WO2020211131A1 - 基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统 - Google Patents

基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统 Download PDF

Info

Publication number
WO2020211131A1
WO2020211131A1 PCT/CN2019/086154 CN2019086154W WO2020211131A1 WO 2020211131 A1 WO2020211131 A1 WO 2020211131A1 CN 2019086154 W CN2019086154 W CN 2019086154W WO 2020211131 A1 WO2020211131 A1 WO 2020211131A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
exhaust gas
module
cavity
gas
Prior art date
Application number
PCT/CN2019/086154
Other languages
English (en)
French (fr)
Inventor
朱元清
冯永明
周松
夏冲
王占广
李庭辉
Original Assignee
哈尔滨工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工程大学 filed Critical 哈尔滨工程大学
Publication of WO2020211131A1 publication Critical patent/WO2020211131A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines

Definitions

  • the invention belongs to the field of desulfurization technology, and specifically relates to an exhaust gas desulfurization device based on axial absorption and diffusion, an exhaust gas desulfurization method and a control system for the exhaust gas desulfurization device.
  • low-sulfur fuel oil, alternative fuels and ship exhaust gas post-treatment technologies are the mainstream ways to solve SO x emissions from ship power and make them meet ECA emission standards.
  • the use of low-sulfur oil will cause problems such as poor lubrication of the ship's power system, the need to modify the fuel supply system, and increased operating costs.
  • the current mainstream fuel LNG application also has many problems: weak endurance, large equipment storage space, and strict storage environment temperature requirements.
  • the post-treatment technology has the following advantages: the post-treatment technology treats the exhaust gas so that the exhaust gas can meet the emission standards, and the ship power unit does not need to replace the fuel oil and can use cheap heavy oil.
  • the sodium-alkali method is to neutralize the SO x in the exhaust gas with the alkaline substance sodium hydroxide (NaOH) to generate sulfite or a small amount of sulfate to achieve the purpose of exhaust gas desulfurization;
  • the seawater method is a natural weak alkaline Seawater (pH: 8.0 ⁇ 8.2) is used as an absorbent, using its acid-base buffering capacity and absorbing acid gas (SO x ) to achieve the purpose of desulfurization;
  • calcium-based method is a dry desulfurization technology that uses calcium oxide (CaO) or calcium hydroxide (CaO ⁇ H 2 O) and other substances are used as desulfurization absorbents.
  • SO x in the exhaust gas reacts with calcium oxide or calcium hydroxide to form calcium carbonate (CaCO 3 ), which can treat SO x in the exhaust gas. purpose.
  • dry desulfurization prevents acid steam from corroding the ship's power system. At the same time, it does not require liquid absorbents and does not produce liquid pollution.
  • dry desulfurization also has many shortcomings.
  • the working temperature range of dry desulfurization is 240°C ⁇ 450°C.
  • the exhaust gas temperature of two-stroke high-power diesel engines is lower than 200°C, which does not meet the requirements of dry desulfurization.
  • the core technology of dry desulfurization of ship exhaust gas is rarely reported in related patents.
  • the patent application number 201110392798.5 discloses a dry desulfurization device, which uses a two-stage desulfurization device to perform two desulfurization and improves the desulfurization effect;
  • the patent No. 201320226553.X discloses a dry desulfurization tower whose working principle is to use a circulating flow desulfurization method for desulfurization in a closed system, which further improves the desulfurization effect.
  • the purpose of the present invention is to provide an exhaust gas desulfurization device based on axial absorption and diffusion, an exhaust gas desulfurization method, and a control system for the exhaust gas desulfurization device.
  • the exhaust gas desulfurization device provided by the present invention is based on the principle of axial absorption and diffusion to make gas Through the desulfurization bed, the exhaust gas desulfurization effect is improved.
  • the present invention provides the following technical solutions:
  • the present invention provides an exhaust gas desulfurization device based on axial absorption and diffusion, which includes an intake pipe (1), a desulfurization component (2) and an exhaust pipe (5) connected in sequence;
  • the desulfurization assembly (2) includes several desulfurization modules (3) connected in series.
  • the desulfurization module (3) is a cavity structure provided with an air inlet (3-1) and an air outlet (3- 2)
  • the air inlet (3-1) is arranged at the center of the cavity side wall (3-3);
  • the cavity of the desulfurization module is provided with double-layer desulfurization beds (3-4a and 3-4b) ,
  • the two desulfurization beds are parallel in the horizontal direction, and the end away from the air inlet (3-1) is connected by a connecting plate (3-5), and the cavity between the two desulfurization beds is connected to the air inlet (3-1) ;
  • the connecting plate (3-5) is parallel to the bottom wall (4) of the cavity of the desulfurization module, and the four top corners of the connecting plate (3-5) are notched;
  • the cavity between the connecting plate (3-5) and the bottom wall (4) of the desulfurization module cavity is a gas channel, and one end of the gas channel is provided with a gas outlet (3-2);
  • the air outlet (3-2) of the desulfurization module (3) is in communication with the air inlet of the adjacent desulfurization module;
  • the desulfurization component (2) is connected with the heating system (7);
  • the exhaust duct (5) is provided with a fan device (6).
  • the number of the desulfurization modules is 2-10.
  • the air inlet of any desulfurization module and the air outlet of an adjacent desulfurization module are located on the same side, and the air outlet of any desulfurization module is in communication with the air inlet of the next desulfurization module.
  • the present invention provides an exhaust gas desulfurization method, which uses the axial absorption and diffusion-based exhaust gas desulfurization device described in the above technical solution to desulfurize exhaust gas, and includes the following steps:
  • the exhaust gas enters the cavity between the two desulfurization beds through the air inlet of the desulfurization module, diffuses and passes through the desulfurization bed, enters the horizontal gas channel between the desulfurization bed and the side wall of the cavity, and is then connected to the plate in the desulfurization module
  • the four gaps are discharged, and then enter the next desulfurization module through the gas outlet of the desulfurization module, and repeat the desulfurization reaction;
  • the reacted gas is discharged from the exhaust gas desulfurization device through the exhaust pipe.
  • the temperature inside the exhaust gas desulfurization device is 200-500°C.
  • the desulfurization bed is filled with a desulfurization agent, and the desulfurization agent includes calcium hydroxide.
  • the present invention also provides a control system for the exhaust gas desulfurization device based on axial absorption and diffusion according to the above technical solution, including a control device and a monitoring device;
  • the input end of the control device is connected with the output end of the monitoring device; the output end of the control device is connected with the alarm device, the fan device and the heating system of the exhaust gas desulfurization device.
  • the monitoring device includes a gas component sensor, a pressure sensor and a temperature sensor;
  • the gas component sensor is arranged inside the exhaust pipe of the exhaust gas desulfurization device;
  • the pressure sensor is arranged in a cavity close to the air inlet or the air outlet of the desulfurization module;
  • the temperature sensor is arranged in the desulfurization bed.
  • the present invention provides an operating method of the control system described in the above technical solution, including:
  • the monitoring device Transmitting the real-time data collected by the monitoring device to the control device to obtain monitoring data, the monitoring data including temperature parameters, pressure difference parameters, carbon dioxide content parameters, sulfur dioxide content parameters and operating time parameters;
  • the monitoring data is compared with the reference data set in the control device, the operation status of the desulfurization assembly is judged, and the control command is output according to the judgment result.
  • the judgment method is:
  • the desulfurization module runs normally and enters the detection of the next desulfurization module;
  • the n(SO 2 )/n(CO 2 ) represents the exhaust gas of the desulfurization module The content ratio of SO 2 to CO 2 in the exhaust gas monitored at the pipeline;
  • the desulfurization module When n(SO 2 )/n(CO 2 )>f(a), the desulfurization module is operating in an abnormal state and enters the pressure parameter judgment link;
  • the desulfurization module When ⁇ P 1 ⁇ P 11 , the desulfurization module is operating normally and enters the operation time parameter judgment link; when ⁇ P 1 > ⁇ P 11 , the desulfurization module is operating in an abnormal state and an instruction to adjust the fan speed is issued; the ⁇ P 1 represents the pressure difference between the air outlet and the air inlet of the desulfurization module; the ⁇ P 11 represents the limit pressure difference of the desulfurization module;
  • the desulfurization module When t 1 ⁇ t 11 , the desulfurization module operates normally and enters the detection of the next desulfurization module;
  • the desulfurization module When t 1 > t 11 , the desulfurization module is operating in an abnormal state and the alarm system is activated.
  • two desulfurization beds are arranged in parallel, and the cavity between the two desulfurization beds is communicated with the air inlet of the desulfurization module, and a gas channel can be formed in the cavity between the two desulfurization beds; the desulfurization bed provided in the present invention
  • the gas is allowed to diffuse. After the gas passes through the desulfurization bed, it enters the horizontal gas channel formed by the desulfurization bed and the side wall of the desulfurization module, and then is discharged from the four cut corners of the connecting plate and enters the gas channel formed by the connecting plate and the side wall of the cavity.
  • the waste gas desulfurization method provided by the invention is simple, has high desulfurization efficiency, and can efficiently treat ship waste gas.
  • the present invention also provides a control system by which real-time monitoring of the above-mentioned exhaust gas desulfurization device can be realized, which is convenient for maintenance and ensures the normal operation of the desulfurization device.
  • the present invention provides an operation method of the above-mentioned control system, by which the operation status of the exhaust gas desulfurization device can be accurately judged.
  • Figure 1 is an overall structure diagram of an exhaust gas desulfurization device provided by the present invention.
  • Figure 2 is a disassembly diagram of the exhaust gas desulfurization device provided by the present invention.
  • FIG. 3 is a schematic diagram of the structure of the desulfurization module in the exhaust gas desulfurization device provided by the present invention.
  • FIG. 4 is a schematic diagram of the connection of the control system of the exhaust gas desulfurization device of the present invention.
  • FIG. 5 is an operation logic diagram of the control system of the exhaust gas desulfurization device provided by the present invention.
  • FIG. 6 is a diagram showing the removal effect of the exhaust gas desulfurization device provided by the embodiment of the present invention for the treatment of exhaust gas under variable conditions;
  • 1 is the intake pipe
  • 2 is the desulfurization module
  • 3 is the desulfurization module
  • 4 is the bottom wall of the cavity
  • 5 is the exhaust pipe
  • 6 is the fan device
  • 7 is the heat tracing system
  • 8 is the control device
  • 3- 1 is the air inlet
  • 3-2 is the air outlet
  • 3-3 is the front wall of the chamber
  • 3-4a and 3-4b are the desulfurization bed
  • 3-5 is the connecting plate
  • a, b, c and d are the connections
  • the present invention provides an exhaust gas desulfurization device based on axial absorption and diffusion, as shown in Figures 1 to 3, comprising an intake pipe 1, a desulfurization assembly 2 and an exhaust pipe 5 connected in sequence;
  • the desulfurization assembly 2 includes several desulfurization modules 3 connected in series, and the desulfurization modules 3 are detachable.
  • the desulfurization module 3 has a cavity structure, and the cavity structure is provided with an air inlet 3-1 and an air outlet 3-2, and the air inlet 3-1 is arranged on the front wall of the cavity.
  • the center position of 3-3; the cavity of the desulfurization module 3 is provided with double-layer desulfurization beds, 3-4a and 3-4b, respectively.
  • the two desulfurization beds are parallel in the horizontal direction, and one end away from the air inlet 3-1 Connected by connecting plate 3-5, the cavity between the two desulfurization beds communicates with the air inlet 3-1;
