WO2020209156A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2020209156A1
WO2020209156A1 PCT/JP2020/015015 JP2020015015W WO2020209156A1 WO 2020209156 A1 WO2020209156 A1 WO 2020209156A1 JP 2020015015 W JP2020015015 W JP 2020015015W WO 2020209156 A1 WO2020209156 A1 WO 2020209156A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
coating layer
liquid
heat exchanger
evaporator
Prior art date
Application number
PCT/JP2020/015015
Other languages
French (fr)
Japanese (ja)
Inventor
峻裕 木村
竹彦 名坂
Original Assignee
矢崎エナジーシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎エナジーシステム株式会社 filed Critical 矢崎エナジーシステム株式会社
Publication of WO2020209156A1 publication Critical patent/WO2020209156A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Definitions

  • the present invention relates to a heat exchanger.
  • the heat exchanger may be installed, for example, in the window of a building.
  • the output of the heat exchanger tends to decrease due to the miniaturization of the heat exchanger according to the size of the window portion, and the amount of liquid used may decrease. Therefore, it has been desired to widely wet the entire heat exchange surface with a small amount of liquid.
  • the heat exchange surface is formed of a glass plate for the purpose of daylighting, and the liquid is supplied to the glass plate.
  • the ribs and protrusions as described in Patent Document 1 can be easily formed on a metal member, but are difficult to form on a glass plate.
  • the heat exchange surface may be formed of a glass plate for other purposes such as improvement of design, and a small amount of liquid may be supplied. As described above, when supplying a small amount of liquid to the heat exchanger having the glass plate, it has been desired to widely wet the heat exchange surface.
  • An object of the present invention is to provide a heat exchanger capable of widely wetting a heat exchange surface while supplying a small amount of liquid to a glass plate.
  • the heat exchanger of the present invention comprises a glass plate constituting the heat exchange surface, a hydrophilic coating layer laminated on the surface of the glass plate on the side to which the liquid is supplied, and having uneven portions on the surface. It is characterized by having.
  • the hydrophilic coating layer laminated on the glass plate has uneven portions, so that even a small amount of liquid can be used as compared with a configuration in which the coating layer is simply provided.
  • the heat exchange surface can be widely wetted. Further, by forming the uneven portion on the coating layer instead of the glass plate itself, the influence on the glass plate can be reduced, the degree of freedom in forming the uneven portion is high, and the heat exchange surface is easily wetted widely.
  • FIG. 1 It is a front view which shows the evaporator of Example 6 used for the absorption chiller. It is sectional drawing which shows the said evaporator. It is sectional drawing which shows the state which changed the shape of the evaporator of Example 6. It is sectional drawing which shows the state which changed the shape of the evaporator of Example 6. It is sectional drawing which shows the heat exchanger of the modification 1. It is sectional drawing which shows the heat exchanger of the modification 2. It is sectional drawing which shows the heat exchanger of Reference Example 1. FIG. It is sectional drawing which shows the heat exchanger of Reference Example 2. FIG. It is sectional drawing which shows the heat exchanger of Reference Example 3. FIG. It is sectional drawing which shows the heat exchanger of Reference Example 4. FIG. It is sectional drawing which shows the heat exchanger of Reference Example 5. FIG. It is sectional drawing which shows the heat exchanger of Reference Example 6.
  • the absorption chiller 1 of the present embodiment includes an evaporator 2, an absorber 3, a regenerator 4, a condenser 5, and a solution heat exchanger 6.
  • the evaporator 2 and the absorber 3 function as heat exchangers.
  • water is used as a refrigerant and lithium bromide is used as an absorption liquid, but ammonia may be used as a refrigerant and water may be used as an absorption liquid, and the refrigerant and absorption may be used.
  • the combination with the liquid may be appropriately selected according to the intended use and the like.
  • the evaporator 2 has a glass plate 21 extending in the vertical direction and is formed as a flat plate as a whole.
  • the glass plate 21 may have a slight inclination with respect to the vertical direction.
  • the evaporator 2 is arranged so as to face (parallel to each other) the glass plate 31 described later of the absorber 3, and the glass plate 31 side becomes the liquid supply surface 2A. That is, the liquid refrigerant L1 supplied from the condenser 5 is dropped onto the liquid supply surface 2A from the supply unit 20 arranged above the glass plate 21.
  • the glass plate 21 constitutes the heat exchange surface of the evaporator 2.
  • the absorber 3 has a glass plate 31 extending in the vertical direction and is formed as a flat plate as a whole.
  • the glass plate 31 may have a slight inclination with respect to the vertical direction.
  • the glass plate 21 side of the absorber 3 is the liquid supply surface 3A. That is, the absorbing liquid (concentrated solution) L2 supplied from the regenerator 4 through the solution heat exchanger 6 is dropped onto the liquid supply surface 3A from the supply unit 30 arranged above the glass plate 31. Is supplied.
  • the glass plate 31 constitutes the heat exchange surface of the absorber 3.
  • the absorption chiller 1 has a housing 10 having a double glass structure composed of an evaporator 2 and an absorber 3 facing each other as described above. Further, an evaporation space S is formed between the evaporator 2 and the absorber 3. In order to prevent the glass plates 21 and 31 from bending due to the pressure difference between the evaporation space S and the external space of the housing 10, a columnar connecting member for connecting the glass plates 21 and 31 may be provided. ..
  • the absorption chiller 1 is arranged indoors with respect to the window glass of the building, or is provided at the opening of the building to form the window portion.
  • the evaporator 2 shall be provided on the indoor side.
  • the absorption chiller 1 may be provided on the wall portion that partitions the space in the building.
  • the liquid refrigerant L1 is supplied to the evaporator 2 and the absorption liquid L2 is supplied to the absorber 3.
  • the evaporation space S is depressurized.
  • the liquid refrigerant L1 adhering to the liquid supply surface 2A of the evaporator 2 evaporates by taking away heat from the surroundings, so that a cooling effect can be obtained.
  • the wider the liquid supply surfaces 2A and 3A are wetted by the supplied liquid, the higher the cooling effect (efficiency of the heat exchanger).
  • the configuration may be such that heat exchange with the space to be cooled is easy.
  • the absorbent liquid (rare solution) L3 that has absorbed the liquid refrigerant is recovered by the recovery unit 7 arranged below the evaporator 2 and the absorber 3, passes through the solution heat exchanger 6, and is introduced into the regenerator 4. ..
  • the dilute solution is heated in the regenerator 4 and separated into the vapor refrigerant G1 and the absorption liquid (concentrated solution) L2.
  • the regenerator 4 may be provided with an appropriate heating means.
  • the regenerator 4 may be configured to send a heat medium heated by sunlight to the regenerator 4, or the regenerator 4 may be inserted into an opening of a building or the like. By arranging it and attaching a heat collecting panel, it may be directly heated by using sunlight.
  • the vapor refrigerant G1 becomes the liquid refrigerant L1 when it is introduced into the condenser 5 and cooled. Further, the dilute solution L3 heading to the regenerator 4 and the absorbing liquid L2 heading from the regenerator 4 to the absorber 3 exchange heat in the solution heat exchanger 6. The liquid refrigerant L1 and the absorbing liquid L2 are introduced into the feeder 6, and the above cycle is repeated.
  • the absorber 3 as a heat exchanger may have the same configuration as the evaporator 2.
  • the evaporator 2 of this embodiment has a glass plate 21 and a hydrophilic coating layer 22 laminated on the glass plate 21.
  • the coating layer 22 is laminated so as to constitute the entire liquid supply surface 2A.
  • a plurality of granular members 23 are embedded in the coating layer 22. By partially exposing the granular member 23, the uneven portion 221A is formed on the surface 221 of the coating layer 22. The granular member 23 does not reach the surface of the glass plate 21.
  • the coating layer 22 is composed of a hydrophilic coating agent (for example, a water glass-based coating agent, a silicon-based coating agent, a silicon organic hybrid-based coating agent, a hydrophilic resin-based coating agent, or the like) capable of holding the granular member 23.
  • the granular member 23 is, for example, hydrophilic particles having a size of about 0.5 to 2 mm and preferably has a rough surface, and particles such as silica gel, glass fragments, silica gel, metal particles, and ceramics are exemplified. If the granular member 23 is of the same type as the coating agent (that is, has similar chemical properties), the adhesion to the coating layer 22 can be improved. Further, it is sufficient that about half of the granular member 23 is embedded in the coating layer 22, that is, the film thickness of the coating layer 22 may be the same as the diameter of the granular member 23.
  • the granular member 23 may be embedded in the coating layer 22 by applying the coating agent to the glass plate 21, spraying the granular member 23 before the coating agent is cured, and curing the coating agent to form the coating layer 22. ..
  • the uneven portion 221A By forming the uneven portion 221A on the surface 221 of the coating layer 22 in this way, the value of the surface roughness becomes large.
  • the evaporator 2 of this embodiment has a glass plate 21 and a coating layer 24 laminated on the glass plate 21.
  • the coating layer 24 is laminated so as to constitute the entire liquid supply surface 2A.
  • Concavo-convex portion 241A is formed on the surface 241 of the coating layer 24.
  • the surface 241 has a plurality of recesses 242 due to the coating agent being scraped off in dots, and the concave-convex portion 241A is formed by the plurality of recesses 242.
  • the portion of the surface 241 where the recess 242 is not formed is formed flat.
  • the recess 242 does not reach the surface of the glass plate 21.
  • the coating layer 24 is composed of the same coating agent as in Example 1.
  • a coating agent is applied to the glass plate 21, the coating agent is cured, and then rough surface processing is performed by sandblasting to form recesses 242.
  • the rough surface processing method for forming the concave portion 242 may be wedge blasting or laser processing.
  • the concave portion formed in the coating layer is not limited to a dot shape, and may be linear or may have a zigzag pattern or the like. Further, when forming a recess other than a dot shape, a groove may be formed by scraping the coating layer with a grindstone, a milling cutter or the like.
  • a rod-shaped member 25 is further provided with respect to the evaporator 2 of the first embodiment.
