WO2020209460A1 - Porous coating structure and method for manufacturing porous coating structure - Google Patents

Porous coating structure and method for manufacturing porous coating structure Download PDF

Info

Publication number
WO2020209460A1
WO2020209460A1 PCT/KR2019/015613 KR2019015613W WO2020209460A1 WO 2020209460 A1 WO2020209460 A1 WO 2020209460A1 KR 2019015613 W KR2019015613 W KR 2019015613W WO 2020209460 A1 WO2020209460 A1 WO 2020209460A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous structure
porous
coating
bonding
pores
Prior art date
Application number
PCT/KR2019/015613
Other languages
French (fr)
Korean (ko)
Inventor
임도형
곽태양
반훈영
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Publication of WO2020209460A1 publication Critical patent/WO2020209460A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30967Diffusion bonding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction

Definitions

  • the present invention relates to a porous coating structure and a method of manufacturing a porous coating structure, and more particularly, to a porous coating structure and a method of manufacturing a porous coating structure that can be applied to an orthopedic implant with improved osseointegration.
  • the artificial joint may be represented as an orthopedic implant, and the orthopedic implant generally promotes bone growth, that is, osteosynthesis, through a coating of a porous structure on the implant base.
  • Orthopedic implants in which a coating layer having a porous structure is formed can be manufactured by various methods such as diffusion bonding disclosed in Japanese Patent Application Laid-Open No. 2008-194463.
  • the conventional diffusion bonding method as described above decreases the porosity around the surface of the coating layer, thereby reducing the degree of osseointegration, and at the same time, does not guarantee the bonding strength between the coating layer and the implant base, resulting in a serious problem of mass production of defective products. Will cause.
  • the porous coating structure according to an embodiment of the present invention is a structure manufactured by diffusion bonding a porous structure to a non-porous structure, and the non-porous structure of a metal component.
  • a base part implemented; Diffusion bonding between the base portion and the porous structure of a metal component-The diffusion bonding is a bonding made by pressing the base portion-A coating portion formed on at least a part of the surface of the base portion by-The coating portion, the diffusion bonding When formed by the porous structure -;
  • a connection securing unit formed by penetrating into the pores during the diffusion bonding in order to prevent the connectivity between the pores previously formed in the porous structure from being degraded by the diffusion bonding.
  • connection securing part of the porous coating structure may be characterized in that it improves corrosion resistance and abrasion resistance by coating an inner surface defining the void.
  • connection securing part of the porous coating structure may include the non-porous structure and a powder non-reactive with the porous structure.
  • connection securing unit of the porous coating structure may include at least one of ceramic powder, oxide powder, and nitride powder.
  • connection securing unit of the porous coating structure in order to prevent the pores from being closed by penetration during the diffusion bonding, a melting point higher than at least one of the porous structure and the non-porous structure It may be characterized by having a.
  • the coating portion of the porous coating structure according to an embodiment of the present invention may be characterized in that the porosity increases in a direction from the bonding surface with the base portion toward the surface.
  • the surface of the porous structure is the opposite side of the bonding surface between the porous structure and the non-porous structure.
  • a porosity of the periphery of the surface of the porous structure may be greater than that of the periphery of the bonding surface.
  • connection securing unit of the porous coating structure is distributed only around the surface of the coating unit-the surface of the coating unit is an opposite surface of the bonding surface of the coating unit and the base unit. It may be characterized in that the porosity of the periphery of the negative surface is greater than the porosity of the periphery of the bonding surface.
  • the base portion of the porous coating structure according to an embodiment of the present invention is a parent body for a living body implant, and the coating part is formed on at least a part of the surface of the parent body of the bio-implant, and the connection between the pores is secured to prevent osseointegration. It can be characterized by improving.
  • a method of manufacturing a porous coating structure according to another embodiment of the present invention is a porous coating structure by bonding a porous structure of a metal component to a non-porous structure of a metal component.
  • a method of manufacturing comprising: a first step of placing the non-porous structure and the porous structure in a vacuum chamber of a vacuum furnace for bonding; And a second step of pressing the non-porous structure with a pressure applying portion disposed in the vacuum chamber to form a diffusion bonding between the non-porous structure and the porous structure, wherein the first step is located in the vacuum chamber.
  • the porous structure and the non-porous After filling a powder for preventing the connectivity between the pores previously formed in the porous structure from being lowered by the second step in which the diffusion bonding is performed on the supporting structure, the porous structure and the non-porous It includes the step of sequentially arranging the structure, the second step, the step of pressing the non-porous structure to a predetermined pressure by the pressure applying unit under a predetermined temperature, so that the powder penetrates into the pores. It may be characterized by including.
  • the powder of the method of manufacturing a porous coating structure according to another embodiment of the present invention is a material that does not react with the non-porous structure and the porous structure, and penetrates into the pores to prevent the pores from being closed. It has a melting point higher than at least one of the porous structure and the non-porous structure, and the predetermined temperature may be a temperature lower than the melting point.
  • the predetermined pressure in the method of manufacturing a porous coating structure according to another embodiment of the present invention is, when the powder proceeds to the second step, the surface of the porous structure-the surface of the porous structure is, the porous structure and the ratio It may be characterized in that it is determined within a range such that the porosity for the periphery of the surface of the porous structure is greater than the porosity for the periphery of the bonding surface by penetrating into the pores from the surface opposite to the bonding surface of the porous structure. have.
  • the predetermined pressure in the method for manufacturing a porous coating structure according to another embodiment of the present invention is, wherein the powder is the surface of the porous structure-the surface of the porous structure is a bonding surface between the porous structure and the non-porous structure It is the opposite side of-Distributed only around the periphery of, it may be characterized in that it is determined within a range such that the porosity of the periphery of the surface of the porous structure is greater than the porosity of the periphery of the bonding surface.
  • the method of manufacturing the porous coating structure and the porous coating structure according to the present invention it is possible to provide an orthopedic implant with improved corrosion resistance and abrasion resistance, as well as ensuring connectivity between pores.
  • FIG. 1 is a flow chart illustrating a method of manufacturing a porous coating structure according to an embodiment of the present invention.
  • FIGS. 2 to 6 are views for explaining a method of manufacturing a porous coating structure according to an embodiment of the present invention.
  • the porous coating structure according to an embodiment of the present invention is a structure manufactured by diffusion bonding a porous structure to a non-porous structure, and the non-porous structure of a metal component.
  • a base part implemented; Diffusion bonding between the base portion and the porous structure of a metal component-The diffusion bonding is a bonding made by pressing the base portion-A coating portion formed on at least a part of the surface of the base portion by-The coating portion, the diffusion bonding When formed by the porous structure -;
  • a connection securing unit formed by penetrating into the pores during the diffusion bonding in order to prevent the connectivity between the pores previously formed in the porous structure from being degraded by the diffusion bonding.
  • FIGS. 2 to 6 are diagrams for explaining a method of manufacturing a porous coating structure according to an embodiment of the present invention .
  • the porous coating structure according to the present invention is a structure in which a metal-based porous structure 200 is present as a coating layer on at least a part of the surface of a metal-based non-porous structure, for example, orthopedic surgery It can be applied to implants.
  • the porous coating structure is formed between the base part implemented as the non-porous structure, the coating part formed on at least a part of the surface of the base part by diffusion bonding between the base part and the porous structure, and pores previously formed in the porous structure.
  • it may include a connection securing unit formed by penetrating into the void during the diffusion bonding.
  • porous coating structure including the above components
  • porous coating structure manufactured by this manufacturing method will be additionally described.
