WO2020209312A1 - Inspecting device and inspecting method - Google Patents
Inspecting device and inspecting method Download PDFInfo
- Publication number
- WO2020209312A1 WO2020209312A1 PCT/JP2020/015888 JP2020015888W WO2020209312A1 WO 2020209312 A1 WO2020209312 A1 WO 2020209312A1 JP 2020015888 W JP2020015888 W JP 2020015888W WO 2020209312 A1 WO2020209312 A1 WO 2020209312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- interest
- brightness value
- ray
- value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/02—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/044—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using laminography or tomosynthesis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/18—Investigating the presence of flaws defects or foreign matter
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to a technique for detecting a foreign substance that may be contained in an object to be inspected.
- Patent Document 1 detects an highlighted line from an X-ray transmission image of an object to be inspected, and detects a foreign substance based on the highlighted line.
- An object of the present invention is to provide an inspection device and an inspection method having high foreign matter detection accuracy in view of the above situation.
- the inspection apparatus targets an object to be inspected for X-ray photography and generates a two-dimensional X-ray image based on the detection result of the X-ray detection unit used for the X-ray photography.
- a first image generation unit and an image obtained by projecting the two-dimensional X-ray image onto a fault set at a predetermined position other than the position of the X-ray detection unit are generated, and then the generated image is two-dimensional.
- a reconstruction unit that reconstructs a projected image, which is an image, a specific unit that identifies the position of a foreign object based on the projected image, and a removal unit are provided.
- a plurality of the two-dimensional X-ray images having different positional relationships between the X-ray irradiation unit used for the X-ray photography and the X-ray detection unit are generated, and the reconstruction unit generates the plurality of the two-dimensional X-ray images.
- An image obtained by projecting each of the captured images onto a plurality of faults having different depths is generated, and then each of the generated images is reconstructed into the projected image, and the specific unit uses each of the plurality of the projected images as a foreign substance.
- the removal unit Converted to a position-specified binarized projection image, the removal unit compares a plurality of the binarized projection images obtained from images projected on a tomography of the same depth with each other, and based on the comparison result.
- the configuration is such that a false detection portion for specifying the position of a foreign object is removed (first configuration).
- the specific unit identifies the position of a foreign substance by using artificial intelligence learned from the projected image of the object to be inspected in the past (second configuration). It may be.
- the inspection device having the first or second configuration includes a second image generation unit that generates an image that two-dimensionally displays the position of the foreign matter specified by the specific unit (third configuration). Good.
- the inspection device having the first or second configuration includes a second image generation unit that generates an image that three-dimensionally displays the position of the foreign matter specified by the specific unit (fourth configuration). Good.
- the specific unit includes a division unit that divides the projected image into predetermined regions and a calculation unit that calculates an average luminance value in each of the predetermined regions.
- the luminance value of the pixel of interest is smaller than the average luminance value of the predetermined region to which the pixel of interest belongs by a predetermined value or more, the number of the first set number arranged on one side of the first direction of the pixel of interest.
- the first luminance value that becomes the maximum in the pixel is calculated
- the second luminance value that becomes the maximum in the second set number of pixels arranged on the other side in the first direction of the pixel of interest is calculated
- the first luminance value of the pixel of interest is calculated.
- the maximum third luminance value is calculated within the third set number of pixels arranged on one side of the second direction, which is a direction different from the direction, and within the fourth set number of pixels arranged on the other side of the second direction of the pixel of interest.
- the pixel of interest is specified as the position of the foreign matter, and the predetermined condition is (a) the pixel of interest with respect to the first luminance value.
- the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions.
- a calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is smaller than the average luminance value in the predetermined region to which the pixel of interest belongs by a predetermined value or more, one side of the pixel of interest in the first direction.
- the first brightness value which is the brightness value of a pixel having a larger brightness value than the focus pixel and as far as possible from the focus pixel, or the brightness value of a pixel as close as possible to the focus pixel. Then, among the second set number of pixels arranged on the other side of the first direction of the focus pixel, the brightness value of the pixel having a larger brightness value than the focus pixel and as far as possible from the focus pixel, or a pixel as close as possible to the focus pixel.
- the second luminance value which is the luminance value of the above, is calculated, and the luminance value is larger than that of the pixel of interest and the luminance value is larger than that of the pixel of interest within the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest.
- the third brightness value which is the brightness value of the pixel as far as possible from the focus pixel or the brightness value of the pixel as close as possible to the focus pixel, is calculated, and within the fourth set number of pixels arranged on the other side of the second direction of the focus pixel.
- the fourth brightness value which is the brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest or the brightness value of a pixel as close as possible to the pixel of interest.
- the pixel of interest is specified as the position of a foreign object, and the predetermined conditions are (a) the ratio of the brightness value of the pixel of interest to the first luminance value and the ratio of the luminance value of the pixel of interest to the second luminance value.
- the first condition that each of the above is equal to or less than the first threshold value, (b) the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are the second threshold values, respectively. It may be a configuration (sixth configuration) that is any one of the second condition (c) the first condition and the second condition.
- the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions.
- a calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is smaller than the average luminance value in the predetermined region to which the pixel of interest belongs by a predetermined value or more, one side of the pixel of interest in the first direction.
- the first is the average luminance value of the first set number of pixels lined up at a first predetermined position away from the focus pixel and the second set number of pixels lined up at a second predetermined position on the other side of the first direction of the focus pixel.
- the brightness value is calculated, and the third set number of pixels lined up on one side of the second direction, which is a direction different from the first direction of the pixel of interest, at a third predetermined position away from the pixel of interest, and the other of the second direction of the pixel of interest.
- the second luminance value which is the average luminance value of the fourth set number of pixels arranged on the side at a fourth predetermined position away from the pixel of interest, is calculated, and if the predetermined condition is satisfied, the pixel of interest is specified as the position of the foreign matter.
- the predetermined conditions are (a) the first condition that the ratio of the brightness value of the pixel of interest to the first luminance value is equal to or less than the first threshold value, and (b) the pixel of interest with respect to the second luminance value. It may be a configuration (seventh configuration) in which one of the second condition (c) the first condition and the second condition that the ratio of the luminance values is equal to or less than the second threshold value. ..
- the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions.
- a calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is greater than a predetermined value or more than the average luminance value in the predetermined region to which the pixel of interest belongs, one side of the pixel of interest in the first direction. Calculate the minimum first luminance value within the first set number of pixels lined up in, and calculate the smallest second luminance value within the second set number of pixels lined up on the other side of the first direction of the pixel of interest.
- the fourth luminance value which is the minimum among the fourth set number of pixels, is calculated, and if the predetermined condition is satisfied, the pixel of interest is specified as the position of the foreign matter, and the predetermined condition is (a) the first.
- the first condition that the ratio of the brightness value of the pixel of interest to the luminance value and the ratio of the luminance value of the pixel of interest to the second luminance value are equal to or higher than the first threshold value, (b) the focus on the third luminance value.
- the first condition and the second condition may be a configuration (eighth configuration) which is any one.
- the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions.
- a calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is greater than a predetermined value or more than the average luminance value in the predetermined region to which the pixel of interest belongs, one side of the pixel of interest in the first direction.
- the first brightness value which is the brightness value of a pixel whose brightness value is smaller than that of the attention pixel and is as far as possible from the attention pixel or the brightness value of a pixel as close as possible to the attention pixel is calculated. Then, among the second set number of pixels arranged on the other side of the first direction of the focus pixel, the brightness value of the pixel having a brightness value smaller than that of the focus pixel and as far as possible from the focus pixel, or a pixel as close as possible to the focus pixel.
- the second luminance value which is the luminance value of the above, is calculated, and the luminance value is smaller than that of the pixel of interest and the luminance value is smaller than that of the pixel of interest within the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest.
- the third brightness value which is the brightness value of the pixel as far as possible from the focus pixel or the brightness value of the pixel as close as possible to the focus pixel, is calculated, and within the fourth set number of pixels arranged on the other side of the second direction of the focus pixel.
- the fourth brightness value which is the brightness value of a pixel having a brightness value smaller than that of the pixel of interest and as far as possible from the pixel of interest or the brightness value of a pixel as close as possible to the pixel of interest.
- the pixel of interest is specified as the position of a foreign object, and the predetermined conditions are (a) the ratio of the brightness value of the pixel of interest to the first luminance value and the ratio of the luminance value of the pixel of interest to the second luminance value.
- the first condition that each of the above is equal to or higher than the first threshold value, (b) the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are the second threshold values, respectively.
- the configuration may be one of the second condition (c) the first condition and the second condition (the ninth configuration).
- the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions.
- a calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is greater than a predetermined value or more than the average luminance value in the predetermined region to which the pixel of interest belongs, one side of the pixel of interest in the first direction.
- the first is the average luminance value of the first set number of pixels lined up at a first predetermined position away from the focus pixel and the second set number of pixels lined up at a second predetermined position on the other side of the first direction of the focus pixel.
- the brightness value is calculated, and the third set number of pixels lined up on one side of the second direction, which is a direction different from the first direction of the pixel of interest, at a third predetermined position away from the pixel of interest, and the other of the second direction of the pixel of interest.
- the second luminance value which is the average luminance value of the fourth set number of pixels arranged on the side at a fourth predetermined position away from the pixel of interest, is calculated, and if the predetermined condition is satisfied, the pixel of interest is specified as the position of the foreign matter.
- the predetermined conditions are (a) the first condition that the ratio of the brightness value of the pixel of interest to the first luminance value is equal to or higher than the first threshold value, and (b) the pixel of interest with respect to the second luminance value. It may be a configuration (10th configuration) in which one of the second condition (c) the first condition and the second condition that the ratio of the luminance values becomes equal to or higher than the second threshold value. ..
- the inspection method is an inspection method using an X-ray imaging device including an X-ray irradiation unit and an X-ray detection unit, and X-rays an object to be inspected by the X-ray imaging apparatus.
- a storage step for storing a two-dimensional X-ray image obtained by radiography and an image obtained by projecting the two-dimensional X-ray image onto a fault set at a predetermined position other than the position of the X-ray detection unit are generated.
- the storage step includes a reconstruction step of reconstructing the generated image into a projected image which is a two-dimensional image, a specific step of identifying the position of a foreign object based on the projected image, and a removal step.
- a plurality of the two-dimensional X-ray images having different positional relationships between the object to be inspected, the X-ray irradiation unit used for the X-ray photography, and the X-ray detection unit are stored. Images obtained by projecting a plurality of the two-dimensional X-ray images onto a plurality of faults having different depths are generated, and then each of the generated images is reconstructed into the projected images, and in the specific step, a plurality of images are generated. Each of the projected images is converted into a binarized projected image in which the position of the foreign substance is specified, and in the removal step, the plurality of the binarized projected images obtained from the images projected on the tomography of the same depth are used. Are compared, and the erroneous detection portion for specifying the position of the foreign matter is removed based on the comparison result (11th configuration).
- the detection accuracy of foreign matter can be improved.
- FIG. 5A Perspective view showing an example of the positional relationship between a pixel group which is a part of the detection surface of the X-ray detector and one voxel.
- FIG. 5A Perspective view showing an example of the positional relationship between a pixel group which is a part of the detection surface of the X-ray detector and one voxel.
- FIG. 5A Perspective view showing an example of the positional relationship between a pixel group which is a part of the detection surface of the X-ray detector and one voxel.
- FIG. 6A The figure which shows the thickness of a voxel with respect to the X-ray incident direction Diagram showing an example of an oblique quadrangular prism that approximates a voxel Perspective view showing a rectangle formed in a voxel Figure showing another example of an oblique prism that approximates a voxel Figure showing another example of an oblique prism that approximates a voxel Figure showing another example of an oblique prism that approximates a voxel Figure showing another example of an oblique prism that approximates a voxel Figure showing another example of an oblique prism that approximates a voxel
- FIG. 1 is a diagram showing a schematic configuration of an inspection device according to an embodiment of the present invention.
- the inspection device 100 shown in FIG. 1 includes a first X-ray irradiation unit 1A, a second X-ray irradiation unit 1B, a first X-ray detection unit 2A, a second X-ray detection unit 2B, a belt conveyor 3, a CPU 4, and a ROM 5. , RAM 6, VRAM 7, display unit 8, HDD 9, and input unit 10.
- the image processing device for processing the image is composed of the CPU 4, the ROM 5, the RAM 6, and the HDD 9.
- the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B each irradiate the object T1 to be inspected with X-rays.
- the X-rays emitted from the first X-ray irradiation unit 1A and the X-rays emitted from the second X-ray irradiation unit 1B each have a fan beam shape extending along the Y axis, and more specifically, a narrow fan beam shape.
- the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B may be shared to form a single X-ray irradiation unit.
- the X-rays emitted from the single X-ray irradiation unit may have a wide fan beam shape or a cone beam shape.
- the X-ray irradiation direction from the first X-ray irradiation unit 1A to the first X-ray detection unit 2A and the X-ray irradiation direction from the second X-ray irradiation unit 1B to the second X-ray detection unit 2B are different from each other. ..
- the irradiation direction of the X rays emitted from the first X-ray irradiation unit 1A to the first X-ray detection unit 2A is the direction orthogonal to the X-axis and the Y-axis
- the second X-ray irradiation unit 1B to the second X-ray is a direction inclined from the direction orthogonal to the X-axis and the Y-axis.
- the first X-ray detection unit 2A and the second X-ray detection unit 2B each output a digital amount of electric signals corresponding to the incident X-rays at a constant frame rate.
- the first X-ray detection unit 2A and the second X-ray detection unit 2B are line sensors extending along the Y-axis, respectively. Since the inspection device 100 employs the tomosynthesis method, the first X-ray detection unit 2A and the second X-ray detection unit 2B each have a plurality of X-ray detection elements in the X-axis direction as well.
- the first X-ray detection unit 2A and the second X-ray detection unit 2B can each collect incident X-rays at a predetermined frame rate as image data of a digital electric amount corresponding to the amount of the X-rays.
- this collected data is referred to as "frame data" (an example of a two-dimensional X-ray photographed image).
- the first X-ray detection unit 2A and the second X-ray detection unit 2B may be shared to form a single X-ray detection unit. However, when the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B are shared, the first X-ray detection unit 2A and the second X-ray detection unit 2B are not shared.
- the belt conveyor 3 is an object to be inspected placed on the belt with respect to the pair of the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the pair of the second X-ray irradiation unit 1B and the second X-ray detection unit 2B.
- the object to be inspected T1 is placed on the X-axis with respect to the pair of the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the pair of the second X-ray irradiation unit 1B and the second X-ray detection unit 2B.
- the first moving mechanism (belt conveyor 3) that moves toward the negative side was used, but instead of the first moving mechanism, the pair of the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the second X-ray irradiation unit 1B
- a second movement mechanism that moves the pair of the second X-ray detection unit 2B and the second X-ray detection unit 2B toward the positive side of the X-axis with respect to the object T1 to be inspected may be used.
- the CPU 4 controls the entire inspection device 100 according to the programs and data stored in the ROM 5 and the HDD 9.
- ROM 5 records fixed programs and data.
- the RAM 6 provides working memory.
- the CPU operates so as to perform a function of generating an image according to a program stored in the HDD 9. That is, the CPU 41 also serves as an image generation unit that generates an image.
- VRAM 7 temporarily stores image data.
- the display unit 8 displays an image based on the image data stored in the VRAM 7.
- the HDD 9 has various types of radiography control programs for controlling X-ray photography operations, an image reconstruction processing program for generating a reconstructed image, a foreign matter position identification processing program for identifying the position of a foreign matter, a position correction program, and the like. Stores various data such as setting values of various parameters and image data used when executing a program and various programs.
- the input unit 10 is, for example, a keyboard, a pointing device, or the like, and inputs the content of the user operation.
- the inspection device 100 performs X-ray imaging (step S1). Specifically, while the belt conveyor 3 is moving the object to be inspected T1, X-rays are exposed from the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B. The X-rays emitted from the first X-ray irradiation unit 1A pass through the imaging region of the object to be inspected T1 and enter the first X-ray detection unit 2A, and the X-rays emitted from the second X-ray irradiation unit 1B are the objects to be inspected.
- the first X-ray detection unit 2A and the second X-ray detection unit 2B detect incident X-rays at a predetermined frame rate and sequentially output two-dimensional digital data of the corresponding digital electric amount in frame units. .. This frame data is stored in the HDD 9.
- the inspection device 100 generates a projected image obtained by projecting onto a tomography set at a predetermined position excluding the positions of the X-ray detection units 2A and 2B (step S2). Specifically, the inspection device 100 generates an image in which the frame data is projected onto each of the 60 layers of tomography set at predetermined positions other than the positions of the X-ray detectors 2A and 2B, and then the generated image is generated. Is reconstructed into a two-dimensional image (projected image). As a method of projecting frame data onto a certain fault to obtain one projected image, for example, the frame data is projected onto the central plane in the depth direction (one fault plane) of the certain fault.
- a method of obtaining the one projected image, a method of projecting the frame data on the uppermost surface (one tomographic plane) in the depth direction of the one fault, and obtaining the one projected image, the above frame data A method of obtaining the one projected image by projecting onto the lowest surface (one fault plane) in the depth direction of one fault, and projecting the frame data on each of a plurality of fault planes included in the one fault. Examples thereof include a method of obtaining the above-mentioned one projected image by synthesizing a plurality of projected images (for example, simple averaging process, weighted averaging process, etc.).
- the projected image obtained by projecting onto each tomographic image set at a predetermined position other than the positions of the X-ray detectors 2A and 2B is a projected image on each tomographic image obtained based on the principle of tomosynthesis. ..
- the direction perpendicular to the X-axis and the Y-axis is the depth direction of the fault, and the first X-ray detection unit 2A and the second X-ray detection unit 2B are from the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B side.
- a 60-layer fault is set at a predetermined position excluding the positions of the X-ray detectors 2A and 2B at a pitch of 0.5 mm on the side.
- the predetermined positions other than the positions of the X-ray detection units 2A and 2B include the position of the object to be inspected T1, but the present invention is not limited thereto.
- the 60-layer projected image derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A is stored in the HDD 9.
- the projected images of the 60 layers derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B are also stored in the HDD 9.
- the inspection device 100 identifies the position of the foreign matter for each projected image (step S3).
- the details of the method for identifying the position of the foreign matter will be described later.
- the detection accuracy of the foreign matter can be improved as compared with the case where the position of the foreign matter is specified for an X-ray image such as a simple X-ray transmission image.
- the result of specifying the foreign matter position can be, for example, a binarized image showing the position of the foreign matter and the position other than the foreign matter with different luminance values.
- the inspection device 100 removes the erroneous detection portion for specifying the position of the foreign matter (step S4).
- the inspection device 100 includes a projection image derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and a projection image derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B at the same depth.
- the image is specified based on the position of the foreign matter specified based on the projected images derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the projected images derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B.
- the position of the foreign matter is compared with that of the foreign matter, and the erroneous detection portion of the foreign matter is removed based on the comparison result. More specifically, the inspection device 100 adopts only the pixel identified as the position of the foreign matter in both projected images as the position of the foreign matter by the above comparison, and at the position of the foreign matter in only one projected image. Do not use the identified pixel as the position of the foreign object.
- the foreign matter existing in the fault to be processed is detected at the same coordinate position of both projected images even if the irradiation angle of X-rays is different, whereas it is present in the fault to be processed.
- the inspection device 100 executes this false detection partial removal process on all faults.
- the inspection device 100 corrects the position (step S5).
- the details of the position correction will be described later.
- the inspection device 100 generates an output image and displays the output image on the display unit 8 (step S6).
- the output image for example, an image obtained by adding all the projected images showing the positions of the foreign objects reflecting the false detection portion removal process and the position correction, that is, an image that displays the positions of the foreign objects in two dimensions can be mentioned. it can.
- the output image there is an image obtained by stacking each projection image showing the position of the foreign matter reflecting the false detection portion removal process and the position correction, that is, an image that displays the position of the foreign matter in three dimensions. Can be done.
- step S2 An example of the process of step S2 described above, that is, a process of generating an image obtained by projecting frame data onto a tomographic image and then reconstructing the generated image into a projected image will be described with reference to the flowchart of FIG.
- the CPU 4 reads the defect registration data and creates a defect table (step S11).
- step S12 the CPU 4 reads the density correction image and creates the density correction data. Note that, unlike the present embodiment, steps S11 and S12 may be executed before step S1.
- the CPU 4 reads the projection data (frame data) (step S13), and performs defect correction and density correction on the projection data (step S14).
- each projection data read in step S13 regarding the projection data derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A, only the voxels through which the X-rays exposed from the first X-ray irradiation unit 1A are transmitted.
- the calculation may be performed, and the projection data derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B need to be calculated only for the voxels through which the X-rays exposed from the second X-ray irradiation unit 1B are transmitted. ..
- the CPU 4 may set the range of voxels to be calculated at each fault for each frame data in advance according to the size of the object T1 to be inspected.
- the CPU 4 calculates the actual position coordinates of each voxel vertex occupying the reconstructed area (step S15).
- the CPU 4 sequentially reads the projection data obtained in the data collection process in step S13 for each frame (step S16). In the process of one step S16, one frame of projection data is read.
- the CPU 4 convolves and integrates the projection data and the filter function (step S17).
- the CPU 4 performs coordinate conversion of the system so as to be the coordinate system shown in FIG. 4 for each calculation result of the convolution integral (step S18).
- the second X-ray irradiation unit 1B is the origin and the center position of the second X-ray detection unit 2B is on the Z axis.
- the system including the second X-ray irradiation unit 1B, the reconstruction region R1, and the second X-ray detection unit 2B is rotationally moved and translated so as to be in the positive direction of.
- the Z-axis is an axis orthogonal to the X-axis and the Y-axis
- the direction from the first X-ray irradiation unit 1A to the first X-ray detection unit 2A is the positive direction of the Z-axis.
- the X-rays incident on the pixel of interest are attenuated when passing through the subject, and the X-rays captured by the X-ray detection unit 2 are reduced. That is, when the reconstruction region R1 shown in FIG. 4 composed of a plurality of voxels is set, X-rays transmitted through the voxels are incident on the pixel of interest, and the X-rays are attenuated by the amount of the voxels transmitted by the X-rays. It will be reflected in the brightness value of the pixel of interest.
- the X-rays incident on the pixel of interest pass through a part of multiple voxels in the fault, the X-rays are attenuated according to the volume ratio of the part where the X-rays of each voxel are transmitted, and the degree of attenuation is the degree of attenuation of the pixel of interest. It is reflected in the brightness value.
- each voxel transmitted with X-rays incident on the pixel of interest contributes to the brightness value of the pixel of interest at the ratio of the volume ratio of the portion of each voxel transmitted with X-rays.
- the X-rays of each voxel are transmitted at each divided value.
- the X-ray attenuation of the affected part corresponds to the X-ray attenuation of the affected part.
- FIG. 5A is a perspective view showing an example of the positional relationship between the pixel group PXG, which is a part of the detection surface of the X-ray detection unit 2, and the voxels VX1 to VX4.
- FIG. 5B is a top view showing the positional relationship shown in FIG. 5A.
- the pixel group PXG is composed of pixels PX1 to PX16.
- voxels VX1 to VX4 become voxels through which X-rays incident on the pixel of interest have passed.
- the X-ray attenuation reflected in the pixel of interest corresponds to the brightness value of the pixel of interest and the total volume of the portion of all voxels in which the X-rays incident on the pixel of interest are transmitted.
- the product of the product of the volume ratio of the X-ray-transmitted portion of one voxel in all voxels is summed for each voxel in the whole voxel.
- the X-rays that pass through the voxel of interest are incident on a plurality of pixels, so that the effect of X-ray attenuation on the voxel of interest is applied to each pixel according to the volume ratio corresponding to each pixel.
- the ratio (volume ratio) of the effect of the voxel of interest on that pixel among the affected X-ray attenuation is taken as the multiplication value with the brightness value, and the multiplication value is integrated for each pixel.
- FIG. 6A is a perspective view showing an example of the positional relationship between the pixel group PXG, which is a part of the detection surface of the X-ray detection unit 2, and the voxel VX1.
- FIG. 6B is a top view showing the positional relationship shown in FIG. 6A.
- the X-ray attenuation of the entire voxel VX1 of interest is (1) the brightness value of the pixel PX5 and the pixel of the voxel VX1 of interest with respect to the volume of the voxel VX1 of interest.
- Multiplying value with the volume ratio of (3) Multiplying value of the brightness value of the pixel PX7 with the volume ratio of the portion through which the X-ray transmitted to the pixel PX7 of the voxel VX1 of interest is transmitted to the volume of the voxel VX1 of interest, ( 4) Multiplying the brightness value of pixel PX9 and the ratio of the volume of the portion through which X-rays incident on pixel PX9 of voxel VX1 of interest to the volume of voxel VX1 of interest, (5) the brightness value of pixel PX10 and attention Multiplying the volume of the voxel VX1 with respect to the volume of the portion through which the X-ray incident on the pixel PX10 of the voxel VX1 is transmitted, and (6) the brightness value of the pixel PX11 and the volume of the voxel VX1 of interest with respect to the volume of the voxel VX1 It is
- the detection surface of the X-ray detection unit 2 is projected to the voxel position in the X-ray incident direction for each voxel.
- the voxel may be projected to the position of the detection surface of the X-ray detection unit 2 in the X-ray incident direction.
- the thickness of the voxel with respect to the X-ray incident direction is not uniform within the voxel VX1, depending on the pixel. X-rays that have passed through the thin part of the voxel may be incident, and if this is calculated exactly, the calculation time for the back projection will be enormous.
- the rectangular parallelepiped voxel is approximated to an oblique quadrangular prism having the same volume as the rectangular parallelepiped voxel and having a uniform thickness with respect to the X-ray incident direction, and back projection is performed.
- the oblique quadrangular prism has two bottom surfaces by translating a pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction on a plane including both or one of the opposing constituent surfaces. It has the same volume as a rectangular parallelepiped voxel and has a uniform thickness with respect to the X-ray incident direction. Even if such an approximation is performed, the image quality of the projected image is hardly affected.
- FIG. 8A is a diagram showing an example of an oblique quadrangular prism that approximates voxel VX1.
- the oblique quadrangular prism OP1 shown in FIG. 8A has rectangles RT2 and RT3 as bottom surfaces, and has a uniform thickness with respect to the X-ray incident direction.
- the rectangle RT1 is a side of each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B. It is a rectangle with the midpoint as the apex.
- FIG. 8B A perspective view of the rectangle RT1 formed in the voxel VX1 of interest is as shown in FIG. 8B.
- the rectangular RT2 detects the X-rays on the constituent planes of the voxel VX1 shown in FIGS. 6A and 6B, which are closer to the X-ray detector 2 on the pair of opposed constituent planes having overlapping regions when viewed from the X-ray incident direction. It is translated in parallel on a plane including the facing constituent surfaces closer to the portion 2.
- the rectangle RT3 detects the X-ray detection unit 2 of the pair of facing constituent planes having overlapping regions when viewed from the X-ray incident direction among the constituent planes of the voxel VX1 shown in FIGS. 6A and 6B.
- the portion 2 is translated in parallel on a plane including the distant facing configuration surface.
- the outer circumferences of the rectangles RT1 to RT3 coincide with each other when viewed from the X-ray incident direction.
- the X-ray attenuation of the entire boxel VX1 of interest is (1) the brightness value of the pixel PX5 and the X-ray incident on the pixel PX5 of the rectangle RT1 with respect to the area of the rectangle RT1.
- Multiplying value with the ratio of the area of the transmitted part (2) Multiplying the brightness value of the pixel PX6 with the ratio of the area of the part where the X-ray incident on the pixel PX6 of the rectangle RT1 is transmitted to the area of the rectangle RT1 , (3) Multiplying the brightness value of the pixel PX7 by the ratio of the area of the portion where the X-ray incident on the pixel PX7 of the rectangle RT1 is transmitted to the area of the rectangle RT1, (4) The brightness value of the pixel PX9 and the rectangle.
- each vertex of the rectangle RT1 can be calculated from the coordinates of each vertex of the voxel VX1 of interest. Further, each of the above areas can be calculated from the X-coordinate and Z-coordinate of the rectangle RT1 and the X-coordinate and Y-coordinate of each lattice point of the pixel formed on the detection surface of the X-ray detection unit 2.
- the rectangle RT1 is the midpoint of each side of the voxel VX1 of interest other than the side included in the pair of facing constituent planes having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 of interest. It is a rectangle whose apex is.