  • FIG. 4 shows only a part of the granular member 23, it is assumed that the granular member 23 is provided on the entire surface 221.
  • the rod-shaped member 25 is embedded in the coating layer 22 and partially exposed from the surface 221.
  • the rod-shaped member 25 does not reach the surface of the glass plate 21.
  • the rod-shaped member 25 may be, for example, a glass rod having a diameter of about 2 to 5 mm. If the rod-shaped member 25 is of the same type as the coating agent (that is, has similar chemical properties), the adhesion to the coating layer 22 can be improved.
  • the horizontal guide portion is configured by arranging the rod-shaped member 25 so as to extend along the horizontal direction.
  • a plurality of rod-shaped members 25 are arranged in the horizontal direction at intervals to form rows L1 of horizontal guide portions, and rows L2 to L4 are also formed below the rows L1.
  • the rod-shaped members 25 are staggered.
  • the rod-shaped members 25 in the row L2 are arranged below the distance between the rod-shaped members 25 in the row L1
  • the rod-shaped members 25 in the row L1 are arranged above the distance between the rod-shaped members 25 in the row L2. ..
  • the liquid refrigerant When the liquid refrigerant is supplied from above to the liquid supply surface 2A of the evaporator 2, the liquid refrigerant descends along the surface 221 of the coating layer 22.
  • the liquid refrigerant that has reached the rod-shaped member 25 flows along the horizontal direction along the rod-shaped member 25. That is, the horizontal guide portion composed of the rod-shaped member 25 guides the liquid refrigerant so as to flow along the horizontal direction.
  • the liquid refrigerant that has reached the end of the rod-shaped member 25 passes through the gap between the rod-shaped members 25 that are adjacent to each other in the horizontal direction and descends. Since the rod-shaped members 25 in the lower row are arranged below the gap between the rod-shaped members 25 in a certain row, the lowered liquid refrigerant reaches the rod-shaped members 25 in the lower row. By repeating the above, the liquid refrigerant is guided in the horizontal direction while descending, and the liquid film spreads on the surface 221.
  • a rod-shaped member 25 is further provided with respect to the evaporator 2 of the second embodiment.
  • FIG. 6 shows only a part of the recesses 242, it is assumed that the recesses 242 are formed on the entire surface 241.
  • the size, material, arrangement, etc. of the rod-shaped member 25 are the same as those in the third embodiment.
  • Example 5 In the evaporator 2 of this embodiment, as shown in FIGS. 7 and 8, a patterned coating layer 26 is formed on the surface of the glass plate 21. On the surface of the coating layer 26, uneven portions may be formed by granular members as in Example 1, or uneven portions may be formed by concave portions as in Example 2. Further, the material of the coating layer 26 may be the same as that of the first embodiment.
  • the coating layer 26 is composed of a plurality of rows 261 to 266 extending in the horizontal direction, and the coating layer is not formed between the rows to form untreated portions 211 to 215 where the surface of the glass plate 21 is exposed. ing.
  • the untreated portions 211 to 215 are concave with respect to the coating layer 26.
  • the liquid refrigerant supplied to the liquid supply surface 2A of the evaporator 2 descends while being transmitted in the horizontal direction in each of the rows 261 to 266 and the untreated portions 211 to 215. That is, since the rows 261 to 266 are subjected to the hydrophilic treatment, it is easy to hold the liquid refrigerant, and the liquid refrigerant flows along the horizontal direction which is the extending direction of the rows. On the other hand, since the untreated portions 211 to 215 are concave grooves with respect to the rows 261 to 266, the liquid refrigerant flows along the horizontal direction which is the extending direction due to the capillary phenomenon.
  • a predetermined pattern is formed by providing a coating agent only on a part of the surface of the glass plate, but the coating agent is provided on the entire surface of the glass plate and the cured coating agent is partially applied.
  • a predetermined pattern may be formed by scraping off the glass.
  • the groove portion may be formed by scraping the positions corresponding to the untreated portions 211 to 215 by sandblasting or mechanical cutting.
  • Example 6 As shown in FIGS. 9 and 10, the evaporator 2 of this embodiment is further provided with a hydrophobic coating layer 27 as compared with Example 5.
  • the hydrophobic coating layer 27 is formed between adjacent rows 261 to 266 (that is, positions corresponding to the untreated portions 211 to 215) and has rows 271 to 275.
  • the liquid refrigerant supplied to the liquid supply surface 2A of the evaporator 2 descends while being transmitted in the horizontal direction in rows 261 to 266.
  • the hydrophobic coating layer 27 is easily repelled by the liquid refrigerant, and the liquid refrigerant is suppressed from falling in the hydrophobic coating layer 27. Therefore, the liquid refrigerant whose lowering is suppressed stays in the hydrophilic coating layer 26 and easily spreads in the horizontal direction.
  • the rows 271 to 275 of the hydrophobic coating layer 27 may be formed with vertical guide portions through which the liquid refrigerant can easily flow along the vertical direction.
  • rows 271 to 274 may be interrupted, and a hydrophilic coating agent may be provided between them.
  • the rows 271 to 274 are arranged in the same manner as the rod-shaped member 25 of the third embodiment, and the row 272 is left so as to correspond to the lower part of the portion where the row 271 is interrupted. Row 271 is left to correspond upwards.
  • the liquid refrigerant may flow so as to reciprocate from side to side.
  • the liquid refrigerant is in row 271. After flowing to the right, it flows to the left in column 272.
  • the row of the coating layer 26 and the row of the hydrophobic coating layer 27 may have an inclination with respect to the horizontal direction. For example, as shown in FIG. 12, when there is a region A1 on the glass plate 2 in which it is desired to avoid the passage of the liquid refrigerant, the rows of the coating layer 26 and the hydrophobic coating layer 27 are inclined so as to avoid this region A1. You may.
  • the hydrophilic coating layer laminated on the glass plate 21 has uneven portions, the heat exchange surface can be widely wetted even with a small amount of liquid, as compared with a configuration in which the coating layer is simply provided.
  • the uneven portion on the coating layer instead of the glass plate 21 itself, the influence on the glass plate 21 can be reduced, the degree of freedom in forming the uneven portion is high, and the heat exchange surface is widely wetted. Cheap. Further, it is easy to secure the strength of the glass plate 21, and it is possible to prevent the glass plate 21 from being damaged when the evaporation space S is depressurized.
  • the entire coating layer can be widely wetted even with a small amount of liquid. That is, by forming the uneven portion, the effect of wetting a relatively narrow range can be obtained, and by providing the horizontal guide portion, the effect of moving the liquid in a relatively wide range can be obtained.
  • the liquid when the liquid is supplied from above to the glass plate 21 along the vertical direction, the liquid descends due to gravity, so that it is unlikely to move in the horizontal direction.
  • the heat exchange surface can be widely wetted even when the liquid supply location is fixed or small.
  • the present invention is not limited to the above embodiment, but includes other configurations and the like that can achieve the object of the present invention, and the following modifications and the like are also included in the present invention.
  • the coating layer 22 is laminated on the glass plate 21 of the evaporator 2 as a heat exchanger to form the uneven portion 221A.
  • a coating layer may be laminated on a glass plate constituting one side surface of the housing to form an uneven portion.
  • the condenser 5 and the heat exchanger 6 may include a housing having a double glass structure.
  • the evaporator 2 and the absorber 3 face each other to form the housing 10, but the configuration is not limited to this.
  • a predetermined region of one glass plate may be used as an evaporator and another region may be used as an absorber.
  • a housing composed of two glass plates each functioning as an evaporator and a housing composed of two glass plates both functioning as an absorber are prepared, and these housings are prepared.
  • the body may be connected by a passage through which the fluid can pass.
  • the housing 10 provided with the evaporator 2 and the absorber 3 is provided with the evaporator 2 facing the indoor side, but the absorber 3 may be directed toward the indoor side.
  • a housing composed of a condenser or a regenerator may be arranged in an opening of the building.
  • a device that generates heat such as an absorber or a condenser
  • the heat exhausting means may be a water-cooled type or an air-cooled type.
  • the heat exchanger may be a device that does not involve decompression, such as a vaporization cooler.
  • a vaporization cooler When the glass strength is not required easily, or when the glass strength can be secured by appropriately selecting the material and the like, the glass plate is described as described in Modifications 1 and 2 and Reference Examples 1 to 6 below. The unevenness may be formed on itself.
  • the heat exchanger of this modification includes a glass plate 8A and a coating layer 28.
  • the glass plate 8A is formed with a plurality of recesses 81 extending along the horizontal direction.
  • the recess 81 may be formed by, for example, machining such as cutting, pressing a mold, or chemical etching.
  • the coating layer 28 is laminated only on the concave portions 81, and is not laminated on the convex portions 82 between the concave portions 81. Further, the coating layer 28 is embedded with the same granular member 23 as in the first embodiment to form an uneven portion. As in the second embodiment, the coating layer may have a plurality of concave portions on the surface to form uneven portions. Further, the convex portion 82 may be laminated with a hydrophobic coating layer as in Example 6.
  • the heat exchanger of this modification includes a glass plate 8B and a coating layer 28.
  • a plurality of convex portions 83 extending in the horizontal direction are provided on the surface of the glass plate 8B by glass frit printing, and concave portions 81 are formed between adjacent convex portions 83. Similar to the first modification, the concave portion 81 is laminated with a coating layer 28 to form an uneven portion.
  • the convex portions 81 and 83 have a tapered shape (a shape in which the vertical dimension decreases toward the tip side), but the convex portions of the reference example described later It may have such a shape.
  • the heat exchangers of Reference Examples 1 to 6 include a glass plate forming a heat exchange surface, and a concave groove portion extending in a horizontal direction is formed on the surface of the glass plate. According to such a heat exchanger, the liquid can be guided along the horizontal direction, and the liquid can be widely wetted and spread on the glass plate. At this time, the glass plate may or may not have a hydrophilic coating layer formed. Further, when the hydrophilic coating layer is formed on the glass plate, the uneven portion may or may not be formed as in Examples 1 to 6 and Modifications 1 and 2.