  • the connecting plate 3-5 is parallel to the bottom wall 4 of the desulfurization module cavity, and the four top corners of the connecting plate 3-5 have gaps, which are a, b, c, and d;
  • the cavity between the connecting plate 3-5 and the bottom wall 4 of the desulfurization module cavity is a gas channel, and one end of the gas channel is provided with a gas outlet 3-2;
  • the air outlet 3-2 of the desulfurization module 3 is in communication with the air inlet of an adjacent desulfurization module;
  • the desulfurization component 2 is connected to the heating system 7;
  • the exhaust duct 5 is provided with a fan device 8.
  • the exhaust gas desulfurization device of the present invention includes an air intake pipe 1, and the air intake pipe 1 is in communication with the air inlet of the desulfurization module 3.
  • the intake pipe is preferably L-shaped, one port of the intake pipe 1 is connected with the exhaust gas source device, and the other port is connected with the intake port of the desulfurization assembly 2.
  • the air inlet pipe 1 is preferably connected to the desulfurization module by welding.
  • the connecting surface of the desulfurization module connected to the intake pipe is preferably provided with a boss M to increase the desulfurization reaction time and facilitate sealing.
  • the exhaust gas desulfurization device provided by the present invention includes a desulfurization component 2, as shown in FIG. 2, which is a disassembly diagram of the desulfurization device.
  • Each desulfurization module in the desulfurization component can be extracted to facilitate maintenance or replacement of desulfurization reagents.
  • the desulfurization module 2 includes several desulfurization modules 3 connected in series, the air inlet of any desulfurization module and the air outlet of an adjacent desulfurization module are located on the same side, and the air outlet of any desulfurization module is connected to the next desulfurization module.
  • the air inlet of the module is connected.
  • the number of the desulfurization modules is preferably 2-10, more preferably 3-8, and still more preferably 4-5.
  • the surface of the last desulfurization module in the desulfurization assembly connected to the exhaust pipe is preferably provided with a boss N to further increase the sealing performance of the desulfurization assembly.
  • the number of the desulfurization modules is 4. Specifically, the first desulfurization module is connected to the intake pipe, and the second desulfurization module and the second desulfurization module are connected in sequence.
  • the third desulfurization module and the fourth desulfurization module; the air outlet of the first desulfurization module and the air inlet of the second desulfurization module are located on the same side and communicate with each other, and so on, the air outlet of the fourth desulfurization module is connected with the gas outlet pipe.
  • the desulfurization modules are set in series. When one of the desulfurization modules fails, the other desulfurization modules can work normally without having a major impact on the desulfurization efficiency of the entire desulfurization device, thereby improving the practical performance of the exhaust gas desulfurization device .
  • the present invention defines the various faces of the desulfurization module as follows.
  • the face connected to the intake pipe (the face marked with diagonal lines in the figure) is the front, and the corresponding cavity wall is the front wall. 3-3;
  • the cavity wall corresponding to the opposite surface is the bottom wall 4, and the remaining surfaces are the side walls of the cavity.
  • the desulfurization module is divided longitudinally to obtain a longitudinal cross-sectional view of the desulfurization module, as shown in FIG. 3.
  • the upper figure is a schematic diagram of the internal structure of the desulfurization module.
  • the two curves with arrows indicate the flow path of the exhaust gas.
  • the area marked by the diagonal line indicates the filled desulfurization reagent, the dotted line indicates that the plate is a porous plate, and the solid line indicates the plate. Is the sealing plate; the figure below is the exploded view of the desulfurization module.
  • the desulfurization module 3 of the present invention is a cavity structure, preferably a cubic cavity structure; the cavity structure is provided with an air inlet 3-1 and an air outlet 3-2, and the air inlet 3-1 is provided At the center of the front wall 3-3 of the cavity (corresponding to the circle in 3-3 in the exploded view).
  • the present invention has no special requirements on the shape of the air inlet, which can be round, square or rectangular, preferably round.
  • the desulfurization module 3 is provided with double-layer desulfurization beds, 3-4a and 3-4b, respectively.
  • the two desulfurization beds are parallel in the horizontal direction, and the end away from the air inlet 3-1 passes through the connecting plate 3. -5 connection, the cavity between the two desulfurization beds communicates with the air inlet 3-1.
  • the lateral separator of the desulfurization bed is preferably a porous plate (indicated by the dotted line in the figure), and the pore size of the porous plate is preferably 50-95% of the particle size of the desulfurization reagent particles, more preferably 60-80% , To ensure that the desulfurization reagent does not leak, while allowing the gas to pass through.
  • the porosity or flow area ratio of the porous plate of the present invention is preferably 0.5 to 0.9, more preferably 0.7 to 0.8.
  • the present invention has no special requirements on the separation distance between the two desulfurization beds, and it is preferably set according to the waste gas treatment volume and the total volume of the desulfurization module.
  • the connecting plate 3-5 is parallel to the bottom wall 4 of the desulfurization module cavity, and the four top corners of the connecting plate 3-5 are notched (a, b, c, and d, respectively).
  • the shape of the notch is preferably a square, and the square area is preferably 25 to 35% of the cross-sectional area of the exhaust pipe, more preferably 28 to 32%.
  • the present invention is provided with notches at the four top corners of the connecting plate 3-5, and cooperates with the setting of the air inlet of the desulfurization module and the gas channel in the desulfurization module to form an annular turbulent operation mode, which expands the gas in the desulfurization module The circulation path improves the desulfurization efficiency.
  • the bottom wall 4 of the desulfurization module cavity is preferably fixed with the cavity by bolts, so that the bottom wall 4 is a detachable part, which facilitates the replacement of the desulfurization module or the desulfurization reagent in the desulfurization module.
  • the present invention is preferably replaced by a draft tube.
  • the present invention does not have special requirements for the use of the draft tube, and the method well known to those skilled in the art can be used.
  • a gas channel is formed between the connecting plate 3-5 and the bottom wall 4 of the desulfurization module cavity.
  • the present invention has no special requirements on the width of the gas channel, which may be equal to the diameter of the exhaust pipe.
  • an air outlet 3-2 is provided at one end of the gas channel, and the air outlet 3-2 communicates with the air inlet of an adjacent desulfurization module.
  • the desulfurization assembly 2 is connected to the heating system 7.
  • the connecting line between the desulfurization component 2 and the heating system 7 indicates that the heating system 7 is connected to the desulfurization component 2.
  • the heating system 7 and the desulfurization component 2 The various desulfurization modules are connected.
  • the heating system 7 is preferably provided with a plurality of heating elements 7', and the heating elements 7'are preferably connected to the desulfurization beds in each desulfurization module to realize independent control of the temperature of each desulfurization module.
  • the heating system preferably has a temperature control function to achieve precise control of the temperature of the desulfurization bed.
  • the desulfurization device of the present invention includes an exhaust pipe 5, the shape and connection of the exhaust pipe are preferably consistent with the shape and connection of the intake pipe; the exhaust pipe 5 is provided with a fan device 6; the fan device 6 A frequency converter is preferably provided to adjust the gas flow speed inside the desulfurization device to achieve the purpose of adjusting the wind speed.
  • the invention adjusts the pressure difference generated by the dry desulfurization device through the fan device 6 to compensate for the pressure difference loss, avoid the pressure difference from affecting the desulfurization efficiency, and at the same time reduce the influence on the power performance of the diesel engine.
  • the present invention also provides an exhaust gas desulfurization method, which uses the axial absorption and diffusion-based exhaust gas desulfurization device described in the above technical solution to desulfurize exhaust gas, including the following steps:
  • the exhaust gas enters the cavity between the two desulfurization beds through the air inlet of the desulfurization module, diffuses and passes through the desulfurization bed, enters the horizontal gas channel between the desulfurization bed and the side wall of the cavity, and is then connected to the plate in the desulfurization module
  • the four gaps are discharged, and then enter the next desulfurization module through the gas outlet of the desulfurization module, and repeat the desulfurization reaction;
  • the reacted gas is discharged from the exhaust gas desulfurization device through the exhaust pipe.
  • the invention first starts the heating system and the fan device, and after the internal temperature of the exhaust gas desulfurization device reaches the set temperature, the exhaust gas is introduced through the intake pipe.
  • the internal temperature of the exhaust gas desulfurization device is preferably set to 200 to 500°C, more preferably 300 to 450°C.
  • the exhaust gas enters the first desulfurization module of the desulfurization module through the air inlet pipe.
  • the specific flow process is: the exhaust gas enters the cavity between the two desulfurization beds through the air inlet of the desulfurization module, diffuses and passes through the desulfurization module.
  • the bed enters the horizontal gas channel between the desulfurization bed and the side wall of the cavity, and then is discharged from the four gaps of the connecting plate in the desulfurization module, and then enters the next desulfurization module through the gas outlet of the desulfurization module to repeat the desulfurization reaction;
  • the operating path of is shown in the curve with arrows in Figure 3; the reacted gas is discharged from the exhaust gas desulfurization device through the exhaust pipe.
  • the desulfurization bed is filled with a desulfurization agent, and the desulfurization agent preferably includes calcium hydroxide.
  • the present invention has no special requirements on the dosage ratio of the calcium hydroxide, and the desulfurization bed can be fully filled according to the size of the desulfurization module.
  • the desulfurization reagent is preferably a particulate material, and the particle size of the particulate material can be stably stored in the desulfurization bed, specifically, 3 to 5 mm.
  • the heating system determines whether to start according to the temperature in the desulfurization component, the fan device is in operation during the entire desulfurization process, and the fan speed can be determined according to the exhaust gas desulfurization device
  • the operating conditions of the inverter can be adjusted through the inverter.
  • the present invention also provides a control system for the exhaust gas desulfurization device based on axial absorption and diffusion described in the above technical solution.
  • the control system includes a control device 8 and a monitoring device;
  • the input end of the control device is connected with the output end of the monitoring device; the output end of the control device is connected with the alarm device, the fan device 6 and the heating system 7 of the exhaust gas desulfurization device.
  • the control device has an input function, an output function, a storage function, and a comparison function.
  • the input function is realized by connecting the input end of the control device with the output end of the monitoring device, and is used to obtain the real-time transmission of the monitoring device.
  • the output function is realized by connecting the output ends of the control device to the alarm device, the fan device 6 and the heating system 7 respectively, and is used to output the comparison result to the corresponding device as an alarm device, a fan device or a heating device Instructions for adjusting system health.
  • the storage function is realized by setting a storage module in the control device to store reference data and real-time monitoring data;
  • the comparison function is realized by setting a comparison module in the control device to realize real-time monitoring data and With reference to the comparison of data, the comparison result can be used as a basis for judging whether the exhaust gas desulfurization device is operating normally.