  • the method of manufacturing a porous coating structure is to fill (S12) the powder 100 on the support structure 14 located in the vacuum chamber 12 of the vacuum furnace 10, and In the first step (S10) of sequentially placing (S14, S16) the porous structure 200 and the non-porous structure 300 and the non-porous structure with the pressure applying unit 16 disposed in the vacuum chamber 12 A second step (S20) of performing diffusion bonding between 300 and the porous structure 200 may be included.
  • FIGS. 2 to 6 will be described in detail with respect to the above steps.
  • the powder 100 is filled on the support structure 14 located in the vacuum chamber 12 of the vacuum furnace 10 to manufacture a porous coating structure that can be applied to an orthopedic implant. (S12).
  • the vacuum chamber 12 of the vacuum furnace 10 may maintain a vacuum state for diffusion bonding, and the vacuum chamber 12 may be in an atmosphere state of a predetermined temperature.
  • the vacuum furnace 10 may include a pressure applying unit 16 capable of applying pressure to the non-porous structure 300, and the pressure applying unit 16 is a non-porous structure as shown in FIG. By applying pressure to 300, physical surface contact may occur between the non-porous structure 300 and the porous structure 200.
  • the support structure 14 may have sidewalls to prevent the powder 100 from spreading to the vacuum chamber 12 other than the support structure 14, whereby the powder 100 is stably described later. It constitutes the connection security unit.
  • the powder 100 is used in the second step (S20) in order to prevent the connectivity between the pores formed in advance in the porous structure 200 from being degraded by the second step (S20) in which the diffusion bonding is performed. It is a powder that penetrates into the voids, and finally constitutes a connection securing part, which is a component of the porous coating structure.
  • the powder 100 is a powder that does not react with the non-porous structure 300 and the porous structure 200 and may include at least one of a ceramic powder, an oxide powder, and a nitride powder.
  • a melting point higher than at least one of the porous structure 200 and the non-porous structure 300 may be provided so as to prevent the pores from being closed by penetrating the pores.
  • the porous structure 200 and the Steps (S14, S16) of sequentially arranging the non-porous structure 300 may be performed to complete the first step (S10).
  • the porous structure 200 is a structure for coating at least a portion of the surface of the non-porous structure 300 and constitutes a coating part, which is a component of the porous coating structure.
  • the porous structure 200 may be a metal containing a metal component, for example, titanium (Ti) as a main component, and may have numerous voids.
  • a metal component for example, titanium (Ti) as a main component, and may have numerous voids.
  • the pores of the porous structure 200 are connected to each other, and these pores serve as an element to improve osteosynthesis when the porous coating structure according to the present invention is applied to an orthopedic implant.
  • the porous structure 200 may be manufactured by various methods, for example, may be manufactured by 3D printing, and when the porous coating structure according to the present invention is applied to an orthopedic implant, it is suitable for the structure of the bone used. It can be implemented in various shapes.
  • the porosity of the porous structure 200 may be freely adjustable in the process of manufacturing the porous structure 200.
  • the non-porous structure 300 may function as an implant base, and may be implemented in various shapes according to the structure of the bone used.
  • the non-porous structure 300 may be a metal containing a metal component, for example, cobalt chromium (CoCr) as a main component.
  • a metal component for example, cobalt chromium (CoCr) as a main component.
  • the temperature in the vacuum chamber 12 is raised to a predetermined temperature, and the non-porous structure 300 is pressurized by a pressure applying unit 16 disposed in the vacuum chamber 12.
  • a second step (S20) of diffusion bonding between the porous structure 300 and the porous structure 200 may be performed.
  • the non-porous structure 300 is pressed with a predetermined pressure by the pressure applying unit 16 under a predetermined temperature, so that the powder 100 is formed into the pores of the porous structure 200. It may include the step of penetrating into.
  • diffusion bonding is a method of bonding materials that are atomically bonded using heat and pressure. A metal material is adhered to each other, heating the material to a temperature below the melting point, and applying pressure so as not to cause plastic deformation between the bonding surfaces. It may mean a method of bonding using the diffusion of atoms occurring in
  • the powder 100 is a material that does not react with the non-porous structure 300 and the porous structure 200 and penetrates into the pores of the porous structure 200 to prevent the pores from being closed, It may have a higher melting point than at least one of the porous structure 200 and the non-porous structure 300, and a predetermined temperature in the vacuum chamber 12 in which the second step (S20) is performed is lower than the melting point. It can be temperature.
  • the predetermined pressure applied by the pressure applying unit 16 penetrates the pores of the porous structure 200 from the surface of the porous structure 200 when the powder 100 proceeds with the second step (S20).
  • the porosity of the periphery of the surface of the porous structure 200 may be determined within a range that is greater than the porosity of the periphery of the bonding surface.
  • the surface of the porous structure 200 is a surface opposite to the bonding surface of the porous structure 200 and the non-porous structure 300.
  • the predetermined pressure is distributed only in the periphery of the surface of the porous structure 200, so that the porosity of the periphery of the porous structure 200 is not greater than that of the periphery of the bonding surface. It can be determined within the range to allow.
  • the second step (S20) proceeds as described above, at least a part of the surface of the non-porous structure 300 is coated with the porous structure 200, and the porous structure 200 due to the powder 100 The connectivity of the voids is ensured, and a porous coating structure with improved osseointegration is manufactured.
  • the second step (S20) presses the non-porous structure 300 with the pressure applying unit 16 under a predetermined temperature for diffusion bonding between the porous structure 200 and the non-porous structure 300 as described above.
  • the connectivity between the pores of the porous structure 200 is deteriorated, and the porous structure 200 that is a surface opposite to the bonding surface of the porous structure 200 and the non-porous structure 300
  • the problem of lowering the porosity around the surface of) can be effectively solved by the powder 100 penetrating the pores.
  • the porous structure before diffusion bonding, the porous structure is already formed by connecting numerous pores, but when diffusion bonding between the porous structure and the non-porous structure, due to the characteristics of diffusion bonding, the pores around the surface become small and the porosity decreases. It has to be.
  • the porous structure 200 and the non-porous structure 300 are bonded to each other by diffusion bonding, but the problem caused by diffusion bonding is solved by the powder 100 on the support structure 14 in the vacuum chamber 12.
  • the powder penetrates into the pores formed around the surface of the porous structure 200 during diffusion bonding, thereby preventing a reduction in the size of the pores and performing a kind of spacer function to secure connectivity between the pores.
  • the powder 100 may penetrate into the pores and coat the inner surface defining the pores, thereby greatly improving corrosion resistance and abrasion resistance.
  • the step of separating the porous coating structure from the vacuum furnace 10 (S30) proceeds, and when optionally subjected to a post-treatment process, the porous coating structure can be finally used as an orthopedic implant.
  • the porous coating structure manufactured by the manufacturing method as described above may include a base part implemented as a non-porous structure, a coating part implemented as the porous structure 200, and a connection security part implemented by the powder 100.
  • the base portion may be a parent body for a biological implant, and the coating part may be formed on at least a part of a surface of the parent body of the implant for a living body, and may be a component for improving osseointegration by securing connectivity between voids.
  • the connectivity securing unit may penetrate into the pores previously formed in the porous structure 200 during diffusion bonding to prevent a decrease in connectivity between the pores, and is attached to at least a portion of the inner surface defining the pores to produce an effect of coating at least a portion of the pores. I can.
  • the porous coating structure according to the present invention may have improved corrosion resistance and abrasion resistance.
  • the coating portion may increase the porosity in the direction from the base portion and the bonding surface toward the surface of the coating portion. Accordingly, when the porous coating structure is used as an orthopedic implant, it improves bone adhesion and at the same time around the bonding surface.
  • the porosity of is formed to be small so that the bonding force with the base portion can be maximized.
  • the connectivity securing unit may be distributed only in a portion of the pores of the coating unit, that is, the periphery of the surface of the coating unit, whereby the porosity of the periphery of the coating unit may be greater than the porosity of the periphery of the bonding surface. .

