【0001】
【発明の属する技術分野】
本発明は、管外に流下された液体が形成する液膜と管内を流れる液体との間の熱交換を行う流下液膜式熱交換器用伝熱管に関し、特に、吸収式冷凍機及び吸収式冷温水器の蒸発器又は吸収器に使用される流下液膜式熱交換器用伝熱管に関する。
【0002】
【従来の技術】
水等の冷媒蒸気が臭化リチウム等の吸収液に吸収される割合が温度及び圧力に大きく依存する性質を利用した吸収冷凍サイクルを利用した吸収式冷凍機又は吸収式冷温水器は、フロン等の温暖化係数が高い冷媒を使用せずに、比較的高い熱効率が得られるため、環境に優しい大型建築物用冷凍サイクル及び地域冷暖房システム等として開発が進められている。これに伴ってその熱交換部に使用される伝熱管の高性能化への要求が高まっている。
【0003】
前述の吸収式冷凍機における蒸発器及び吸収器は共に流下液膜式熱交換器であり、通常は、圧力容器内に複数個の伝熱管が水平に配置されている。この伝熱管の上部から作動流体(冷媒)をその軸方向にほぼ等間隔に滴下又は散布し、前記伝熱管の外表面頂部に衝突させることにより、前記伝熱管の内部を流れる流体と熱交換させている。この流下液膜式熱交換器に使用される伝熱管を高性能化するためには、滴下する液滴が伝熱管表面にできるかぎり一様に広がり、伝熱管外表面における液膜厚さを一定にし、熱抵抗(液膜厚さ/液の熱伝導率)を均一にして有効熱交換領域を最大活用することが有効である。
【0004】
また、作動流体の滴下頻度及び液滴の大きさ等の使用条件に合わせ、吸収器では蒸気が吸収される速度を考慮した液膜の滞留時間が、蒸発器においては冷媒の蒸発速度に合わせた液膜の滞留時間が、夫々考慮された液膜流動を実現する必要がある。
【0005】
従来、伝熱管の外表面に親水性被膜を形成し、作動流体の濡れ性を向上させることにより、伝熱性能の向上を図った伝熱管が報告されている(例えば、特許文献1乃至3参照)。特許文献1に記載の伝熱管は、伝熱面に複数の凹凸を形成した後、有機金属化合物成分及び金属酸化微粒子成分を含有した処理液をコーティングし、加熱処理を行うことにより多孔質で且つ多数の亀裂を有する金属酸化物層を形成している。また、特許文献2に記載の伝熱管は、フィンが形成されている外表面に、投影面積率が30乃至98%である親水性の被膜が帯状に形成されている。更に、特許文献3に記載の伝熱管は、アクリル・ビニルアルコール系、又はポリエチレングリコール及びアミノ基とアルコキシシラン基とを有する化合物を含む塗料を塗布し、熱処理することにより親水性塗膜を形成している。
【0006】
【特許文献1】
特開2001−50688号公報 (第2−5頁、第1−2図)
【特許文献2】
特開2002−277104号公報 (第4−8頁、第1図)
【特許文献3】
特開2002−372339号公報 (第3−4頁、第2図)
【0007】
【発明が解決しようとする課題】
しかしながら、前述の従来の技術には以下に示す問題点がある。特許文献1に記載の伝熱管は、液膜が滞留しやすい凹部にも濡れ性を向上させるコーティングを施しているため、この凹部に液膜が集まり、凸部が乾きやすくなるという問題点がある。特許文献2に記載の伝熱管では、投影面積が大きすぎるため、例えば、夫々独立した突起列が形成された伝熱管等は、投影面積が20%前後であるため適用できないという問題点がある。更に、特許文献3に記載の伝熱管では、塑性加工等により管外にフィンが形成されたフィン付き伝熱管に適用した場合、伝熱管下部においては、前述の特許文献1と同様に、液膜がフィンの先端部以外の部分に集中するため、先端部が乾きやすくなるという問題点がある。
【0008】
本発明はかかる問題点に鑑みてなされたものであって、伝熱管の外表面における作動流体の液膜厚さ及び濡れ広がり性を適正化し、熱交換性能が優れた流下液膜式熱交換器用伝熱管を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る流下液膜式熱交換器用伝熱管は、管外に流下された液体が形成する液膜と管内を流れる液体との間の熱交換を行う流下液膜式熱交換器用伝熱管において、金属又は合金からなる管本体と、この管本体の外面に形成された複数個のフィン又は突起と、を有し、前記フィン又は突起の先端部が前記管本体の外面における他の領域より親水性を有することを特徴とする。