  • the monitoring device preferably has a signal receiving function and an output function.
  • the signal receiving function is realized by a sensor to obtain real-time monitoring data during the operation of the exhaust gas desulfurization device;
  • the signal output function is realized by connecting the monitoring device with the control device, and is used to obtain real-time monitoring data.
  • the monitoring data is transmitted to the control device for comparison with the reference data.
  • the monitoring device preferably includes a gas component sensor 9-1, a pressure sensor 9-2 and a temperature sensor 9-3.
  • the gas component sensor 9-1 is preferably arranged inside the exhaust pipe 5 of the exhaust gas desulfurization device, and is equipped with high temperature oxidation protection, and the working temperature is not lower than 200°C.
  • the gas component sensor is preferably configured as described above, which can accurately measure the content of the component to be measured in the exhaust gas passing through the exhaust pipe.
  • the gas component sensor 9-1 preferably includes a sulfur dioxide sensor and a carbon dioxide sensor, and the sulfur dioxide sensor and the carbon dioxide sensor are preferably installed independently; the sulfur dioxide sensor and the carbon dioxide sensor obtain the carbon dioxide content in the exhaust pipe through induction Parameters and sulfur dioxide content parameters.
  • the pressure sensor 9-2 is preferably arranged in the cavity close to the air inlet and the air outlet of the desulfurization module.
  • the pressure sensor at the air inlet and the pressure sensor at the air outlet are independently arranged, and the air inlet is obtained through pressure sensing.
  • the port pressure and the outlet pressure are transmitted to the control device to obtain the pressure difference parameter.
  • the temperature sensor 9-3 is preferably arranged in the desulfurization bed to measure the temperature of the desulfurization reaction system; the temperature sensor is arranged in the desulfurization bed and contacts with the desulfurization reagent to measure the desulfurization The temperature parameter of the reaction system.
  • control device 8 the monitoring device, the fan device 5 and the heating system 7 are connected by wires.
  • connection mode of each device in the control system can be connected in a manner well known to those skilled in the art.
  • the present invention provides an operating method of the control system described in the above technical solution, including:
  • the monitoring device Transmitting the real-time data collected by the monitoring device to the control device to obtain monitoring data, the monitoring data including temperature parameters, pressure difference parameters, carbon dioxide content parameters, sulfur dioxide content parameters and operating time parameters;
  • the monitoring data is compared with the reference data set in the control device, the operation status of the desulfurization assembly is judged, and the control command is output according to the judgment result.
  • the present invention transmits the real-time data collected by the monitoring device to the control device to obtain monitoring data.
  • the monitoring data includes temperature parameters, pressure difference parameters, carbon dioxide content parameters, sulfur dioxide content parameters, and operating time parameters.
  • the present invention does not have special requirements for the transmission mode of the real-time data, and the transmission can be performed in a manner well known to those skilled in the art.
  • the monitoring device preferably includes a temperature sensor, a pressure sensor, and a component sensor.
  • the pressure sensor is arranged at a position before and after the intake of each desulfurization module, and the pressure value before and after the exhaust gas enters the desulfurization module can be obtained. , And calculate the pressure difference parameter.
  • the temperature sensor and the pressure sensor are regarded as different types of monitoring devices, and a monitoring device/type is preferably arranged between two adjacent desulfurization modules.
  • the test result of the monitoring device is used as the monitoring data after the previous desulfurization module is out of gas. At the same time, it is also used as the monitoring data before the intake of the latter desulfurization module.
  • the monitoring data symbol is preferably defined in the manner of reference data.
  • the pressure parameter is represented by ⁇ P n
  • n represents the nth desulfurization module.
  • each desulfurization module The pressure difference parameters of the module are represented by ⁇ P 1 , ⁇ P 2 , ⁇ P 3 and ⁇ P 4 respectively .
  • the present invention compares the monitoring data with the reference data set in the control device, determines the operating status of the desulfurization assembly, and outputs control instructions according to the determination result.
  • the reference data preferably includes the SO 2 /CO 2 ratio corresponding to the fuel sulfur content limit standard (represented by f( ⁇ )), the limited pressure difference of each desulfurization module, the limited temperature and the limited operating time.
  • f( ⁇ ) is set as one, and the remaining reference data is preferably set to a corresponding number of reference data according to the number of desulfurization modules.
  • the number of desulfurization modules is 2, it is necessary to set the limit pressure difference of the first desulfurization module and the limit pressure difference of the second desulfurization module respectively, and the other parameters can be deduced by analogy.
  • the limited pressure difference as an example, when setting the reference data in the present invention, it is preferable to use ⁇ P 1n to represent the limited pressure difference of the desulfurization module, and n to represent the serial number of the desulfurization module.
  • the limited pressure difference of the first desulfurization module is represented by ⁇ P 11
  • the limited pressure difference of the second desulfurization module is represented by ⁇ P 12
  • the limited temperature in the reference data is preferably represented by ⁇ T 1n
  • the limited operating time in the reference data is represented by ⁇ t 1n
  • n Indicates the nth desulfurization module.
  • the reference data is preferably obtained according to a bench test.
  • the operating status of the desulfurization module is preferably judged according to the operating status of each desulfurization module, and the method for judging the operating status of the desulfurization module is preferably based on the gas component content, the pressure difference parameter, and the operating time parameter in sequence. The judgment is performed in sequence, and the specific judgment method is shown in Figure 4.
  • the desulfurization module runs normally and enters the detection of the next desulfurization module; the n(SO 2 )/n(CO 2 ) represents the exhaust gas of the desulfurization module
  • the content ratio of SO 2 to CO 2 in the exhaust gas monitored at the pipeline; the meaning of f(a) is preferably consistent with the meaning of f(a) defined in the above technical solution.
  • the desulfurization module When n(SO 2 )/n(CO 2 )>f(a), the desulfurization module is operating in an abnormal state and enters the differential pressure parameter judgment link;
  • the desulfurization module runs normally and enters the operation time parameter judgment link; when ⁇ P 1 > ⁇ P 11 , the desulfurization module runs in an abnormal state, and the control system issues an instruction to adjust the fan speed;
  • the desulfurization module When t 1 ⁇ t 11 , the desulfurization module operates normally and enters the detection of the next desulfurization module; when the next desulfurization module is the last module, the exhaust gas is discharged normally.
  • the desulfurization module When t 1 > t 11 , the desulfurization module is operating in an abnormal state, and the control system activates the alarm system.
  • control system when the control system activates the alarm device, it needs to stop the air intake and replace the desulfurization module or desulfurization reagent.
  • the alarm is cleared and the desulfurization device is running normally, the exhaust gas is continuously fed for desulfurization treatment.
  • the present invention preferably adopts the above-mentioned control system to automatically control the exhaust gas desulfurization device to realize real-time monitoring of the safe operation of the exhaust gas desulfurization device and improve the applicability of the desulfurization device in different application fields.
  • a desulfurization module is used as an example to test.
  • the desulfurization reagent uses calcium hydroxide with a particle size of 3 to 5 mm.
  • the exhaust gas desulfurization device is installed, and the exhaust gas desulfurization device is connected to the exhaust gas source.
  • the heat tracing system and the fan device are started, and after the temperature in the desulfurization component reaches the required temperature for the desulfurization reaction, the exhaust gas is passed in for the desulfurization reaction.
  • the size parameters and operating parameters of the exhaust gas desulfurization device are shown in Table 1.
  • the above exhaust gas desulfurization device is used to treat the exhaust gas discharged from a certain type of diesel engine.
  • the treatment result is shown in Figure 6.
  • the SO 2 concentration in the exhaust gas is lower than 6.0pmm, and the SO 2 /CO 2 ratio is lower than 1.0, which is much lower than IMO Sulfur emission control area emission standards.
  • the exhaust gas desulfurization device provided by this scheme has a high desulfurization efficiency, reaching 99%, and the exhaust gas meets the sulfur emission control requirements of the IMO emission control zone.
  • the system can also remove 80% of particulate matter from exhaust gas.
  • Example 1 there is one desulfurization module. Adding the desulfurization module will increase the desulfurization efficiency of the exhaust gas.
  • the size and number of the desulfurization module can be adjusted according to the amount of exhaust gas generated and the S content in the fuel oil used, which increases the exhaust gas desulfurization. The flexibility of the device.
  • the desulfurization modules in the desulfurization device provided by the present invention adopt a hierarchical design in a series connection mode, each module can be separately maintained and replaced, and the exhaust gas is desulfurized in a circulation disturbance mode between each layer.
  • each module can be separately maintained and replaced, and the exhaust gas is desulfurized in a circulation disturbance mode between each layer.
  • the conventional dry desulfurization tower it achieves the same desulfurization efficiency, saves the footprint of the system, and improves the compactness of the system; under the same footprint, the desulfurization efficiency is higher.
  • After adjusting the number of layers of the desulfurization module it can be flexibly applied to marine diesel engines of different power and speed.
  • the invention adopts the axial diffusion absorption desulfurization module.
  • the waste gas flows into each desulfurization module, it first fills the central gas channel filled with the desulfurization reagent module, and then diffuses along the perforated plate of the desulfurization bed into the desulfurization bed, and adsorbs and chemically absorbs the desulfurization reagent placed in the desulfurization bed.
  • the exhaust gas axial diffusion absorption method achieves the purpose of increasing the contact area of the exhaust gas and the absorbent in a compact space, prolonging the reaction time, and improving the high desulfurization efficiency.
  • the desulfurization module of the exhaust gas desulfurization device provided by the present invention can be replaced or maintained.
  • the control system uses multi-parameters to monitor the real-time operation status of the desulfurization device, and decides whether to replace or maintain the desulfurization module according to the ratio of the SO 2 /CO 2 content of the exhaust gas outlet, the pressure difference of each layer and the operation time of the desulfurization module of each layer. Ensure the efficient and safe operation of desulfurization components.
  • the heat tracing system in the exhaust gas desulfurization device provided by the present invention can promptly and effectively heat the bed temperature of the desulfurization module, which makes up for the problem that the exhaust gas temperature of some two-stroke diesel engines is too low and cannot meet the temperature range requirements for normal desulfurization.
  • the exhaust gas temperature is still very high, and it can be efficiently combined with the exhaust gas denitration system.
  • the exhaust gas desulfurization device provided by the present invention is also used in combination with a pressure fan.
  • the pressure fan can effectively adjust the pressure drop caused by the desulfurization system, make up for this part of the pressure drop loss, and ensure the power of the engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统。包括将两个脱硫床(3-4a,3-4b)平行设置,并使两个脱硫床(3-4a,3-4b)之间的空腔与脱硫模块(3)的进气口(3-1)相通,再配合出气口(3-2)位置的设置,使废气以环形扰流的方式通过脱硫模块(3),废气与脱硫试剂充分接触;多个脱硫模块(3)串联使用,能进一步提高脱硫效率。