Abstract

A porous coating structure according to an embodiment of the present invention is a structure manufactured by diffusion-bonding a porous structure to a non-porous structure, and may comprise: a base part formed from the non-porous structure composed of a metal component; a coating part formed on at least a portion of the surface of the base part through diffusion bonding between the base part and the porous structure composed of a metal component, wherein the diffusion bonding is achieved by pressing the base part, and the coating part is formed from the porous structure during the diffusion bonding; and a connectivity securing part which is formed during the diffusion bonding by penetrating into pores that are pre-formed in the porous structure, in order to prevent the connectivity between the pores from being degraded by the diffusion bonding.

Description

다공성 코팅 구조체 및 다공성 코팅 구조체 제조 방법Porous coating structure and method of manufacturing porous coating structure
본 발명은 다공성 코팅 구조체 및 다공성 코팅 구조체 제조 방법에 대한 것으로, 더욱 상세하게는 골유착이 향상된 정형외과 임플란트에 적용될 수 있는 다공성 코팅 구조체 및 다공성 코팅 구조체 제조 방법에 관한 것이다.The present invention relates to a porous coating structure and a method of manufacturing a porous coating structure, and more particularly, to a porous coating structure and a method of manufacturing a porous coating structure that can be applied to an orthopedic implant with improved osseointegration.
최근 고령화 사회에 진입하면서 관절염의 발병이 확대되고 있으며, 늘어나는 비만 인구의 증가 등으로 인해 퇴행성 관절염 등의 질병이 급속도로 증가하고 있다.With the recent entry into an aging society, the incidence of arthritis is increasing, and diseases such as degenerative arthritis are rapidly increasing due to the increasing number of obese populations.
이로 인해, 인공관절(artificial joint)의 시장 규모는 더욱 커지고 있는 상황이며, 합병증 등의부작용을 최소화 하고자 개인 맞춤형 인공관절, 다공성 표면 처리 등의 기술에 대한 관심이 증대되고 있다.For this reason, the market size of artificial joints is growing more and more, and interest in technologies such as personalized artificial joints and porous surface treatment is increasing in order to minimize side effects such as complications.
여기서, 인공관절은 정형외과 임플란트로 대변될 수 있으며, 정형외과 임플란트는 일반적으로 임플란트 베이스에 다공성 구조의 코팅을 통해 뼈의 성장, 즉, 골유착을 촉진시키고 있다.Here, the artificial joint may be represented as an orthopedic implant, and the orthopedic implant generally promotes bone growth, that is, osteosynthesis, through a coating of a porous structure on the implant base.
다공성 구조의 코팅층이 형성된 정형외과 임플란트는 일본공개특허 제2008-194463호에 개시된 확산 접합 등 다양한 방법에 의해 제조될 수 있다.Orthopedic implants in which a coating layer having a porous structure is formed can be manufactured by various methods such as diffusion bonding disclosed in Japanese Patent Application Laid-Open No. 2008-194463.
종래의 확산 접합에 의해 다공성 구조의 코팅층이 형성된 정형외과 임플란트를 제조하는 방법은 일본공개특허 제2008-194463호에 개시된 바와 같이 미리 제조된 임플란트 베이스 상에 다공성 구조체를 배치한 후 소정의 온도 하에서 상기 다공성 구조체를 소정의 압력으로 인가하여 서로 접합되도록 하고 있다.The method of manufacturing an orthopedic implant in which a coating layer of a porous structure is formed by a conventional diffusion bonding is described above under a predetermined temperature after disposing a porous structure on an implant base prepared in advance as disclosed in Japanese Patent Application Laid-Open No. 2008-194463. The porous structures are bonded to each other by applying a predetermined pressure.
그러나, 상기와 같은 종래의 확산 접합 방법은 코팅층의 표면 주변의 공극율을 저하시켜 골유착의 정도를 저하시키는 원인이 되는 동시에 코팅층과 임플란트 베이스 간의 접합력을 보장하지 못하여, 결국 불량품의 양산이라는 심각한 문제를 유발하게 된다.However, the conventional diffusion bonding method as described above decreases the porosity around the surface of the coating layer, thereby reducing the degree of osseointegration, and at the same time, does not guarantee the bonding strength between the coating layer and the implant base, resulting in a serious problem of mass production of defective products. Will cause.
본 발명의 목적은, 공극 간의 연결성을 보장하고 내식성 및 내마모성이 향상된 정형외과 임플란트에 적용 가능한 다공성 코팅 구조체 및 다공성 코팅 구조체 제조 방법을 제공하는 것이다.It is an object of the present invention to provide a porous coating structure and a method of manufacturing a porous coating structure applicable to an orthopedic implant with improved corrosion resistance and abrasion resistance, and ensuring connectivity between pores.
본 발명의 일 실시예에 따른 다공성 코팅 구조체는, 비다공성 구조체(non-porous structure)에 다공성 구조체(porous structure)를 확산 접합(diffusion bonding)하여 제조되는 구조체로, 금속 성분의 상기 비다공성 구조체로 구현되는 베이스부; 상기 베이스부와 금속 성분의 상기 다공성 구조체 간의 확산 접합 - 상기 확산 접합은, 상기 베이스부를 가압하여 이루어지는 접합임 - 에 의해 상기 베이스부의 표면의 적어도 일부에 형성되는 코팅부 - 상기 코팅부는, 상기 확산 접합 시 상기 다공성 구조체에 의해 형성됨 - ; 및 상기 다공성 구조체에 미리 형성된 공극 간의 연결성이 상기 확산 접합에 의해 저하되는 것을 방지하기 위해, 상기 확산 접합 시 상기 공극으로 침투하여 형성되는 연결성확보부;를 포함할 수 있다.The porous coating structure according to an embodiment of the present invention is a structure manufactured by diffusion bonding a porous structure to a non-porous structure, and the non-porous structure of a metal component. A base part implemented; Diffusion bonding between the base portion and the porous structure of a metal component-The diffusion bonding is a bonding made by pressing the base portion-A coating portion formed on at least a part of the surface of the base portion by-The coating portion, the diffusion bonding When formed by the porous structure -; And a connection securing unit formed by penetrating into the pores during the diffusion bonding in order to prevent the connectivity between the pores previously formed in the porous structure from being degraded by the diffusion bonding.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 연결성확보부는, 상기 공극을 규정하는 내면을 코팅시켜 내식성 및 내마모성을 향상시키는 것을 특징으로 할 수 있다.The connection securing part of the porous coating structure according to an embodiment of the present invention may be characterized in that it improves corrosion resistance and abrasion resistance by coating an inner surface defining the void.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 연결성확보부는, 상기 비다공성 구조체 및 상기 다공성 구조체와 비반응하는 분말을 포함하는 것을 특징으로 할 수 있다.The connection securing part of the porous coating structure according to an embodiment of the present invention may include the non-porous structure and a powder non-reactive with the porous structure.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 연결성확보부는, 세라믹 분말, 산화물 분말 및 질화물 분말 중 적어도 하나의 분말을 포함하는 것을 특징으로 할 수 있다.The connection securing unit of the porous coating structure according to an embodiment of the present invention may include at least one of ceramic powder, oxide powder, and nitride powder.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 연결성확보부는, 상기 확산 접합 시, 상기 공극에 침투하여 상기 공극이 폐쇄되는 것을 방지하도록, 상기 다공성 구조체 및 상기 비다공성 구조체 중 적어도 하나보다 높은 융점을 구비하는 것을 특징으로 할 수 있다.The connection securing unit of the porous coating structure according to an embodiment of the present invention, in order to prevent the pores from being closed by penetration during the diffusion bonding, a melting point higher than at least one of the porous structure and the non-porous structure It may be characterized by having a.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 코팅부는, 상기 베이스부와의 접합면으로부터 표면을 향한 방향으로 공극율이 증가하는 것을 특징으로 할 수 있다.The coating portion of the porous coating structure according to an embodiment of the present invention may be characterized in that the porosity increases in a direction from the bonding surface with the base portion toward the surface.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 연결성확보부는, 상기 확산 접합 시 상기 다공성 구조체의 표면 - 상기 다공성 구조체의 표면은, 상기 다공성 구조체와 상기 비다공성 구조체의 접합면의 반대면임 - 으로부터 상기 공극에 침투하여, 상기 다공성 구조체의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지게 하는 것을 특징으로 할 수 있다.From the surface of the porous structure during the diffusion bonding, the surface of the porous structure is the opposite side of the bonding surface between the porous structure and the non-porous structure. By penetrating into the pores, a porosity of the periphery of the surface of the porous structure may be greater than that of the periphery of the bonding surface.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 연결성확보부는, 상기 코팅부의 표면 - 상기 코팅부의 표면은, 상기 상기 코팅부와 상기 베이스부의 접합면의 반대면임 - 의 주변에만 분포하여, 상기 코팅부의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지게 하는 것을 특징으로 할 수 있다.The connection securing unit of the porous coating structure according to an embodiment of the present invention is distributed only around the surface of the coating unit-the surface of the coating unit is an opposite surface of the bonding surface of the coating unit and the base unit. It may be characterized in that the porosity of the periphery of the negative surface is greater than the porosity of the periphery of the bonding surface.
