RU2776469C1 - Dynamic collimation of emission for non-destructive analysis of test objects - Google Patents

Dynamic collimation of emission for non-destructive analysis of test objects Download PDF

Info

Publication number
RU2776469C1
RU2776469C1 RU2021107714A RU2021107714A RU2776469C1 RU 2776469 C1 RU2776469 C1 RU 2776469C1 RU 2021107714 A RU2021107714 A RU 2021107714A RU 2021107714 A RU2021107714 A RU 2021107714A RU 2776469 C1 RU2776469 C1 RU 2776469C1
Authority
RU
Russia
Prior art keywords
phase
positions
collimator
rotational position
scanning
Prior art date
Application number
RU2021107714A
Other languages
Russian (ru)
Inventor
Бретт А. МЮЛЬХАУЗЕР
Original Assignee
Иллинойс Тул Воркс Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Иллинойс Тул Воркс Инк. filed Critical Иллинойс Тул Воркс Инк.
Application granted granted Critical
Publication of RU2776469C1 publication Critical patent/RU2776469C1/en

Links

Images

Abstract

FIELD: imaging.
SUBSTANCE: use: generation of tomographic data of a test object. The substance of the invention consists in the fact that, for each corresponding rotary position of the first phase from a set of rotary positions of the first phase, the visualisation system can generate a corresponding image of the first phase. Based on the identified area of interest in the corresponding image of the first phase, the visualisation system can determine the positions of collimator plates for the corresponding rotary position of the first phase. For each corresponding rotary position of the second phase from a set of rotary positions of the second phase, based on the positions of collimator plates for the rotary positions of the first phase, the visualisation system can determine the positions of collimator plates for the corresponding rotary position of the second phase . The visualisation system can generate the corresponding image of the second phase in a second sequence of images at a time when the test object is in the corresponding rotary position of the second phase, and at a time when the collimator plates are in the positions of collimator plates for the corresponding rotary position of the second phase. Based on the second sequence of images, the visualisation system can calculate the tomographic data for part of the test object.
EFFECT: increase in the quality of tomographic images.
20 cl, 17 dwg

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИCROSS-REFERENCE TO RELATED APPLICATIONS

[0001] Эта заявка испрашивает приоритет заявки на патент США № 16/129,404, озаглавленной «DYNAMIC RADIATION COLLIMATION FOR NON-DESTRUCTIVE ANALYSIS OF TEST OBJECTS» («Динамическое коллимирование излучения для неразрушающего анализа тестовых объектов») и поданной 12 сентября 2018 года, полное содержание которой включено в настоящую заявку по ссылке.[0001] This application claims the priority of U.S. Patent Application No. 16/129,404 entitled "DYNAMIC RADIATION COLLIMATION FOR NON-DESTRUCTIVE ANALYSIS OF TEST OBJECTS" filed September 12, 2018, in full the content of which is incorporated into this application by reference.

ОБЛАСТЬ ТЕХНИКИFIELD OF TECHNOLOGY

[0002] Это раскрытие относится к цифровой радиографии и компьютерной томографии.[0002] This disclosure relates to digital radiography and computed tomography.

УРОВЕНЬ ТЕХНИКИBACKGROUND OF THE INVENTION

[0003] Рентгеновская цифровая радиография (digital radiography - DR) является широко используемой неинвазивной и неразрушающей технологией визуализации, использующей цифровые детекторы рентгеновских лучей, такие как плоскопанельные детекторы, камеры на основе приборов с зарядовой связью (charge-coupled device - CCD), или камеры на основе комплементарной структуры металл-оксид-полупроводник (complementary metal-oxide-semiconductor - CMOS), или линейные диодные матрицы (linear diode array - LDA). Рентгеновская компьютерная томография (computed tomography - CT) является процедурой, которая использует компьютерно-обрабатываемые рентгеновские радиографические изображения или синограммы, получаемые под разными углами наблюдения, для создания трехмерных (3D) данных и двумерных (2D) изображений объекта. Томографическое изображение объекта является изображением концептуально двумерного «среза» объекта, которое может быть сгенерировано из радиографических изображений или синограммы. Вычислительное устройство может использовать томографические изображения, радиографические изображения, или синограммы объекта для генерирования трехмерных данных для объекта, например, трехмерной модели объекта. Рентгеновская CT может быть использована в промышленных целях для проведения неразрушающего оценивания объектов.[0003] X-ray digital radiography (digital radiography - DR) is a widely used non-invasive and non-destructive imaging technology using digital x-ray detectors such as flat panel detectors, charge-coupled device (CCD) cameras, or cameras based on a complementary metal-oxide-semiconductor (CMOS) structure, or linear diode arrays (LDA). X-ray computed tomography (CT) is a procedure that uses computer-processed x-ray radiographic images or sinograms obtained from different viewing angles to create three-dimensional (3D) data and two-dimensional (2D) images of an object. A tomographic image of an object is an image of a conceptually two-dimensional "slice" of an object that can be generated from radiographic images or a sinogram. The computing device may use tomographic images, radiographic images, or synograms of the object to generate three-dimensional data for the object, such as a three-dimensional model of the object. X-ray CT can be used for industrial purposes for non-destructive evaluation of objects.

СУЩНОСТЬ ИЗОБРЕТЕНИЯSUMMARY OF THE INVENTION

[0004] В одном примере, это раскрытие описывает способ генерирования томографических данных тестового объекта, причем способ содержит этапы, на которых: для каждого соответствующего поворотного положения первой фазы из набора из двух или более поворотных положений первой фазы: генерируют, посредством системы визуализации, соответствующее изображение первой фазы в первой последовательности изображений, причем соответствующее изображение первой фазы генерируется в то время, когда тестовый объект находится в соответствующем поворотном положении первой фазы; идентифицируют, посредством системы визуализации, область интереса (region of interest - ROI) в соответствующем изображении первой фазы, причем ROI соответствует части оцениваемого тестового объекта; и определяют, посредством системы визуализации, на основе идентифицированной ROI в соответствующем изображении первой фазы, положения коллиматорных пластин для соответствующего поворотного положения первой фазы, причем излучение излучается генератором излучения и проходит через апертуру коллиматора, коллиматор расположен между генератором излучения и детектором излучения, тестовый объект расположен между генератором излучения и детектором излучения, и коллиматор содержит множество коллиматорных пластин, которые подвижны с возможностью изменять размер и форму апертуры коллиматора; для каждого соответствующего поворотного положения второй фазы из набора из двух или более поворотных положений второй фазы: определяют, посредством системы визуализации, на основе положений коллиматорных пластин для поворотных положений первой фазы, положения коллиматорных пластин для соответствующего поворотного положения второй фазы; и генерируют, посредством системы визуализации, соответствующее изображение второй фазы во второй последовательности изображений, причем соответствующее изображение второй фазы является рентгенограммой, генерируемой на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы; и вычисляют, посредством системы визуализации, на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта.[0004] In one example, this disclosure describes a method for generating tomographic data of a test object, the method comprising: for each corresponding first phase rotation position from a set of two or more first phase rotation positions: generating, by an imaging system, a corresponding a first phase image in the first sequence of images, wherein the corresponding first phase image is generated while the test object is in the corresponding rotational position of the first phase; identifying, by means of a visualization system, a region of interest (ROI) in the corresponding first phase image, the ROI corresponding to a portion of the test object being evaluated; and determining, by means of the imaging system, based on the identified ROI in the corresponding first phase image, the positions of the collimator plates for the corresponding rotational position of the first phase, wherein the radiation is emitted by the radiation generator and passes through the aperture of the collimator, the collimator is located between the radiation generator and the radiation detector, the test object is located between the radiation generator and the radiation detector, and the collimator contains a plurality of collimator plates that are movable with the ability to change the size and shape of the collimator aperture; for each corresponding second phase rotation position from a set of two or more second phase rotation positions: determining, by means of the imaging system, based on the positions of the collimator plates for the first phase rotation positions, the positions of the collimator plates for the corresponding second phase rotation position; and generating, by means of the imaging system, a corresponding second phase image in the second sequence of images, wherein the corresponding second phase image is an X-ray pattern generated based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second phase and at that the time when the collimator plates are in the positions of the collimator plates for the corresponding rotational position of the second phase; and calculating, by means of the imaging system, based on the second sequence of images, tomographic data for a portion of the test object being evaluated.

[0005] В другом примере, это раскрытие описывает систему визуализации, содержащую: генератор излучения; детектор излучения; коллиматор, причем излучение, излучаемое генератором излучения, проходит через апертуру коллиматора, коллиматор расположен между генератором излучения и детектором излучения, тестовый объект расположен между генератором излучения и детектором излучения, и коллиматор содержит множество коллиматорных пластин, которые подвижны с возможностью изменять размер и форму апертуры коллиматора; и систему обработки, выполненную с возможностью: для каждого соответствующего поворотного положения первой фазы из набора из двух или более поворотных положений первой фазы: генерировать соответствующее изображение первой фазы в первой последовательности изображений, причем соответствующее изображение первой фазы генерируется в то время, когда тестовый объект находится в соответствующем поворотном положении первой фазы; идентифицировать область интереса (ROI) в соответствующем изображении первой фазы, причем ROI соответствует части оцениваемого тестового объекта; и определять, на основе идентифицированной ROI в соответствующем изображении первой фазы, положения коллиматорных пластин для соответствующего поворотного положения первой фазы; для каждого соответствующего поворотного положения второй фазы из набора из двух или более поворотных положений второй фазы: определять, на основе положений коллиматорных пластин для поворотных положений первой фазы, положения коллиматорных пластин для соответствующего поворотного положения второй фазы; и генерировать соответствующее изображение второй фазы во второй последовательности изображений, причем соответствующее изображение второй фазы является рентгенограммой, генерируемой на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы; и вычислять, на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта.[0005] In another example, this disclosure describes an imaging system comprising: a radiation generator; radiation detector; collimator, moreover, the radiation emitted by the radiation generator passes through the collimator aperture, the collimator is located between the radiation generator and the radiation detector, the test object is located between the radiation generator and the radiation detector, and the collimator contains a plurality of collimator plates that are movable with the ability to change the size and shape of the collimator aperture ; and a processing system configured: for each respective first phase rotation position from a set of two or more first phase rotation positions: to generate a corresponding first phase image in the first sequence of images, wherein the corresponding first phase image is generated while the test object is in the corresponding rotary position of the first phase; identify a region of interest (ROI) in the corresponding first phase image, the ROI corresponding to a portion of the test object being evaluated; and determine, based on the identified ROI in the corresponding first phase image, the positions of the collimator plates for the corresponding rotational position of the first phase; for each corresponding second phase rotation position from a set of two or more second phase rotation positions: determine, based on the collimator plate positions for the first phase rotation positions, the collimator plate positions for the corresponding second phase rotation position; and generating a corresponding image of the second phase in the second sequence of images, wherein the corresponding image of the second phase is an X-ray pattern generated based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second phase and at the time when the collimator plates are in the positions of the collimator plates for the corresponding rotational position of the second phase; and calculate, based on the second sequence of images, tomographic data for a portion of the evaluated test object.

[0006] В другом примере, это раскрытие описывает невременный компьютерно-читаемый носитель данных, имеющий команды, хранимые на нем, которые, при выполнении, заставляют один или несколько процессоров, для каждого соответствующего поворотного положения первой фазы из набора из двух или более поворотных положений первой фазы: генерировать соответствующее изображение первой фазы в первой последовательности изображений, причем соответствующее изображение первой фазы генерируется в то время, когда тестовый объект находится в соответствующем поворотном положении первой фазы; идентифицировать область интереса (ROI) в соответствующем изображении первой фазы, причем ROI соответствует части оцениваемого тестового объекта; и определять, на основе идентифицированной ROI в соответствующем изображении первой фазы, положения коллиматорных пластин для соответствующего поворотного положения первой фазы, причем излучение излучается генератором излучения и проходит через апертуру коллиматора, коллиматор расположен между генератором излучения и детектором излучения, тестовый объект расположен между генератором излучения и детектором излучения, и коллиматор содержит множество коллиматорных пластин, которые подвижны с возможностью изменять размер и форму апертуры коллиматора; для каждого соответствующего поворотного положения второй фазы из набора из двух или более поворотных положений второй фазы: определять, на основе положений коллиматорных пластин для поворотных положений первой фазы, положения коллиматорных пластин для соответствующего поворотного положения второй фазы; и генерировать соответствующее изображение второй фазы во второй последовательности изображений, причем соответствующее изображение второй фазы является рентгенограммой, генерируемой на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы; и вычислять, на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта.[0006] In another example, this disclosure describes a non-transitory computer-readable storage medium having instructions stored thereon that, when executed, causes one or more processors, for each corresponding first phase rotation position, from a set of two or more rotation positions first phase: generate a corresponding first phase image in the first sequence of images, wherein the corresponding first phase image is generated while the test object is at the corresponding rotational position of the first phase; identify a region of interest (ROI) in the corresponding first phase image, the ROI corresponding to a portion of the test object being evaluated; and determine, based on the identified ROI in the corresponding first phase image, the positions of the collimator plates for the corresponding rotational position of the first phase, wherein the radiation is emitted by the radiation generator and passes through the aperture of the collimator, the collimator is located between the radiation generator and the radiation detector, the test object is located between the radiation generator and a radiation detector, and the collimator contains a plurality of collimator plates that are movable with the ability to change the size and shape of the collimator aperture; for each corresponding second phase rotation position from a set of two or more second phase rotation positions: determine, based on the collimator plate positions for the first phase rotation positions, the collimator plate positions for the corresponding second phase rotation position; and generating a corresponding image of the second phase in the second sequence of images, wherein the corresponding image of the second phase is an X-ray pattern generated based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second phase and at the time when the collimator plates are in the positions of the collimator plates for the corresponding rotational position of the second phase; and calculate, based on the second sequence of images, tomographic data for a portion of the evaluated test object.

[0007] Детали одного или нескольких примеров изложены в прилагаемых чертежах и описании, приведенном ниже. Другие признаки, объекты, и преимущества будут понятны из описания, чертежей, и формулы изобретения.[0007] Details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description, drawings, and claims.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙBRIEF DESCRIPTION OF THE DRAWINGS

[0008] Фиг. 1 является схематичным чертежом иллюстративной системы визуализации согласно одной или нескольким технологиям этого раскрытия.[0008] FIG. 1 is a schematic drawing of an exemplary imaging system in accordance with one or more of the technologies of this disclosure.

[0009] Фиг. 2А является концептуальным чертежом иллюстративной системы визуализации, когда тестовый объект находится в первом поворотном положении во время второй фазы сканирования, согласно одной или нескольким технологиям этого раскрытия.[0009] FIG. 2A is a conceptual drawing of an exemplary imaging system when a test object is in a first rotational position during a second phase of scanning, in accordance with one or more of the technologies of this disclosure.

[0010] Фиг. 2В является концептуальным чертежом иллюстративных положений пластин коллиматора, когда тестовый объект находится в первом поворотном положении, показанном на фиг. 2А.[0010] FIG. 2B is a conceptual drawing of exemplary collimator plate positions when the test object is in the first pivot position shown in FIG. 2A.

[0011] Фиг. 2С является концептуальным чертежом иллюстративной системы визуализации, когда тестовый объект находится во втором поворотном положении во время второй фазы сканирования, согласно одной или нескольким технологиям этого раскрытия.[0011] FIG. 2C is a conceptual drawing of an exemplary imaging system when a test object is in a second rotational position during a second phase of scanning, in accordance with one or more of the technologies of this disclosure.

[0012] Фиг. 2D является концептуальным чертежом иллюстративных положений пластин коллиматора, когда тестовый объект находится во втором поворотном положении, показанном на фиг. 2С.[0012] FIG. 2D is a conceptual drawing of exemplary collimator plate positions when the test object is in the second pivot position shown in FIG. 2C.

[0013] Фиг. 3А показывает первый иллюстративный тестовый объект в первом поворотном положении.[0013] FIG. 3A shows a first exemplary test object in a first pivot position.

[0014] Фиг. 3В показывает тестовый объект фиг. 3А во втором поворотном положении, отличном от первого поворотного положения.[0014] FIG. 3B shows the test object of FIG. 3A in a second pivot position different from the first pivot position.

[0015] Фиг. 4А показывает иллюстративную рентгенограмму тестового объекта в отсутствие коллимирования.[0015] FIG. 4A shows an exemplary X-ray diffraction pattern of a test object in the absence of collimation.

[0016] Фиг. 4В показывает иллюстративную рентгенограмму тестового объекта фиг. 4А в случае стандартного, нединамического коллимирования компьютерной томографии (computed tomography - CT) в 0-градусном поворотном положении.[0016] FIG. 4B shows an exemplary radiograph of the test object of FIG. 4A in the case of standard, non-dynamic collimated computed tomography (CT) in the 0-degree rotational position.

[0017] Фиг. 4С показывает иллюстративную рентгенограмму тестового объекта фиг. 4А-4В в случае динамического CT-коллимирования в 0-градусном поворотном положении согласно одной или нескольким технологиям этого раскрытия.[0017] FIG. 4C shows an exemplary radiograph of the test object of FIG. 4A-4B in the case of dynamic CT collimation at 0-degree rotational position according to one or more of the technologies of this disclosure.

[0018] Фиг. 4D показывает иллюстративную рентгенограмму тестового объекта фиг. 4А-4С в отсутствие коллимирования в 90-градусном поворотном положении.[0018] FIG. 4D shows an exemplary radiograph of the test object of FIG. 4A-4C in the absence of collimation in the 90 degree rotation.

[0019] Фиг. 4Е показывает иллюстративную рентгенограмму тестового объекта фиг. 4А-4D в случае стандартного, нединамического СТ-коллимирования в 90-градусном поворотном положении.[0019] FIG. 4E shows an exemplary radiograph of the test object of FIG. 4A-4D for standard, non-dynamic CT collimation in a 90 degree rotation.

[0020] Фиг. 4F показывает иллюстративную рентгенограмму тестового объекта фиг. 4А-4Е в случае динамического CT-коллимирования в 90-градусном поворотном положении согласно одной или нескольким технологиям этого раскрытия.[0020] FIG. 4F shows an exemplary radiograph of the test object of FIG. 4A-4E in the case of dynamic CT collimation in a 90 degree rotational position according to one or more of the technologies of this disclosure.

[0021] Фиг. 5 является блок-схемой последовательности операций, показывающей первое иллюстративное функционирование системы визуализации согласно одной или нескольким технологиям этого раскрытия.[0021] FIG. 5 is a flowchart showing a first exemplary operation of an imaging system in accordance with one or more of the technologies of this disclosure.

[0022] Фиг. 6 является блок-схемой последовательности операций, показывающей второе иллюстративное функционирование системы визуализации согласно одной или нескольким технологиям этого раскрытия.[0022] FIG. 6 is a flowchart showing a second exemplary operation of an imaging system in accordance with one or more of the technologies of this disclosure.

[0023] Фиг. 7 является схематичным чертежом иллюстративной системы визуализации согласно одной или нескольким технологиям этого раскрытия.[0023] FIG. 7 is a schematic drawing of an exemplary imaging system in accordance with one or more of the technologies of this disclosure.

[0024] Фиг. 8 является схематичным чертежом иллюстративной системы визуализации согласно одной или нескольким технологиям этого раскрытия.[0024] FIG. 8 is a schematic drawing of an exemplary imaging system in accordance with one or more of the technologies of this disclosure.

ПОДРОБНОЕ ОПИСАНИЕDETAILED DESCRIPTION

[0025] В общем, это раскрытие относится к динамическому коллимированию в компьютерной томографии. В типичной рентгеновской системе визуализации, рентгеновская система визуализации включает в себя детектор излучения и генератор излучения. Детектор излучения детектирует рентгеновские лучи, генерируемые генератором излучения, и выдает электрические сигналы, соответствующие структуре детектированных рентгеновских лучей. Оцениваемый тестовый объект располагают между детектором излучения и генератором излучения. Тестовый объект ослабляет рентгеновские лучи характерным образом, что приводит к структуре рентгеновских лучей, детектируемой детектором излучения. Система обработки рентгеновской системы визуализации генерирует изображение, такое как рентгенограмма, на основе электрических сигналов, выдаваемых детектором излучения.[0025] In general, this disclosure relates to dynamic collimation in computed tomography. In a typical x-ray imaging system, the x-ray imaging system includes a radiation detector and a radiation generator. The radiation detector detects the X-rays generated by the radiation generator and outputs electrical signals corresponding to the structure of the detected X-rays. The test object to be evaluated is placed between the radiation detector and the radiation generator. The test object attenuates the X-rays in a characteristic manner, resulting in an X-ray pattern being detected by a radiation detector. The processing system of an x-ray imaging system generates an image, such as a radiograph, based on electrical signals output from a radiation detector.