- the position setting of the oblique quadrangular prism that approximates the voxel VX1 of interest is not limited to the setting of the present embodiment.
- an oblique quadrangular prism that approximates the voxel VX1 of interest is used.
- the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT4. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of the RT4 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT4 with respect to the area of the rectangle RT4 are transmitted.
- Multiplying value with the ratio of the area of the part (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT4 is transmitted to the area of the rectangle RT4, (4) ) Multiplying the brightness value of the pixel PX9 and the ratio of the area of the portion where the X-ray incident on the pixel PX9 of the rectangle RT4 to the area of the rectangle RT4, (5) the brightness value of the pixel PX10 and the area of the rectangle RT4 The multiplication value of the ratio of the area of the portion where the X-ray incident on the pixel PX10 of the rectangle RT4 is transmitted, (6) the brightness value of the pixel PX11 and the X-ray incident on the pixel PX11 of the rectangle RT4 with respect to the area of the rectangle RT4.
- the rectangle RT4 is farther from the X-ray detection unit 2 of the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B.
- the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT5. Multiplying the area ratio of the area where the X-ray incident on the pixel PX5 of the RT5 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT5 with respect to the area of the rectangle RT5 are transmitted.
- Multiplying value with the ratio of the area of the part (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT5 is transmitted to the area of the rectangle RT5, (4) ) Multiplying the brightness value of pixel PX9 and the ratio of the area of the portion where X-rays incident on pixel PX9 of rectangle RT5 to the area of rectangle RT5, (5) the brightness value of pixel PX10 and the area of rectangle RT5 The multiplication value of the ratio of the area of the portion where the X-ray incident on the pixel PX10 of the rectangle RT5 is transmitted, (6) the brightness value of the pixel PX11, and the X-ray incident on the pixel PX11 of the rectangle RT5 with respect to the area of the rectangle RT5.
- the rectangle RT5 is closer to the X-ray detection unit 2 of the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B.
- the X-ray attenuation of the entire boxel VX1 of interest is (1) the brightness value of the pixel PX5 and the rectangle with respect to the area of the rectangle RT6. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of the RT6 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT6 with respect to the area of the rectangle RT6 are transmitted.
- Multiplying value with the ratio of the area of the part (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT6 is transmitted to the area of the rectangle RT6, (4) ) Multiplying the brightness value of the pixel PX9 and the ratio of the area of the portion where the X-ray incident on the pixel PX9 of the rectangle RT6 to the area of the rectangle RT6, (5) the brightness value of the pixel PX10 and the area of the rectangle RT6.
- the rectangle RT6 is each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces in which the overlapping regions exist when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B. Is a rectangle whose apex is a division point that divides the X-ray detector 2 from the far side at a ratio of 1: 2.
- the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT7. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of the RT7 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT7 with respect to the area of the rectangle RT7 are transmitted.
- Multiplying value with the ratio of the area of the part (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT7 is transmitted to the area of the rectangle RT7, (4) ) Multiplying the brightness value of pixel PX9 and the ratio of the area of the portion where X-rays incident on pixel PX9 of rectangle RT7 to the area of rectangle RT7, (5) the brightness value of pixel PX10 and the area of rectangle RT7 The multiplication value of the ratio of the area of the portion where the X-ray incident on the pixel PX10 of the rectangle RT7 is transmitted, (6) the brightness value of the pixel PX11, and the X-ray incident on the pixel PX11 of the rectangle RT7 with respect to the area of the rectangle RT7.
- the rectangle RT7 is each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B. Is a rectangle whose apex is a division point that divides the X-ray detector 2 from the far side at a ratio of 2: 1.
- FIG. 13 is a diagram showing an example of a case where X-rays transmitted through the voxel VX1 of interest are obliquely incident on the detection surface of the X-ray detection unit 2 in the Y-axis direction. Also in FIG. 13, similarly to FIGS. 7 to 12, a rectangular parallelepiped voxel (for example, the voxel of interest VX1 in FIG.
- the oblique quadrangular prism has two bottom surfaces by translating a pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction on a plane including both or one of the opposing constituent surfaces. It has the same volume as a rectangular parallelepiped voxel and has a uniform thickness with respect to the X-ray incident direction.
- the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT1. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of RT1 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT1 with respect to the area of the rectangle RT1 are transmitted.
- Multiplying value with the ratio of the area of the part (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT1 is transmitted to the area of the rectangle RT1, (4) ) Multiplying the brightness value of the pixel PX9 and the ratio of the area of the portion where the X-ray incident on the pixel PX9 of the rectangle RT1 is transmitted to the area of the rectangle RT1, (5) the brightness value of the pixel PX10 and the area of the rectangle RT1.
- the rectangle RT1 is formed on each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 of interest. It is a rectangle with the midpoint as the apex.
- voxels VX1 are shown in FIGS. 6A and 6B, the same back projection is performed on all voxels in the reconstruction region R1.
- a Cartesian coordinate system defined by the X-axis and the Z-axis shown in FIG. 4 and the Y-axis orthogonal to them may be used, and the moving diameter r, the first declination ⁇ , and the first deviation angle ⁇ are used.
- a polar coordinate system defined by an argument ⁇ of 2 may be used.
- the distance from the center (X-ray source) of the X-ray irradiation unit 1 to one voxel is defined as the moving diameter r.
- the vertical field angle theta 1 necessary camera from the center of the X-ray irradiation unit 1 (X-ray source) from the end of one voxel to the end is very small, approximating the sin [theta 1 to theta 1 Can be done.
- the lateral angle phi 1 necessary camera from the center of the X-ray irradiation unit 1 (X-ray source) from the end of one voxel to the end is very small, approximating the sin [phi 1 to phi 1 be able to.
- the shape of the voxel is a rectangular parallelepiped, but the rectangular parallelepiped also includes a cube, which is a special example in which the length, width, and height are all the same.
- the constituent planes of the voxel and the cross-sections of the voxels parallel to the constituent planes are rectangular in shape, but the rectangle also includes a square, which is a special example of equal length and width.
- the pair of opposing configuration surfaces are among the constituent surfaces of the voxel of interest.
- It may be selected as a pair of facing configuration surfaces having overlapping regions when viewed from the X-ray incident direction. Further, when there are three pairs of facing constituent planes in which overlapping regions exist at points among the constituent planes of the voxel of interest, only the pair of facing constituent planes are among the constituent planes of the voxel of interest. It may be selected as a pair of facing configuration surfaces having overlapping regions when viewed from the X-ray incident direction.
- step S19 the reconstruction calculation using the FBP method in step S19 is completed.
- the CPU 4 determines whether or not the frame data has ended (step S20), and if not, returns to step S16 and repeats the above-described operation.
- the CPU 4 calculates the number of times (n) that X-rays have passed through each voxel (step S21). ), The final result is divided by n (step S22).
- step S3 Positioning of foreign matter> An example of the process of step S3 described above, that is, the process of specifying the position of the foreign matter for each projected image will be described with reference to the flowchart of FIG.
- the CPU 4 divides the projected image into predetermined areas (for example, 16 pixels ⁇ 16 pixels areas) (step S31). If there is a part of the projected image that is not filled with a predetermined area, the edge part of the projected image is excluded from the inspection target, and the position of the predetermined area group is set so that the predetermined area group is located in the center of the projected image. It may be set.
- predetermined areas for example, 16 pixels ⁇ 16 pixels areas
- the CPU 4 calculates the average luminance value L1 in each of the predetermined regions (step S32).
- the CPU 4 determines whether or not the brightness value L2 of the pixel of interest is smaller than the average brightness value L1 in the predetermined region to which the pixel of interest belongs by a predetermined value V1 or more (step S33).
- the predetermined value V1 for example, the standard deviation of the brightness value of each pixel in the predetermined region to which the pixel of interest belongs can be mentioned.
- the CPU 4 positions the pixel of interest as a foreign object. Not specified as.
- step S33 when it is determined that the luminance value L2 of the pixel of interest is smaller than the average luminance value L1 in the predetermined region to which the pixel of interest belongs by a predetermined value V1 or more (YES in step S33), the process proceeds to step S34.
- step S34 the CPU 4 calculates the maximum first brightness value among the first set number of pixels arranged on the negative side in the horizontal direction of the pixel of interest, and the second set number of pixels arranged on the positive side in the horizontal direction of the pixel of interest. Calculate the maximum second brightness value within the pixel, calculate the maximum third brightness value within the third set number of pixels arranged on the negative side in the vertical direction of the pixel of interest, and line up on the positive side in the vertical direction of the pixel of interest.
- the fourth brightness value which is the maximum within the fourth set number of pixels, is calculated.
- the first set number to the fourth set number may all have the same value, or may have two or more and four or less different values. If a predetermined area is located at the edge of the projected image and at least one of the first set number to the fourth set number cannot be secured, the number of pixels that can be secured is used, and if it cannot be secured at all. The pixel is excluded from inspection.
- the CPU 4 determines whether or not the ratio of the brightness value L2 of the pixel of interest to the first brightness value and the ratio of the brightness value L2 of the pixel of interest to the second brightness value are equal to or less than the threshold value TH1 (step S35). ..
- step S37 When it is determined that the ratio of the brightness value L2 of the pixel of interest to the first brightness value and the ratio of the brightness value L2 of the pixel of interest to the second brightness value are each equal to or less than the threshold value TH1 (YES in step S35), step S37 described later. Move to.
- step S35 when it is not determined that the ratio of the brightness value L2 of the pixel of interest to the first brightness value and the brightness value L2 of the pixel of interest to the second brightness value are each equal to or less than the threshold value TH1 (NO in step S35), step. Move to S36.
- step S36 the CPU 4 determines whether or not the ratio of the brightness value L2 of the pixel of interest to the third brightness value and the ratio of the brightness value L2 of the pixel of interest to the fourth brightness value are each equal to or less than the threshold value TH1 (step S36). ).
- the threshold value used in step S35 and the threshold value used in step S36 are set to the same value, but they may be different values from each other. Further, unlike the present embodiment, in step S35, it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the first brightness value is equal to or less than the threshold value TH1.
- step S35 it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the second brightness value is equal to or less than the threshold value TH1.
- step S36 it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the third brightness value is equal to or less than the threshold value TH1.
- step S36 it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the fourth brightness value is equal to or less than the threshold value TH1.
- step S37 When it is determined that the ratio of the brightness value L2 of the pixel of interest to the third luminance value and the luminance value L2 of the pixel of interest to the fourth luminance value are each equal to or less than the threshold value TH1 (YES in step S36), step S37 described later. Move to.
- the CPU 4 Does not specify the pixel of interest as the position of the foreign object. It should be noted that, instead of immediately confirming that the pixel of interest is not specified as the position of the foreign matter, the size of the predetermined region and the value of the threshold value TH1 are changed to return to step S35, and the process proceeds from step S35 or step S36 to step S37. You may try to do it.
- the size of the predetermined region and the value of the threshold value TH1 may be changed not only once but also twice or more.
- step S37 the CPU 4 specifies the pixel of interest as the position of the foreign object.
- the detection accuracy of the foreign matter can be improved.
- the object to be inspected T1 for example, "fish” can be mentioned.
- the foreign matter is a "small bone”.
- the processing of the flowchart of FIG. 14 can be applied when the attenuation coefficient of the foreign matter is larger than the attenuation coefficient of the object T1 to be inspected (excluding the foreign matter).
- the projected image is a black-and-white inverted image
- "small” is replaced with "large”
- "maximum” is replaced with "minimum”
- "threshold value TH1 or less” is replaced. It may be replaced with "threshold TH1 or higher”.
- the processing of the flowchart of FIG. 14 is not applied as it is, but is "small” in the processing of the flowchart of FIG. Is replaced with “large”, “maximum” is replaced with “minimum”, and “threshold TH1 or less” is replaced with “threshold TH1 or more".
- the processing of the flowchart of FIG. 14 may be applied as it is.
- each projected image after the reconstruction calculation is a projection onto the tomography when the inspected object T1 is viewed from the X-ray source, the position of the projected inspected object T1 shifts if the irradiation angle is different. In order to correct this deviation, the CPU 4 performs position correction as described above (step S5).
- an arbitrary fault used as a correction reference when the brightness of a voxel on a fault other than the arbitrary fault used as a correction reference is projected onto an arbitrary fault used as a correction reference.
- position correction is performed to match the horizontal and vertical lengths of the projected images after the reconstruction calculation.
- Projections to any voxel used as a correction criterion for voxel brightness on a fault other than any fault used as a correction criterion should normally be calculated by examining the X-ray transmission path for all pixels in each frame.
- J2 The position correction will be described in detail with reference to FIG. 15 in which voxels whose height direction is a predetermined position are arranged in a straight line for each fault for convenience.
- a, b, and c are arbitrary natural numbers.
- step S5 An example of the position correction in step S5 according to the above-mentioned concept will be described with reference to the flowchart shown in FIG.
- the CPU 4 reads the number of voxels of each fault in the reconstruction area R1 from the HDD 9 (step S41).
- the CPU 4 reads the data of the brightness value cal (i, j, k) of each voxel after the reconstruction calculation calculated in step S22 from the HDD 9 (step S42).
- i is a variable for specifying the coordinates (position) of the target voxel in the X-axis direction shown in FIG. 1
- j is a variable for specifying the coordinates (position) of the target voxel in the Y-axis direction shown in FIG.
- k is a variable to identify the fault to which the target voxel belongs.
- the CPU 4 reads from the HDD 9 the coordinates of the voxel through which the X-rays incident on the center of the X-ray detection unit 2 pass for each frame and each fault, and passes through the voxel in which the Y-axis direction of each fault is maximum.
- the ratio of the distances in the Y-axis direction of each line connecting the radiation source and the X-ray detection unit 2 is read from the HDD 9 (step S43).
- the CPU 4 uses the reading result of step S43 to transmit the n (i) th X-ray among the N (i) frames that pass through the voxels at the X-axis coordinate i on the reference fault lay.
- the X-ray coordinates ii (i, k, n (i)) of the voxel of a certain fault k are calculated for each frame and each fault (step S44).
- step S43 uses the reading result of step S43 to transmit the h (j) th X-ray of the H (j) frames that pass through the voxel at the Y-axis coordinate k on the reference fault lay.
- the Y-axis coordinates kk (k, k, h (j)) of the voxels of a certain fault k are calculated for each frame and each fault (step S45).
- the CPU 4 projects the luminance value of the boxel of the fault k onto the reference fault lay in a loop of the X-axis coordinates i, Y-axis coordinates j, n (i), h (j) of the box cell, and the luminance value datawa ( i, j, k) is calculated from the luminance value cal (ii, jj, k) of the point (ii, jj, k) on the fault k (step S46).
- axis coordinates be the real number i k expressed by the following equation (5).
- ⁇ 1 + ⁇ 2-1 is the number of continuous voxels in which the X-rays of the frame on the reference fault lay are not transmitted.
- the constituent surfaces of the rectangular parallelepiped voxels constituting the reconstruction region instead of back-projecting the rectangular parallelepiped voxels constituting the reconstruction region onto the voxels, the constituent surfaces of the rectangular parallelepiped voxels constituting the reconstruction region.
- back projection is performed on one of the pair of facing constituent planes having overlapping regions when viewed from the X-ray incident direction, or on the cross section of the voxel parallel to the facing constituent planes, so that the calculation time for back projection can be reduced. It can be shortened significantly. Therefore, the projected image can be reconstructed with a small amount of reconstruction calculation using the FBP method.
- each projected image after the reconstruction calculation is not uniformly enlarged or reduced in each of the horizontal and vertical directions to perform position correction, but a certain fault other than an arbitrary fault used as a correction reference.
- Position correction is performed based on the brightness of the voxel on the arbitrary fault used as the correction reference when projected onto an arbitrary fault using the brightness of the above voxel as the correction reference.
- the horizontal and vertical lengths of the projected images after the reconstruction calculation are matched by the position correction, but the horizontal lengths of the projected images after the reconstruction calculation are different. If this is not a problem, the vertical length of each projected image after reconstruction calculation may be matched by position correction, and the vertical length of each projected image after reconstruction calculation may be matched. If the difference does not matter much, the lengths of each projected image after the reconstruction calculation may be matched only in the lateral direction by the position correction.
- the horizontal and vertical lengths of the projected images after the reconstruction calculation are matched by the position correction, but the horizontal and vertical lengths of the projected images after the reconstruction calculation are matched by the position correction.
- the lengths in the directions may be substantially the same. That is, for example, the side of each projected image after the position correction and the reconstruction calculation is not inconvenient when comparing the projected images of a plurality of layers with each other and comparing the state of the object T1 to be inspected according to the tomographic depth. There may be differences in directional and vertical lengths.
- step S4 the false detection partial removal process of step S4 is executed, but if the specification that requires the foreign matter detection accuracy is satisfied without executing the false detection partial removal process of step S4, step S4 The false detection partial removal process may be omitted.
- step S4 When omitting the erroneous detection portion removal process in step S4, either the pair of the first X-ray irradiation unit 1A and the first X-ray detection unit 2A or the pair of the second X-ray irradiation unit 1B and the second X-ray detection unit 2B is used. It is recommended to remove it from the inspection device 100.
- step S4 in the erroneous detection portion removal process in step S4, the position of the foreign matter specified based on the projected images derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A, and the second X-ray irradiation unit 1B and the second X-ray irradiation unit 1B.
- the position of the foreign matter specified based on the projected image derived from the 2X ray detection unit 2B was compared, and the false detection part of the foreign matter was removed based on the comparison result, but this false detection part removal process is just an example. Is.
- the inspection device 100 is provided with the first to m (m is a natural number of 3 or more) X-ray irradiation units and the first to mX-ray detection units, which have different X-ray irradiation directions, and the k (k is). Any natural number of m or less) X-rays irradiated from the X-ray irradiation unit and transmitted through the object T1 to be inspected may be incident on the kX-ray detection unit.
- the position of the foreign matter is specified based on the k-th projected image, which is a projected image obtained by the X-rays emitted from the kX-ray irradiation unit, and the first to mth projected images of the same depth are respectively.
- the positions of the foreign substances specified based on the above are compared with each other, and the erroneous detection portion of the position of the foreign matter may be removed based on the comparison result.
- step S34 the CPU 4 calculates the maximum first brightness value among the first set number of pixels arranged on the negative side in the horizontal direction of the pixel of interest, and arranges them on the positive side in the horizontal direction of the pixel of interest.
- the maximum second brightness value within the second set number of pixels is calculated
- the maximum third brightness value within the third set number of pixels arranged on the negative side in the vertical direction of the pixel of interest is calculated
- the pixel of interest is calculated.
- the maximum fourth brightness value within the fourth set number of pixels arranged on the positive side in the vertical direction was calculated, but this calculation process is only an example.
- first direction one side and “first direction other side”, respectively.
- One side in the second direction and “the other side in the second direction” can be generalized.
- the first direction and the second direction are different directions.
- the first direction and the second direction do not have to be orthogonal to each other.
- the first brightness value is not the maximum brightness value among the first set number of pixels arranged on one side of the first direction of the pixel of interest, but the first set number of pixels arranged on one side of the first direction of the pixel of interest.
- the brightness value of the pixel having a brightness value larger than that of the pixel of interest and being as far away as possible from the pixel of interest may be used, and the same substitution may be performed for the second to fourth brightness values. That is, the second brightness value is not the maximum brightness value among the second set number of pixels arranged on the other side of the first direction of the pixel of interest, but the second set number of pixels arranged on the other side of the first direction of the pixel of interest.
- the brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest is used.
- the third brightness value is not the maximum brightness value among the pixels of the third set number arranged on one side of the second direction of the pixel of interest, but the pixels of the third set number arranged on one side of the second direction of the pixel of interest.
- the brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest is used.
- the fourth brightness value is not the maximum brightness value among the fourth set number of pixels arranged on the other side of the second direction of the pixel of interest, but the fourth set number of pixels arranged on the other side of the second direction of the pixel of interest.
- the brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest is used. Even when the above replacement is performed, since the position of the foreign matter is specified based on the luminance characteristics of the entire minute region as in the above-described embodiment, the detection accuracy of the foreign matter can be improved.
- the first brightness value is not the maximum brightness value among the first set number of pixels arranged on one side of the focus pixel in the first direction, but the first predetermined position from the focus pixel on one side of the focus pixel in the first direction.
- the first set number of pixels lined up apart for example, in the case of four pixels lined up 3 pixels away from the pixel of interest, the third to sixth pixels lined up on one side in the first direction from the pixel of interest
- the focus It is the average brightness value of the second set number of pixels arranged on the other side of the first direction of the pixels at a second predetermined position away from the pixel of interest. Then, in steps S34 to S36, the processing related to the second luminance value is not performed.
- the third brightness value is not the maximum brightness value among the third set number of pixels arranged on one side in the second direction of the pixel of interest, but the third predetermined position from the pixel of interest on one side of the second direction of the pixel of interest.
- the average brightness value of the pixels of the third set number arranged apart and the pixels of the fourth set number arranged at the other side in the second direction of the pixel of interest at a fourth predetermined position away from the pixel of interest (“second brightness value” in claim 8”. Equivalent to).
- steps S34 to S36 the processing related to the fourth luminance value is not performed.
- the CPU 4 may specify the position of the foreign matter by using the artificial intelligence learned from the projected image of the object to be inspected T1 inspected in the past. By using artificial intelligence, the accuracy of detecting foreign matter can be further improved.
- the place where artificial intelligence is provided is not particularly limited.
- the CPU 4 may be provided with artificial intelligence.
- artificial intelligence may be provided on a cloud that can be accessed by the inspection device 100 via a communication network.
- step S4 and step S5 are exchanged, and in step S6, all the projected images showing the positions of the foreign matter reflecting the position correction and the false detection partial removal process are added together.
- An image to be generated that is, an image displaying the position of a foreign object in two dimensions may be generated as an output image.
- step S3 it is not always necessary to specify the position of the foreign matter for each projected image, and the position of the foreign matter may be specified for each of a plurality of projected images.
- step S5 is executed immediately after step S3, the positions of foreign substances on all faults are added for each irradiation angle after the position correction is completed, and the irradiation after adding the positions of foreign substances on all faults.
- Step S4 is executed for the data for each angle, and in step S6, the image obtained by adding all the projected images showing the positions of the foreign matter reflecting the position correction and the false detection portion removal processing, that is, the position of the foreign matter is 2.
- An image to be displayed in two dimensions may be generated as an output image.
- step S3 it is not always necessary to specify the position of the foreign matter for each projected image, and the position of the foreign matter may be specified for each of a plurality of projected images.
- the projected image obtained by projecting onto each tomographic image set at a predetermined position other than the positions of the X-ray detectors 2A and 2B is a projected image on each tomographic image obtained based on the principle of tomosynthesis.
- the projected image obtained by projecting on each tomographic image set at a predetermined position other than the positions of the X-ray detectors 2A and 2B does not have to be the projected image on each tomographic image obtained based on the principle of tomosynthesis. ..
- the 1X-ray detection unit 2A and the second X-ray detection unit 2B may each be a single-line line sensor.
- the 1X-ray detection unit 2A and the 2nd X-ray detection unit 2B are each a single line, the pixel size of the line sensor and the movement amount of the object to be inspected per frame are matched.
- the first X-ray detection unit 2A and the second X-ray detection unit 2B may not be arranged at the same height.
- the Z-axis direction position of the first X-ray detection unit 2A and the Z-axis direction position of the second X-ray detection unit 2B are different, and the pixel in which the X-ray passing through the same position of the inspected object T1 is incident is the first X-ray.
- the detection unit 2A and the second X-ray detection unit 2B are misaligned.
- the second X-ray irradiation unit 1B and the second X-ray detection unit corresponding to the pixels of the projected image derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A in the Y-axis direction.
- the pixels of the projected image derived from 2B may be specified.
- the captured image may be generated based on the above.
- the captured image is generated based on the original image processing, it is not always necessary to match the moving speed of the object to be inspected T1 with the pixel size of the line sensor.
- a two-dimensional detector 2C may be used as shown in FIG.
- the two-dimensional detector 2C can be used as a pseudo two-line sensor.
- the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B may be shared to form a single X-ray irradiation unit.
- a plurality of two-dimensional detectors can be simulated.
- a single line sensor can be a plurality of pseudo line sensors.
- the single line sensor is a line sensor having a plurality of lines extending along the Y-axis direction.
- FIGS. 18 and 19 may be used as shown in FIGS. 18 and 19.
- the inspection device 100 shown in FIGS. 18 and 19 may perform the following operations, for example.
- the object to be inspected T1 is moved by the drive of the belt conveyor 3 to a position where the image can be taken by the second X-ray irradiation unit 1B and the two-dimensional detector 2E, and then the belt conveyor 3 is stopped, and the second X-ray irradiation unit 1B and the two-dimensional
- the object to be inspected T1 is stationary at a position where it can be photographed by the detector 2E (see FIG. 18). In the stationary state shown in FIG.
- one shot of the object to be inspected T1 is photographed by the second X-ray irradiation unit 1B and the two-dimensional detector 2E. Then, the object to be inspected T1 is moved by the drive of the belt conveyor 3 to a position where the first X-ray irradiation unit 1A and the two-dimensional detector 2D can take a picture, and then the belt conveyor 3 is stopped, and the first X-ray irradiation unit 1A and the first X-ray irradiation unit 1A and The object to be inspected T1 is stationary at a position where it can be photographed by the two-dimensional detector 2D (see FIG. 19). In the stationary state shown in FIG. 19, one shot of the object to be inspected T1 is photographed by the first X-ray irradiation unit 1A and the two-dimensional detector 2D.
- FIGS. 20 and 21 X-ray irradiation is performed as shown in FIGS. 20 and 21.
- the part 1C and the two-dimensional detector 2F may be used.
- the inspection device 100 shown in FIGS. 20 and 21 may perform the following operations, for example.
- the object to be inspected T1 is moved to the first predetermined position by driving the belt conveyor 3.
- the two-dimensional detector 2F is also moved by a moving mechanism (not shown) in conjunction with the movement of the object T1 to be inspected.
- the belt conveyor 3 and the moving mechanism are stopped, the object T1 to be inspected is stopped at the first predetermined position, and the two-dimensional detector 2F is stopped at the position corresponding to the first predetermined position (see FIG. 20). ).
- the stationary state shown in FIG. 20 one shot of the object to be inspected T1 is taken by the X-ray irradiation unit 1C and the two-dimensional detector 2F.
- the object to be inspected T1 is moved to the second predetermined position by driving the belt conveyor 3.
- the two-dimensional detector 2F is also moved by a moving mechanism (not shown) in conjunction with the movement of the object T1 to be inspected.
- the belt conveyor 3 and the moving mechanism are stopped, the object T1 to be inspected is stopped at the second predetermined position, and the two-dimensional detector 2F is stopped at the position corresponding to the second predetermined position (see FIG. 21). ).
- the stationary state shown in FIG. 21 one shot of the object to be inspected T1 is photographed by the X-ray irradiation unit 1C and the two-dimensional detector 2F.
- a plurality of two-dimensional X-ray images in which the positional relationship between the X-ray object T1 and the X-ray irradiation unit used for X-ray photography are different only in the X-axis direction are generated.
- a plurality of two-dimensional X-ray images may be generated in which the positional relationship between the X-ray and the X-ray irradiation unit used for the X-ray photography is different only in the Y-axis direction.
- a plurality of two-dimensional X-ray images having different positional relationships with the line irradiation unit in both the X-axis direction and the Y-axis direction may be generated.
- the present invention also includes an inspection device having a configuration that is regarded as a "captured image” and is subjected to subsequent processing.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Radiology & Medical Imaging (AREA)
- Electromagnetism (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Image Analysis (AREA)
Abstract
This inspecting device is provided with a first image generating unit, a reconstructing unit, an identifying unit, and a removing unit. The first image generating unit generates a plurality of two-dimensional X-ray images in which a positional relationship between an object being inspected and an X-ray radiating unit and an X-ray detecting unit employed for X-ray imaging differ. The reconstructing unit generates images in which the plurality of two-dimensional X-ray images are projected respectively onto a plurality of slices at different depths, and a projected image is then reconstructed from each of the generated images. The identifying unit converts each of the plurality of projected images into a binarized projected image in which the position of a foreign body has been identified. The removing unit compares a plurality of the binarized projected images obtained from images captured in slices having the same depth, and removes erroneously detected parts of the position identification of the foreign body on the basis of the comparison results.