본 발명의 일 실시예에 따른 다공성 코팅 구조체의 상기 베이스부는, 생체용 임플란트 모체이며, 상기 코팅부는, 상기 생체용 임플란트의 모체의 표면의 적어도 일부에 형성되고, 공극 간의 연결성이 확보되어 골유착을 향상시키는 것을 특징으로 할 수 있다.The base portion of the porous coating structure according to an embodiment of the present invention is a parent body for a living body implant, and the coating part is formed on at least a part of the surface of the parent body of the bio-implant, and the connection between the pores is secured to prevent osseointegration. It can be characterized by improving.
본 발명의 다른 일 실시예에 따른 다공성 코팅 구조체의 제조 방법은, 금속 성분의 비다공성 구조체(non-porous structure)에 금속 성분의 다공성 구조체(porous structure)를 접합하여 다공성 코팅 구조체(porous coating structure)를 제조하는 방법으로, 상기 비다공성 구조체 및 상기 다공성 구조체를 접합을 위한 진공로의 진공챔버에 배치시키는 제1 단계; 및 상기 진공 챔버에 배치된 압력인가부로 상기 비다공성 구조체를 가압하여 상기 비다공성 구조체와 상기 다공성 구조체 간의 확산 접합이 되도록 하는 제2 단계;를 포함하며, 상기 제1 단계는, 상기 진공 챔버에 위치하는 지지구조체 상에 상기 다공성 구조체에 미리 형성된 공극 간의 연결성이 상기 확산 접합이 진행되는 상기 제2 단계에 의해 저하되는 것을 방지하기 위한 분말을 충진한 후, 상기 분말 상에 상기 다공성 구조체 및 상기 비다공성 구조체를 순차적으로 배치하는 단계를 포함하며, 상기 제2 단계는, 소정의 온도 하에서 상기 압력인가부에 의해 상기 비다공성 구조체를 소정의 압력으로 가압하여, 상기 분말이 상기 공극으로 침투하도록 하는 단계를 포함하는 것을 특징으로 할 수 있다.A method of manufacturing a porous coating structure according to another embodiment of the present invention is a porous coating structure by bonding a porous structure of a metal component to a non-porous structure of a metal component. A method of manufacturing, comprising: a first step of placing the non-porous structure and the porous structure in a vacuum chamber of a vacuum furnace for bonding; And a second step of pressing the non-porous structure with a pressure applying portion disposed in the vacuum chamber to form a diffusion bonding between the non-porous structure and the porous structure, wherein the first step is located in the vacuum chamber. After filling a powder for preventing the connectivity between the pores previously formed in the porous structure from being lowered by the second step in which the diffusion bonding is performed on the supporting structure, the porous structure and the non-porous It includes the step of sequentially arranging the structure, the second step, the step of pressing the non-porous structure to a predetermined pressure by the pressure applying unit under a predetermined temperature, so that the powder penetrates into the pores. It may be characterized by including.
본 발명의 다른 일 실시예에 따른 다공성 코팅 구조체의 제조 방법의 상기 분말은, 상기 비다공성 구조체 및 상기 다공성 구조체와 비반응하는 물질로, 상기 공극에 침투하여 상기 공극이 폐쇄되는 것을 방지하도록, 상기 다공성 구조체 및 상기 비다공성 구조체 중 적어도 하나보다 높은 융점을 구비하며, 상기 소정의 온도는, 상기 융점보다 낮은 온도인 것을 특징으로 할 수 있다.The powder of the method of manufacturing a porous coating structure according to another embodiment of the present invention is a material that does not react with the non-porous structure and the porous structure, and penetrates into the pores to prevent the pores from being closed. It has a melting point higher than at least one of the porous structure and the non-porous structure, and the predetermined temperature may be a temperature lower than the melting point.
본 발명의 다른 일 실시예에 따른 다공성 코팅 구조체의 제조 방법의 상기 소정의 압력은, 상기 분말이 상기 제2 단계 진행 시 상기 다공성 구조체의 표면 - 상기 다공성 구조체의 표면은, 상기 다공성 구조체와 상기 비다공성 구조체의 접합면의 반대면임 - 으로부터 상기 공극에 침투하여, 상기 다공성 구조체의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지도록 하는 범위 내에서 결정되는 것을 특징으로 할 수 있다.The predetermined pressure in the method of manufacturing a porous coating structure according to another embodiment of the present invention is, when the powder proceeds to the second step, the surface of the porous structure-the surface of the porous structure is, the porous structure and the ratio It may be characterized in that it is determined within a range such that the porosity for the periphery of the surface of the porous structure is greater than the porosity for the periphery of the bonding surface by penetrating into the pores from the surface opposite to the bonding surface of the porous structure. have.
본 발명의 다른 일 실시예에 따른 다공성 코팅 구조체의 제조 방법의 상기 소정의 압력은, 상기 분말이 상기 다공성 구조체의 표면 - 상기 다공성 구조체의 표면은, 상기 상기 다공성 구조체와 상기 비다공성 구조체의 접합면의 반대면임 - 의 주변에만 분포하여, 상기 다공성 구조체의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지도록 하는 범위 내에서 결정되는 것을 특징으로 할 수 있다.The predetermined pressure in the method for manufacturing a porous coating structure according to another embodiment of the present invention is, wherein the powder is the surface of the porous structure-the surface of the porous structure is a bonding surface between the porous structure and the non-porous structure It is the opposite side of-Distributed only around the periphery of, it may be characterized in that it is determined within a range such that the porosity of the periphery of the surface of the porous structure is greater than the porosity of the periphery of the bonding surface.
본 발명에 따른 다공성 코팅 구조체 및 다공성 코팅 구조체 제조 방법에 의하면, 공극 간의 연결성을 보장하고 내식성 및 내마모성이 향상된 정형외과 임플란트를 제공할 수 있다.According to the method of manufacturing the porous coating structure and the porous coating structure according to the present invention, it is possible to provide an orthopedic implant with improved corrosion resistance and abrasion resistance, as well as ensuring connectivity between pores.
또한, 제조 방법이 간단하여 제조 효율을 향상시킬 수 있다.In addition, since the manufacturing method is simple, manufacturing efficiency can be improved.
도 1은 본 발명의 일 실시예에 따른 다공성 코팅 구조체의 제조 방법을 설명하기 위한 순서도.1 is a flow chart illustrating a method of manufacturing a porous coating structure according to an embodiment of the present invention.
도 2 내지 도 6은 본 발명의 일 실시예에 따른 다공성 코팅 구조체의 제조 방법을 설명하기 위한 도면.2 to 6 are views for explaining a method of manufacturing a porous coating structure according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 다공성 코팅 구조체는, 비다공성 구조체(non-porous structure)에 다공성 구조체(porous structure)를 확산 접합(diffusion bonding)하여 제조되는 구조체로, 금속 성분의 상기 비다공성 구조체로 구현되는 베이스부; 상기 베이스부와 금속 성분의 상기 다공성 구조체 간의 확산 접합 - 상기 확산 접합은, 상기 베이스부를 가압하여 이루어지는 접합임 - 에 의해 상기 베이스부의 표면의 적어도 일부에 형성되는 코팅부 - 상기 코팅부는, 상기 확산 접합 시 상기 다공성 구조체에 의해 형성됨 - ; 및 상기 다공성 구조체에 미리 형성된 공극 간의 연결성이 상기 확산 접합에 의해 저하되는 것을 방지하기 위해, 상기 확산 접합 시 상기 공극으로 침투하여 형성되는 연결성확보부;를 포함할 수 있다.The porous coating structure according to an embodiment of the present invention is a structure manufactured by diffusion bonding a porous structure to a non-porous structure, and the non-porous structure of a metal component. A base part implemented; Diffusion bonding between the base portion and the porous structure of a metal component-The diffusion bonding is a bonding made by pressing the base portion-A coating portion formed on at least a part of the surface of the base portion by-The coating portion, the diffusion bonding When formed by the porous structure -; And a connection securing unit formed by penetrating into the pores during the diffusion bonding in order to prevent the connectivity between the pores previously formed in the porous structure from being degraded by the diffusion bonding.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the spirit of the present invention is not limited to the presented embodiments, and those skilled in the art who understand the spirit of the present invention can add, change, or delete other elements within the scope of the same idea. Other embodiments included within the scope of the inventive concept may be easily proposed, but it will be said that this is also included within the scope of the inventive concept.
또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.In addition, components having the same function within the scope of the same idea shown in the drawings of each embodiment will be described with the same reference numerals.
도 1은 본 발명의 일 실시예에 따른 다공성 코팅 구조체의 제조 방법을 설명하기 위한 순서도이며, 도 2 내지 도 6은 본 발명의 일 실시예에 따른 다공성 코팅 구조체의 제조 방법을 설명하기 위한 도면이다.1 is a flowchart illustrating a method of manufacturing a porous coating structure according to an embodiment of the present invention, and FIGS. 2 to 6 are diagrams for explaining a method of manufacturing a porous coating structure according to an embodiment of the present invention .
우선, 본 발명에 따른 다공성 코팅 구조체는 금속 성분의 비다공성 구조체(non-porous structure)의 표면의 적어도 일부에 금속 성분의 다공성 구조체(200)가 코팅층으로 존재하는 구조체로, 예를 들면, 정형외과 임플란트에 적용될 수 있다.First, the porous coating structure according to the present invention is a structure in which a metal-based porous structure 200 is present as a coating layer on at least a part of the surface of a metal-based non-porous structure, for example, orthopedic surgery It can be applied to implants.