Description

基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统
本申请要求于2019年04月15日提交中国专利局、申请号为CN201910300102.8、发明名称为“基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于脱硫技术领域,具体涉及基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统。
背景技术
船舶是重要的海洋运输工具,目前,船舶动力装置大多使用含硫量高的重油,所产生的SO x是形成酸雨的重要污染物之一,对港口城市的生态环境和人体健康造成了巨大危害。国际海事组织(IMO)设立排放控制区(ECA),并在公约MARPOL73/78附则VI中规定:自2020年1月1日起,在全球范围内,船舶动力使用的任何燃油含硫量不得超过0.5%m/m。同时,我国于2015年,交通运输部在珠三角、长三角和环渤海水域设立船舶硫排放区,规定在2017~2019年期间,船舶控制区内逐步实施燃油量≤0.5%m/m的排放标准。
目前,低硫燃油、替代燃料和船舶废气后处理技术是解决船舶动力SO x排放,并使之满足ECA排放标准的主流途径。但使用低硫油会造成船舶动力系统润滑不良、燃油供给系统需要改造和运营成本增加等问题。对于替代燃料,目前主流燃料LNG的应用也存在不少问题:续航能力弱、设备储存空间大、存储环境温度要求严格等。而采用后处理技术相对于上述两种途径,具有如下优点:通过后处理技术处理废气,使废气能够满足排放标准,船舶动力装置则不需要更换燃油,可以使用价格低廉的重油。
对于船舶脱硫后处理技术,目前潜力较大的有钠碱法、海水法和钙基法。钠碱法技术是将废气中的SO x与碱性物质氢氧化钠(NaOH)发生中 和反应,生成亚硫酸盐或少量硫酸盐,达到废气脱硫的目的;海水法是以天然的弱碱性海水(pH:8.0~8.2)作为吸收剂,利用其酸碱缓冲能力及吸收酸性气体(SO x),达到脱除硫的目的;钙基法是一种干式脱硫技术,该技术采用氧化钙(CaO)或氢氧化钙(CaO·H 2O)等物质作为脱硫吸收剂,废气中的SO x与氧化钙或氢氧化钙反应,生成碳酸钙(CaCO 3),达到处理废气中SO x的目的。
船舶脱硫后处理技术中,与湿法脱硫技术相比,干法脱硫避免了酸性蒸汽腐蚀船舶动力系统,同时不需要液体吸收剂,不会产生液体污染。但干法脱硫自身也存在很多缺点,干式脱硫的工作温度范围为240℃~450℃,而对于部分船舶二冲程大功率柴油机的废气温度低于200℃,不满足干式脱硫工作温度的要求;另外,脱硫塔中,钙基颗粒等物质吸收废气中的SO x后,其物理和化学性质发生变化,脱硫能力会逐渐减弱;其次,脱硫塔装置所占用的船舶空间大,重量也明显超过湿式脱硫装置;最后,现有的脱硫塔联合监控系统不够完善,需要进一步改进。
对于船舶废气干式脱硫的核心技术在相关专利中较少报道,申请号为201110392798.5的专利公开了一种干式脱硫装置,该装置利用两级脱硫装置进行两次脱硫,提高了脱硫效果;申请号为201320226553.X的专利公开了一种干式脱硫塔,其工作原理是在封闭体系内,采用循环流动的脱硫方式进行脱硫,进一步改善了脱硫效果。上述装置虽然具有一定的脱硫效果,但在实际使用时,对烟气中硫化物的去除效果仍是有限,因此,限制了装置的应用。
发明内容
本发明的目的在于提供一种基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于所述废气脱硫装置的控制系统,本发明提供的废气脱硫装置基于轴向吸附扩散的原理,使气体通过脱硫床,提高了废气脱硫效果。
为实现上述目的,本发明提供了如下技术方案:
本发明提供了一种基于轴向吸收扩散的废气脱硫装置,包括依次连接的进气管道(1)、脱硫组件(2)和排气管道(5);
所述脱硫组件(2)包括若干串联的脱硫模块(3),所述脱硫模块(3) 为腔体结构,所述腔体结构设置有进气口(3-1)和出气口(3-2),所述进气口(3-1)设置在腔体侧壁(3-3)的中心位置;所述脱硫模块的腔体内部设置双层脱硫床(3-4a和3-4b),两个脱硫床在水平方向平行,远离进气口(3-1)的一端通过连接板(3-5)连接,两个脱硫床之间的空腔与进气口(3-1)相通;
所述连接板(3-5)与脱硫模块的腔体的底壁(4)平行,且连接板(3-5)的四个顶角有缺口;
所述连接板(3-5)与脱硫模块腔体的底壁(4)之间的空腔为气体通道,所述气体通道的一端设置有出气口(3-2);
所述脱硫模块(3)的出气口(3-2)与相邻脱硫模块的进气口连通;
所述脱硫组件(2)与伴热系统连接(7);
所述排气管道(5)设置有风机装置(6)。
优选的,所述脱硫模块的个数为2~10。
优选的,所述脱硫组件中,任一脱硫模块的进气口和相邻脱硫模块的出气口位于同侧,且任一脱硫模块的出气口与下一脱硫模块的进气口连通。
本发明提供了一种废气脱硫方法,利用上述技术方案所述的基于轴向吸收扩散的废气脱硫装置对废气进行脱硫处理,包括以下步骤:
启动伴热系统和风机装置,待废气脱硫装置内部温度达到设定温度后,通过进气管道通入废气;
所述废气经脱硫模块进气口进入两脱硫床之间的空腔,扩散并穿过脱硫床,进入脱硫床与腔体的侧壁之间的水平气体通道,然后由脱硫模块中连接板的四个缺口排出,再通过脱硫模块的出气口进入下一脱硫模块,重复进行脱硫反应;
反应后气体经排气管道排出废气脱硫装置。
优选的,脱硫过程中,所述废气脱硫装置内部的温度为200~500℃。
优选的,所述脱硫床中填充有脱硫试剂,所述脱硫试剂包括氢氧化钙。
本发明另提供了一种用于上述技术方案所述的基于轴向吸收扩散的废气脱硫装置的控制系统,包括控制装置和监测装置;
所述控制装置的输入端与所述监测装置的输出端连接;所述控制装置的输出端与报警装置以及所述废气脱硫装置的风机装置和伴热系统连接。
优选的,所述监测装置包括气体组分传感器、压力传感器和温度传感器;
所述气体组分传感器设置在废气脱硫装置排气管道的内部;
所述压力传感器设置在靠近脱硫模块进气口或出气口的空腔内;
所述温度传感器设置在脱硫床内。
本发明提供了上述技术方案所述控制系统的运行方法,包括:
将所述监测装置采集的实时数据传输到控制装置中,得到监测数据,所述监测数据包括温度参数、压差参数、二氧化碳含量参数、二氧化硫含量参数和运行时间参数;
将所述监测数据与控制装置中设定的参照数据进行对比,判断脱硫组件的运行状况,根据判断结果输出控制指令。
优选的,以任意一个脱硫模块为例,所述判断的方法为:
当n(SO 2)/n(CO 2)≤f(a)时,脱硫模块运行正常,进入下一脱硫模块的检测;所述n(SO 2)/n(CO 2)表示脱硫组件排气管道处监测的排出气体中SO 2与CO 2的含量比;
当n(SO 2)/n(CO 2)>f(a)时,脱硫模块运行为非正常状态,进入压力参数判断环节;
当△P 1≤△P 11时,脱硫模块运行正常,进入运行时间参数判断环节;当△P 1>△P 11时,脱硫模块运行为非正常状态,发出调整风机转速的指令;所述△P 1表示脱硫模块出气口与进气口的压差;所述△P 11表示脱硫模块的限定压差;
当t 1≤t 11时,脱硫模块运行正常,进入下一脱硫模块的检测;
当t 1>t 11时,脱硫模块运行为非正常状态,启动报警系统。
本发明将两个脱硫床平行设置,并使两脱硫床之间的空腔与脱硫模块的进气口相通,可在两个脱硫床之间的空腔形成气体通道;本发明设置的脱硫床允许气体扩散,气体通过脱硫床后,进入脱硫床与脱硫模块侧壁形 成的水平气体通道中,然后由连接板四个缺角排出,进入到连接板与腔体侧壁形成的气体通道中,最终从脱硫模块的出气口排出,进入到下一脱硫模块中,形成了基于轴向吸收扩散的废气脱硫装置,该装置使废气在脱硫装置中的运行路径达到最大化,废气与脱硫试剂充分接触,从而达到提高脱硫效率的目的;而多个脱硫模块串联使用,能进一步提高脱硫效率,最终实现了对废气中硫化物、PM及其他杂质的高效去除。