  • a hydrophilic coating layer may be laminated on the concave groove portion of the glass plate, and a hydrophobic coating layer may be laminated on the tops of the convex wall portions on both sides of the concave groove portion.
  • the hydrophilic coating layer holds the liquid in the concave groove portion, and the hydrophobic coating layer can prevent the liquid from flowing out from the concave groove portion.
  • the height of the convex wall portion is preferably 1 mm or more, and more preferably 3 mm or more. Further, the height of the convex wall portion is preferably 5 mm or less. If the convex wall portion is too low, the liquid tends to flow out from the concave groove portion. On the other hand, the higher the convex wall portion, the easier it is to hold the liquid in the concave groove portion, but the thicker the liquid film in the concave groove portion. If the liquid film is too thick, the heat transfer property may decrease during heat exchange. Further, if the convex wall portion is too high, the strength may be lowered, and it may be difficult to form the convex wall portion, which may increase the cost.
  • the width of the convex wall portion is preferably narrow so as not to impair the strength, and is preferably narrower than the width of the concave groove portion, for example.
  • the narrower the width of the convex wall portion the larger the area where the liquid film can be formed, and the larger the heat transfer area is likely to be.
  • the width of the concave groove portion may be, for example, 30 to 50 mm (60 to 100 times the width of the convex wall portion) or 1 to 5 mm (2 to 10 times the width of the convex wall portion).
  • a hydrophilic coating layer is laminated in the concave groove portion and the uneven portion as in Examples 1 to 6 and Modifications 1 and 2 is formed, and the liquid easily wets and spreads in the concave groove portion. Can increase the area of the liquid film by widening the width of the concave groove portion.
  • narrowing the width of the concave groove portion makes it easier to hold the liquid and makes it easier to form a liquid film in the entire concave groove portion.
  • the concave groove portion and the convex wall portion may be formed by machining as in Example 7, or may be formed by glass frit printing as in Example 8.
  • the heat exchangers of Reference Example 1 shown in FIG. 15 and Reference Example 2 shown in FIG. 16 include a glass plate 8C in which the convex wall portion 84 protrudes from the surface.
  • the heat exchanger of Reference Example 1 has a wider distance between the convex wall portions 84 than the heat exchanger of Reference Example 2, that is, the width of the concave groove portion 84A is wider.
  • a convex wall portion 85 is formed on the surface of the glass plate 8D, and a chamfered portion 85B is formed at the boundary portion between the convex wall portion 85 and the concave groove portion 85A. That is, the side surface of the convex wall portion 85 rises smoothly and continuously with the bottom surface of the concave groove portion 85A. Further, a corner portion 85C is formed between the side surface of the convex wall portion 85 and the tip end surface.
  • the chamfered portion 85B the strength can be ensured when the convex wall portion 85 is formed by machining. Further, by forming the corner portion 85C, it is possible to make it difficult for the liquid to get over the convex wall portion 85.
  • a columnar convex wall portion 86 extending in the horizontal direction is formed on the surface of the glass plate 8E.
  • a convex wall portion 87 having a width wider than that of the convex wall portions 84 of Reference Examples 1 and 2 is formed on the surface of the glass plate 8F.
  • the convex wall portion 87 is formed in a square cross section.
  • a tapered convex wall portion 88 is formed on the surface of the glass plate 8G.
  • the convex wall portion 88 has a vertex 88A and is formed in a triangular cross section.
  • the granular member 23 does not reach the surface of the glass plate 21, but the granular member may reach the surface of the glass plate 21. At this time, it is preferable that the granular member is in contact with the surface of the glass plate and does not bite into the glass plate. The granular member may bite into the glass plate to the extent that the strength of the glass plate is not reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a heat exchanger such that a heat exchange surface can be wet widely while supplying a small amount of liquid to a glass plate. The hydrophilic coating layer laminated on the glass plate (21) has uneven portions, and thus it is possible to widely wet the heat exchange surface even with a small amount of liquid, as compared with a configuration in which the coating layer is simply provided. Furthermore, by forming the uneven portions on the coating layer instead of the glass plate (21) itself, the influence on the glass plate (21) can be reduced, the degree of freedom in forming the uneven portions is increased, and the heat exchange surface can be easily wet widely.

Description

熱交換器Heat exchanger
 本発明は、熱交換器に関するものである。 The present invention relates to a heat exchanger.
 従来、吸収式熱交換器に組み込まれる伝熱管として、管外面に螺旋状リブと突起とを設けたものが提案されている(例えば、特許文献1参照)。特許文献1に記載された伝熱管では、突起の稜線部を管軸方向に張り出すような形状とすることで、液体の濡れ広がり性の向上を図っている。 Conventionally, as a heat transfer tube incorporated in an absorption chiller, a tube having a spiral rib and a protrusion on the outer surface of the tube has been proposed (see, for example, Patent Document 1). In the heat transfer tube described in Patent Document 1, the ridgeline portion of the protrusion is shaped so as to project in the direction of the tube axis, thereby improving the wettability and spreading property of the liquid.
特開平11-294899号公報JP-A-11-294899
 熱交換器は、例えば建物の窓部に設けられることがある。このような熱交換器の場合、窓部の大きさに応じて熱交換器が小型化されることにより、出力が低下しやすく、使用する液体の量が減少してしまうことがある。従って、少量の液体によって熱交換面全体を広く濡らすことが望まれていた。熱交換器を建物の開口部(窓部)に設ける場合、採光の目的から熱交換面をガラス板によって構成し、ガラス板に対して液体を供給することとなる。特許文献1に記載されたようなリブや突起は、金属部材に形成することは容易であっても、ガラス板に形成することは困難である。また、開口部に設ける目的以外にも、意匠性の向上等の他の目的から熱交換面がガラス板によって構成され、少量の液体が供給される場合がある。このように、ガラス板を有して構成される熱交換器に少量の液体を供給する場合に、熱交換面を広く濡らすことが望まれていた。 The heat exchanger may be installed, for example, in the window of a building. In the case of such a heat exchanger, the output of the heat exchanger tends to decrease due to the miniaturization of the heat exchanger according to the size of the window portion, and the amount of liquid used may decrease. Therefore, it has been desired to widely wet the entire heat exchange surface with a small amount of liquid. When the heat exchanger is installed in the opening (window) of the building, the heat exchange surface is formed of a glass plate for the purpose of daylighting, and the liquid is supplied to the glass plate. The ribs and protrusions as described in Patent Document 1 can be easily formed on a metal member, but are difficult to form on a glass plate. Further, in addition to the purpose of providing the opening, the heat exchange surface may be formed of a glass plate for other purposes such as improvement of design, and a small amount of liquid may be supplied. As described above, when supplying a small amount of liquid to the heat exchanger having the glass plate, it has been desired to widely wet the heat exchange surface.
 本発明の目的は、ガラス板に対して少量の液体を供給しつつ、熱交換面を広く濡らすことができる熱交換器を提供することにある。 An object of the present invention is to provide a heat exchanger capable of widely wetting a heat exchange surface while supplying a small amount of liquid to a glass plate.
 本願発明の熱交換器は、熱交換面を構成するガラス板と、前記ガラス板のうち液体が供給される側の面に積層されるとともに、表面に凹凸部を有する親水性のコーティング層と、を備えることを特徴とする。 The heat exchanger of the present invention comprises a glass plate constituting the heat exchange surface, a hydrophilic coating layer laminated on the surface of the glass plate on the side to which the liquid is supplied, and having uneven portions on the surface. It is characterized by having.
 このような本願発明の熱交換器によれば、ガラス板に積層された親水性のコーティング層が凹凸部を有することで、単にコーティング層を設ける構成と比較して、少量の液体であっても熱交換面を広く濡らすことができる。また、ガラス板自体ではなくコーティング層に凹凸部を形成することで、ガラス板への影響を低減することができ、凹凸部を形成する際の自由度が高く、熱交換面を広く濡らしやすい。 According to such a heat exchanger of the present invention, the hydrophilic coating layer laminated on the glass plate has uneven portions, so that even a small amount of liquid can be used as compared with a configuration in which the coating layer is simply provided. The heat exchange surface can be widely wetted. Further, by forming the uneven portion on the coating layer instead of the glass plate itself, the influence on the glass plate can be reduced, the degree of freedom in forming the uneven portion is high, and the heat exchange surface is easily wetted widely.
本発明の実施形態に係る吸収式冷凍機を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the absorption chiller which concerns on embodiment of this invention. 前記吸収式冷凍機に用いられる実施例1の蒸発器を示す断面図である。It is sectional drawing which shows the evaporator of Example 1 used for the absorption chiller. 前記吸収式冷凍機に用いられる実施例2の蒸発器を示す断面図である。It is sectional drawing which shows the evaporator of Example 2 used for the absorption chiller. 前記吸収式冷凍機に用いられる実施例3の蒸発器を示す斜視図である。It is a perspective view which shows the evaporator of Example 3 used in the absorption chiller. 前記蒸発器を示す正面図である。It is a front view which shows the evaporator. 前記吸収式冷凍機に用いられる実施例4の蒸発器を示す斜視図である。It is a perspective view which shows the evaporator of Example 4 used in the absorption chiller. 前記吸収式冷凍機に用いられる実施例5の蒸発器を示す正面図である。It is a front view which shows the evaporator of Example 5 used in the absorption chiller. 前記蒸発器を示す断面図である。It is sectional drawing which shows the said evaporator. 前記吸収式冷凍機に用いられる実施例6の蒸発器を示す正面図である。It is a front view which shows the evaporator of Example 6 used for the absorption chiller. 前記蒸発器を示す断面図である。It is sectional drawing which shows the said evaporator. 実施例6の蒸発器の形状を変更した様子を示す断面図である。It is sectional drawing which shows the state which changed the shape of the evaporator of Example 6. 実施例6の蒸発器の形状を変更した様子を示す断面図である。It is sectional drawing which shows the state which changed the shape of the evaporator of Example 6. 変形例1の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of the modification 1. 変形例2の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of the modification 2. 参考例1の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of Reference Example 1. FIG. 参考例2の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of Reference Example 2. FIG. 参考例3の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of Reference Example 3. FIG. 参考例4の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of Reference Example 4. FIG. 参考例5の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of Reference Example 5. FIG. 参考例6の熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger of Reference Example 6.