【0010】
本発明者等は、鋭意実験研究を行った結果、伝熱管の外表面上に突起又はフィン等の拡大伝熱面が形成されている場合には、局所的に見ると、この突起又はフィン等の先端部が最も高い熱伝達性能を示すことが多く、この部分の濡れ性を改善することで伝熱管の熱変換性能が向上することを見出した。そこで、本発明においては、伝熱管の外表面に設けられた突起又はフィン等の先端部を他の領域より親水性にする。これにより、伝熱管の外面に滴下された作動流体の液膜をフィン先端部に集めることができる。その結果、伝熱性能が高いフィン先端部において効率的に熱交換を行うことができるため、交換熱量が増加する。
【0011】
前記フィン又は突起の先端部には、例えば、親水性の被膜が形成されている。前記親水性の被膜は、アルミナ又はアルミナとシリカとの混合物からなる下層と、この下層の上に形成されリン又は珪素を含む上層とから構成されていてもよい。これにより、被膜の経年劣化を防止し、熱交換器の伝熱性能の経年低下を防止することができる。
【0012】
又は、前記フィン又は突起の先端部以外の領域には、疎水性の被膜が形成されていてもよい。前記疎水性の被膜は、例えば、非晶質セラミックスにより形成することができる。これにより、伝熱性能が低い領域では液膜が排除され、伝熱性能が高い突起又はフィンの先端部に液膜が集まる。その結果、高い熱交換性能を得ることができる。
【0013】
また、前記複数個のフィン及び突起は、螺旋状又は環状に配列されていてもよい。
【0014】
更に、流下液膜式熱交換器用伝熱管は、吸収式冷凍機及び吸収式冷温水器の蒸発器又は吸収器に使用することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態に係る流下液膜式熱交換器用伝熱管について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態の伝熱管を示す部分斜視図である。本実施形態の伝熱管11aは、吸収式冷凍機の蒸発器及び吸収器に組み込まれる流下液膜式熱交換器用伝熱管である。図1に示すように、伝熱管11aは、銅又は銅合金からなる管本体2が設けられており、管本体2の外面には、管周方向に環状に伸びた凸部であり、管軸方向に相互に平行な複数個のフィン1が形成されているローフィンチューブである。また、フィン1の先端部は平面状であり、この先端面1aは伝熱管11aの外表面におけるその他の領域より親水性である。
【0016】
先端面1aを外表面における他の領域より親水性にするためには、例えば、先端面1aに親水性被膜を形成する方法がある。また、先端面1a以外の領域に疎水性被膜を形成してもよい。更に、先端面1aに親水性被膜を形成し、それ以外領域に疎水性被膜を形成することもできる。
【0017】
このとき、装置の運転条件に応じた作動流体の表面張力又は密度、液膜表面のガス流動によるせん断力、重力及び伝熱管の表面形状、並びに突起又はフィンの間に形成される円弧状の気液界面形状(メニスカス)等を考慮して、親水性又は疎水性被膜の性能を設定することが望ましい。このように、突起又はフィンが形成された伝熱管を、その外表面における液膜分布に対応した形状にすることにより、最適な液膜分布を実現することができる。また、伝熱管11aの外表面における液膜のフィン先端面への流動が促進されるため、その拡大伝熱面からの伝熱量の増加を期待することができる。
【0018】
先端面1aに親水性被膜を形成する場合、伝熱管外表面と親水性のトップ層(上層)との間にプライマー層(下層)を設けた積層構造であることが好ましい。このプライマー層は、例えば、アルミナ成分50乃至100質量%及びシリカ成分50質量%以下を水及び/又は有機溶剤に分散させた塗料を伝熱管表面に塗布し、50乃至600℃の温度条件下で熱処理することにより形成することができる。一方、トップ層は、前述のプライマー層の上に、例えば、珪酸塩及び燐酸又はその誘導体の水溶液を塗布し、50乃至600℃の温度条件下で熱処理することにより形成される。このようなプライマー層を設けることにより、伝熱管の外表面とトップ層との結合が強化され、冷熱サイクル時に生じる親水性被膜内の応力が緩和される。その結果、実際に流下液膜式熱交換器に使用される場合においても、厳しい冷熱サイクル環境にも耐えることができ、長期間の性能維持が可能になる。
