WO2020210945A1 - 发光装置及其制作方法 - Google Patents
发光装置及其制作方法 Download PDFInfo
- Publication number
- WO2020210945A1 WO2020210945A1 PCT/CN2019/082703 CN2019082703W WO2020210945A1 WO 2020210945 A1 WO2020210945 A1 WO 2020210945A1 CN 2019082703 W CN2019082703 W CN 2019082703W WO 2020210945 A1 WO2020210945 A1 WO 2020210945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- electrode
- semiconductor layer
- layer
- type semiconductor
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 230000017525 heat dissipation Effects 0.000 claims description 20
- 239000007769 metal material Substances 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 abstract 2
- 238000009413 insulation Methods 0.000 abstract 2
- 239000000463 material Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910008599 TiW Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0016—Processes relating to electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0075—Processes relating to semiconductor body packages relating to heat extraction or cooling elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/382—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/387—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/647—Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
Definitions
- the present invention relates to the field of semiconductor devices, in particular to a light-emitting device and a manufacturing method thereof.
- Light emitting diodes are widely used as solid-state lighting sources. Compared with traditional incandescent bulbs and fluorescent lamps, light-emitting diodes have the advantages of low power consumption and long life. Therefore, light-emitting diodes have gradually replaced traditional light sources and are used in various fields, such as traffic signs, backlight modules, street lighting, Medical equipment, etc.
- FIG. 1 shows an existing high-voltage COB light source, which integrates a plurality of vertical Lm) chips 120 on a circuit board 110, as shown in FIG. 2.
- the LED chip 120 adopts a conductive substrate, it is limited by the inherent electrical isolation band, and the distance between adjacent LED chips usually needs to be 50- or more, which cannot reduce the overall light-emitting surface of the LED light source, which is not conducive to the overall optical power Density increases; at the same time, it is difficult to achieve thermoelectric separation of COB packaging.
- the present invention proposes an integrated LED light-emitting device, which can work at a high current density above 3A/mm 2 , such as 4A/mm 2 , or 5A/mm 2 .
- a light emitting device comprising: a bracket having a first surface and a second surface opposite to each other, and a patterned conductive layer is provided on the first surface; and an LED device formed on the first surface of the package bracket , Including an insulating substrate and a plurality of light-emitting units located on the insulating substrate, the plurality of light-emitting units comprising a semiconductor layer sequence I J, a first electrode and a second electrode, the semiconductor layer sequence has a first type semiconductor layer and a second electrode The second type semiconductor layer and the active layer located between the two, wherein the first type semiconductor layer is located on the positive side of the semiconductor layer sequence, the first electrode and the second electrode face the positive side, and the first electrode and the first type semiconductor layer An electrical connection is formed, and the second electrode is electrically connected to the second type semiconductor layer; the first electrode and the second electrode are respectively connected to the conductive layer on the package support through leads.
- the present invention also provides a method for manufacturing a light-emitting device, including the steps: (1) providing a support, which has opposite first and second surfaces, and a patterned conductive layer is provided on the first surface (2) Manufacturing an LED device, which includes an insulating substrate and a plurality of light emitting units located on the insulating substrate, the plurality of light emitting units including a semiconductor layer sequence, a first electrode and a second electrode, the semiconductor layer sequence has a first Type semiconductor layer and the second type semiconductor layer and the active layer located between the two, wherein the first type semiconductor layer is located on the positive side of the semiconductor layer sequence, the first electrode and the second electrode face the positive side, wherein the first electrode and The first type of semiconductor layer is electrically connected, and the second electrode is electrically connected to the second type of semiconductor layer; (3) The LED device is placed on the support, wherein the insulating substrate is connected to the support; (4) Leads are made , Connecting the first electrodes and the second electrodes of the plurality of light-emitting units to
- the semiconductor layer sequence of at least one light-emitting unit is respectively connected to the insulating substrate through a heat dissipation layer to independently form a thermal conduction channel. More preferably, the heat dissipation layer is in contact with the first type semiconductor layer.
- the multiple light-emitting units are formed on the same insulating substrate, and no direct electrical connection is formed on the LED device, and the electrical connection is formed through the lead and the conductive layer. Further, each light-emitting unit of the plurality of light-emitting units has a first electrode and a second electrode, and the first electrode and the second electrode of the plurality of light-emitting units are respectively connected to the conductive layer on the package support through a lead .
- the chips of the light-emitting device of the present invention share the same substrate, which can solve the problem of low light output power density caused by the excessively large spacing between the chips.
- the spacing between each chip can reach 3 ( Below Vm, even below l(Vm, the light-emitting area of the entire package structure is greatly reduced, and the optical power output density is increased; further, a thermoelectric separation structure can be realized, providing a good foundation for high current density driving
- FIG. 1 is a schematic top view illustrating a conventional high-pressure COB light source.
- FIG. 2 is a schematic cross-sectional view illustrating a conventional LED chip used in the light source shown in FIG. 1.
- FIG. 3 is a schematic top view illustrating some examples of light-emitting devices of the present invention.
- FIG. 4 is a schematic top view illustrating the support structure of the light emitting device of some examples of the present invention.
- FIG. 5 is a schematic partial cross-sectional view taken along line A-A of FIG. 3.
- FIG. 6 is a schematic partial cross-sectional view taken along line B-B in FIG. 3.
- FIG. 7 is a schematic top view illustrating some examples of light emitting devices of the present invention.
- FIG. 8 is a schematic top view illustrating some examples of light emitting devices of the present invention.
- FIG. 9 is a schematic partial cross-sectional view taken along the line C-C in FIG.
- FIG. 10 is a schematic partial cross-sectional view taken along the line C-C in FIG. 7 to illustrate some examples of light-emitting devices of the present invention.
- 100, 200 light emitting device
- FIG. 3 shows a light emitting device implemented according to the present invention.
- the light-emitting device includes: a bracket 210, LED chips 2201 to 2204, and leads 231.
- the bracket 210 has a first surface 210A (front surface) and a second surface (back surface) opposite to the first surface.