 本実施形態の吸収式冷凍機1は、図1に示すように、蒸発器2と、吸収器3と、再生器4と、凝縮器5と、溶液熱交換器6と、を備え、これらのうち蒸発器2と吸収器3とが熱交換器として機能する。本実施形態の吸収式冷凍機1では、例えば水を冷媒として用いるとともに臭化リチウムを吸収液として用いるものとするが、アンモニアを冷媒として用いるとともに水を吸収液として用いてもよく、冷媒と吸収液との組み合わせは用途等に応じて適宜に選択されればよい。 As shown in FIG. 1, the absorption chiller 1 of the present embodiment includes an evaporator 2, an absorber 3, a regenerator 4, a condenser 5, and a solution heat exchanger 6. Of these, the evaporator 2 and the absorber 3 function as heat exchangers. In the absorption chiller 1 of the present embodiment, for example, water is used as a refrigerant and lithium bromide is used as an absorption liquid, but ammonia may be used as a refrigerant and water may be used as an absorption liquid, and the refrigerant and absorption may be used. The combination with the liquid may be appropriately selected according to the intended use and the like.
 蒸発器2は、鉛直方向に沿って延びるガラス板21を有して全体が平板状に形成される。ガラス板21は、鉛直方向に対して多少の傾きを有していてもよい。蒸発器2は、吸収器3の後述するガラス板31と対向するように(間隔をあけて平行に)配置され、ガラス板31側が液体供給面2Aとなる。即ち、凝縮器5から供給される液冷媒L1が、ガラス板21の上方に配置された供給部20から、液体供給面2Aに対して滴下される。液冷媒L1が供給されることにより、ガラス板21が蒸発器2の熱交換面を構成する。 The evaporator 2 has a glass plate 21 extending in the vertical direction and is formed as a flat plate as a whole. The glass plate 21 may have a slight inclination with respect to the vertical direction. The evaporator 2 is arranged so as to face (parallel to each other) the glass plate 31 described later of the absorber 3, and the glass plate 31 side becomes the liquid supply surface 2A. That is, the liquid refrigerant L1 supplied from the condenser 5 is dropped onto the liquid supply surface 2A from the supply unit 20 arranged above the glass plate 21. By supplying the liquid refrigerant L1, the glass plate 21 constitutes the heat exchange surface of the evaporator 2.
 吸収器3は、鉛直方向に沿って延びるガラス板31を有して全体が平板状に形成される。ガラス板31は、鉛直方向に対して多少の傾きを有していてもよい。吸収器3のうちガラス板21側が液体供給面3Aとなる。即ち、再生器4から溶液熱交換器6を通過して供給される吸収液(濃溶液)L2が、ガラス板31の上方に配置された供給部30から、液体供給面3Aに対して滴下されて供給される。吸収液L2が供給されることにより、ガラス板31が吸収器3の熱交換面を構成する。 The absorber 3 has a glass plate 31 extending in the vertical direction and is formed as a flat plate as a whole. The glass plate 31 may have a slight inclination with respect to the vertical direction. The glass plate 21 side of the absorber 3 is the liquid supply surface 3A. That is, the absorbing liquid (concentrated solution) L2 supplied from the regenerator 4 through the solution heat exchanger 6 is dropped onto the liquid supply surface 3A from the supply unit 30 arranged above the glass plate 31. Is supplied. By supplying the absorbing liquid L2, the glass plate 31 constitutes the heat exchange surface of the absorber 3.
 吸収式冷凍機1は、上記のように対向した蒸発器2と吸収器3とによって構成された二重ガラス構造の筐体10を有する。また、蒸発器2と吸収器3との間には、蒸発空間Sが形成されている。尚、蒸発空間Sと筐体10の外部空間との圧力差によってガラス板21、31が撓むことを抑制するために、ガラス板21、31同士を連結する柱状の連結部材を設けてもよい。 The absorption chiller 1 has a housing 10 having a double glass structure composed of an evaporator 2 and an absorber 3 facing each other as described above. Further, an evaporation space S is formed between the evaporator 2 and the absorber 3. In order to prevent the glass plates 21 and 31 from bending due to the pressure difference between the evaporation space S and the external space of the housing 10, a columnar connecting member for connecting the glass plates 21 and 31 may be provided. ..
 また、本実施形態では、吸収式冷凍機1は、建物の窓ガラスに対して室内側に配置されるか、又は、建物の開口部に設けられて窓部を構成する。室内と室外とを連通する開口部又はその近傍に吸収式冷凍機1が設けられる場合、蒸発器2が室内側に設けられるものとする。また、建物内において空間を仕切る壁部に吸収式冷凍機1を設けてもよい。 Further, in the present embodiment, the absorption chiller 1 is arranged indoors with respect to the window glass of the building, or is provided at the opening of the building to form the window portion. When the absorption chiller 1 is provided at or near the opening that communicates between the indoor and outdoor areas, the evaporator 2 shall be provided on the indoor side. Further, the absorption chiller 1 may be provided on the wall portion that partitions the space in the building.
 吸収式冷凍機1において、蒸発器2に液冷媒L1が供給されるとともに、吸収器3に吸収液L2が供給される。吸収器3において液冷媒L1が吸収液L2によって吸収されると、蒸発空間Sが減圧される。これにより、蒸発器2の液体供給面2Aに付着した液冷媒L1が、周囲の熱を奪うことで蒸発し、冷却効果が得られるようになっている。このとき、供給された液体によって液体供給面2A、3Aが広く濡れるほど冷却効果(熱交換器の効率)が高くなる。また、蒸発器2に対して伝熱手段を設けることにより、冷却対象の空間と熱交換しやすい構成としてもよい。 In the absorption chiller 1, the liquid refrigerant L1 is supplied to the evaporator 2 and the absorption liquid L2 is supplied to the absorber 3. When the liquid refrigerant L1 is absorbed by the absorbing liquid L2 in the absorber 3, the evaporation space S is depressurized. As a result, the liquid refrigerant L1 adhering to the liquid supply surface 2A of the evaporator 2 evaporates by taking away heat from the surroundings, so that a cooling effect can be obtained. At this time, the wider the liquid supply surfaces 2A and 3A are wetted by the supplied liquid, the higher the cooling effect (efficiency of the heat exchanger). Further, by providing the heat transfer means for the evaporator 2, the configuration may be such that heat exchange with the space to be cooled is easy.
 液冷媒を吸収した吸収液(希溶液)L3は、蒸発器2および吸収器3の下方に配置された回収部7によって回収され、溶液熱交換器6を通過して再生器4に導入される。再生器4において希溶液が加熱され、蒸気冷媒G1と吸収液(濃溶液)L2とに分離される。尚、再生器4には、適宜な加熱手段が設けられていればよく、例えば太陽光によって温めた熱媒を再生器4に送り込む構成としてもよいし、再生器4を建物の開口部等に配置するとともに集熱パネルを取り付けることで太陽光を利用して直接加熱してもよい。蒸気冷媒G1は、凝縮器5に導入されて冷やされることにより液冷媒L1となる。また、再生器4に向かう希溶液L3と、再生器4から吸収器3に向かう吸収液L2と、が溶液熱交換器6において熱交換する。液冷媒L1および吸収液L2は供給器6に導入され、上記のサイクルが繰り返される。 The absorbent liquid (rare solution) L3 that has absorbed the liquid refrigerant is recovered by the recovery unit 7 arranged below the evaporator 2 and the absorber 3, passes through the solution heat exchanger 6, and is introduced into the regenerator 4. .. The dilute solution is heated in the regenerator 4 and separated into the vapor refrigerant G1 and the absorption liquid (concentrated solution) L2. The regenerator 4 may be provided with an appropriate heating means. For example, the regenerator 4 may be configured to send a heat medium heated by sunlight to the regenerator 4, or the regenerator 4 may be inserted into an opening of a building or the like. By arranging it and attaching a heat collecting panel, it may be directly heated by using sunlight. The vapor refrigerant G1 becomes the liquid refrigerant L1 when it is introduced into the condenser 5 and cooled. Further, the dilute solution L3 heading to the regenerator 4 and the absorbing liquid L2 heading from the regenerator 4 to the absorber 3 exchange heat in the solution heat exchanger 6. The liquid refrigerant L1 and the absorbing liquid L2 are introduced into the feeder 6, and the above cycle is repeated.
 以下に、熱交換器としての蒸発器2の具体的な実施例について説明する。尚、熱交換器としての吸収器3が蒸発器2と同様の構成を有していてもよい。 A specific example of the evaporator 2 as a heat exchanger will be described below. The absorber 3 as a heat exchanger may have the same configuration as the evaporator 2.
[実施例1]
 本実施例の蒸発器2は、図2に示すように、ガラス板21と、ガラス板21に積層された親水性のコーティング層22と、を有する。コーティング層22は、液体供給面2A全体を構成するように積層される。
[Example 1]
As shown in FIG. 2, the evaporator 2 of this embodiment has a glass plate 21 and a hydrophilic coating layer 22 laminated on the glass plate 21. The coating layer 22 is laminated so as to constitute the entire liquid supply surface 2A.
 コーティング層22には、複数の粒状部材23が埋め込まれている。粒状部材23が部分的に露出することにより、コーティング層22の表面221に凹凸部221Aが形成される。粒状部材23は、ガラス板21の表面にまでは到達していない。コーティング層22は、粒状部材23を保持することができるような親水性のコーティング剤(例えば、水ガラス系やケイ素系、ケイ素有機物ハイブリット系、親水樹脂系等のコーティング剤)によって構成されている。 A plurality of granular members 23 are embedded in the coating layer 22. By partially exposing the granular member 23, the uneven portion 221A is formed on the surface 221 of the coating layer 22. The granular member 23 does not reach the surface of the glass plate 21. The coating layer 22 is composed of a hydrophilic coating agent (for example, a water glass-based coating agent, a silicon-based coating agent, a silicon organic hybrid-based coating agent, a hydrophilic resin-based coating agent, or the like) capable of holding the granular member 23.