Description
本発明は、被検査物に含まれ得る異物を検出する技術に関する。
The present invention relates to a technique for detecting a foreign substance that may be contained in an object to be inspected.
従来、被検査物に含まれ得る異物を検出する検査装置が種々開発されている。例えば、特許文献1で開示されている検査装置は、被検査物のX線透過画像から強調線を検出し、その強調線に基づき異物を検出する。
Conventionally, various inspection devices have been developed to detect foreign substances that may be contained in the object to be inspected. For example, the inspection apparatus disclosed in Patent Document 1 detects an highlighted line from an X-ray transmission image of an object to be inspected, and detects a foreign substance based on the highlighted line.
しかしながら、被検査物と異物とのX線減弱の差が小さい場合、強調線の検出が困難であり、その結果、異物の検出精度が低くなるという問題が発生する。なお、被検査物と異物とのX線減弱の差が小さい場合としては、例えば、被検査物が魚の身であり、異物が小骨である場合等が挙げられる。
However, if the difference in X-ray attenuation between the object to be inspected and the foreign matter is small, it is difficult to detect the emphasized line, and as a result, there arises a problem that the detection accuracy of the foreign matter is lowered. Examples of cases where the difference in X-ray attenuation between the object to be inspected and the foreign substance is small include a case where the object to be inspected is a fish body and the foreign substance is a small bone.
本発明は、上記の状況に鑑み、異物の検出精度が高い検査装置及び検査方法を提供することを目的とするものである。
An object of the present invention is to provide an inspection device and an inspection method having high foreign matter detection accuracy in view of the above situation.
上記目的を達成するために本発明に係る検査装置は、被検査物をX線撮影の対象とし、2次元X線撮影画像を前記X線撮影に用いたX線検出部の検出結果に基づき生成する第1画像生成部と、前記2次元X線撮影画像を前記X線検出部の位置を除く所定の位置に設定される断層に投影した画像を生成し、その後、その生成した画像を2次元画像である投影画像に再構成する再構成部と、前記投影画像に基づき異物の位置を特定する特定部と、除去部と、を備え、前記第1画像生成部は、前記被検査物と前記X線撮影に用いたX線照射部及び前記X線検出部との位置関係が異なる複数枚の前記2次元X線撮影画像を生成し、前記再構成部は、複数枚の前記2次元X線撮影画像それぞれを深さが異なる複数の断層に投影した画像を生成し、その後、その生成した画像それぞれを前記投影画像に再構成し、前記特定部は、複数枚の前記投影画像それぞれを異物の位置を特定した二値化投影画像に変換し、前記除去部は、同じ深さの断層に投影された画像から得られる複数枚の前記二値化投影画像同士を比較し、比較結果に基づいて異物の位置特定の誤検出部分を除去する構成(第1の構成)とする。
In order to achieve the above object, the inspection apparatus according to the present invention targets an object to be inspected for X-ray photography and generates a two-dimensional X-ray image based on the detection result of the X-ray detection unit used for the X-ray photography. A first image generation unit and an image obtained by projecting the two-dimensional X-ray image onto a fault set at a predetermined position other than the position of the X-ray detection unit are generated, and then the generated image is two-dimensional. A reconstruction unit that reconstructs a projected image, which is an image, a specific unit that identifies the position of a foreign object based on the projected image, and a removal unit are provided. A plurality of the two-dimensional X-ray images having different positional relationships between the X-ray irradiation unit used for the X-ray photography and the X-ray detection unit are generated, and the reconstruction unit generates the plurality of the two-dimensional X-ray images. An image obtained by projecting each of the captured images onto a plurality of faults having different depths is generated, and then each of the generated images is reconstructed into the projected image, and the specific unit uses each of the plurality of the projected images as a foreign substance. Converted to a position-specified binarized projection image, the removal unit compares a plurality of the binarized projection images obtained from images projected on a tomography of the same depth with each other, and based on the comparison result. The configuration is such that a false detection portion for specifying the position of a foreign object is removed (first configuration).
上記第1の構成の検査装置において、前記特定部は、過去に検査された前記被検査物の前記投影画像により学習した人工知能を用いて、異物の位置を特定する構成(第2の構成)であってもよい。
In the inspection device having the first configuration, the specific unit identifies the position of a foreign substance by using artificial intelligence learned from the projected image of the object to be inspected in the past (second configuration). It may be.
上記第1又は第2の構成の検査装置において、前記特定部によって特定された異物の位置を2次元表示する画像を生成する第2画像生成部を備える構成(第3の構成)であってもよい。
Even if the inspection device having the first or second configuration includes a second image generation unit that generates an image that two-dimensionally displays the position of the foreign matter specified by the specific unit (third configuration). Good.
上記第1又は第2の構成の検査装置において、前記特定部によって特定された異物の位置を3次元表示する画像を生成する第2画像生成部を備える構成(第4の構成)であってもよい。
Even if the inspection device having the first or second configuration includes a second image generation unit that generates an image that three-dimensionally displays the position of the foreign matter specified by the specific unit (fourth configuration). Good.
上記第1~第4いずれかの構成の検査装置において、前記特定部は、前記投影画像を所定の領域毎に分割する分割部と、前記所定の領域それぞれにおける平均輝度値を算出する算出部と、を備え、着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上小さい場合に、前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で最大となる第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で最大となる第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で最大となる第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で最大となる第4輝度値を算出し、所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、前記所定の条件は、(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以下になるという第1条件、(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以下になるという第2条件、(c)前記第1条件及び前記第2条件、のうちのいずれか一つである構成(第5の構成)であってもよい。
In the inspection device having any of the first to fourth configurations, the specific unit includes a division unit that divides the projected image into predetermined regions and a calculation unit that calculates an average luminance value in each of the predetermined regions. When the luminance value of the pixel of interest is smaller than the average luminance value of the predetermined region to which the pixel of interest belongs by a predetermined value or more, the number of the first set number arranged on one side of the first direction of the pixel of interest. The first luminance value that becomes the maximum in the pixel is calculated, the second luminance value that becomes the maximum in the second set number of pixels arranged on the other side in the first direction of the pixel of interest is calculated, and the first luminance value of the pixel of interest is calculated. The maximum third luminance value is calculated within the third set number of pixels arranged on one side of the second direction, which is a direction different from the direction, and within the fourth set number of pixels arranged on the other side of the second direction of the pixel of interest. When the predetermined condition is satisfied, the pixel of interest is specified as the position of the foreign matter, and the predetermined condition is (a) the pixel of interest with respect to the first luminance value. The first condition that the ratio of the brightness value and the ratio of the brightness value of the pixel of interest to the second brightness value are equal to or less than the first threshold value, (b) the ratio of the brightness value of the pixel of interest to the third brightness value and The configuration is one of the second condition that the ratio of the brightness value of the pixel of interest to the fourth brightness value is equal to or less than the second threshold value, and (c) the first condition and the second condition. (Fifth configuration) may be used.
上記第1~第4いずれかの構成の検査装置において、前記特定部は、被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、前記所定の領域それぞれにおける平均輝度値を算出する算出部と、を備え、着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上小さい場合に、前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第4輝度値を算出し、所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、前記所定の条件は、(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以下になるという第1条件、(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以下になるという第2条件、(c)前記第1条件及び前記第2条件、のうちのいずれか一つである構成(第6の構成)であってもよい。
In the inspection device having any of the first to fourth configurations, the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions. A calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is smaller than the average luminance value in the predetermined region to which the pixel of interest belongs by a predetermined value or more, one side of the pixel of interest in the first direction. Within the first set number of pixels lined up in, the first brightness value, which is the brightness value of a pixel having a larger brightness value than the focus pixel and as far as possible from the focus pixel, or the brightness value of a pixel as close as possible to the focus pixel, is calculated. Then, among the second set number of pixels arranged on the other side of the first direction of the focus pixel, the brightness value of the pixel having a larger brightness value than the focus pixel and as far as possible from the focus pixel, or a pixel as close as possible to the focus pixel. The second luminance value, which is the luminance value of the above, is calculated, and the luminance value is larger than that of the pixel of interest and the luminance value is larger than that of the pixel of interest within the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest. The third brightness value, which is the brightness value of the pixel as far as possible from the focus pixel or the brightness value of the pixel as close as possible to the focus pixel, is calculated, and within the fourth set number of pixels arranged on the other side of the second direction of the focus pixel. If the fourth brightness value, which is the brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest or the brightness value of a pixel as close as possible to the pixel of interest, is satisfied. The pixel of interest is specified as the position of a foreign object, and the predetermined conditions are (a) the ratio of the brightness value of the pixel of interest to the first luminance value and the ratio of the luminance value of the pixel of interest to the second luminance value. The first condition that each of the above is equal to or less than the first threshold value, (b) the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are the second threshold values, respectively. It may be a configuration (sixth configuration) that is any one of the second condition (c) the first condition and the second condition.
上記第1~第4いずれかの構成の検査装置において、前記特定部は、被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、前記所定の領域それぞれにおける平均輝度値を算出する算出部と、を備え、着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上小さい場合に、前記着目ピクセルの第1方向一方側に前記着目ピクセルから第1所定位置離れて並ぶ第1設定数のピクセル及び前記着目ピクセルの第1方向他方側に第2所定位置離れて並ぶ第2設定数のピクセルの平均輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に前記着目ピクセルから第3所定位置離れて並ぶ第3設定数のピクセル及び前記着目ピクセルの第2方向他方側に前記着目ピクセルから第4所定位置離れて並ぶ第4設定数のピクセルの平均輝度値である第2輝度値を算出し、所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、前記所定の条件は、(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合が第1閾値以下になるという第1条件、(b)前記第2輝度値に対する前記着目ピクセルの輝度値の割合が第2閾値以下になるという第2条件、(c)前記第1条件及び前記第2条件、のうちのいずれか一つである構成(第7の構成)であってもよい。
In the inspection device having any of the first to fourth configurations, the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions. A calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is smaller than the average luminance value in the predetermined region to which the pixel of interest belongs by a predetermined value or more, one side of the pixel of interest in the first direction. The first is the average luminance value of the first set number of pixels lined up at a first predetermined position away from the focus pixel and the second set number of pixels lined up at a second predetermined position on the other side of the first direction of the focus pixel. The brightness value is calculated, and the third set number of pixels lined up on one side of the second direction, which is a direction different from the first direction of the pixel of interest, at a third predetermined position away from the pixel of interest, and the other of the second direction of the pixel of interest. The second luminance value, which is the average luminance value of the fourth set number of pixels arranged on the side at a fourth predetermined position away from the pixel of interest, is calculated, and if the predetermined condition is satisfied, the pixel of interest is specified as the position of the foreign matter. The predetermined conditions are (a) the first condition that the ratio of the brightness value of the pixel of interest to the first luminance value is equal to or less than the first threshold value, and (b) the pixel of interest with respect to the second luminance value. It may be a configuration (seventh configuration) in which one of the second condition (c) the first condition and the second condition that the ratio of the luminance values is equal to or less than the second threshold value. ..
上記第1~第4いずれかの構成の検査装置において、前記特定部は、被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、前記所定の領域それぞれにおける平均輝度値を算出する算出部と、を備え、着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上大きい場合に、前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で最小となる第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で最小となる第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で最小となる第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で最小となる第4輝度値を算出し、所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、前記所定の条件は、(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以上になるという第1条件、(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以上になるという第2条件、(c)前記第1条件及び前記第2条件、のうちのいずれか一つである構成(第8の構成)であってもよい。
In the inspection device having any of the first to fourth configurations, the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions. A calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is greater than a predetermined value or more than the average luminance value in the predetermined region to which the pixel of interest belongs, one side of the pixel of interest in the first direction. Calculate the minimum first luminance value within the first set number of pixels lined up in, and calculate the smallest second luminance value within the second set number of pixels lined up on the other side of the first direction of the pixel of interest. , Calculates the minimum third luminance value among the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest, and arranges them on the other side of the second direction of the pixel of interest. The fourth luminance value, which is the minimum among the fourth set number of pixels, is calculated, and if the predetermined condition is satisfied, the pixel of interest is specified as the position of the foreign matter, and the predetermined condition is (a) the first. The first condition that the ratio of the brightness value of the pixel of interest to the luminance value and the ratio of the luminance value of the pixel of interest to the second luminance value are equal to or higher than the first threshold value, (b) the focus on the third luminance value. Of the second condition that the ratio of the brightness value of the pixel and the ratio of the brightness value of the pixel of interest to the fourth brightness value are equal to or higher than the second threshold value, (c) the first condition and the second condition. It may be a configuration (eighth configuration) which is any one.
上記第1~第4いずれかの構成の検査装置において、前記特定部は、被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、前記所定の領域それぞれにおける平均輝度値を算出する算出部と、を備え、着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上大きい場合に、前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第4輝度値を算出し、所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、前記所定の条件は、(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以上になるという第1条件、(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以上になるという第2条件、(c)前記第1条件及び前記第2条件、のうちのいずれか一つである構成(第9の構成)であってもよい。
In the inspection device having any of the first to fourth configurations, the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions. A calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is greater than a predetermined value or more than the average luminance value in the predetermined region to which the pixel of interest belongs, one side of the pixel of interest in the first direction. Within the first set number of pixels lined up in, the first brightness value, which is the brightness value of a pixel whose brightness value is smaller than that of the attention pixel and is as far as possible from the attention pixel or the brightness value of a pixel as close as possible to the attention pixel is calculated. Then, among the second set number of pixels arranged on the other side of the first direction of the focus pixel, the brightness value of the pixel having a brightness value smaller than that of the focus pixel and as far as possible from the focus pixel, or a pixel as close as possible to the focus pixel. The second luminance value, which is the luminance value of the above, is calculated, and the luminance value is smaller than that of the pixel of interest and the luminance value is smaller than that of the pixel of interest within the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest. The third brightness value, which is the brightness value of the pixel as far as possible from the focus pixel or the brightness value of the pixel as close as possible to the focus pixel, is calculated, and within the fourth set number of pixels arranged on the other side of the second direction of the focus pixel. If the fourth brightness value, which is the brightness value of a pixel having a brightness value smaller than that of the pixel of interest and as far as possible from the pixel of interest or the brightness value of a pixel as close as possible to the pixel of interest, is satisfied. The pixel of interest is specified as the position of a foreign object, and the predetermined conditions are (a) the ratio of the brightness value of the pixel of interest to the first luminance value and the ratio of the luminance value of the pixel of interest to the second luminance value. The first condition that each of the above is equal to or higher than the first threshold value, (b) the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are the second threshold values, respectively. The configuration may be one of the second condition (c) the first condition and the second condition (the ninth configuration).
上記第1~第4いずれかの構成の検査装置において、前記特定部は、被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、前記所定の領域それぞれにおける平均輝度値を算出する算出部と、を備え、着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上大きい場合に、前記着目ピクセルの第1方向一方側に前記着目ピクセルから第1所定位置離れて並ぶ第1設定数のピクセル及び前記着目ピクセルの第1方向他方側に第2所定位置離れて並ぶ第2設定数のピクセルの平均輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に前記着目ピクセルから第3所定位置離れて並ぶ第3設定数のピクセル及び前記着目ピクセルの第2方向他方側に前記着目ピクセルから第4所定位置離れて並ぶ第4設定数のピクセルの平均輝度値である第2輝度値を算出し、所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、前記所定の条件は、(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合が第1閾値以上になるという第1条件、(b)前記第2輝度値に対する前記着目ピクセルの輝度値の割合が第2閾値以上になるという第2条件、(c)前記第1条件及び前記第2条件、のうちのいずれか一つである構成(第10の構成)であってもよい。
In the inspection device having any of the first to fourth configurations, the specific portion includes a division portion that divides an image based on X-ray photography of an object to be inspected into predetermined regions and an average brightness in each of the predetermined regions. A calculation unit for calculating a value is provided, and when the luminance value of the pixel of interest is greater than a predetermined value or more than the average luminance value in the predetermined region to which the pixel of interest belongs, one side of the pixel of interest in the first direction. The first is the average luminance value of the first set number of pixels lined up at a first predetermined position away from the focus pixel and the second set number of pixels lined up at a second predetermined position on the other side of the first direction of the focus pixel. The brightness value is calculated, and the third set number of pixels lined up on one side of the second direction, which is a direction different from the first direction of the pixel of interest, at a third predetermined position away from the pixel of interest, and the other of the second direction of the pixel of interest. The second luminance value, which is the average luminance value of the fourth set number of pixels arranged on the side at a fourth predetermined position away from the pixel of interest, is calculated, and if the predetermined condition is satisfied, the pixel of interest is specified as the position of the foreign matter. The predetermined conditions are (a) the first condition that the ratio of the brightness value of the pixel of interest to the first luminance value is equal to or higher than the first threshold value, and (b) the pixel of interest with respect to the second luminance value. It may be a configuration (10th configuration) in which one of the second condition (c) the first condition and the second condition that the ratio of the luminance values becomes equal to or higher than the second threshold value. ..
上記目的を達成するために本発明に係る検査方法は、X線照射部及びX線検出部を備えるX線撮影装置を用いた検査方法であって、前記X線撮影装置によって被検査物をX線撮影して得られる2次元X線撮影画像を記憶する記憶ステップと、前記2次元X線撮影画像を前記X線検出部の位置を除く所定の位置に設定される断層に投影した画像を生成し、その後、その生成した画像を2次元画像である投影画像に再構成する再構成ステップと、前記投影画像に基づき異物の位置を特定する特定ステップと、除去ステップと、を備え、前記記憶ステップにおいて、前記被検査物と前記X線撮影に用いたX線照射部及び前記X線検出部との位置関係が異なる複数枚の前記2次元X線撮影画像が記憶され、前記再構成ステップにおいて、複数枚の前記2次元X線撮影画像それぞれを深さが異なる複数の断層に投影した画像が生成され、その後、その生成された画像それぞれが前記投影画像に再構成され、前記特定ステップにおいて、複数枚の前記投影画像それぞれが異物の位置を特定した二値化投影画像に変換され、前記除去ステップにおいて、同じ深さの断層に投影された画像から得られる複数枚の前記二値化投影画像同士が比較され、比較結果に基づいて異物の位置特定の誤検出部分が除去される構成(第11の構成)とする。
In order to achieve the above object, the inspection method according to the present invention is an inspection method using an X-ray imaging device including an X-ray irradiation unit and an X-ray detection unit, and X-rays an object to be inspected by the X-ray imaging apparatus. A storage step for storing a two-dimensional X-ray image obtained by radiography and an image obtained by projecting the two-dimensional X-ray image onto a fault set at a predetermined position other than the position of the X-ray detection unit are generated. Then, the storage step includes a reconstruction step of reconstructing the generated image into a projected image which is a two-dimensional image, a specific step of identifying the position of a foreign object based on the projected image, and a removal step. In the reconstruction step, a plurality of the two-dimensional X-ray images having different positional relationships between the object to be inspected, the X-ray irradiation unit used for the X-ray photography, and the X-ray detection unit are stored. Images obtained by projecting a plurality of the two-dimensional X-ray images onto a plurality of faults having different depths are generated, and then each of the generated images is reconstructed into the projected images, and in the specific step, a plurality of images are generated. Each of the projected images is converted into a binarized projected image in which the position of the foreign substance is specified, and in the removal step, the plurality of the binarized projected images obtained from the images projected on the tomography of the same depth are used. Are compared, and the erroneous detection portion for specifying the position of the foreign matter is removed based on the comparison result (11th configuration).
本発明によると、異物の検出精度を高くすることができる。
According to the present invention, the detection accuracy of foreign matter can be improved.
本発明の実施形態について図面を参照して以下に説明する。本明細書においては、言葉の定義として、X線検出部の位置を除く所定の位置に設定される断層で生成される2次元画像において、そのX軸方向、Y軸方向の内少なくともいずれか一方に関して2次元X線撮影画像を平行移動しているだけで長さが変化しない場合においても、便宜上、2次元画像は、2次元X線撮影画像を断層に「投影」した画像を生成し、その後、その生成した画像を再構成する処理によって得られるものとし、その2次元画像を「投影画像」とよぶことにする。
An embodiment of the present invention will be described below with reference to the drawings. In the present specification, as a definition of a word, in a two-dimensional image generated by a tom set at a predetermined position excluding the position of an X-ray detection unit, at least one of the X-axis direction and the Y-axis direction is used. For convenience, the 2D image produces an image that is a "projection" of the 2D X-ray image onto the fault, even if the 2D X-ray image is simply moved in parallel and the length does not change. , It shall be obtained by the process of reconstructing the generated image, and the two-dimensional image shall be referred to as a "projected image".
<1.検査装置の概略構成>
図1は、本発明の一実施形態に係る検査装置の概略構成を示す図である。図1に示す検査装置100は、第1X線照射部1Aと、第2X線照射部1Bと、第1X線検出部2Aと、第2X線検出部2Bと、ベルトコンベア3と、CPU4と、ROM5と、RAM6と、VRAM7と、表示部8と、HDD9と、入力部10と、を備える。なお、本実施形態では、画像を処理する画像処理装置がCPU4、ROM5、RAM6、及びHDD9によって構成されている。 <1. Outline configuration of inspection equipment>
FIG. 1 is a diagram showing a schematic configuration of an inspection device according to an embodiment of the present invention. Theinspection device 100 shown in FIG. 1 includes a first X-ray irradiation unit 1A, a second X-ray irradiation unit 1B, a first X-ray detection unit 2A, a second X-ray detection unit 2B, a belt conveyor 3, a CPU 4, and a ROM 5. , RAM 6, VRAM 7, display unit 8, HDD 9, and input unit 10. In the present embodiment, the image processing device for processing the image is composed of the CPU 4, the ROM 5, the RAM 6, and the HDD 9.
図1は、本発明の一実施形態に係る検査装置の概略構成を示す図である。図1に示す検査装置100は、第1X線照射部1Aと、第2X線照射部1Bと、第1X線検出部2Aと、第2X線検出部2Bと、ベルトコンベア3と、CPU4と、ROM5と、RAM6と、VRAM7と、表示部8と、HDD9と、入力部10と、を備える。なお、本実施形態では、画像を処理する画像処理装置がCPU4、ROM5、RAM6、及びHDD9によって構成されている。 <1. Outline configuration of inspection equipment>
FIG. 1 is a diagram showing a schematic configuration of an inspection device according to an embodiment of the present invention. The
第1X線照射部1A及び第2X線照射部1Bはそれぞれ、被検査物T1にX線を照射する。第1X線照射部1Aから照射されるX線及び第2X線照射部1Bから照射されるX線はそれぞれ、Y軸に沿って延びるファンビーム形状、より詳細にはナローファンビーム形状である。なお、第1X線照射部1A及び第2X線照射部1Bを共通化して単一のX線照射部にしてもよい。当該単一のX線照射部から照射されるX線は、ワイドファンビーム形状又はコーンビーム形状にすればよい。
The first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B each irradiate the object T1 to be inspected with X-rays. The X-rays emitted from the first X-ray irradiation unit 1A and the X-rays emitted from the second X-ray irradiation unit 1B each have a fan beam shape extending along the Y axis, and more specifically, a narrow fan beam shape. The first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B may be shared to form a single X-ray irradiation unit. The X-rays emitted from the single X-ray irradiation unit may have a wide fan beam shape or a cone beam shape.
第1X線照射部1Aから第1X線検出部2Aに照射されるX線の照射方向と、第2X線照射部1Bから第2X線検出部2Bに照射されるX線の照射方向とは互いに異なる。本実施形態では、第1X線照射部1Aから第1X線検出部2Aに照射されるX線の照射方向はX軸とY軸に直交する方向であり、第2X線照射部1Bから第2X線検出部2Bに照射されるX線の照射方向はX軸とY軸に直交する方向から傾いた方向である。
The X-ray irradiation direction from the first X-ray irradiation unit 1A to the first X-ray detection unit 2A and the X-ray irradiation direction from the second X-ray irradiation unit 1B to the second X-ray detection unit 2B are different from each other. .. In the present embodiment, the irradiation direction of the X rays emitted from the first X-ray irradiation unit 1A to the first X-ray detection unit 2A is the direction orthogonal to the X-axis and the Y-axis, and the second X-ray irradiation unit 1B to the second X-ray. The irradiation direction of the X-rays emitted to the detection unit 2B is a direction inclined from the direction orthogonal to the X-axis and the Y-axis.
第1X線検出部2A及び第2X線検出部2Bはそれぞれ、入射するX線に応じたデジタル量の電気信号を一定のフレームレートで出力する。第1X線検出部2A及び第2X線検出部2Bはそれぞれ、Y軸に沿って延びるラインセンサである。なお、検査装置100はトモシンセシス法を採用しているため、第1X線検出部2A及び第2X線検出部2Bはそれぞれ、X軸方向にも複数のX線検出素子を有する。第1X線検出部2A及び第2X線検出部2Bはそれぞれ、所定のフレームレートで入射X線を、当該X線の量に応じたデジタル電気量の画像データとして収集することができる。以下、この収集データを「フレームデータ」(2次元X線撮影画像の一例)という。なお、第1X線検出部2A及び第2X線検出部2Bを共通化して単一のX線検出部にしてもよい。ただし、第1X線照射部1A及び第2X線照射部1Bを共通化する場合には、第1X線検出部2A及び第2X線検出部2Bを共通化しない。
The first X-ray detection unit 2A and the second X-ray detection unit 2B each output a digital amount of electric signals corresponding to the incident X-rays at a constant frame rate. The first X-ray detection unit 2A and the second X-ray detection unit 2B are line sensors extending along the Y-axis, respectively. Since the inspection device 100 employs the tomosynthesis method, the first X-ray detection unit 2A and the second X-ray detection unit 2B each have a plurality of X-ray detection elements in the X-axis direction as well. The first X-ray detection unit 2A and the second X-ray detection unit 2B can each collect incident X-rays at a predetermined frame rate as image data of a digital electric amount corresponding to the amount of the X-rays. Hereinafter, this collected data is referred to as "frame data" (an example of a two-dimensional X-ray photographed image). The first X-ray detection unit 2A and the second X-ray detection unit 2B may be shared to form a single X-ray detection unit. However, when the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B are shared, the first X-ray detection unit 2A and the second X-ray detection unit 2B are not shared.
ベルトコンベア3は、第1X線照射部1Aと第1X線検出部2Aの対及び第2X線照射部1Bと第2X線検出部2Bの対に対して、ベルト上に載置された被検査物T1をX軸の負側に向かって移動させる。つまり、ベルトコンベア3の構成部品であるベルトの長手方向はX軸に沿っており、ベルトコンベア3の構成部品であるベルトの幅方向はY軸に沿っている。なお、本実施形態では、第1X線照射部1Aと第1X線検出部2Aの対及び第2X線照射部1Bと第2X線検出部2Bの対に対して、被検査物T1をX軸の負側に向かって移動させる第1移動機構(ベルトコンベア3)を用いたが、第1移動機構の代わりに第1X線照射部1Aと第1X線検出部2Aの対及び第2X線照射部1Bと第2X線検出部2Bの対を、被検査物T1に対してX軸の正側に向かって移動させる第2移動機構を用いてもよい。
The belt conveyor 3 is an object to be inspected placed on the belt with respect to the pair of the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the pair of the second X-ray irradiation unit 1B and the second X-ray detection unit 2B. Move T1 toward the negative side of the X-axis. That is, the longitudinal direction of the belt, which is a component of the belt conveyor 3, is along the X axis, and the width direction of the belt, which is a component of the belt conveyor 3, is along the Y axis. In the present embodiment, the object to be inspected T1 is placed on the X-axis with respect to the pair of the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the pair of the second X-ray irradiation unit 1B and the second X-ray detection unit 2B. The first moving mechanism (belt conveyor 3) that moves toward the negative side was used, but instead of the first moving mechanism, the pair of the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the second X-ray irradiation unit 1B A second movement mechanism that moves the pair of the second X-ray detection unit 2B and the second X-ray detection unit 2B toward the positive side of the X-axis with respect to the object T1 to be inspected may be used.
CPU4は、ROM5やHDD9に格納されているプログラム及びデータに従って検査装置100全体を制御する。ROM5は固定的なプログラムやデータを記録する。RAM6は作業メモリを提供する。CPUは、HDD9に格納されたプログラムに従って画像を生成する機能を果たすように動作する。つまり、CPU41は画像を生成する画像生成部を兼ねる。
The CPU 4 controls the entire inspection device 100 according to the programs and data stored in the ROM 5 and the HDD 9. ROM 5 records fixed programs and data. The RAM 6 provides working memory. The CPU operates so as to perform a function of generating an image according to a program stored in the HDD 9. That is, the CPU 41 also serves as an image generation unit that generates an image.