- the first surface 210A of the support 210 is provided with a chip mounting area 2101 and a patterned conductive layer 2110, wherein the chip mounting area 2101 is preferably located in the middle area of the first surface 210A, and the patterned conductive layer 2110 is distributed on the chip
- the outer periphery of the mounting area 2101 contains a series of conductive blocks 2111 ⁇ 2113 separated from each other.
- the first conductive block 2111 serves as the first wire bonding area at the same time
- the second conductive block 2112 serves as the second wire bonding area
- the rest are conductive Block 2113 is used to connect
- the number and distribution of conductive blocks are set according to the number and arrangement of LED chips. For example, if the number of LED chips is N, then the number of conductive blocks can be designed to be N+1. At this time, each LED can be guaranteed The chips can all be directly connected to the conductive layer of the holder through leads.
- the first conductive block 2111 (the second conductive block) has a main body 2111A (2112A) and an extension 2111B (2112B), wherein the main body is used to connect an external power source, and the extension is used to connect an LED Chip;
- the first wire bonding area and the second wire bonding area can also be led to the second surface of the bracket through the through hole.
- each LED chip 2201 to 2204 are mounted on the mounting area 2101 of the bracket with the light emitting surface S11 facing upward.
- the multiple LED chips share a high-resistance substrate 221, and there is no direct electrical connection between them.
- each LED chip includes a series of semiconductor layers provided on the insulating substrate 221, a first electrode 2221 and a second electrode 2222, and the first electrode and the second electrode of each LED chip respectively pass through the lead 23 1 Connect to the conductive block of the bracket.
- the semiconductor layer series has an upper surface S11 and a lower surface opposite to each other.
- the upper surface S11 serves as the light-emitting surface, and includes the first type semiconductor layer 2211, the active layer 2212, and the second type semiconductor layer 2212.
- the first type semiconductor layer 2211 and the second type semiconductor layer 2213 may be a p-type semiconductor layer and an n-type semiconductor layer, respectively.
- the first type semiconductor layer and the second type semiconductor layer can be formed by the chemical formula Al x In y Ga (1-xy) N (where 0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l, (Kx+y ⁇ l)
- the expressed nitride semiconductor is formed, but is not limited thereto, and GaAs-based semiconductors or GaP-based AlGalnP semiconductor materials may also be used.
- the active layer 2212 may have a nitride-based multiple quantum well structure (MQW), such as InGaN/GaN, GaN/AlGaN, but not limited to this, other semiconductors, such as Galas/AlGaAs, InGaP/GaP, GaP/AlGaP, etc. can also be used.
- MQW multiple quantum well structure
- connection layer is provided between the lower surface of the semiconductor series layer and the substrate 221.
- the connection layer is used to connect the semiconductor series layer and the substrate 221 on the one hand, and can also serve as a heat dissipation layer on the other hand.
- a heat dissipation channel is formed between the LED chip and the substrate 221, and when the LED chip is in the working state, the heat generated by the semiconductor series layer can be quickly exported to the substrate 221.
- the first electrode 2221 and the second electrode 22 22 are located outside the semiconductor layer series, that is, the projection of the first electrode 2221 and the second electrode 2222 on the surface of the substrate 221 is outside the semiconductor layer series.
- the first electrode and the second electrode are led out from the lower surface of the semiconductor layer series through the connection layer 2240 and face the upper surface S11 of the semiconductor layer series, so as to be suitable for electrically contacting the body of the light emitting diode chip from the positive side.
- the upper surfaces of the first electrode and the second electrode are located at the same height.
- the connection layer can be arranged in multiple layers in the vertical direction, and is electrically isolated by the insulating layer 2260. Specifically, a third connection layer 2244, an insulating layer 2260, a first connection layer 2241, and a second connection layer 2242 are sequentially arranged between the substrate 221 and the semiconductor layer series from bottom to top.
- the third connection layer 2244 has a direction facing the semiconductor layer.
- the first extension portion 2243 penetrates the first type semiconductor layer 2221 and the active layer 2222 and is electrically connected to the second type semiconductor layer 2213.
- the second extension portion 2245 An electrical connection is formed with the second connection layer 2242.
- the first connection layer 2241 and the second connection layer 2242 have the same thickness and material, and are formed in the same step by patterning, so that they can have the same height, which facilitates subsequent production of the first electrode and the second electrode with the same height.
- the second electrode Preferably, the third connection layer 2244 of each LED chip has the same material and thickness, and is formed in the same step, and each chip is electrically isolated by the insulating layer 2262.
- the portion where the first connection layer 2241 contacts the first electrode 2221, and the portion where the second connection layer 2242 contacts the second electrode 2222 are Ti, Pt, Au, Cr with relatively stable performance. , TiW alloy and other materials
- the first connection layer 2241 located under the light-emitting area may include a highly reflective metal material (such as Ag, Al, etc.) that sequentially reflects light from the light-emitting area, and a stable metal material for preventing the diffusion of the aforementioned materials (such as Ti, Pt, Au, Cr or TiW, etc.).
- the third connection layer 2244 includes an extension portion 2243 extending toward the light-emitting surface and connected to the second type semiconductor layer 2213, and its material preferably includes reflective materials such as Al, Cr, or Ag. Further, the side of the third connection layer 2244 in contact with the substrate 221 may include a bonding layer for bonding the substrate. More preferably, the bonding layer is made of a metal material and can be used as a heat dissipation layer at the same time, so as to quickly draw the heat accumulated on the second type semiconductor layer to the substrate 221. On the other hand, the substrate 221 is in contact with the entire surface of the semiconductor layer series to ensure the integrity of the physical structure. In order to reduce the resistance between the first connection layer 2242 and the first semiconductor layer 2211, a transparent current spreading layer is also added between the first connection layer 2242 and the first semiconductor layer 2211.
- the third connection layer 2244 includes a plurality of extension portions 2243 extending toward the light exit surface, and the plurality of extension portions 2243 penetrate the first type semiconductor layer 2211, the active layer 2212, and the second type semiconductor layer 221 3 connections.