本发明提供的废气脱硫方法简单,脱硫效率高,能对船舶废气进行高效处理。
本发明还提供了一种控制系统,利用该控制系统可实现对上述废气脱硫装置的实时监测,便于维护,确保脱硫装置的正常运行。
本发明提供了上述控制系统的运行方法,利用所述运行方法能够对废气脱硫装置的运行状况进行准确判断。
说明书附图
图1为本发明提供的一个废气脱硫装置的整体结构图;
图2为本发明提供的废气脱硫装置的拆解图;
图3为本发明提供的废气脱硫装置中脱硫模块的结构示意图;
图4为本发明共的废气脱硫装置的控制系统连接示意图;
图5为本发明提供的废气脱硫装置控制系统的运行逻辑图;
图6为利用本发明实施例提供的废气脱硫装置处理废气的变工况脱除效果图;
其中,1为进气管道,2为脱硫组件,3为脱硫模块,4为腔体的底壁,5为排气管道,6为风机装置,7为伴热系统,8为控制装置,3-1为进气口,3-2为出气口,3-3为腔体的前壁,3-4a和3-4b为脱硫床,3-5为连接板,a、b、c和d为连接板的四个缺口,7'加热件,9-1为气体组分传感器,9-2为压力传感器,9-3为温度传感器。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
本发明提供了一种基于轴向吸收扩散的废气脱硫装置,如图1~3所示,包括依次连接的进气管道1、脱硫组件2和排气管道5;
所述脱硫组件2包括若干串联的脱硫模块3,所述脱硫模块3可拆卸。
在本发明中,所述脱硫模块3为腔体结构,所述腔体结构设置有进气口3-1和出气口3-2,所述进气口3-1设置在腔体的前壁3-3的中心位置;所述脱硫模块3的腔体内部设置双层脱硫床,分别为3-4a和3-4b,两个脱硫床在水平方向平行,远离进气口3-1的一端通过连接板3-5连接,两个脱硫床之间的空腔与进气口3-1相通;
所述连接板3-5与脱硫模块腔体的底壁4平行,且连接板3-5的四个顶角有缺口,分别为a、b、c和d;
所述连接板3-5与脱硫模块腔体的底壁4之间的空腔为气体通道,所述气体通道的一端设置有出气口3-2;
所述脱硫模块3的出气口3-2与相邻脱硫模块的进气口连通;
所述脱硫组件2与伴热系统7连接;
所述排气管道5设置有风机装置8。
如图1所示,本发明所述废气脱硫装置包括进气管道1,所述进气管道1与脱硫模块3的进气口连通。在本发明中,所述进气管道优选为L型,所述进气管道1的一端口与废气源装置连通,另一端口与脱硫组件2的进气口连通。在本发明中,所述进气管道1优选通过焊接的方式与脱硫模块连接。在本发明具体实施例中,与进气管道相连的脱硫模块的连接面优选设置有凸台M,以增加脱硫反应时间并便于密封。
本发明提供的废气脱硫装置包括脱硫组件2,如图2所示,图2为脱硫装置的拆解图,脱硫组件中的各个脱硫模块可抽离出来,以便于维护或更换脱硫试剂。
在本发明中,所述脱硫组件2包括若干串联的脱硫模块3,任一脱硫模块的进气口和相邻脱硫模块的出气口位于同侧,且任一脱硫模块的出气口与下一脱硫模块的进气口连通。在本发明中,所述脱硫模块的数目优选为2~10,更优选为3~8,再优选为4~5。在本发明中,所述脱硫组件中最后一个脱硫模块,与排气管道连接的面优选设置有凸台N,以进一步增加脱硫组件的密封性。
作为本发明的一个实施例,如图2所示,所述脱硫模块的数目为4, 具体的,与进气管道连接的为第一脱硫模块,顺次连接的分别为第二脱硫模块、第三脱硫模块和第四脱硫模块;所述第一脱硫模块的出气口与第二脱硫模块的进气口位于同侧,且相通,依次类推,第四脱硫模块的出气口与出气管道连接。本发明将脱硫模块设置为串联的形式,当其中之一的脱硫模块失效后,其余脱硫模块可正常工作,不会对整个脱硫装置的脱硫效率产生较大影响,提高了废气脱硫装置的实用性能。
为便于描述,本发明将脱硫模块的各个面进行如下定义,如图2所示,与进气管道连接的面(图中以斜线标记的面)为前,对应的腔体壁为前壁3-3;相对面对应的腔体壁为底壁4,其余面为腔体的侧壁。沿着垂直于前壁和底壁的方向,纵向均分脱硫模块,得到脱硫模块的纵向剖视图,如图3所示。图3中,上图为脱硫模块的内部结构示意图,带有箭头的两条曲线表示废气的流通路径,斜线标记的区域表示填充的脱硫试剂,虚线表示板材为多孔板,实线则表示板材为密封板;下图为脱硫模块的分解图。
本发明所述脱硫模块3为腔体结构,优选为立方体形的腔体结构;所述腔体结构设置有进气口3-1和出气口3-2,所述进气口3-1设置在腔体的前壁3-3的中心位置(对应分解图中3-3的圆形)。本发明对所述进气口的形状无特殊要求,可以为圆形、方形或长方形,优选为圆形。
在本发明中,所述脱硫模块3的内部设置双层脱硫床,分别为3-4a和3-4b,两个脱硫床在水平方向平行,远离进气口3-1的一端通过连接板3-5连接,两个脱硫床之间的空腔与进气口3-1相通。在本发明中,所述脱硫床横向隔板优选为多孔板(图中以虚线表示),所述多孔板的孔径优选为脱硫试剂颗粒粒径的50~95%,更优选为60~80%,以确保脱硫试剂不泄漏,同时使气体可以通过。本发明所述多孔板的孔隙率或通流面积比优选为0.5~0.9,更优选为0.7~0.8。
本发明对两个脱硫床之间的间隔距离没有特殊要求,优选根据废气处理量和脱硫模块的总体积进行设置。
在本发明中,所述连接板3-5与脱硫模块腔体的底壁4平行,且连接板3-5的四个顶角有缺口(分别为a、b、c和d)。在本发明中,所述缺口的形状优选为正方形,所述正方形面积优选为排气管截面积的25~35%, 更优选为28~32%。本发明在所述连接板3-5的四个顶角处设置缺口,配合脱硫模块的进气口、脱硫模块内气体通道的设置,形成环形扰流的运行模式,扩大了气体在脱硫模块中的流通路径,提高了脱硫效率。
在本发明中,所述脱硫模块腔体的底壁4优选与腔体通过螺栓固定,以使底壁4为可拆卸部件,便于脱硫模块或脱硫模块中脱硫试剂的更换。更换时,本发明优选通过导流管进行更换。本发明对所述导流管的使用方式没有特殊要求,采用本领域技术人员熟知的方式即可。
在本发明中,所述连接板3-5和脱硫模块腔体的底壁4之间形成气体通道,本发明对所述气体通道的宽度没有特殊要求,具体可以等于排气管直径。在本发明中,所述气体通道的一端设置有出气口3-2,所述出气口3-2与相邻脱硫模块的进气口连通。
在本发明中,如图1所示,所述脱硫组件2与伴热系统7连接。图1中,脱硫组件2与伴热系统7之间的连接线表示伴热系统7与脱硫组件2相连,当脱硫组件2中有多个脱硫模块3时,伴热系统7与脱硫组件2中的各个脱硫模块连接。在本发明中,所述伴热系统7优选设置有多个加热件7',所述加热件7'优选与各个脱硫模块中的脱硫床连接,以实现对各个脱硫模块温度的独立控制。在本发明中,所述伴热系统优选有温度控制功能,以实现对脱硫床温度的精准控制。
本发明所述脱硫装置包括排气管道5,所述排气管道的形状和连接方式优选与进气管道的形状与连接方式一致;所述排气管道5设置有风机装置6;所述风机装置6优选设置有变频器,以用于调节脱硫装置内部的气体流动速度,达到调节风速的目的。本发明通过风机装置6调节干式脱硫装置产生的压差,弥补压差损失,避免压差影响脱硫效率,同时还能减少对柴油机动力性能的影响。
本发明还提供了一种废气脱硫方法,利用上述技术方案所述的基于轴向吸收扩散的废气脱硫装置对废气进行脱硫处理,包括以下步骤:
启动伴热系统和风机装置,待废气脱硫装置内部温度达到设定温度后,通过进气管道通入废气;
所述废气经脱硫模块进气口进入两脱硫床之间的空腔,扩散并穿过脱 硫床,进入脱硫床与腔体的侧壁之间的水平气体通道,然后由脱硫模块中连接板的四个缺口排出,再通过脱硫模块的出气口进入下一脱硫模块,重复进行脱硫反应;
反应后气体经排气管道排出废气脱硫装置。