[0026] Посредством поворота тестового объекта, рентгеновская система визуализации может генерировать набор рентгенограмм для различных поворотных положений тестового объекта или синограмму объекта. Система обработки может генерировать данные компьютерной томографии (CT) на основе набора рентгенограмм или синограмм, генерируемых таким образом. Таким образом, рентгеновская система визуализации может быть использована для рентгеновской радиографии и CT. Рентгеновская радиография и CT являются способами неинвазивного или неразрушающего получения двумерных (2D) и трехмерных (3D) данных в медицинской визуализации и в оценке неразрушающими методами (non-destructive evaluation - NDE).[0026] By rotating the test object, the x-ray imaging system can generate a set of radiographs for various rotational positions of the test object, or a sinogram of the object. The processing system may generate computed tomography (CT) data based on the set of radiographs or sinograms thus generated. Thus, an x-ray imaging system can be used for x-ray radiography and CT. X-ray radiography and CT are methods for non-invasive or non-destructive acquisition of two-dimensional (2D) and three-dimensional (3D) data in medical imaging and non-destructive evaluation (NDE).

[0027] Одной из проблем, связанных с рентгеновскими системами визуализации описанного выше типа, является то, что рентгеновские лучи, не проходящие прямо через тестовый объект, могут рассеиваться от оцениваемого тестового объекта и различных частей рентгеновской системы визуализации и могут отражаться на части детектора излучения, соответствующие области интереса. Например, рентгеновские лучи могут отражаться от стенок камеры, которая содержит тестовый объект и детектор излучения. Это может приводить к уменьшению контраста в результирующих рентгенограммах. Уменьшение контраста может затруднять точную интерпретацию рентгенограмм и наборов CT-данных и может затруднять вычисление качественных томографических данных для тестового объекта.[0027] One of the problems associated with x-ray imaging systems of the type described above is that x-rays that do not pass directly through the test object may scatter from the test object being evaluated and various parts of the x-ray imaging system, and may be reflected on part of the radiation detector, relevant areas of interest. For example, x-rays can be reflected from the walls of a chamber that contains a test object and a radiation detector. This can lead to a decrease in contrast in the resulting radiographs. Reduced contrast can make it difficult to accurately interpret radiographs and CT datasets, and can make it difficult to calculate high-quality tomographic data for a test subject.

[0028] Таким образом, при выполнении цифровой радиографии и CT следует понимать, что коллимирование лучей может быть использовано для улучшения контраста изображения и уменьшения артефактов визуализации вследствие уменьшения рассеянного излучения. Коллимирование обычно применяют к конусу излучения, ограничивая конус излучения внешней геометрией тестового объекта или конкретной областью интереса в тестовом объекте. Типичные системные коллиматоры обеспечивают средство для обеспечения статического, нединамического коллимирования при выполнении CT-сканирований. Коллимирование устанавливается один раз для обеспечения размера отверстия, которое будет выравниваться с максимальным размером области интереса (AOI) тестового объекта, которая проецируется на детектор излучения. Во время CT-сканирования асимметричного тестового объекта, тестовый объект поворачивают перед статическим коллимированным пучком рентгеновских лучей, и неоптимальное коллимирование может возникнуть во всех областях тестового объекта, где размеры области интереса меньше вышеупомянутого максимального размера AOI.[0028] Thus, when performing digital radiography and CT, it should be understood that beam collimation can be used to improve image contrast and reduce imaging artifacts due to reduced stray radiation. Collimation is typically applied to the radiation cone, limiting the radiation cone to the outer geometry of the test object or to a particular region of interest in the test object. Typical system collimators provide a means to provide static, non-dynamic collimation when performing CT scans. The collimation is set once to provide a hole size that will align with the maximum area of interest (AOI) size of the test object that is projected onto the radiation detector. During a CT scan of an asymmetric test object, the test object is rotated in front of a static collimated X-ray beam, and non-optimal collimation may occur in all areas of the test object where the ROI dimensions are smaller than the aforementioned maximum AOI size.

[0029] Согласно технологии этого раскрытия, коллиматор расположен между генератором излучения и детектором излучения. Например, в некоторых примерах коллиматор может быть расположен между генератором излучения и тестовым объектом. В некоторых примерах, коллиматор расположен между детектором излучения и тестовым объектом. Коллиматор может включать в себя одну или несколько пластин из защищающего от рентгеновских лучей материала, такого как свинец или вольфрам. Рентгеновские лучи, излучаемые генератором излучения, могут проходить через зазор между пластинами коллиматора. Этот зазор может называться апертурой коллиматора. Коллиматор может блокировать или ослаблять рентгеновские лучи, не проходящие через апертуру коллиматора. Согласно технологии этого раскрытия, размер апертуры может быть изменен на основе контура тестового объекта или области интереса (ROI) тестового объекта, когда объект поворачивается через различные поворотные положения. Таким образом, коллиматор уменьшает величину излучения до величины излучения, необходимой для визуализации тестового объекта или ROI тестового объекта. Это уменьшение излучения может уменьшить величину рассеиваемого рентгеновского излучения, которое может достигать детектора излучения, посредством чего потенциально увеличивается контраст в частях рентгенограмм, которые соответствуют тестовому объекту. Этот может улучшить качество результирующих CT-данных, основанных на рентгенограммах. Хотя это раскрытие часто относится к рентгеновским лучам, другие типы излучения могут быть использованы вместо рентгеновских лучей, например, гамма-лучи.[0029] According to the technology of this disclosure, the collimator is located between the radiation generator and the radiation detector. For example, in some examples, the collimator may be located between the radiation generator and the test object. In some examples, the collimator is located between the radiation detector and the test object. The collimator may include one or more plates of X-ray shielding material such as lead or tungsten. X-rays emitted by the radiation generator can pass through the gap between the plates of the collimator. This gap may be referred to as the collimator aperture. The collimator can block or attenuate x-rays that do not pass through the collimator aperture. According to the technology of this disclosure, the size of the aperture can be changed based on the contour of the test object or the region of interest (ROI) of the test object as the object rotates through various rotational positions. Thus, the collimator reduces the amount of radiation to the amount of radiation necessary to visualize the test object or the ROI of the test object. This reduction in radiation can reduce the amount of scattered x-rays that can reach the radiation detector, whereby contrast is potentially increased in parts of the x-rays that correspond to the test object. This may improve the quality of the resulting CT data based on radiographs. Although this disclosure often refers to x-rays, other types of radiation may be used instead of x-rays, such as gamma rays.

[0030] Таким образом, в одном примере этого раскрытия система визуализации может осуществлять первую фазу сканирования и вторую фазу сканирования. Во время первой фазы сканирования, система визуализации использует последовательность динамических или статических изображений для идентификации ROI в изображениях и использует ROI для определения положений коллиматорных пластин для набора поворотных положений (например, каждый 1 градус поворота на 360 градусов). Во время второй фазы сканирования, система визуализации может генерировать изображения в то время, когда коллиматорные пластины находятся в определенных положениях коллиматорных пластин для поворотных положений. В некоторых примерах, система визуализации может завершать первую фазу сканирования перед началом второй фазы сканирования. В некоторых примерах, система визуализации чередует первую фазу сканирования и вторую фазу сканирования таким образом, что первая и вторая фазы сканирования могут быть завершены за единственный поворот. В некоторых примерах, система визуализации может запоминать положения коллиматорных пластин, определенные на основе ROI в изображениях первой фазы, в виде командной и управляющей программы для использования при осуществлении второй фазы сканирования без необходимости повторять первую фазу сканирования для каждого отдельного тестового объекта.[0030] Thus, in one example of this disclosure, the imaging system may perform a first scanning phase and a second scanning phase. During the first phase of the scan, the imaging system uses a sequence of dynamic or static images to identify the ROI in the images and uses the ROI to determine the positions of the collimator plates for a set of rotational positions (for example, every 1 degree of rotation through 360 degrees). During the second phase of the scan, the imaging system may generate images while the collimator plates are in certain collimator plate positions for the rotational positions. In some examples, the imaging system may complete the first phase of the scan before beginning the second phase of the scan. In some examples, the imaging system alternates between the first scan phase and the second scan phase such that the first and second scan phases can be completed in a single turn. In some examples, the imaging system may remember the positions of the collimator plates, determined based on the ROI in the first phase images, as a command and control program for use in performing the second phase of the scan without having to repeat the first phase of the scan for each individual test object.

[0031] Более конкретно, в некоторых примерах система визуализации может генерировать первую последовательность из двух или более изображений во время первой фазы сканирования для тестового объекта. Соответственно, это раскрытие может относиться к изображениям в первой последовательности изображений как к изображениям первой фазы. Первая последовательность изображений может быть последовательностью рентгенограмм или изображений другого типа. Каждое изображение в первой последовательности изображений может соответствовать отличному поворотному положению тестового объекта в наборе поворотных положений первой фазы. Набор поворотных положений первой фазы может быть множеством поворотных положений. Таким образом, для каждого соответствующего поворотного положения из набора поворотных положений первой фазы, данное изображение в первой последовательности изображений соответствует соответствующему поворотному положению первой фазы.[0031] More specifically, in some examples, the imaging system may generate a first sequence of two or more images during a first scanning phase for a test object. Accordingly, this disclosure may refer to images in the first sequence of images as first phase images. The first sequence of images may be a sequence of radiographs or other types of images. Each image in the first sequence of images may correspond to a different rotational position of the test object in the set of rotational positions of the first phase. The set of pivot positions of the first phase may be a plurality of pivot positions. Thus, for each corresponding rotation position from the set of rotation positions of the first phase, a given image in the first sequence of images corresponds to the corresponding rotation position of the first phase.

[0032] Дополнительно, в этом примере для каждого соответствующего поворотного положения первой фазы, система визуализации может идентифицировать область интереса (ROI) в изображении первой фазы, соответствующем соответствующему поворотному положению первой фазы. ROI соответствует части тестового объекта, например, конкретной части тестового объекта, или всему тестовому объекту, подлежащему оцениванию. Система визуализации также определяет, на основе идентифицированной ROI в изображении первой фазы, соответствующем соответствующему поворотному положению первой фазы, положения коллиматорных пластин для соответствующего поворотного положения первой фазы. В этом примере, излучение излучается генератором излучения и проходит через апертуру коллиматора. Коллиматор расположен между генератором излучения и детектором излучения. Тестовый объект также расположен между генератором излучения и детектором излучения. Коллиматор включает в себя множество коллиматорных пластин, которые подвижны с возможностью изменять размер и форму апертуры коллиматора. В некоторых примерах, система визуализации может независимо перемещать каждую из коллиматорных пластин.[0032] Additionally, in this example, for each corresponding first phase rotational position, the imaging system may identify a region of interest (ROI) in the first phase image corresponding to the corresponding first phase rotational position. ROI corresponds to a part of the test object, for example, a specific part of the test object, or the entire test object to be evaluated. The imaging system also determines, based on the identified ROI in the first phase image corresponding to the corresponding rotational position of the first phase, the positions of the collimator plates for the corresponding rotational position of the first phase. In this example, radiation is emitted by a radiation generator and passes through the collimator aperture. The collimator is located between the radiation generator and the radiation detector. The test object is also located between the radiation generator and the radiation detector. The collimator includes a plurality of collimator plates that are movable with the ability to change the size and shape of the collimator aperture. In some examples, the imaging system may independently move each of the collimator plates.

[0033] Дополнительно, в этом примере, после определения положений коллиматорных пластин для поворотных положений первой фазы, система визуализации может определять, на основе положений коллиматорных пластин для поворотных положений первой фазы, положения коллиматорных пластин для набора поворотных положений второй фазы. Поворотные положения второй фазы могут быть такими же, как поворотные положения первой фазы, или отличными от них. Для каждого соответствующего поворотного положения второй фазы, система визуализации может генерировать соответствующее изображение второй фазы во второй последовательности изображений. Система визуализации может генерировать соответствующее изображение второй фазы в виде рентгенограммы на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы. Структура излучения является пространственной структурой большей или меньшей интенсивности излучения, детектируемой детектором излучения. Каждое соответствующее изображение второй фазы во второй последовательности изображений может быть рентгенограммой. В этом примере, система визуализации может вычислять, на основе второй последовательности изображений, томографические данные части оцениваемого тестового объекта.[0033] Additionally, in this example, after determining the collimator plate positions for the first phase rotation positions, the imaging system may determine, based on the collimator plate positions for the first phase rotation positions, the collimator plate positions for the set of second phase rotation positions. The pivot positions of the second phase may be the same as or different from the pivot positions of the first phase. For each corresponding second phase rotation position, the imaging system may generate a corresponding second phase image in the second image sequence. The imaging system can generate a corresponding image of the second phase in the form of a radiograph based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second phase and at the time when the collimator plates are at the positions of the collimator plates for the corresponding rotational position second phase. The radiation pattern is a spatial pattern of greater or lesser intensity of radiation detected by a radiation detector. Each corresponding second phase image in the second sequence of images may be a radiograph. In this example, the imaging system may calculate, based on the second image sequence, tomographic data of a portion of the test object being evaluated.

[0034] В этом раскрытии, порядковые термины, такие как «первый», «второй», «третий» и т.д., не обязательно являются указателями положений в некотором порядке, а скорее могут быть использованы просто для различения разных примеров одного и того же предмета. Примеры, обеспеченные в этом раскрытии, могут быть использованы вместе, отдельно, или в различных комбинациях.[0034] In this disclosure, ordinal terms such as "first", "second", "third", etc., are not necessarily indicative of positions in some order, but rather can be used simply to distinguish between different instances of the same and the same subject. The examples provided in this disclosure may be used together, separately, or in various combinations.

[0035] Фиг. 1 является схематичным чертежом иллюстративной системы 10 визуализации согласно одной или нескольким технологиям этого раскрытия. Как показано на фиг. 1, система 10 визуализации может включать в себя генератор 12 излучения и детектор 14 излучения. Хотя это и не показано в примере фиг. 1, система 10 визуализации может включать в себя один или несколько дополнительных генераторов излучения и/или один или несколько дополнительных детекторов излучения. Например, система 10 визуализации может включать в себя минифокусную/ общепринятую высокоэнергетическую трубку в качестве первого генератора излучения и микрофокусную трубку в качестве второго генератора излучения. В некоторых примерах, система 10 визуализации может включать в себя плоскопанельный детектор в качестве первого детектора излучения, а также может включать в себя один или несколько детекторов на линейных диодных матрицах. Генератор 12 излучения может излучать пучок 15 рентгеновских лучей. Следовательно, в некоторых примерах это раскрытие может относиться к генератору 12 излучения или подобным устройствам в качестве «источников излучения». В некоторых примерах, пучок 15 рентгеновских лучей имеет форму конуса. В других примерах, пучок 15 рентгеновских лучей имеет форму веера. В некоторых примерах, генератор 12 излучения генерирует рентгеновские лучи в диапазоне энергии от 20 кэВ до 600 кэВ. В других примерах, генератор 12 излучения генерирует рентгеновские лучи в других диапазонах энергии.[0035] FIG. 1 is a schematic drawing of an exemplary imaging system 10 in accordance with one or more of the technologies of this disclosure. As shown in FIG. 1, imaging system 10 may include a radiation generator 12 and a radiation detector 14. Although not shown in the example of FIG. 1, imaging system 10 may include one or more additional radiation generators and/or one or more additional radiation detectors. For example, the imaging system 10 may include a minifocus/conventional high energy tube as the first radiation generator and a microfocus tube as the second radiation generator. In some examples, imaging system 10 may include a flat panel detector as the first radiation detector, and may also include one or more linear diode array detectors. The radiation generator 12 can emit an x-ray beam 15 . Therefore, in some instances, this disclosure may refer to radiation generator 12 or similar devices as "radiation sources". In some examples, the x-ray beam 15 is cone shaped. In other examples, the x-ray beam 15 is fan-shaped. In some examples, the radiation generator 12 generates x-rays in the energy range from 20 keV to 600 keV. In other examples, radiation generator 12 generates x-rays in other energy ranges.

[0036] Детектор 14 излучения детектирует рентгеновские лучи, генерируемые генератором 12 излучения, и выдает электрические сигналы, соответствующие структуре детектированных рентгеновских лучей. В некоторых примерах, детектор 14 излучения является двумерным (2D) детектором рентгеновских лучей, таким как плоскопанельный детектор (flat panel detector - FPD). В других примерах, детектор 14 излучения может содержать двумерную матрицу чувствительных к излучению элементов, таких как фотодиоды. В некоторых примерах, система 10 визуализации содержит связанный с линзой сцинтилляционный детектор или детектор рентгеновских лучей другого типа вместо FPD или дополнительно к нему. FPD может включать в себя слой сцинтилляционного материала, такого как йодид цезия, нанесенный на аморфный кремний, на стеклянной детекторной матрице. В некоторых примерах, размер пикселов FPD может находиться в диапазоне от приблизительно 25 мкм до приблизительно 400 мкм. В других примерах, размер пикселов FPD или другого детектора может быть другим, и форма пиксела может быть либо квадратной, либо неизотропной. Дополнительно, поверхность детектора 14 излучения может быть плоской, криволинейной, или может иметь другую геометрическую форму для выравнивания с конкретными конфигурациями пучка рентгеновских лучей.[0036] The radiation detector 14 detects X-rays generated by the radiation generator 12 and outputs electrical signals corresponding to the structure of the detected X-rays. In some examples, radiation detector 14 is a two-dimensional (2D) x-ray detector, such as a flat panel detector (FPD). In other examples, radiation detector 14 may comprise a two-dimensional array of radiation sensitive elements such as photodiodes. In some examples, the imaging system 10 includes a lens-associated scintillation detector or other type of X-ray detector instead of or in addition to the FPD. The FPD may include a layer of a scintillation material such as cesium iodide deposited on amorphous silicon on a glass detector array. In some examples, the FPD pixel size may range from about 25 microns to about 400 microns. In other examples, the pixel size of the FPD or other detector may be different and the pixel shape may be either square or non-isotropic. Additionally, the surface of the radiation detector 14 may be flat, curved, or may have other geometric shapes to align with particular x-ray beam configurations.

[0037] В других примерах, детектор 14 излучения является линейным детектором, таким как детектор рентгеновских лучей на линейных диодных матрицах (linear diode array - LDA). LDA-детектор рентгеновских лучей включает в себя одномерную матрицу фотодиодов. Каждый из фотодиодов соответствует отличному пикселу. Например, соотношение между фотодиодами и пикселами может быть один к одному. В других примерах, размер пикселов детектора 14 излучения находится в диапазоне от приблизительно 25 мкм до приблизительно 1000 мкм. В других примерах, размер пикселов детектора 14 излучения может быть другим, и форма пиксела может быть либо квадратной, либо неизотропной. Дополнительно, поверхность детектора 14 излучения может быть плоской, криволинейной, или может иметь другую геометрическую форму для выравнивания с конкретными конфигурациями пучка рентгеновских лучей.[0037] In other examples, the radiation detector 14 is a linear detector, such as a linear diode array (LDA) x-ray detector. The LDA X-ray detector includes a one-dimensional array of photodiodes. Each of the photodiodes corresponds to a different pixel. For example, the ratio between photodiodes and pixels can be one to one. In other examples, the pixel size of the radiation detector 14 ranges from about 25 microns to about 1000 microns. In other examples, the size of the pixels of the radiation detector 14 may be different, and the shape of the pixel may be either square or non-isotropic. Additionally, the surface of the radiation detector 14 may be flat, curved, or may have other geometric shapes to align with particular x-ray beam configurations.

[0038] В примере фиг. 1, детектор 14 излучения установлен на каретку 16 детектора. Каретка 16 детектора установлена на раму 18. В некоторых примерах, каретка 16 детектора выполнена с возможностью перемещаться в z-измерении 20 относительно рамы 18. В другом примере, каретка 16 детектора выполнена с возможностью перемещаться в y-измерении (прямо в страницу, показанную на фиг. 1, или из нее) или в x-измерении 22 относительно рамы 18. Таким образом, в примере фиг. 1 каретка 16 детектора может перемещать детектор 14 излучения в вертикальном направлении, горизонтальном направлении, или в направлении к генератору 12 излучения или от него. В некоторых примерах, генератор 12 излучения установлен на каретку, выполненную с возможностью перемещать генератор 12 излучения в одном или нескольких измерениях x, y, или z. Измерения x, y, или z могут иметь любую ориентацию в реальном пространстве.[0038] In the example of FIG. 1, the radiation detector 14 is mounted on the detector carriage 16. Detector carriage 16 is mounted on frame 18. In some examples, detector carriage 16 is movable in z-dimension 20 relative to frame 18. In another example, detector carriage 16 is movable in y-dimension (right into the page shown in Fig. 1, or from it) or in the x-dimension 22 relative to the frame 18. Thus, in the example of Fig. 1, the detector carriage 16 can move the radiation detector 14 in a vertical direction, a horizontal direction, or in a direction towards or away from the radiation generator 12. In some examples, the radiation generator 12 is mounted on a carriage configured to move the radiation generator 12 in one or more x, y, or z dimensions. The x, y, or z dimensions can have any orientation in real space.