- the plurality of extensions 2243 are preferably evenly distributed, so that they have better current expandability and heat dissipation characteristics, and are suitable for applications under high current density.
- the total contact area between the third connection layer 2244 and the second type semiconductor layer 2213 is greater than 1.5% of the area of the second type semiconductor layer 2213.
- the contact area between the third connection layer 2243 and the second semiconductor layer 2213 can be designed according to requirements, for example, 2.3% ⁇ 2.8%, 2.8% ⁇ 4%, or 4% ⁇ 6%.
- the diameter of the extension 2243 is 15 pm or more. Although ensuring the total contact area of the third connection layer 2244 and the second semiconductor layer 2213 can improve the heat dissipation characteristics, if the extension portion 2243 has a smaller diameter, the thinner extension portion 2243 has a thermal resistance exceeding a linear ratio. Therefore, in some embodiments, the diameter of the extension part 2243 is designed to be 32 ⁇ m ⁇ 4 ⁇ m, which has better heat dissipation effect. As a preferred embodiment, when the diameter of the extension part 2243 is 34 ⁇ m ⁇ 36 ⁇ m, the extension part The setting density of 2243 is 20-25 pcs/mm2.
- the semiconductor layer series 2210 of the LED chips 2201 to 2204 is a thin film structure after removing the growth substrate.
- the first connection layer 2241 may include a reflective layer, which is connected to the light emitting surface S11 of the LED chip.
- the distance is preferably within l(Vm, for example, 4 ⁇ 8pm, and the distance to the active layer is less than 1pm, which shortens the path of light inside the LED chip and increases the light emitted by the active layer 2212 from the light-emitting surface.
- the emission ratio of S11, the luminous angle is preferably 130° or less, and a more preferable luminous angle is less than or equal to 120°, such as 120 to 110°.
- the luminous angle of the LED chip may be 113 °
- the third connection layer 2244 may also include a reflective layer, and the distance from the light-emitting surface S11 is preferably less than 2 (Vm), which is much less than half the thickness of the LED chip, more preferably, 7-12 [ xm, for example It can be 8 [ xm, or 9 [ xm, or 10 [ xm.
- the first connection layer 2241 and the second connection layer 2242 can include an Ag metal layer as the first reflective layer, and the third connection layer 2244 includes an Al metal layer.
- the A1 metal layer can form ohmic contact with the second type semiconductor layer 2213, and on the other hand, as a second reflective layer, it can cover as much as possible the lower surface of the semiconductor layer series that is not connected to the first connection layer 2241 and the second Connect the area covered by the layer 2242.
- the substrate 221 is used to support the semiconductor layer series, and its thickness is preferably 5 (Vm or more, 20 (Vm or less. In some embodiments, the thickness of the substrate 221 may be 50 to 100 [xm, such as 90 [xm; In some embodiments, the thickness of the substrate 221 may also be 100 to 150 1, such as 120 1, or 130 1. In some embodiments, the thickness of the substrate 221 may also be 150 to 20 (Vm, for example, 18 (Vm).
- the substrate 221 preferably adopts an insulating material, which can be a transparent material, such as a sapphire substrate, a ceramic substrate, etc., or a highly reflective material.
- the substrate 223 preferably adopts a material with good heat dissipation properties.
- the connection layer is respectively connected with the heat dissipation substrate 221 and the second type semiconductor layer 2213 to form a good heat conduction channel, and guide heat from the second type semiconductor layer to the heat dissipation substrate. Because the excitation radiation of the multiple quantum wells passes through the second type semiconductor layer. The type semiconductor layer is emitted, and heat is easy to accumulate on the second type semiconductor layer 2213.
- the connection layer 2242 can well lead the heat from the second semiconductor layer to the heat dissipation substrate and out of the bracket 210.
- the light-emitting device usually further includes a packaging material layer 250 for packaging the LED chip on the bracket 210.
- a plurality of LED chips are arranged on a heat dissipation substrate with the same high resistance, and each chip is electrically isolated on the substrate, and is distributed on the package support 210 through a patterned conductive layer.
- the conductive layer is connected by wires to form a high-voltage COB structure to achieve a thermoelectric separation structure, which can be suitable for high current density working conditions, and the spacing 240 between each chip can be 3 (Vm or less, for example, 20 pm, l (Vm , Or 8pm, helps to increase the light output power density of the light emitting device.
- connection layer between each LED chip and the heat dissipation substrate, and the connection layer can simultaneously serve as a heat dissipation layer, and each LED chip independently forms a good thermal conduction channel.
- the first and second electrodes (mainly referring to the pads) of the LED chip are derived to the side of the semi-semiconductor series depending on the electrical connection structure, and are insulated from each other, without changing the current expansion of the LED Under the premise of characteristics, the positions of the first and second electrodes can be flexibly placed.
- another light-emitting device shown in FIG. 7 has the first electrode 2221 and the second electrode 2222 of each LED chip arranged in parallel in the semiconductor layer One side.
- FIG. 8 shows another light emitting device implemented according to the present invention.
- the multiple LED chips of the light-emitting device 200 are electrically connected through the connecting layer, and only the first electrode 2221 and the second electrode 2222 are respectively led out at the end of the LED chip.
- the multiple LED chips may be connected in series, for example, the third connection layer 2244 forms an isolation portion 2263, so that the first extension portion 2241 and the second extension portion 2243 of the same chip are electrically isolated, as shown in FIG. 9 .