本发明先启动伴热系统和风机装置,待废气脱硫装置内部温度达到设定温度后,通过进气管道通入废气。在本发明中,所述废气脱硫装置内部温度优选设置为200~500℃,更优选为300~450℃。
在本发明中,所述废气通过进气管道进入脱硫组件的第一脱硫模块中,具体流动过程为:废气经脱硫模块的进气口进入两脱硫床之间的空腔,扩散并穿过脱硫床,进入脱硫床与腔体的侧壁之间的水平气体通道,然后由脱硫模块中连接板的四个缺口排出,再通过脱硫模块的出气口进入下一脱硫模块,重复进行脱硫反应;废气的运行路径在图3中以带箭头的曲线表示;反应后的气体经排气管道排出废气脱硫装置。
在本发明中,所述脱硫床中填充有脱硫试剂,所述脱硫试剂优选包括氢氧化钙。本发明对所述氢氧化钙的用量比没有特殊要求,根据脱硫模块尺寸,将脱硫床填充满即可。在本发明中,所述脱硫试剂优选为颗粒物料,所述颗粒物料的粒径以能稳定存放于脱硫床中即可,具体如3~5mm。
需要说明的是,采用本发明所述废气脱硫装置进行废气处理过程中,伴热系统根据脱硫组件内的温度确定是否启动,风机装置在整个脱硫过程中处于运行状态,风机转速可根据废气脱硫装置的运行情况,通过变频器进行调整。
本发明还提供了一种用于上述技术方案所述的基于轴向吸收扩散的废气脱硫装置的控制系统,如图4所示,所述控制系统包括控制装置8和监测装置;
所述控制装置的输入端与所述监测装置的输出端连接;所述控制装置的输出端与报警装置以及所述废气脱硫装置的风机装置6和伴热系统7连接。
在本发明中,所述控制装置具有输入功能、输出功能、存储功能和对比功能,所述输入功能通过将控制装置的输入端与监测装置的输出端连接 实现,用于获取监测装置传输的实时监测数据;所述输出功能通过将控制装置的输出端分别与报警装置、风机装置6和伴热系统7连接实现,用于将对比结果输出至相应的装置,作为报警装置、风机装置或伴热系统运行状况调整的指令。在本发明中,所述存储功能通过在控制装置中设置存储模块实现,用于存储参照数据和实时监测数据;所述对比功能通过在控制装置中设置对比模块实现,用于实现实时监测数据与参照数据的比对,所得对比结果可做为判断废气脱硫装置是否正常运行的依据。
在本发明中,所述监测装置优选具有信号接收功能和输出功能。在本发明中,所述信号接收功能通过感应器实现,用于获取废气脱硫装置运行过程中的实时监测数据;所述信号输出功能通过将监测装置与控制装置连接实现,用于将获取的实时监测数据传输至控制装置,进行与参照数据的对比。
在本发明中,所述监测装置优选包括气体组分传感器9-1、压力传感器9-2和温度传感器9-3。
在本发明中,所述气体组分传感器9-1优选设置在废气脱硫装置排气管道5的内部,并加装高温氧化保护,工作温度不低于200℃。本发明优选将气体组分传感器进行上述设置,能对通过排气管道的废气中待测组分的含量进行准确测量。
在本发明中,所述气体组分传感器9-1优选包括二氧化硫传感器和二氧化碳传感器,所述二氧化硫传感器和二氧化碳传感器优选独立设置;所述二氧化硫传感器和二氧化碳传感器通过感应得到排气管道内的二氧化碳含量参数和二氧化硫含量参数。
在本发明中,所述压力传感器9-2优选设置在靠近脱硫模块进气口和出气口的空腔内,进气口的压力传感器和出气口的压力传感器独立设置,通过压力感应得到进气口压强和出气口压强,二者传输到控制装置,得到压差参数。
在本发明中,所述温度传感器9-3优选设置在脱硫床层中,以能测量脱硫反应体系的温度为宜;所述温度传感器设置在脱硫床层内,与脱硫试剂接触,测得脱硫反应体系的温度参数。
在本发明中,控制装置8、监测装置、风机装置5和伴热系统7之间通过导线连接。
在本发明中,除上述说明外,控制系统中各装置的连接方式按照本领域技术人员熟知的方式连接即可。
本发明提供上述技术方案所述控制系统的运行方法,包括:
将所述监测装置采集的实时数据传输到控制装置中,得到监测数据,所述监测数据包括温度参数、压差参数、二氧化碳含量参数、二氧化硫含量参数和运行时间参数;
将所述监测数据与控制装置中设定的参照数据进行对比,判断脱硫组件的运行状况,根据判断结果输出控制指令。
本发明将所述监测装置采集的实时数据传输到控制装置中,得到监测数据,所述监测数据包括温度参数、压差参数、二氧化碳含量参数、二氧化硫含量参数和运行时间参数。本发明对所述实时数据的传输方式没有特殊要求,采用本领域技术人员熟知的方式传输即可。
在本发明中,所述监测装置优选包括温度传感器、压力传感器和组分传感器,所述压力传感器设置在每个脱硫模块进气前和出气后的位置,能够得到废气进入脱硫模块前后的压力值,并计算得到压差参数。在本发明中,将温度传感器、压力传感器视为不同类的监测装置,相邻两脱硫模块之间优选设置一个监测装置/类,该监测装置测试结果作为前一脱硫模块出气后的监测数据,同时也作为后一脱硫模块进气前的监测数据。在本发明中,所述监测数据符号优选按照参照数据的方式定义,例如,压力参数以△P n表示,n表示第n个脱硫模块,具体的,当脱硫模块的数目为4时,各个脱硫模块的压差参数分别以△P 1、△P 2、△P 3和△P 4表示。
得到监测数据后,本发明将所述监测数据与控制装置中设定的参照数据进行对比,判断脱硫组件的运行状况,根据判断结果输出控制指令。在本发明中,所述参照数据优选包括燃油硫含量限制标准对应的SO 2/CO 2比值(以f(α)表示)、每个脱硫模块的限定压差、限定温度和限定运行时间。在本发明中,所述参照数据中,f(α)设置为一个,其余参照数据优选根据脱硫模块的数目设置对应数目的参照数据。
具体的如,当脱硫模块的数目为2时,需要分别设置第一块脱硫模块的限定压差和第二块脱硫模块的限定压差,其余参数以此类推。以限定压差为例,本发明设置参照数据时,优选以△P 1n表示脱硫模块的限定压差,n表示脱硫模块的序号,例如第一个脱硫模块的限定压差以△P 11表示,第二个脱硫模块的限定压差以△P 12表示,以此类推;所述参照数据中的限定温度优选以△T 1n表示,所述参照数据中的限定运行时间以△t 1n表示,n表示第n个脱硫模块。在本发明中,所述参照数据优选根据台架试验得到。
在本发明中,所述脱硫组件的运行状况的优选根据各个脱硫模块的运行状况进行判断,所述脱硫模块的运行状况的判断方法优选依次按照气体组分含量、压差参数和运行时间参数的顺序进行判断,具体判断方法如图4所示。
以任意一个脱硫模块为例,所述判断方法为:
当n(SO 2)/n(CO 2)≤f(a)时,脱硫模块运行正常,进入下一脱硫模块的检测;所述n(SO 2)/n(CO 2)表示脱硫组件排气管道处监测的排出气体中SO 2与CO 2的含量比;所述f(a)的含义优选与上述技术方案定义的f(a)的含义一致。
当n(SO 2)/n(CO 2)>f(a)时,脱硫模块运行为非正常状态,进入压差参数判断环节;
当△P 1≤△P 11时,脱硫模块运行正常,进入运行时间参数判断环节;当△P 1>△P 11时,脱硫模块运行为非正常状态,控制系统发出调整风机转速的指令;
当t 1≤t 11时,脱硫模块运行正常,进入下一脱硫模块的检测;当下一脱硫模块为最后一个模块时,废气正常排出。
当t 1>t 11时,脱硫模块运行为非正常状态,控制系统启动报警系统。
在本发明中,当控制系统启动报警装置时,需停止进气,更换脱硫模块或脱硫试剂,待消除警报,脱硫装置重新运行正常时,持续通入废气,进行脱硫处理。
本发明优选采用上述控制系统对废气脱硫装置进行自动化控制,以实 现对废气脱硫装置安全运行的实时监控,改善脱硫装置在不同应用领域的适用性。
为了进一步说明本发明,下面结合附图和实施例对本发明提供的一种基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于所述废气脱硫装置的控制系统进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