[0039] Детектор 14 излучения может быть выровнен в y-измерении и z-измерении 20 с генератором 12 излучения при использовании детектора 14 излучения. В примере фиг. 1 x-измерение 22 параллельно оси 24 (т.е., оси пучка рентгеновских лучей) между генератором 12 излучения и детектором 14 излучения, когда детектор 14 излучения находится в положении для детектирования пучка рентгеновских лучей, генерируемого генератором 12 излучения. Дополнительно, хотя пример фиг. 1 показывает генератор 12 излучения и детектор 14 излучения, установленные на одной и той же раме, генератор 12 излучения и детектор 14 излучения могут быть в других примерах установлены на отдельные рамы. Дополнительно, отдельные рамы могут быть установлены на каретку, обеспечивающую перемещение в х-измерении либо детектора излучения, либо генератора излучения, либо их обоих. Следует понимать, что обсуждение рентгеновских лучей в этом раскрытии может быть, в некоторых примерах, применимо к другим формам излучения, таким как гамма-лучи, нейтронные пучки, и видимый свет.[0039] The radiation detector 14 can be aligned in y-dimension and z-dimension 20 with the radiation generator 12 using the radiation detector 14. In the example of FIG. 1 x-measurement 22 is parallel to the axis 24 (i.e., the x-ray beam axis) between the radiation generator 12 and the radiation detector 14 when the radiation detector 14 is in position to detect the x-ray beam generated by the radiation generator 12. Additionally, although the example of FIG. 1 shows the radiation generator 12 and the radiation detector 14 mounted on the same frame, the radiation generator 12 and the radiation detector 14 may in other examples be mounted on separate frames. Additionally, separate frames may be mounted on a carriage providing x-dimensional movement of either the radiation detector or the radiation generator, or both. It should be understood that the discussion of x-rays in this disclosure may, in some instances, be applicable to other forms of radiation such as gamma rays, neutron beams, and visible light.

[0040] В примере фиг. 1, система 10 визуализации содержит систему 30 обработки. Система 30 обработки может содержать вычислительную систему. Иллюстративные типы вычислительных систем могут включать в себя персональные компьютеры, серверные компьютеры, мэйнфреймы, компактные портативные компьютеры, компьютеры специального назначения, и т.д. Как показано в примере фиг. 1, система 30 обработки может включать в себя один или несколько процессоров 31. Каждый из процессоров 31 может содержать один или несколько цифровых сигнальных процессоров (digital signal processor - DSP), микропроцессоров общего назначения, специализированных интегральных схем (application specific integrated circuit - ASIC), матриц программируемых логических вентилей (field-programmable gate array - FPGA) или другие эквивалентные интегральные или дискретные логические схемы. Для легкости объяснения, это раскрытие может описывать действия, выполняемые одним или несколькими процессорами 31, как действия, выполняемые системой 30 обработки. Система 30 обработки, и, следовательно, процессоры 31 оперативно связаны с различными компонентами системы 10 визуализации, так что процессоры 31 выполнены с возможностью выдавать электрические сигналы для таких компонентов и принимать электрические сигналы от таких компонентов. Такие электрические сигналы могут представлять собой команды, данные изображений, данные о состояниях, и т.д. Хотя это раскрытие описывает электрические сигналы, и пример фиг. 1 показывает кабель, соединяющий систему 30 обработки с компонентом в системе 10 визуализации, такие сигналы могут быть оптическими сигналами и/или сигналами, передаваемыми беспроводным способом. В некоторых примерах, система 30 обработки может принимать данные (например, команды) от различных компонентов системы 10 визуализации и отправлять им данные (например, команды) через сеть связи, такую как Интернет или локальная сеть.[0040] In the example of FIG. 1, the imaging system 10 includes a processing system 30. Processing system 30 may include a computing system. Exemplary types of computing systems may include personal computers, server computers, mainframes, compact laptops, special purpose computers, and so on. As shown in the example of FIG. 1, the processing system 30 may include one or more processors 31. Each of the processors 31 may include one or more digital signal processors (digital signal processor (DSP), general purpose microprocessors, application specific integrated circuits (ASIC) , field-programmable gate array (FPGA) arrays, or other equivalent integrated or discrete logic circuits. For ease of explanation, this disclosure may describe the actions performed by one or more processors 31 as those performed by the processing system 30. The processing system 30, and hence the processors 31, is operatively coupled to the various components of the imaging system 10 such that the processors 31 are configured to provide electrical signals to and receive electrical signals from such components. Such electrical signals may be commands, image data, state data, and so on. Although this disclosure describes electrical signals, and the example of FIG. 1 shows a cable connecting the processing system 30 to a component in the imaging system 10, such signals may be optical signals and/or wirelessly transmitted signals. In some examples, the processing system 30 may receive data (eg, commands) from and send data (eg, commands) to various components of the rendering system 10 via a communications network such as the Internet or a local area network.

[0041] Когда детектор 14 излучения детектирует структуру рентгеновских лучей, излучаемых генератором 12 излучения, детектор 14 излучения может выдавать электрические сигналы, соответствующие структуре рентгеновских лучей. Система 30 обработки может интерпретировать электрические сигналы для генерирования одной или нескольких рентгенограмм.[0041] When the radiation detector 14 detects the pattern of X-rays emitted by the radiation generator 12, the radiation detector 14 can output electrical signals corresponding to the pattern of the X-rays. The processing system 30 may interpret the electrical signals to generate one or more radiographs.

[0042] Система 10 визуализации может содержать один или несколько механизмов-манипуляторов, выполненных с возможностью перемещать объект относительно генератора 12 излучения и детектора 14 излучения. В некоторых примерах, один или несколько процессоров 31 системы 30 обработки выдают сигналы для перемещения тестового объекта относительно генератора 12 излучения и детектора 14 излучения. Например, в примере фиг. 1 объект может быть установлен (или, иначе, позиционирован) на платформу 26, расположенную между генератором 12 излучения и детектором 14 излучения. В примере фиг. 1, платформа 26 установлена на механизм 28 манипулирования платформой. Механизм 28 манипулирования платформой может перемещать платформу 26 (и, таким образом, объект, установленный на платформу 26) параллельно z-измерению 20. Дополнительно, в некоторых примерах механизм 28 манипулирования платформой может перемещать платформу 26 (и, таким образом, объект, установленный на платформу 26) параллельно y-измерению, которое взаимно ортогонально x-измерению 22 и z-измерению 20. Таким образом, в примере фиг. 1 y-измерение ориентировано прямо в страницу и из нее. В некоторых примерах, механизм 28 манипулирования платформой может одновременно перемещать платформу 26 (и, таким образом, объект, установленный на платформу 26) в z-измерении 20 и y-измерении. Дополнительно, в некоторых примерах механизм 28 манипулирования платформой может наклонять платформу 26.[0042] The imaging system 10 may include one or more manipulator mechanisms configured to move the object relative to the radiation generator 12 and the radiation detector 14. In some examples, one or more processors 31 of the processing system 30 provide signals to move the test object relative to the radiation generator 12 and the radiation detector 14. For example, in the example of FIG. 1, an object can be installed (or, otherwise, positioned) on a platform 26 located between the radiation generator 12 and the radiation detector 14. In the example of FIG. 1, the platform 26 is mounted on the platform handling mechanism 28. Platform manipulation mechanism 28 may move platform 26 (and thus an object mounted on platform 26) parallel to the z-dimension 20. Additionally, in some examples, platform manipulation mechanism 28 may move platform 26 (and thus an object mounted on platform 26) parallel to a y-dimension that is mutually orthogonal to x-dimension 22 and z-dimension 20. Thus, in the example of FIG. 1 The y-dimension is oriented straight in and out of the page. In some examples, the platform manipulation mechanism 28 can simultaneously move the platform 26 (and thus the object placed on the platform 26) in the z-dimension 20 and the y-dimension. Additionally, in some examples, the platform manipulation mechanism 28 may tilt the platform 26.

[0043] Дополнительно, в некоторых примерах механизм 28 манипулирования платформой поворачивает платформу 26 с осью поворота, параллельной z-измерению 20 (т.е., перпендикулярной оси 24 пучка рентгеновских лучей). Таким образом, платформа 26 может быть выполнена с возможностью нести и поворачивать объект. В результате, система 10 визуализации может приобретать изображения, такие как рентгенограммы, под разными углами проекции (т.е., поворотными положениями), когда тестовый объект поворачивается в пучке рентгеновских лучей, генерируемом генератором 12 излучения. В некоторых примерах, система 10 визуализации приобретает изображения под разными углами поворота и обрабатывает эти изображения для сбора этих изображений в трехмерные данные для тестового объекта, например, трехмерную модель тестового объекта. Дополнительно, в некоторых примерах механизм 28 манипулирования платформой поворачивает платформу 26 при одновременном линейном перемещении платформы 26 в z-измерении 20.[0043] Additionally, in some examples, the platform manipulation mechanism 28 rotates the platform 26 with the axis of rotation parallel to the z-dimension 20 (ie, perpendicular to the X-ray beam axis 24). Thus, platform 26 can be configured to carry and rotate an object. As a result, the imaging system 10 can acquire images, such as radiographs, at different projection angles (ie, rotational positions) as the test object rotates in the X-ray beam generated by the radiation generator 12. In some examples, the imaging system 10 acquires images at various rotation angles and processes those images to collect those images into 3D data for the test object, such as a 3D model of the test object. Additionally, in some examples, the platform manipulation mechanism 28 rotates the platform 26 while simultaneously moving the platform 26 linearly in the z-dimension 20.

[0044] Как показано в примере фиг. 1, система 10 визуализации может содержать коллиматор 40, расположенный между генератором 12 излучения и детектором 14 излучения. Апертура 42 коллиматора 40 позволяет уменьшенному пучку рентгеновских лучей проходить через коллиматор 40 на его пути к детектору 14 излучения. Как описано здесь, система 30 обработки может динамически настраивать размер и форму апертуры 42 при изменении профиля тестового объекта, поворачивающегося на платформе 26. В некоторых примерах, система 10 визуализации включает в себя систему для перемещения коллиматора 40 как единого целого.[0044] As shown in the example of FIG. 1, the imaging system 10 may include a collimator 40 positioned between the radiation generator 12 and the radiation detector 14. The aperture 42 of the collimator 40 allows the reduced x-ray beam to pass through the collimator 40 on its way to the radiation detector 14. As described herein, processing system 30 may dynamically adjust the size and shape of aperture 42 as the profile of the test object rotated on platform 26 changes. In some examples, imaging system 10 includes a system for moving collimator 40 as a unit.

[0045] Согласно технологиям этого раскрытия, когда динамическое коллимирование применяется на протяжении всего CT-сканирования, оптимальное коллимирование может быть обеспечено на протяжении всего сканирования посредством создания динамического коллимирования, которое следует за внешней геометрией тестового объекта или конкретной области интереса в тестовом объекте. Это улучшенное коллимирование может улучшить чувствительность сканирования к контрасту, что может обеспечить улучшение в визуализации тонких признаков и разрывов в тестовом объекте, например, образце изделия. При создании системы динамического коллимирования, внешний периметр тестового объекта может быть идентифицирован с использованием программного инструмента для идентификации края тестового объекта с использованием значений пикселов изображения при повороте тестового объекта. Программное средство может тогда автоматически создавать соответствующую позиционную программу, которая связывает положения коллиматорных пластин с каждым поворотным положением платформы 26. Например, в некоторых примерах программа содержит данные, которые преобразуют набор положений коллиматорных пластин в набор поворотных положений платформы. В некоторых примерах, эта программа может быть создана вручную посредством одновременного захвата положений коллимирования и поворотных положений платформы и записи их в командную и управляющую программу. В некоторых примерах, система 30 обработки может генерировать программу посредством захвата выборки положений коллиматорных пластин и поворотных положений, вычисления требуемых промежуточных положений коллиматорных пластин для промежуточных поворотных положений, и записи промежуточных положений коллиматорных пластин и промежуточных поворотных положений в командную и управляющую программу. В некоторых примерах, система 30 обработки генерирует программу посредством захвата выборки положений коллиматорных пластин и поворотных положений. Дополнительно, в этом примере система 30 обработки может определять одно или несколько промежуточных положений коллиматорных пластин для промежуточных поворотных положений и может также принимать указания на пользовательские входные данные для дополнительных комбинаций промежуточных положений коллиматорных пластин и поворотных положений. В этом примере, система 30 обработки может включать в себя определяемые и вводимые промежуточные положения коллиматорных пластин и поворотные положения в программе.[0045] According to the techniques of this disclosure, when dynamic collimation is applied throughout the CT scan, optimal collimation can be provided throughout the scan by creating dynamic collimation that follows the outer geometry of the test object or a particular region of interest in the test object. This improved collimation may improve the sensitivity of the scan to contrast, which may provide an improvement in the visualization of subtle features and discontinuities in a test object, such as a product sample. When creating a dynamic collimation system, the outer perimeter of the test object can be identified using a software tool to identify the edge of the test object using the pixel values of the image when the test object is rotated. The software can then automatically create a corresponding positional program that associates the positions of the collimator plates with each rotational position of the platform 26. For example, in some examples, the program contains data that converts a set of positions of the collimator plates into a set of rotational positions of the platform. In some examples, this program can be created manually by simultaneously capturing collimation positions and platform rotation positions and writing them into a command and control program. In some examples, processing system 30 may generate a program by capturing a sample of collimator plate positions and pivot positions, calculating desired intermediate collimator plate positions for intermediate pivot positions, and writing the intermediate collimator plate positions and intermediate pivot positions to a command and control program. In some examples, processing system 30 generates a program by capturing a sample of collimator plate positions and rotational positions. Additionally, in this example, processing system 30 may determine one or more intermediate collimator plate positions for intermediate pivot positions and may also receive indications of user input for additional combinations of intermediate collimator plate positions and pivot positions. In this example, the processing system 30 may include definable and inputable intermediate collimator plate positions and rotational positions in the program.

[0046] Для осуществления динамического коллимирования, система 10 визуализации может осуществлять первую фазу сканирования и вторую фазу сканирования. Система 10 визуализации может осуществлять первую фазу сканирования и вторую фазу сканирования последовательно или в режиме чередования. В первой фазе сканирования, система 30 обработки может идентифицировать внешний периметр тестового объекта или части тестового объекта и использовать идентифицированный внешний периметр для определения положений коллиматорных пластин для поворотных положений, используемых во второй фазе сканирования. Система 30 обработки может генерировать первую последовательность изображений во время первой фазы сканирования для тестового объекта. Это раскрытие может относиться к изображениям в первой последовательности изображений, как к изображениям первой фазы. Первая последовательность изображений включает в себя множество изображений. В некоторых примерах, система 30 обработки может генерировать изображения первой фазы на основе структур излучения, детектируемых детектором 14 излучения. В некоторых примерах, изображения первой фазы не используются при генерировании CT-данных для тестового объекта. В некоторых примерах, система 30 обработки может генерировать изображения первой фазы на основе сигналов от камеры, отдельной от детектора 14 излучения, и изображения первой фазы могут быть изображениями на основе видимого света. Каждое изображение первой фазы может соответствовать отличному поворотному положению первой фазы тестового объекта в наборе поворотных положений первой фазы. Например, набор поворотных положений первой фазы может включать в себя положения, где тестовый объект повернут на 0°, 45°, 90°, 135°, 180°, 225°, 270°, и 315°. В другом примере, поворотные положения первой фазы могут включать в себя одно положение для каждого градуса поворота на 360°. Во время первой фазы сканирования, коллиматорные пластины коллиматора 40 могут находиться в одних и тех же положениях, когда тестовый объект находится в каждом из поворотных положений первой фазы. Другими словами, в некоторых примерах коллиматорные пластины коллиматора 40 не перемещаются во время первой фазы сканирования.[0046] To perform dynamic collimation, the imaging system 10 may perform a first scanning phase and a second scanning phase. The imaging system 10 may perform the first scanning phase and the second scanning phase sequentially or interleaved. In the first scanning phase, the processing system 30 may identify the outer perimeter of the test object or part of the test object and use the identified outer perimeter to determine collimator plate positions for the rotational positions used in the second scanning phase. Processing system 30 may generate a first sequence of images during a first scanning phase for a test object. This disclosure may refer to images in the first sequence of images as first phase images. The first image sequence includes a plurality of images. In some examples, processing system 30 may generate first phase images based on radiation patterns detected by radiation detector 14. In some examples, first phase images are not used when generating CT data for the test object. In some examples, the processing system 30 may generate first phase images based on signals from a camera separate from radiation detector 14, and the first phase images may be visible light based images. Each first phase image may correspond to a different rotational position of the first phase of the test object in the set of first phase rotational positions. For example, the set of first phase rotation positions may include positions where the test object is rotated 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. In another example, the rotational positions of the first phase may include one position for each degree of 360° rotation. During the first phase of the scan, the collimator plates of the collimator 40 may be in the same positions when the test object is in each of the rotational positions of the first phase. In other words, in some examples, the collimator plates of the collimator 40 do not move during the first phase of the scan.

[0047] Для каждого соответствующего поворотного положения первой фазы из набора поворотных положений первой фазы, система 30 обработки может автоматически идентифицировать ROI в изображении первой фазы, соответствующем соответствующему поворотному положению первой фазы. В одном примере, система 30 обработки может идентифицировать ROI в изображении первой фазы с использованием алгоритма, который начинается с ограничивающей рамки, которая имеет размер, равный размеру изображения первой фазы. В этом примере, система 30 обработки может постепенно сокращать ограничивающую рамку с левой стороны, периодически проверяя, пересекает ли левая граница ограничивающей рамки край изображения первой фазы. Край является точкой, в которой происходит разрыв в значениях пикселов, обычно соответствующей фактическому краю тестового объекта или структуры в тестовом объекте. После детектирования края, система 30 обработки может переместить левую границу назад влево на несколько пикселов (например, 10 пикселов) для обеспечения так называемого «воздушного зазора» вокруг тестового объекта на левой стороне. Система 30 обработки может затем останавливать процесс настройки левой стороны ограничивающей рамки. В этом примере, система 30 обработки может повторять этот процесс для одного или нескольких из правого, верхнего, и нижнего краев ограничивающей рамки. В некоторых примерах, система 30 обработки может перемещать края ограничивающей рамки независимо или может одновременно перемещать два или более краев ограничивающей рамки. Результирующая ограничивающая рамка очерчивает ROI в изображении первой фазы.[0047] For each corresponding first phase rotation position from the set of first phase rotation positions, the processing system 30 may automatically identify the ROI in the first phase image corresponding to the corresponding first phase rotation position. In one example, processing system 30 may identify an ROI in a first phase image using an algorithm that starts with a bounding box that has a size equal to that of the first phase image. In this example, the processing system 30 may gradually reduce the bounding box on the left side by periodically checking whether the left border of the bounding box crosses the edge of the first phase image. An edge is a point where a break occurs in pixel values, usually corresponding to the actual edge of the test object or structure in the test object. After edge detection, processing system 30 may move the left border back to the left by a few pixels (eg, 10 pixels) to provide a so-called "air gap" around the test object on the left side. Processing system 30 may then stop the process of adjusting the left side of the bounding box. In this example, the processing system 30 may repeat this process for one or more of the right, top, and bottom edges of the bounding box. In some examples, processing system 30 may move the edges of the bounding box independently, or may move two or more edges of the bounding box at the same time. The resulting bounding box delineates the ROI in the first phase image.