- the multiple LED chips can also be formed in a series-parallel structure, as shown in FIG. 10.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
本发明公开了一种发光装置及其制作方法,该发光装置可以工作在3A/mm2以上的高电流密度下,包括支架,具有相反的第一表面和第二表面,所述第一表面上设有图案化的导电层;LED器件,形成于该封装支架的第一表面上,包括绝缘基板及位于该绝缘基板上的多个发光单元,所述多个发光单元包含半导体层序列、第一电极和第二电极,该半导体层序列具有第一类型半导体层和第二类型半导体层以及位于两者之间的有源层,其中第一类型半导体层位于半导体层序列的正侧,第一电极和第二电极朝向正侧,并分别通过引线与所述封装支架上的导电层连接,其中第一电极与第一类型半导体层形成电性连接,第二电极与第二类型半导体层形成电性连接。
Description
发光装置及其制作方法
技术领域
[0001] 本发明涉及半导体器件领域, 具体为一种发光装置及其制作方法。
背景技术
[0002] 发光二极管被广泛地用于固态照明光源。 相较于传统的白炽灯泡和荧光灯, 发 光二极管具有耗电量低以及寿命长等优点, 因此发光二极管已逐渐取代传统光 源, 并且应用于各种领域, 如交通号志、 背光模块、 路灯照明、 医疗设备等。
[0003] 图 1显示了现有的一种高压式 COB光源, 该光源在电路板 110上集成多个垂直 L m)芯片 120, 如图 2所示。 然而, 由于 LED芯片 120采用导电基板, 受限于固有的 电学隔离带, 相邻的 LED芯片之间的间距通常需要 50—以上, 无法缩小该 LED 光源的整体发光面, 不利于整机光功率密度提升; 同时, 很难实现 COB封装的 热电分离。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 为解决上述的至少一个问题, 本发明提出了一种集成式 LED发光装置, 其可以 工作在 3A/mm 2以上的高电流密度下, 例如 4A/mm 2, 或者 5A/mm 2。
[0005] 一种发光装置, 包括: 支架, 具有相反的第一表面和第二表面, 所述第一表面 上设有图案化的导电层; LED器件, 形成于该封装支架的第一表面上, 包括绝缘 基板及位于该绝缘基板上的多个发光单元, 所述多个发光单元包含半导体层序 歹 IJ、 第一电极和第二电极, 该半导体层序列具有第一类型半导体层和第二类型 半导体层以及位于两者之间的有源层, 其中第一类型半导体层位于半导体层序 列的正侧, 第一电极和第二电极朝向正侧, 其中第一电极与第一类型半导体层 形成电性连接, 第二电极与第二类型半导体层形成电性连接; 所述第一电极和 第二电极分别通过引线与所述封装支架上的导电层连接。
[0006] 本发明还提供了一种发光装置的制作方法, 包括步骤: (1) 提供支架, 其具 有相反的第一表面和第二表面, 所述第一表面上设有图案化的导电层; (2) 制 作 LED器件, 其包括绝缘基板及位于该绝缘基板上的多个发光单元, 所述多个发 光单元包含半导体层序列、 第一电极和第二电极, 该半导体层序列具有第一类 型半导体层和第二类型半导体层以及位于两者之间的有源层, 其中第一类型半 导体层位于半导体层序列的正侧, 第一电极和第二电极朝向正侧, 其中第一电 极与第一类型半导体层形成电性连接, 第二电极与第二类型半导体层形成电性 连接; (3) 将该 LED器件放置于所述支架上, 其中绝缘基板与支架连接; (4) 制作引线, 将该多个发光单元的第一电极和第二电极分别与所述封装支架上的 导电层连接。
[0007] 优选的, 至少一个发光单元的半导体层序列通过一散热层分别与该绝缘基板连 接, 独立形成热导通道。 更佳的, 所述散热层与所述第一类型半导体层接触。
[0008] 在一些实施例中, 所述多个发光单元形成于同一绝缘基板上, 在所述 LED器件 上没有形成直接的电性连接, 通过所述引线及导电层形成电性连接。 进一步的 , 所述多个发光单元的每个发光单元均具有第一电极和第二电极, 该多个发光 单元的第一电极和第二电极分别通过引线与所述封装支架上的导电层连接。
[0009] 本发明所述发光装置的各个芯片共用同一基板, 可以解决上述提出的各芯片间 的间距过大导致的光输出功率密度较低的问题, 每个芯片之间的间距可以达到 3 (Vm以下, 甚至在 l(Vm以下, 很大限度降低整个封装结构的发光面积, 提升光 功率输出密度; 进一步地, 可以实现热电分离的结构, 为高电流密度驱动提供 良好基础
发明的有益效果
有益效果
[0010] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0011] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0012] 图 1是一个俯视示意图, 说明一个习知的一种高压式 COB光源。
[0013] 图 2是一个剖面示意图, 说明一个习知的用于图 1所示的光源的 LED芯片。
[0014] 图 3是一个俯视示意图, 说明本发明一些实例的发光装置。
[0015] 图 4是一个俯视示意图, 说明本发明一些实例的发光装置的支架结构。
[0016] 图 5是沿着图 3的线 A-A的部分剖面示意图。
[0017] 图 6是沿着图 3的线 B-B的部分剖面示意图。
[0018] 图 7是一个俯视示意图, 说明本发明一些实例的发光装置。
[0019] 图 8是一个俯视示意图, 说明本发明一些实例的发光装置。
[0020] 图 9是沿着图 7的线 C-C的部分剖面示意图, 说明本发明一些实例的发光装置。
[0021] 图 10是沿着图 7的线 C-C的部分剖面示意图, 说明本发明一些实例的发光装置。
[0022] 100、 200: 发光装置;
[0023] 110, 210: 支架;
[0024] 111、 211: 图案化导电层;
[0025] 1210: 导电基板;
[0026] 1220: 金属结合层;
[0027] 1231: 第一类型的半导体层;
[0028] 1232: 有源层;
[0029] 1233: 第二类型的半导体层;
[0030] 1241: 顶面电极;
[0031] 1242: 背面电极;
[0032] 2110: 图案化的导电层;
[0033] 2111: P导电块;
[0034] 2112: N导电块;
[0035] 2113: 连接块;
[0036] 220, 2201-2202: LED芯片;
[0037] 221: 绝缘基板;
[0038] 2211: 第一类型的半导体层;
[0039] 2212: 有源层;
[0040] 2213: 第二类型的半导体层;
[0041] 2221: 第一电极;
[0042] 2222: 第二电极;
[0043] 2242: 第一连接层;
[0044] 2242: 第二连接层;
[0045] 260: 绝缘层;