为验证本发明提供的废气脱硫装置的脱硫效果,以1个脱硫模块为例进行试验,脱硫试剂采用粒径为3~5mm的氢氧化钙,安装好废气脱硫装置,将废气脱硫装置与废气源装置连接,启动伴热系统和风机装置,待脱硫组件中的温度达到脱硫反应所需温度后,通入废气,进行脱硫反应。
废气脱硫装置的尺寸参数及运行参数见表1。
表1 实施例1废气脱硫装置的尺寸参数及运行参数
尺寸及运行参数 实施例1
脱硫模块长*宽*高(cm) 700×700×600
脱硫床长*宽*高(cm) 600×600×594
脱硫床层温度(℃) 200~500
脱硫模块数量(个) 1
废气流量(Nm 3/h) 700
废气硫含量(ppm) 700
利用上述废气脱硫装置对某型柴油机排放的废气进行处理,处理结果见图6;当柴油机负荷变化时,废气中SO 2浓度低于6.0pmm,SO 2/CO 2比值小于1.0,远低于IMO硫排放控制区排放标准。由图6可知,本方案提供的废气脱硫装置的脱硫效率高,达到99%,排放气体达到IMO排放控制区硫排放控制要求。此外,该系统还可以脱除废气80%颗粒物。
实施例1中脱硫模块为1块,增加脱硫模块,废气的脱硫效率会增加,而且脱硫模块的尺寸大小及数目,可根据废气生成量、所用燃料油中的S含量进行调整,增加了废气脱硫装置的灵活性。
由以上实施例可知,本发明提供的废气脱硫装置具有如下优势:
本发明提供的脱硫装置中的脱硫模块采用串联的方式分层设计,每个模块可以单独维护更换,废气在各层之间采用环流扰动的方式脱硫。对比于常规的干式脱硫塔,达到相同的脱硫效率,节省了系统的占地面积,提高了系统的紧凑性;在相同的占地面积下,脱硫效率更高。调节脱硫模块的层数后,可以灵活应用于不同功率、转速的船用柴油机。
本发明采用轴向扩散吸收脱硫模块。废气流入每层脱硫模块时,首先充满装填脱硫试剂模块的中心气体通道,再沿脱硫床的多孔板扩散进入脱硫床中,并与放置在脱硫床中的脱硫试剂发生吸附及化学吸收作用,脱除废气中部分SO 2、PM等污染物。废气轴向扩散的吸收方式,达到了在紧凑的空间内,废气与吸收剂的接触面积加大,反应时间延长,改善脱硫效率高的目的。
本发明提供的废气脱硫装置的脱硫模块可更换或者维护。控制系统采用多参数监测脱硫装置的实时运行状况,并根据废气出口SO 2/CO 2的含量比、每层的压差大小和每层的脱硫模块的运行的时间决定是否更换或者维护脱硫模块,保证脱硫组件的高效、安全的运行。
本发明提供的废气脱硫装置中的伴热系统能及时有效的加热脱硫模块的床层温度,弥补了部分二冲程柴油机废气温度太低,不能满足脱硫正常工作的温度范围要求的问题,且脱硫后的废气温度还很高,可与废气脱硝系统高效联合应用。
本发明提供的废气脱硫装置还与压力风机联合使用。压力风机能有效的调节脱硫系统所带来的压降,弥补这一部分压降损失,保证发动机的动力性。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于 本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种基于轴向吸收扩散的废气脱硫装置,包括依次连接的进气管道(1)、脱硫组件(2)和排气管道(5);
    所述脱硫组件(2)包括若干串联的脱硫模块(3),所述脱硫模块(3)为腔体结构,所述腔体结构设置有进气口(3-1)和出气口(3-2),所述进气口(3-1)设置在腔体的前壁(3-3)的中心位置;所述脱硫模块的腔体内部设置双层脱硫床(3-4a和3-4b),两个脱硫床在水平方向平行,远离进气口(3-1)的一端通过连接板(3-5)连接,两个脱硫床之间的空腔与进气口(3-1)相通;
    所述连接板(3-5)与脱硫模块腔体的底壁(4)平行,且连接板(3-5)的四个顶角有缺口;
    所述连接板(3-5)与脱硫模块腔体的底壁(4)之间的空腔为气体通道,所述气体通道的一端设置有出气口(3-2);
    所述脱硫模块(3)的出气口(3-2)与相邻脱硫模块的进气口连通;
    所述脱硫组件(2)与伴热系统(7)连接;
    所述排气管道(5)设置有风机装置(6)。
  2. 如权利要求1所述的废气脱硫装置,其特征在于,所述脱硫模块的个数为2~10。
  3. 如权利要求1或2所述的废气脱硫装置,其特征在于,所述脱硫组件中,任一脱硫模块的进气口和相邻脱硫模块的出气口位于同侧,且任一脱硫模块的出气口与下一脱硫模块的进气口连通。
  4. 一种废气脱硫方法,其特征在于,利用权利要求1~3任一项所述的基于轴向吸收扩散的废气脱硫装置对废气进行脱硫处理,包括以下步骤:
    启动伴热系统和风机装置,待废气脱硫装置内部温度达到设定温度后,通过进气管道通入废气;
    所述废气经脱硫模块进气口进入两脱硫床之间的空腔,扩散并穿过脱硫床,进入脱硫床与腔体的侧壁之间的水平气体通道,然后由脱硫模块中连接板的四个缺口排出,再通过脱硫模块的出气口进入下一脱硫模块,重 复进行脱硫反应;
    反应后气体经排气管道排出废气脱硫装置。
  5. 如权利要求4所述的废气脱硫方法,其特征在于,脱硫过程中,所述废气脱硫装置内部的温度为200~500℃。
  6. 如权利要求4或5所述的废气脱硫方法,其特征在于,所述脱硫床中填充有脱硫试剂,所述脱硫试剂包括氢氧化钙。
  7. 一种用于权利要求1~3任一项所述的基于轴向吸收扩散的废气脱硫装置的控制系统,包括控制装置和监测装置;
    所述控制装置的输入端与所述监测装置的输出端连接;所述控制装置的输出端与报警装置以及所述废气脱硫装置的风机装置和伴热系统连接。
  8. 如权利要求7所述的控制系统,其特征在于,所述监测装置包括气体组分传感器、压力传感器和温度传感器;
    所述气体组分传感器设置在废气脱硫装置排气管道的内部;
    所述压力传感器设置在靠近脱硫模块进气口或出气口的空腔内;
    所述温度传感器设置在脱硫床内。
  9. 一种用于权利要求7或8所述的控制系统的运行方法,包括:
    将所述监测装置采集的实时数据传输到控制装置中,得到监测数据;所述监测数据包括温度参数、压差参数、二氧化碳含量参数、二氧化硫含量参数和运行时间参数;
    将所述监测数据与控制装置中设定的参照数据进行对比,判断脱硫组件的运行状况,根据判断结果输出控制指令。
  10. 如权利要求9所述的控制方法,其特征在于,以任意一个脱硫模块为例,所述判断的方法为:
    当n(SO 2)/n(CO 2)≤f(a)时,脱硫模块运行正常,进入下一脱硫模块的检测;所述n(SO 2)/n(CO 2)表示脱硫组件排气管道处监测的排出气体中SO 2与CO 2的含量比;
    当n(SO 2)/n(CO 2)>f(a)时,脱硫模块运行为非正常状态,进入压力参数判断环节;
    当△P 1≤△P 11时,脱硫模块运行正常,进入运行时间参数判断环节;当△P 1>△P 11时,脱硫模块运行为非正常状态,发出调整风机转速的指令;所述△P 1表示脱硫模块出气口与进气口的压差;所述△P 11表示脱硫模块的限定压差;
    当t 1≤t 11时,脱硫模块运行正常,进入下一脱硫模块的检测;
    当t 1>t 11时,脱硫模块运行为非正常状态,启动报警系统。
PCT/CN2019/086154 2019-04-15 2019-05-09 基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统 WO2020211131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910300102.8 2019-04-15
CN201910300102.8A CN109999628A (zh) 2019-04-15 2019-04-15 基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统