여기서, 상기 다공성 코팅 구조체는 상기 비다공성 구조체로 구현되는 베이스부, 상기 베이스부와 상기 다공성 구조체 간의 확산 접합에 의해 상기 베이스부의 표면의 적어도 일부에 형성되는 코팅부 및 상기 다공성 구조체에 미리 형성된 공극 간의 연결성이 상기 확산 접합에 의해 저하되는 것을 방지하기 위해, 상기 확산 접합 시 상기 공극으로 침투하여 형성되는 연결성확보부를 포함할 수 있다.Here, the porous coating structure is formed between the base part implemented as the non-porous structure, the coating part formed on at least a part of the surface of the base part by diffusion bonding between the base part and the porous structure, and pores previously formed in the porous structure. In order to prevent the connectivity from being deteriorated by the diffusion bonding, it may include a connection securing unit formed by penetrating into the void during the diffusion bonding.
이하에서는 상기와 같은 구성요소를 포함하는 상기 다공성 코팅 구조체의 제조 방법에 대해 우선적으로 설명하고, 이 제조 방법에 의해 제조되는 상기 다공성 코팅 구조체에 대해 추가적으로 설명한다.Hereinafter, a method of manufacturing the porous coating structure including the above components will be first described, and the porous coating structure manufactured by this manufacturing method will be additionally described.
도 1을 참조하면, 다공성 코팅 구조체의 제조 방법은 진공로(10)의 진공 챔버(12)에 위치하는 지지구조체(14) 상에 분말(100)을 충진(S12)하고 상기 분말(100) 상에 다공성 구조체(200) 및 비다공성 구조체(300)를 순차적으로 배치(S14, S16)하는 제1 단계(S10) 및 상기 진공 챔버(12)에 배치된 압력인가부(16)로 상기 비다공성 구조체(300)와 상기 다공성 구조체(200) 간의 확산 접합이 되도록 하는 제2 단계(S20) 등을 포함할 수 있다.Referring to Figure 1, the method of manufacturing a porous coating structure is to fill (S12) the powder 100 on the support structure 14 located in the vacuum chamber 12 of the vacuum furnace 10, and In the first step (S10) of sequentially placing (S14, S16) the porous structure 200 and the non-porous structure 300 and the non-porous structure with the pressure applying unit 16 disposed in the vacuum chamber 12 A second step (S20) of performing diffusion bonding between 300 and the porous structure 200 may be included.
이하에서는 도 2 내지 도 6을 상기 단계에 대하여 구체적으로 설명한다.Hereinafter, FIGS. 2 to 6 will be described in detail with respect to the above steps.
도 2 및 도 3을 참조하면, 정형외과 임플란트에 적용될 수 있는 다공성 코팅 구조체를 제조하기 위해 진공로(10)의 진공 챔버(12)에 위치하는 지지구조체(14) 상에 분말(100)을 충진(S12)한다.2 and 3, the powder 100 is filled on the support structure 14 located in the vacuum chamber 12 of the vacuum furnace 10 to manufacture a porous coating structure that can be applied to an orthopedic implant. (S12).
여기서, 상기 진공로(10)의 진공 챔버(12)는 확산 접합을 위한 진공 상태를 유지할 수 있으며, 상기 진공 챔버(12)는 소정의 온도의 분위기 상태가 될 수 있다.Here, the vacuum chamber 12 of the vacuum furnace 10 may maintain a vacuum state for diffusion bonding, and the vacuum chamber 12 may be in an atmosphere state of a predetermined temperature.
상기 진공로(10)는 비다공성 구조체(300)에 압력을 인가할 수 있는 압력인가부(16)를 포함할 수 있으며, 상기 압력인가부(16)는 도 6에 도시된 바와 같이 비다공성 구조체(300)에 압력을 인가하여 비다공성 구조체(300)와 다공성 구조체(200) 사이에 물리적인 표면 접촉이 발생되도록 할 수 있다.The vacuum furnace 10 may include a pressure applying unit 16 capable of applying pressure to the non-porous structure 300, and the pressure applying unit 16 is a non-porous structure as shown in FIG. By applying pressure to 300, physical surface contact may occur between the non-porous structure 300 and the porous structure 200.
상기 지지구조체(14)는 상기 분말(100)이 상기 지지구조체(14) 이외의 상기 진공 챔버(12)로 퍼지는 것을 방지하도록 측벽을 구비할 수 있으며, 이로 인해 상기 분말(100)은 안정적으로 후술할 연결성확보부를 구성하게 된다.The support structure 14 may have sidewalls to prevent the powder 100 from spreading to the vacuum chamber 12 other than the support structure 14, whereby the powder 100 is stably described later. It constitutes the connection security unit.
상기 분말(100)은 상기 다공성 구조체(200)에 미리 형성된 공극 간의 연결성이 상기 확산 접합이 진행되는 상기 제2 단계(S20)에 의해 저하되는 것을 방지하기 위해 상기 제2 단계(S20) 진행 시 상기 공극으로 침투하는 분말로, 최종적으로 다공성 코팅 구조체의 일 구성요소인 연결성확보부를 구성하게 된다.The powder 100 is used in the second step (S20) in order to prevent the connectivity between the pores formed in advance in the porous structure 200 from being degraded by the second step (S20) in which the diffusion bonding is performed. It is a powder that penetrates into the voids, and finally constitutes a connection securing part, which is a component of the porous coating structure.
상기 분말(100)은 상기 비다공성 구조체(300) 및 상기 다공성 구조체(200)와 비반응하는 분말로 세라믹 분말, 산화물 분말 및 질화물 분말 중 적어도 하나의 분말을 포함할 수 있으며, 상기 확산 접합 시, 상기 공극에 침투하여 상기 공극이 폐쇄되는 것을 방지하도록, 상기 다공성 구조체(200) 및 상기 비다공성 구조체(300) 중 적어도 하나보다 높은 융점을 구비할 수 있다.The powder 100 is a powder that does not react with the non-porous structure 300 and the porous structure 200 and may include at least one of a ceramic powder, an oxide powder, and a nitride powder. During the diffusion bonding, A melting point higher than at least one of the porous structure 200 and the non-porous structure 300 may be provided so as to prevent the pores from being closed by penetrating the pores.
도 4 및 도 5를 참조하면, 상기 진공 챔버(12)에 위치하는 상기 지지구조체(14) 상에 상기 분말(100)이 충진되면, 상기 분말(100) 상에 상기 다공성 구조체(200) 및 상기 비다공성 구조체(300)를 순차적으로 배치하는 단계(S14, S16)가 진행되어 제1 단계(S10)가 완료될 수 있다.4 and 5, when the powder 100 is filled on the support structure 14 located in the vacuum chamber 12, the porous structure 200 and the Steps (S14, S16) of sequentially arranging the non-porous structure 300 may be performed to complete the first step (S10).
상기 다공성 구조체(200)는 상기 비다공성 구조체(300)의 표면의 적어도 일부를 코팅하기 위한 구조체로 다공성 코팅 구조체의 일 구성요소인 코팅부를 구성하게 된다.The porous structure 200 is a structure for coating at least a portion of the surface of the non-porous structure 300 and constitutes a coating part, which is a component of the porous coating structure.
상기 다공성 구조체(200)는 금속 성분, 예를 들면, 티타늄(Ti)을 주성분으로 하는 금속일 수 있으며, 수많은 공극을 구비할 수 있다.The porous structure 200 may be a metal containing a metal component, for example, titanium (Ti) as a main component, and may have numerous voids.
상기 다공성 구조체(200)의 공극은 서로 연결되어 있으며, 이러한 공극은 본 발명에 따른 다공성 코팅 구조체가 정형외과 임플란트에 적용되는 경우 골유착을 향상시키는 요소로 작용하게 된다.The pores of the porous structure 200 are connected to each other, and these pores serve as an element to improve osteosynthesis when the porous coating structure according to the present invention is applied to an orthopedic implant.
상기 다공성 구조체(200)는 여러가지 방법에 의해 제조될 수 있으며, 예를 들면 3D 프린팅에 의해 제조될 수 있고, 본 발명에 따른 다공성 코팅 구조체가 정형외과 임플란트에 적용되는 경우 사용되는 뼈의 구조에 맞게 다양한 형상으로 구현될 수 있다.The porous structure 200 may be manufactured by various methods, for example, may be manufactured by 3D printing, and when the porous coating structure according to the present invention is applied to an orthopedic implant, it is suitable for the structure of the bone used. It can be implemented in various shapes.
그리고, 상기 다공성 구조체(200)의 공극율은 상기 다공성 구조체(200)를 제조하는 과정에서 자유롭게 조절 가능할 수 있다.In addition, the porosity of the porous structure 200 may be freely adjustable in the process of manufacturing the porous structure 200.
한편, 상기 비다공성 구조체(300)는 본 발명에 따른 다공성 코팅 구조체가 정형외과 임플란트에 적용되는 경우 임플란트 베이스로 기능할 수 있으며, 사용되는 뼈의 구조에 맞게 다양한 형상으로 구현될 수 있다.Meanwhile, when the porous coating structure according to the present invention is applied to an orthopedic implant, the non-porous structure 300 may function as an implant base, and may be implemented in various shapes according to the structure of the bone used.
상기 비다공성 구조체(300)는 금속 성분, 예를 들면, 코발트크롬(CoCr)을 주성분으로 하는 금속일 수 있다.The non-porous structure 300 may be a metal containing a metal component, for example, cobalt chromium (CoCr) as a main component.
도 6을 참조하면, 상기 진공 챔버(12) 내의 온도를 소정의 온도로 상승시키고, 상기 진공 챔버(12)에 배치된 압력인가부(16)로 상기 비다공성 구조체(300)를 가압하여 상기 비다공성 구조체(300)와 상기 다공성 구조체(200) 간의 확산 접합이 되도록 하는 제2 단계(S20)가 진행될 수 있다.Referring to FIG. 6, the temperature in the vacuum chamber 12 is raised to a predetermined temperature, and the non-porous structure 300 is pressurized by a pressure applying unit 16 disposed in the vacuum chamber 12. A second step (S20) of diffusion bonding between the porous structure 300 and the porous structure 200 may be performed.
그리고, 상기 제2 단계(S20)는 소정의 온도 하에서 상기 압력인가부(16)에 의해 상기 비다공성 구조체(300)를 소정의 압력으로 가압하여, 분말(100)이 다공성 구조체(200)의 공극으로 침투하는 단계를 포함할 수 있다.In the second step (S20), the non-porous structure 300 is pressed with a predetermined pressure by the pressure applying unit 16 under a predetermined temperature, so that the powder 100 is formed into the pores of the porous structure 200. It may include the step of penetrating into.
여기서, 확산 접합은 열과 압력을 이용하여 원자 결합을 하는 소재를 서로 접합하기 위한 방법으로, 금속재료를 밀착시켜 소재를 융점 이하의 온도로 가열하면서 소성변형을 일으키지 않을 정도로 압력을 가해, 접합면 사이에서 발생하는 원자의 확산을 이용하여 접합하는 방법을 의미할 수 있다.Here, diffusion bonding is a method of bonding materials that are atomically bonded using heat and pressure. A metal material is adhered to each other, heating the material to a temperature below the melting point, and applying pressure so as not to cause plastic deformation between the bonding surfaces. It may mean a method of bonding using the diffusion of atoms occurring in