 粒状部材23は、例えば直径0.5~2mm程度の大きさの親水性粒子であって、表面が粗いことが好ましく、珪砂やガラス破片、シリカゲル、金属粒、セラミック等の粒子が例示される。粒状部材23として、コーティング剤と同系統(即ち化学的性質が近い)のものを用いれば、コーティング層22との密着性を向上させることができる。また、粒状部材23の半分程度がコーティング層22に埋設されていればよく、即ちコーティング層22の膜厚は、粒状部材23の直径と同等であればよい。 The granular member 23 is, for example, hydrophilic particles having a size of about 0.5 to 2 mm and preferably has a rough surface, and particles such as silica gel, glass fragments, silica gel, metal particles, and ceramics are exemplified. If the granular member 23 is of the same type as the coating agent (that is, has similar chemical properties), the adhesion to the coating layer 22 can be improved. Further, it is sufficient that about half of the granular member 23 is embedded in the coating layer 22, that is, the film thickness of the coating layer 22 may be the same as the diameter of the granular member 23.
 ガラス板21にコーティング剤を塗布し、コーティング剤が硬化する前に粒状部材23を散布し、コーティング剤を硬化させてコーティング層22を形成することにより、コーティング層22に粒状部材23を埋め込めばよい。このようにコーティング層22の表面221に凹凸部221Aを形成することにより、表面粗さの値が大きくなる。 The granular member 23 may be embedded in the coating layer 22 by applying the coating agent to the glass plate 21, spraying the granular member 23 before the coating agent is cured, and curing the coating agent to form the coating layer 22. .. By forming the uneven portion 221A on the surface 221 of the coating layer 22 in this way, the value of the surface roughness becomes large.
[実施例2]
 本実施例の蒸発器2は、図3に示すように、ガラス板21と、ガラス板21に積層されたコーティング層24と、を有する。コーティング層24は、液体供給面2A全体を構成するように積層される。
[Example 2]
As shown in FIG. 3, the evaporator 2 of this embodiment has a glass plate 21 and a coating layer 24 laminated on the glass plate 21. The coating layer 24 is laminated so as to constitute the entire liquid supply surface 2A.
 コーティング層24の表面241には、凹凸部241Aが形成されている。表面241は、コーティング剤が点状に削り取られることにより複数の凹部242を有しており、複数の凹部242によって凹凸部241Aが形成されている。表面241のうち凹部242が形成されていない部分は平坦に形成されている。凹部242は、ガラス板21の表面にまでは到達していない。コーティング層24は、実施例1と同様のコーティング剤によって構成されている。 Concavo-convex portion 241A is formed on the surface 241 of the coating layer 24. The surface 241 has a plurality of recesses 242 due to the coating agent being scraped off in dots, and the concave-convex portion 241A is formed by the plurality of recesses 242. The portion of the surface 241 where the recess 242 is not formed is formed flat. The recess 242 does not reach the surface of the glass plate 21. The coating layer 24 is composed of the same coating agent as in Example 1.
 ガラス板21にコーティング剤を塗布し、コーティング剤を硬化させた後に、サンドブラストによって粗面加工を施すことにより、凹部242を形成する。このようにコーティング層24の表面241に凹凸部241Aを形成することにより、表面粗さの値が大きくなる。尚、凹部242を形成するための粗面加工の方法は、ウェッジブラストやレーザー加工であってもよい。また、コーティング層に形成される凹部は、点状のものに限定されず、線状であってもよいし、ジグザグ模様等の形状であってもよい。また、点状以外の凹部を形成する場合には、砥石やフライス等によってコーティング層を削ることで溝を形成してもよい。 A coating agent is applied to the glass plate 21, the coating agent is cured, and then rough surface processing is performed by sandblasting to form recesses 242. By forming the uneven portion 241A on the surface 241 of the coating layer 24 in this way, the value of the surface roughness becomes large. The rough surface processing method for forming the concave portion 242 may be wedge blasting or laser processing. Further, the concave portion formed in the coating layer is not limited to a dot shape, and may be linear or may have a zigzag pattern or the like. Further, when forming a recess other than a dot shape, a groove may be formed by scraping the coating layer with a grindstone, a milling cutter or the like.
[実施例3]
 本実施例では、図4、5に示すように、実施例1の蒸発器2に対し、さらに棒状部材25が設けられている。尚、図4には、一部の粒状部材23のみを示しているが、粒状部材23は表面221全体に設けられているものとする。
[Example 3]
In this embodiment, as shown in FIGS. 4 and 5, a rod-shaped member 25 is further provided with respect to the evaporator 2 of the first embodiment. Although FIG. 4 shows only a part of the granular member 23, it is assumed that the granular member 23 is provided on the entire surface 221.
 棒状部材25は、コーティング層22に埋め込まれるとともに、部分的に表面221から露出している。棒状部材25は、ガラス板21の表面にまでは到達していない。棒状部材25は、例えば直径2~5mm程度のガラス棒であればよい。棒状部材25として、コーティング剤と同系統(即ち化学的性質が近い)のものを用いれば、コーティング層22との密着性を向上させることができる。 The rod-shaped member 25 is embedded in the coating layer 22 and partially exposed from the surface 221. The rod-shaped member 25 does not reach the surface of the glass plate 21. The rod-shaped member 25 may be, for example, a glass rod having a diameter of about 2 to 5 mm. If the rod-shaped member 25 is of the same type as the coating agent (that is, has similar chemical properties), the adhesion to the coating layer 22 can be improved.
 棒状部材25が水平方向に沿って延びるように配置されることにより、水平案内部が構成される。本実施例では、複数の棒状部材25が間隔をあけつつ水平方向に並ぶことにより、水平案内部の列L1を形成し、さらにその下方においても列L2~L4が形成されている。隣り合う列において、棒状部材25は互い違いに配置されている。例えば、列L1における棒状部材25同士の間隔の下方には、列L2の棒状部材25が配置され、列L2における棒状部材25同士の間隔の上方には、列L1の棒状部材25が配置される。 The horizontal guide portion is configured by arranging the rod-shaped member 25 so as to extend along the horizontal direction. In this embodiment, a plurality of rod-shaped members 25 are arranged in the horizontal direction at intervals to form rows L1 of horizontal guide portions, and rows L2 to L4 are also formed below the rows L1. In adjacent rows, the rod-shaped members 25 are staggered. For example, the rod-shaped members 25 in the row L2 are arranged below the distance between the rod-shaped members 25 in the row L1, and the rod-shaped members 25 in the row L1 are arranged above the distance between the rod-shaped members 25 in the row L2. ..
 蒸発器2の液体供給面2Aに対して上方から液冷媒が供給されると、液冷媒はコーティング層22の表面221を伝って下降する。棒状部材25に到達した液冷媒は、棒状部材25を伝って水平方向に沿って流れる。即ち、棒状部材25によって構成される水平案内部は、液冷媒が水平方向に沿って流れるように案内する。 When the liquid refrigerant is supplied from above to the liquid supply surface 2A of the evaporator 2, the liquid refrigerant descends along the surface 221 of the coating layer 22. The liquid refrigerant that has reached the rod-shaped member 25 flows along the horizontal direction along the rod-shaped member 25. That is, the horizontal guide portion composed of the rod-shaped member 25 guides the liquid refrigerant so as to flow along the horizontal direction.
 棒状部材25の端部に到達した液冷媒は、水平方向に隣り合う棒状部材25同士の隙間を通過して下降する。ある列における棒状部材25同士の隙間の下方には、下の列の棒状部材25が配置されていることから、下降した液冷媒は下の列の棒状部材25に到達する。上記を繰り返すことにより、液冷媒が下降しつつ水平方向に案内され、表面221上で液膜が広がっていく。 The liquid refrigerant that has reached the end of the rod-shaped member 25 passes through the gap between the rod-shaped members 25 that are adjacent to each other in the horizontal direction and descends. Since the rod-shaped members 25 in the lower row are arranged below the gap between the rod-shaped members 25 in a certain row, the lowered liquid refrigerant reaches the rod-shaped members 25 in the lower row. By repeating the above, the liquid refrigerant is guided in the horizontal direction while descending, and the liquid film spreads on the surface 221.
[実施例4]
 本実施例では、図6に示すように、実施例2の蒸発器2に対し、さらに棒状部材25が設けられている。尚、図6には、一部の凹部242のみを示しているが、凹部242は表面241全体に形成されているものとする。棒状部材25の大きさや材質、配置等は実施例3と同様である。
[Example 4]
In this embodiment, as shown in FIG. 6, a rod-shaped member 25 is further provided with respect to the evaporator 2 of the second embodiment. Although FIG. 6 shows only a part of the recesses 242, it is assumed that the recesses 242 are formed on the entire surface 241. The size, material, arrangement, etc. of the rod-shaped member 25 are the same as those in the third embodiment.
[実施例5]
 本実施例の蒸発器2では、図7、8に示すように、ガラス板21の表面に対してパターン化されたコーティング層26が形成されている。尚、コーティング層26の表面には、実施例1のように粒状部材によって凹凸部が形成されていてもよいし、実施例2のように凹部によって凹凸部が形成されていてもよい。また、コーティング層26の材質は実施例1と同様であればよい。
[Example 5]
In the evaporator 2 of this embodiment, as shown in FIGS. 7 and 8, a patterned coating layer 26 is formed on the surface of the glass plate 21. On the surface of the coating layer 26, uneven portions may be formed by granular members as in Example 1, or uneven portions may be formed by concave portions as in Example 2. Further, the material of the coating layer 26 may be the same as that of the first embodiment.