【0019】
また、親水性被膜の膜厚は、0.1乃至10μmであることが望ましい。膜厚が0.1μmより薄いと機器挿入時に伝熱管11aを支える管板に擦られて剥離しやすくなる。また、膜厚が10μmより厚いと熱抵抗となって性能が低下する。このように、親水性被膜の膜厚を適正化することにより、この親水性被膜が、液膜と管内を流れる液体との間の熱交換に、影響を及ぼすことを防止することができる。
【0020】
更に、本発明の伝熱管11aにおいて、外表面と親水性被膜との界面に存在する酸化膜厚さは0.1μm以下であることが望ましい。これにより、伝熱管11aと親水性被膜との界面における剥離を抑制し、厳しい環境にも耐え得る密着強度を得ることができる。
【0021】
一方、疎水性皮膜を形成する場合は、例えば、非晶質セラミックス被膜が適用可能である。この非晶質セラミックス被膜は、SiO2、ZrO2、SiO2・ZrO2、Al2O3等を主成分とする金属アルコキシド系の重合体を塗布した後、所定の条件で乾燥及び加熱を行うことにより形成される。その際の乾燥条件としては、例えば、大気中で、室温乃至50℃程度の温度条件下に適当な時間放置すればよいが、生産性を考慮して加熱を行う場合は150℃までは加熱することが可能である。但し、非晶質セラミックス被膜は、緻密であるために脆く、熱膨張係数の大きい銅に追従できなくなるため、150℃以上で加熱することは避けた方がよい。また、加熱温度が100℃を超える場合は、真空中又は不活性ガス中で加熱することが好ましい。
【0022】
次に、本実施形態の伝熱管11aの製造方法を具体的に説明する。先ず、例えば、長さ1500mm、幅200mm、高さ200mmのステンレス製容器に、疎水性被膜用塗料である金属アルコキシド系疎水塗料((株)日板研究所製セラミカーG50)の原液を30リットル満液する。その金属アルコキシド系疎水塗料に、両管端をシリコン栓で封止した伝熱管(ローフィンチューブ)を1分間浸漬した後、ゆっくり引き上げて、疎水性被膜用塗料を外表面の全面に塗布する。その後、この伝熱管を150℃に保温した乾燥炉中に30分保持することにより、外表面に疎水性皮膜を形成する(疎水性被膜焼成処理)。前記疎水性皮膜の膜厚は、伝熱管11aを浸漬する塗料の濃度を変えることにより調節することができる。例えば、前述のセラミカーG50の場合、イソプロピルアルコールにより希釈することで、疎水性被膜の厚さを薄くすることができる。
【0023】
次に、#2000エメリー紙でフィン1の先端部を研磨して、先端面1aに形成された疎水性被膜を除去する。本実施形態の伝熱管11aは、その外面加工形状の特徴から、エメリー紙をフィン1の先端部にあてて研磨するだけで、フィン1の先端部に形成された疎水性皮膜を除去することができる。その際、伝熱管11aを回転させたり、エメリー紙を伝熱管11aに巻き付けて摺動させたりすることにより、作業性及び生産性を向上することができる。また、フィン1の先端面1aは、粗くしてもよい。先端面1aの表面粗度を大きくすることより、親水性被膜の密着性を向上させることができる。更に、フィン1の先端部における研磨量は、銅素地が現れるまでとするが、銅素地が多少研磨されても問題はない。但し、フィン1の高さが変わる程過度に研磨されることは好ましくないため、エメリー紙を伝熱管にあてる力は一定にすることが望ましい。なお、この研磨工程を機械的に行う場合、フィン1の先端部の研磨量は研磨時間により調整することができる。
【0024】
そして、プライマー溶液として日産化学社製アルミナゾル520に、日産化学社製スノーテックO(コロイダルシリカ)を2:1の割合で混合したものを使用し、トップコート溶液には、市販の珪酸ナトリウム5%にリン酸0.1%を添加した水溶液を使用し、塗装用ローラー又は刷毛でプライマー溶液をフィン1の先端面1aに塗布し、150℃に保温した乾燥炉で10分間保持することにより、先端面1aに親水性被膜を形成する。前記親水性被膜の膜厚は、前述の親水性塗料の濃度を変えることにより調節することができる。但し、親水性塗料を塗布する際は、塗料用ローラー又は刷毛から塗装面への塗料の供給は一様とし、重ね塗りにならないように配慮する必要がある。
【0025】