[0046] 231 : 引线;
[0047] 240: LED芯片之间的间隙;
[0048] 250: 封装材料层。
发明实施例
本发明的实施方式
[0049] 下面结合示意图对本发明的发光装置及其制作方法进行详细的描述, 在进一步 介绍本发明之前, 应当理解, 由于可以对特定的实施例进行改造, 因此, 本发 明并不限于下述的特定实施例。 还应当理解, 由于本发明的范围只由所附权利 要求限定, 因此所采用的实施例只是介绍性的, 而不是限制性的。 除非另有说 明, 否则这里所用的所有技术和科学用语与本领域的普通技术人员所普遍理解 的意义相同。
[0050] 在以下的说明内容中, 类似或相同的组件将以相同的编号来表示。
[0051] 图 3显示了根据本发明实施的一种发光装置。 该发光装置包括: 支架 210、 LED 芯片 2201 2204及引线 231。 具体的, 该支架 210具有第一表面 210A (正面) 及与 该第一表面相反的第二表面 (背面) 。 请参看图 4, 该支架 210的第一表面 210A 设置有芯片安装区域 2101及图案化导电层 2110, 其中芯片安装 区 2101优选位于 第一表面 210A的中间区域, 图案化导电层 2110分布于该芯片安装区 2101的外周 , 包含了一系列彼此分离的导电块 2111~2113, 其中第一个导电块 2111同时作为 第一焊线区, 第二个导电块 2112作为第二焊线区, 其余的导电块 2113用于连接
相邻的 LED芯片, 根据 LED芯片的数量及排布设置导电块的数量及分布, 例如 L ED芯片的数量为 N, 则可以设计导电块的数量为 N+1, 此时可以保证每个 LED芯 片都可以直接通过引线连接至支架的导电层。 在一些实施例中该第一个导电块 2 111 (第二个导电块) 具有主体部 2111A (2112A) 和延伸部 2111B (2112B) , 其中主体部用于连接外部电源, 延伸部用于连接 LED芯片; 在另一些实施例中, 也可以通过通孔将第一焊线区和第二焊线区引到支架的第二表面。
[0052] 该多个 LED芯片 2201~2204安装于支架的安装区 2101上, 且出光面 S11朝上。 该 多个 LED芯片共用一个高阻值的基板 221, 彼此之间没有形成直接的电性连接。 请参看图 5和 6 , 每个 LED芯片包含设于该绝缘基板 221上的半导体层系列、 第一 电极 2221和第二电极 2222, 每个 LED芯片的第一电极和第二电极分别通过引线 23 1连接至支架的导电块上。 具体的, 半导体层系列具有相反的上表面 S11和下表 面, 其中上表面 S11作为出光面, 包含第一类型半导体层 2211、 有源层 2212和第 二类型半导体层 2212, 该第一类型半导体层 2211和第二类型半导体层 2213可分 别为 p型半导体层和 n型半导体层。 例如, 该第一类型半导体层和第二类型半导 体层可由通过化学式 Al xIn yGa (1-x-y)N (其中, 0<x<l , 0<y<l , (Kx+y^l)表达的氮 化物半导体形成, 但是不限于此, 也可以使用基于 GaAs的半导体或者基于 GaP 的 AlGalnP半导体材料。 有源层 2212可具有基于氮化物的多量子阱结构 (MQW ) , 诸如 InGaN/GaN、 GaN/AlGaN等, 但是不限于此, 也可以使用其它半导体, 诸如 Galas/AlGaAs、 InGaP/GaP, GaP/AlGaP等。
[0053] 进一步地, 该半导体系列层的下表面与基板 221之间设有连接层, 该连接层一 方面用于连接半导体系列层与基板 221, 另一方面可以同时作为散热层, 在每个 LED芯片与基板 221之间形成一个散热通道, 当 LED芯片处于工作状态时, 可以 快速将半导体系列层产生的热量导出到基板 221上。 第一电极 2221、 第二电极 22 22位于半导体层系列的外侧, 即第一电极 2221、 第二电极 2222在基板 221表面上 的投影位于半导体层系列的区域外。 该第一电极和第二电极通过连接层 2240从 半导体层系列的下表面引出, 朝向半导体层系列的上表面 S11, 从而适于从正侧 电接触发光二极管芯片的本体。 优选的, 第一电极和第二电极的上表面位于同 一高度。
[0054] 较佳的, 该连接层在竖直方向上可以为多层设置, 并通过绝缘层 2260进行电性 隔离。 具体的, 基板 221与半导体层系列之间从下到上依次设有第三连接层 2244 、 绝缘层 2260、 第一连接层 2241和第二连接层 2242, 该第三连接层 2244具有朝 向半导体层系列的第一延伸部 2243和第二延伸部 2245, 第一延伸部 2243贯穿了 第一类型半导体层 2221、 有源层 2222, 与第二类型半导体层 2213形成电性连接 , 第二延伸部 2245通过与第二连接层 2242形成电性连接。 优选的, 第一连接层 2 241和第二连接层 2242具有相同的厚度、 材料, 采用图形化在同一步骤中形成, 如此可以具有相有的高度, 方便后续制作具有相同高度的第一电极和第二电极 。 优选的, 每个 LED芯片的第三连接层 2244具有相同的材料、 厚度, 在同一步骤 中形成, 每个芯片之间通过绝缘层 2262实现电性隔离。
[0055] 在一个具体的实施例中, 第一连接层 2241与第一电极 2221接触的部分、 第二连 接层 2242与第二电极 2222接触的部分为性能较为稳定的 Ti、 Pt、 Au、 Cr、 TiW合 金等材料, 位于发光区域下方的第一连接层 2241可以包含依次对发光区域出光 进行反射的高反射性金属材料 (例如 Ag、 A1等) 、 用于防止前述材料扩散的稳 定金属材料 (例如 Ti、 Pt、 Au、 Cr或 TiW等) 。 第三连接层 2244包含了朝向出光 面延伸并与第二类型半导体层 2213连接的延伸部 2243, 其材料优选包括 Al、 Cr 或者 Ag等反射材料。 进一步的, 该第三连接层 2244与基板 221接触的一侧可以包 含结合层, 用于结合基板。 更佳的, 该结合层为金属材料, 可以同时作为散热 层, 从而快速将堆积在第二类型半导体层的热量引出至基板 221。 另一方面, 基 板 221与半导体层系列的整面接触, 保证了物理结构的完整性。 为了降低第一连 接层 2242与第一半导体层 2211之间的电阻, 也会在第一连接层 2242和第一半导 体层 2211之间增加透明电流扩展层。
[0056] 优选的, 该第三连接层 2244包含了多个朝向出光面延伸的延伸部 2243 , 该多个 延伸部 2243贯彻第一类型半导体层 2211、 有源层 2212, 与第二类型半导体层 221 3连接。 该多个延伸部 2243优选均匀分布, 如此具有更佳的电流扩展性和散热特 性, 适用于大电流密度下的应用。 较佳的, 第三连接层 2244与第二类型半导体 层 2213的总接触面积大于第二类型半导体层 2213面积的 1.5%。 可以根据需求设 计第三连接层 2243与第二半导体层 2213的接触面积, 例如可以选择 2.3%~2.8%、