VRAM7は画像データを一時的に記憶する。表示部8はVRAM7に記憶された画像データに基づいて画像を表示する。
VRAM 7 temporarily stores image data. The display unit 8 displays an image based on the image data stored in the VRAM 7.
HDD9は、X線撮影動作を制御するための撮影制御プログラム、再構成画像を生成するための画像再構成処理プログラム、異物の位置を特定するための異物位置特定処理プログラム、位置補正プログラム等の各種プログラム、各種プログラムを実行する際に用いられる各種パラメータの設定値や画像データ等の各種データを記憶する。
The HDD 9 has various types of radiography control programs for controlling X-ray photography operations, an image reconstruction processing program for generating a reconstructed image, a foreign matter position identification processing program for identifying the position of a foreign matter, a position correction program, and the like. Stores various data such as setting values of various parameters and image data used when executing a program and various programs.
入力部10は、例えばキーボード、ポインティングデバイス等であって、ユーザ操作の内容を入力する。
The input unit 10 is, for example, a keyboard, a pointing device, or the like, and inputs the content of the user operation.
<2.検査装置の概略動作>
検査装置100の概略動作を図2のフローチャートに従い説明する。まず始めに検査装置100はX線撮影を行う(ステップS1)。具体的には、ベルトコンベア3が被検査物T1を移動させている間に、第1X線照射部1A及び第2X線照射部1BからX線が曝射される。第1X線照射部1Aから照射されたX線は被検査物T1の撮影領域を透過して第1X線検出部2Aに入射し、第2X線照射部1Bから照射されたX線は被検査物T1の撮影領域を透過して第2X線検出部2Bに入射する。第1X線検出部2A及び第2X線検出部2Bは、前述したように、所定のフレームレートで入射X線を検出し、対応するデジタル電気量の2次元のデジタルデータをフレーム単位で順次出力する。このフレームデータは、HDD9に保管される。 <2. Outline operation of inspection equipment>
The schematic operation of theinspection device 100 will be described with reference to the flowchart of FIG. First, the inspection device 100 performs X-ray imaging (step S1). Specifically, while the belt conveyor 3 is moving the object to be inspected T1, X-rays are exposed from the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B. The X-rays emitted from the first X-ray irradiation unit 1A pass through the imaging region of the object to be inspected T1 and enter the first X-ray detection unit 2A, and the X-rays emitted from the second X-ray irradiation unit 1B are the objects to be inspected. It passes through the imaging region of T1 and is incident on the second X-ray detection unit 2B. As described above, the first X-ray detection unit 2A and the second X-ray detection unit 2B detect incident X-rays at a predetermined frame rate and sequentially output two-dimensional digital data of the corresponding digital electric amount in frame units. .. This frame data is stored in the HDD 9.
検査装置100の概略動作を図2のフローチャートに従い説明する。まず始めに検査装置100はX線撮影を行う(ステップS1)。具体的には、ベルトコンベア3が被検査物T1を移動させている間に、第1X線照射部1A及び第2X線照射部1BからX線が曝射される。第1X線照射部1Aから照射されたX線は被検査物T1の撮影領域を透過して第1X線検出部2Aに入射し、第2X線照射部1Bから照射されたX線は被検査物T1の撮影領域を透過して第2X線検出部2Bに入射する。第1X線検出部2A及び第2X線検出部2Bは、前述したように、所定のフレームレートで入射X線を検出し、対応するデジタル電気量の2次元のデジタルデータをフレーム単位で順次出力する。このフレームデータは、HDD9に保管される。 <2. Outline operation of inspection equipment>
The schematic operation of the
次に、検査装置100はX線検出部2A及び2Bの位置を除く所定の位置に設定される断層に投影して得られる投影画像を生成する(ステップS2)。具体的には、検査装置100は、フレームデータをX線検出部2A及び2Bの位置を除く所定の位置に設定される60層の各断層に投影した画像を生成し、その後、その生成した画像を2次元画像(投影画像)に再構成する。フレームデータを或る1つの断層に投影して1つの投影画像を得る方法としては、例えば、上記フレームデータを上記或る1つの断層の深さ方向中心面(1つの断層面)に投影して上記1つの投影画像を得る方法、上記フレームデータを上記或る1つの断層の深さ方向最上面(1つの断層面)に投影して上記1つの投影画像を得る方法、上記フレームデータを上記或る1つの断層の深さ方向最下面(1つの断層面)に投影して上記1つの投影画像を得る方法、上記フレームデータを上記或る1つの断層に含まれる複数の断層面それぞれに投影して得られる複数の投影画像を合成処理(例えば単純平均処理、加重平均処理等)して上記1つの投影画像を得る方法等を挙げることができる。本実施形態では、X線検出部2A及び2Bの位置を除く所定の位置に設定される各断層に投影して得られる投影画像は、トモシンセシスの原理に基づいて得られる各断層における投影画像である。本実施形態では、X軸及びY軸に垂直な方向を断層の深さ方向とし、第1X線照射部1A及び第2X線照射部1B側から第1X線検出部2A及び第2X線検出部2B側に0.5mmピッチでX線検出部2A及び2Bの位置を除く所定の位置に60層の断層を設定している。なお、本実施形態では、X線検出部2A及び2Bの位置を除く所定の位置は被検査物T1の位置を含むが、本発明はこれに限定されない。
Next, the inspection device 100 generates a projected image obtained by projecting onto a tomography set at a predetermined position excluding the positions of the X-ray detection units 2A and 2B (step S2). Specifically, the inspection device 100 generates an image in which the frame data is projected onto each of the 60 layers of tomography set at predetermined positions other than the positions of the X-ray detectors 2A and 2B, and then the generated image is generated. Is reconstructed into a two-dimensional image (projected image). As a method of projecting frame data onto a certain fault to obtain one projected image, for example, the frame data is projected onto the central plane in the depth direction (one fault plane) of the certain fault. A method of obtaining the one projected image, a method of projecting the frame data on the uppermost surface (one tomographic plane) in the depth direction of the one fault, and obtaining the one projected image, the above frame data A method of obtaining the one projected image by projecting onto the lowest surface (one fault plane) in the depth direction of one fault, and projecting the frame data on each of a plurality of fault planes included in the one fault. Examples thereof include a method of obtaining the above-mentioned one projected image by synthesizing a plurality of projected images (for example, simple averaging process, weighted averaging process, etc.). In the present embodiment, the projected image obtained by projecting onto each tomographic image set at a predetermined position other than the positions of the X-ray detectors 2A and 2B is a projected image on each tomographic image obtained based on the principle of tomosynthesis. .. In the present embodiment, the direction perpendicular to the X-axis and the Y-axis is the depth direction of the fault, and the first X-ray detection unit 2A and the second X-ray detection unit 2B are from the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B side. A 60-layer fault is set at a predetermined position excluding the positions of the X-ray detectors 2A and 2B at a pitch of 0.5 mm on the side. In the present embodiment, the predetermined positions other than the positions of the X-ray detection units 2A and 2B include the position of the object to be inspected T1, but the present invention is not limited thereto.
第1X線照射部1A及び第1X線検出部2Aに由来する60層の投影画像は、HDD9に保管される。同様に、第2X線照射部1B及び第2X線検出部2Bに由来する60層の投影画像も、HDD9に保管される。
The 60-layer projected image derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A is stored in the HDD 9. Similarly, the projected images of the 60 layers derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B are also stored in the HDD 9.
次に、検査装置100は各投影画像について異物の位置を特定する(ステップS3)。異物の位置を特定する手法の詳細については後述する。各投影画像について異物の位置を特定することによって、単純なX線透過画像等のX線画像について異物の位置を特定する場合と比較して、異物の検出精度を高くすることができる。異物位置の特定結果は、例えば、異物の位置と異物でない位置とを異なる輝度値で示す二値化画像とすることができる。
Next, the inspection device 100 identifies the position of the foreign matter for each projected image (step S3). The details of the method for identifying the position of the foreign matter will be described later. By specifying the position of the foreign matter for each projected image, the detection accuracy of the foreign matter can be improved as compared with the case where the position of the foreign matter is specified for an X-ray image such as a simple X-ray transmission image. The result of specifying the foreign matter position can be, for example, a binarized image showing the position of the foreign matter and the position other than the foreign matter with different luminance values.
次に、検査装置100は異物の位置特定の誤検出部分を除去する(ステップS4)。具体的には、検査装置100は、同じ深さの第1X線照射部1A及び第1X線検出部2Aに由来する投影画像と第2X線照射部1B及び第2X線検出部2Bに由来する投影画像について、第1X線照射部1A及び第1X線検出部2Aに由来する投影画像に基づき特定した異物の位置と第2X線照射部1B及び第2X線検出部2Bに由来する投影画像に基づき特定した異物の位置とを比較し、比較結果に基づいて異物の位置特定の誤検出部分を除去する。より具体的には、検査装置100は、上記の比較により、両方の投影画像において異物の位置であると特定されたピクセルのみを異物の位置として採用し、片方の投影画像のみにおいて異物の位置であると特定されたピクセルを異物の位置として採用しない。ステップS4の処理は、処理対象である断層に存在する異物はX線の照射角度が異なっていても両方の投影画像の同じ座標位置で検出されるのに対して、処理対象である断層に存在しない異物等がX線の照射方向に投影された場合には両方の投影画像の互いに異なる座標位置で検出されることを利用した誤検出部分除去処理である。検査装置100は、この誤検出部分除去処理を全ての断層において実行する。
Next, the inspection device 100 removes the erroneous detection portion for specifying the position of the foreign matter (step S4). Specifically, the inspection device 100 includes a projection image derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and a projection image derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B at the same depth. The image is specified based on the position of the foreign matter specified based on the projected images derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A and the projected images derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B. The position of the foreign matter is compared with that of the foreign matter, and the erroneous detection portion of the foreign matter is removed based on the comparison result. More specifically, the inspection device 100 adopts only the pixel identified as the position of the foreign matter in both projected images as the position of the foreign matter by the above comparison, and at the position of the foreign matter in only one projected image. Do not use the identified pixel as the position of the foreign object. In the process of step S4, the foreign matter existing in the fault to be processed is detected at the same coordinate position of both projected images even if the irradiation angle of X-rays is different, whereas it is present in the fault to be processed. This is an erroneous detection partial removal process utilizing the fact that when foreign matter or the like that is not projected is projected in the X-ray irradiation direction, it is detected at different coordinate positions of both projected images. The inspection device 100 executes this false detection partial removal process on all faults.
次に、検査装置100は位置補正を行う(ステップS5)。位置補正の詳細については後述する。
Next, the inspection device 100 corrects the position (step S5). The details of the position correction will be described later.
最後に、検査装置100は、出力画像を生成し、その出力画像を表示部8に表示する(ステップS6)。出力画像としては、例えば、誤検出部分除去処理及び位置補正が反映された異物の位置を示す各投影画像を全て足し合わせて得られる画像、つまり異物の位置を2次元表示する画像を挙げることができる。出力画像の他の例としては、誤検出部分除去処理及び位置補正が反映された異物の位置を示す各投影画像を積層して得られる画像、つまり異物の位置を3次元表示する画像を挙げることができる。
Finally, the inspection device 100 generates an output image and displays the output image on the display unit 8 (step S6). As the output image, for example, an image obtained by adding all the projected images showing the positions of the foreign objects reflecting the false detection portion removal process and the position correction, that is, an image that displays the positions of the foreign objects in two dimensions can be mentioned. it can. As another example of the output image, there is an image obtained by stacking each projection image showing the position of the foreign matter reflecting the false detection portion removal process and the position correction, that is, an image that displays the position of the foreign matter in three dimensions. Can be done.
<3.投影画像>
前述したステップS2の処理、すなわちフレームデータを断層に投影した画像を生成し、その後、その生成した画像を投影画像に再構成する処理の一例を図3のフローチャートに従い説明する。 <3. Projected image>
An example of the process of step S2 described above, that is, a process of generating an image obtained by projecting frame data onto a tomographic image and then reconstructing the generated image into a projected image will be described with reference to the flowchart of FIG.
前述したステップS2の処理、すなわちフレームデータを断層に投影した画像を生成し、その後、その生成した画像を投影画像に再構成する処理の一例を図3のフローチャートに従い説明する。 <3. Projected image>
An example of the process of step S2 described above, that is, a process of generating an image obtained by projecting frame data onto a tomographic image and then reconstructing the generated image into a projected image will be described with reference to the flowchart of FIG.
CPU4は、まず、ディフェクト登録データを読み込み、ディフェクトテーブルを作成する(ステップS11)。
First, the CPU 4 reads the defect registration data and creates a defect table (step S11).
次に、CPU4は、濃度補正用画像を読み込み、濃度補正データを作成する(ステップS12)。なお、ステップS11及びS12は本実施形態と異なり、ステップS1より先に実行されてもよい。
Next, the CPU 4 reads the density correction image and creates the density correction data (step S12). Note that, unlike the present embodiment, steps S11 and S12 may be executed before step S1.
CPU4は、投影データ(フレームデータ)を読み込み(ステップS13)、投影データに対して、ディフェクト補正及び濃度補正を行う(ステップS14)。
The CPU 4 reads the projection data (frame data) (step S13), and performs defect correction and density correction on the projection data (step S14).
ステップS13で読み込んだ各投影データにおいては、第1X線照射部1A及び第1X線検出部2Aに由来する投影データに関しては第1X線照射部1Aから曝射されたX線が透過するボクセルについてのみ計算をすればよく、第2X線照射部1B及び第2X線検出部2Bに由来する投影データに関しては第2X線照射部1Bから曝射されたX線が透過するボクセルについてのみ計算をすればよい。各投影データにおいては、X線が透過するボクセルの範囲が狭いので、X線が透過するボクセルについてのみ計算を行うようにすることで、計算時聞を短縮することができる。したがって、CPU4は、フレームデータごとに、各断層において計算するボクセルの範囲を被検査物T1のサイズに応じてあらかじめ設定しておけばよい。
In each projection data read in step S13, regarding the projection data derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A, only the voxels through which the X-rays exposed from the first X-ray irradiation unit 1A are transmitted. The calculation may be performed, and the projection data derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B need to be calculated only for the voxels through which the X-rays exposed from the second X-ray irradiation unit 1B are transmitted. .. Since the range of voxels through which X-rays are transmitted is narrow in each projection data, it is possible to shorten the calculation time by performing the calculation only for the voxels through which X-rays are transmitted. Therefore, the CPU 4 may set the range of voxels to be calculated at each fault for each frame data in advance according to the size of the object T1 to be inspected.
次に、CPU4は、再構成領域を占める各ボクセル頂点の実際の位置座標を算出する(ステップS15)。
Next, the CPU 4 calculates the actual position coordinates of each voxel vertex occupying the reconstructed area (step S15).
続いて、CPU4は、ステップS13のデータ収集処理で得られた投影データをフレーム毎に順次読み込む(ステップS16)。1回のステップS16の処理では、1フレームの投影データが読み込まれる。
Subsequently, the CPU 4 sequentially reads the projection data obtained in the data collection process in step S13 for each frame (step S16). In the process of one step S16, one frame of projection data is read.
次に、CPU4は、投影データとフィルタ関数を畳み込み積分する(ステップS17)。
Next, the CPU 4 convolves and integrates the projection data and the filter function (step S17).
その後、CPU4は、計算を簡単化するため、畳み込み積分の算出結果毎に、図4に示す座標系になるように系の座標変換を行う(ステップS18)。具体的には、第2X線照射部1B及び第2X線検出部2Bに由来する畳み込み積分の算出結果に関して、第2X線照射部1Bが原点、第2X線検出部2Bの中心位置がZ軸上の正方向になるように、第2X線照射部1B、再構成領域R1、及び第2X線検出部2Bからなる系の回転移動と並行移動を行う。ここで、Z軸はX軸とY軸とに直交する軸であり、第1X線照射部1Aから第1X線検出部2Aに向かう方向がZ軸の正方向である。なお、第1X線照射部1A及び第1X線検出部2Aに由来する畳み込み積分の算出結果に関しては、元から図4に示す座標系であるため、系の座標変換を行わない。
After that, in order to simplify the calculation, the CPU 4 performs coordinate conversion of the system so as to be the coordinate system shown in FIG. 4 for each calculation result of the convolution integral (step S18). Specifically, regarding the calculation result of the convolution integral derived from the second X-ray irradiation unit 1B and the second X-ray detection unit 2B, the second X-ray irradiation unit 1B is the origin and the center position of the second X-ray detection unit 2B is on the Z axis. The system including the second X-ray irradiation unit 1B, the reconstruction region R1, and the second X-ray detection unit 2B is rotationally moved and translated so as to be in the positive direction of. Here, the Z-axis is an axis orthogonal to the X-axis and the Y-axis, and the direction from the first X-ray irradiation unit 1A to the first X-ray detection unit 2A is the positive direction of the Z-axis. Regarding the calculation result of the convolution integral derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A, since the coordinate system is originally shown in FIG. 4, the coordinate conversion of the system is not performed.
次に、ステップS19においてCPU4が実行するFBP(Filtered Back Projection)法を用いた再構成計算について図5A~図13を参照して説明する。以下の説明において、第1X線照射部1A及び第2X線照射部1Bを区別する必要がない場合にはそれらをX線照射部1と称し、第1X線検出部2A及び第2X線検出部2Bを区別する必要がない場合にはそれらをX線検出部2と称する。
Next, the reconstruction calculation using the FBP (Filtered Back Projection) method executed by the CPU 4 in step S19 will be described with reference to FIGS. 5A to 13. In the following description, when it is not necessary to distinguish between the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B, they are referred to as the X-ray irradiation unit 1, and the first X-ray detection unit 2A and the second X-ray detection unit 2B are referred to. When it is not necessary to distinguish between them, they are referred to as an X-ray detector 2.
まず、X線検出部2の検出面の或るピクセルに着目し、X線照射部1からのX線がその着目ピクセルに入射する場合を考える。
First, pay attention to a certain pixel on the detection surface of the X-ray detection unit 2, and consider a case where X-rays from the X-ray irradiation unit 1 are incident on the pixel of interest.
着目ピクセルに入射するX線は被写体を透過する際に減弱し、X線検出部2に取り込まれるX線が減少する。つまり、複数のボクセルによって構成される図4に示す再構成領域R1を設定すると、着目ピクセルには、ボクセルを透過したX線が入射し、そのX線が透過したボクセルの分だけX線が減弱して着目ピクセルの輝度値に反映されることになる。
The X-rays incident on the pixel of interest are attenuated when passing through the subject, and the X-rays captured by the X-ray detection unit 2 are reduced. That is, when the reconstruction region R1 shown in FIG. 4 composed of a plurality of voxels is set, X-rays transmitted through the voxels are incident on the pixel of interest, and the X-rays are attenuated by the amount of the voxels transmitted by the X-rays. It will be reflected in the brightness value of the pixel of interest.
着目ピクセルに入射するX線が断層内の複数のボクセルの一部分を透過する場合は、各ボクセルのX線が透過した部分の体積比に応じてX線が減弱し、その減弱度合いが着目ピクセルの輝度値に反映される。
When the X-rays incident on the pixel of interest pass through a part of multiple voxels in the fault, the X-rays are attenuated according to the volume ratio of the part where the X-rays of each voxel are transmitted, and the degree of attenuation is the degree of attenuation of the pixel of interest. It is reflected in the brightness value.
つまり、着目ピクセルに入射するX線が透過した各ボクセルは、各ボクセルのX線が透過した部分の体積比の割合で着目ピクセルの輝度値に寄与している。逆に考えれば、着目ピクセルの輝度値を、着目ピクセルに入射するX線が透過した各ボクセルのX線が透過した部分の体積比で分割すると、各分割値は、各ボクセルのX線が透過した部分のX線減弱に対応する。
That is, each voxel transmitted with X-rays incident on the pixel of interest contributes to the brightness value of the pixel of interest at the ratio of the volume ratio of the portion of each voxel transmitted with X-rays. Conversely, if the brightness value of the pixel of interest is divided by the volume ratio of the part where the X-rays of each voxel transmitted to the pixel of interest are transmitted, the X-rays of each voxel are transmitted at each divided value. Corresponds to the X-ray attenuation of the affected part.
図5Aは、X線検出部2の検出面の一部であるピクセル群PXGとボクセルVX1~VX4との位置関係の一例を示す斜視図である。図5Bは、図5Aで示した位置関係を示す上面図である。ピクセル群PXGはピクセルPX1~PX16によって構成されている。図5A及び図5Bに示す位置関係において、着目ピクセルをピクセルPX11とすると、ボクセルVX1~VX4が着目ピクセルに入射するX線が透過したボクセルとなる。
FIG. 5A is a perspective view showing an example of the positional relationship between the pixel group PXG, which is a part of the detection surface of the X-ray detection unit 2, and the voxels VX1 to VX4. FIG. 5B is a top view showing the positional relationship shown in FIG. 5A. The pixel group PXG is composed of pixels PX1 to PX16. In the positional relationship shown in FIGS. 5A and 5B, assuming that the pixel of interest is pixel PX11, voxels VX1 to VX4 become voxels through which X-rays incident on the pixel of interest have passed.
一方、着目ピクセルに反映されるX線減弱すなわち着目ピクセルの輝度値は、着目ピクセルの輝度値と、着目ピクセルに入射するX線が透過した全ボクセルのX線が透過した部分の総体積に対する当該全ボクセル中の或る一つボクセルのX線が透過した部分の体積の割合との乗算値を、当該全ボクセル中の個々のボクセルに関して和をとったものになっている。したがって、或るボクセルに着目した場合、その着目ボクセルを透過するX線は複数のピクセルに入射するため、着目ボクセルにおけるX線減弱の影響が、各ピクセルに対応する体積比に応じて各ピクセルに与えられることになる。つまり、各ピクセルに対して、影響を受けたX線減弱の内、着目ボクセルがそのピクセルに与える影響の比(体積比)と、輝度値との乗算値をとり、その乗算値をピクセルについて積分することで、着目ボクセル全体のX線減弱を求めることができる。すなわち、着目ボクセルへの逆投影が得られることになる。
On the other hand, the X-ray attenuation reflected in the pixel of interest, that is, the brightness value of the pixel of interest, corresponds to the brightness value of the pixel of interest and the total volume of the portion of all voxels in which the X-rays incident on the pixel of interest are transmitted. The product of the product of the volume ratio of the X-ray-transmitted portion of one voxel in all voxels is summed for each voxel in the whole voxel. Therefore, when focusing on a voxel, the X-rays that pass through the voxel of interest are incident on a plurality of pixels, so that the effect of X-ray attenuation on the voxel of interest is applied to each pixel according to the volume ratio corresponding to each pixel. Will be given. That is, for each pixel, the ratio (volume ratio) of the effect of the voxel of interest on that pixel among the affected X-ray attenuation is taken as the multiplication value with the brightness value, and the multiplication value is integrated for each pixel. By doing so, it is possible to obtain the X-ray attenuation of the entire voxel of interest. That is, the back projection to the voxel of interest can be obtained.
図6Aは、X線検出部2の検出面の一部であるピクセル群PXGとボクセルVX1との位置関係の一例を示す斜視図である。図6Bは、図6Aで示した位置関係を示す上面図である。図6A及び図6Bに示す位置関係において、着目ボクセルをボクセルVX1とすると、着目ボクセルVX1全体のX線減弱は、(1)ピクセルPX5の輝度値と、着目ボクセルVX1の体積に対する着目ボクセルVX1のピクセルPX5に入射するX線が透過した部分の体積の割合との乗算値、(2)ピクセルPX6の輝度値と、着目ボクセルVX1の体積に対する着目ボクセルVX1のピクセルPX6に入射するX線が透過した部分の体積の割合との乗算値、(3)ピクセルPX7の輝度値と、着目ボクセルVX1の体積に対する着目ボクセルVX1のピクセルPX7に入射するX線が透過した部分の体積の割合との乗算値、(4)ピクセルPX9の輝度値と、着目ボクセルVX1の体積に対する着目ボクセルVX1のピクセルPX9に入射するX線が透過した部分の体積の割合との乗算値、(5)ピクセルPX10の輝度値と、着目ボクセルVX1の体積に対する着目ボクセルVX1のピクセルPX10に入射するX線が透過した部分の体積の割合との乗算値、及び(6)ピクセルPX11の輝度値と、着目ボクセルVX1の体積に対する着目ボクセルVX1のピクセルPX11に入射するX線が透過した部分の体積の割合との乗算値、の和となる。
FIG. 6A is a perspective view showing an example of the positional relationship between the pixel group PXG, which is a part of the detection surface of the X-ray detection unit 2, and the voxel VX1. FIG. 6B is a top view showing the positional relationship shown in FIG. 6A. In the positional relationship shown in FIGS. 6A and 6B, assuming that the voxel of interest is voxel VX1, the X-ray attenuation of the entire voxel VX1 of interest is (1) the brightness value of the pixel PX5 and the pixel of the voxel VX1 of interest with respect to the volume of the voxel VX1 of interest. Multiplying value by the ratio of the volume of the part where the X-ray incident on the PX5 is transmitted, (2) the brightness value of the pixel PX6 and the part where the X-ray incident on the pixel PX6 of the voxel VX1 of interest is transmitted to the volume of the voxel VX1 of interest. Multiplying value with the volume ratio of, (3) Multiplying value of the brightness value of the pixel PX7 with the volume ratio of the portion through which the X-ray transmitted to the pixel PX7 of the voxel VX1 of interest is transmitted to the volume of the voxel VX1 of interest, ( 4) Multiplying the brightness value of pixel PX9 and the ratio of the volume of the portion through which X-rays incident on pixel PX9 of voxel VX1 of interest to the volume of voxel VX1 of interest, (5) the brightness value of pixel PX10 and attention Multiplying the volume of the voxel VX1 with respect to the volume of the portion through which the X-ray incident on the pixel PX10 of the voxel VX1 is transmitted, and (6) the brightness value of the pixel PX11 and the volume of the voxel VX1 of interest with respect to the volume of the voxel VX1 It is the sum of the multiplication value with the ratio of the volume of the portion through which the X-ray incident on the pixel PX11 is transmitted.
具体的には、ボクセルを透過するX線は直進するので、各ボクセルについて、X線検出部2の検出面をX線入射方向でボクセル位置まで投影させる。逆に、各ボクセルについて、ボクセルをX線入射方向でX線検出部2の検出面の位置まで投影させてもよい。
Specifically, since the X-rays that pass through the voxels travel straight, the detection surface of the X-ray detection unit 2 is projected to the voxel position in the X-ray incident direction for each voxel. On the contrary, for each voxel, the voxel may be projected to the position of the detection surface of the X-ray detection unit 2 in the X-ray incident direction.
直方体であるボクセルのいずれの構成面もX線入射方向に対して垂直でない場合、例えば図7に示すようにX線入射方向に対するボクセルの厚みがボクセルVX1内で一様ではないので、ピクセルによってはボクセルの薄い部分を透過したX線が入射される場合もあり、これを厳密に計算すると、逆投影の計算時間が膨大になる。
If none of the constituent planes of a rectangular parallelepiped voxel is perpendicular to the X-ray incident direction, for example, as shown in FIG. 7, the thickness of the voxel with respect to the X-ray incident direction is not uniform within the voxel VX1, depending on the pixel. X-rays that have passed through the thin part of the voxel may be incident, and if this is calculated exactly, the calculation time for the back projection will be enormous.
そこで、本実施形態では、直方体のボクセルを、直方体のボクセルと同一の体積であってX線入射方向に対する厚みが一様な斜四角柱に近似して、逆投影を行う。当該斜四角柱は、X線入射方向から見て重複する領域が存在する一対の対向構成面を、両方又は片方のみ各対向構成面を含む平面上で平行移動させることによって、2つの底面とし、直方体のボクセルと同一の体積であってX線入射方向に対する厚みを一様とした形状である。このような近似を行っても投影画像の画質には殆ど影響しない。
Therefore, in the present embodiment, the rectangular parallelepiped voxel is approximated to an oblique quadrangular prism having the same volume as the rectangular parallelepiped voxel and having a uniform thickness with respect to the X-ray incident direction, and back projection is performed. The oblique quadrangular prism has two bottom surfaces by translating a pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction on a plane including both or one of the opposing constituent surfaces. It has the same volume as a rectangular parallelepiped voxel and has a uniform thickness with respect to the X-ray incident direction. Even if such an approximation is performed, the image quality of the projected image is hardly affected.