なお、前述の製造方法においては、親水性塗料は先端面1aのみに塗布されることが望ましいが、本実施形態で使用される塗料は溶媒に水を使用するため、疎水性被膜とはなじまない。従って、多めに塗布されて疎水性被膜領域に垂れることがあっても、その親水性塗料は疎水性被膜領域を伝って除去される。よって、プライマー溶液の塗布は伝熱管11aを立てて行うか、又は塗装後に伝熱管11aを立てて、余分なプライマー溶液を除去することが望ましい。
【0026】
次に、上述の如く構成された本実施形態の伝熱管の動作について説明する。本実施形態の伝熱管11aは、流下液膜式熱交換器である蒸発器に組み込まれる。そして、この伝熱管の上部から滴下又は散布された作動流体(冷媒)が外表面頂部に衝突することにより、前記伝熱管の内部を流れる流体が冷却される。このとき、作動流体は液膜を形成しながら伝熱管の周りを流下するが、伝熱管外表面に被膜処理が施されているため、巨視的にはその集合が阻害されて液膜の濡れ広がり性が改善する。微視的には、薄く濡れ広がった液膜の厚さが伝熱管外表面上の突起又はフィン高さと同程度となると、液膜の一部は突起又はフィンの先端部に集まる。また、突起又はフィン以外の領域に疎水性被膜を設けた場合、微視的にはこれらの領域から液膜が排除される。即ち、突起又はフィン先端部に冷媒が集まる。その結果、突起又はフィン先端部は他の領域に比べ比較的高い伝熱性能を持つため、高い熱交換性能が得られる。
【0027】
図2は本実施形態の伝熱管11aにおける液膜分布を示す断面図であり、図5は外表面全てに親水性被膜6が形成された従来の伝熱管における液膜分布を示す断面図である。図5に示すように、従来の伝熱管に作動流体を滴下すると、液膜5はその表面張力と液膜表面のガス流動によるせん断力、重力及び伝熱管の表面形状に影響されて厚さに分布を持つ流動形状となる。即ち、フィン1の先端面1aにおける液膜厚さt1は薄く、根元部(溝底部4)における液膜厚さt2は厚くなる。このため、従来の伝熱管の外表面における伝熱性は、液膜表面付近を流れるガス流動によるせん断力を受けるフィン1の先端面1aで最も高く、溝底部4で最も低くなる。
【0028】
一方、図2に示すように、本実施形態の伝熱管11aの外表面は、フィン1の先端面1aに親水性被膜6が、それ以外の領域には疎水性被膜7が形成されている。これにより、液膜5は先端面1aに集まり、液膜5の厚さt1が厚くなる。一方、溝底部4では疎水性被膜7の効果により、液膜5の厚さt2が薄くなる。その結果、先端面1aにより多くの作動流体が供給されて、その蒸発量が増加するため、熱交換量を増加させることができる。また同時に、溝底部4における液膜の厚さが薄くなるため、液膜による熱抵抗(液膜厚さ/液の熱伝導率)が低下し、高い伝熱性能を得ることができる。よって、本実施形態の伝熱管11aを吸収式冷凍機の蒸発器に適用した場合、先端面1aにおける蒸発量が増大して、伝熱性能が向上する。
【0029】
本実施形態においては、伝熱管11aを吸収式冷凍機の蒸発器に適用した場合について述べたが、本発明はこれに限定されるものではなく、例えば、吸収式冷凍機の吸収器に適用した場合においても、本発明の趣旨に従って液膜分布の適正化することにより、伝熱性能の向上が期待できる。更に、吸収式冷凍機の蒸発器又は吸収器以外にも、吸収式冷温水器用蒸発器又は吸収器等、流下液膜式伝熱器で供される伝熱管であれば、同様に適用することができる。
【0030】
なお、本発明における親水性被膜及び疎水性被膜とは、伝熱管外表面の他の部分との相対的な関係を意味し、例えば、金属又は合金の伝熱管表面に形成される親水性被膜においては、前記金属又は合金の表面よりも親水性であればよいため、一義的にその範囲を決められるものではない。但し、本発明の水性の被膜、疎水性の被膜はJISK2396で測定した水との接触角において、90°未満と90°以上を夫々親水性と疎水性とし、この範囲の中から選択することが実際上好適である。具体的には、銅表面における水の接触角が95乃至100°であるのに対して、親水性被膜における接触角は60乃至70°であり、疎水性被膜における接触角は100乃至115°である。
【0031】