[0048] В некоторых примерах, ROI в изображении меньше части изображения, соответствующего тестовому объекту. Например, тестовый объект может включать в себя часть, такую как сварной шов или клапан, которая должна быть оценена. В этом примере, система 30 обработки может идентифицировать области в изображениях первой фазы, которые соответствуют этой части. В некоторых примерах, для идентификации областей в изображениях первой фазы, которые соответствуют этой части, сначала может быть обучена модель машинного обучения для распознавания этой части в других изображениях первой фазы одного и того же тестового объекта. В таких примерах, система 30 обработки может затем применять модель машинного обучения для идентификации областей в изображениях первой фазы, соответствующих этой части. Альтернативно или дополнительно, система 30 обработки может принимать указания на пользовательские входные данные, которые идентифицируют область в изображении первой фазы, которая соответствует этой части. В этих примерах, система 30 обработки может определять, как следует модифицировать ROI на основе пользовательских входных данных, известных размеров этой части, известной информации о положении этой части в тестовом объекте, расстояния до детектора 14 излучения от коллиматора 40, и расстояния до генератора 12 излучения от коллиматора 40. В некоторых примерах, система 30 обработки может идентифицировать ROI на основе модели автоматизированного проектирования (Computer Assisted Design - CAD) этой части, объединенной с моделью системы 10 визуализации, которая также моделирует конус излучения, детектор 14 излучения, коллиматорные пластины 44 и пересечение конуса излучения с ROI и соответствующими положениями пластин. Эта модель может быть использована для программирования положений коллимирования независимо от других способов.[0048] In some examples, the ROI in the image is less than the part of the image corresponding to the test object. For example, the test object may include a part, such as a weld or a valve, to be evaluated. In this example, the processing system 30 can identify areas in the first phase images that correspond to this part. In some examples, in order to identify regions in first phase images that correspond to that part, a machine learning model may first be trained to recognize that part in other first phase images of the same test object. In such examples, the processing system 30 may then apply a machine learning model to identify regions in the first phase images corresponding to that portion. Alternatively or additionally, the processing system 30 may receive indications of a user input that identifies an area in the first phase image that corresponds to that portion. In these examples, the processing system 30 may determine how the ROI should be modified based on user input, known dimensions of that part, known information about the position of that part in the test object, the distance to the radiation detector 14 from the collimator 40, and the distance to the radiation generator 12 from the collimator 40. In some examples, the processing system 30 may identify the ROI based on a Computer Assisted Design (CAD) model of this part, combined with a model of the imaging system 10, which also models the radiation cone, the radiation detector 14, the collimator plates 44 and intersection of the radiation cone with the ROI and corresponding plate positions. This model can be used to program collimation positions independently of other methods.

[0049] В некоторых примерах, система 10 визуализации может осуществлять первую фазу сканирования в качестве части процесса оценивания тестового объекта. Например, система 10 визуализации может использовать изображения первой фазы для генерирования томографических данных, используемых для фактического оценивания тестового объекта. В таких примерах, система 10 визуализации может использовать изображения первой фазы для генерирования ROI-данных, указывающих на ROI. Как описано ниже, система 10 визуализации может затем использовать сгенерированные ROI-данные в управляющей программе для управления положениями коллиматорных пластин 44 во время оценивания других тестовых объектов того же типа. Таким образом, в таких примерах система 10 визуализации может не осуществлять первую фазу сканирования снова для каждого тестового объекта того же типа.[0049] In some examples, the imaging system 10 may perform a first phase of scanning as part of a test object evaluation process. For example, the imaging system 10 may use the first phase images to generate tomographic data used to actually evaluate the test object. In such examples, the imaging system 10 may use the first phase images to generate ROI data indicative of the ROI. As described below, the imaging system 10 may then use the generated ROI data in a control program to control the positions of the collimator plates 44 during evaluation of other test objects of the same type. Thus, in such examples, the imaging system 10 may not perform the first scanning phase again for each test object of the same type.

[0050] Как упомянуто выше, излучение излучается генератором 12 излучения и проходит через апертуру 42 коллиматора 40. В примере фиг. 1, коллиматор 40 расположен между генератором 12 излучения и тестовым объектом. Дополнительно, в примере фиг. 1 тестовый объект расположен между коллиматором 40 и детектором 14 излучения. Коллиматор 40 включает в себя множество коллиматорных пластин 44А, 44В, которые подвижны с возможностью изменять размер и форму апертуры 42 коллиматора 40. Для каждого соответствующего поворотного положения первой фазы система 30 обработки может определять, на основе идентифицированной ROI в изображении первой фазы для соответствующего поворотного положения первой фазы, положения коллиматорных пластин для соответствующего поворотного положения первой фазы. Например, система 30 обработки может определять положения коллиматорных пластин для соответствующего поворотного положения первой фазы на основе размера и положения идентифицированной ROI в изображении первой фазы, соответствующем соответствующему поворотному положению первой фазы, и также на основе расстояния до коллиматора 40 от детектора 14 излучения и расстояния до коллиматора 40 от генератора 12 излучения. В некоторых примерах, система 30 обработки может определять положения коллиматорных пластин отчасти с использованием справочной таблицы или формулы, которая устанавливает соответствие ширины ROI ширине зазора между горизонтальными перемещающимися коллиматорными пластинами; и справочной таблицы, которая устанавливает соответствие высоты ROI высоте зазора между вертикальными перемещающимися коллиматорными пластинами. Дополнительно, система 30 обработки может определять положения коллиматорных пластин отчасти с использованием справочной таблицы или формулы, которая устанавливает соответствие верхнего (или нижнего) края ROI положению верхней (или нижней) коллиматорной пластины; система 30 обработки может также использовать справочную таблицу или формулу, которая устанавливает соответствие левого (или правого) края ROI положению левой (или правой) коллиматорной пластины. На основе ширин зазоров и положений верхней (или нижней) и левой (или правой) коллиматорных пластин система 30 обработки может определять положения всех четырех коллиматорных пластин коллиматора 40 для соответствующего поворотного положения. В этом примере, справочная таблица или формула могут быть определены на основе факторов, таких как расстояние до коллиматора 40 от детектора 14 излучения и расстояние до коллиматора 40 от генератора 12 излучения.[0050] As mentioned above, radiation is emitted by radiation generator 12 and passes through aperture 42 of collimator 40. In the example of FIG. 1, the collimator 40 is located between the radiation generator 12 and the test object. Additionally, in the example of FIG. 1, the test object is located between the collimator 40 and the radiation detector 14. The collimator 40 includes a plurality of collimator plates 44A, 44B that are movable to change the size and shape of the aperture 42 of the collimator 40. For each respective first phase rotational position, the processing system 30 may determine, based on the identified ROI in the first phase image, for the corresponding rotational position the first phase, the position of the collimator plates for the corresponding rotational position of the first phase. For example, the processing system 30 may determine the positions of the collimator plates for the corresponding first phase rotational position based on the size and position of the identified ROI in the first phase image corresponding to the corresponding first phase rotational position, and also based on the distance to the collimator 40 from the radiation detector 14 and the distance to collimator 40 from the radiation generator 12. In some examples, processing system 30 may determine the positions of the collimator plates using, in part, a look-up table or formula that maps the width of the ROI to the width of the gap between horizontally moving collimator plates; and a lookup table that matches the height of the ROI to the height of the gap between the vertical moving collimator plates. Additionally, the processing system 30 may determine the positions of the collimator plates using, in part, a look-up table or formula that maps the top (or bottom) edge of the ROI to the position of the top (or bottom) collimator plate; the processing system 30 may also use a lookup table or formula that maps the left (or right) edge of the ROI to the position of the left (or right) collimator plate. Based on the gap widths and the positions of the upper (or lower) and left (or right) collimator plates, the processing system 30 can determine the positions of all four collimator plates of the collimator 40 for the respective rotational position. In this example, a lookup table or formula may be determined based on factors such as the distance to the collimator 40 from the radiation detector 14 and the distance to the collimator 40 from the radiation generator 12.

[0051] Таким образом, в качестве части идентификации ROI в изображении первой фазы, соответствующем конкретному поворотному положению первой фазы, система 30 обработки может идентифицировать местоположения в изображении первой фазы, которые соответствуют краям части (например, участка или всего) оцениваемого тестового объекта. Например, система 30 обработки может выполнить процесс, который идентифицирует пикселы, которые соответствуют краям части тестового объекта. Дополнительно, система 30 обработки может определять прямоугольную ограничивающую рамку, которая содержит идентифицированные местоположения. Дополнительно, в качестве части определения положений коллиматорных пластин для поворотного положения первой фазы, система 30 обработки может определять положения коллиматорных пластин для поворотного положения первой фазы таким образом, чтобы проекция краев апертуры коллиматора 40 на детектор 14 излучения соответствовала определенной прямоугольной ограничивающей рамке. Проекция краев может считаться силуэтом краев, проецируемых на детектор 14 излучения. Например, этот силуэт может быть образован лучами из генератора 12 излучения, которые касаются краев и продолжаются по прямым линиям к детектору 14 излучения. Ограничивающая рамка, соответствующая проекции краев, может быть наименьшей ограничивающей рамкой, которая содержит эту проекцию, с необязательным воздушным зазором на одной или нескольких сторонах. В другом примере, система 30 обработки может использовать модель машинного обучения, которая выполнена с возможностью идентифицировать ограничивающие рамки вокруг ROI в изображениях, таких как рентгенограммы.[0051] Thus, as part of identifying the ROI in the first phase image corresponding to a particular rotational position of the first phase, the processing system 30 may identify locations in the first phase image that correspond to the edges of a portion (e.g., area or entire) of the test object being evaluated. For example, the processing system 30 may perform a process that identifies pixels that correspond to the edges of a portion of the test object. Additionally, processing system 30 may define a rectangular bounding box that contains the identified locations. Additionally, as part of determining the positions of the collimator plates for the first phase rotation position, the processing system 30 may determine the positions of the collimator plates for the first phase rotation position such that the projection of the aperture edges of the collimator 40 onto the radiation detector 14 conforms to a certain rectangular bounding box. The projection of the edges can be considered a silhouette of the edges projected onto the radiation detector 14 . For example, this silhouette may be formed by beams from the radiation generator 12 that touch the edges and continue in straight lines towards the radiation detector 14. The bounding box corresponding to an edge projection can be the smallest bounding box that contains that projection, with an optional air gap on one or more sides. In another example, processing system 30 may use a machine learning model that is configured to identify bounding boxes around an ROI in images such as radiographs.

[0052] Дополнительно, система 30 обработки может определять положения коллиматорных пластин для набора из двух или более поворотных положений второй фазы. Поворотные положения второй фазы могут быть такими же, как поворотные положения первой фазы, или могут быть отличными от поворотных положений первой фазы. Таким образом, в некоторых примерах поворотные положения второй фазы включают в себя большее или меньшее количество поворотных положений, чем набор поворотных положений первой фазы. В некоторых примерах, набор поворотных положений второй фазы включает в себя одно или несколько поворотных положений, которые отсутствуют в наборе поворотных положений первой фазы. В примерах, где поворотные положения второй фазы являются такими же, как поворотные положения первой фазы, система 30 обработки может просто определять, что положения коллиматорных пластин для поворотных положений второй фазы являются такими же, как положения коллиматорных пластин для поворотных положений первой фазы.[0052] Additionally, the processing system 30 may determine the positions of the collimator plates for a set of two or more rotational positions of the second phase. The pivot positions of the second phase may be the same as the pivot positions of the first phase, or may be different from the pivot positions of the first phase. Thus, in some examples, the second phase pivot positions include more or fewer pivot positions than the set of first phase pivot positions. In some examples, the second phase pivot position set includes one or more pivot positions that are not present in the first phase pivot position set. In instances where the second phase rotation positions are the same as the first phase rotation positions, the processing system 30 may simply determine that the collimator plate positions for the second phase rotation positions are the same as the collimator plate positions for the first phase rotation positions.

[0053] В примерах, где поворотное положение второй фазы отсутствует в наборе поворотных положений первой фазы, система 30 обработки может использовать одну или несколько формул для определения положений коллиматорных пластин для поворотного положения второй фазы. Например, если поворотное положение второй фазы находится на полпути между двумя поворотными положениями первой фазы, система 30 обработки может определять, что положения коллиматорных пластин для поворотного положения второй фазы находятся на полпути между положениями коллиматорных пластин для двух поворотных положений первой фазы. В некоторых примерах, система 30 обработки может использовать нелинейный подход для определения положений коллиматорных пластин для поворотных положений второй фазы. Например, в таких примерах, система 30 обработки может вычислять положения коллиматорных пластин для поворотного положения второй фазы на основе дуги между положениями коллиматорных пластин, используемыми для двух поворотных положений первой фазы.[0053] In instances where the second phase rotation position is not present in the first phase rotation position set, processing system 30 may use one or more formulas to determine collimator plate positions for the second phase rotation position. For example, if the second phase pivot position is halfway between two first phase pivot positions, processing system 30 may determine that the collimator plate positions for the second phase pivot position are midway between the collimator plate positions for the two first phase pivot positions. In some examples, the processing system 30 may use a non-linear approach to determine the positions of the collimator plates for the rotational positions of the second phase. For example, in such examples, the processing system 30 may calculate the collimator plate positions for the second phase pivot position based on the arc between the collimator plate positions used for the two first phase pivot positions.

[0054] Дополнительно, во второй фазе сканирования тестового объекта, система 10 визуализации может генерировать вторую последовательность изображений на основе структур излучения, детектируемых детектором 14 излучения. Это раскрытие может относиться к изображениям во второй последовательности изображений, как к изображениям второй фазы. Вторая последовательность изображений может включать в себя большее, меньшее, или то же самое количество изображений, что и первая последовательность изображений. Каждое соответствующее изображение второй фазы может быть рентгенограммой и может соответствовать отличному поворотному положению в наборе поворотных положений второй фазы. Другими словами, для каждого соответствующего поворотного положения второй фазы из набора поворотных положений второй фазы система 10 визуализации может генерировать соответствующее изображение второй фазы во второй последовательности изображений. Соответствующее изображение второй фазы может быть сгенерировано на основе структур излучения, детектируемых детектором 14 излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы и в то время, когда коллиматорные пластины 44 находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы. В качестве части генерирования второй последовательности изображений, система 30 обработки может управлять положениями коллиматорных пластин 44 таким образом, чтобы коллиматорные пластины 44 имели положения коллиматорных пластин, определенные ля поворотных положений второй фазы.[0054] Additionally, in the second phase of scanning the test object, the imaging system 10 may generate a second sequence of images based on the radiation patterns detected by the radiation detector 14. This disclosure may refer to images in the second sequence of images as second phase images. The second image sequence may include more, less, or the same number of images as the first image sequence. Each corresponding second phase image may be a radiograph and may correspond to a different rotational position in the set of second phase rotational positions. In other words, for each corresponding second phase rotation position from the set of second phase rotation positions, the imaging system 10 may generate a corresponding second phase image in the second image sequence. The corresponding second phase image can be generated based on the radiation patterns detected by the radiation detector 14 at the time when the test object is in the corresponding rotational position of the second phase and at the time when the collimator plates 44 are in the positions of the collimator plates for the corresponding rotational position of the second phase . As part of generating the second sequence of images, the processing system 30 may control the positions of the collimator plates 44 such that the collimator plates 44 have the collimator plate positions determined for the rotational positions of the second phase.

[0055] Поскольку форма и положение ROI могут изменяться при повороте тестового объекта, форма и положение апертуры 42 коллиматора 40 могут изменяться во время второй фазы сканирования при повороте тестового объекта. Таким образом, часть детектора 14 излучения, попадающая в тень коллиматора 40, может изменяться для каждого из поворотных положений второй фазы, особенно если тестовый объект асимметричен относительно оси поворота для первого и второго наборов поворотных положений. В результате, полезная область данных изображения в каждом из изображений второй фазы может изменяться. Полезная область данных изображения в изображении второй фазы соответствует области детектора 14 излучения, не находившейся в тени коллиматора 40 при генерировании изображения второй фазы. Полезная область изображения может включать в себя всю область детектора или подобласть области детектора, которая соответствует ROI. В некоторых примерах, система 30 обработки может заменять пикселы изображения второй фазы, которые находятся за пределами полезной области (т.е., в коллимированной области) изображения второй фазы заменяющим пикселом. Например, система 30 обработки может заменять коллимированную область изображения второй фазы белыми или черными пикселами. В некоторых примерах, система 30 обработки может применять обрезание размера изображения для уменьшения размера при запоминании для потенциального улучшения передачи данных и уменьшения времени восстановления. Система 30 обработки может применять программные средства для обеспечения положений пикселов детектора изменяющихся ROI обрезанных рентгенограмм ROI.[0055] Since the shape and position of the ROI may change when the test object is rotated, the shape and position of the aperture 42 of the collimator 40 may change during the second scanning phase when the test object is rotated. Thus, the portion of the radiation detector 14 that is shadowed by the collimator 40 may vary for each of the second phase rotational positions, especially if the test object is asymmetric about the rotational axis for the first and second sets of rotational positions. As a result, the usable image data area in each of the second phase images may change. The useful image data area in the second phase image corresponds to the area of the radiation detector 14 not in the shadow of the collimator 40 when the second phase image was generated. The useful image area may include the entire detector area or a sub-region of the detector area that corresponds to the ROI. In some examples, the processing system 30 may replace second phase image pixels that are outside the usable area (ie, in the collimated area) of the second phase image with a replacement pixel. For example, the processing system 30 may replace the collimated area of the second phase image with white or black pixels. In some examples, processing system 30 may apply image size cropping to reduce storage size to potentially improve data transfer and reduce recovery time. The processing system 30 may use software to provide the pixel positions of the ROI changing detector of the cropped ROI radiographs.

[0056] В некоторых примерах, система 10 визуализации генерирует каждое из изображений первой фазы перед генерированием любого из изображений второй фазы. Например, в этом примере система 10 визуализации может генерировать изображения первой фазы при повороте тестового объекта на протяжении первого полного оборота и может генерировать изображения второй фазы при повороте тестового объекта на протяжении второго полного оборота. В других примерах, система 10 визуализации может генерировать изображения первой фазы и изображения второй фазы в режиме чередования. Таким образом, в некоторых таких примерах система 10 визуализации может генерировать все изображения первой фазы и все изображения второй фазы за единственный оборот тестового объекта. Например, система 10 визуализации может генерировать изображение первой фазы в то время, когда тестовый объект находится в первом поворотном положении, определять положения коллиматорных пластин для первого поворотного положения, устанавливать коллиматорные пластины в определенные положения коллиматорных пластин для первого поворотного положения, генерировать изображение второй фазы в то время, когда тестовый объект находится в первом поворотном положении, и затем поворачивать тестовый объект в следующее поворотное положение. В этом примере, система 10 визуализации может повторять эти этапы для следующего поворотного положения (т.е., генерировать изображение первой фазы в то время, когда тестовый объект находится во втором поворотном положении, определять положения коллиматорных пластин для второго поворотного положения, устанавливать коллиматорные пластины в определенные положения коллиматорных пластин для второго поворотного положения, генерировать изображение второй фазы в то время, когда тестовый объект находится во втором поворотном положении, и затем поворачивать тестовый объект в следующее поворотное положение).[0056] In some examples, imaging system 10 generates each of the first phase images before generating any of the second phase images. For example, in this example, the imaging system 10 may generate first phase images as the test object rotates through the first complete rotation, and may generate second phase images as the test object rotates through the second complete rotation. In other examples, imaging system 10 may generate first phase images and second phase images in an interleaved manner. Thus, in some such examples, imaging system 10 may generate all first phase images and all second phase images in a single rotation of the test object. For example, the imaging system 10 may generate an image of the first phase while the test object is in the first rotation position, determine the positions of the collimator plates for the first rotation position, set the collimator plates to certain positions of the collimator plates for the first rotation position, generate an image of the second phase at while the test object is at the first rotation position, and then rotate the test object to the next rotation position. In this example, the imaging system 10 may repeat these steps for the next rotational position (i.e., generate a first phase image while the test object is in the second rotational position, determine the positions of the collimator plates for the second rotational position, set the collimator plates to certain collimator plate positions for the second rotation position, generate a second phase image while the test object is in the second rotation position, and then rotate the test object to the next rotation position).

[0057] В этом примере, система 30 обработки может вычислять, на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта. Система 30 обработки может вычислять томографические данные согласно любым известным технологиям для вычисления томографических данных на основании последовательности рентгенограмм, известных в данной области техники.[0057] In this example, the processing system 30 may calculate, based on the second image sequence, tomographic data for a portion of the test object being evaluated. Processing system 30 may compute tomographic data according to any known techniques for computing tomographic data based on a sequence of radiographs known in the art.

[0058] Фиг. 2А является концептуальным чертежом иллюстративной системы 10 визуализации, когда тестовый объект 200 находится в первом поворотном положении во время второй фазы сканирования, согласно одной или нескольким технологиям этого раскрытия. В примере фиг. 2А, коллиматор 40 коллимирует полный пучок 15 рентгеновских лучей. Дополнительно, в примере фиг. 2А коллиматорные пластины 44А, 44В расположены таким образом, что апертура 42 достаточно широка для прохождения внешних краев коллимированного пучка 202 рентгеновских лучей, который проходит через апертуру 42, через относительно малую область (т.е., «воздушный зазор») около внешних краев тестового объекта 200.[0058] FIG. 2A is a conceptual drawing of an exemplary imaging system 10 when the test object 200 is in the first pivot position during the second phase of scanning, in accordance with one or more of the technologies of this disclosure. In the example of FIG. 2A, the collimator 40 collimates the full x-ray beam 15. Additionally, in the example of FIG. 2A, collimator plates 44A, 44B are positioned such that aperture 42 is wide enough to allow the outer edges of the collimated X-ray beam 202 that passes through aperture 42 to pass through a relatively small area (i.e., "air gap") near the outer edges of the test probe. object 200.