 コーティング層26は、水平方向に延びる複数の列261~266によって構成されており、列同士の間は、コーティング層が形成されず、ガラス板21の表面が露出した未処理部211~215となっている。未処理部211~215は、コーティング層26に対して凹状となっている。未処理部211~215に相当する部分をマスキング部材によって覆いつつコーティング剤を塗布することにより、上記のようにパターン化されたコーティング層26を形成すればよい。 The coating layer 26 is composed of a plurality of rows 261 to 266 extending in the horizontal direction, and the coating layer is not formed between the rows to form untreated portions 211 to 215 where the surface of the glass plate 21 is exposed. ing. The untreated portions 211 to 215 are concave with respect to the coating layer 26. By applying the coating agent while covering the portions corresponding to the untreated portions 211 to 215 with the masking member, the coating layer 26 patterned as described above may be formed.
 蒸発器2の液体供給面2Aに供給された液冷媒は、列261~266および未処理部211~215のそれぞれにおいて水平方向に伝わりつつ下降する。即ち、列261~266は親水処理が施されていることから、液冷媒を保持しやすく、列の延在方向である水平方向に沿って液冷媒が流れる。一方、未処理部211~215は、列261~266に対して凹状の溝部となっていることから、毛管現象によって延在方向である水平方向に沿って液冷媒が流れる。 The liquid refrigerant supplied to the liquid supply surface 2A of the evaporator 2 descends while being transmitted in the horizontal direction in each of the rows 261 to 266 and the untreated portions 211 to 215. That is, since the rows 261 to 266 are subjected to the hydrophilic treatment, it is easy to hold the liquid refrigerant, and the liquid refrigerant flows along the horizontal direction which is the extending direction of the rows. On the other hand, since the untreated portions 211 to 215 are concave grooves with respect to the rows 261 to 266, the liquid refrigerant flows along the horizontal direction which is the extending direction due to the capillary phenomenon.
 尚、本実施例では、ガラス板の面のうち一部にのみコーティング剤を設けることで所定のパターンを形成しているが、ガラス板の面全体にコーティング剤を設け、硬化したコーティング剤を部分的に削り取ることにより、所定のパターンを形成してもよい。例えばサンドブラストや機械切削により、上記の未処理部211~215に相当する位置を削り取って溝部を形成してもよい。 In this embodiment, a predetermined pattern is formed by providing a coating agent only on a part of the surface of the glass plate, but the coating agent is provided on the entire surface of the glass plate and the cured coating agent is partially applied. A predetermined pattern may be formed by scraping off the glass. For example, the groove portion may be formed by scraping the positions corresponding to the untreated portions 211 to 215 by sandblasting or mechanical cutting.
[実施例6]
 本実施例の蒸発器2は、図9、10に示すように、実施例5に対し、さらに疎水コーティング層27が設けられたものである。疎水コーティング層27は、隣り合う列261~266同士の間(即ち未処理部211~215に該当する位置)に形成され、列271~275を有する。
[Example 6]
As shown in FIGS. 9 and 10, the evaporator 2 of this embodiment is further provided with a hydrophobic coating layer 27 as compared with Example 5. The hydrophobic coating layer 27 is formed between adjacent rows 261 to 266 (that is, positions corresponding to the untreated portions 211 to 215) and has rows 271 to 275.
 蒸発器2の液体供給面2Aに供給された液冷媒は、列261~266において水平方向に伝わりつつ下降する。このとき、疎水コーティング層27は、未処理部211~215とは異なり、液冷媒が弾かれやすく、疎水コーティング層27において液冷媒が下降することが抑制される。従って、下降が抑制された液冷媒は、親水性のコーティング層26に留まって水平方向に広がりやすくなる。 The liquid refrigerant supplied to the liquid supply surface 2A of the evaporator 2 descends while being transmitted in the horizontal direction in rows 261 to 266. At this time, unlike the untreated portions 211 to 215, the hydrophobic coating layer 27 is easily repelled by the liquid refrigerant, and the liquid refrigerant is suppressed from falling in the hydrophobic coating layer 27. Therefore, the liquid refrigerant whose lowering is suppressed stays in the hydrophilic coating layer 26 and easily spreads in the horizontal direction.
 疎水コーティング層27の列271~275には、鉛直方向に沿って液冷媒が流れやすい鉛直案内部が形成されていてもよい。例えば、図11に示すように、列271~274を途切れさせ、その間に親水性のコーティング剤を設けてもよい。列271~274は、実施例3の棒状部材25と同様の配置となっており、列271が途切れた部分の下方に対応するように列272が残されており、列272が途切れた部分の上方に対応するように列271が残されている。 The rows 271 to 275 of the hydrophobic coating layer 27 may be formed with vertical guide portions through which the liquid refrigerant can easily flow along the vertical direction. For example, as shown in FIG. 11, rows 271 to 274 may be interrupted, and a hydrophilic coating agent may be provided between them. The rows 271 to 274 are arranged in the same manner as the rod-shaped member 25 of the third embodiment, and the row 272 is left so as to correspond to the lower part of the portion where the row 271 is interrupted. Row 271 is left to correspond upwards.
 また、列271~275のうち途切れる部分を左右交互に配置することにより、液冷媒が左右に往復するように流れる構成としてもよい。例えば、列271のうち右側端部を途切れさせて親水性のコーティング剤を設け、列272のうち左側端部を途切れさせて親水
性のコーティング剤を設ける構成とすれば、液冷媒が列271において右側に向かって流れた後、列272において左側に向かって流れる。
Further, by arranging the interrupted portions of the rows 271 to 275 alternately on the left and right, the liquid refrigerant may flow so as to reciprocate from side to side. For example, if the right end of row 271 is interrupted to provide a hydrophilic coating agent and the left end of row 272 is interrupted to provide a hydrophilic coating, the liquid refrigerant is in row 271. After flowing to the right, it flows to the left in column 272.
 また、コーティング層26の列および疎水コーティング層27の列は、水平方向に対して傾斜を有していてもよい。例えば、図12に示すようにガラス板2上に、液冷媒が通過することを避けたい領域A1が存在する場合、この領域A1を避けるようにコーティング層26および疎水コーティング層27の列を傾斜させてもよい。 Further, the row of the coating layer 26 and the row of the hydrophobic coating layer 27 may have an inclination with respect to the horizontal direction. For example, as shown in FIG. 12, when there is a region A1 on the glass plate 2 in which it is desired to avoid the passage of the liquid refrigerant, the rows of the coating layer 26 and the hydrophobic coating layer 27 are inclined so as to avoid this region A1. You may.
 このような本実施形態によれば、以下のような効果がある。即ち、ガラス板21に積層された親水性のコーティング層が凹凸部を有することで、単にコーティング層を設ける構成と比較して、少量の液体であっても熱交換面を広く濡らすことができる。 According to this embodiment, there are the following effects. That is, since the hydrophilic coating layer laminated on the glass plate 21 has uneven portions, the heat exchange surface can be widely wetted even with a small amount of liquid, as compared with a configuration in which the coating layer is simply provided.
 また、ガラス板21自体ではなくコーティング層に凹凸部を形成することで、ガラス板21への影響を低減することができ、凹凸部を形成する際の自由度が高く、熱交換面を広く濡らしやすい。さらに、ガラス板21の強度を確保しやすく、蒸発空間Sが減圧された際にガラス板21が破損してしまうことを抑制することができる。 Further, by forming the uneven portion on the coating layer instead of the glass plate 21 itself, the influence on the glass plate 21 can be reduced, the degree of freedom in forming the uneven portion is high, and the heat exchange surface is widely wetted. Cheap. Further, it is easy to secure the strength of the glass plate 21, and it is possible to prevent the glass plate 21 from being damaged when the evaporation space S is depressurized.
 また、実施例3~6のようにコーティング層に水平案内部を設けることにより、少量の液体であってもコーティング層の全体を広く濡らすことができる。即ち、凹凸部を形成することにより、比較的狭い範囲を濡らす効果が得られ、水平案内部を設けることにより、比較的広い範囲において液体を移動させる効果が得られる。 Further, by providing the horizontal guide portion in the coating layer as in Examples 3 to 6, the entire coating layer can be widely wetted even with a small amount of liquid. That is, by forming the uneven portion, the effect of wetting a relatively narrow range can be obtained, and by providing the horizontal guide portion, the effect of moving the liquid in a relatively wide range can be obtained.
 特に、鉛直方向に沿ったガラス板21に対して上方から液体が供給される場合、液体は重力によって下降していくことから、水平方向への移動が生じにくい。水平案内部を設けて水平方向に案内することにより、液体の供給箇所が固定されていたり少なかったりする場合であっても、熱交換面を広く濡らすことができる。 In particular, when the liquid is supplied from above to the glass plate 21 along the vertical direction, the liquid descends due to gravity, so that it is unlikely to move in the horizontal direction. By providing a horizontal guide portion to guide the liquid in the horizontal direction, the heat exchange surface can be widely wetted even when the liquid supply location is fixed or small.
 なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。 The present invention is not limited to the above embodiment, but includes other configurations and the like that can achieve the object of the present invention, and the following modifications and the like are also included in the present invention.
 例えば、前記実施形態では、吸収式冷凍機1において、熱交換器としての蒸発器2のガラス板21にコーティング層22、が積層されて凹凸部221Aが形成されるものとしたが、熱交換器としての再生器4が二重ガラス構造の筐体を備える場合には、筐体の一側面を構成するガラス板にコーティング層を積層して凹凸部を形成してもよい。また、凝縮器5および熱交換器6が二重ガラス構造の筐体を備えていてもよい。 For example, in the above-described embodiment, in the absorption chiller 1, the coating layer 22 is laminated on the glass plate 21 of the evaporator 2 as a heat exchanger to form the uneven portion 221A. When the regenerator 4 is provided with a housing having a double glass structure, a coating layer may be laminated on a glass plate constituting one side surface of the housing to form an uneven portion. Further, the condenser 5 and the heat exchanger 6 may include a housing having a double glass structure.