2.8%~4%、 或者 4%~6%。 在一些实施例中, 增加第三连接层 2244和第二半导体 层 2213的直接接触面积, 可以解决高功率产品的散热问题。 在一些实施例中, 该延伸部 2243的直径为 15pm以上。 尽管保证第三连接层 2244与第二半导体层 221 3的总接触面积, 可以提高散热特性, 但如果延伸部 2243直径较小的情况下, 较 细的延伸部 2243具有超过线性比例的热阻, 因此在一些实施例中, 延伸部 2243 的直径设计为 32pm~4(Vm, 其散热效果更佳。 作为一种较佳实施方式, 当延伸 部 2243的直径为 34pm~36^im时, 延伸部 2243的设置密度为 20~25个 /平方毫米。
[0057] 在一些实施例中, 该 LED芯片 2201~2204的半导体层系列 2210去除生长衬底, 为薄膜结构, 同时第一连接层 2241可以包括反射层, 该反射层到 LED芯片的出光 面 S11的距离优选为 l(Vm以内, 例如可以为 4~8pm, 到有源层的距离为 lpm以下 , 如此缩短了光在 LED芯片内部的路径, 同时增加了有源层 2212发射的光线从出 光面 S11射出的比率, 其发光角优选为 130°以下, 更佳的发光角为小于或者等于 1 20° , 例如 120~110°, 在一个具体的实施例中, 该 LED芯片的发光角可以为 113°
, 或者 115°, 或者 118°。 进一步的, 第三连接层 2244还可以包含也可以反射层, 其到出光面 S11的距离优选为 2(Vm以下, 远小于 LED芯片厚度的一半, 更佳的, 为 7~12[xm, 例如可以为 8[xm, 或者 9[xm, 或者 10[xm。 例如, 第一连接层 2241和 第二连接层 2242可以包含 Ag金属层作为第一反射层, 第三连接层 2244包含了 A1 金属层, 该 A1金属层一方面可以与第二类型半导体层 2213形成欧姆接触, 另一 方面作为第二反射层, 尽可能的覆盖半导体层系列的下表面之未被第一连接层 2 241和第二连接层 2242覆盖的区域。
[0058] 基板 221用于支撑半导体层系列, 其厚度优选为 5(Vm以上、 20(Vm以下。 在一 些实施例, 该基板 221的厚度可以为 50~100[xm, 例如 90[xm; 在一些实施例, 该 基板 221的厚度也可以为 100~150 1, 例如 120 1, 或者 130 1; 在一些实施例 中, 该基板 221的厚度还可以为 150~20(Vm, 例如 18(Vm。 基板 221优选采用绝缘 材料, 可以为透明材料, 例如蓝宝石衬底、 陶瓷基板等, 还可以选用高反射材 料。 在一个较佳实施例中, 该基板 223优选采用具有良好的散热性材料, 此时连 接层分别与散热基板 221和第二类型半导体层 2213连接, 构成良好的导热通道, 将热量从第二类型半导体层引向散热基板。 由于多量子阱的激发辐射经由第二
类型半导体层射出, 热量容易在第二类型半导体层 2213堆积, 连接层 2242将热 量很好地从第二半导体层引出至散热基板, 并从支架 210导出。
[0059] 进一步的, 该发光装置通常还包括封装材料层 250, 用于将 LED芯片封装于该 支架 210上。
[0060] 在上述发光装置中, 在同一高阻值的散热基板上布局多个 LED芯片, 各芯片在 该基板上电性完全隔离, 在封装支架 210上通过图案化导电层分布, 各个芯片与 该导电层通过引线连接形成高压 COB结构, 实现热电分离的结构, 可以适用于 高电流密度的工作条件, 且每个芯片之间的间距 240可以为 3(Vm以下, 例如 20p m, l(Vm, 或者 8pm, 有助于提升发光装置的光输出功率密度。
[0061] 进一步地, 每个 LED芯片与散热基板之间具有连接层, 该连接层可以同时作为 散热层, 各具 LED芯片独立形成良好热导通道。
[0062] 如图 5和 6所示, LED芯片的第一、 第二电极 (主要指焊盘) 依赖电连接结构导 出至半半导体层系列的侧方, 彼此绝缘, 在不改变 LED的电流扩展特性前提下, 可灵活放置第一、 第二电极的位置, 例如图 7显示的另一种发光装置, 该发光装 置的各个 LED芯片的第一电极 2221和第二电极 2222平行排列于半导体层系列的一 个边。
[0063] 图 8显示了根据本发明实施的另一种发光装置。 与图 3所示发光装置不同的是, 该发光装置 200的多个 LED芯片通过连接层形成电性连接, 仅在首尾的 LED芯片 端分别引出第一电极 2221和第二电极 2222 在一些具体的实施例中, 该多个 LED 芯片可以形成串联, 例如第三连接层 2244形成隔离部 2263 , 使得同一个芯片的 第一延伸部 2241与第二延伸部 2243形成电性隔离, 如图 9所示。 在另一些实施例 中, 该多个 LED芯片也可以形成串并联的结构, 如图 10所示。
[0064] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的技术人员 , 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。
Claims
[权利要求 1] 发光装置, 包括:
支架, 具有相反的第一表面和第二表面, 所述第一表面上设有图案化 的导电层;
LED器件, 形成于该封装支架的第一表面上, 包括绝缘基板及位于该 绝缘基板上的多个发光单元, 所述多个发光单元包含半导体层序列、 第一电极和第二电极, 该半导体层序列具有第一类型半导体层和第二 类型半导体层以及位于两者之间的有源层, 其中第一类型半导体层位 于半导体层序列的正侧, 第一电极和第二电极朝向正侧, 其中第一电 极与第一类型半导体层形成电性连接, 第二电极与第二类型半导体层 形成电性连接;
其特征在于: 所述第一电极和第二电极分别通过引线与所述封装支架 上的导电层连接。
[权利要求 2] 根据权利要求 1所述的发光装置, 其特征在于: 至少一个发光单元的 半导体层序列通过一散热层分别与该绝缘基板连接, 独立形成热导通 道。
[权利要求 3] 根据权利要求 2所述的发光装置, 其特征在于: 所述散热层与所述第 一类型半导体层接触。
[权利要求 4] 根据权利要求 3所述的发光装置, 其特征在于: 所述散热层为金属材 料层。
[权利要求 5] 根据权利要求 1所述的发光装置, 其特征在于: 所述多个发光单元形 成于同一绝缘基板上, 在所述 LED器件上没有形成直接的电性连接, 通过所述引线及导电层形成电性连接。
[权利要求 6] 根据权利要求 5所述的发光装置, 其特征在于: 所述多个发光单元的 每个发光单元均具有第一电极和第二电极, 该多个发光单元的第一电 极和第二电极分别通过引线与所述封装支架上的导电层连接。
[权利要求 7] 根据权利要求 1所述的发光装置, 其特征在于: 所述多个发光单元之 间的间距为 3(Vm以下。
[权利要求 8] 根据权利要求 1所述的发光装置, 其特征在于: 该多个发光单元的出 光角度为 130以下。