図8Aは、ボクセルVX1を近似する斜四角柱の一例を示す図である。図8Aに示す斜四角柱OP1は、長方形RT2及びRT3を底面とし、X線入射方向に対する厚みを一様とした形状である。長方形RT1は、図6A及び図6Bに示すボクセルVX1の構成面のうち、X線入射方向から見て重複する領域が存在する一対の対向構成面に含まれる辺以外の着目ボクセルVX1の各辺の中点を頂点とする長方形である。着目ボクセルVX1内に形成される長方形RT1を斜視図で示すと、図8Bのようになる。長方形RT2は、図6A及び図6Bに示すボクセルVX1の構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面のX線検出部2に近い方をそのX線検出部2に近い方の対向構成面を含む平面上で平行移動させたものである。長方形RT3は、図6A及び図6Bに示すボクセルVX1の構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面のX線検出部2に遠い方をそのX線検出部2に遠い方の対向構成面を含む平面上で平行移動させたものである。そして、長方形RT1~RT3の各外周はX線入射方向から見て一致している。
FIG. 8A is a diagram showing an example of an oblique quadrangular prism that approximates voxel VX1. The oblique quadrangular prism OP1 shown in FIG. 8A has rectangles RT2 and RT3 as bottom surfaces, and has a uniform thickness with respect to the X-ray incident direction. The rectangle RT1 is a side of each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B. It is a rectangle with the midpoint as the apex. A perspective view of the rectangle RT1 formed in the voxel VX1 of interest is as shown in FIG. 8B. The rectangular RT2 detects the X-rays on the constituent planes of the voxel VX1 shown in FIGS. 6A and 6B, which are closer to the X-ray detector 2 on the pair of opposed constituent planes having overlapping regions when viewed from the X-ray incident direction. It is translated in parallel on a plane including the facing constituent surfaces closer to the portion 2. The rectangle RT3 detects the X-ray detection unit 2 of the pair of facing constituent planes having overlapping regions when viewed from the X-ray incident direction among the constituent planes of the voxel VX1 shown in FIGS. 6A and 6B. The portion 2 is translated in parallel on a plane including the distant facing configuration surface. The outer circumferences of the rectangles RT1 to RT3 coincide with each other when viewed from the X-ray incident direction.
着目ボクセルを図6A及び図6Bに示すボクセルVX1とすると、着目ボクセルVX1全体のX線減弱は、(1)ピクセルPX5の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX5に入射するX線が透過した部分の面積の割合との乗算値、(2)ピクセルPX6の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX6に入射するX線が透過した部分の面積の割合との乗算値、(3)ピクセルPX7の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX7に入射するX線が透過した部分の面積の割合との乗算値、(4)ピクセルPX9の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX9に入射するX線が透過した部分の面積の割合との乗算値、(5)ピクセルPX10の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX10に入射するX線が透過した部分の面積の割合との乗算値、(6)ピクセルPX11の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX11に入射するX線が透過した部分の面積の割合との乗算値、の和となる。長方形RT1の各頂点の座標は、着目ボクセルVX1の各頂点の座標から算出することができる。また、上記の各面積は、長方形RT1のX座標およびZ座標と、X線検出部2の検出面に形成されているピクセルの各格子点のX座標およびY座標とから算出することができる。
Assuming that the boxel of interest is the boxel VX1 shown in FIGS. 6A and 6B, the X-ray attenuation of the entire boxel VX1 of interest is (1) the brightness value of the pixel PX5 and the X-ray incident on the pixel PX5 of the rectangle RT1 with respect to the area of the rectangle RT1. Multiplying value with the ratio of the area of the transmitted part, (2) Multiplying the brightness value of the pixel PX6 with the ratio of the area of the part where the X-ray incident on the pixel PX6 of the rectangle RT1 is transmitted to the area of the rectangle RT1 , (3) Multiplying the brightness value of the pixel PX7 by the ratio of the area of the portion where the X-ray incident on the pixel PX7 of the rectangle RT1 is transmitted to the area of the rectangle RT1, (4) The brightness value of the pixel PX9 and the rectangle. Multiplying the area of RT1 by the ratio of the area of the portion where the X-rays incident on the pixel PX9 of the rectangle RT1 are transmitted, (5) the brightness value of the pixel PX10 and the pixel PX10 of the rectangle RT1 with respect to the area of the rectangle RT1. Multiplying value with the ratio of the area of the part where the X-ray is transmitted, (6) The ratio of the brightness value of the pixel PX11 and the area of the part where the X-ray incident on the pixel PX11 of the rectangle RT1 is transmitted to the area of the rectangle RT1. It is the sum of the multiplication values. The coordinates of each vertex of the rectangle RT1 can be calculated from the coordinates of each vertex of the voxel VX1 of interest. Further, each of the above areas can be calculated from the X-coordinate and Z-coordinate of the rectangle RT1 and the X-coordinate and Y-coordinate of each lattice point of the pixel formed on the detection surface of the X-ray detection unit 2.
長方形RT1は、上述した通り、着目ボクセルVX1の構成面のうち、X線入射方向から見て重複する領域が存在する一対の対向構成面に含まれる辺以外の着目ボクセルVX1の各辺の中点を頂点とする長方形である。これにより、X線検出部2の検出面に平行な方向に関して、斜四角柱OP1が、着目ボクセルVX1に対して偏ることを防止することができ、近似による投影画像の画質への影響を最小化することができる。ただし、着目ボクセルVX1を近似する斜四角柱の位置設定は、本実施形態の設定に限定されるものではない。例えば、X線検出部2の検出面に平行な方向に関して、斜四角柱OP1が、着目ボクセルVX1に対して偏ることがあまり問題にならない場合には、着目ボクセルVX1を近似する斜四角柱を、図9に示す斜四角柱OP2、図10に示す斜四角柱OP3、図11に示す斜四角柱OP4、図12に示す斜四角柱OP5などにしてもよい。
As described above, the rectangle RT1 is the midpoint of each side of the voxel VX1 of interest other than the side included in the pair of facing constituent planes having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 of interest. It is a rectangle whose apex is. As a result, it is possible to prevent the oblique quadrangular prism OP1 from being biased with respect to the voxel VX1 of interest in the direction parallel to the detection surface of the X-ray detection unit 2, and the effect of approximation on the image quality of the projected image is minimized. can do. However, the position setting of the oblique quadrangular prism that approximates the voxel VX1 of interest is not limited to the setting of the present embodiment. For example, if it is not a problem that the oblique quadrangular prism OP1 is biased with respect to the voxel VX1 of interest with respect to the direction parallel to the detection surface of the X-ray detection unit 2, an oblique quadrangular prism that approximates the voxel VX1 of interest is used. The oblique quadrangular prism OP2 shown in FIG. 9, the oblique quadrangular prism OP3 shown in FIG. 10, the oblique quadrangular prism OP4 shown in FIG. 11, the oblique quadrangular prism OP5 shown in FIG.
図9に示す近似を行う場合、着目ボクセルを図6A及び図6Bに示すボクセルVX1とすると、着目ボクセルVX1全体のX線減弱は、(1)ピクセルPX5の輝度値と、長方形RT4の面積に対する長方形RT4のピクセルPX5に入射するX線が透過した部分の面積の割合との乗算値、(2)ピクセルPX6の輝度値と、長方形RT4の面積に対する長方形RT4のピクセルPX6に入射するX線が透過した部分の面積の割合との乗算値、(3)ピクセルPX7の輝度値と、長方形RT4の面積に対する長方形RT4のピクセルPX7に入射するX線が透過した部分の面積の割合との乗算値、(4)ピクセルPX9の輝度値と、長方形RT4の面積に対する長方形RT4のピクセルPX9に入射するX線が透過した部分の面積の割合との乗算値、(5)ピクセルPX10の輝度値と、長方形RT4の面積に対する長方形RT4のピクセルPX10に入射するX線が透過した部分の面積の割合との乗算値、(6)ピクセルPX11の輝度値と、長方形RT4の面積に対する長方形RT4のピクセルPX11に入射するX線が透過した部分の面積の割合との乗算値、の和となる。なお、長方形RT4は、図6A及び図6Bに示すボクセルVX1の構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面のX線検出部2に遠い方である。
When performing the approximation shown in FIG. 9, assuming that the boxel of interest is the boxel VX1 shown in FIGS. 6A and 6B, the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT4. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of the RT4 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT4 with respect to the area of the rectangle RT4 are transmitted. Multiplying value with the ratio of the area of the part, (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT4 is transmitted to the area of the rectangle RT4, (4) ) Multiplying the brightness value of the pixel PX9 and the ratio of the area of the portion where the X-ray incident on the pixel PX9 of the rectangle RT4 to the area of the rectangle RT4, (5) the brightness value of the pixel PX10 and the area of the rectangle RT4 The multiplication value of the ratio of the area of the portion where the X-ray incident on the pixel PX10 of the rectangle RT4 is transmitted, (6) the brightness value of the pixel PX11 and the X-ray incident on the pixel PX11 of the rectangle RT4 with respect to the area of the rectangle RT4. It is the sum of the multiplication value with the ratio of the area of the transparent part. The rectangle RT4 is farther from the X-ray detection unit 2 of the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B.
図10に示す近似を行う場合、着目ボクセルを図6A及び図6Bに示すボクセルVX1とすると、着目ボクセルVX1全体のX線減弱は、(1)ピクセルPX5の輝度値と、長方形RT5の面積に対する長方形RT5のピクセルPX5に入射するX線が透過した部分の面積の割合との乗算値、(2)ピクセルPX6の輝度値と、長方形RT5の面積に対する長方形RT5のピクセルPX6に入射するX線が透過した部分の面積の割合との乗算値、(3)ピクセルPX7の輝度値と、長方形RT5の面積に対する長方形RT5のピクセルPX7に入射するX線が透過した部分の面積の割合との乗算値、(4)ピクセルPX9の輝度値と、長方形RT5の面積に対する長方形RT5のピクセルPX9に入射するX線が透過した部分の面積の割合との乗算値、(5)ピクセルPX10の輝度値と、長方形RT5の面積に対する長方形RT5のピクセルPX10に入射するX線が透過した部分の面積の割合との乗算値、(6)ピクセルPX11の輝度値と、長方形RT5の面積に対する長方形RT5のピクセルPX11に入射するX線が透過した部分の面積の割合との乗算値、の和となる。なお、長方形RT5は、図6A及び図6Bに示すボクセルVX1の構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面のX線検出部2に近い方である。
In the case of performing the approximation shown in FIG. 10, assuming that the boxel of interest is the boxel VX1 shown in FIGS. 6A and 6B, the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT5. Multiplying the area ratio of the area where the X-ray incident on the pixel PX5 of the RT5 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT5 with respect to the area of the rectangle RT5 are transmitted. Multiplying value with the ratio of the area of the part, (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT5 is transmitted to the area of the rectangle RT5, (4) ) Multiplying the brightness value of pixel PX9 and the ratio of the area of the portion where X-rays incident on pixel PX9 of rectangle RT5 to the area of rectangle RT5, (5) the brightness value of pixel PX10 and the area of rectangle RT5 The multiplication value of the ratio of the area of the portion where the X-ray incident on the pixel PX10 of the rectangle RT5 is transmitted, (6) the brightness value of the pixel PX11, and the X-ray incident on the pixel PX11 of the rectangle RT5 with respect to the area of the rectangle RT5. It is the sum of the multiplication value with the ratio of the area of the transparent part. The rectangle RT5 is closer to the X-ray detection unit 2 of the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B.
図11に示す近似を行う場合、着目ボクセルを図6A及び図6Bに示すボクセルVX1とすると、着目ボクセルVX1全体のX線減弱は、(1)ピクセルPX5の輝度値と、長方形RT6の面積に対する長方形RT6のピクセルPX5に入射するX線が透過した部分の面積の割合との乗算値、(2)ピクセルPX6の輝度値と、長方形RT6の面積に対する長方形RT6のピクセルPX6に入射するX線が透過した部分の面積の割合との乗算値、(3)ピクセルPX7の輝度値と、長方形RT6の面積に対する長方形RT6のピクセルPX7に入射するX線が透過した部分の面積の割合との乗算値、(4)ピクセルPX9の輝度値と、長方形RT6の面積に対する長方形RT6のピクセルPX9に入射するX線が透過した部分の面積の割合との乗算値、(5)ピクセルPX10の輝度値と、長方形RT6の面積に対する長方形RT6のピクセルPX10に入射するX線が透過した部分の面積の割合との乗算値、(6)ピクセルPX11の輝度値と、長方形RT6の面積に対する長方形RT6のピクセルPX11に入射するX線が透過した部分の面積の割合との乗算値、の和となる。なお、長方形RT6は、図6A及び図6Bに示すボクセルVX1の構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面に含まれる辺以外の着目ボクセルVX1の各辺をX線検出部2に遠い方から1:2で分割する分割点を頂点とする長方形である。
In the case of performing the approximation shown in FIG. 11, assuming that the boxel of interest is the boxel VX1 shown in FIGS. 6A and 6B, the X-ray attenuation of the entire boxel VX1 of interest is (1) the brightness value of the pixel PX5 and the rectangle with respect to the area of the rectangle RT6. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of the RT6 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT6 with respect to the area of the rectangle RT6 are transmitted. Multiplying value with the ratio of the area of the part, (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT6 is transmitted to the area of the rectangle RT6, (4) ) Multiplying the brightness value of the pixel PX9 and the ratio of the area of the portion where the X-ray incident on the pixel PX9 of the rectangle RT6 to the area of the rectangle RT6, (5) the brightness value of the pixel PX10 and the area of the rectangle RT6. The multiplication value of the ratio of the area of the portion where the X-ray incident on the pixel PX10 of the rectangle RT6 is transmitted, (6) the brightness value of the pixel PX11, and the X-ray incident on the pixel PX11 of the rectangle RT6 with respect to the area of the rectangle RT6. It is the sum of the multiplication value with the ratio of the area of the transparent part. It should be noted that the rectangle RT6 is each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces in which the overlapping regions exist when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B. Is a rectangle whose apex is a division point that divides the X-ray detector 2 from the far side at a ratio of 1: 2.
図12に示す近似を行う場合、着目ボクセルを図6A及び図6Bに示すボクセルVX1とすると、着目ボクセルVX1全体のX線減弱は、(1)ピクセルPX5の輝度値と、長方形RT7の面積に対する長方形RT7のピクセルPX5に入射するX線が透過した部分の面積の割合との乗算値、(2)ピクセルPX6の輝度値と、長方形RT7の面積に対する長方形RT7のピクセルPX6に入射するX線が透過した部分の面積の割合との乗算値、(3)ピクセルPX7の輝度値と、長方形RT7の面積に対する長方形RT7のピクセルPX7に入射するX線が透過した部分の面積の割合との乗算値、(4)ピクセルPX9の輝度値と、長方形RT7の面積に対する長方形RT7のピクセルPX9に入射するX線が透過した部分の面積の割合との乗算値、(5)ピクセルPX10の輝度値と、長方形RT7の面積に対する長方形RT7のピクセルPX10に入射するX線が透過した部分の面積の割合との乗算値、(6)ピクセルPX11の輝度値と、長方形RT7の面積に対する長方形RT7のピクセルPX11に入射するX線が透過した部分の面積の割合との乗算値、の和となる。なお、長方形RT7は、図6A及び図6Bに示すボクセルVX1の構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面に含まれる辺以外の着目ボクセルVX1の各辺をX線検出部2に遠い方から2:1で分割する分割点を頂点とする長方形である。
When performing the approximation shown in FIG. 12, assuming that the boxel of interest is the boxel VX1 shown in FIGS. 6A and 6B, the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT7. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of the RT7 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT7 with respect to the area of the rectangle RT7 are transmitted. Multiplying value with the ratio of the area of the part, (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT7 is transmitted to the area of the rectangle RT7, (4) ) Multiplying the brightness value of pixel PX9 and the ratio of the area of the portion where X-rays incident on pixel PX9 of rectangle RT7 to the area of rectangle RT7, (5) the brightness value of pixel PX10 and the area of rectangle RT7 The multiplication value of the ratio of the area of the portion where the X-ray incident on the pixel PX10 of the rectangle RT7 is transmitted, (6) the brightness value of the pixel PX11, and the X-ray incident on the pixel PX11 of the rectangle RT7 with respect to the area of the rectangle RT7. It is the sum of the multiplication value with the ratio of the area of the transparent part. It should be noted that the rectangle RT7 is each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 shown in FIGS. 6A and 6B. Is a rectangle whose apex is a division point that divides the X-ray detector 2 from the far side at a ratio of 2: 1.
ステップS1において縦長のX線細隙ビームがX線照射部1から照射されるため、X線照射部1から照射されるX線のX軸方向(=X線検出部2の横方向)の広がりは小さく、X線照射部1から照射されるX線のY軸方向(=X線検出部の縦方向)の広がりは大きい。したがって、X軸方向(=X線検出部2の横方向)に関しては、着目ボクセルの位置に係わらず、上記において説明した図7~図12のように、X線入射方向をX線検出部2の検出面に対して垂直として扱うことができるが、Y軸方向(=X線検出部2の縦方向)に関しては、X線入射方向を一律にX線検出部2の検出面に対して垂直として扱うことができず、着目ボクセルの位置がY軸方向に関して原点から離れているほど着目ボクセルを透過するX線はX線検出部2の検出面に対してY軸方向に斜めに入射する。ここで、着目ボクセルを透過するX線がX線検出部2の検出面に対してY軸方向に斜めに入射する場合の逆投影について図13を参照して説明する。図13は、着目ボクセルVX1を透過するX線がX線検出部2の検出面に対してY軸方向に斜めに入射する場合の一例を示す図である。図13においても、図7~図12と同様に、直方体のボクセル(例えば図13における着目ボクセルVX1)を、直方体のボクセルと同一の体積であってX線入射方向に対する厚みが一様な斜四角柱(例えば図13における斜四角柱OP6)に近似して、逆投影を行う。当該斜四角柱は、X線入射方向から見て重複する領域が存在する一対の対向構成面を、両方又は片方のみ各対向構成面を含む平面上で平行移動させることによって、2つの底面とし、直方体のボクセルと同一の体積であってX線入射方向に対する厚みを一様とした形状である。
Since the vertically long X-ray gap beam is emitted from the X-ray irradiation unit 1 in step S1, the X-rays emitted from the X-ray irradiation unit 1 spread in the X-ray direction (= lateral direction of the X-ray detection unit 2). Is small, and the spread of X-rays emitted from the X-ray irradiation unit 1 in the Y-axis direction (= vertical direction of the X-ray detection unit) is large. Therefore, with respect to the X-axis direction (= lateral direction of the X-ray detection unit 2), the X-ray incident direction is the X-ray detection unit 2 as shown in FIGS. 7 to 12 described above regardless of the position of the boxel of interest. Can be treated as perpendicular to the detection surface of, but in the Y-axis direction (= vertical direction of the X-ray detection unit 2), the X-ray incident direction is uniformly perpendicular to the detection surface of the X-ray detection unit 2. The farther the position of the focus box cell is from the origin with respect to the Y axis direction, the more X-rays transmitted through the focus box cell are obliquely incident on the detection surface of the X-ray detection unit 2 in the Y axis direction. Here, the back projection when the X-rays passing through the voxel of interest are obliquely incident on the detection surface of the X-ray detection unit 2 in the Y-axis direction will be described with reference to FIG. FIG. 13 is a diagram showing an example of a case where X-rays transmitted through the voxel VX1 of interest are obliquely incident on the detection surface of the X-ray detection unit 2 in the Y-axis direction. Also in FIG. 13, similarly to FIGS. 7 to 12, a rectangular parallelepiped voxel (for example, the voxel of interest VX1 in FIG. 13) has the same volume as the rectangular parallelepiped voxel and has a uniform thickness with respect to the X-ray incident direction. Back projection is performed by approximating a prism (for example, the oblique prism OP6 in FIG. 13). The oblique quadrangular prism has two bottom surfaces by translating a pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction on a plane including both or one of the opposing constituent surfaces. It has the same volume as a rectangular parallelepiped voxel and has a uniform thickness with respect to the X-ray incident direction.
図13に示す近似を行う場合、着目ボクセルを図6A及び図6Bに示すボクセルVX1とすると、着目ボクセルVX1全体のX線減弱は、(1)ピクセルPX5の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX5に入射するX線が透過した部分の面積の割合との乗算値、(2)ピクセルPX6の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX6に入射するX線が透過した部分の面積の割合との乗算値、(3)ピクセルPX7の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX7に入射するX線が透過した部分の面積の割合との乗算値、(4)ピクセルPX9の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX9に入射するX線が透過した部分の面積の割合との乗算値、(5)ピクセルPX10の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX10に入射するX線が透過した部分の面積の割合との乗算値、(6)ピクセルPX11の輝度値と、長方形RT1の面積に対する長方形RT1のピクセルPX11に入射するX線が透過した部分の面積の割合との乗算値、の和となる。なお、長方形RT1は、上述した通り、着目ボクセルVX1の構成面のうち、X線入射方向から見て重複する領域が存在する一対の対向構成面に含まれる辺以外の着目ボクセルVX1の各辺の中点を頂点とする長方形である。
In the case of performing the approximation shown in FIG. 13, assuming that the boxel of interest is the boxel VX1 shown in FIGS. 6A and 6B, the X-ray attenuation of the entire boxel VX1 of interest is (1) a rectangle with respect to the brightness value of the pixel PX5 and the area of the rectangle RT1. Multiplying the ratio of the area of the part where the X-ray incident on the pixel PX5 of RT1 is transmitted, (2) the brightness value of the pixel PX6 and the X-ray incident on the pixel PX6 of the rectangle RT1 with respect to the area of the rectangle RT1 are transmitted. Multiplying value with the ratio of the area of the part, (3) Multiplying the brightness value of the pixel PX7 with the ratio of the area of the part through which the X-ray incident on the pixel PX7 of the rectangle RT1 is transmitted to the area of the rectangle RT1, (4) ) Multiplying the brightness value of the pixel PX9 and the ratio of the area of the portion where the X-ray incident on the pixel PX9 of the rectangle RT1 is transmitted to the area of the rectangle RT1, (5) the brightness value of the pixel PX10 and the area of the rectangle RT1. The multiplication value of the ratio of the area of the portion through which the X-ray incident on the pixel PX10 of the rectangle RT1 is transmitted, (6) the brightness value of the pixel PX11, and the X-ray incident on the pixel PX11 of the rectangle RT1 with respect to the area of the rectangle RT1. It is the sum of the multiplication value with the ratio of the area of the transparent part. As described above, the rectangle RT1 is formed on each side of the voxel VX1 of interest other than the side included in the pair of facing constituent surfaces having overlapping regions when viewed from the X-ray incident direction among the constituent surfaces of the voxel VX1 of interest. It is a rectangle with the midpoint as the apex.
上記の説明では、着目ボクセルのいずれの構成面もX線検出部2の検出面と平行でない場合と、着目ボクセルを透過するX線の入射方向がX線検出部2の検出面に対して垂直でない場合とを分け、両者とも同様の近似を行うことができることを示したが、着目ボクセルのいずれの構成面もX線検出部2の検出面と平行でなく且つ着目ボクセルを透過するX線の入射方向がX線検出部2の検出面に対して垂直でない場合にも同様の近似を行うことができる。
In the above description, there are cases where none of the constituent surfaces of the boxel of interest is parallel to the detection surface of the X-ray detector 2 and the incident direction of the X-rays passing through the boxel of interest is perpendicular to the detection surface of the X-ray detector 2. It was shown that the same approximation can be performed for both cases, but none of the constituent planes of the focus box cell is parallel to the detection plane of the X-ray detector 2 and the X-rays that pass through the focus box cell. The same approximation can be performed when the incident direction is not perpendicular to the detection surface of the X-ray detection unit 2.
図6A及び図6BではボクセルVX1のみを図示しているが、再構成領域R1の全ボクセルについて、同様の逆投影を行うようにする。なお、再構成の計算において、図4に示すX軸およびZ軸とそれらに直交するY軸によって定義される直交座標系を用いてもよく、動径r、第1の偏角θ、および第2の偏角φによって定義される極座標系を用いてもよい。極座標系を用いる場合、X線照射部1の中心(X線源)から一つのボクセルまでの距離を動径rとする。また、X線照射部1の中心(X線源)から一つのボクセルの端から端までの撮影に必要な縦方向の画角θ1は微小であるので、sinθ1をθ1に近似することができる。同様に、X線照射部1の中心(X線源)から一つのボクセルの端から端までの撮影に必要な横方向の画角φ1は微小であるので、sinφ1をφ1に近似することができる。
Although only voxels VX1 are shown in FIGS. 6A and 6B, the same back projection is performed on all voxels in the reconstruction region R1. In the calculation of the reconstruction, a Cartesian coordinate system defined by the X-axis and the Z-axis shown in FIG. 4 and the Y-axis orthogonal to them may be used, and the moving diameter r, the first declination θ, and the first deviation angle θ are used. A polar coordinate system defined by an argument φ of 2 may be used. When a polar coordinate system is used, the distance from the center (X-ray source) of the X-ray irradiation unit 1 to one voxel is defined as the moving diameter r. Further, since the vertical field angle theta 1 necessary camera from the center of the X-ray irradiation unit 1 (X-ray source) from the end of one voxel to the end is very small, approximating the sin [theta 1 to theta 1 Can be done. Similarly, the lateral angle phi 1 necessary camera from the center of the X-ray irradiation unit 1 (X-ray source) from the end of one voxel to the end is very small, approximating the sin [phi 1 to phi 1 be able to.
なお、ボクセルの形状は直方体であるが、直方体には縦、横、高さの長さがすべて等しい特殊な一例である立方体も含まれる。同様に、ボクセルの構成面、及び、当該構成面に平行なボクセルの断面の各形状は長方形であるが、長方形には縦、横の長さが等しい特殊な一例である正方形も含まれる。また、着目ボクセルの構成面のうちX線入射方向から見て重複する領域が辺で存在する二対の対向構成面がある場合には、一対の対向構成面のみを着目ボクセルの構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面として選択するとよい。また、着目ボクセルの構成面のうちX線入射方向から見て重複する領域が点で存在する三対の対向構成面がある場合には、一対の対向構成面のみを着目ボクセルの構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面として選択するとよい。
The shape of the voxel is a rectangular parallelepiped, but the rectangular parallelepiped also includes a cube, which is a special example in which the length, width, and height are all the same. Similarly, the constituent planes of the voxel and the cross-sections of the voxels parallel to the constituent planes are rectangular in shape, but the rectangle also includes a square, which is a special example of equal length and width. In addition, when there are two pairs of opposing configuration surfaces in which overlapping regions exist on the sides of the constituent surfaces of the voxel of interest when viewed from the X-ray incident direction, only the pair of opposing configuration surfaces are among the constituent surfaces of the voxel of interest. It may be selected as a pair of facing configuration surfaces having overlapping regions when viewed from the X-ray incident direction. Further, when there are three pairs of facing constituent planes in which overlapping regions exist at points among the constituent planes of the voxel of interest, only the pair of facing constituent planes are among the constituent planes of the voxel of interest. It may be selected as a pair of facing configuration surfaces having overlapping regions when viewed from the X-ray incident direction.
再構成領域R1の全ボクセルについて逆投影の計算が完了すると、ステップS19におけるFBP法を用いた再構成計算が完了する。その後、CPU4は、フレームデータが終了したか否か判断し(ステップS20)、終了していない場合にはステップS16に戻り、前述の動作を繰り返す。
When the back projection calculation is completed for all the voxels in the reconstruction area R1, the reconstruction calculation using the FBP method in step S19 is completed. After that, the CPU 4 determines whether or not the frame data has ended (step S20), and if not, returns to step S16 and repeats the above-described operation.
一方、各ボクセルをX線が透過した回数(n)は、被検査物T1とX線の照射領域との相対位置によって異なるので、CPU4は、その回数を計算過程で算出しておき(ステップS21)、最終結果をnで分割する(ステップS22)。
On the other hand, the number of times (n) that X-rays have passed through each voxel differs depending on the relative position between the object to be inspected T1 and the irradiation area of X-rays, so the CPU 4 calculates the number of times in the calculation process (step S21). ), The final result is divided by n (step S22).
<4.異物の位置特定>
前述したステップS3の処理、すなわち各投影画像について異物の位置を特定する処理の一例を図14のフローチャートに従い説明する。 <4. Positioning of foreign matter>
An example of the process of step S3 described above, that is, the process of specifying the position of the foreign matter for each projected image will be described with reference to the flowchart of FIG.