[0059] Фиг. 2В является концептуальным чертежом иллюстративных положений пластин коллиматора 40, когда тестовый объект 200 находится в первом поворотном положении, показанном на фиг. 2А. Фиг. 2В является изображением с перспективы центральной точки излучения полного пучка 15 рентгеновских лучей фиг. 2А. В примере фиг. 2В, коллиматор 40 имеет четыре коллиматорные пластины 44A, 44B, 44C, и 44D (совокупно, «коллиматорные пластины 44»). Коллиматорные пластины 44C и 44D не показаны в примере фиг. 2А из-за перспективы фиг. 2А. В примере фиг. 2В, коллиматорные пластины 44А и 44В ориентированы вертикально, и коллиматорные пластины 44C и 44D ориентированы горизонтально. Дополнительно, в примере фиг. 2В, коллиматорные пластины 44C и 44D находятся ближе к генератору 12 излучения, чем коллиматорные пластины 44А и 44В. Следовательно, в примере фиг. 2А, коллиматорные пластины 44А и 44В частично заслонены коллиматорными пластинами 44C и 44D.[0059] FIG. 2B is a conceptual drawing of exemplary positions of the collimator plates 40 when the test object 200 is in the first rotational position shown in FIG. 2A. Fig. 2B is a perspective view of the center emission point of the full X-ray beam 15 of FIG. 2A. In the example of FIG. 2B, collimator 40 has four collimator plates 44A, 44B, 44C, and 44D (collectively, "collimator plates 44"). Collimator plates 44C and 44D are not shown in the example of FIG. 2A due to the perspective of FIG. 2A. In the example of FIG. 2B, the collimator plates 44A and 44B are oriented vertically and the collimator plates 44C and 44D are oriented horizontally. Additionally, in the example of FIG. 2B, the collimator plates 44C and 44D are closer to the radiation generator 12 than the collimator plates 44A and 44B. Therefore, in the example of FIG. 2A, collimator plates 44A and 44B are partially obscured by collimator plates 44C and 44D.

[0060] Коллиматорные пластины 44 расположены таким образом, что воздушный зазор 204 возникает вдоль одной или нескольких сторон тестового объекта 200. Воздушный зазор 204 может позволять рентгеновским лучам, проходящим через апертуру 42 коллиматора 40, достигать детектора 14 излучения, не проходя через тестовый объект 200. В некоторых примерах воздушный зазор отсутствует на всех сторонах тестового объекта 200.[0060] The collimator plates 44 are arranged such that an air gap 204 occurs along one or more sides of the test object 200. The air gap 204 may allow X-rays passing through the aperture 42 of the collimator 40 to reach the radiation detector 14 without passing through the test object 200 In some examples, there is no air gap on all sides of the test object 200.

[0061] Фиг. 2С является концептуальным чертежом иллюстративной системы визуализации, когда тестовый объект находится во втором поворотном положении во время второй фазы сканирования, согласно одной или нескольким технологиям этого раскрытия. В примере фиг. 2С, тестовый объект 200 повернут на 90° относительно первого поворотного положения тестового объекта 200, показанного на фиг. 2А. В других примерах, тестовый объект 200 может быть повернут на другие углы. Таким образом, самый узкий край тестового объекта 200 обращен к генератору 12 излучения. Соответственно, коллиматорные пластины 44А, 44В изменили свое положение для уменьшения размера апертуры 42, в результате чего коллимированный пучок 202 рентгеновских лучей сузился.[0061] FIG. 2C is a conceptual drawing of an exemplary imaging system when a test object is in a second rotational position during a second phase of scanning, in accordance with one or more of the technologies of this disclosure. In the example of FIG. 2C, the test object 200 is rotated 90° from the first rotational position of the test object 200 shown in FIG. 2A. In other examples, test object 200 may be rotated to other angles. Thus, the narrowest edge of the test object 200 faces the radiation generator 12. Accordingly, the collimator plates 44A, 44B changed their position to reduce the size of the aperture 42, whereby the collimated X-ray beam 202 narrowed.

[0062] Фиг. 2D является концептуальным чертежом иллюстративных положений пластин коллиматора 40, когда тестовый объект 200 находится во втором поворотном положении, показанном на фиг. 2С. Фиг. 2D является изображением с той же перспективы, что и фиг. 2В. Поскольку тестовый объект 200 повернулся, более узкая лицевая поверхность тестового объекта 200 обращена к генератору 12 излучения. Как показано в примере фиг. 2D, коллиматорные пластины 44С и 44D остаются в тех же самых положениях, но система 30 обработки переместила коллиматорные пластины 44А и 44В ближе друг к другу.[0062] FIG. 2D is a conceptual drawing of exemplary positions of collimator plates 40 when test object 200 is in the second rotational position shown in FIG. 2C. Fig. 2D is an image from the same perspective as in FIG. 2B. Since the test object 200 has rotated, the narrower face of the test object 200 faces the radiation generator 12. As shown in the example of FIG. 2D, the collimator plates 44C and 44D remain in the same positions, but the processing system 30 has moved the collimator plates 44A and 44B closer together.

[0063] Фиг. 3А показывает первый иллюстративный тестовый объект 300 в первом поворотном положении. Фиг. 3В показывает тестовый объект 300 фиг. 3А во втором поворотном положении, отличном от первого поворотного положения. Фиг. 3А и фиг. 3В показывают пример тестового объекта, который имеет асимметричную геометрию, при которой может быть полезно динамическое коллимирование при выполнении CT-сканирований. В примере фиг. 3А, ROI 302 соответствует части тестового объекта 300, которая меньше тестового объекта 300. В примере фиг. 3В, ROI 304 соответствует той же самой части тестового объекта 300. Как показано на фиг. 3А и 3В, размер и форма ROI может изменяться от изображения к изображению при повороте тестового объекта 300.[0063] FIG. 3A shows a first exemplary test object 300 in a first pivot position. Fig. 3B shows the test object 300 of FIG. 3A in a second pivot position different from the first pivot position. Fig. 3A and FIG. 3B shows an example of a test object that has an asymmetric geometry where dynamic collimation may be useful when performing CT scans. In the example of FIG. 3A, ROI 302 corresponds to a portion of test object 300 that is smaller than test object 300. In the example of FIG. 3B, ROI 304 corresponds to the same portion of test object 300. As shown in FIG. 3A and 3B, the size and shape of the ROI may change from image to image as test object 300 is rotated.

[0064] Фиг. 4А показывает иллюстративную рентгенограмму 500 тестового объекта 502 в отсутствие коллимирования. На фиг. 4А, фиг. 4В, и фиг. 4С тестовый объект может быть тестовым объектом 300, показанным на фиг. 3А и фиг. 3В. Фиг. 4В показывает иллюстративную рентгенограмму 504 тестового объекта 502 фиг. 4А в случае стандартного, нединамического CT-коллимирования в 0-градусном поворотном положении. Другими словами, рентгенограмма 504 сгенерирована, когда коллиматорные пластины не изменяли положение на основе поворотного положения тестового объекта 502. Таким образом, в то время как положения коллиматорных пластин, используемые в рентгенограмме 504, могут быть оптимальными в этом 0-градусном поворотном положении, когда тестовый объект 502 поворачивается на 90°, имеется значительное пространство, когда тестовый объект 502 находится в 90-градусном поворотном положении, показанном на фиг. 4Е. Фиг. 4С показывает иллюстративную рентгенограмму 506 тестового объекта 502 фиг. 4А-4В в случае динамического CT-коллимирования в 0-градусном поворотном положении согласно одной или нескольким технологиям этого раскрытия. Рентгенограммы фиг. 4В и фиг. 4С являются одинаковыми вследствие положений пластин коллиматора, соответствующих технологиям стандартного, нединамического коллимирования, основанных на самой широкой части тестового объекта в любом поворотном положении тестового объекта. Как показано на фиг. 4А-4С, использование результатов коллимирования в рентгенограммах 504 и 506 привело к лучшему контрасту изображения и лучшей четкости рентгенографического края тестового объекта, чем в рентгенограмме 500.[0064] FIG. 4A shows an exemplary radiograph 500 of test object 502 in the absence of collimation. In FIG. 4A, FIG. 4B and FIG. 4C, the test object may be the test object 300 shown in FIG. 3A and FIG. 3B. Fig. 4B shows an exemplary X-ray diffraction pattern 504 of the test object 502 of FIG. 4A in the case of a standard, non-dynamic CT collimation in a 0-degree rotational position. In other words, the X-ray pattern 504 is generated when the collimator plates did not change position based on the rotational position of the test object 502. Thus, while the positions of the collimator plates used in the X-ray pattern 504 may be optimal at this 0-degree rotational position, when the test object object 502 is rotated 90°, there is considerable space when test object 502 is in the 90 degree rotation position shown in FIG. 4E. Fig. 4C shows an exemplary x-ray 506 of the test object 502 of FIG. 4A-4B in the case of dynamic CT collimation at 0-degree rotational position according to one or more of the technologies of this disclosure. The radiographs of Fig. 4B and FIG. 4C are the same due to collimator plate positions corresponding to standard, non-dynamic collimation technologies based on the widest part of the test object at any rotational position of the test object. As shown in FIG. 4A-4C, the use of the collimation results in X-rays 504 and 506 resulted in better image contrast and better definition of the radiographic edge of the test object than in X-ray 500.

[0065] Фиг. 4D показывает иллюстративную рентгенограмму 508 тестового объекта 502 фиг. 4А-4С в отсутствие коллимирования в 90-градусном поворотном положении. Фиг. 4Е показывает иллюстративную рентгенограмму тестового объекта 502 фиг. 4А-4D в случае стандартного, нединамического СТ-коллимирования в 90-градусном поворотном положении. Фиг. 4F показывает иллюстративную рентгенограмму тестового объекта 502 фиг. 4А-4Е в случае динамического CT-коллимирования в 90-градусном поворотном положении согласно одной или нескольким технологиям этого раскрытия. 90-градусное поворотное положение находится под углом 90 градусов от поворотного положения тестового объекта 502, показанного на фиг. 4A-4C. В примере фиг. 4F, коллимирование непрерывно настраивалось от 0-градусного положения с максимальным отверстием до 90-градусного минимального положения с отверстием, немного большим, чем наименьшая проецируемая область интереса.[0065] FIG. 4D shows an exemplary radiograph 508 of the test object 502 of FIG. 4A-4C in the absence of collimation in the 90 degree rotation. Fig. 4E shows an exemplary x-ray of the test object 502 of FIG. 4A-4D for standard, non-dynamic CT collimation in a 90 degree rotation. Fig. 4F shows an exemplary radiograph of the test object 502 of FIG. 4A-4E in the case of dynamic CT collimation in a 90 degree rotational position according to one or more of the technologies of this disclosure. The 90 degree rotation position is 90 degrees from the rotation position of the test object 502 shown in FIG. 4A-4C. In the example of FIG. 4F, the collimation was continuously adjusted from a 0-degree position with a maximum aperture to a 90-degree minimum position with an aperture slightly larger than the smallest projected region of interest.

[0066] Поскольку технологии стандартного, нединамического коллимирования не настраивают положения коллиматорных пластин на основе поворотного положения тестового объекта 502, положения коллиматорных пластин являются одинаковыми на фиг. 4В и фиг. 4Е, несмотря на отличное поворотное положение тестового объекта 502. Однако, согласно технологиям динамического коллимирования этого раскрытия, положение коллиматорных пластин изменяется на основе поворотного положения тестового объекта 502 в рентгенограмме 512. Как можно увидеть на фиг. 4D, 4E, и 4F, контраст изображения и четкость рентгенографического края тестового объекта в рентгенограмме 510 являются большими, чем контраст рентгенограмме 508. Однако, контраст изображения и четкость рентгенографического края тестового объекта в рентгенограмме 512 все же являются большими, чем в рентгенограмме 510, вследствие динамически изменяемых положений коллиматорных пластин. Дополнительно, яркость ROI в рентгенограммах 508 и 510 может быть большей, и края тестового объекта 502 могут начать «размываться» в рентгенограмме 510 по сравнению со случаем, когда динамическое коллимирование используется в генерировании рентгенограммы 512, несмотря на применение одинаковых экспозиционных параметров. Уменьшенный уровень яркости рентгенограммы 512 и увеличение контраста изображения и четкости рентгенографического края тестового объекта прямо связаны с уменьшением рассеиваемого излучения при применении динамического коллимирования.[0066] Because conventional, non-dynamic collimation technologies do not adjust collimator plate positions based on the rotational position of test object 502, the collimator plate positions are the same in FIG. 4B and FIG. 4E despite the excellent rotational position of the test object 502. However, according to the dynamic collimation techniques of this disclosure, the position of the collimator plates changes based on the rotational position of the test object 502 in the radiograph 512. As can be seen in FIG. 4D, 4E, and 4F, the image contrast and radiographic edge sharpness of the test object in the radiograph 510 is greater than that of the radiograph 508. However, the image contrast and radiographic edge sharpness of the test object in the radiograph 512 is still greater than that in the radiograph 510 due to dynamically changing positions of the collimator plates. Additionally, the brightness of the ROI in radiographs 508 and 510 may be greater and the edges of the test object 502 may begin to "blur" in radiograph 510 compared to the case when dynamic collimation is used in generating radiograph 512 despite applying the same exposure parameters. The reduced brightness level of radiograph 512 and the increase in image contrast and sharpness of the radiographic edge of the test object are directly related to the reduction in scatter radiation when dynamic collimation is applied.

[0067] Фиг. 5 является блок-схемой последовательности операций, показывающей первое иллюстративное функционирование системы 10 визуализации согласно одной или нескольким технологиям этого раскрытия. В других примерах согласно технологиям этого раскрытия может выполняться большее, меньшее количество действий, или другие действия по сравнению с фиг. 5; или действия могут выполняться в других порядках или параллельно.[0067] FIG. 5 is a flowchart showing a first exemplary operation of the imaging system 10 in accordance with one or more of the technologies of this disclosure. In other examples, more, fewer, or different actions may be performed according to the techniques of this disclosure compared to FIG. 5; or the actions may be performed in other orders or in parallel.

[0068] В примере фиг. 5, система визуализации (например, система 10 визуализации фиг. 1, система 700 визуализации фиг. 7, система 800 визуализации фиг. 8) может осуществлять первую фазу сканирования для тестового объекта (например, тестового объекта 200, 300, 502). Во время первой фазы сканирования, система 10 визуализации может, для каждого соответствующего поворотного положения первой фазы из набора из двух или более поворотных положений первой фазы, сгенерировать (602) соответствующее изображение первой фазы в первой последовательности изображений. Соответствующее изображение первой фазы генерируется в то время, когда тестовый объект находится в соответствующем поворотном положении первой фазы. В некоторых примерах, каждое изображение в первой последовательности изображений является рентгенограммой. В некоторых примерах, вместо рентгенограмм первая последовательность изображений может включать в себя фотографии на основе видимого света, захватываемые вспомогательными оптическими визуализирующими компонентами системы 10 визуализации. Каждое изображение в первой последовательности изображений может соответствовать отличному поворотному положению тестового объекта в наборе поворотных положений первой фазы.[0068] In the example of FIG. 5, an imaging system (eg, imaging system 10 of FIG. 1, imaging system 700 of FIG. 7, imaging system 800 of FIG. 8) may perform a first scanning phase for a test object (eg, test object 200, 300, 502). During the first phase of the scan, the imaging system 10 may, for each corresponding first phase rotation position from a set of two or more first phase rotation positions, generate (602) a corresponding first phase image in the first image sequence. The corresponding first phase image is generated while the test object is in the corresponding rotational position of the first phase. In some examples, each image in the first sequence of images is a radiograph. In some examples, instead of radiographs, the first sequence of images may include visible light photographs captured by auxiliary optical imaging components of imaging system 10. Each image in the first sequence of images may correspond to a different rotational position of the test object in the set of rotational positions of the first phase.

[0069] Дополнительно, в примере фиг. 7, для каждого соответствующего поворотного положения первой фазы из набора поворотных положений первой фазы, система визуализации может идентифицировать (604) ROI (например, ROI 302, 304 (фиг. 3)) в соответствующем изображении первой фазы. Эта ROI соответствует части оцениваемого тестового объекта. Например, ROI может соответствовать части тестового объекта или всему тестовому объекту. В некоторых примерах, система 30 обработки автоматически идентифицирует ROI, как описано в других местах этого раскрытия. Например, система 30 обработки может идентифицировать ROI посредством отслеживания краев в изображениях.[0069] Additionally, in the example of FIG. 7, for each corresponding first phase rotation position from the set of first phase rotation positions, the imaging system may identify (604) an ROI (eg, ROI 302, 304 (FIG. 3)) in the corresponding first phase image. This ROI corresponds to a portion of the test item being evaluated. For example, the ROI may correspond to part of the test object or the entire test object. In some examples, processing system 30 automatically identifies the ROI, as described elsewhere in this disclosure. For example, processing system 30 may identify ROIs by tracking edges in images.

[0070] Дополнительно. для каждого соответствующего поворотного положения первой фазы из набора поворотных положений первой фазы, система визуализации может определять (606), на основе идентифицированной ROI в соответствующем изображении первой фазы, положения коллиматорных пластин для соответствующего поворотного положения первой фазы. Система визуализации может определять положения коллиматорных пластин для соответствующего поворотного положения первой фазы согласно любым примерам, описанным в других местах этого раскрытия. Излучение излучается генератором излучения (например, генератором 12 излучения) и проходит через апертуру коллиматора (например, коллиматора 40). Коллиматор расположен между генератором излучения и детектором излучения. Например, коллиматор может быть расположен между генератором излучения и тестовым объектом. Тестовый объект может быть расположен между коллиматором и детектором излучения. Коллиматор включает в себя множество коллиматорных пластин (например, коллиматорных пластин 44), которые подвижны с возможностью изменять размер и форму апертуры коллиматора.[0070] Optional. for each corresponding first phase rotation position from the set of first phase rotation positions, the imaging system may determine (606), based on the identified ROI in the corresponding first phase image, the collimator plate positions for the corresponding first phase rotation position. The imaging system may determine the positions of the collimator plates for the corresponding rotational position of the first phase according to any of the examples described elsewhere in this disclosure. Radiation is emitted by a radiation generator (eg, radiation generator 12) and passes through the aperture of a collimator (eg, collimator 40). The collimator is located between the radiation generator and the radiation detector. For example, the collimator may be located between the radiation generator and the test object. The test object can be placed between the collimator and the radiation detector. The collimator includes a plurality of collimator plates (eg, collimator plates 44) that are movable to change the size and shape of the collimator aperture.

[0071] Дополнительно, в примере фиг. 5, для каждого соответствующего поворотного положения второй фазы в наборе из двух или более поворотных положений второй фазы, система визуализации может определять (608), на основе положений коллиматорных пластин для поворотных положений первой фазы, положения коллиматорных пластин для соответствующего поворотного положения второй фазы. В некоторых примерах, набор поворотных положений первой фазы и набор поворотных положений второй фазы состоят из одних и тех же поворотных положений. В других примерах, набор поворотных положений второй фазы включает в себя большее, меньшее количество поворотных положений, или другие поворотные положения по сравнению с набором поворотных положений первой фазы. В некоторых примерах, тестовый объект асимметричен относительно оси поворота для поворотных положений первой фазы и поворотных положений второй фазы. Таким образом, может потребоваться изменять положения коллиматорных пластин при повороте тестового объекта.[0071] Additionally, in the example of FIG. 5, for each corresponding second phase rotation position in the set of two or more second phase rotation positions, the imaging system may determine (608), based on the collimator plate positions for the first phase rotation positions, the collimator plate positions for the corresponding second phase rotation position. In some examples, the set of rotation positions of the first phase and the set of rotation positions of the second phase consist of the same rotation positions. In other examples, the second phase pivot position set includes more, fewer pivot positions, or different pivot positions compared to the first phase pivot position set. In some examples, the test object is asymmetrical about the pivot axis for the first phase pivot positions and the second phase pivot positions. Thus, it may be necessary to change the positions of the collimator plates as the test object is rotated.