상기 분말(100)은 이미 설명한 바와 같이 상기 비다공성 구조체(300) 및 상기 다공성 구조체(200)와 비반응하는 물질로, 다공성 구조체(200)의 공극에 침투하여 상기 공극이 폐쇄되는 것을 방지하도록, 상기 다공성 구조체(200) 및 상기 비다공성 구조체(300) 중 적어도 하나보다 높은 융점을 구비할 수 있으며, 상기 제2 단계(S20)가 진행되는 진공 챔버(12) 내의 소정의 온도는 상기 융점보다 낮은 온도일 수 있다.As described above, the powder 100 is a material that does not react with the non-porous structure 300 and the porous structure 200 and penetrates into the pores of the porous structure 200 to prevent the pores from being closed, It may have a higher melting point than at least one of the porous structure 200 and the non-porous structure 300, and a predetermined temperature in the vacuum chamber 12 in which the second step (S20) is performed is lower than the melting point. It can be temperature.
그리고, 상기 압력인가부(16)에 의해 인가되는 소정의 압력은 상기 분말(100)이 상기 제2 단계(S20) 진행 시 상기 다공성 구조체(200)의 표면으로부터 다공성 구조체(200)의 공극에 침투하여, 상기 다공성 구조체(200)의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지도록 하는 범위 내에서 결정될 수 있다.In addition, the predetermined pressure applied by the pressure applying unit 16 penetrates the pores of the porous structure 200 from the surface of the porous structure 200 when the powder 100 proceeds with the second step (S20). Thus, the porosity of the periphery of the surface of the porous structure 200 may be determined within a range that is greater than the porosity of the periphery of the bonding surface.
여기서, 상기 다공성 구조체(200)의 표면은 상기 다공성 구조체(200)와 상기 비다공성 구조체(300)의 접합면의 반대면이다.Here, the surface of the porous structure 200 is a surface opposite to the bonding surface of the porous structure 200 and the non-porous structure 300.
상기 소정의 압력은 상기 분말(100)이 상기 다공성 구조체(200)의 표면의 주변에만 분포하여, 상기 다공성 구조체(200)의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지도록 하는 범위 내에서 결정될 수 있다.The predetermined pressure is distributed only in the periphery of the surface of the porous structure 200, so that the porosity of the periphery of the porous structure 200 is not greater than that of the periphery of the bonding surface. It can be determined within the range to allow.
이는 상기 다공성 구조체(200)와 상기 비다공성 구조체(300) 간의 접합력을 향상키기 위함으로, 상기 접합면 주변에는 공극의 크기 및 공극율을 작게 하여 접합면의 면적을 증가시키기 위함이다.This is to improve the bonding strength between the porous structure 200 and the non-porous structure 300, and to increase the area of the bonding surface by reducing the size and porosity of the pores around the bonding surface.
한편, 상기와 같이 제2 단계(S20)가 진행되면 상기 비다공성 구조체(300)의 표면의 적어도 일부에는 다공성 구조체(200)로 코팅이 되게 되며, 상기 분말(100)로 인하여 다공성 구조체(200)의 공극의 연결성은 확보가 되게 되어, 골유착이 향상된 다공성 코팅 구조체가 제조되게 된다.On the other hand, when the second step (S20) proceeds as described above, at least a part of the surface of the non-porous structure 300 is coated with the porous structure 200, and the porous structure 200 due to the powder 100 The connectivity of the voids is ensured, and a porous coating structure with improved osseointegration is manufactured.
여기서, 상기 제2 단계(S20)는 이미 설명한 바와 같이 다공성 구조체(200)와 비다공성 구조체(300) 간의 확산 접합을 위해 소정의 온도 하에서 압력인가부(16)로 비다공성 구조체(300)를 가압하게 되는데, 이 과정에 발생될 수 있는 다공성 구조체(200)의 공극 간의 연결성이 저하되는 문제 및 상기 다공성 구조체(200)와 상기 비다공성 구조체(300)의 접합면의 반대면인 상기 다공성 구조체(200)의 표면 주변에 대한 공극율이 저하되는 문제 등이 공극에 침투하는 분말(100)에 의해 효과적으로 해결할 수 있다.Here, the second step (S20) presses the non-porous structure 300 with the pressure applying unit 16 under a predetermined temperature for diffusion bonding between the porous structure 200 and the non-porous structure 300 as described above. In this process, the connectivity between the pores of the porous structure 200 is deteriorated, and the porous structure 200 that is a surface opposite to the bonding surface of the porous structure 200 and the non-porous structure 300 The problem of lowering the porosity around the surface of) can be effectively solved by the powder 100 penetrating the pores.
다시 말하면, 확산 접합을 진행하기 이전에 다공성 구조체는 이미 수많은 공극이 서로 연결되어 형성된 상태이나, 다공성 구조체와 비다공성 구조체 간의 확산 접합 시 확산 접합의 특성 상 표면 주변의 공극은 작아지게 되어 공극율이 저하될 수 밖에 없다.In other words, before diffusion bonding, the porous structure is already formed by connecting numerous pores, but when diffusion bonding between the porous structure and the non-porous structure, due to the characteristics of diffusion bonding, the pores around the surface become small and the porosity decreases. It has to be.
이러한 문제는 정형외과 임플란트로 사용된는 경우 골유착의 정도를 저하시키는 문제를 야기시키게 되고, 결국 환자에게 피해를 주는 결과를 낳게 된다. When used as an orthopedic implant, this problem causes a problem of lowering the degree of osseointegration, resulting in damage to the patient.
그러나, 본 발명에서는 확산 접합에 의해 다공성 구조체(200)와 비다공성 구조체(300)를 서로 접합시키되, 확산 접합으로 인해 발생되는 문제를 진공 챔버(12) 내의 지지구조체(14)에 분말(100)을 충진함으로써, 상기 분말이 확산 접합시 상기 다공성 구조체(200)의 표면 주변에 형성된 공극으로 침투되도록 하여 공극의 크기 저하를 방지하고 공극 간의 연결성을 확보하는 일종의 스페이서 기능을 수행하도록 하여 이를 효과적으로 해결하고 있는 것이다.However, in the present invention, the porous structure 200 and the non-porous structure 300 are bonded to each other by diffusion bonding, but the problem caused by diffusion bonding is solved by the powder 100 on the support structure 14 in the vacuum chamber 12. By filling the powder, the powder penetrates into the pores formed around the surface of the porous structure 200 during diffusion bonding, thereby preventing a reduction in the size of the pores and performing a kind of spacer function to secure connectivity between the pores. There is.
한편, 상기 분말(100)은 공극에 침투하여 상기 공극을 규정하는 내면을 코팅시킬 수도 있으며, 이로 인해 내식성 및 내마모성은 크게 향상되게 된다.On the other hand, the powder 100 may penetrate into the pores and coat the inner surface defining the pores, thereby greatly improving corrosion resistance and abrasion resistance.
이후에는 다공성 코팅 구조체를 진공로(10)로부터 분리하는 단계(S30)가 진행되며, 선택적으로 후처리 공정을 거치게 되면, 상기 다공성 코팅 구조체는 최종적으로 정형외과 임플란트로 사용될 수 있게 된다.Thereafter, the step of separating the porous coating structure from the vacuum furnace 10 (S30) proceeds, and when optionally subjected to a post-treatment process, the porous coating structure can be finally used as an orthopedic implant.
상기와 같은 제조 방법으로 제조되는 다공성 코팅 구조체는 비다공성 구조체로 구현되는 베이스부, 다공성 구조체(200)로 구현되는 코팅부 및 분말(100)에 의해 구현되는 연결성확보부를 포함할 수 있다.The porous coating structure manufactured by the manufacturing method as described above may include a base part implemented as a non-porous structure, a coating part implemented as the porous structure 200, and a connection security part implemented by the powder 100.
상기 베이스부는 생체용 임플란트 모체일 수 있으며, 상기 코팅부는 상기 생체용 임플란트의 모체의 표면의 적어도 일부에 형성되고, 공극 간의 연결성이 확보되어 골유착을 향상시키는 구성요소일 수 있다.The base portion may be a parent body for a biological implant, and the coating part may be formed on at least a part of a surface of the parent body of the implant for a living body, and may be a component for improving osseointegration by securing connectivity between voids.
상기 연결성확보부는 확산 접합 시 다공성 구조체(200)에 미리 형성된 공극으로 침투하여 공극 간의 연결성 저하를 방지할 수 있으며, 상기 공극을 규정하는 내면 중 적어도 일부에 부착되어 상기 적어도 일부를 코팅하는 효과를 낼 수 있다.The connectivity securing unit may penetrate into the pores previously formed in the porous structure 200 during diffusion bonding to prevent a decrease in connectivity between the pores, and is attached to at least a portion of the inner surface defining the pores to produce an effect of coating at least a portion of the pores. I can.
상기 연결성확보부로 인하여 본 발명에 따른 다공성 코팅 구조체는 내식성 및 내마모성이 향상될 수 있다.Due to the connection securing part, the porous coating structure according to the present invention may have improved corrosion resistance and abrasion resistance.
한편, 상기 코팅부는 베이스부와 접합면으로부터 상기 코팅부의 표면을 향한 방향으로 공극율이 증가할 수 있으며, 이로 인하여 상기 다공성 코팅 구조체를 정형외과 임플란트로 사용하는 경우 골유착을 향상시키는 동시에 상기 접합면 주변의 공극율은 작게 형성되어 상기 베이스부와의 접합력은 극대화될 수 있다.On the other hand, the coating portion may increase the porosity in the direction from the base portion and the bonding surface toward the surface of the coating portion. Accordingly, when the porous coating structure is used as an orthopedic implant, it improves bone adhesion and at the same time around the bonding surface. The porosity of is formed to be small so that the bonding force with the base portion can be maximized.
상기 연결성확보부는 상기 코팅부의 공극의 일부, 즉, 상기 코팅부의 표면의 주변에만 분포할 수 있으며, 이로 인하여 상기 코팅부의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커질 수 있다.The connectivity securing unit may be distributed only in a portion of the pores of the coating unit, that is, the periphery of the surface of the coating unit, whereby the porosity of the periphery of the coating unit may be greater than the porosity of the periphery of the bonding surface. .
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.In the above, the configuration and features of the present invention have been described based on the embodiments according to the present invention, but the present invention is not limited thereto, and various changes or modifications can be made within the spirit and scope of the present invention. It will be apparent to those skilled in the art, and therefore, such changes or modifications are found to belong to the appended claims.