前述したステップS3の処理、すなわち各投影画像について異物の位置を特定する処理の一例を図14のフローチャートに従い説明する。 <4. Positioning of foreign matter>
An example of the process of step S3 described above, that is, the process of specifying the position of the foreign matter for each projected image will be described with reference to the flowchart of FIG.
CPU4は、まず、投影画像を所定の領域(例えば、16ピクセル×16ピクセルの領域)毎に分割する (ステップS31)。投影画像において所定の領域で埋まらない部分が出る場合には、投影画像の端の部分は検査対象から外し、所定の領域群が投影画像の中央に位置するように、所定の領域群の位置を設定してもよい。
First, the CPU 4 divides the projected image into predetermined areas (for example, 16 pixels × 16 pixels areas) (step S31). If there is a part of the projected image that is not filled with a predetermined area, the edge part of the projected image is excluded from the inspection target, and the position of the predetermined area group is set so that the predetermined area group is located in the center of the projected image. It may be set.
次に、CPU4は、所定の領域それぞれにおける平均輝度値L1を算出する(ステップS32)。
Next, the CPU 4 calculates the average luminance value L1 in each of the predetermined regions (step S32).
その後、CPU4は、着目ピクセルの輝度値L2が、その着目ピクセルの属する所定の領域における平均輝度値L1よりも所定値V1以上小さいか否かを判定する(ステップS33)。所定値V1としては、例えば着目ピクセルの属する所定の領域内の各ピクセルの輝度値の標準偏差を挙げることができる。
After that, the CPU 4 determines whether or not the brightness value L2 of the pixel of interest is smaller than the average brightness value L1 in the predetermined region to which the pixel of interest belongs by a predetermined value V1 or more (step S33). As the predetermined value V1, for example, the standard deviation of the brightness value of each pixel in the predetermined region to which the pixel of interest belongs can be mentioned.
着目ピクセルの輝度値L2が、その着目ピクセルの属する所定の領域における平均輝度値L1よりも所定値V1以上小さいと判定されなかった場合(ステップS33のNO)、CPU4は、着目ピクセルを異物の位置として特定しない。
When it is not determined that the luminance value L2 of the pixel of interest is smaller than the average luminance value L1 in the predetermined region to which the pixel of interest belongs by a predetermined value V1 or more (NO in step S33), the CPU 4 positions the pixel of interest as a foreign object. Not specified as.
一方、着目ピクセルの輝度値L2が、その着目ピクセルの属する所定の領域における平均輝度値L1よりも所定値V1以上小さいと判定された場合(ステップS33のYES)、ステップS34に移行する。
On the other hand, when it is determined that the luminance value L2 of the pixel of interest is smaller than the average luminance value L1 in the predetermined region to which the pixel of interest belongs by a predetermined value V1 or more (YES in step S33), the process proceeds to step S34.
ステップS34において、CPU4は、着目ピクセルの横方向負側に並ぶ第1設定数のピクセル内で最大となる第1輝度値を算出し、着目ピクセルの横方向正側に並ぶ第2設定数のピクセル内で最大となる第2輝度値を算出し、着目ピクセルの縦方向負側に並ぶ第3設定数のピクセル内で最大となる第3輝度値を算出し、着目ピクセルの縦方向正側に並ぶ第4設定数のピクセル内で最大となる第4輝度値を算出する。第1設定数~第4設定数は全て同じ値であってもよく、2種類以上4種類以下の異なる値であってもよい。なお、所定の領域が投影画像の端に位置し、第1設定数~第4設定数の少なくとも1つを確保することができない場合は、確保可能なピクセル数で対応し、全く確保できない場合はそのピクセルは検査対象から外す。
In step S34, the CPU 4 calculates the maximum first brightness value among the first set number of pixels arranged on the negative side in the horizontal direction of the pixel of interest, and the second set number of pixels arranged on the positive side in the horizontal direction of the pixel of interest. Calculate the maximum second brightness value within the pixel, calculate the maximum third brightness value within the third set number of pixels arranged on the negative side in the vertical direction of the pixel of interest, and line up on the positive side in the vertical direction of the pixel of interest. The fourth brightness value, which is the maximum within the fourth set number of pixels, is calculated. The first set number to the fourth set number may all have the same value, or may have two or more and four or less different values. If a predetermined area is located at the edge of the projected image and at least one of the first set number to the fourth set number cannot be secured, the number of pixels that can be secured is used, and if it cannot be secured at all. The pixel is excluded from inspection.
次に、CPU4は、第1輝度値に対する着目ピクセルの輝度値L2の割合及び第2輝度値に対する着目ピクセルの輝度値L2の割合がそれぞれ閾値TH1以下であるか否かを判定する(ステップS35)。
Next, the CPU 4 determines whether or not the ratio of the brightness value L2 of the pixel of interest to the first brightness value and the ratio of the brightness value L2 of the pixel of interest to the second brightness value are equal to or less than the threshold value TH1 (step S35). ..
第1輝度値に対する着目ピクセルの輝度値L2の割合及び第2輝度値に対する着目ピクセルの輝度値L2の割合がそれぞれ閾値TH1以下であると判定された場合(ステップS35のYES)、後述するステップS37に移行する。
When it is determined that the ratio of the brightness value L2 of the pixel of interest to the first brightness value and the ratio of the brightness value L2 of the pixel of interest to the second brightness value are each equal to or less than the threshold value TH1 (YES in step S35), step S37 described later. Move to.
一方、第1輝度値に対する着目ピクセルの輝度値L2の割合及び第2輝度値に対する着目ピクセルの輝度値L2の割合がそれぞれ閾値TH1以下であると判定されなかった場合(ステップS35のNO)、ステップS36に移行する。
On the other hand, when it is not determined that the ratio of the brightness value L2 of the pixel of interest to the first brightness value and the brightness value L2 of the pixel of interest to the second brightness value are each equal to or less than the threshold value TH1 (NO in step S35), step. Move to S36.
ステップS36では、CPU4は、第3輝度値に対する着目ピクセルの輝度値L2の割合及び第4輝度値に対する着目ピクセルの輝度値L2の割合がそれぞれ閾値TH1以下であるか否かを判定する(ステップS36)。なお、本実施形態では、ステップS35で用いる閾値とステップS36で用いる閾値とを同じ値にしたが、互いに異なる値にしてもよい。また、本実施形態とは異なり、ステップS35において、第1輝度値に対する着目ピクセルの輝度値L2の割合が閾値TH1以下であるか否かのみを判定してもよい。逆に、ステップS35において、第2輝度値に対する着目ピクセルの輝度値L2の割合が閾値TH1以下であるか否かのみを判定してもよい。ステップS36についても同様の変形を行ってもよい。ステップS36において、第3輝度値に対する着目ピクセルの輝度値L2の割合が閾値TH1以下であるか否かのみを判定してもよい。逆に、ステップS36において、第4輝度値に対する着目ピクセルの輝度値L2の割合が閾値TH1以下であるか否かのみを判定してもよい。
In step S36, the CPU 4 determines whether or not the ratio of the brightness value L2 of the pixel of interest to the third brightness value and the ratio of the brightness value L2 of the pixel of interest to the fourth brightness value are each equal to or less than the threshold value TH1 (step S36). ). In the present embodiment, the threshold value used in step S35 and the threshold value used in step S36 are set to the same value, but they may be different values from each other. Further, unlike the present embodiment, in step S35, it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the first brightness value is equal to or less than the threshold value TH1. On the contrary, in step S35, it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the second brightness value is equal to or less than the threshold value TH1. The same modification may be performed for step S36. In step S36, it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the third brightness value is equal to or less than the threshold value TH1. On the contrary, in step S36, it may be determined only whether or not the ratio of the brightness value L2 of the pixel of interest to the fourth brightness value is equal to or less than the threshold value TH1.
第3輝度値に対する着目ピクセルの輝度値L2の割合及び第4輝度値に対する着目ピクセルの輝度値L2の割合がそれぞれ閾値TH1以下であると判定された場合(ステップS36のYES)、後述するステップS37に移行する。
When it is determined that the ratio of the brightness value L2 of the pixel of interest to the third luminance value and the luminance value L2 of the pixel of interest to the fourth luminance value are each equal to or less than the threshold value TH1 (YES in step S36), step S37 described later. Move to.
一方、第3輝度値に対する着目ピクセルの輝度値L2の割合及び第4輝度値に対する着目ピクセルの輝度値L2の割合がそれぞれ閾値TH1以下であると判定されなかった場合(ステップS36のNO)、CPU4は、着目ピクセルを異物の位置として特定しない。なお、すぐに着目ピクセルを異物の位置として特定しないことを確定させるのではなく、所定の領域の大きさ及び閾値TH1の値を変えてステップS35に戻り、ステップS35又はステップS36からステップS37に移行できるかを試行してもよい。なお、所定の領域の大きさ及び閾値TH1の値の変更は1回に限らず、2回以上であってもよい。
On the other hand, when it is not determined that the ratio of the brightness value L2 of the pixel of interest to the third brightness value and the brightness value L2 of the pixel of interest to the fourth brightness value are equal to or less than the threshold value TH1 (NO in step S36), the CPU 4 Does not specify the pixel of interest as the position of the foreign object. It should be noted that, instead of immediately confirming that the pixel of interest is not specified as the position of the foreign matter, the size of the predetermined region and the value of the threshold value TH1 are changed to return to step S35, and the process proceeds from step S35 or step S36 to step S37. You may try to do it. The size of the predetermined region and the value of the threshold value TH1 may be changed not only once but also twice or more.
ステップS37では、CPU4は、着目ピクセルを異物の位置として特定する。
In step S37, the CPU 4 specifies the pixel of interest as the position of the foreign object.
そして、所定の領域に属する全てのピクセルを1つずつ順次「着目ピクセル」として、ステップS33以降の処理を繰り返す。さらに、全ての所定の領域を1つ1つずつ順次「着目ピクセルが属する所定の領域」として、ステップS32以降の処理を繰り返す。
Then, all the pixels belonging to the predetermined area are sequentially set as "pixels of interest", and the processing after step S33 is repeated. Further, all the predetermined areas are sequentially set as "predetermined areas to which the pixel of interest belongs" one by one, and the processes after step S32 are repeated.
図14のフローチャートによると、所定の領域すなわち微小領域において、微小領域全体の輝度特性に基づいて異物の位置を特定しているため、異物の検出精度を高くすることができる。
According to the flowchart of FIG. 14, since the position of the foreign matter is specified based on the luminance characteristics of the entire minute region in a predetermined region, that is, the minute region, the detection accuracy of the foreign matter can be improved.
なお、被検査物T1としては、例えば「魚」を挙げることができる。被検査物T1が「魚」である場合、異物は「小骨」である。図14のフローチャートの処理は、異物の減弱係数が被検査物T1(ただし、異物を除く)の減弱係数より大きい場合に適用することができる。ただし、投影画像が白黒反転させた画像である場合には、図14のフローチャートの処理において、「小さい」を「大きい」に置き換え、「最大」を「最小」に置き換え、「閾値TH1以下」を「閾値TH1以上」に置き換えるとよい。
As the object to be inspected T1, for example, "fish" can be mentioned. When the object to be inspected T1 is a "fish", the foreign matter is a "small bone". The processing of the flowchart of FIG. 14 can be applied when the attenuation coefficient of the foreign matter is larger than the attenuation coefficient of the object T1 to be inspected (excluding the foreign matter). However, when the projected image is a black-and-white inverted image, in the processing of the flowchart of FIG. 14, "small" is replaced with "large", "maximum" is replaced with "minimum", and "threshold value TH1 or less" is replaced. It may be replaced with "threshold TH1 or higher".
異物の減弱係数が被検査物T1(ただし、異物を除く)の減弱係数より小さい場合には、図14のフローチャートの処理をそのまま適用するのではなく、図14のフローチャートの処理において、「小さい」を「大きい」に置き換え、「最大」を「最小」に置き換え、「閾値TH1以下」を「閾値TH1以上」に置き換えるとよい。ただし、投影画像が白黒反転させた画像である場合には図14のフローチャートの処理をそのまま適用すればよい。
When the attenuation coefficient of the foreign matter is smaller than the attenuation coefficient of the object T1 to be inspected (excluding the foreign matter), the processing of the flowchart of FIG. 14 is not applied as it is, but is "small" in the processing of the flowchart of FIG. Is replaced with "large", "maximum" is replaced with "minimum", and "threshold TH1 or less" is replaced with "threshold TH1 or more". However, when the projected image is a black-and-white inverted image, the processing of the flowchart of FIG. 14 may be applied as it is.
<5.位置補正>
再構成計算後の各投影画像は、X線源から被検査物T1を見たときの断層への投影であるので、照射角度が異なれば、投影される被検査物T1の位置はずれてくる。このずれを補正するために、CPU4は前述した通り位置補正を行う(ステップS5)。 <5. Position correction>
Since each projected image after the reconstruction calculation is a projection onto the tomography when the inspected object T1 is viewed from the X-ray source, the position of the projected inspected object T1 shifts if the irradiation angle is different. In order to correct this deviation, theCPU 4 performs position correction as described above (step S5).
再構成計算後の各投影画像は、X線源から被検査物T1を見たときの断層への投影であるので、照射角度が異なれば、投影される被検査物T1の位置はずれてくる。このずれを補正するために、CPU4は前述した通り位置補正を行う(ステップS5)。 <5. Position correction>
Since each projected image after the reconstruction calculation is a projection onto the tomography when the inspected object T1 is viewed from the X-ray source, the position of the projected inspected object T1 shifts if the irradiation angle is different. In order to correct this deviation, the
具体的には、図15に示すように、補正基準として用いる任意の断層以外の或る断層上のボクセルの輝度を補正基準として用いる任意の断層に投影したときの、補正基準として用いる任意の断層上でのボクセルの輝度に基づいて、再構成計算後の投影画像各々の横方向および縦方向の長さを一致させるための位置補正を行う。
Specifically, as shown in FIG. 15, an arbitrary fault used as a correction reference when the brightness of a voxel on a fault other than the arbitrary fault used as a correction reference is projected onto an arbitrary fault used as a correction reference. Based on the brightness of the voxels above, position correction is performed to match the horizontal and vertical lengths of the projected images after the reconstruction calculation.
補正基準として用いる任意の断層以外の或る断層上のボクセルの輝度の補正基準として用いる任意の断層への投影は、本来なら各フレームで全てのピクセルについてX線の透過経路を調べて計算すべきであるが、X線検出部2の幅(=X線検出部2の横方向の長さ)が非常に狭く(例えば64ピクセル)、隣り合うフレーム間の変化も小さいので、或る断層の特定のボクセルを透過するX線の経路は隣り合うフレーム間でほぼ変化しないと仮定し、各フレームについてX線検出部2の中心に入射するX線の透過経路のみを考慮して計算している。
Projections to any voxel used as a correction criterion for voxel brightness on a fault other than any fault used as a correction criterion should normally be calculated by examining the X-ray transmission path for all pixels in each frame. However, since the width of the X-ray detector 2 (= the lateral length of the X-ray detector 2) is very narrow (for example, 64 pixels) and the change between adjacent frames is small, a certain fault can be identified. It is assumed that the X-ray path passing through the voxel does not change between adjacent frames, and the calculation is performed in consideration of only the X-ray transmission path incident on the center of the X-ray detector 2 for each frame.
以下、補正基準として用いる任意の断層(以下、基準断層layと称する)上の高さ方向(=X線検出部2の縦方向)が所定の位置であるボクセル及び二つの或る断層j=j1、j2上の高さ方向が所定の位置であるボクセルを便宜上断層毎に真っ直ぐ一列に並べた図15を参照して、位置補正について詳説する。
Hereinafter, a voxel and two certain faults j = j1 in which the height direction (= vertical direction of the X-ray detection unit 2) on an arbitrary fault (hereinafter referred to as a reference fault lay) used as a correction reference is a predetermined position. , J2 The position correction will be described in detail with reference to FIG. 15 in which voxels whose height direction is a predetermined position are arranged in a straight line for each fault for convenience.
基準断層lay以外の或る断層j=a上のボクセルi=bの輝度を基準断層layに投影したときに、その投影した輝度が基準断層lay上のボクセルi=c上にくるのであれば、基本的にはその投影した輝度を位置補正後における或る断層j=a上のボクセルi=cの輝度として扱う。a、b、cはそれぞれ任意の自然数である。そして、1本のフレームのX線が、断層及び高さ方向が同一である複数のボクセルを透過する場合は、1本のフレームのX線が、中間面(=X線入射方向から見て重複する領域が存在する一対の対向構成面に含まれる辺以外のボクセルの各辺の中点を頂点とする長方形。図15中の点線を参照。)を透過したボクセルのみを、1本のフレームのX線が透過したボクセルとする。
If the brightness of a boxel i = b on a fault j = a other than the reference fault lay is projected onto the reference fault lay, and the projected brightness is on the voxel i = c on the reference fault lay, then Basically, the projected brightness is treated as the brightness of voxel i = c on a certain fault j = a after position correction. a, b, and c are arbitrary natural numbers. When the X-rays of one frame pass through a plurality of voxels having the same fault and height direction, the X-rays of one frame overlap with each other when viewed from the intermediate surface (= X-ray incident direction). A rectangle whose apex is the midpoint of each side of the voxel other than the side included in the pair of facing constituent planes in which the region is present. See the dotted line in FIG. 15) Only the voxel that has passed through is one frame. A voxel that allows X-rays to pass through.
つまり、或るフレームにおいて、基準断層lay以外の或る断層j=a上のX線が透過する1個のボクセルi=bが基準断層lay上のボクセルi=cに1対1で対応している場合(図15に示すパターンI)は、基準断層layに投影した輝度を位置補正後における或る断層j=a上のボクセルi=cの輝度として扱う。また、1対1対応でなくても、基準断層lay上の1個のボクセルを通過するX線のフレームが1本である場合(図15に示すパターンI’)も同様に、或るフレームにおいて、基準断層lay以外の或る断層j=a上のX線が透過する1個のボクセルi=bが基準断層lay上のボクセルi=cにくるのであれば、その投影した輝度を位置補正後における或る断層j=a上のボクセルi=cの輝度として扱う。
That is, in a certain frame, one voxel i = b through which X-rays pass on a certain fault j = a other than the reference fault lay has a one-to-one correspondence with the voxel i = c on the reference fault lay. If so (Pattern I shown in FIG. 15), the brightness projected on the reference fault lay is treated as the brightness of voxels i = c on a certain fault j = a after position correction. Similarly, even if there is no one-to-one correspondence, when there is one X-ray frame passing through one voxel on the reference fault lay (pattern I'shown in FIG. 15), in a certain frame as well. If one voxel i = b through which X-rays pass on a certain fault j = a other than the reference fault lay comes to the voxel i = c on the reference fault lay, the projected brightness is corrected. It is treated as the brightness of voxels i = c on a certain fault j = a in.
しかし、複数本のフレームのX線が基準断層lay上の1個のボクセルを透過する場合(図15に示すパターンII)、基準断層lay上のボクセルをどのフレームのX線も透過しない場合(図15に示すパターンIII)は、輝度値を調整する必要がある。
However, when the X-rays of a plurality of frames pass through one voxel on the reference fault lay (Pattern II shown in FIG. 15), the X-rays on the reference fault lay do not pass through the X-rays of any frame (Fig. 15). In pattern III) shown in 15, it is necessary to adjust the brightness value.
高さ方向に関しても考え方は同様である。
The idea is the same for the height direction.
上述した考え方に沿ったステップS5の位置補正の一例を図16に示すフローチャートを参照して説明する。
An example of the position correction in step S5 according to the above-mentioned concept will be described with reference to the flowchart shown in FIG.
図16に示す位置補正の一例ではまず初めに、CPU4は、再構成領域R1の各断層のボクセル数をHDD9から読み込む(ステップS41)。
In the example of the position correction shown in FIG. 16, first, the CPU 4 reads the number of voxels of each fault in the reconstruction area R1 from the HDD 9 (step S41).
次に、CPU4は、ステップS22で算出した再構成計算後の各ボクセルの輝度値cal(i,j,k)のデータをHDD9から読み込む(ステップS42)。iは対象ボクセルの図1に示すX軸方向の座標(位置)を特定するための変数であり、jは対象ボクセルの図1に示すY軸方向の座標(位置)を特定するための変数であり、kは対象ボクセルが属する断層を特定するための変数である。
Next, the CPU 4 reads the data of the brightness value cal (i, j, k) of each voxel after the reconstruction calculation calculated in step S22 from the HDD 9 (step S42). i is a variable for specifying the coordinates (position) of the target voxel in the X-axis direction shown in FIG. 1, and j is a variable for specifying the coordinates (position) of the target voxel in the Y-axis direction shown in FIG. Yes, k is a variable to identify the fault to which the target voxel belongs.
次に、CPU4は、フレーム毎及び断層毎にX線検出部2の中心に入射するX線が透過するボクセルの座標をHDD9から読み込むとともに、各断層のY軸方向が最大となるボクセルを通るX線源とX線検出部2を結ぶ各線分のY軸方向距離の比をHDD9から読み込む(ステップS43)。
Next, the CPU 4 reads from the HDD 9 the coordinates of the voxel through which the X-rays incident on the center of the X-ray detection unit 2 pass for each frame and each fault, and passes through the voxel in which the Y-axis direction of each fault is maximum. The ratio of the distances in the Y-axis direction of each line connecting the radiation source and the X-ray detection unit 2 is read from the HDD 9 (step S43).
次に、CPU4は、ステップS43の読み込み結果を用いて、基準断層lay上のX軸座標iのボクセルを透過するN(i)個のフレームの内n(i)番目のX線が透過する、或る断層kのボクセルのX軸座標ii(i, k, n(i))を、各フレームおよび各断層について計算する(ステップS44)。
Next, the CPU 4 uses the reading result of step S43 to transmit the n (i) th X-ray among the N (i) frames that pass through the voxels at the X-axis coordinate i on the reference fault lay. The X-ray coordinates ii (i, k, n (i)) of the voxel of a certain fault k are calculated for each frame and each fault (step S44).
次に、CPU4は、ステップS43の読み込み結果を用いて、基準断層lay上のY軸座標kのボクセルを透過するH(j)個のフレームの内h(j)番目のX線が透過する、或る断層kのボクセルのY軸座標kk(k, k, h(j))を、各フレームおよび各断層について計算する(ステップS45)。
Next, the CPU 4 uses the reading result of step S43 to transmit the h (j) th X-ray of the H (j) frames that pass through the voxel at the Y-axis coordinate k on the reference fault lay. The Y-axis coordinates kk (k, k, h (j)) of the voxels of a certain fault k are calculated for each frame and each fault (step S45).
次に、CPU4は、ボクセルのX軸座標i、Y軸座標j、n(i)、h(j)のループで断層kのボクセルの輝度値を基準断層layに投影したときの輝度値datawa(i,j,k)を、断層k上の点(ii,jj,k)の輝度値cal(ii,jj,k)から計算する(ステップS46)。
Next, the CPU 4 projects the luminance value of the boxel of the fault k onto the reference fault lay in a loop of the X-axis coordinates i, Y-axis coordinates j, n (i), h (j) of the box cell, and the luminance value datawa ( i, j, k) is calculated from the luminance value cal (ii, jj, k) of the point (ii, jj, k) on the fault k (step S46).
N(i)≠0かつH(j) ≠0の場合、すなわちi、jともにパターンIまたはパターンIIに該当する場合、輝度値datawa(i,j,k)は下記の(1)式で表される。
When N (i) ≠ 0 and H (j) ≠ 0, that is, when both i and j correspond to pattern I or pattern II, the luminance value datawa (i, j, k) is expressed by the following equation (1). Will be done.
N(i)≠0かつH(j)=0の場合、すなわちiはパターンIまたはパターンIIに該当し、jはパターンIIIに該当する場合、輝度値datawa(i,j,k)は下記の(2)式で表される。
When N (i) ≠ 0 and H (j) = 0, that is, when i corresponds to pattern I or pattern II and j corresponds to pattern III, the luminance value datawa (i, j, k) is as follows. It is expressed by equation (2).
N(i)=0かつH(j) ≠0の場合、すなわちiはパターンIIIに該当し、jはパターンIまたはパターンIIに該当する場合、輝度値datawa(i,j,k)は下記の(3)式で表される。
When N (i) = 0 and H (j) ≠ 0, that is, i corresponds to pattern III and j corresponds to pattern I or pattern II, the luminance value datawa (i, j, k) is as follows. It is represented by equation (3).
N(i)=0かつH(j) =0の場合、すなわちi、jともにパターンIIIに該当する場合、輝度値datawa(i,j,k)は下記の(4)式で表される。
When N (i) = 0 and H (j) = 0, that is, when both i and j correspond to pattern III, the luminance value datawa (i, j, k) is expressed by the following equation (4).
ただし、上記の(3)式および(4)式中のi1、i2は、基準断層lay上のボクセルのX軸座標iに対応するフレームがない場合(n(i)=0)において、その前後のフレームのn(i)>0を満たすiに対応する断層k上のX軸座標iiであり、i1≦i2を満たす。上記の(2)式および(4)式中のj1、j2もY軸方向について同様に考える。また、i1、i2、j1、j2で示される各座標位置の少なくとも一つが投影画像を形成する領域から外れる場合は、輝度値datawa(i,j,k)を0にする。
However, i1 and i2 in the above equations (3) and (4) are before and after (n (i) = 0) when there is no frame corresponding to the X-axis coordinate i of the voxel on the reference fault lay. It is the X-axis coordinate ii on the fault k corresponding to i satisfying n (i)> 0 of the frame of, and satisfies i1 ≤ i2. J1 and j2 in the above equations (2) and (4) are also considered in the same manner in the Y-axis direction. If at least one of the coordinate positions indicated by i1, i2, j1, and j2 is out of the region forming the projected image, the luminance value datawa (i, j, k) is set to 0.
ここでi1+1<i2の場合を考えると、パターンIIIのときに、基準断層layよりもボクセル数が多い断層(例えば図15に示す断層k=k2)上にフレームのX線が透過していないボクセル(例えば図15に示すボクセル)が存在することになるが、このボクセルの輝度値を使用しないというのは望ましくない。したがって、この場合は、次のような処理を行うことが望ましい。
Considering the case of i1 + 1 <i2, in the case of pattern III, voxels in which the X-rays of the frame are not transmitted on the fault having more voxels than the reference fault lay (for example, the fault k = k2 shown in FIG. 15). (For example, the voxel shown in FIG. 15) will be present, but it is not desirable not to use the brightness value of this voxel. Therefore, in this case, it is desirable to perform the following processing.
i1=ii(i-Δ1,k,N(i-Δ1))、i2=ii(i+Δ2,k,N(i+Δ1))とし、基準断層lay上のX軸座標iに対応する断層k上のX軸座標を下記の(5)式で表される実数ikとする。ここで、Δ1+Δ2-1は基準断層lay上のフレームのX線が透過しない連続したボクセルの個数である。
j1、j2もY軸方向について同様に考える。そして、i1+1<i2及び/又はj1+1<j2の場合は、上記(2)式の代わりに下記(6)式を用い、上記(3)式の代わりに下記(7)式を用い、上記(4)式の代わりに下記(8)式を用いるようにする。ただし、下記(6)式~(8)式中のflr(x)は実数x以下となる整数のうち最大の整数を表している。
Let i1 = ii (i−Δ1, k, N (i−Δ1)), i2 = ii (i + Δ2, k, N (i + Δ1)), and X on the fault k corresponding to the X-axis coordinate i on the reference fault lay. Let the axis coordinates be the real number i k expressed by the following equation (5). Here, Δ1 + Δ2-1 is the number of continuous voxels in which the X-rays of the frame on the reference fault lay are not transmitted.
Consider j1 and j2 in the same way in the Y-axis direction. Then, in the case of i1 + 1 <i2 and / or j1 + 1 <j2, the following equation (6) is used instead of the above equation (2), and the following equation (7) is used instead of the above equation (3), and the above equation (4) is used. ) Instead of the following equation (8). However, flr (x) in the following equations (6) to (8) represents the largest integer among the integers equal to or less than the real number x.
上述した輝度値datawa(i,j,k)の計算が完了すると、図16に示す位置補正処理(ステップS5の処理の一例)が完了する。
When the calculation of the luminance value datawa (i, j, k) described above is completed, the position correction process shown in FIG. 16 (an example of the process in step S5) is completed.