次に、本実施形態の伝熱管の変形例について説明する。図3は本発明の実施形態における第1の変形例を示す部分斜視図である。図3に示すように、本実施形態の第1の変形例に係る伝熱管11bは銅又は銅合金からなり、その外表面には螺旋状に配列された複数個の四角錐台形状の突起3が形成されている。隣り合う突起3の間は溝底部4となっている。そして、突起3の先端面3aは、外表面におけるその他の領域より親水性である。本変形例の伝熱管11bにおいても、前述の第1実施形態と同様に、先端面3aに親水性被膜を形成したり、先端面3a以外の領域に疎水性被膜を形成したりすることにより、先端面3aを他の領域より親水性にすることができる。また、突起3の先端面3aに親水性被膜を、それ以外の領域に疎水性被膜を形成してもよい。
【0032】
次に、第2の変形例について説明する。図4は本発明の実施形態における第2の変形例を示す部分斜視図である。図4に示すように、本実施形態の第2の変形例に係る伝熱管11cは、銅又は銅合金からなり、その外表面には複数個のかまぼこ状の突起8が、その長手方向が管軸方向と平行になるように等間隔に形成され、管周方向に沿って環状に配置されている。その先端を含む面8aは曲面であり、溝底部4と接している。このような突起8が形成された伝熱管11cにおいても、突起8の先端面8aに親水性被膜を形成するか、又は先端面8a以外の部分に疎水性被膜を形成し、先端面8aを他の領域より親水性にすることにより、前述の実施形態及びその第1の変形例と同様の効果を実現することができる。本変形例の伝熱管11cにおいては、親水性被膜を形成する領域は、突起8の先端を含む面8aにおける先端を含む一部の領域でもよい。そして、伝熱管外表面における先端面8a以外の領域に疎水性皮膜を設けてもよく、この疎水性被膜は突起8の先端以外の領域に及んでいてもよい。
【0033】
上述の第1及び第2の変形例の伝熱管においては、以下の方法によって先端面3a及び先端面8aを他の領域より親水性にすることができる。例えば、先端面3a及び先端面8aに親水性被膜を設ける場合には、先端面3a及び先端面8aに、予め親水性溶液を含ませた布等の弾力性のあるものを押し当てることによりその溶液を塗布し、その後、加熱処理により親水性被膜を定着させる。また、親水性被膜と疎水性被膜との両方を形成する場合には、先ず疎水性被膜となる溶液を塗布した後、親水性被膜となる溶液を塗布し、加熱処理によりそれらを伝熱管外表面に定着させる。なお、親水性被膜又は疎水性被膜を積層膜として伝熱管外表面上に形成する場合には、上記方法を繰り返すか、組み合わせることによって実現することができる。
【0034】
【発明の効果】
以上詳述したように、本発明によれば、外表面に複数個の突起又はフィンが形成された伝熱管の突起又はフィンの先端部を親水性にすることにより、伝熱性能が高い先端部に作動流体を集めることができるため、従来の伝熱管より高い伝熱性能を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態の伝熱管を示す部分斜視図である。
【図2】本発明の実施形態の伝熱管における液膜分布を示す断面図である。
【図3】本発明の実施形態の第1の変形例の伝熱管を示す部分斜視図である。
【図4】本発明の実施形態の第2の変形例の伝熱管を示す部分斜視図である。
【図5】外表面全面に親水性被膜が形成された従来の伝熱管における液膜分布を示す断面図である。
【符号の説明】
1;フィン
1a、3a、8a;先端面
2;管本体
3、8;突起
4;溝底部
5;液膜
6;親水性被膜
7;疎水性被膜
11a、11b、11c;伝熱管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat transfer tube for a falling liquid film type heat exchanger for performing heat exchange between a liquid film formed by a liquid flowing out of a tube and a liquid flowing in the tube. The present invention relates to a heat transfer tube for a falling liquid film type heat exchanger used for an evaporator or an absorber of a water device.