Claims (13)

  1. 비다공성 구조체(non-porous structure)에 다공성 구조체(porous structure)를 확산 접합(diffusion bonding)하여 제조되는 다공성 코팅 구조체(porous coating structure)에 있어서,In the porous coating structure manufactured by diffusion bonding a porous structure to a non-porous structure,
    금속 성분의 상기 비다공성 구조체로 구현되는 베이스부;A base part implemented by the non-porous structure of a metal component;
    상기 베이스부와 금속 성분의 상기 다공성 구조체 간의 확산 접합 - 상기 확산 접합은, 상기 베이스부를 가압하여 이루어지는 접합임 - 에 의해 상기 베이스부의 표면의 적어도 일부에 형성되는 코팅부 - 상기 코팅부는, 상기 확산 접합 시 상기 다공성 구조체에 의해 형성됨 - ; 및Diffusion bonding between the base portion and the porous structure of a metal component-The diffusion bonding is a bonding made by pressing the base portion-A coating portion formed on at least a part of the surface of the base portion by-The coating portion, the diffusion bonding When formed by the porous structure -; And
    상기 다공성 구조체에 미리 형성된 공극 간의 연결성이 상기 확산 접합에 의해 저하되는 것을 방지하기 위해, 상기 확산 접합 시 상기 공극으로 침투하여 형성되는 연결성확보부;를 포함하는 다공성 코팅 구조체.Porous coating structure comprising a; in order to prevent the connectivity between the pores formed in advance in the porous structure is deteriorated by the diffusion bonding, a connection security unit formed by penetrating into the pores during the diffusion bonding.
  2. 제1항에 있어서,The method of claim 1,
    상기 연결성확보부는,The connectivity security unit,
    상기 공극을 규정하는 내면을 코팅시켜 내식성 및 내마모성을 향상시키는 것을 특징으로 하는 다공성 코팅 구조체.Porous coating structure, characterized in that to improve the corrosion resistance and abrasion resistance by coating the inner surface defining the voids.
  3. 제1항에 있어서,The method of claim 1,
    상기 연결성확보부는,The connectivity security unit,
    상기 비다공성 구조체 및 상기 다공성 구조체와 비반응하는 분말을 포함하는 것을 특징으로 하는 다공성 코팅 구조체.A porous coating structure comprising a powder that does not react with the non-porous structure and the porous structure.
  4. 제1항에 있어서,The method of claim 1,
    상기 연결성확보부는,The connectivity security unit,
    세라믹 분말, 산화물 분말 및 질화물 분말 중 적어도 하나의 분말을 포함하는 것을 특징으로 하는 다공성 코팅 구조체.A porous coating structure comprising at least one of ceramic powder, oxide powder, and nitride powder.
  5. 제1항에 있어서,The method of claim 1,
    상기 연결성확보부는,The connectivity security unit,
    상기 확산 접합 시, 상기 공극에 침투하여 상기 공극이 폐쇄되는 것을 방지하도록, 상기 다공성 구조체 및 상기 비다공성 구조체 중 적어도 하나보다 높은 융점을 구비하는 것을 특징으로 하는 다공성 코팅 구조체.During the diffusion bonding, a porous coating structure having a melting point higher than at least one of the porous structure and the non-porous structure so as to prevent the pores from being closed by penetrating the pores.
  6. 제1항에 있어서,The method of claim 1,
    상기 코팅부는,The coating part,
    상기 베이스부와의 접합면으로부터 표면을 향한 방향으로 공극율이 증가하는 것을 특징으로 하는 다공성 코팅 구조체.Porous coating structure, characterized in that the porosity increases in a direction from the bonding surface with the base portion toward the surface.
  7. 제1항에 있어서,The method of claim 1,
    상기 연결성확보부는,The connectivity security unit,
    상기 확산 접합 시 상기 다공성 구조체의 표면 - 상기 다공성 구조체의 표면은, 상기 다공성 구조체와 상기 비다공성 구조체의 접합면의 반대면임 - 으로부터 상기 공극에 침투하여, 상기 다공성 구조체의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지게 하는 것을 특징으로 하는 다공성 코팅 구조체.During the diffusion bonding, the surface of the porous structure-the surface of the porous structure is an opposite surface of the bonding surface of the porous structure and the non-porous structure-penetrates into the pores, and the porosity of the periphery of the surface of the porous structure is Porous coating structure, characterized in that to be greater than the porosity of the periphery of the bonding surface.
  8. 제1항에 있어서,The method of claim 1,
    상기 연결성확보부는,The connectivity security unit,
    상기 코팅부의 표면 - 상기 코팅부의 표면은, 상기 상기 코팅부와 상기 베이스부의 접합면의 반대면임 - 의 주변에만 분포하여, 상기 코팅부의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지게 하는 것을 특징으로 하는 다공성 코팅 구조체.The surface of the coating part-the surface of the coating part is a surface opposite to the bonding surface of the coating part and the base part-distributed only around the surface of the coating part, so that the porosity of the periphery of the coating part is greater than that of the periphery of the bonding surface. Porous coating structure, characterized in that to make it larger.
  9. 제1항에 있어서,The method of claim 1,
    상기 베이스부는,The base portion,
    생체용 임플란트 모체이며,It is a mother body for a living body implant,
    상기 코팅부는,The coating part,
    상기 생체용 임플란트의 모체의 표면의 적어도 일부에 형성되고, 공극 간의 연결성이 확보되어 골유착을 향상시키는 것을 특징으로 하는 다공성 코팅 구조체.A porous coating structure, characterized in that it is formed on at least a part of the surface of the parent body of the bio-implant, and improves osseointegration by securing connectivity between voids.
  10. 금속 성분의 비다공성 구조체(non-porous structure)에 금속 성분의 다공성 구조체(porous structure)를 접합하여 다공성 코팅 구조체(porous coating structure)를 제조하는 방법에 있어서,In the method of manufacturing a porous coating structure by bonding a porous structure of a metal component to a non-porous structure of a metal component,
    상기 비다공성 구조체 및 상기 다공성 구조체를 접합을 위한 진공로의 진공챔버에 배치시키는 제1 단계; 및A first step of placing the non-porous structure and the porous structure in a vacuum chamber of a vacuum furnace for bonding; And
    상기 진공 챔버에 배치된 압력인가부로 상기 비다공성 구조체를 가압하여 상기 비다공성 구조체와 상기 다공성 구조체 간의 확산 접합이 되도록 하는 제2 단계;를 포함하며,A second step of pressing the non-porous structure with a pressure applying portion disposed in the vacuum chamber to form a diffusion bonding between the non-porous structure and the porous structure; and
    상기 제1 단계는,The first step,
    상기 진공 챔버에 위치하는 지지구조체 상에 상기 다공성 구조체에 미리 형성된 공극 간의 연결성이 상기 확산 접합이 진행되는 상기 제2 단계에 의해 저하되는 것을 방지하기 위한 분말을 충진한 후, 상기 분말 상에 상기 다공성 구조체 및 상기 비다공성 구조체를 순차적으로 배치하는 단계를 포함하며,After filling the support structure located in the vacuum chamber with a powder for preventing the connectivity between the pores previously formed in the porous structure from being lowered by the second step in which the diffusion bonding proceeds, the porosity on the powder Including the step of sequentially arranging the structure and the non-porous structure,
    상기 제2 단계는,The second step,
    소정의 온도 하에서 상기 압력인가부에 의해 상기 비다공성 구조체를 소정의 압력으로 가압하여, 상기 분말이 상기 공극으로 침투하도록 하는 단계를 포함하는 것을 특징으로 하는 다공성 코팅 구조체 제조 방법.And pressurizing the non-porous structure at a predetermined pressure by the pressure applying unit under a predetermined temperature so that the powder penetrates into the pores.
  11. 제10항에 있어서,The method of claim 10,
    상기 분말은,The powder,
    상기 비다공성 구조체 및 상기 다공성 구조체와 비반응하는 물질로, 상기 공극에 침투하여 상기 공극이 폐쇄되는 것을 방지하도록, 상기 다공성 구조체 및 상기 비다공성 구조체 중 적어도 하나보다 높은 융점을 구비하며,A material that does not react with the non-porous structure and the porous structure, and has a melting point higher than at least one of the porous structure and the non-porous structure so as to prevent the pores from being closed by penetrating the pores,
    상기 소정의 온도는,The predetermined temperature is,
    상기 융점보다 낮은 온도인 것을 특징으로 하는 다공성 코팅 구조체 제조 방법.Method for manufacturing a porous coating structure, characterized in that the temperature lower than the melting point.
  12. 제10항에 있어서,The method of claim 10,
    상기 소정의 압력은,The predetermined pressure is,
    상기 분말이 상기 제2 단계 진행 시 상기 다공성 구조체의 표면 - 상기 다공성 구조체의 표면은, 상기 다공성 구조체와 상기 비다공성 구조체의 접합면의 반대면임 - 으로부터 상기 공극에 침투하여, 상기 다공성 구조체의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지도록 하는 범위 내에서 결정되는 것을 특징으로 하는 다공성 코팅 구조체 제조 방법.The powder penetrates the pores from the surface of the porous structure when the second step is performed-the surface of the porous structure is the opposite surface of the bonding surface between the porous structure and the non-porous structure, and the surface of the porous structure A method for manufacturing a porous coating structure, characterized in that it is determined within a range such that the porosity with respect to the periphery is greater than the porosity with respect to the periphery of the bonding surface.
  13. 제10항에 있어서,The method of claim 10,
    상기 소정의 압력은,The predetermined pressure is,
    상기 분말이 상기 다공성 구조체의 표면 - 상기 다공성 구조체의 표면은, 상기 상기 다공성 구조체와 상기 비다공성 구조체의 접합면의 반대면임 - 의 주변에만 분포하여, 상기 다공성 구조체의 표면의 주변에 대한 공극율이 상기 접합면의 주변에 대한 공극율보다 더 커지도록 하는 범위 내에서 결정되는 것을 특징으로 하는 다공성 코팅 구조체 제조 방법.The powder is distributed only around the surface of the porous structure-the surface of the porous structure is an opposite surface of the bonding surface of the porous structure and the non-porous structure-and the porosity of the surface of the porous structure is the A method for manufacturing a porous coating structure, characterized in that it is determined within a range that is greater than the porosity of the periphery of the bonding surface.
PCT/KR2019/015613 2019-04-11 2019-11-15 Porous coating structure and method for manufacturing porous coating structure WO2020209460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0042428 2019-04-11
KR1020190042428A KR102014808B1 (en) 2019-04-11 2019-04-11 Porous coating structure and method thereof