[0072] Когда соответствующее поворотное положение второй фазы является таким же, как поворотное положение первой фазы в наборе поворотных положений первой фазы, система визуализации может определять, что положения коллиматорных пластин для соответствующего поворотного положения второй фазы являются такими же, как положения коллиматорных пластин для поворотного положения первой фазы. Когда соответствующее поворотное положение второй фазы является отличным от любого поворотного положения первой фазы в наборе поворотных положений первой фазы, система визуализации может определять положения коллиматорных пластин для соответствующего поворотного положения второй фазы на основе положений коллиматорных пластин для двух или более поворотных положений первой фазы, как описано в других местах этого раскрытия.[0072] When the corresponding rotation position of the second phase is the same as the rotation position of the first phase in the set of rotation positions of the first phase, the imaging system may determine that the positions of the collimator plates for the corresponding rotation position of the second phase are the same as the positions of the collimator plates for the rotation position of the first phase. When the corresponding second phase rotation position is different from any first phase rotation position in the first phase rotation position set, the imaging system may determine the collimator plate positions for the corresponding second phase rotation position based on the collimator plate positions for the two or more first phase rotation positions, as described. elsewhere in this disclosure.

[0073] Система визуализации может генерировать (610) соответствующее изображение второй фазы во второй последовательности изображений. Соответствующее изображение второй фазы генерируется на основе структур излучения, детектируемых детектором излучения (например, детектором 14 излучения) в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы. Соответствующее изображение второй фазы может быть рентгенограммой. В качестве части генерирования изображения второй фазы, система визуализации может управлять положениями коллиматорных пластин на основе положений коллиматорных пластин для соответствующего поворотного положения второй фазы. Для физического управления коллиматорными пластинами, система обработки системы визуализации (например, система 30 обработки) может прямо или непрямо отправлять сигналы двигателям, которые приводят в движение коллиматорные пластины. Как упомянуто выше, в некоторых примерах детектор излучения может включать в себя детектор рентгеновских лучей на основе LDA. В таких примерах может потребоваться, чтобы коллиматор включал в себя только две коллиматорные пластины, выполненные с возможностью перемещаться в направлении, перпендикулярном продольной оси детектора рентгеновских лучей на основе LDA.[0073] The imaging system may generate (610) a corresponding second phase image in the second image sequence. The corresponding image of the second phase is generated based on the radiation patterns detected by the radiation detector (for example, the radiation detector 14) at the time when the test object is in the corresponding rotational position of the second phase and at the time when the collimator plates are in the positions of the collimator plates for the corresponding rotational position of the second phase. The corresponding image of the second phase may be a radiograph. As part of generating the image of the second phase, the imaging system may control the positions of the collimator plates based on the positions of the collimator plates for the corresponding rotational position of the second phase. To physically control the collimator plates, the processing system of the imaging system (eg, the processing system 30) can directly or indirectly send signals to motors that drive the collimator plates. As mentioned above, in some examples, the radiation detector may include an LDA-based X-ray detector. In such examples, the collimator may be required to include only two collimator plates movable in a direction perpendicular to the longitudinal axis of the LDA x-ray detector.

[0074] Затем, система визуализации может вычислять (614), на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта. Система визуализации может вычислять томографические данные согласно любым общеизвестным технологиям для вычисления томографических данных на основании последовательности рентгенограмм или синограмм, известным в данной области техники, например, но не только, технологии фильтрованной обратной проекции (filtered back projection - FBP), технологии итерационного восстановления (iterative reconstruction - IR) и технологии восстановления Фурье.[0074] Next, the imaging system may calculate (614), based on the second image sequence, tomographic data for a portion of the test object being evaluated. The imaging system may compute tomographic data according to any of the well-known techniques for computing tomographic data based on a sequence of radiographs or sinograms known in the art, such as, but not limited to, filtered back projection (FBP) techniques, iterative recovery techniques (iterative reconstruction - IR) and Fourier reconstruction technologies.

[0075] Дополнительно, примеры, обеспеченные выше, относятся к коллиматору (например, коллиматору 40), имеющему единственную апертуру. Однако, в некоторых примерах коллиматор может иметь две или более апертур в системе с единственным генератором 12 излучения и единственным детектором 14 излучения. В такой системе, каждая из апертур может быть использована для одновременного оценивания отличного тестового объекта. Система 30 обработки может независимо настраивать размеры и формы каждой из апертур. В таких примерах, система 30 обработки может быть выполнена с возможностью независимо изменять положения каждой из коллиматорных пластин. В другом варианте осуществления, две или более коллиматорных пластин могут быть связаны для совместного перемещения.[0075] Additionally, the examples provided above refer to a collimator (eg, collimator 40) having a single aperture. However, in some examples, the collimator may have two or more apertures in a system with a single radiation generator 12 and a single radiation detector 14. In such a system, each of the apertures can be used to simultaneously evaluate a different test object. The processing system 30 can independently adjust the sizes and shapes of each of the apertures. In such examples, the processing system 30 may be configured to independently change the positions of each of the collimator plates. In another embodiment, two or more collimator plates may be linked to move together.

[0076] В некоторых примерах, система визуализации (например, система 10, 700, 800 визуализации) может выполнять действия фиг. 5 автоматически для одного или нескольких тестовых объектов без вмешательства человека. В некоторых таких примерах, конвейерный механизм может автоматически загружать тестовые объекты в систему визуализации. Дополнительно, в некоторых примерах, где должны оцениваться множественные тестовые объекты одного типа, система визуализации может осуществлять первую фазу (т.е., действия (602), (604), и (606)) для одного из тестовых объектов (например, первого возникающего тестового объекта) для определения (608) положений коллиматорных пластин для поворотных положений первой фазы и для определения положений коллиматорных пластин для поворотных положений второй фазы. В таких примерах, система визуализации может повторно использовать информацию о положениях коллиматорных пластин для поворотных положений второй фазы для генерирования изображений второй фазы других тестовых объектов без повторения действий (602), (604), (606), и (608) для других тестовых объектов. В некоторых примерах, рассматриваемый тестовый объект может быть таким же физическим тестовым объектом или двумя разными физическими тестовыми объектами одного типа (например, с одинаковой формой, размерами, составом, и т.д.).[0076] In some examples, an imaging system (eg, imaging system 10, 700, 800) may perform the actions of FIG. 5 automatically for one or more test objects without human intervention. In some such examples, the pipeline mechanism may automatically load test objects into the rendering system. Additionally, in some instances where multiple test objects of the same type are to be evaluated, the rendering system may perform the first phase (i.e., actions (602), (604), and (606)) on one of the test objects (e.g., the first emerging test object) to determine (608) the positions of the collimator plates for the rotational positions of the first phase and to determine the positions of the collimator plates for the rotational positions of the second phase. In such examples, the imaging system may reuse the collimator plate position information for second phase rotation positions to generate second phase images of other test objects without repeating steps (602), (604), (606), and (608) for other test objects. . In some examples, the test object in question may be the same physical test object, or two different physical test objects of the same type (eg, with the same shape, dimensions, composition, etc.).

[0077] Фиг. 6 является блок-схемой последовательности операций, показывающей второе иллюстративное функционирование системы визуализации согласно одной или нескольким технологиям этого раскрытия. В отличие от иллюстративного функционирования фиг. 5, функционирование фиг. 6 может генерировать изображения, используемые для вычисления томографических данных, в единственной фазе. В некоторых примерах, каждое из изображений является рентгенограммой.[0077] FIG. 6 is a flowchart showing a second exemplary operation of an imaging system in accordance with one or more of the technologies of this disclosure. In contrast to the exemplary operation of FIG. 5, operation of FIG. 6 can generate images used to compute tomographic data in a single phase. In some examples, each of the images is a radiograph.

[0078] Конкретно, в примере фиг. 6, система 10 визуализации может сгенерировать (650) текущее изображение. Когда текущее изображение является первым возникающим изображением в наборе изображений, используемых для вычисления томографических данных, система 10 визуализации может сгенерировать текущее изображение в то время, когда тестовый объект находится первом возникающем поворотном положении в наборе поворотных положений. В некоторых примерах, система 10 визуализации может генерировать первое возникающее изображение в то время, когда апертура коллиматора находится в своей самом широкой конфигурации.[0078] Specifically, in the example of FIG. 6, the imaging system 10 may generate (650) the current image. When the current image is the first occurring image in the set of images used to compute tomographic data, the imaging system 10 may generate the current image at the time the test object is at the first occurring rotational position in the rotational position set. In some examples, imaging system 10 may generate the first emerging image at a time when the collimator aperture is at its widest configuration.

[0079] Затем, система 10 визуализации может идентифицировать (652) ROI в текущем изображении. Как и ранее, ROI может соответствовать части оцениваемого тестового объекта, например, части тестового объекта или всему оцениваемому тестовому объекту. В некоторых примерах, границы ROI в текущем изображении соответствуют внешним краям тестового объекта, показанным в текущем изображении, с воздушным зазором из нескольких пикселов на одной или нескольких сторонах. В некоторых примерах, система 10 визуализации автоматически идентифицирует ROI так, как описано в примерах, обеспеченных в других местах этого раскрытия. В некоторых примерах, вместо использования текущего изображения для идентификации ROI в текущем изображении, система 10 визуализации может использовать информацию (например, размеры тестового объекта) в CAD-файле для тестового объекта для определения ROI.[0079] Next, the imaging system 10 may identify (652) the ROI in the current image. As before, the ROI may correspond to a portion of the test object being evaluated, for example, a portion of the test object, or the entire test object being evaluated. In some examples, the edges of the ROI in the current image correspond to the outer edges of the test object shown in the current image, with an air gap of a few pixels on one or more sides. In some examples, the imaging system 10 automatically identifies the ROI as described in the examples provided elsewhere in this disclosure. In some examples, instead of using the current image to identify the ROI in the current image, the imaging system 10 may use information (eg, test object dimensions) in the CAD file for the test object to determine the ROI.

[0080] В одном примере, после определения ROI в первом возникающем изображении, система 10 визуализации может определять положения коллиматорных пластин, соответствующие ROI в первом возникающем изображении. В этом примере, система 10 визуализации может затем изменять положения коллиматорных пластин в соответствии с определенными положениями коллиматорных пластин. Дополнительно, в этом примере система 10 визуализации может затем восстановить изображение для первого возникающего поворотного положения. В этом примере, система 10 визуализации может использовать это восстановленное изображение при вычислении томографической модели части тестового объекта.[0080] In one example, after determining the ROI in the first emerging image, the imaging system 10 may determine the positions of the collimator plates corresponding to the ROI in the first emerging image. In this example, the imaging system 10 may then change the positions of the collimator plates in accordance with the determined positions of the collimator plates. Additionally, in this example, the imaging system 10 may then reconstruct the image for the first rotational position that occurs. In this example, imaging system 10 may use this reconstructed image when computing a tomographic model of a portion of the test object.

[0081] В примере фиг. 6, система 10 визуализации может затем определять (654), на основе идентифицированной ROI в изображении, положения коллиматорных пластин для следующего поворотного положения в наборе поворотных положений. В некоторых примерах, для определения положений коллиматорных пластин для следующего поворотного положения, система 10 визуализации может определять ожидаемую ROI для следующего поворотного положения. Система 10 визуализации может определять ожидаемую ROI для следующего поворотного положения на основе размера воздушного зазора в текущем изображении. Например, для каждой стороны ограничивающей рамки, определяющей ROI (или стороны в подмножестве сторон ограничивающей рамки), если воздушный зазор меньше первого порогового размера (например, меньше данного числа пикселов), то система 10 визуализации перемещает эту сторону вовне относительно тестового объекта. Напротив, если воздушный зазор больше второго порогового размера (например, больше данного числа пикселов), то система 10 визуализации перемещает эту сторону вовнутрь относительно тестового объекта. Первый и второй пороговые размеры могут быть одинаковыми или разными числами. Кроме того, в некоторых примерах могут быть разные первый и второй пороги для разных сторон ограничивающей рамки. В некоторых примерах, величина, на которую система 10 визуализации перемещает сторону вовне или вовнутрь, может быть фиксированным числом. В некоторых примерах, система 10 визуализации может определять величину, на которую система 10 визуализации перемещает сторону вовне или вовнутрь, на основе разницы в размере воздушного зазора на этой стороне в предыдущих двух изображениях. В некоторых примерах, система 10 визуализации может определять величину, на которую система 10 визуализации перемещает сторону вовне или вовнутрь, на основе предопределенных данных, указывающих на размеры тестового объекта и на то, сколько градусов угла поворота попадает между текущим поворотным положением и следующим поворотным положением. После определения ROI для следующего поворотного положения, система 10 визуализации может определять положения коллиматорных пластин для следующего поворотного положения на основе математического соотношения между положениями коллиматорных пластин и местоположением и размером ROI для следующего поворотного положения так же, как описано в других местах этого раскрытия.[0081] In the example of FIG. 6, the imaging system 10 may then determine (654), based on the identified ROI in the image, the positions of the collimator plates for the next rotation position in the set of rotation positions. In some examples, to determine the positions of the collimator plates for the next rotational position, the imaging system 10 may determine the expected ROI for the next rotational position. The imaging system 10 may determine the expected ROI for the next rotational position based on the size of the air gap in the current image. For example, for each side of the bounding box that defines the ROI (or sides in a subset of the sides of the bounding box), if the air gap is less than a first threshold size (e.g., less than a given number of pixels), then the rendering system 10 moves that side outward relative to the test object. Conversely, if the air gap is larger than the second threshold size (eg, larger than a given number of pixels), then the rendering system 10 moves that side inward relative to the test object. The first and second threshold sizes may be the same or different numbers. Also, in some examples, there may be different first and second thresholds for different sides of the bounding box. In some examples, the amount by which the imaging system 10 moves the side out or in can be a fixed number. In some examples, imaging system 10 may determine the amount by which imaging system 10 moves a side out or in based on the difference in air gap size on that side in the previous two images. In some examples, the imaging system 10 may determine the amount by which the imaging system 10 moves the side out or in based on predetermined data indicative of the dimensions of the test object and how many degrees of rotation fall between the current rotation position and the next rotation position. After determining the ROI for the next pivot position, imaging system 10 may determine the collimator plate positions for the next pivot position based on a mathematical relationship between the collimator plate positions and the location and size of the ROI for the next pivot position in the same manner as described elsewhere in this disclosure.

[0082] Затем, система 10 визуализации может поворачивать (656) тестовый объект в следующее поворотное положение в наборе поворотных положений, изменять положения коллиматорных пластин на положения коллиматорных пластин для следующего поворотного положения, и генерировать новое текущее изображение. Дополнительно, система 10 визуализации может определять, существуют ли (658) какие-либо дополнительные поворотные положения в наборе поворотных положений. В ответ на определение того, что дополнительные поворотные положения в наборе поворотных положений существуют (ветвь «Да» действия 658), система 10 визуализации может повторить действия (652) - (658) в отношении нового текущего изображения. Иначе, в ответ на определение того, что никакие дополнительные поворотные положения в наборе поворотных положений не существуют (ветвь «Нет» действия 658), система 10 визуализации может вычислить (660), на основе изображений, томографическую модель части оцениваемого тестового объекта. Система 10 визуализации может вычислять томографическую модель так, как описано в других местах этого раскрытия.[0082] Next, the imaging system 10 may rotate (656) the test object to the next rotation position in the rotation position set, change the collimator plate positions to the collimator plate positions for the next rotation position, and generate a new current image. Additionally, the imaging system 10 may determine if there are (658) any additional rotational positions in the set of rotational positions. In response to determining that additional rotational positions in the rotational position set exist (Yes branch of action 658), the imaging system 10 may repeat actions (652) - (658) with respect to the new current image. Otherwise, in response to determining that no additional rotation positions exist in the rotation position set (No branch of action 658), the imaging system 10 may compute (660), based on the images, a tomographic model of the portion of the test object being evaluated. The imaging system 10 may compute the tomographic model as described elsewhere in this disclosure.

[0083] Фиг. 7 является схематичным чертежом иллюстративной системы 700 визуализации согласно одной или нескольким технологиям этого раскрытия. В большинстве отношений система 700 визуализации подобна системе 10 визуализации (фиг. 1). Таким образом, части, пронумерованные на фиг. 7 теми же ссылочными позициями, что и части на фиг. 1, имеют те же самые функции и могут быть реализованы тем же самым образом, что и эти части на фиг. 1.[0083] FIG. 7 is a schematic drawing of an exemplary imaging system 700 in accordance with one or more of the technologies of this disclosure. In most respects, imaging system 700 is similar to imaging system 10 (FIG. 1). Thus, the parts numbered in FIG. 7 with the same reference numerals as the parts in FIG. 1 have the same functions and can be implemented in the same way as these parts in FIG. one.

[0084] В некоторых примерах, сам тестовый объект может рассеивать рентгеновские лучи, которые прошли через апертуру 42 коллиматора 40. Рентгеновские лучи, рассеянные в тестовом объекте, могут, в свою очередь, отражаться или рассеиваться от других областей объекта или компонентов системы 700 визуализации перед попаданием в детектор 14 излучения. Таким образом, рентгеновские лучи, рассеянные от тестового объекта, могут уменьшать контраст в любой результирующей рентгенограмме.[0084] In some examples, the test object itself may scatter x-rays that have passed through the aperture 42 of the collimator 40. The x-rays scattered in the test object may, in turn, be reflected or scattered from other areas of the object or components of the imaging system 700 before hit the detector 14 radiation. Thus, X-rays scattered from the test object can reduce the contrast in any resulting radiograph.

[0085] Соответственно, в примере фиг. 7, система 700 визуализации снабжена вторым коллиматором 702, который расположен на стороне детектора тестового объекта 704 с коллиматором 702. Коллиматор 702 может быть синхронизирован и коллиматором 40 стороны трубки или может перемещаться и управляться независимо от коллиматора 40 стороны трубки. Коллиматор 702 имеет множество коллиматорных пластин, включающее в себя коллиматорные пластины 710A, 710B. Другие коллиматорные пластины коллиматора 702 не показаны в примере фиг. 7 из-за перспективы фиг. 7. В некоторых примерах, система 700 визуализации может включать в себя систему для перемещения коллиматора 702 как единого целого. Это может быть полезно, поскольку в некоторых примерах может быть предпочтительным поддерживать положение коллиматора 702 как можно более близким к тестовому объекту 704 при повороте тестового объекта 704.[0085] Accordingly, in the example of FIG. 7, imaging system 700 is provided with a second collimator 702 that is located on the detector side of test object 704 with collimator 702. Collimator 702 may be synchronized with tube side collimator 40 or may be moved and controlled independently of tube side collimator 40. Collimator 702 has a plurality of collimator plates including collimator plates 710A, 710B. Other collimator plates of collimator 702 are not shown in the example of FIG. 7 due to the perspective of FIG. 7. In some examples, the imaging system 700 may include a system for moving the collimator 702 as a unit. This may be useful because, in some instances, it may be preferable to keep the collimator 702 as close to the test object 704 as possible while rotating the test object 704.

[0086] Вспомогательное коллимирование, показанное на фиг. 7, может уменьшить рассеянное излучение 706, инициируемое тестовым объектом 704, которое заканчивается в области интереса на детекторе 14 излучения. Это вспомогательное динамическое коллимирование может еще больше улучшить контраст изображения и четкость рентгенографического края тестового объекта посредством уменьшения этого вторичного рассеяния от тестового объекта. Поскольку коллиматор 702 синхронизирован с коллиматором 40, изменения в размере, форме, и положении апертуры 42 приводят к соответствующим изменениям в размере, форме, и положении апертуры 708 коллиматора 702. Например, если апертура 42 становится шире горизонтально, то апертура 708 также становится шире горизонтально. В некоторых примерах, система 30 обработки может определять угол θ таким образом, чтобы tg(θ) был равен ½ ширины (или высоты) апертуры 42, деленой на расстояние от апертуры 42 до генератора 12 излучения. В этом примере, система 30 обработки может определять ширину (или высоту) апертуры 708 как 2*tg(θ)*(расстояние от апертуры 42 до генератора 12 излучения). В других примерах, система 30 обработки может управлять положениями коллиматорных пластин коллиматора 702 независимо от положений коллиматорных пластин коллиматора 40.[0086] The auxiliary collimation shown in FIG. 7 can reduce the scattered radiation 706 initiated by the test object 704 that terminates in the region of interest on the radiation detector 14. This assisted dynamic collimation can further improve the image contrast and radiographic edge sharpness of the test object by reducing this secondary scattering from the test object. Since collimator 702 is synchronized with collimator 40, changes in the size, shape, and position of aperture 42 result in corresponding changes in size, shape, and position of aperture 708 of collimator 702. For example, if aperture 42 becomes wider horizontally, then aperture 708 also becomes wider horizontally. . In some examples, processing system 30 may determine the angle θ such that tg(θ) is equal to ½ of the width (or height) of aperture 42 divided by the distance from aperture 42 to radiation generator 12. In this example, processing system 30 may determine the width (or height) of aperture 708 as 2*tg(θ)*(distance from aperture 42 to radiation generator 12). In other examples, processing system 30 may control the positions of the collimator plates of collimator 702 independently of the positions of the collimator plates of collimator 40.