[0002]
[Prior art]
An absorption refrigerator or absorption chiller / heater using an absorption refrigeration cycle utilizing a property in which the rate at which refrigerant vapor such as water is absorbed by an absorption liquid such as lithium bromide greatly depends on temperature and pressure is not limited to Freon, etc. Since a relatively high thermal efficiency can be obtained without using a refrigerant having a high global warming potential, development of environmentally friendly refrigeration cycles for large buildings and district cooling / heating systems has been promoted. Accordingly, there is an increasing demand for higher performance of the heat transfer tubes used in the heat exchange section.
[0003]
Both the evaporator and the absorber in the above absorption refrigerator are falling film heat exchangers, and usually, a plurality of heat transfer tubes are horizontally arranged in a pressure vessel. A working fluid (refrigerant) is dripped or sprayed at substantially equal intervals in the axial direction from the upper portion of the heat transfer tube, and collides with the top of the outer surface of the heat transfer tube to exchange heat with the fluid flowing inside the heat transfer tube. ing. In order to improve the performance of the heat transfer tube used in this falling film heat exchanger, the droplets to be dropped spread as uniformly as possible on the surface of the heat transfer tube, and the liquid film thickness on the outer surface of the heat transfer tube is kept constant. It is effective to make the thermal resistance (liquid film thickness / liquid thermal conductivity) uniform to maximize the effective heat exchange area.
[0004]
In addition, the residence time of the liquid film in consideration of the speed at which the vapor is absorbed in the absorber is adjusted to the evaporation speed of the refrigerant in accordance with the use conditions such as the frequency of dropping of the working fluid and the size of the droplet. It is necessary to realize the liquid film flow in which the residence time of the liquid film is considered in each case.
[0005]
BACKGROUND ART Conventionally, heat transfer tubes have been reported in which a hydrophilic film is formed on the outer surface of a heat transfer tube to improve the wettability of a working fluid, thereby improving heat transfer performance (for example, see Patent Documents 1 to 3). ). The heat transfer tube described in Patent Literature 1 is porous by forming a plurality of irregularities on a heat transfer surface, coating a treatment liquid containing an organometallic compound component and a metal oxide fine particle component, and performing a heat treatment. A metal oxide layer having a large number of cracks is formed. In the heat transfer tube described in Patent Document 2, a hydrophilic coating having a projected area ratio of 30 to 98% is formed in a belt shape on the outer surface on which the fins are formed. Further, the heat transfer tube described in Patent Document 3 forms a hydrophilic coating film by applying a coating containing an acrylic vinyl alcohol-based compound or a compound containing polyethylene glycol and a compound having an amino group and an alkoxysilane group, followed by heat treatment. ing.
[0006]
[Patent Document 1]
JP 2001-50688 A (Page 2-5, FIG. 1-2)
[Patent Document 2]
JP 2002-277104 A (Page 4-8, FIG. 1)
[Patent Document 3]
JP 2002-372339 A (Page 3-4, FIG. 2)
[0007]
[Problems to be solved by the invention]
However, the above-mentioned conventional technology has the following problems. The heat transfer tube described in Patent Literature 1 has a problem in that a liquid film is gathered in the concave portion where the liquid film easily stays, and the liquid film collects in the concave portion, and the convex portion is easily dried. . The heat transfer tube described in Patent Literature 2 has a problem that the projection area is too large. For example, a heat transfer tube or the like in which independent projection rows are formed cannot be applied because the projection area is about 20%. Furthermore, in the heat transfer tube described in Patent Document 3, when applied to a finned heat transfer tube having fins formed outside the tube by plastic working or the like, a liquid film is formed below the heat transfer tube in the same manner as in Patent Document 1 described above. Is concentrated on the portion other than the tip of the fin, so that the tip becomes easy to dry.
[0008]
The present invention has been made in view of such a problem, and has a liquid film thickness and a wet spreading property of a working fluid on the outer surface of a heat transfer tube, and is suitable for a falling liquid film type heat exchanger having excellent heat exchange performance. It is intended to provide a heat transfer tube.