Publications (1)

Publication Number Publication Date
WO2020209460A1 true WO2020209460A1 (en) 2020-10-15

Family

ID=67807891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015613 WO2020209460A1 (en) 2019-04-11 2019-11-15 Porous coating structure and method for manufacturing porous coating structure

Country Status (2)

Country Link
KR (1) KR102014808B1 (en)
WO (1) WO2020209460A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014808B1 (en) * 2019-04-11 2019-08-27 세종대학교산학협력단 Porous coating structure and method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041726A (en) * 2002-06-18 2004-02-12 Zimmer Inc Method for attaching porous metal layer to metal substrate
JP2008194463A (en) * 2007-02-09 2008-08-28 Zimmer Technology Inc Direct pressurization for joining porous coating to substrate material used in orthopedic implant
US20130177467A1 (en) * 2009-10-08 2013-07-11 Biomet Manufacturing Corp. Method of bonding porous metal to metal substrates
JP2014091151A (en) * 2012-11-05 2014-05-19 Mitsubishi Materials Corp Method and apparatus for manufacturing porous composite metal body
KR101601320B1 (en) * 2010-11-19 2016-03-09 현대자동차주식회사 Forming method of porous metal
KR102014808B1 (en) * 2019-04-11 2019-08-27 세종대학교산학협력단 Porous coating structure and method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911566B2 (en) * 2005-12-05 2012-04-04 三菱マテリアル株式会社 MEDICAL DEVICE AND MEDICAL DEVICE SURFACE MODIFICATION METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041726A (en) * 2002-06-18 2004-02-12 Zimmer Inc Method for attaching porous metal layer to metal substrate
JP2008194463A (en) * 2007-02-09 2008-08-28 Zimmer Technology Inc Direct pressurization for joining porous coating to substrate material used in orthopedic implant
US20130177467A1 (en) * 2009-10-08 2013-07-11 Biomet Manufacturing Corp. Method of bonding porous metal to metal substrates
KR101601320B1 (en) * 2010-11-19 2016-03-09 현대자동차주식회사 Forming method of porous metal
JP2014091151A (en) * 2012-11-05 2014-05-19 Mitsubishi Materials Corp Method and apparatus for manufacturing porous composite metal body
KR102014808B1 (en) * 2019-04-11 2019-08-27 세종대학교산학협력단 Porous coating structure and method thereof

Also Published As

Publication number Publication date
KR102014808B1 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
US5604976A (en) Method of making percutaneous connector for multi-conductor electrical cables
JP7139349B2 (en) Surgical implants containing graded porous structures
EP1727497B1 (en) Method for producing implants having a textured surface
US8679279B2 (en) Methods for creating foam-like texture
CN100528102C (en) Surgical implant
RU2348374C2 (en) Insertion fixed on natural tooth part or on tooth and method of fixation thereof
WO2004101017A3 (en) Medical implants comprising biocompatible coatings
WO2020209460A1 (en) Porous coating structure and method for manufacturing porous coating structure
US7462518B2 (en) Silicone metalization
US20070123963A1 (en) Method for producing flexible, stretchable, and implantable high-density microelectrode arrays
US8070041B2 (en) Direct application of pressure for bonding porous coatings to substrate materials used in orthopaedic implants
WO2002078781A3 (en) Method and apparatus for providing hermetic electrical feedthrough
US20040243204A1 (en) Stretchable polymer-based electronic device
EP0599426A1 (en) Set of prosthetic implants and method for converting a cementable implant to a press fit implant
EP1500407A3 (en) Drug release stent coating process
JPH08173463A (en) Vital prosthetic member and its production
GB2174007A (en) Denture base
WO2013048000A2 (en) Porous cage for intervertebral fusion, and method for manufacturing same
WO2019104852A1 (en) Porous dental implant having surface inlaid with degradable layer and preparation method therefor
WO2011129533A2 (en) Method for manufacturing artificial bone
WO2019022393A2 (en) Three-dimensional cell culturing microchip having nanoporous permeable membrane attached thereto and fabrication method therefor
EP1089326A3 (en) Wafer support with a dustproof covering film and method for producing the same
GB2208800A (en) Prosthetic implant with porous pad
JPH0349766A (en) Production of porous body having excellent osteoaffinity
US20050136639A1 (en) Pin-deposition of conductive inks for microelectrodes and contact via filling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923987

Country of ref document: EP

Kind code of ref document: A1