[0087] Таким образом, коллиматор, упомянутый на фиг. 5, может считаться первым коллиматором, положения коллиматорных пластин для соответствующего поворотного положения второй фазы могут считаться первыми положениями коллиматорных пластин для соответствующего поворотного положения второй фазы. Дополнительно, продолжая действия фиг. 5, система 700 визуализации может, для соответствующего поворотного положения второй фазы из набора поворотных положений второй фазы, определять, на основе положений коллиматорных пластин для поворотных положений первой фазы, вторые положения коллиматорных пластин для соответствующего поворотного положения второй фазы. Например, система 700 визуализации может определять вторые положения коллиматорных пластин для соответствующего поворотного положения второй фазы, как описано в предыдущем абзаце. Дополнительно, продолжая действия фиг. 5, система 700 визуализации может генерировать соответствующее изображение второй фазы на основе структур излучения, детектируемых детектором 14 излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы в то время, когда коллиматорные пластины первого коллиматора (т.е., коллиматора 40) находятся в первых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы и в то время, когда коллиматорные пластины 710 второго коллиматора (т.е., коллиматора 702) находятся во вторых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы.[0087] Thus, the collimator referred to in FIG. 5 may be considered the first collimator, the positions of the collimator plates for the corresponding rotational position of the second phase may be considered the first positions of the collimator plates for the corresponding rotational position of the second phase. Additionally, continuing with FIG. 5, the imaging system 700 may, for a corresponding second phase rotation position from a set of second phase rotation positions, determine, based on the collimator plate positions for the first phase rotation positions, second collimator plate positions for the corresponding second phase rotation position. For example, the imaging system 700 may determine the second positions of the collimator plates for the corresponding rotational position of the second phase, as described in the previous paragraph. Additionally, continuing with FIG. 5, the imaging system 700 may generate a corresponding second phase image based on the radiation patterns detected by the radiation detector 14 while the test object is in the corresponding rotational position of the second phase at the time when the collimator plates of the first collimator (i.e., the collimator 40) are at the first collimator plate positions for the corresponding second phase rotation position and while the second collimator plates 710 (i.e., collimator 702) are at the second collimator plate positions for the corresponding second phase rotation position.

[0088] Фиг. 8 является схематичным чертежом иллюстративной системы 800 визуализации согласно одной или нескольким технологиям этого раскрытия. В большинстве отношений система 800 визуализации подобна системе 10 визуализации (фиг. 1) и системе 700 визуализации (фиг. 7). Таким образом, части, пронумерованные на фиг. 8 теми же ссылочными позициями, что и части на фиг. 1 и фиг. 7, имеют те же самые функции и могут быть реализованы тем же самым образом, что и эти части на фиг. 1 и фиг. 7.[0088] FIG. 8 is a schematic drawing of an exemplary imaging system 800 in accordance with one or more of the technologies of this disclosure. In most respects, imaging system 800 is similar to imaging system 10 (FIG. 1) and imaging system 700 (FIG. 7). Thus, the parts numbered in FIG. 8 with the same reference numerals as the parts in FIG. 1 and FIG. 7 have the same functions and can be implemented in the same way as those parts in FIG. 1 and FIG. 7.

[0089] В примере фиг. 8, система 800 визуализации снабжена коллиматором 802, который расположен на стороне детектора тестового объекта 704 с коллиматором 802. Другими словами, коллиматор 802 расположен между тестовым объектом 704 и детектором 14 излучения. Однако, система 800 визуализации не включает в себя коллиматор, такой как коллиматор 40, расположенный между тестовым объектом 704 и генератором 12 излучения. Подобно коллиматору 702, коллиматор 802 имеет множество коллиматорных пластин, включающее в себя коллиматорные пластины 810A, 810B. Другие коллиматорные пластины коллиматора 802 не показаны в примере фиг. 8 из-за перспективы фиг. 8. В некоторых примерах, система 800 визуализации может включать в себя систему для перемещения коллиматора 802 как единого целого. Это может быть полезно, поскольку в некоторых примерах может быть предпочтительным поддерживать положение коллиматора 802 как можно более близким к тестовому объекту 704. Коллиматор 802 может обеспечивать преимущества, подобные преимуществам, описанным выше в отношении коллиматора 702 на фиг. 7.[0089] In the example of FIG. 8, the imaging system 800 is provided with a collimator 802, which is located on the detector side of the test object 704 with the collimator 802. In other words, the collimator 802 is located between the test object 704 and the radiation detector 14. However, imaging system 800 does not include a collimator, such as collimator 40 located between test object 704 and radiation generator 12. Like collimator 702, collimator 802 has a plurality of collimator plates including collimator plates 810A, 810B. Other collimator plates of collimator 802 are not shown in the example of FIG. 8 from the perspective of FIG. 8. In some examples, imaging system 800 may include a system for moving collimator 802 as a unit. This can be useful because in some examples it may be preferable to keep the collimator 802 as close to the test object 704 as possible. The collimator 802 can provide similar benefits as described above with respect to the collimator 702 in FIG. 7.

[0090] Хотя технологии этого раскрытия были описаны со ссылкой на рентгеновские лучи, технологии этого раскрытия могут быть также применены к электромагнитному излучению на других длинах волн, например, к видимому свету, СВЧ-волнам, ультрафиолетовому излучению, радиоволнам, инфракрасному излучению, гамма-излучению, или к электромагнитному излучению других типов.[0090] Although the technologies of this disclosure have been described with reference to x-rays, the technologies of this disclosure can also be applied to electromagnetic radiation at other wavelengths, such as visible light, microwaves, ultraviolet radiation, radio waves, infrared radiation, gamma rays. radiation, or other types of electromagnetic radiation.

[0091] Технологии этого раскрытия могут быть реализованы в самых разнообразных устройствах или аппаратах. Различные компоненты, модули, или блоки описаны в этом раскрытии, чтобы подчеркнуть функциональные аспекты устройств, выполненных с возможностью осуществлять раскрытые технологии, но не обязательно требуют реализации посредством разных аппаратных блоков. Напротив, как описано выше, различные блоки могут быть объединены в некотором аппаратном блоке или обеспечены посредством набора взаимодействующих аппаратных блоков, включающих в себя один или несколько процессоров, описанных выше, вместе с пригодным программными и/или аппаратно-программными средствами.[0091] The techniques of this disclosure may be implemented in a wide variety of devices or apparatuses. Various components, modules, or blocks are described in this disclosure to emphasize the functional aspects of devices capable of implementing the disclosed technologies, but do not necessarily require implementation by different hardware blocks. Rather, as described above, the various blocks may be combined in some hardware block, or provided by a set of cooperating hardware blocks, including one or more of the processors described above, along with suitable software and/or firmware.

[0092] В одном или нескольких примерах, конкретные описанные функции могут быть реализованы в аппаратных, программных, аппаратно-программных средствах или в любой их комбинации. При реализации в программном средстве, функции могут храниться или передаваться в виде одной или нескольких команд или кода на компьютерно-читаемом носителе данных и выполняться аппаратным блоком обработки. Компьютерно-читаемые носители данных могут включать в себя компьютерно-читаемые запоминающие носители данных, которые соответствуют материальному носителю, такому как носители для хранения данных, или среды передачи данных, включающие в себя любую среду, которая обеспечивает передачу компьютерной программы из одного места в другое, например, согласно некоторому протоколу связи. Таким образом, компьютерно-читаемые носители данных, в общем, могут соответствовать (1) материальным компьютерно-читаемым запоминающим носителям данных, которые являются непереходными, или (2) среде передачи данных, такой как сигнал или несущая волна. Носители для хранения данных могут быть любыми пригодными носителями, к которым может получать доступ один или несколько компьютеров или один или несколько процессоров для извлечения команд, кода и/или структур данных для реализации технологий, описанных в этом раскрытии. Компьютерный программный продукт может включать в себя компьютерно-читаемый носитель данных.[0092] In one or more examples, the specific functions described may be implemented in hardware, software, firmware, or any combination thereof. When implemented in software, the functions may be stored or transmitted as one or more instructions or code on a computer-readable storage medium and executed by a hardware processing unit. Computer-readable storage media may include computer-readable storage media that corresponds to a tangible medium, such as storage media, or communication media, including any medium that enables the transfer of a computer program from one place to another, for example, according to some communication protocol. Thus, computer-readable storage media can generally correspond to (1) tangible computer-readable storage media that is non-transitional, or (2) a communication medium such as a signal or carrier wave. Storage media can be any suitable media that can be accessed by one or more computers or one or more processors to retrieve instructions, code, and/or data structures for implementing the technologies described in this disclosure. The computer program product may include a computer-readable storage medium.

[0093] В качестве примера, а не ограничения, такие компьютерно-читаемые носители данных могут содержать RAM, ROM, EEPROM, CD-ROM или другое оптическое дисковое запоминающее устройство, магнитное дисковое запоминающее устройство, или другие магнитные запоминающие устройства, флэш-память, или любой другой носитель, который может быть использован для хранения программного кода в форме команд или структур данных, и к которому может получать доступ компьютер. Также, любое соединение правильно называть компьютерно-читаемым носителем данных. Например, если команды передаются с веб-сайта, сервера, или другого удаленного источника с использованием коаксиального кабеля, оптоволоконного кабеля, витой пары, цифровой абонентской линии (digital subscriber line - DSL), или беспроводных технологий, таких как инфракрасная технология, радио-технология, и СВЧ-технология, то тогда коаксиальный кабель, оптоволоконный кабель, витая пара, DSL, или беспроводные технологии, такие как инфракрасная технология, радио-технология, и СВЧ-технология, следует включить в определение носителя. Следует однако понимать, что компьютерно-читаемые запоминающие носители данных и носители для хранения данных не включают в себя соединения, несущие волны, сигналы, или другие переходные носители, а вместо этого направлены на непереходные, материальные носители для хранения данных. Диски (disk и disc), используемые здесь, включают в себя компакт-диск (compact disc - CD), лазерный диск, оптический диск, универсальный цифровой диск (digital versatile disc - DVD), гибкий диск и Blu-ray-диск, причем диски с англоязычным написанием «disk» обычно воспроизводят данные магнитным способом, в то время как диски с англоязычным написанием «disc» воспроизводят данные оптическим способом с использованием лазеров. Комбинации вышеупомянутого следует также включать в объем компьютерно-читаемых носителей данных.[0093] By way of example, and not limitation, such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage device, magnetic disk storage device, or other magnetic storage devices, flash memory, or any other medium that can be used to store program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable storage medium. For example, if commands are sent from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared technology, radio technology , and microwave technology, then coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared technology, radio technology, and microwave technology should be included in the media definition. It should be understood, however, that computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other transient media, but are instead directed to non-transitory, tangible data storage media. The discs (disk and disc) used herein include a compact disc (CD), a laser disc, an optical disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein discs with the English spelling "disk" usually reproduce data magnetically, while discs with the English spelling "disc" reproduce data optically using lasers. Combinations of the above should also be included within the scope of computer-readable storage media.

[0094] Команды могут быть выполнены одним или несколькими процессорами, такими как один или несколько цифровых сигнальных процессоров (digital signal processor - DSP), микропроцессоров общего назначения, специализированных интегральных схем (application specific integrated circuit - ASIC), матриц программируемых логических вентилей (field-programmable gate array - FPGA) или других эквивалентных интегральных или дискретных логических схем. Соответственно, термин «процессор», используемый здесь, может относиться к любой из вышеупомянутых структур или к любой другой структуре, пригодной для реализации технологий, описанных здесь. Дополнительно, в некоторых аспектах, функциональность, описанная здесь, может быть обеспечена в специальных аппаратных и/или программных модулях. Также, конкретные части этих технологий могут быть реализованы в одной или нескольких схемах или логических элементах.[0094] Instructions can be executed by one or more processors, such as one or more digital signal processors (digital signal processor - DSP), general purpose microprocessors, application specific integrated circuits (ASIC), arrays of programmable logic gates (field -programmable gate array - FPGA) or other equivalent integrated or discrete logic circuits. Accordingly, the term "processor" as used herein may refer to any of the aforementioned structures, or to any other structure suitable for implementing the technologies described here. Additionally, in some aspects, the functionality described herein may be provided in dedicated hardware and/or software modules. Also, specific parts of these technologies may be implemented in one or more circuits or logic elements.

[0095] Выше были описаны различные примеры. Эти и другие примеры находятся в пределах объема нижеследующей формулы изобретения.[0095] Various examples have been described above. These and other examples are within the scope of the following claims.

Claims (86)