[0009]
[Means for Solving the Problems]
The heat transfer tube for a falling liquid film heat exchanger according to the present invention is a heat transfer tube for a falling liquid film heat exchanger that performs heat exchange between a liquid film formed by a liquid that has flowed out of the tube and a liquid flowing in the tube. A pipe body made of a metal or an alloy, and a plurality of fins or protrusions formed on the outer surface of the tube body, and the tips of the fins or protrusions are more hydrophilic than other regions on the outer surface of the tube body. It has characteristics.
[0010]
The present inventors have conducted intensive experimental research and found that when an enlarged heat transfer surface such as a protrusion or a fin is formed on the outer surface of the heat transfer tube, when viewed locally, the protrusion or the fin It has been found that the tip portion often exhibits the highest heat transfer performance, and improving the wettability of this portion improves the heat transfer performance of the heat transfer tube. Therefore, in the present invention, the tip portion such as a protrusion or a fin provided on the outer surface of the heat transfer tube is made more hydrophilic than other regions. Thus, the liquid film of the working fluid dropped on the outer surface of the heat transfer tube can be collected at the fin tip. As a result, heat can be efficiently exchanged at the fin tip having high heat transfer performance, and the amount of heat exchanged increases.
[0011]
For example, a hydrophilic coating is formed on the tip of the fin or the projection. The hydrophilic coating may include a lower layer made of alumina or a mixture of alumina and silica, and an upper layer formed on the lower layer and containing phosphorus or silicon. As a result, it is possible to prevent aging of the coating and prevent aging of the heat transfer performance of the heat exchanger.
[0012]
Alternatively, a hydrophobic film may be formed in a region other than the tip of the fin or the protrusion. The hydrophobic coating can be formed, for example, of amorphous ceramics. As a result, the liquid film is eliminated in a region where the heat transfer performance is low, and the liquid film is collected at the tip of the projection or the fin having the high heat transfer performance. As a result, high heat exchange performance can be obtained.
[0013]
Further, the plurality of fins and the protrusions may be spirally or annularly arranged.
[0014]
Further, the heat transfer tube for a falling liquid film type heat exchanger can be used for an evaporator or an absorber of an absorption refrigerator and an absorption chiller / heater.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a heat transfer tube for a falling liquid film heat exchanger according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a partial perspective view showing a heat transfer tube according to an embodiment of the present invention. The heat transfer tube 11a of this embodiment is a heat transfer tube for a falling film type heat exchanger incorporated in an evaporator and an absorber of an absorption refrigerator. As shown in FIG. 1, the heat transfer tube 11 a is provided with a tube main body 2 made of copper or a copper alloy, and the outer surface of the tube main body 2 is a convex portion extending annularly in a tube circumferential direction. This is a low fin tube in which a plurality of fins 1 parallel to each other are formed. The tip of the fin 1 is flat, and the tip 1a is more hydrophilic than other regions on the outer surface of the heat transfer tube 11a.
[0016]
In order to make the tip surface 1a more hydrophilic than other regions on the outer surface, for example, there is a method of forming a hydrophilic coating on the tip surface 1a. Further, a hydrophobic film may be formed in a region other than the front end surface 1a. Further, a hydrophilic film can be formed on the tip end surface 1a, and a hydrophobic film can be formed on other areas.
[0017]
At this time, the surface tension or density of the working fluid according to the operating conditions of the device, the shear force due to the gas flow on the liquid film surface, the gravity and the surface shape of the heat transfer tube, and the arc-shaped gas formed between the projections or fins It is desirable to set the performance of the hydrophilic or hydrophobic coating in consideration of the liquid interface shape (meniscus) and the like. As described above, by forming the heat transfer tube on which the protrusions or fins are formed in a shape corresponding to the liquid film distribution on the outer surface, an optimal liquid film distribution can be realized. In addition, since the flow of the liquid film on the outer surface of the heat transfer tube 11a to the fin tip surface is promoted, an increase in the amount of heat transfer from the expanded heat transfer surface can be expected.