以上のように、本実施形態では、FBP法を用いた再構成計算において、再構成領域を構成する直方体のボクセルへの逆投影を行う代わりに、再構成領域を構成する直方体のボクセルの構成面のうちX線入射方向から見て重複する領域が存在する一対の対向構成面の一方、又は、当該対向構成面に平行な当該ボクセルの断面への逆投影を行うので、逆投影の計算時間を大幅に短縮することができる。したがって、FBP法を用いて少ない再構成計算量で投影画像を再構成することができる。
As described above, in the present embodiment, in the reconstruction calculation using the FBP method, instead of back-projecting the rectangular parallelepiped voxels constituting the reconstruction region onto the voxels, the constituent surfaces of the rectangular parallelepiped voxels constituting the reconstruction region. Of these, back projection is performed on one of the pair of facing constituent planes having overlapping regions when viewed from the X-ray incident direction, or on the cross section of the voxel parallel to the facing constituent planes, so that the calculation time for back projection can be reduced. It can be shortened significantly. Therefore, the projected image can be reconstructed with a small amount of reconstruction calculation using the FBP method.
さらに、本実施形態では、再構成計算後の各投影画像を横方向、縦方向それぞれで一律に拡大あるいは縮小して位置補正を行うのではなく、補正基準として用いる任意の断層以外の或る断層上のボクセルの輝度を補正基準として用いる任意の断層に投影したときの、補正基準として用いる任意の断層上でのボクセルの輝度に基づいて位置補正を行う。これにより、FBP法を用いた再構成計算後の各投影画像を歪みの発生を抑えて位置補正することができる。
Further, in the present embodiment, each projected image after the reconstruction calculation is not uniformly enlarged or reduced in each of the horizontal and vertical directions to perform position correction, but a certain fault other than an arbitrary fault used as a correction reference. Position correction is performed based on the brightness of the voxel on the arbitrary fault used as the correction reference when projected onto an arbitrary fault using the brightness of the above voxel as the correction reference. As a result, it is possible to correct the position of each projected image after the reconstruction calculation using the FBP method while suppressing the occurrence of distortion.
また、上述した実施形態では、位置補正によって再構成計算後の各投影画像の横方向および縦方向の長さを一致させたが、再構成計算後の各投影画像の横方向の長さが異なることがあまり問題にならない場合には、位置補正によって再構成計算後の各投影画像の縦方向のみの長さを一致させてもよく、再構成計算後の各投影画像の縦方向の長さが異なることがあまり問題にならない場合には、位置補正によって再構成計算後の各投影画像の横方向のみの長さを一致させてもよい。
Further, in the above-described embodiment, the horizontal and vertical lengths of the projected images after the reconstruction calculation are matched by the position correction, but the horizontal lengths of the projected images after the reconstruction calculation are different. If this is not a problem, the vertical length of each projected image after reconstruction calculation may be matched by position correction, and the vertical length of each projected image after reconstruction calculation may be matched. If the difference does not matter much, the lengths of each projected image after the reconstruction calculation may be matched only in the lateral direction by the position correction.
また、上述した実施形態では、位置補正によって再構成計算後の各投影画像の横方向および縦方向の長さを一致させたが、位置補正によって再構成計算後の各投影画像の横方向および縦方向の長さを略一致させてもよい。つまり、例えば、複数層の投影画像同士を比較して断層深さによる被検査物T1の様子を比較する場合等に不便にならない程度で、位置補正後において再構成計算後の各投影画像の横方向および縦方向の長さに差があってもよい。
Further, in the above-described embodiment, the horizontal and vertical lengths of the projected images after the reconstruction calculation are matched by the position correction, but the horizontal and vertical lengths of the projected images after the reconstruction calculation are matched by the position correction. The lengths in the directions may be substantially the same. That is, for example, the side of each projected image after the position correction and the reconstruction calculation is not inconvenient when comparing the projected images of a plurality of layers with each other and comparing the state of the object T1 to be inspected according to the tomographic depth. There may be differences in directional and vertical lengths.
<6.その他>
上述した実施形態では、ステップS4の誤検出部分除去処理を実行したが、ステップS4の誤検出部分除去処理を実行しなくても異物の検出精度が要求される仕様を満たすのであれば、ステップS4の誤検出部分除去処理を省略してもよい。ステップS4の誤検出部分除去処理を省略する場合、第1X線照射部1A及び第1X線検出部2Aの対、或いは、第2X線照射部1B及び第2X線検出部2Bの対のいずれかを検査装置100から取り除くとよい。 <6. Others>
In the above-described embodiment, the false detection partial removal process of step S4 is executed, but if the specification that requires the foreign matter detection accuracy is satisfied without executing the false detection partial removal process of step S4, step S4 The false detection partial removal process may be omitted. When omitting the erroneous detection portion removal process in step S4, either the pair of the first X-ray irradiation unit 1A and the firstX-ray detection unit 2A or the pair of the second X-ray irradiation unit 1B and the second X-ray detection unit 2B is used. It is recommended to remove it from the inspection device 100.
上述した実施形態では、ステップS4の誤検出部分除去処理を実行したが、ステップS4の誤検出部分除去処理を実行しなくても異物の検出精度が要求される仕様を満たすのであれば、ステップS4の誤検出部分除去処理を省略してもよい。ステップS4の誤検出部分除去処理を省略する場合、第1X線照射部1A及び第1X線検出部2Aの対、或いは、第2X線照射部1B及び第2X線検出部2Bの対のいずれかを検査装置100から取り除くとよい。 <6. Others>
In the above-described embodiment, the false detection partial removal process of step S4 is executed, but if the specification that requires the foreign matter detection accuracy is satisfied without executing the false detection partial removal process of step S4, step S4 The false detection partial removal process may be omitted. When omitting the erroneous detection portion removal process in step S4, either the pair of the first X-ray irradiation unit 1A and the first
上述した実施形態では、ステップS4の誤検出部分除去処理において、第1X線照射部1A及び第1X線検出部2Aに由来する投影画像に基づき特定した異物の位置と第2X線照射部1B及び第2X線検出部2Bに由来する投影画像に基づき特定した異物の位置とが比較され、比較結果に基づいて異物の位置特定の誤検出部分が除去されたが、この誤検出部分除去処理はあくまで一例である。
In the above-described embodiment, in the erroneous detection portion removal process in step S4, the position of the foreign matter specified based on the projected images derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A, and the second X-ray irradiation unit 1B and the second X-ray irradiation unit 1B. The position of the foreign matter specified based on the projected image derived from the 2X ray detection unit 2B was compared, and the false detection part of the foreign matter was removed based on the comparison result, but this false detection part removal process is just an example. Is.
したがって、X線の照射方向がそれぞれ異なる第1~第m(mは3以上の自然数)X線照射部と、第1~第mX線検出部とを検査装置100に設け、第k(kはm以下の任意の自然数)X線照射部から照射され被検査物T1を透過したX線が第kX線検出部に入射するようにしてもよい。この場合、第kX線照射部から照射されるX線によって得られる投影画像である第k投影画像に基づき異物の位置が特定され、同じ深さの投影画像について、第1~第m投影画像それぞれに基づき特定した異物の位置同士が比較され、比較結果に基づいて異物の位置特定の誤検出部分が除去されるようにすればよい。
Therefore, the inspection device 100 is provided with the first to m (m is a natural number of 3 or more) X-ray irradiation units and the first to mX-ray detection units, which have different X-ray irradiation directions, and the k (k is). Any natural number of m or less) X-rays irradiated from the X-ray irradiation unit and transmitted through the object T1 to be inspected may be incident on the kX-ray detection unit. In this case, the position of the foreign matter is specified based on the k-th projected image, which is a projected image obtained by the X-rays emitted from the kX-ray irradiation unit, and the first to mth projected images of the same depth are respectively. The positions of the foreign substances specified based on the above are compared with each other, and the erroneous detection portion of the position of the foreign matter may be removed based on the comparison result.
上述した実施形態では、ステップS34において、CPU4は、着目ピクセルの横方向負側に並ぶ第1設定数のピクセル内で最大となる第1輝度値を算出し、着目ピクセルの横方向正側に並ぶ第2設定数のピクセル内で最大となる第2輝度値を算出し、着目ピクセルの縦方向負側に並ぶ第3設定数のピクセル内で最大となる第3輝度値を算出し、着目ピクセルの縦方向正側に並ぶ第4設定数のピクセル内で最大となる第4輝度値を算出したが、この算出処理はあくまで一例である。すなわち、上記の「横方向負側」、「横方向正側」、「縦方向負側」、及び「縦方向正側」はそれぞれ、「第1方向一方側」、「第1方向他方側」、「第2方向一方側」、及び「第2方向他方側」に一般化することができる。なお、第1方向と第2方向とは互い異なる方向である。第1方向と第2方向とは直交していなくてもよい。
In the above-described embodiment, in step S34, the CPU 4 calculates the maximum first brightness value among the first set number of pixels arranged on the negative side in the horizontal direction of the pixel of interest, and arranges them on the positive side in the horizontal direction of the pixel of interest. The maximum second brightness value within the second set number of pixels is calculated, the maximum third brightness value within the third set number of pixels arranged on the negative side in the vertical direction of the pixel of interest is calculated, and the pixel of interest is calculated. The maximum fourth brightness value within the fourth set number of pixels arranged on the positive side in the vertical direction was calculated, but this calculation process is only an example. That is, the above-mentioned "horizontal negative side", "horizontal positive side", "vertical negative side", and "vertical positive side" are "first direction one side" and "first direction other side", respectively. , "One side in the second direction", and "the other side in the second direction" can be generalized. The first direction and the second direction are different directions. The first direction and the second direction do not have to be orthogonal to each other.
また、第1輝度値を、着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で最大となる輝度値ではなく、着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で着目ピクセルより輝度値が大きく且つ着目ピクセルからできるだけ離れているピクセルの輝度値とし、第2~第4輝度値についても同様の置換を行ってもよい。すなわち、第2輝度値を、着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で最大となる輝度値ではなく、着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で着目ピクセルより輝度値が大きく且つ着目ピクセルからできるだけ離れているピクセルの輝度値とする。また、第3輝度値を、着目ピクセルの第2方向一方側に並ぶ第3設定数のピクセル内で最大となる輝度値ではなく、着目ピクセルの第2方向一方側に並ぶ第3設定数のピクセル内で着目ピクセルより輝度値が大きく且つ着目ピクセルからできるだけ離れているピクセルの輝度値とする。また、第4輝度値を、着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で最大となる輝度値ではなく、着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で着目ピクセルより輝度値が大きく且つ着目ピクセルからできるだけ離れているピクセルの輝度値とする。上記の置換を行った場合も、上述した実施形態と同様に、微小領域全体の輝度特性に基づいて異物の位置を特定しているため、異物の検出精度を高くすることができる。ただし、上記の置換を行った場合において、異物の減弱係数が被検査物T1(ただし、異物を除く)の減弱係数より小さい画像について適用するときには、ステップS33の処理において「小さい」を「大きい」に置き換え、ステップS34を置換した処理において「大きい」を「小さい」に置き換え、「閾値TH1以下」を「閾値TH1以上」に置き換えるとよい。また、上記の「着目ピクセルからできるだけ離れているピクセルの輝度値」の代わりに「着目ピクセルからできるだけ近いピクセルの輝度値」としてもよい。
Further, the first brightness value is not the maximum brightness value among the first set number of pixels arranged on one side of the first direction of the pixel of interest, but the first set number of pixels arranged on one side of the first direction of the pixel of interest. The brightness value of the pixel having a brightness value larger than that of the pixel of interest and being as far away as possible from the pixel of interest may be used, and the same substitution may be performed for the second to fourth brightness values. That is, the second brightness value is not the maximum brightness value among the second set number of pixels arranged on the other side of the first direction of the pixel of interest, but the second set number of pixels arranged on the other side of the first direction of the pixel of interest. The brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest is used. Further, the third brightness value is not the maximum brightness value among the pixels of the third set number arranged on one side of the second direction of the pixel of interest, but the pixels of the third set number arranged on one side of the second direction of the pixel of interest. The brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest is used. Further, the fourth brightness value is not the maximum brightness value among the fourth set number of pixels arranged on the other side of the second direction of the pixel of interest, but the fourth set number of pixels arranged on the other side of the second direction of the pixel of interest. The brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far away as possible from the pixel of interest is used. Even when the above replacement is performed, since the position of the foreign matter is specified based on the luminance characteristics of the entire minute region as in the above-described embodiment, the detection accuracy of the foreign matter can be improved. However, in the case of performing the above substitution, when the attenuation coefficient of the foreign matter is smaller than the attenuation coefficient of the object T1 to be inspected (excluding the foreign matter), "small" is changed to "large" in the process of step S33. In the process of replacing step S34, "large" is replaced with "small", and "threshold TH1 or less" is replaced with "threshold TH1 or more". Further, instead of the above-mentioned "luminance value of a pixel as far as possible from the pixel of interest", "luminance value of a pixel as close as possible to the pixel of interest" may be used.
また、第1輝度値を、着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で最大となる輝度値ではなく、着目ピクセルの第1方向一方側に着目ピクセルから第1所定位置離れて並ぶ第1設定数のピクセル(例えば着目ピクセルから3ピクセル離れて並ぶ4つのピクセルである場合、着目ピクセルから第1方向一方側に3つ目~6つ目に並んでいるピクセル)及び着目ピクセルの第1方向他方側に着目ピクセルから第2所定位置離れて並ぶ第2設定数のピクセルの平均輝度値とする。そして、ステップS34~S36において、第2輝度値に関する処理を行わないようにする。また、第3輝度値を、着目ピクセルの第2方向一方側に並ぶ第3設定数のピクセル内で最大となる輝度値ではなく、着目ピクセルの第2方向一方側に着目ピクセルから第3所定位置離れて並ぶ第3設定数のピクセル及び着目ピクセルの第2方向他方側に着目ピクセルから第4所定位置離れて並ぶ第4設定数のピクセルの平均輝度値(請求項8における「第2輝度値」に相当)とする。そして、ステップS34~S36において、第4輝度値に関する処理を行わないようにする。上記の置換を行った場合も、上述した実施形態と同様に、微小領域全体の輝度特性に基づいて異物の位置を特定しているため、異物の検出精度を高くすることができる。ただし、上記の置換を行った場合において、異物の減弱係数が被検査物T1(ただし、異物を除く)の減弱係数より小さい画像について適用するときには、ステップS33の処理において「小さい」を「大きい」に置き換え、ステップS34を置換した処理において「閾値TH1以下」を「閾値TH1以上」に置き換えるとよい。
Further, the first brightness value is not the maximum brightness value among the first set number of pixels arranged on one side of the focus pixel in the first direction, but the first predetermined position from the focus pixel on one side of the focus pixel in the first direction. The first set number of pixels lined up apart (for example, in the case of four pixels lined up 3 pixels away from the pixel of interest, the third to sixth pixels lined up on one side in the first direction from the pixel of interest) and the focus It is the average brightness value of the second set number of pixels arranged on the other side of the first direction of the pixels at a second predetermined position away from the pixel of interest. Then, in steps S34 to S36, the processing related to the second luminance value is not performed. Further, the third brightness value is not the maximum brightness value among the third set number of pixels arranged on one side in the second direction of the pixel of interest, but the third predetermined position from the pixel of interest on one side of the second direction of the pixel of interest. The average brightness value of the pixels of the third set number arranged apart and the pixels of the fourth set number arranged at the other side in the second direction of the pixel of interest at a fourth predetermined position away from the pixel of interest (“second brightness value” in claim 8”. Equivalent to). Then, in steps S34 to S36, the processing related to the fourth luminance value is not performed. Even when the above replacement is performed, since the position of the foreign matter is specified based on the luminance characteristics of the entire minute region as in the above-described embodiment, the detection accuracy of the foreign matter can be improved. However, in the case of performing the above substitution, when the attenuation coefficient of the foreign matter is smaller than the attenuation coefficient of the object T1 to be inspected (excluding the foreign matter), "small" is changed to "large" in the process of step S33. In the process of replacing step S34, "threshold TH1 or less" may be replaced with "threshold TH1 or more".
CPU4は、過去に検査された被検査物T1の投影画像により学習した人工知能を用いて異物の位置を特定してもよい。人工知能を用いることにより、異物の検出精度をより一層高めることができる。人工知能の設けられる場所は特に限定されない。例えばCPU4に人工知能を設けてもよい。また例えば検査装置100が通信ネットワークを介してアクセス可能なクラウド上に人工知能を設けてもよい。
The CPU 4 may specify the position of the foreign matter by using the artificial intelligence learned from the projected image of the object to be inspected T1 inspected in the past. By using artificial intelligence, the accuracy of detecting foreign matter can be further improved. The place where artificial intelligence is provided is not particularly limited. For example, the CPU 4 may be provided with artificial intelligence. Further, for example, artificial intelligence may be provided on a cloud that can be accessed by the inspection device 100 via a communication network.
上述した実施形態とは異なり、ステップS4とステップS5との実行順序を入れ替え、ステップS6において、位置補正及び誤検出部分除去処理が反映された異物の位置を示す各投影画像を全て足し合わせて得られる画像、つまり異物の位置を2次元表示する画像を出力画像として生成してもよい。この場合、ステップS3において、必ずしも投影画像ごとに異物の位置を特定する必要はなく、複数の投影画像ごとに異物の位置を特定してもよい。
Unlike the above-described embodiment, the execution order of step S4 and step S5 is exchanged, and in step S6, all the projected images showing the positions of the foreign matter reflecting the position correction and the false detection partial removal process are added together. An image to be generated, that is, an image displaying the position of a foreign object in two dimensions may be generated as an output image. In this case, in step S3, it is not always necessary to specify the position of the foreign matter for each projected image, and the position of the foreign matter may be specified for each of a plurality of projected images.
上述した実施形態とは異なり、ステップS3の直後にステップS5を実行し、位置補正終了後に照射角度ごとに全断層の異物の位置を足し合わせ、全断層の異物の位置を足し合わせた後の照射角度ごとのデータについてステップS4を実行し、ステップS6において、位置補正及び誤検出部分除去処理が反映された異物の位置を示す各投影画像を全て足し合わせて得られる画像、つまり異物の位置を2次元表示する画像を出力画像として生成してもよい。この場合、ステップS3において、必ずしも投影画像ごとに異物の位置を特定する必要はなく、複数の投影画像ごとに異物の位置を特定してもよい。
Unlike the above-described embodiment, step S5 is executed immediately after step S3, the positions of foreign substances on all faults are added for each irradiation angle after the position correction is completed, and the irradiation after adding the positions of foreign substances on all faults. Step S4 is executed for the data for each angle, and in step S6, the image obtained by adding all the projected images showing the positions of the foreign matter reflecting the position correction and the false detection portion removal processing, that is, the position of the foreign matter is 2. An image to be displayed in two dimensions may be generated as an output image. In this case, in step S3, it is not always necessary to specify the position of the foreign matter for each projected image, and the position of the foreign matter may be specified for each of a plurality of projected images.
上述した実施形態では、X線検出部2A及び2Bの位置を除く所定の位置に設定される各断層に投影して得られる投影画像は、トモシンセシスの原理に基づいて得られる各断層における投影画像であるが、これはあくまで例示である。すなわち、X線検出部2A及び2Bの位置を除く所定の位置に設定される各断層に投影して得られる投影画像は、トモシンセシスの原理に基づいて得られる各断層における投影画像でなくてもよい。トモシンセシス法を採用しない場合、1X線検出部2A及び第2X線検出部2Bをそれぞれ単一ラインのラインセンサにしてもよい。1X線検出部2A及び第2X線検出部2Bがそれぞれ単一ラインである場合は、ラインセンサの画素サイズと1フレームあたりの被検査物の移動量とを一致させる。
In the above-described embodiment, the projected image obtained by projecting onto each tomographic image set at a predetermined position other than the positions of the X-ray detectors 2A and 2B is a projected image on each tomographic image obtained based on the principle of tomosynthesis. There is, but this is just an example. That is, the projected image obtained by projecting on each tomographic image set at a predetermined position other than the positions of the X-ray detectors 2A and 2B does not have to be the projected image on each tomographic image obtained based on the principle of tomosynthesis. .. When the tomosynthesis method is not adopted, the 1X-ray detection unit 2A and the second X-ray detection unit 2B may each be a single-line line sensor. When the 1X-ray detection unit 2A and the 2nd X-ray detection unit 2B are each a single line, the pixel size of the line sensor and the movement amount of the object to be inspected per frame are matched.
なお、検査装置100の構造上の制約により、第1X線検出部2Aと第2X線検出部2Bとを同じ高さに配置できない場合がある。この場合、第1X線検出部2AのZ軸方向位置と第2X線検出部2BのZ軸方向位置とが異なり、被検査物T1の同じ位置を通過したX線が入射するピクセルが第1X線検出部2Aと第2X線検出部2Bとでずれる。したがって、このずれを考慮して、Y軸方向において、第1X線照射部1A及び第1X線検出部2Aに由来する投影画像のピクセルに該当する、第2X線照射部1B及び第2X線検出部2Bに由来する投影画像のピクセルを特定すればよい。
Note that, due to structural restrictions of the inspection device 100, the first X-ray detection unit 2A and the second X-ray detection unit 2B may not be arranged at the same height. In this case, the Z-axis direction position of the first X-ray detection unit 2A and the Z-axis direction position of the second X-ray detection unit 2B are different, and the pixel in which the X-ray passing through the same position of the inspected object T1 is incident is the first X-ray. The detection unit 2A and the second X-ray detection unit 2B are misaligned. Therefore, in consideration of this deviation, the second X-ray irradiation unit 1B and the second X-ray detection unit corresponding to the pixels of the projected image derived from the first X-ray irradiation unit 1A and the first X-ray detection unit 2A in the Y-axis direction. The pixels of the projected image derived from 2B may be specified.
上述した実施形態のように画素データ(ラインセンサで得られるデータ)を単純に並べること又は単純に積算することで撮影画像(2次元のデジタルデータ)を生成するのではなく、独自の画像処理に基づいて撮影画像を生成してもよい。独自の画像処理に基づいて撮影画像を生成する場合、被検査物T1の移動速度をラインセンサの画素サイズに必ずしも合わせる必要はない。
Instead of generating a captured image (two-dimensional digital data) by simply arranging pixel data (data obtained by a line sensor) or simply integrating as in the above-described embodiment, it is possible to perform original image processing. The captured image may be generated based on the above. When the captured image is generated based on the original image processing, it is not always necessary to match the moving speed of the object to be inspected T1 with the pixel size of the line sensor.
また、ラインセンサである第1X線検出部2A及び第2X線検出部2Bの代わりに、図17に示すように二次元検出器2Cを用いてもよい。二次元検出器2Cの斜線領域(図17参照)の検出結果を用いることで、二次元検出器2Cを擬似的な2つのラインセンサとすることができる。なお、図17に示す構成においても、図1に示す構成と同様に、第1X線照射部1A及び第2X線照射部1Bを共通化して単一のX線照射部にしてもよい。
Further, instead of the first X-ray detection unit 2A and the second X-ray detection unit 2B which are line sensors, a two-dimensional detector 2C may be used as shown in FIG. By using the detection result of the shaded area (see FIG. 17) of the two-dimensional detector 2C, the two-dimensional detector 2C can be used as a pseudo two-line sensor. In the configuration shown in FIG. 17, similarly to the configuration shown in FIG. 1, the first X-ray irradiation unit 1A and the second X-ray irradiation unit 1B may be shared to form a single X-ray irradiation unit.
また、単一の二次元検出器2Cの代わりに複数の二次元検出器を用い、複数の二次元検出器それぞれの一部領域の検出結果を用いることで、複数の二次元検出器を擬似的な複数のラインセンサとすることができる。
Further, by using a plurality of two-dimensional detectors instead of the single two-dimensional detector 2C and using the detection results of a part of each of the plurality of two-dimensional detectors, a plurality of two-dimensional detectors can be simulated. Can be a plurality of line sensors.
また、単一の二次元検出器2Cの代わりに単一のラインセンサを用い、単一の二次元検出器2Cの場合と同様に単一のラインセンサの複数領域の検出結果を用いることで、単一のラインセンサを擬似的な複数のラインセンサとすることができる。なお、単一のラインセンサは、Y軸方向に沿って延びる複数のラインを有するラインセンサである。
In addition, by using a single line sensor instead of the single two-dimensional detector 2C and using the detection results of multiple regions of the single line sensor as in the case of the single two-dimensional detector 2C, A single line sensor can be a plurality of pseudo line sensors. The single line sensor is a line sensor having a plurality of lines extending along the Y-axis direction.
また、ラインセンサである第1X線検出部2A及び第2X線検出部2Bの代わりに、図18及び図19に示すように二次元検出器2D及び2Eを用いてもよい。図18及び図19に示す検査装置100は、例えば次のような動作を行うとよい。第2X線照射部1B及び二次元検出器2Eによる撮影が可能な位置に被検査物T1をベルトコンベア3の駆動により移動させ、その後ベルトコンベア3を停止させ、第2X線照射部1B及び二次元検出器2Eによる撮影が可能な位置に被検査物T1を静止させる(図18参照)。図18に示す静止状態において、第2X線照射部1B及び二次元検出器2Eによって被検査物T1を1ショット撮影する。それから、第1X線照射部1A及び二次元検出器2Dによる撮影が可能な位置に被検査物T1をベルトコンベア3の駆動により移動させ、その後ベルトコンベア3を停止させ、第1X線照射部1A及び二次元検出器2Dによる撮影が可能な位置に被検査物T1を静止させる(図19参照)。図19に示す静止状態において、第1X線照射部1A及び二次元検出器2Dによって被検査物T1を1ショット撮影する。
Further, instead of the first X-ray detection unit 2A and the second X-ray detection unit 2B which are line sensors, two- dimensional detectors 2D and 2E may be used as shown in FIGS. 18 and 19. The inspection device 100 shown in FIGS. 18 and 19 may perform the following operations, for example. The object to be inspected T1 is moved by the drive of the belt conveyor 3 to a position where the image can be taken by the second X-ray irradiation unit 1B and the two-dimensional detector 2E, and then the belt conveyor 3 is stopped, and the second X-ray irradiation unit 1B and the two-dimensional The object to be inspected T1 is stationary at a position where it can be photographed by the detector 2E (see FIG. 18). In the stationary state shown in FIG. 18, one shot of the object to be inspected T1 is photographed by the second X-ray irradiation unit 1B and the two-dimensional detector 2E. Then, the object to be inspected T1 is moved by the drive of the belt conveyor 3 to a position where the first X-ray irradiation unit 1A and the two-dimensional detector 2D can take a picture, and then the belt conveyor 3 is stopped, and the first X-ray irradiation unit 1A and the first X-ray irradiation unit 1A and The object to be inspected T1 is stationary at a position where it can be photographed by the two-dimensional detector 2D (see FIG. 19). In the stationary state shown in FIG. 19, one shot of the object to be inspected T1 is photographed by the first X-ray irradiation unit 1A and the two-dimensional detector 2D.