 また、前記実施形態では、蒸発器2と吸収器3とが対向して筐体10が構成されているものとしたが、このような構成に限定されない。例えば、1枚のガラス板のうち所定領域を蒸発器として用いるとともに他の領域を吸収器として用いてもよい。また、いずれも蒸発器として機能する2枚のガラス板によって構成された筐体と、いずれも吸収器として機能する2枚のガラス板によって構成された筐体と、を用意するとともに、これらの筐体を、流体が通過可能な通路部によって接続してもよい。このように蒸発器と吸収器とが対向しない構成においては、吸収器で発生した熱が蒸発器に伝わることによる冷却効果の低下を抑制することができる。 Further, in the above-described embodiment, it is assumed that the evaporator 2 and the absorber 3 face each other to form the housing 10, but the configuration is not limited to this. For example, a predetermined region of one glass plate may be used as an evaporator and another region may be used as an absorber. In addition, a housing composed of two glass plates each functioning as an evaporator and a housing composed of two glass plates both functioning as an absorber are prepared, and these housings are prepared. The body may be connected by a passage through which the fluid can pass. In such a configuration in which the evaporator and the absorber do not face each other, it is possible to suppress a decrease in the cooling effect due to the heat generated in the absorber being transferred to the evaporator.
 また、前記実施形態では、蒸発器2と吸収器3とを備えた筐体10が蒸発器2を室内側に向けて設けられるものとしたが、吸収器3を室内側に向けてもよい。また、凝縮器や再生器によって構成された筐体を建物の開口部に配置してもよい。尚、吸収器や凝縮器のように発熱する装置が室内側に向くように配置される場合には、熱を屋外に伝達する排熱手段を設けることが好ましい。排熱手段は水冷式であってもよいし空冷式であってもよい。 Further, in the above embodiment, the housing 10 provided with the evaporator 2 and the absorber 3 is provided with the evaporator 2 facing the indoor side, but the absorber 3 may be directed toward the indoor side. Further, a housing composed of a condenser or a regenerator may be arranged in an opening of the building. When a device that generates heat, such as an absorber or a condenser, is arranged so as to face the indoor side, it is preferable to provide a heat exhausting means for transferring heat to the outside. The heat exhausting means may be a water-cooled type or an air-cooled type.
 また、熱交換器は、気化冷却器のように減圧を伴わない装置であってもよい。このようにガラス強度が要求されにくい場合や、材質等を適宜に選択してガラス強度が確保できる場合には、以下に説明する変形例1、2および参考例1~6のように、ガラス板自体に凹凸が形成されていてもよい。 Further, the heat exchanger may be a device that does not involve decompression, such as a vaporization cooler. When the glass strength is not required easily, or when the glass strength can be secured by appropriately selecting the material and the like, the glass plate is described as described in Modifications 1 and 2 and Reference Examples 1 to 6 below. The unevenness may be formed on itself.
[変形例1]
 本変形例の熱交換器は、図13に示すように、ガラス板8Aとコーティング層28とを備える。ガラス板8Aには、水平方向に沿って延びる複数の凹部81が形成されている。凹部81は、例えば切削等の機械加工や、型の押し付け、ケミカルエッチング等によって形成されればよい。コーティング層28は、凹部81にのみ積層されており、凹部81同士の間の凸部82には積層されていない。また、コーティング層28には、実施例1と同様の粒状部材23が埋め込まれており、凹凸部が形成されている。尚、実施例2のようにコーティング層が表面に複数の凹部を有することにより凹凸部が形成されていてもよい。また、凸部82には、実施例6のような疎水コーティング層が積層されていてもよい。
[Modification 1]
As shown in FIG. 13, the heat exchanger of this modification includes a glass plate 8A and a coating layer 28. The glass plate 8A is formed with a plurality of recesses 81 extending along the horizontal direction. The recess 81 may be formed by, for example, machining such as cutting, pressing a mold, or chemical etching. The coating layer 28 is laminated only on the concave portions 81, and is not laminated on the convex portions 82 between the concave portions 81. Further, the coating layer 28 is embedded with the same granular member 23 as in the first embodiment to form an uneven portion. As in the second embodiment, the coating layer may have a plurality of concave portions on the surface to form uneven portions. Further, the convex portion 82 may be laminated with a hydrophobic coating layer as in Example 6.
[変形例2]
 本変形例の熱交換器は、図14に示すように、ガラス板8Bとコーティング層28とを備える。ガラス板8Bの表面には、ガラスフリット印刷により、水平方向に沿って延びる複数の凸部83が設けられており、隣り合う凸部83同士の間に凹部81が形成されている。凹部81には、変形例1と同様に、コーティング層28が積層されて凹凸部が形成されている。
[Modification 2]
As shown in FIG. 14, the heat exchanger of this modification includes a glass plate 8B and a coating layer 28. A plurality of convex portions 83 extending in the horizontal direction are provided on the surface of the glass plate 8B by glass frit printing, and concave portions 81 are formed between adjacent convex portions 83. Similar to the first modification, the concave portion 81 is laminated with a coating layer 28 to form an uneven portion.
 尚、変形例1、2では、凸部81、83が先細り形状(先端側に向かうにしたがって鉛直方向寸法が小さくなる形状)を有しているものとするが、後述する参考例の凸部のような形状を有していてもよい。 In the modified examples 1 and 2, it is assumed that the convex portions 81 and 83 have a tapered shape (a shape in which the vertical dimension decreases toward the tip side), but the convex portions of the reference example described later It may have such a shape.
[参考例1~6]
 参考例1~6の熱交換器は、熱交換面を構成するガラス板を備え、このガラス板の表面に、水平方向に沿って延びる凹溝部が形成されていることを特徴とする。このような熱交換器によれば、液体を水平方向に沿って案内し、ガラス板に対して液体を広範囲に濡れ広がらせることができる。このとき、ガラス板には、親水性のコーティング層が形成されていてもよいし、形成されていなくてもよい。また、ガラス板に親水性のコーティング層が形成される場合、実施例1~6や変形例1、2のように凹凸部が形成されていてもよいし、形成されていなくてもよい。
[Reference Examples 1 to 6]
The heat exchangers of Reference Examples 1 to 6 include a glass plate forming a heat exchange surface, and a concave groove portion extending in a horizontal direction is formed on the surface of the glass plate. According to such a heat exchanger, the liquid can be guided along the horizontal direction, and the liquid can be widely wetted and spread on the glass plate. At this time, the glass plate may or may not have a hydrophilic coating layer formed. Further, when the hydrophilic coating layer is formed on the glass plate, the uneven portion may or may not be formed as in Examples 1 to 6 and Modifications 1 and 2.
 また、ガラス板のうち凹溝部に親水性のコーティング層を積層し、凹溝部の両側の凸壁部の頂部に疎水性のコーティング層を積層してもよい。このような構成によれば、親水性のコーティング層によって凹溝部内に液体を保持するとともに、疎水性のコーティング層によって凹溝部から液体が流出することを抑制することができる。 Alternatively, a hydrophilic coating layer may be laminated on the concave groove portion of the glass plate, and a hydrophobic coating layer may be laminated on the tops of the convex wall portions on both sides of the concave groove portion. According to such a configuration, the hydrophilic coating layer holds the liquid in the concave groove portion, and the hydrophobic coating layer can prevent the liquid from flowing out from the concave groove portion.
 また、凸壁部の高さ(凹溝部の深さ)は、1mm以上であることが好ましく、3mm以上であることがより好ましい。また、凸壁部の高さは、5mm以下であることが好ましい。凸壁部が低すぎると、凹溝部から液体が流出しやすくなってしまう。一方、凸壁部が高いほど凹溝部内に液体を保持しやすくなるものの、凹溝部における液膜が厚くなる。液膜が厚すぎると、熱交換の際に伝熱性が低下する場合がある。また、凸壁部が高すぎると、強度が低下してしまう可能性があるとともに、凸壁部を形成しにくくなり、高コスト化してしまう可能性がある。 Further, the height of the convex wall portion (depth of the concave groove portion) is preferably 1 mm or more, and more preferably 3 mm or more. Further, the height of the convex wall portion is preferably 5 mm or less. If the convex wall portion is too low, the liquid tends to flow out from the concave groove portion. On the other hand, the higher the convex wall portion, the easier it is to hold the liquid in the concave groove portion, but the thicker the liquid film in the concave groove portion. If the liquid film is too thick, the heat transfer property may decrease during heat exchange. Further, if the convex wall portion is too high, the strength may be lowered, and it may be difficult to form the convex wall portion, which may increase the cost.
 また、凸壁部の幅は、強度を損なわない程度に狭いことが好ましく、例えば凹溝部の幅よりも狭いことが好ましい。凸壁部の幅が狭いほど、液膜を形成可能な面積が大きくなり、伝熱面積を大きくしやすい。 Further, the width of the convex wall portion is preferably narrow so as not to impair the strength, and is preferably narrower than the width of the concave groove portion, for example. The narrower the width of the convex wall portion, the larger the area where the liquid film can be formed, and the larger the heat transfer area is likely to be.
 また、凹溝部の幅は、例えば30~50mm(凸壁部の幅の60~100倍)としてもよいし、1~5mm(凸壁部の幅の2~10倍)としてもよい。凹溝部内に親水性のコーティング層が積層され、実施例1~6や変形例1、2のような凹凸部が形成されている場合のように、凹溝部内において液体が濡れ広がりやすい場合には、凹溝部の幅を広くすることで液膜の面積を大きくすることができる。一方、凹溝部内において液体が濡れ広がりにくい場合には、凹溝部の幅を狭くすることで液体を保持しやすくなり、凹溝部内の全体に液膜を形成しやすくなる。 Further, the width of the concave groove portion may be, for example, 30 to 50 mm (60 to 100 times the width of the convex wall portion) or 1 to 5 mm (2 to 10 times the width of the convex wall portion). When a hydrophilic coating layer is laminated in the concave groove portion and the uneven portion as in Examples 1 to 6 and Modifications 1 and 2 is formed, and the liquid easily wets and spreads in the concave groove portion. Can increase the area of the liquid film by widening the width of the concave groove portion. On the other hand, when the liquid is difficult to get wet and spread in the concave groove portion, narrowing the width of the concave groove portion makes it easier to hold the liquid and makes it easier to form a liquid film in the entire concave groove portion.