1. Способ генерирования томографических данных тестового объекта, причем способ содержит этапы, на которых:1. A method for generating tomographic data of a test object, the method comprising the steps of: для каждого соответствующего поворотного положения первой фазы сканирования из набора из двух или более поворотных положений первой фазы сканирования:for each corresponding rotational position of the first scanning phase from a set of two or more rotational positions of the first scanning phase: генерируют, посредством системы визуализации, соответствующее изображение первой фазы сканирования в первой последовательности изображений, причем соответствующее изображение первой фазы сканирования генерируется в то время, когда тестовый объект находится в соответствующем поворотном положении первой фазы сканирования;generating, by means of the imaging system, a corresponding first scanning phase image in the first sequence of images, wherein the corresponding first scanning phase image is generated while the test object is in the corresponding rotational position of the first scanning phase; идентифицируют, посредством системы визуализации, область интереса (ROI) в соответствующем изображении первой фазы сканирования, причем ROI соответствует части оцениваемого тестового объекта; иidentifying, by means of the imaging system, a region of interest (ROI) in the corresponding image of the first scanning phase, the ROI corresponding to a portion of the test object being evaluated; and определяют, посредством системы визуализации, на основе идентифицированной ROI в соответствующем изображении первой фазы сканирования, положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования, причем излучение излучается генератором излучения и проходит через апертуру коллиматора, коллиматор расположен между генератором излучения и детектором излучения, тестовый объект расположен между генератором излучения и детектором излучения, и коллиматор содержит множество коллиматорных пластин, которые подвижны с возможностью изменять размер и форму апертуры коллиматора;determine, by means of the imaging system, on the basis of the identified ROI in the corresponding image of the first scanning phase, the positions of the collimator plates for the corresponding rotational position of the first scanning phase, wherein the radiation is emitted by the radiation generator and passes through the aperture of the collimator, the collimator is located between the radiation generator and the radiation detector, the test object located between the radiation generator and the radiation detector, and the collimator contains a plurality of collimator plates that are movable with the ability to change the size and shape of the collimator aperture; для каждого соответствующего поворотного положения второй фазы сканирования из набора из двух или более поворотных положений второй фазы сканирования:for each corresponding rotational position of the second scanning phase from a set of two or more rotational positions of the second scanning phase: определяют, посредством системы визуализации, на основе положений коллиматорных пластин для поворотных положений первой фазы сканирования, положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования; иdetermining, by means of the imaging system, based on the positions of the collimator plates for the rotational positions of the first scanning phase, the positions of the collimator plates for the corresponding rotational position of the second scanning phase; and генерируют, посредством системы визуализации, соответствующее изображение второй фазы сканирования во второй последовательности изображений, причем соответствующее изображение второй фазы сканирования является рентгенограммой, генерируемой на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы сканирования, и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования; иgenerating, by means of the imaging system, a corresponding image of the second scanning phase in the second sequence of images, wherein the corresponding image of the second scanning phase is a radiograph generated based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second scanning phase, and while the collimator plates are at the positions of the collimator plates for the corresponding rotational position of the second scanning phase; and вычисляют, посредством системы визуализации, на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта.calculating, by means of the imaging system, based on the second sequence of images, tomographic data for a portion of the test object being evaluated. 2. Способ по п. 1, в котором:2. The method according to claim 1, in which: коллиматор расположен между генератором излучения и тестовым объектом, и тестовый объект расположен между коллиматором и детектором излучения, илиthe collimator is located between the radiation generator and the test object, and the test object is located between the collimator and the radiation detector, or коллиматор расположен между детектором излучения и тестовым объектом, и тестовый объект расположен между коллиматором и генератором излучения.the collimator is located between the radiation detector and the test object, and the test object is located between the collimator and the radiation generator. 3. Способ по п. 1, в котором набор поворотных положений первой фазы сканирования и набор поворотных положений второй фазы сканирования состоят из одних и тех же поворотных положений.3. The method of claim 1, wherein the set of rotational positions of the first scanning phase and the set of rotational positions of the second scanning phase consist of the same rotational positions. 4. Способ по п. 1, в котором:4. The method according to claim 1, in which: этап идентификации ROI в соответствующем изображении первой фазы сканирования содержит этапы, на которых:the step of identifying the ROI in the corresponding image of the first scanning phase comprises the steps of: идентифицируют, посредством системы визуализации, местоположения в соответствующем изображении первой фазы сканирования, которые соответствуют краям части оцениваемого тестового объекта; иidentifying, by means of the imaging system, locations in the corresponding image of the first scanning phase that correspond to the edges of a part of the test object being evaluated; and определяют, посредством системы визуализации, прямоугольную ограничивающую рамку, которая содержит идентифицированные местоположения, иdefining, by means of the rendering system, a rectangular bounding box that contains the identified locations, and этап определения положений коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования содержит этап, на котором определяют, посредством системы визуализации, положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования таким образом, чтобы проекция краев апертуры коллиматора на детектор излучения соответствовала определенной прямоугольной ограничивающей рамке.the step of determining the positions of the collimator plates for the corresponding rotational position of the first scanning phase comprises the step of determining, by means of the imaging system, the positions of the collimator plates for the corresponding rotational position of the first scanning phase in such a way that the projection of the edges of the collimator aperture on the radiation detector corresponds to a certain rectangular bounding box. 5. Способ по п. 1, в котором этап определения положений коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования содержит этапы, на которых:5. The method according to claim. 1, in which the step of determining the positions of the collimator plates for the corresponding rotational position of the second scanning phase comprises the steps of: на основе соответствующего поворотного положения второй фазы сканирования, являющегося таким же, как поворотное положение первой фазы сканирования в наборе поворотных положений первой фазы сканирования, определяют, посредством системы визуализации, что положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования являются такими же, как положения коллиматорных пластин для поворотного положения первой фазы сканирования; иbased on the corresponding rotational position of the second scanning phase being the same as the rotational position of the first scanning phase in the set of rotational positions of the first scanning phase, it is determined by the imaging system that the positions of the collimator plates for the corresponding rotational position of the second scanning phase are the same as the positions collimator plates for the rotary position of the first scanning phase; and на основе соответствующего поворотного положения второй фазы сканирования, являющегося отличным от любого поворотного положения первой фазы сканирования в наборе поворотных положений первой фазы сканирования, определяют, посредством системы визуализации, положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования на основе положений коллиматорных пластин для двух или более поворотных положений первой фазы сканирования.based on the corresponding rotational position of the second scanning phase, which is different from any rotational position of the first scanning phase in the set of rotational positions of the first scanning phase, the positions of the collimator plates for the corresponding rotational position of the second scanning phase are determined, by means of the imaging system, based on the positions of the collimator plates for two or more rotary positions of the first phase of scanning. 6. Способ по п. 1, в котором тестовый объект асимметричен относительно оси поворота для поворотных положений первой фазы сканирования и поворотных положений второй фазы сканирования.6. The method of claim. 1, in which the test object is asymmetric about the axis of rotation for the rotational positions of the first phase of scanning and the rotational positions of the second phase of scanning. 7. Способ по п. 1, в котором:7. The method according to claim 1, in which: коллиматор является первым коллиматором,collimator is the first collimator, положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования являются первыми положениями коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования,the positions of the collimator plates for the corresponding rotational position of the second scanning phase are the first positions of the collimator plates for the corresponding rotational position of the second scanning phase, первый коллиматор расположен между тестовым объектом и генератором излучения,the first collimator is located between the test object and the radiation generator, второй коллиматор расположен между тестовым объектом и детектором излучения,the second collimator is located between the test object and the radiation detector, причем способ дополнительно содержит этап, на котором, для каждого соответствующего поворотного положения второй фазы сканирования из набора поворотных положений второй фазы сканирования, определяют, посредством системы визуализации, на основе положений коллиматорных пластин для поворотных положений первой фазы сканирования, вторые положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования; иthe method further comprising the step of, for each corresponding rotational position of the second scanning phase from the set of rotational positions of the second scanning phase, determining, by means of the imaging system, based on the positions of the collimator plates for the rotational positions of the first scanning phase, the second positions of the collimator plates for the respective rotational positions of the second phase of scanning; and этап генерирования соответствующего изображения второй фазы сканирования содержит этап, на котором генерируют соответствующее изображение второй фазы сканирования на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы сканирования в то время, когда коллиматорные пластины первого коллиматора находятся в первых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования, и в то время, когда коллиматорные пластины второго коллиматора находятся во вторых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования.the step of generating the corresponding image of the second scanning phase comprises the step of generating the corresponding image of the second scanning phase based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second scanning phase at the time when the collimator plates of the first collimator are in the first positions of the collimator plates for the corresponding rotational position of the second scanning phase, and while the collimator plates of the second collimator are in the second positions of the collimator plates for the corresponding rotational position of the second scanning phase. 8. Способ по п. 1, в котором каждое соответствующее изображение в первой последовательности изображений является рентгенограммой.8. The method of claim 1, wherein each corresponding image in the first image sequence is a radiograph. 9. Система визуализации, содержащая:9. An imaging system, comprising: генератор излучения;radiation generator; детектор излучения;radiation detector; коллиматор, причем излучение, излучаемое генератором излучения, проходит через апертуру коллиматора, при этом коллиматор расположен между генератором излучения и детектором излучения, тестовый объект расположен между генератором излучения и детектором излучения, и коллиматор содержит множество коллиматорных пластин, которые подвижны с возможностью изменять размер и форму апертуры коллиматора; иcollimator, moreover, the radiation emitted by the radiation generator passes through the collimator aperture, while the collimator is located between the radiation generator and the radiation detector, the test object is located between the radiation generator and the radiation detector, and the collimator contains a plurality of collimator plates that are movable with the ability to change the size and shape collimator apertures; and систему обработки, выполненную с возможностью:a processing system configured to: для каждого соответствующего поворотного положения первой фазы сканирования из набора из двух или более поворотных положений первой фазы сканирования:for each corresponding rotational position of the first scanning phase from a set of two or more rotational positions of the first scanning phase: генерировать соответствующее изображение первой фазы сканирования в первой последовательности изображений, причем соответствующее изображение первой фазы сканирования генерируется в то время, когда тестовый объект находится в соответствующем поворотном положении первой фазы сканирования;generate a corresponding image of the first phase of scanning in the first sequence of images, and the corresponding image of the first phase of scanning is generated at the time when the test object is in the corresponding rotational position of the first phase of scanning; идентифицировать область интереса (ROI) в соответствующем изображении первой фазы сканирования, причем ROI соответствует части оцениваемого тестового объекта; иto identify a region of interest (ROI) in the corresponding image of the first phase of scanning, and ROI corresponds to a part of the evaluated test object; and определять, на основе идентифицированной ROI в соответствующем изображении первой фазы сканирования, положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования;determine, based on the identified ROI in the corresponding image of the first scanning phase, the positions of the collimator plates for the corresponding rotational position of the first scanning phase; для каждого соответствующего поворотного положения второй фазы сканирования из набора из двух или более поворотных положений второй фазы сканирования:for each corresponding rotational position of the second scanning phase from a set of two or more rotational positions of the second scanning phase: определять, на основе положений коллиматорных пластин для поворотных положений первой фазы сканирования, положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования; иdetermine, based on the positions of the collimator plates for the rotational positions of the first scanning phase, the positions of the collimator plates for the corresponding rotational position of the second scanning phase; and генерировать соответствующее изображение второй фазы сканирования во второй последовательности изображений, причем соответствующее изображение второй фазы сканирования является рентгенограммой, генерируемой на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы сканирования и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования; иgenerate a corresponding image of the second scan phase in the second sequence of images, wherein the corresponding second scan phase image is an X-ray pattern generated based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second scan phase and at the time when the collimator plates are in the positions of the collimator plates for the corresponding rotational position of the second scanning phase; and вычислять, на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта.calculate, based on the second sequence of images, tomographic data for a portion of the evaluated test object. 10. Система визуализации по п. 9, в которой коллиматор расположен между генератором излучения и тестовым объектом и тестовый объект расположен между коллиматором и детектором излучения.10. The imaging system of claim. 9, in which the collimator is located between the radiation generator and the test object and the test object is located between the collimator and the radiation detector. 11. Система визуализации по п. 9, в которой коллиматор расположен между детектором излучения и тестовым объектом и тестовый объект расположен между коллиматором и генератором излучения.11. The imaging system of claim. 9, in which the collimator is located between the radiation detector and the test object and the test object is located between the collimator and the radiation generator. 12. Система визуализации по п. 9, в которой набор поворотных положений первой фазы сканирования и набор поворотных положений второй фазы сканирования состоят из одних и тех же поворотных положений.12. The imaging system of claim 9, wherein the set of rotational positions of the first scanning phase and the set of rotational positions of the second scanning phase consist of the same rotational positions. 13. Система визуализации по п. 9, в которой:13. The visualization system according to claim 9, in which: система обработки выполнена таким образом, что, в качестве части этапа идентификации ROI в соответствующем изображении первой фазы сканирования, система обработки:the processing system is designed in such a way that, as part of the step of identifying the ROI in the corresponding image of the first scanning phase, the processing system: идентифицирует местоположения в соответствующем изображении первой фазы сканирования, которые соответствуют краям части оцениваемого тестового объекта; иidentifies locations in the corresponding image of the first scanning phase that correspond to the edges of a portion of the test object being evaluated; and определяет прямоугольную ограничивающую рамку, которая содержит идентифицированные местоположения, иdefines a rectangular bounding box that contains the identified locations, and система обработки выполнена таким образом, что, в качестве части этапа определения положений коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования, система обработки определяет положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования таким образом, чтобы проекция краев апертуры коллиматора на детектор излучения соответствовала определенной прямоугольной ограничивающей рамке.the processing system is designed in such a way that, as part of the step of determining the positions of the collimator plates for the corresponding rotational position of the first scanning phase, the processing system determines the positions of the collimator plates for the corresponding rotational position of the first scanning phase in such a way that the projection of the edges of the collimator aperture onto the radiation detector corresponds to a certain rectangular bounding box. 14. Система визуализации по п. 9, в которой система обработки выполнена таким образом, что, в качестве части этапа определения положений коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования, система обработки:14. The imaging system of claim. 9, wherein the processing system is configured such that, as part of the step of determining the positions of the collimator plates for the corresponding rotational position of the second scanning phase, the processing system: на основе соответствующего поворотного положения второй фазы сканирования, являющегося таким же, как поворотное положение первой фазы сканирования в наборе поворотных положений первой фазы сканирования, определяет, что положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования являются такими же, как положения коллиматорных пластин для поворотного положения первой фазы сканирования; иbased on the corresponding rotational position of the second scanning phase being the same as the rotational position of the first scanning phase in the set of rotational positions of the first scanning phase, determines that the positions of the collimator plates for the corresponding rotational position of the second scanning phase are the same as the positions of the collimator plates for the rotational positions of the first phase of scanning; and на основе соответствующего поворотного положения второй фазы сканирования, являющегося отличным от любого поворотного положения первой фазы сканирования в наборе поворотных положений первой фазы сканирования, определяет положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования на основе положений коллиматорных пластин для двух или более поворотных положений первой фазы сканирования.based on a corresponding rotational position of the second scanning phase, which is different from any rotational position of the first scanning phase in the set of rotational positions of the first scanning phase, determines the positions of the collimator plates for the corresponding rotational position of the second scanning phase, based on the positions of the collimator plates for two or more rotational positions of the first phase scanning. 15. Система визуализации по п. 9, в которой15. The visualization system according to claim 9, in which коллиматор является первым коллиматором,collimator is the first collimator, положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования являются первыми положениями коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования,the positions of the collimator plates for the corresponding rotational position of the second scanning phase are the first positions of the collimator plates for the corresponding rotational position of the second scanning phase, первый коллиматор расположен между тестовым объектом и генератором излучения,the first collimator is located between the test object and the radiation generator, второй коллиматор расположен между тестовым объектом и детектором излучения,the second collimator is located between the test object and the radiation detector, система обработки дополнительно выполнена с возможностью, для каждого соответствующего поворотного положения второй фазы сканирования из набора поворотных положений второй фазы сканирования, определять, на основе положений коллиматорных пластин для поворотных положений первой фазы сканирования, вторые положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования, иthe processing system is further configured to, for each corresponding rotational position of the second scanning phase from the set of rotational positions of the second scanning phase, determine, based on the positions of the collimator plates for the rotational positions of the first scanning phase, the second positions of the collimator plates for the corresponding rotational position of the second scanning phase, and система обработки выполнена с возможностью генерировать соответствующее изображение второй фазы сканирования на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы сканирования, в то время, когда коллиматорные пластины первого коллиматора находятся в первых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования, и в то время, когда коллиматорные пластины второго коллиматора находятся во вторых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования.the processing system is configured to generate a corresponding image of the second scanning phase based on the radiation structures detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second scanning phase, while the collimator plates of the first collimator are in the first positions of the collimator plates for the corresponding rotational position of the second scanning phase, and while the collimator plates of the second collimator are in the second positions of the collimator plates for the corresponding rotational position of the second scanning phase. 16. Система визуализации по п. 9, в которой каждое соответствующее изображение в первой последовательности изображений является изображением на основе видимого света.16. The imaging system of claim 9, wherein each corresponding image in the first sequence of images is a visible light based image. 17. Невременный компьютерно-читаемый носитель данных, имеющий команды, хранимые на нем, которые, при выполнении, заставляют один или несколько процессоров:17. A non-transitory computer-readable storage medium having instructions stored thereon which, when executed, causes one or more processors to: для каждого соответствующего поворотного положения первой фазы сканирования из набора из двух или более поворотных положений первой фазы сканирования:for each corresponding rotational position of the first scanning phase from a set of two or more rotational positions of the first scanning phase: генерировать соответствующее изображение первой фазы сканирования в первой последовательности изображений, причем соответствующее изображение первой фазы сканирования генерируется в то время, когда тестовый объект находится в соответствующем поворотном положении первой фазы сканирования;generate a corresponding image of the first phase of scanning in the first sequence of images, and the corresponding image of the first phase of scanning is generated at the time when the test object is in the corresponding rotational position of the first phase of scanning; идентифицировать область интереса (ROI) в соответствующем изображении первой фазы сканирования, причем ROI соответствует части оцениваемого тестового объекта; иto identify a region of interest (ROI) in the corresponding image of the first phase of scanning, and ROI corresponds to a part of the evaluated test object; and определять, на основе идентифицированной ROI в соответствующем изображении первой фазы сканирования, положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования, причем излучение излучается генератором излучения и проходит через апертуру коллиматора, при этом коллиматор расположен между генератором излучения и детектором излучения, тестовый объект расположен между генератором излучения и детектором излучения, и коллиматор содержит множество коллиматорных пластин, которые подвижны с возможностью изменять размер и форму апертуры коллиматора;determine, based on the identified ROI in the corresponding image of the first scan phase, the positions of the collimator plates for the corresponding rotational position of the first scan phase, and the radiation is emitted by the radiation generator and passes through the aperture of the collimator, while the collimator is located between the radiation generator and the radiation detector, the test object is located between a radiation generator and a radiation detector, and the collimator contains a plurality of collimator plates that are movable with the ability to change the size and shape of the collimator aperture; для каждого соответствующего поворотного положения второй фазы сканирования из набора из двух или более поворотных положений второй фазы сканирования:for each corresponding rotational position of the second scanning phase from a set of two or more rotational positions of the second scanning phase: определять, на основе положений коллиматорных пластин для поворотных положений первой фазы сканирования, положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования; иdetermine, based on the positions of the collimator plates for the rotational positions of the first scanning phase, the positions of the collimator plates for the corresponding rotational position of the second scanning phase; and генерировать соответствующее изображение второй фазы сканирования во второй последовательности изображений, причем соответствующее изображение второй фазы сканирования является рентгенограммой, генерируемой на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы сканирования, и в то время, когда коллиматорные пластины находятся в положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования; иgenerate a corresponding image of the second scan phase in the second sequence of images, wherein the corresponding second scan phase image is an X-ray pattern generated based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second scan phase, and at the time, when the collimator plates are in the positions of the collimator plates for the corresponding rotational position of the second scanning phase; and вычислять, на основе второй последовательности изображений, томографические данные для части оцениваемого тестового объекта.calculate, based on the second sequence of images, tomographic data for a portion of the evaluated test object. 18. Невременный компьютерно-читаемый носитель данных по п. 17, в котором:18. The non-transitory computer-readable storage medium of claim 17, wherein: в качестве части этапа, на котором заставляют один или несколько процессоров идентифицировать ROI в соответствующем изображении первой фазы сканирования, выполнение команд заставляет один или несколько процессоров:as part of the step of causing one or more processors to identify the ROI in the corresponding image of the first scan phase, executing the instructions causes one or more processors to: идентифицировать местоположения в соответствующем изображении первой фазы сканирования, которые соответствуют краям части оцениваемого тестового объекта; иidentify locations in the corresponding image of the first scanning phase that correspond to the edges of a portion of the test object being evaluated; and определять прямоугольную ограничивающую рамку, которая содержит идентифицированные местоположения, иdefine a rectangular bounding box that contains the identified locations, and в качестве части этапа, на котором заставляют один или несколько процессоров определять положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования, выполнение команд заставляет один или несколько процессоров определять положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования таким образом, чтобы проекция краев апертуры коллиматора на детектор излучения соответствовала определенной прямоугольной ограничивающей рамке.as part of the step of causing one or more processors to determine the positions of the collimator plates for the corresponding rotational position of the first scan phase, the execution of the instructions causes one or more processors to determine the positions of the collimator plates for the corresponding rotational position of the first scan phase so that the projection of the edges of the collimator aperture on the radiation detector corresponded to a certain rectangular bounding box. 19. Невременный компьютерно-читаемый носитель данных по п. 17, в котором, в качестве части этапа, на котором заставляют один или несколько процессоров определять положения коллиматорных пластин для соответствующего поворотного положения первой фазы сканирования, выполнение команд заставляет один или несколько процессоров:19. The non-transitory computer-readable storage medium of claim 17, wherein, as part of causing one or more processors to determine collimator plate positions for a corresponding rotational position of the first scan phase, executing the instructions causes one or more processors to: на основе соответствующего поворотного положения второй фазы сканирования, являющегося таким же, как поворотное положение первой фазы сканирования в наборе поворотных положений первой фазы сканирования, определять, что положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования являются такими же, как положения коллиматорных пластин для поворотного положения первой фазы сканирования; иbased on the corresponding rotational position of the second scanning phase being the same as the rotational position of the first scanning phase in the set of rotational positions of the first scanning phase, determine that the positions of the collimator plates for the corresponding rotational position of the second scanning phase are the same as the positions of the collimator plates for the rotational positions of the first phase of scanning; and на основе соответствующего поворотного положения второй фазы сканирования, являющегося отличным от любого поворотного положения первой фазы сканирования в наборе поворотных положений первой фазы сканирования, определять положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования на основе положений коллиматорных пластин для двух или более поворотных положений первой фазы сканирования.based on a corresponding rotational position of the second scanning phase, which is different from any rotational position of the first scanning phase in the set of rotational positions of the first scanning phase, determine the positions of the collimator plates for the corresponding rotational position of the second scanning phase, based on the positions of the collimator plates for two or more rotational positions of the first phase scanning. 20. Система визуализации по п. 15, в которой:20. The visualization system according to claim 15, in which: коллиматор является первым коллиматором,collimator is the first collimator, положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования являются первыми положениями коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования,the positions of the collimator plates for the corresponding rotational position of the second scanning phase are the first positions of the collimator plates for the corresponding rotational position of the second scanning phase, первый коллиматор расположен между тестовым объектом и генератором излучения,the first collimator is located between the test object and the radiation generator, второй коллиматор расположен между тестовым объектом и детектором излучения,the second collimator is located between the test object and the radiation detector, причем выполнение команд дополнительно заставляет один или несколько процессоров определять, для каждого соответствующего поворотного положения второй фазы сканирования из набора поворотных положений второй фазы сканирования, на основе положений коллиматорных пластин для поворотных положений первой фазы сканирования, вторые положения коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования, иwherein the execution of the instructions further causes one or more processors to determine, for each respective second scan phase rotation position from the set of second scan phase rotation positions, based on the collimator plate positions for the first scan phase rotation positions, the second collimator plate positions for the respective second scan phase rotation position , and выполнение команд заставляет один или несколько процессоров генерировать соответствующее изображение второй фазы сканирования на основе структур излучения, детектируемых детектором излучения в то время, когда тестовый объект находится в соответствующем поворотном положении второй фазы сканирования в то время, когда коллиматорные пластины первого коллиматора находятся в первых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования, и в то время, когда коллиматорные пластины второго коллиматора находятся во вторых положениях коллиматорных пластин для соответствующего поворотного положения второй фазы сканирования.the execution of the commands causes one or more processors to generate the corresponding image of the second scan phase based on the radiation patterns detected by the radiation detector at the time when the test object is in the corresponding rotational position of the second scan phase at the time when the collimator plates of the first collimator are in the first positions of the collimator plates for the corresponding rotational position of the second scanning phase, and while the collimator plates of the second collimator are in the second positions of the collimator plates for the corresponding rotational position of the second scanning phase.
RU2021107714A 2018-09-12 2019-08-23 Dynamic collimation of emission for non-destructive analysis of test objects RU2776469C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/129,404 2018-09-12

Publications (1)

Publication Number Publication Date
RU2776469C1 true RU2776469C1 (en) 2022-07-21

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332908A (en) * 1992-03-31 1994-07-26 Siemens Medical Laboratories, Inc. Method for dynamic beam profile generation
US6353227B1 (en) * 1998-12-18 2002-03-05 Izzie Boxen Dynamic collimators
RU2281692C1 (en) * 2004-12-28 2006-08-20 Александр Николаевич Черний Device for diaphragming working bucnh of medical x-ray diagnostic apparatus
RU2499559C2 (en) * 2007-12-21 2013-11-27 Конинклейке Филипс Электроникс, Н.В. Collimator for through scanning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332908A (en) * 1992-03-31 1994-07-26 Siemens Medical Laboratories, Inc. Method for dynamic beam profile generation
US6353227B1 (en) * 1998-12-18 2002-03-05 Izzie Boxen Dynamic collimators
RU2281692C1 (en) * 2004-12-28 2006-08-20 Александр Николаевич Черний Device for diaphragming working bucnh of medical x-ray diagnostic apparatus
RU2499559C2 (en) * 2007-12-21 2013-11-27 Конинклейке Филипс Электроникс, Н.В. Collimator for through scanning

Similar Documents

Publication Publication Date Title
US8009794B2 (en) Methods, apparatus, and computer-program products for increasing accuracy in cone-beam computed tomography
US11154257B2 (en) Imaging control device, imaging control method, and imaging control program
CA3109826C (en) Dynamic radiation collimation for non-destructive analysis of test objects
US10175181B2 (en) X-ray imaging system allowing the correction of the scatter radiation and precise detection of the distance between the source and the detector
JP6636923B2 (en) X-ray imaging device
JP6488292B2 (en) X-ray system such as a tomosynthesis system and method for acquiring an image of an object
CN104161536A (en) Cone beam CT scatter correction method and device based on complementary gratings
KR20180016367A (en) An image acquiring device and an image acquiring method, and an image correcting program
US10413259B2 (en) Gap resolution for linear detector array
US20200008759A1 (en) Image display device, image display method, and image display program
US20240112380A1 (en) Out of View CT Scan Reconstruction
JP2014068883A (en) Image processor, radiation imaging system, image processing program and image processing method
JP2011220982A (en) Ct device
RU2776469C1 (en) Dynamic collimation of emission for non-destructive analysis of test objects
JP2009183373A (en) X-ray grid and x-ray diagnostic apparatus
JP7178621B2 (en) Image processing device and image processing method
JP7178620B2 (en) Inspection device and inspection method
JP2018179711A (en) X-ray inspection device
WO2017188559A1 (en) Method of image reconstruction in computed tomography
TWI613998B (en) Reduction method for boundary artifact on the tomosynthesis
JP2020008361A (en) CT reconstruction processing method by filtered back projection method
JPH1133019A (en) Radiation exposure and detection device and tomograph
JP2005331527A (en) Computerized tomography method and device
JP2008051548A (en) Computer tomographic apparatus