[权利要求 9] 根据权利要求 1所述的发光装置, 其特征在于: 该多个发光单元的出 光角度为 110~120。
[权利要求 10] 根据权利要求 1所述的发光装置, 其特征在于: 所述多个发光单元的 工作电流密度为 3A/mm 2以上。
[权利要求 11] 根据权利要求 1所述的发光装置, 其特征在于: 所述导电层由多个导 电块构成, 每个发光单元与两个所述导电块连接。
[权利要求 12] 根据权利要求 11所述的发光装置, 其特征在于: 所述 LED器件包括 N 个发光单元, 所述导电层包括 N+1个导电块。
[权利要求 13] 根据权利要求 1所述的发光装置, 其特征在于: 所述 LED器件的至少 一个发光单元具有多个贯穿第二类型半导体层、 有源层的凹部, 第一 电极具有多个延伸部, 该多个延伸部通过该凹部与第一类型半导体层 接触。
[权利要求 14] 根据权利要求 13所述的发光装置, 其特征在于: 所述第一电极与第一 类型半导体层接触的面积为第一类型半导体层的面积的 1.5%以上。
[权利要求 15] 根据权利要求 13所述的发光装置, 其特征在于: 所述第一电极与第一 类型半导体层接触的面积为第一类型半导体层的面积的 4%~6%。
[权利要求 16] 根据权利要求 1所述的发光装置, 其特征在于: 所述绝缘基板的散热 型基板。
[权利要求 17] 发光装置的制作方法, 包括步骤:
( 1) 提供支架, 其具有相反的第一表面和第二表面, 所述第一表面 上设有图案化的导电层;
(2) 制作 LED器件, 其包括绝缘基板及位于该绝缘基板上的多个发 光单元, 所述多个发光单元包含半导体层序列、 第一电极和第二电极 , 该半导体层序列具有第一类型半导体层和第二类型半导体层以及位 于两者之间的有源层, 其中第一类型半导体层位于半导体层序列的正 侧, 第一电极和第二电极朝向正侧, 其中第一电极与第一类型半导体
层形成电性连接, 第二电极与第二类型半导体层形成电性连接;
(3) 将该 LED器件放置于所述支架上, 其中绝缘基板与支架连接;
(4) 制作引线, 将该多个发光单元的第一电极和第二电极分别与所 述封装支架上的导电层连接。
[权利要求 18] 根据权利要求 17所述的发光装置的制作方法, 其特征在于: 所述步骤
(2) 中, 所述多个发光单元形成于同一绝缘基板上, 在所述 LED器 件上没有形成直接的电性连接, 通过所述引线及导电层形成电性连接
[权利要求 19] 根据权利要求 18所述的发光装置的制作方法, 其特征在于: 所述步骤
(2) 中, 形成的多个发光单元的元的每个发光单元均具有第一电极 和第二电极, 所述步骤 (4) 中, 该多个发光单元的第一电极和第二 电极分别通过引线与所述封装支架上的导电层连接。
[权利要求 20] 根据权利要求 17所述的发光装置的制作方法, 其特征在于: 所述 (2
) 中, 至少一个发光单元的半导体层序列通过一散热层分别与该绝缘 基板连接, 独立形成热导通道。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980004710.2A CN111201620B (zh) | 2019-04-15 | 2019-04-15 | 发光装置及其制作方法 |
CN202311549176.8A CN117650221A (zh) | 2019-04-15 | 2019-04-15 | 发光装置及其制作方法 |
PCT/CN2019/082703 WO2020210945A1 (zh) | 2019-04-15 | 2019-04-15 | 发光装置及其制作方法 |
US17/465,075 US11990577B2 (en) | 2019-04-15 | 2021-09-02 | Light-emitting device and method for manufacturing the same |
US18/665,858 US20240304776A1 (en) | 2019-04-15 | 2024-05-16 | Light-emitting device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/082703 WO2020210945A1 (zh) | 2019-04-15 | 2019-04-15 | 发光装置及其制作方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/465,075 Continuation-In-Part US11990577B2 (en) | 2019-04-15 | 2021-09-02 | Light-emitting device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020210945A1 true WO2020210945A1 (zh) | 2020-10-22 |
Family
ID=70747674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/082703 WO2020210945A1 (zh) | 2019-04-15 | 2019-04-15 | 发光装置及其制作方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US11990577B2 (zh) |
CN (2) | CN111201620B (zh) |
WO (1) | WO2020210945A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11978839B2 (en) * | 2019-02-03 | 2024-05-07 | Quanzhou Sanan Semiconductor Technology Co., Ltd. | Light-emitting device |
CN112490260B (zh) * | 2020-11-13 | 2024-02-02 | 泉州三安半导体科技有限公司 | 一种发光器件及其制备方法 |
CN113299679B (zh) * | 2021-05-20 | 2024-06-07 | 錼创显示科技股份有限公司 | 发光二极管微型显示装置 |
TWI811680B (zh) | 2021-05-20 | 2023-08-11 | 錼創顯示科技股份有限公司 | 發光二極體微型顯示裝置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201829524U (zh) * | 2010-05-28 | 2011-05-11 | 景德镇正宇奈米科技有限公司 | 具有热辐射散热层的发光二极管 |
CN102339913A (zh) * | 2011-09-30 | 2012-02-01 | 映瑞光电科技(上海)有限公司 | 高压led器件及其制造方法 |