Publications (1)

Publication Number Publication Date
WO2020211131A1 true WO2020211131A1 (zh) 2020-10-22

Family

ID=67171900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086154 WO2020211131A1 (zh) 2019-04-15 2019-05-09 基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统

Country Status (2)

Country Link
CN (1) CN109999628A (zh)
WO (1) WO2020211131A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076690A (en) * 1980-05-22 1981-12-09 Marshall D A G Divided-bed carbon filter
CN203829871U (zh) * 2014-04-24 2014-09-17 湖北超越环保设备有限公司 一种活性炭吸附塔
CN205495283U (zh) * 2016-04-18 2016-08-24 厦门爱迪特环保科技有限公司 一种蜂窝状活性炭吸附装置
CN206965437U (zh) * 2017-07-18 2018-02-06 晋江九鼎除尘烘烤设备有限公司 一种蜂窝活性炭废气处理柜结构
CN108057314A (zh) * 2018-01-29 2018-05-22 中冶华天南京电气工程技术有限公司 活性焦干法烟气脱硫脱硝工艺吸附塔塔内温度控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987669B2 (ja) * 2007-11-08 2012-07-25 株式会社東芝 二酸化炭素吸収装置
CN102500227A (zh) * 2011-12-01 2012-06-20 西安瑞金源能源科技有限责任公司 一种干式脱硫装置
US8920540B2 (en) * 2012-06-08 2014-12-30 Alstom Technology Ltd Compact air quality control system compartment for aluminium production plant
CN103861396A (zh) * 2012-12-17 2014-06-18 北京英泰世纪环境科技有限公司 内燃机颗粒物排放后处理净化装置
CN103203170B (zh) * 2013-04-11 2015-04-01 周勇定 一种烟气净化器
CN203235415U (zh) * 2013-04-28 2013-10-16 江苏峰峰鸿运环保科技发展有限公司 一种干式脱硫塔
CN104607045A (zh) * 2015-02-03 2015-05-13 中国科学院广州能源研究所 壁流式干式脱硫过滤器
CN105457474A (zh) * 2015-12-16 2016-04-06 无锡蓝天电子有限公司 基于废气径向或轴径向流动的船舶废气轴径向流脱硫塔
CN107890773A (zh) * 2017-11-29 2018-04-10 哈尔滨工程大学 一种船用柴油机废气干式脱硫系统及脱硫方法
CN208082181U (zh) * 2018-03-02 2018-11-13 广州紫科环保科技股份有限公司 一种废气治理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076690A (en) * 1980-05-22 1981-12-09 Marshall D A G Divided-bed carbon filter
CN203829871U (zh) * 2014-04-24 2014-09-17 湖北超越环保设备有限公司 一种活性炭吸附塔
CN205495283U (zh) * 2016-04-18 2016-08-24 厦门爱迪特环保科技有限公司 一种蜂窝状活性炭吸附装置
CN206965437U (zh) * 2017-07-18 2018-02-06 晋江九鼎除尘烘烤设备有限公司 一种蜂窝活性炭废气处理柜结构
CN108057314A (zh) * 2018-01-29 2018-05-22 中冶华天南京电气工程技术有限公司 活性焦干法烟气脱硫脱硝工艺吸附塔塔内温度控制方法

Also Published As

Publication number Publication date
CN109999628A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
AU2008357630B2 (en) Ship Flue Gas Desulphurization Method and Equipment
CN108579373B (zh) 一种针对含有高浓度硫化氢沼气的脱硫系统及其脱硫方法
CN110681242A (zh) 一种船舶海水脱硫系统及方法
CN107890773A (zh) 一种船用柴油机废气干式脱硫系统及脱硫方法
CN204574091U (zh) 一种锅炉节能减排系统
CN209271200U (zh) 一种防火防腐蚀再生塔
CN202460474U (zh) 一体化中小型锅炉催化还原氨法脱硫脱硝成套装置
WO2020211131A1 (zh) 基于轴向吸收扩散的废气脱硫装置、废气脱硫方法和用于废气脱硫装置的控制系统
CN108479324B (zh) 一种小型化的船舶脱硫降硝除尘装置
CN201389423Y (zh) 一种用于燃煤锅炉的烟气脱硫除尘塔
CN201380036Y (zh) 一种海水烟气脱硫装置
CN109260949A (zh) 一种防火防腐蚀再生塔
CN110605023B (zh) 一种具备监测功能的船用柴油机废气脱硫系统
CN110585896B (zh) 一种船舶废气干式脱硫系统
CN211924288U (zh) 用于船舶尾气中颗粒物去除的装置
CN204327328U (zh) 一种内燃机节能减排系统
CN106621756B (zh) 船机排气多污染物协同治理的装置及其工作方法
CN210993747U (zh) 一种船舶废气干式脱硫系统
CN209752609U (zh) 一种高效脱硫除尘一体化装置
AU2013251244B2 (en) Ship Flue Gas Desulphurization Method and Equipment
CN210786891U (zh) 一种石油化工燃气脱硫塔
CN203990299U (zh) 气体保障性脱硫装置
CN207786279U (zh) 燃煤电厂氧化镁强化海水脱硫系统
CN207680349U (zh) 一种采用预氧化工艺的联合脱硫脱硝脱汞装置
CN206215048U (zh) 板式scr脱硝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925045

Country of ref document: EP

Kind code of ref document: A1