また、第1X線照射部1A、第2X線照射部1B、並びにラインセンサである第1X線検出部2A及び第2X線検出部2Bの代わりに、図20及び図21に示すようにX線照射部1C並びに二次元検出器2Fを用いてもよい。図20及び図21に示す検査装置100は、例えば次のような動作を行うとよい。被検査物T1を第1の所定位置までベルトコンベア3の駆動により移動させる。このとき被検査物T1の移動に連動して二次元検出器2Fも不図示の移動機構により移動させる。その後ベルトコンベア3及び不図示の移動機構を停止させ、被検査物T1を第1の所定位置に静止させ、二次元検出器2Fを第1の所定位置に対応する位置に静止させる(図20参照)。図20に示す静止状態において、X線照射部1C及び二次元検出器2Fによって被検査物T1を1ショット撮影する。それから、被検査物T1を第2の所定位置までベルトコンベア3の駆動により移動させる。このとき被検査物T1の移動に連動して二次元検出器2Fも不図示の移動機構により移動させる。その後ベルトコンベア3及び不図示の移動機構を停止させ、被検査物T1を第2の所定位置に静止させ、二次元検出器2Fを第2の所定位置に対応する位置に静止させる(図21参照)。図21に示す静止状態において、X線照射部1C及び二次元検出器2Fによって被検査物T1を1ショット撮影する。
Further, instead of the first X-ray irradiation unit 1A, the second X-ray irradiation unit 1B, and the line sensors the first X-ray detection unit 2A and the second X-ray detection unit 2B, X-ray irradiation is performed as shown in FIGS. 20 and 21. The part 1C and the two-dimensional detector 2F may be used. The inspection device 100 shown in FIGS. 20 and 21 may perform the following operations, for example. The object to be inspected T1 is moved to the first predetermined position by driving the belt conveyor 3. At this time, the two-dimensional detector 2F is also moved by a moving mechanism (not shown) in conjunction with the movement of the object T1 to be inspected. After that, the belt conveyor 3 and the moving mechanism (not shown) are stopped, the object T1 to be inspected is stopped at the first predetermined position, and the two-dimensional detector 2F is stopped at the position corresponding to the first predetermined position (see FIG. 20). ). In the stationary state shown in FIG. 20, one shot of the object to be inspected T1 is taken by the X-ray irradiation unit 1C and the two-dimensional detector 2F. Then, the object to be inspected T1 is moved to the second predetermined position by driving the belt conveyor 3. At this time, the two-dimensional detector 2F is also moved by a moving mechanism (not shown) in conjunction with the movement of the object T1 to be inspected. After that, the belt conveyor 3 and the moving mechanism (not shown) are stopped, the object T1 to be inspected is stopped at the second predetermined position, and the two-dimensional detector 2F is stopped at the position corresponding to the second predetermined position (see FIG. 21). ). In the stationary state shown in FIG. 21, one shot of the object to be inspected T1 is photographed by the X-ray irradiation unit 1C and the two-dimensional detector 2F.
以上の説明では、被検査物T1とX線撮影に用いたX線照射部との位置関係がX軸方向においてのみ異なる複数枚の2次元X線撮影画像が生成されたが、被検査物T1とX線撮影に用いたX線照射部との位置関係がY軸方向においてのみ異なる複数枚の2次元X線撮影画像が生成されてもよく、被検査物T1とX線撮影に用いたX線照射部との位置関係がX軸方向、Y軸方向の両方において異なる複数枚の2次元X線撮影画像が生成されてもよい。
In the above description, a plurality of two-dimensional X-ray images in which the positional relationship between the X-ray object T1 and the X-ray irradiation unit used for X-ray photography are different only in the X-axis direction are generated. A plurality of two-dimensional X-ray images may be generated in which the positional relationship between the X-ray and the X-ray irradiation unit used for the X-ray photography is different only in the Y-axis direction. A plurality of two-dimensional X-ray images having different positional relationships with the line irradiation unit in both the X-axis direction and the Y-axis direction may be generated.
なお、X線検出部としてラインセンサを使用する場合、X線の照射領域ごとにフレームデータを或る1つの断層に投影し、再構成して生成される各2次元画像を「2次元X線撮影画像」とみなして以後の処理を行う構成の検査装置も本発明に含まれるものとする。
When a line sensor is used as an X-ray detection unit, frame data is projected onto a certain fault for each X-ray irradiation region, and each two-dimensional image generated by reconstruction is converted into "two-dimensional X-rays". The present invention also includes an inspection device having a configuration that is regarded as a "captured image" and is subjected to subsequent processing.
1 X線照射部
1A 第1X線照射部
1B 第2X線照射部
2 X線検出部
2A 第1X線検出部
2B 第2X線検出部
3 ベルトコンベア
4 CPU
5 ROM
6 RAM
7 VRAM
8 表示部
9 HDD
10 入力部
100 検査装置 1 X-ray irradiation unit 1A 1stX-ray irradiation unit 1B 2nd X-ray irradiation unit 2 X-ray detection unit 2A 1st X-ray detection unit 2B 2nd X-ray detection unit 3 Belt conveyor 4 CPU
5 ROM
6 RAM
7 VRAM
8Display 9 HDD
10Input unit 100 Inspection device
1A 第1X線照射部
1B 第2X線照射部
2 X線検出部
2A 第1X線検出部
2B 第2X線検出部
3 ベルトコンベア
4 CPU
5 ROM
6 RAM
7 VRAM
8 表示部
9 HDD
10 入力部
100 検査装置 1 X-ray irradiation unit 1A 1st
5 ROM
6 RAM
7 VRAM
8
10
Claims (11)
- 被検査物をX線撮影の対象とし、2次元X線撮影画像を前記X線撮影に用いたX線検出部の検出結果に基づき生成する第1画像生成部と、
前記2次元X線撮影画像を前記X線検出部の位置を除く所定の位置に設定される断層に投影した画像を生成し、その後、その生成した画像を2次元画像である投影画像に再構成する再構成部と、
前記投影画像に基づき異物の位置を特定する特定部と、
除去部と、
を備え、
前記第1画像生成部は、前記被検査物と前記X線撮影に用いたX線照射部及び前記X線検出部との位置関係が異なる複数枚の前記2次元X線撮影画像を生成し、
前記再構成部は、複数枚の前記2次元X線撮影画像それぞれを深さが異なる複数の断層に投影した画像を生成し、その後、その生成した画像それぞれを前記投影画像に再構成し、
前記特定部は、複数枚の前記投影画像それぞれを異物の位置を特定した二値化投影画像に変換し、
前記除去部は、同じ深さの断層に投影された画像から得られる複数枚の前記二値化投影画像同士を比較し、比較結果に基づいて異物の位置特定の誤検出部分を除去することを特徴とする検査装置。 A first image generation unit that targets an object to be inspected for X-ray photography and generates a two-dimensional X-ray image based on the detection result of the X-ray detection unit used for the X-ray photography.
An image obtained by projecting the two-dimensional X-ray photographed image onto a fault set at a predetermined position other than the position of the X-ray detection unit is generated, and then the generated image is reconstructed into a projected image which is a two-dimensional image. Reconstruction part and
A specific part that identifies the position of a foreign object based on the projected image,
With the removal part
With
The first image generation unit generates a plurality of two-dimensional X-ray images having different positional relationships between the object to be inspected, the X-ray irradiation unit used for the X-ray imaging, and the X-ray detection unit.
The reconstructing unit generates images obtained by projecting a plurality of the two-dimensional X-ray images onto a plurality of tomographic images having different depths, and then reconstructs each of the generated images into the projected images.
The specific unit converts each of the plurality of the projected images into a binarized projected image in which the position of the foreign matter is specified.
The removing unit compares a plurality of the binarized projected images obtained from the images projected on the tomographic image of the same depth, and removes the erroneously detected portion of the position of the foreign matter based on the comparison result. A featured inspection device. - 前記特定部は、過去に検査された前記被検査物の前記投影画像により学習した人工知能を用いて、異物の位置を特定する請求項1に記載の検査装置。 The inspection device according to claim 1, wherein the specific unit uses artificial intelligence learned from the projected image of the object to be inspected in the past to identify the position of a foreign substance.
- 前記特定部によって特定された異物の位置を2次元表示する画像を生成する第2画像生成部を備える請求項1又は請求項2に記載の検査装置。 The inspection device according to claim 1 or 2, further comprising a second image generation unit that generates an image that two-dimensionally displays the position of the foreign matter specified by the specific unit.
- 前記特定部によって特定された異物の位置を3次元表示する画像を生成する第2画像生成部を備える請求項1又は請求項2に記載の検査装置。 The inspection device according to claim 1 or 2, further comprising a second image generation unit that generates an image that three-dimensionally displays the position of the foreign matter specified by the specific unit.
- 前記特定部は、
前記投影画像を所定の領域毎に分割する分割部と、
前記所定の領域それぞれにおける平均輝度値を算出する算出部と、
を備え、
着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上小さい場合に、
前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で最大となる第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で最大となる第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で最大となる第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で最大となる第4輝度値を算出し、
所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、
前記所定の条件は、
(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以下になるという第1条件、
(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以下になるという第2条件、
(c)前記第1条件及び前記第2条件、
のうちのいずれか一つである請求項1~4のいずれか一項に記載の検査装置。 The specific part is
A division portion that divides the projected image into predetermined areas, and
A calculation unit that calculates the average luminance value in each of the predetermined regions,
With
When the brightness value of the pixel of interest is smaller than the average brightness value in the predetermined region to which the pixel of interest belongs by a predetermined value or more.
The first brightness value that is the maximum within the first set number of pixels arranged on one side of the first direction of the pixel of interest is calculated, and the maximum among the pixels of the second set number arranged on the other side of the first direction of the pixel of interest. The second brightness value is calculated, and the maximum third brightness value among the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest, is calculated, and the focus is calculated. Calculate the maximum fourth brightness value within the fourth set number of pixels lined up on the other side of the second direction of the pixels.
If a predetermined condition is satisfied, the pixel of interest is specified as the position of a foreign object, and the pixel of interest is specified.
The predetermined conditions are
(A) The first condition that the ratio of the brightness value of the pixel of interest to the first brightness value and the ratio of the brightness value of the pixel of interest to the second brightness value are each equal to or less than the first threshold value.
(B) The second condition that the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are each equal to or less than the second threshold value.
(C) The first condition and the second condition,
The inspection device according to any one of claims 1 to 4, which is any one of the above. - 前記特定部は、
被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、
前記所定の領域それぞれにおける平均輝度値を算出する算出部と、
を備え、
着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上小さい場合に、
前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で前記着目ピクセルより輝度値が大きく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第4輝度値を算出し、
所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、
前記所定の条件は、
(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以下になるという第1条件、
(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以下になるという第2条件、
(c)前記第1条件及び前記第2条件、
のうちのいずれか一つである請求項1~4のいずれか一項に記載の検査装置。 The specific part is
A division unit that divides an image based on X-ray photography of the object to be inspected into predetermined areas, and
A calculation unit that calculates the average luminance value in each of the predetermined regions,
With
When the brightness value of the pixel of interest is smaller than the average brightness value in the predetermined region to which the pixel of interest belongs by a predetermined value or more.
Within the first set number of pixels arranged on one side in the first direction of the pixel of interest, the brightness value of the pixel having a higher brightness value than the pixel of interest and as far as possible from the pixel of interest, or the brightness of a pixel as close as possible to the pixel of interest. The first brightness value, which is a value, is calculated, and the brightness of the pixels having a brightness value larger than that of the pixel of interest and as far as possible from the pixel of interest within the second set number of pixels arranged on the other side of the first direction of the pixel of interest. The second brightness value, which is the value or the brightness value of the pixel as close as possible to the pixel of interest, is calculated, and the pixel is within the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest. A third brightness value, which is a brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far as possible from the pixel of interest or a brightness value of a pixel as close as possible to the pixel of interest, is calculated, and the other side of the pixel of interest in the second direction. Among the fourth set number of pixels lined up in, the fourth brightness value, which is the brightness value of a pixel having a brightness value larger than that of the pixel of interest and as far as possible from the pixel of interest, or the brightness value of a pixel as close as possible to the pixel of interest, is calculated. And
If a predetermined condition is satisfied, the pixel of interest is specified as the position of a foreign object, and the pixel of interest is specified.
The predetermined conditions are
(A) The first condition that the ratio of the brightness value of the pixel of interest to the first brightness value and the ratio of the brightness value of the pixel of interest to the second brightness value are each equal to or less than the first threshold value.
(B) The second condition that the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are each equal to or less than the second threshold value.
(C) The first condition and the second condition,
The inspection device according to any one of claims 1 to 4, which is any one of the above. - 前記特定部は、
被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、
前記所定の領域それぞれにおける平均輝度値を算出する算出部と、
を備え、
着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上小さい場合に、
前記着目ピクセルの第1方向一方側に前記着目ピクセルから第1所定位置離れて並ぶ第1設定数のピクセル及び前記着目ピクセルの第1方向他方側に第2所定位置離れて並ぶ第2設定数のピクセルの平均輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に前記着目ピクセルから第3所定位置離れて並ぶ第3設定数のピクセル及び前記着目ピクセルの第2方向他方側に前記着目ピクセルから第4所定位置離れて並ぶ第4設定数のピクセルの平均輝度値である第2輝度値を算出し、
所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、
前記所定の条件は、
(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合が第1閾値以下になるという第1条件、
(b)前記第2輝度値に対する前記着目ピクセルの輝度値の割合が第2閾値以下になるという第2条件、
(c)前記第1条件及び前記第2条件、
のうちのいずれか一つである請求項1~4のいずれか一項に記載の検査装置。 The specific part is
A division unit that divides an image based on X-ray photography of the object to be inspected into predetermined areas, and
A calculation unit that calculates the average luminance value in each of the predetermined regions,
With
When the brightness value of the pixel of interest is smaller than the average brightness value in the predetermined region to which the pixel of interest belongs by a predetermined value or more.
A first set number of pixels arranged on one side of the pixel of interest in the first direction separated from the pixel of interest by a first predetermined position, and a second set number of pixels arranged on the other side of the pixel of interest in the first direction separated by a second predetermined position. The first brightness value, which is the average brightness value of the pixels, is calculated, and a third set number of pixels are arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest, at a third predetermined position from the pixel of interest. And the second brightness value, which is the average brightness value of the fourth set number of pixels arranged at the other side in the second direction of the pixel of interest at a fourth predetermined position from the pixel of interest, is calculated.
If a predetermined condition is satisfied, the pixel of interest is specified as the position of a foreign object, and the pixel of interest is specified.
The predetermined conditions are
(A) The first condition that the ratio of the brightness value of the pixel of interest to the first brightness value is equal to or less than the first threshold value.
(B) The second condition that the ratio of the brightness value of the pixel of interest to the second brightness value is equal to or less than the second threshold value.
(C) The first condition and the second condition,
The inspection device according to any one of claims 1 to 4, which is any one of the above. - 前記特定部は、
被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、
前記所定の領域それぞれにおける平均輝度値を算出する算出部と、
を備え、
着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上大きい場合に、
前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で最小となる第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で最小となる第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で最小となる第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で最小となる第4輝度値を算出し、
所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、
前記所定の条件は、
(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以上になるという第1条件、
(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以上になるという第2条件、
(c)前記第1条件及び前記第2条件、
のうちのいずれか一つである請求項1~4のいずれか一項に記載の検査装置。 The specific part is
A division unit that divides an image based on X-ray photography of the object to be inspected into predetermined areas, and
A calculation unit that calculates the average luminance value in each of the predetermined regions,
With
When the brightness value of the pixel of interest is greater than or equal to the average brightness value in the predetermined region to which the pixel of interest belongs.
The first brightness value that is the smallest among the first set number of pixels arranged on one side of the first direction of the pixel of interest is calculated, and the smallest among the second set number of pixels arranged on the other side of the first direction of the pixel of interest. The second brightness value is calculated, and the minimum third brightness value among the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest, is calculated, and the focus is calculated. The fourth brightness value, which is the smallest among the fourth set number of pixels arranged on the other side in the second direction of the pixels, is calculated.
If a predetermined condition is satisfied, the pixel of interest is specified as the position of a foreign object, and the pixel of interest is specified.
The predetermined conditions are
(A) The first condition that the ratio of the brightness value of the pixel of interest to the first brightness value and the ratio of the brightness value of the pixel of interest to the second brightness value are each equal to or higher than the first threshold value.
(B) The second condition that the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are each equal to or higher than the second threshold value.
(C) The first condition and the second condition,
The inspection device according to any one of claims 1 to 4, which is any one of the above. - 前記特定部は、
被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、
前記所定の領域それぞれにおける平均輝度値を算出する算出部と、
を備え、
着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上大きい場合に、
前記着目ピクセルの第1方向一方側に並ぶ第1設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向他方側に並ぶ第2設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第2輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に並ぶ第3設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第3輝度値を算出し、前記着目ピクセルの第2方向他方側に並ぶ第4設定数のピクセル内で前記着目ピクセルより輝度値が小さく且つ前記着目ピクセルからできるだけ離れているピクセルの輝度値又は前記着目ピクセルからできるだけ近いピクセルの輝度値である第4輝度値を算出し、
所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、
前記所定の条件は、
(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合及び前記第2輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第1閾値以上になるという第1条件、
(b)前記第3輝度値に対する前記着目ピクセルの輝度値の割合及び前記第4輝度値に対する前記着目ピクセルの輝度値の割合がそれぞれ第2閾値以上になるという第2条件、
(c)前記第1条件及び前記第2条件、
のうちのいずれか一つである請求項1~4のいずれか一項に記載の検査装置。 The specific part is
A division unit that divides an image based on X-ray photography of the object to be inspected into predetermined areas, and
A calculation unit that calculates the average luminance value in each of the predetermined regions,
With
When the brightness value of the pixel of interest is greater than or equal to the average brightness value in the predetermined region to which the pixel of interest belongs.
Within the first set number of pixels arranged on one side in the first direction of the pixel of interest, the brightness value of a pixel having a smaller brightness value than the pixel of interest and as far as possible from the pixel of interest, or the brightness of a pixel as close as possible to the pixel of interest. The first brightness value, which is a value, is calculated, and the brightness of the pixels having a brightness value smaller than that of the pixel of interest and as far as possible from the pixel of interest within the second set number of pixels arranged on the other side of the first direction of the pixel of interest. The second brightness value, which is the value or the brightness value of the pixel as close as possible to the pixel of interest, is calculated, and the pixel is within the third set number of pixels arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest. A third brightness value, which is a brightness value of a pixel having a brightness value smaller than that of the pixel of interest and as far as possible from the pixel of interest or a brightness value of a pixel as close as possible to the pixel of interest, is calculated, and the other side of the pixel of interest in the second direction. Among the fourth set number of pixels lined up in, the fourth brightness value, which is the brightness value of a pixel whose brightness value is smaller than that of the pixel of interest and is as far as possible from the pixel of interest, or the brightness value of a pixel as close as possible to the pixel of interest, is calculated. And
If a predetermined condition is satisfied, the pixel of interest is specified as the position of a foreign object, and the pixel of interest is specified.
The predetermined conditions are
(A) The first condition that the ratio of the brightness value of the pixel of interest to the first brightness value and the ratio of the brightness value of the pixel of interest to the second brightness value are each equal to or higher than the first threshold value.
(B) The second condition that the ratio of the brightness value of the pixel of interest to the third brightness value and the ratio of the brightness value of the pixel of interest to the fourth brightness value are each equal to or higher than the second threshold value.
(C) The first condition and the second condition,
The inspection device according to any one of claims 1 to 4, which is any one of the above. - 前記特定部は、
被検査物のX線撮影に基づく画像を所定の領域毎に分割する分割部と、
前記所定の領域それぞれにおける平均輝度値を算出する算出部と、
を備え、
着目ピクセルの輝度値が、前記着目ピクセルの属する前記所定の領域における前記平均輝度値よりも所定値以上大きい場合に、
前記着目ピクセルの第1方向一方側に前記着目ピクセルから第1所定位置離れて並ぶ第1設定数のピクセル及び前記着目ピクセルの第1方向他方側に第2所定位置離れて並ぶ第2設定数のピクセルの平均輝度値である第1輝度値を算出し、前記着目ピクセルの第1方向と異なる方向である第2方向一方側に前記着目ピクセルから第3所定位置離れて並ぶ第3設定数のピクセル及び前記着目ピクセルの第2方向他方側に前記着目ピクセルから第4所定位置離れて並ぶ第4設定数のピクセルの平均輝度値である第2輝度値を算出し、
所定の条件が成立すれば、前記着目ピクセルを異物の位置として特定し、
前記所定の条件は、
(a)前記第1輝度値に対する前記着目ピクセルの輝度値の割合が第1閾値以上になるという第1条件、
(b)前記第2輝度値に対する前記着目ピクセルの輝度値の割合が第2閾値以上になるという第2条件、
(c)前記第1条件及び前記第2条件、
のうちのいずれか一つである請求項1~4のいずれか一項に記載の検査装置。 The specific part is
A division unit that divides an image based on X-ray photography of the object to be inspected into predetermined areas, and
A calculation unit that calculates the average luminance value in each of the predetermined regions,
With
When the brightness value of the pixel of interest is greater than or equal to the average brightness value in the predetermined region to which the pixel of interest belongs.
A first set number of pixels arranged on one side of the pixel of interest in the first direction separated from the pixel of interest by a first predetermined position, and a second set number of pixels arranged on the other side of the pixel of interest in the first direction separated by a second predetermined position. The first brightness value, which is the average brightness value of the pixels, is calculated, and a third set number of pixels are arranged on one side of the second direction, which is a direction different from the first direction of the pixel of interest, at a third predetermined position from the pixel of interest. And the second brightness value, which is the average brightness value of the fourth set number of pixels arranged at the other side in the second direction of the pixel of interest at a fourth predetermined position from the pixel of interest, is calculated.
If a predetermined condition is satisfied, the pixel of interest is specified as the position of a foreign object, and the pixel of interest is specified.
The predetermined conditions are
(A) The first condition that the ratio of the brightness value of the pixel of interest to the first brightness value is equal to or higher than the first threshold value.
(B) The second condition that the ratio of the brightness value of the pixel of interest to the second brightness value is equal to or higher than the second threshold value.
(C) The first condition and the second condition,
The inspection device according to any one of claims 1 to 4, which is any one of the above. - X線照射部及びX線検出部を備えるX線撮影装置を用いた検査方法であって、
前記X線撮影装置によって被検査物をX線撮影して得られる2次元X線撮影画像を記憶する記憶ステップと、
前記2次元X線撮影画像を前記X線検出部の位置を除く所定の位置に設定される断層に投影した画像を生成し、その後、その生成した画像を2次元画像である投影画像に再構成する再構成ステップと、
前記投影画像に基づき異物の位置を特定する特定ステップと、
除去ステップと、
を備え、
前記記憶ステップにおいて、前記被検査物と前記X線撮影に用いたX線照射部及び前記X線検出部との位置関係が異なる複数枚の前記2次元X線撮影画像が記憶され、
前記再構成ステップにおいて、複数枚の前記2次元X線撮影画像それぞれを深さが異なる複数の断層に投影した画像が生成され、その後、その生成された画像それぞれが前記投影画像に再構成され、
前記特定ステップにおいて、複数枚の前記投影画像それぞれが異物の位置を特定した二値化投影画像に変換され、
前記除去ステップにおいて、同じ深さの断層に投影された画像から得られる複数枚の前記二値化投影画像同士が比較され、比較結果に基づいて異物の位置特定の誤検出部分が除去されることを特徴とする検査方法。 It is an inspection method using an X-ray imaging apparatus including an X-ray irradiation unit and an X-ray detection unit.
A storage step of storing a two-dimensional X-ray image obtained by X-raying an object to be inspected by the X-ray apparatus, and a storage step.
An image obtained by projecting the two-dimensional X-ray photographed image onto a fault set at a predetermined position other than the position of the X-ray detection unit is generated, and then the generated image is reconstructed into a projected image which is a two-dimensional image. Reconstruction steps and
A specific step of identifying the position of a foreign object based on the projected image, and
With the removal step,
With
In the storage step, a plurality of two-dimensional X-ray images having different positional relationships between the object to be inspected, the X-ray irradiation unit used for the X-ray imaging, and the X-ray detection unit are stored.
In the reconstruction step, images obtained by projecting each of the plurality of two-dimensional X-ray images onto a plurality of tomographic images having different depths are generated, and then each of the generated images is reconstructed into the projected images.
In the specific step, each of the plurality of projected images is converted into a binarized projected image in which the position of the foreign matter is specified.
In the removal step, a plurality of the binarized projected images obtained from the images projected on the tomography of the same depth are compared with each other, and the erroneously detected portion of the foreign matter is removed based on the comparison result. An inspection method characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021513686A JP7178620B2 (en) | 2019-04-09 | 2020-04-08 | Inspection device and inspection method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019074241 | 2019-04-09 | ||
JP2019-074241 | 2019-04-09 | ||
JP2019117729 | 2019-06-25 | ||
JP2019-117729 | 2019-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020209312A1 true WO2020209312A1 (en) | 2020-10-15 |
Family
ID=72752046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015888 WO2020209312A1 (en) | 2019-04-09 | 2020-04-08 | Inspecting device and inspecting method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7178620B2 (en) |
WO (1) | WO2020209312A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022082331A (en) * | 2020-11-20 | 2022-06-01 | 朝日レントゲン工業株式会社 | Device and method for displaying inspection results |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2937324B2 (en) * | 1988-05-26 | 1999-08-23 | 株式会社東芝 | Defective foreign matter detection device |
US20050067570A1 (en) * | 2003-09-05 | 2005-03-31 | Retterath James E. | System for automated detection of embedded objects |
WO2015111728A1 (en) * | 2014-01-23 | 2015-07-30 | 株式会社ジョブ | X-ray inspection apparatus and x-ray inspection method |
JP2015158454A (en) * | 2014-02-25 | 2015-09-03 | 株式会社 システムスクエア | Inspection device using inspection wave |
JP2016145778A (en) * | 2015-02-09 | 2016-08-12 | 株式会社ジョブ | X-ray inspection device and x-ray inspection method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5894478B2 (en) * | 2012-03-19 | 2016-03-30 | 株式会社イシダ | X-ray inspection equipment |
KR101445143B1 (en) * | 2013-07-12 | 2014-10-01 | (주)자비스 | Foreign body signal image processing improve method |
JP6029698B2 (en) | 2015-02-19 | 2016-11-24 | キヤノン株式会社 | Photoelectric conversion device and imaging system using the same |
-
2020
- 2020-04-08 WO PCT/JP2020/015888 patent/WO2020209312A1/en active Application Filing
- 2020-04-08 JP JP2021513686A patent/JP7178620B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2937324B2 (en) * | 1988-05-26 | 1999-08-23 | 株式会社東芝 | Defective foreign matter detection device |
US20050067570A1 (en) * | 2003-09-05 | 2005-03-31 | Retterath James E. | System for automated detection of embedded objects |
WO2015111728A1 (en) * | 2014-01-23 | 2015-07-30 | 株式会社ジョブ | X-ray inspection apparatus and x-ray inspection method |
JP2015158454A (en) * | 2014-02-25 | 2015-09-03 | 株式会社 システムスクエア | Inspection device using inspection wave |
JP2016145778A (en) * | 2015-02-09 | 2016-08-12 | 株式会社ジョブ | X-ray inspection device and x-ray inspection method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022082331A (en) * | 2020-11-20 | 2022-06-01 | 朝日レントゲン工業株式会社 | Device and method for displaying inspection results |
JP7304077B2 (en) | 2020-11-20 | 2023-07-06 | 朝日レントゲン工業株式会社 | Inspection result display device and inspection result display method |
Also Published As
Publication number | Publication date |
---|---|
JP7178620B2 (en) | 2022-11-28 |
JPWO2020209312A1 (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10481110B2 (en) | Radiographic image generating device | |
CN106030293B (en) | X ray checking device and x-ray inspection method | |
US8009892B2 (en) | X-ray image processing system | |
US20050078861A1 (en) | Tomographic system and method for iteratively processing two-dimensional image data for reconstructing three-dimensional image data | |
US7708462B2 (en) | Transmission image capturing system and transmission image capturing method | |
US6944263B2 (en) | Apparatus and methods for multiple view angle stereoscopic radiography | |
US20170100088A1 (en) | Iterative reconstruction process | |
CN110264421B (en) | CT bad channel correction method | |
CA3109826C (en) | Dynamic radiation collimation for non-destructive analysis of test objects | |
EP3250909B1 (en) | Gap resolution for linear detector array | |
Sanctorum et al. | Methods for characterization and optimisation of measuring performance of stereoscopic x-ray systems with image intensifiers | |
WO2020209312A1 (en) | Inspecting device and inspecting method | |
WO2020209313A1 (en) | Image processing device, and image processing method | |
JP7267611B2 (en) | Inspection device and inspection method | |
JP7033779B2 (en) | Radiation image generator | |
TWI613998B (en) | Reduction method for boundary artifact on the tomosynthesis | |
JP7304077B2 (en) | Inspection result display device and inspection result display method | |
RU2776469C1 (en) | Dynamic collimation of emission for non-destructive analysis of test objects | |
JP3128036B2 (en) | X-ray equipment | |
WO2016147314A1 (en) | Computer tomographic imaging method and device | |
WO2013051647A1 (en) | Radiography device and image processing method | |
JPH04156828A (en) | Pattern recognizing device | |
ZHUO CHEN et al. | A Inter-module Gap Filling Method for Photon Counting Detectors Based on Dual | |
CN117649484A (en) | Three-dimensional optical reconstruction method based on CT image | |
Liu et al. | Comparative study of projection/back-projection schemes in cryo-EM tomography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20787257 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513686 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20787257 Country of ref document: EP Kind code of ref document: A1 |