜
CN109901278A (zh) * 2019-04-15 2019-06-18 中国科学院苏州生物医学工程技术研究所 一种多光源共光路的照明系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575577B2 (en) * 2001-10-05 2003-06-10 Richard S. Beliveau Multiple light valve lighting device or apparatus with wide color palette and improved contrast ratio
CN105465745A (zh) * 2015-12-31 2016-04-06 中国科学院苏州生物医学工程技术研究所 多波段荧光照明装置
CN106019548A (zh) * 2016-06-24 2016-10-12 宁波舜宇仪器有限公司 荧光显微镜光源和滤色镜模组联动装置
CN205720858U (zh) * 2016-06-24 2016-11-23 宁波舜宇仪器有限公司 荧光显微镜光源和滤色镜模组联动装置
CN108050429A (zh) * 2017-12-12 2018-05-18 苏州科医世凯半导体技术有限责任公司 一种led多光谱共光路光源照明装置
CN108761756A (zh) * 2018-07-13 2018-11-06 广州市明美光电技术有限公司 多波段led荧光显微镜
CN109901278A (zh) * 2019-04-15 2019-06-18 中国科学院苏州生物医学工程技术研究所 一种多光源共光路的照明系统

Also Published As

Publication number Publication date
JP3237015U (ja) 2022-04-06

Similar Documents

Publication Publication Date Title
US8662690B2 (en) Multi-colored illumination system with wavelength converter and method
CN107077053B (zh) 光源装置和投影仪
JP6161877B2 (ja) 発光装置、車両用前照灯および照明装置
US20120217519A1 (en) Method and structure for encapsulating solid-state light emitting chip and light sources using the encapsulation structure
CN102753883A (zh) 包括磷光体、辐射源、光学系统和散热器的灯
KR101437020B1 (ko) 광원 장치 및 프로젝터
CN102844706A (zh) 照明光学系统和使用照明光学系统的投影仪
KR20060121264A (ko) Led 변형 장치 및 방법
JP2013080638A (ja) 集合線状照明装置およびその駆動方法、並びに灯具
WO2011011980A1 (zh) 高效合光的舞台灯光照明装置
JP2016212962A (ja) 照明装置
JP2021529355A (ja) 光源装置
JP7070146B2 (ja) 光源モジュール、及び光学装置
CN211759179U (zh) 一种基于双光路的导光板网点加工装置
CN101382250A (zh) 一种手术无影灯
WO2020211263A1 (zh) 一种多光源共光路的照明系统
CN109901278B (zh) 一种多光源共光路的照明系统
CN111981431A (zh) 一种照明灯具
CN102809882A (zh) 一种双灯照明装置及投影仪
CN217402437U (zh) 一种光源模式可调的光源系统
CN214119909U (zh) 一种能自动切光的led切割灯
WO2018006656A1 (zh) 一种光源系统及舞台灯
US9250431B2 (en) Diffusing collection lens for direct coupled high power microscopy illumination systems
CN218917918U (zh) 一种经济性高的双光源切换光刻照明系统
CN212456691U (zh) 一种照明灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021600155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924859

Country of ref document: EP

Kind code of ref document: A1