 尚、凹溝部および凸壁部は、実施例7のように機械加工によって形成されてもよいし、実施例8のようにガラスフリット印刷によって形成されてもよい。 The concave groove portion and the convex wall portion may be formed by machining as in Example 7, or may be formed by glass frit printing as in Example 8.
 図15に示す参考例1および図16に示す参考例2の熱交換器は、表面から凸壁部84が突出したガラス板8Cを備える。参考例1の熱交換器の方が参考例2の熱交換器よりも凸壁部84同士の間隔が広く、即ち凹溝部84Aの幅が広い。 The heat exchangers of Reference Example 1 shown in FIG. 15 and Reference Example 2 shown in FIG. 16 include a glass plate 8C in which the convex wall portion 84 protrudes from the surface. The heat exchanger of Reference Example 1 has a wider distance between the convex wall portions 84 than the heat exchanger of Reference Example 2, that is, the width of the concave groove portion 84A is wider.
 図17に示す参考例3の熱交換器では、ガラス板8Dの表面に凸壁部85が形成され、凸壁部85と凹溝部85Aとの境界部に面取り部85Bが形成されている。即ち、凸壁部85の側面が、凹溝部85Aの底面と滑らかに連続して立ち上がるようになっている。また、凸壁部85の側面と先端面との間には、角部85Cが形成されている。面取り部85Bを形成することで、凸壁部85を機械加工により形成する場合に強度を確保することができる。また、角部85Cを形成することで、液体が凸壁部85を乗り越えにくくすることができる。 In the heat exchanger of Reference Example 3 shown in FIG. 17, a convex wall portion 85 is formed on the surface of the glass plate 8D, and a chamfered portion 85B is formed at the boundary portion between the convex wall portion 85 and the concave groove portion 85A. That is, the side surface of the convex wall portion 85 rises smoothly and continuously with the bottom surface of the concave groove portion 85A. Further, a corner portion 85C is formed between the side surface of the convex wall portion 85 and the tip end surface. By forming the chamfered portion 85B, the strength can be ensured when the convex wall portion 85 is formed by machining. Further, by forming the corner portion 85C, it is possible to make it difficult for the liquid to get over the convex wall portion 85.
 図18に示す参考例4の熱交換器では、ガラス板8Eの表面に、水平方向に沿って延びる円柱状の凸壁部86が形成されている。また、図19に示す参考例5の熱交換器では、ガラス板8Fの表面に、参考例1、2の凸壁部84よりも幅が広い凸壁部87が形成されている。凸壁部87は、断面正方形状に形成されている。また、図20に示す参考例6の熱交換器では、ガラス板8Gの表面に、先細り形状の凸壁部88が形成されている。凸壁部88は、頂点88Aを有して断面三角形状に形成されている。 In the heat exchanger of Reference Example 4 shown in FIG. 18, a columnar convex wall portion 86 extending in the horizontal direction is formed on the surface of the glass plate 8E. Further, in the heat exchanger of Reference Example 5 shown in FIG. 19, a convex wall portion 87 having a width wider than that of the convex wall portions 84 of Reference Examples 1 and 2 is formed on the surface of the glass plate 8F. The convex wall portion 87 is formed in a square cross section. Further, in the heat exchanger of Reference Example 6 shown in FIG. 20, a tapered convex wall portion 88 is formed on the surface of the glass plate 8G. The convex wall portion 88 has a vertex 88A and is formed in a triangular cross section.
 また、前記実施形態における実施例1では、粒状部材23がガラス板21の表面にまでは到達していないものとしたが、粒状部材がガラス板の表面にまで到達していてもよい。このとき、粒状部材がガラス板の表面に接触し、ガラス板には食い込んでいないことが好ましい。尚、粒状部材は、ガラス板の強度を低下させない程度に多少食い込んでいてもよい。 Further, in the first embodiment of the above embodiment, it is assumed that the granular member 23 does not reach the surface of the glass plate 21, but the granular member may reach the surface of the glass plate 21. At this time, it is preferable that the granular member is in contact with the surface of the glass plate and does not bite into the glass plate. The granular member may bite into the glass plate to the extent that the strength of the glass plate is not reduced.
 その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、且つ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。 Other, the best configuration, method, etc. for carrying out the present invention are disclosed in the above description, but the present invention is not limited thereto. That is, the present invention is particularly illustrated and described primarily with respect to a particular embodiment, but without departing from the scope of the technical idea and purpose of the present invention, the shape relative to the embodiments described above. , Materials, quantities, and other detailed configurations can be modified by those skilled in the art. Therefore, the description limiting the shapes, materials, etc. disclosed above is merely an example for facilitating the understanding of the present invention, and does not limit the present invention. Therefore, those shapes, materials, etc. The description by the name of the member which removes a part or all of the limitation such as is included in the present invention.
 2         蒸発器(熱交換器)
 21        ガラス板
 22、24、26  コーティング層
 221、241   表面
 221A、241A 凹凸部
 23        粒状部材
 242       凹部
 25        棒状部材(水平案内部)
 2A        液体供給面
2 Evaporator (heat exchanger)
21 Glass plate 22, 24, 26 Coating layer 221, 241 Surface 221A, 241A Concavo-convex part 23 Granular member 242 Concave part 25 Rod-shaped member (horizontal guide part)
2A liquid supply surface

Claims (4)

  1.  熱交換面を構成するガラス板と、
     前記ガラス板のうち液体が供給される側の面に積層されるとともに、表面に凹凸部を有する親水性のコーティング層と、を備えることを特徴とする熱交換器。
    The glass plate that constitutes the heat exchange surface and
    A heat exchanger characterized in that it is laminated on the surface of the glass plate on the side to which a liquid is supplied, and is provided with a hydrophilic coating layer having uneven portions on the surface.
  2.  前記凹凸部は、複数の粒状部材が前記コーティング層に埋め込まれることにより形成されていることを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the uneven portion is formed by embedding a plurality of granular members in the coating layer.
  3.  前記凹凸部は、前記コーティング層が表面に複数の凹部を有することにより形成されていることを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the uneven portion is formed by having a plurality of concave portions on the surface of the coating layer.
  4.  前記ガラス板は、鉛直方向に沿うように配置され、
     前記コーティング層は、液体が水平方向に沿って流れるように案内する水平案内部を有することを特徴とする請求項1~3のいずれか1項に記載の熱交換器。
    The glass plate is arranged along the vertical direction.
    The heat exchanger according to any one of claims 1 to 3, wherein the coating layer has a horizontal guide portion that guides the liquid to flow along the horizontal direction.
PCT/JP2020/015015 2019-04-10 2020-04-01 Heat exchanger WO2020209156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-074853 2019-04-10
JP2019074853A JP2020173057A (en) 2019-04-10 2019-04-10 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2020209156A1 true WO2020209156A1 (en) 2020-10-15

Family

ID=72751637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015015 WO2020209156A1 (en) 2019-04-10 2020-04-01 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2020173057A (en)
WO (1) WO2020209156A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541301A (en) * 1978-08-03 1980-03-24 Nihon Radiator Co Airrcoolled evaporator
JPS57162605A (en) * 1981-03-31 1982-10-06 Diesel Kiki Co Ltd Stacked type evaporator
JPH0634239A (en) * 1992-07-15 1994-02-08 Yazaki Corp Absorption type refrigerator
JP2017116235A (en) * 2015-12-25 2017-06-29 シャープ株式会社 Heat exchanger and air conditioning device
JP2018105551A (en) * 2016-12-27 2018-07-05 矢崎エナジーシステム株式会社 Sunlight utilization system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541301A (en) * 1978-08-03 1980-03-24 Nihon Radiator Co Airrcoolled evaporator
JPS57162605A (en) * 1981-03-31 1982-10-06 Diesel Kiki Co Ltd Stacked type evaporator
JPH0634239A (en) * 1992-07-15 1994-02-08 Yazaki Corp Absorption type refrigerator
JP2017116235A (en) * 2015-12-25 2017-06-29 シャープ株式会社 Heat exchanger and air conditioning device
JP2018105551A (en) * 2016-12-27 2018-07-05 矢崎エナジーシステム株式会社 Sunlight utilization system

Also Published As

Publication number Publication date
JP2020173057A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
ES2863627T3 (en) Product for rheotechnical applications
US20160327345A1 (en) Dewpoint indirect evaporative cooler
US20190329251A1 (en) Method for producing fine structures in the volume of a substrate composed of hard brittle material
KR100745231B1 (en) Radiation fin for heat-exchanger
KR100624877B1 (en) Surface treatment method for wet surface Heat exchangers to improve surface wettability
CN105880956A (en) Microchannel heat exchanger with porous bottom face of micro-pore structures and manufacturing method of microchannel heat exchanger
CN104964487A (en) Heat exchanger, air conditioner and machining method for metal foils
CN101762194A (en) Evaporator and loop type heat pipe applying same
CN106885485B (en) Hot end variable cross-section multi-pulsation cold end heat pipe radiator
KR20050032888A (en) Flat plate heat transfer device
WO2020209156A1 (en) Heat exchanger
TW202117258A (en) Non-oriented vapor chamber
WO2019100457A1 (en) Compact cooling fin system
CN1939654A (en) Multiple-hole tube for heat exchanger and manufacturing method thereof
CN207300017U (en) Equalizing plate structure
CN106992161B (en) Soaking plate and microelectronic device with same
WO2020255513A1 (en) Vapor chamber
CN100513975C (en) Micro slot cluster liquid absorption chip, micro slot cluster liquid absorption core and integrated heat thermal tube radiator
ES2252556T3 (en) ENTALPIA EXCHANGER.
US10330926B2 (en) Component and optical element with antifogging properties
KR20180116679A (en) Air conditioner using thermoelement module
ES2702635T3 (en) Heat exchanger
JP2004360945A (en) Heat exchanger tube for flow-down liquid film type heat exchanger
CN103050869A (en) Micro-pore cooling mirror with mirror surface of non-equal thickness
KR20230086721A (en) Glass element with structured wall and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786978

Country of ref document: EP

Kind code of ref document: A1