CN102354699A (zh) * | 2011-09-30 | 2012-02-15 | 映瑞光电科技(上海)有限公司 | 高压氮化物led器件及其制造方法 |
KR20130087788A (ko) * | 2012-01-30 | 2013-08-07 | 일진엘이디(주) | 히트싱크를 이용하여 방열 효율이 우수한 발광소자 |
CN106328798A (zh) * | 2015-06-15 | 2017-01-11 | 晶宇光电(厦门)有限公司 | 一种发光二极管芯片 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2434788Y (zh) * | 1999-11-09 | 2001-06-13 | 洲磊科技股份有限公司 | 发光二极管装置 |
JP4288931B2 (ja) * | 2002-11-11 | 2009-07-01 | 日亜化学工業株式会社 | 発光装置及びその製造方法 |
US9673254B2 (en) * | 2013-07-22 | 2017-06-06 | Lg Innotek Co., Ltd. | Light emitting device |
JP2018037690A (ja) * | 2017-12-05 | 2018-03-08 | 晶元光電股▲ふん▼有限公司Epistar Corporation | 発光素子 |
-
2019
- 2019-04-15 WO PCT/CN2019/082703 patent/WO2020210945A1/zh active Application Filing
- 2019-04-15 CN CN201980004710.2A patent/CN111201620B/zh active Active
- 2019-04-15 CN CN202311549176.8A patent/CN117650221A/zh active Pending
-
2021
- 2021-09-02 US US17/465,075 patent/US11990577B2/en active Active
-
2024
- 2024-05-16 US US18/665,858 patent/US20240304776A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201829524U (zh) * | 2010-05-28 | 2011-05-11 | 景德镇正宇奈米科技有限公司 | 具有热辐射散热层的发光二极管 |
CN102339913A (zh) * | 2011-09-30 | 2012-02-01 | 映瑞光电科技(上海)有限公司 | 高压led器件及其制造方法 |
CN102354699A (zh) * | 2011-09-30 | 2012-02-15 | 映瑞光电科技(上海)有限公司 | 高压氮化物led器件及其制造方法 |
KR20130087788A (ko) * | 2012-01-30 | 2013-08-07 | 일진엘이디(주) | 히트싱크를 이용하여 방열 효율이 우수한 발광소자 |
CN106328798A (zh) * | 2015-06-15 | 2017-01-11 | 晶宇光电(厦门)有限公司 | 一种发光二极管芯片 |
Also Published As
Publication number | Publication date |
---|---|
US20220005993A1 (en) | 2022-01-06 |
CN117650221A (zh) | 2024-03-05 |
US11990577B2 (en) | 2024-05-21 |
CN111201620B (zh) | 2023-12-12 |
US20240304776A1 (en) | 2024-09-12 |
CN111201620A (zh) | 2020-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9117986B2 (en) | Light emitting device | |
KR101303168B1 (ko) | 반도체 발광부 연결체 | |
KR100634307B1 (ko) | 발광 소자 및 이의 제조 방법 | |
US8785958B2 (en) | Light emitting element | |
US8445921B2 (en) | Thin film light emitting diode | |
JP4699681B2 (ja) | Ledモジュール、および照明装置 | |
US9324904B2 (en) | Semiconductor light emitting device and light emitting apparatus | |
US7880181B2 (en) | Light emitting diode with improved current spreading performance | |
US8319251B2 (en) | Light emitting device and light unit | |
KR101150861B1 (ko) | 멀티셀 구조를 갖는 발광다이오드 및 그 제조방법 | |
TW201234679A (en) | High voltage wire bond free LEDs | |
US11990577B2 (en) | Light-emitting device and method for manufacturing the same | |
KR101007128B1 (ko) | 발광소자 및 그 제조방법 | |
WO2008082098A1 (en) | Light emitting diode package | |
JP2002329896A (ja) | Led面発光装置 | |
WO2021134748A1 (zh) | 发光装置及发光设备 | |
WO2020155529A1 (zh) | 发光装置 | |
US9595639B2 (en) | Light emitting device and light emitting device package | |
WO2020155176A1 (zh) | 发光装置 | |
KR101115533B1 (ko) | 플립칩 구조의 발광 소자 및 이의 제조 방법 | |
KR20120044724A (ko) | 발광소자 및 그 제조방법 | |
KR20150024531A (ko) | 조명 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19925411 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19925411 Country of ref document: EP Kind code of ref document: A1 |