[0018]
When a hydrophilic film is formed on the front end surface 1a, it is preferable that the laminated structure has a primer layer (lower layer) provided between the outer surface of the heat transfer tube and the hydrophilic top layer (upper layer). For this primer layer, for example, a coating material in which 50 to 100% by mass of an alumina component and 50% by mass or less of a silica component are dispersed in water and / or an organic solvent is applied to the surface of the heat transfer tube, and the temperature is 50 to 600 ° C. It can be formed by heat treatment. On the other hand, the top layer is formed by, for example, applying an aqueous solution of silicate and phosphoric acid or a derivative thereof on the above-mentioned primer layer and performing a heat treatment at a temperature of 50 to 600 ° C. By providing such a primer layer, the bond between the outer surface of the heat transfer tube and the top layer is strengthened, and the stress in the hydrophilic coating generated during the cooling / heating cycle is reduced. As a result, even when actually used in a falling liquid film type heat exchanger, it can withstand a severe cooling / heating cycle environment and can maintain its performance for a long time.
[0019]
Further, the thickness of the hydrophilic film is desirably 0.1 to 10 μm. If the film thickness is smaller than 0.1 μm, it is liable to be peeled off by being rubbed by the tube plate supporting the heat transfer tube 11a when the device is inserted. On the other hand, if the film thickness is larger than 10 μm, the resistance becomes thermal resistance and the performance is reduced. Thus, by optimizing the thickness of the hydrophilic film, it is possible to prevent the hydrophilic film from affecting the heat exchange between the liquid film and the liquid flowing in the tube.
[0020]
Further, in the heat transfer tube 11a of the present invention, the thickness of the oxide film existing at the interface between the outer surface and the hydrophilic film is desirably 0.1 μm or less. Thereby, peeling at the interface between the heat transfer tube 11a and the hydrophilic coating can be suppressed, and adhesion strength that can withstand a severe environment can be obtained.
[0021]
On the other hand, when forming a hydrophobic film, for example, an amorphous ceramic film can be applied. The amorphous ceramic coating is dried and heated under predetermined conditions after applying a metal alkoxide-based polymer having SiO 2 , ZrO 2 , SiO 2 .ZrO 2 , Al 2 O 3 or the like as a main component. It is formed by this. As drying conditions at that time, for example, the substrate may be left in the air under a temperature condition of about room temperature to about 50 ° C. for an appropriate time. However, when heating is performed in consideration of productivity, heating is performed up to 150 ° C. It is possible. However, since the amorphous ceramic film is dense and brittle, and cannot follow copper having a large coefficient of thermal expansion, it is better to avoid heating at 150 ° C. or more. When the heating temperature exceeds 100 ° C., it is preferable to heat in a vacuum or in an inert gas.
[0022]
Next, a method for manufacturing the heat transfer tube 11a of the present embodiment will be specifically described. First, for example, a stainless steel container having a length of 1500 mm, a width of 200 mm, and a height of 200 mm is filled with 30 liters of a stock solution of a metal alkoxide-based hydrophobic paint (ceramic car G50 manufactured by Nippon Research Institute Co., Ltd.) which is a paint for a hydrophobic coating. Liquid. A heat transfer tube (row fin tube) having both ends sealed with a silicon stopper is immersed in the metal alkoxide-based hydrophobic paint for 1 minute, and then slowly pulled up to apply a hydrophobic coating material to the entire outer surface. Thereafter, the heat transfer tube is held in a drying furnace kept at 150 ° C. for 30 minutes to form a hydrophobic film on the outer surface (hydrophobic film firing treatment). The film thickness of the hydrophobic film can be adjusted by changing the concentration of the paint in which the heat transfer tube 11a is immersed. For example, in the case of the above-described ceramic car G50, the thickness of the hydrophobic film can be reduced by diluting with isopropyl alcohol.
[0023]
Next, the tip of the fin 1 is polished with # 2000 emery paper to remove the hydrophobic coating formed on the tip 1a. The heat transfer tube 11a of the present embodiment can remove the hydrophobic film formed on the tip portion of the fin 1 only by applying and polishing the emery paper to the tip portion of the fin 1 due to the feature of the outer surface processing shape. it can. At this time, workability and productivity can be improved by rotating the heat transfer tube 11a or by wrapping and sliding the emery paper around the heat transfer tube 11a. Further, the tip surface 1a of the fin 1 may be roughened. By increasing the surface roughness of the front end surface 1a, the adhesion of the hydrophilic film can be improved. Furthermore, the amount of polishing at the tip of the fin 1 is limited until the copper substrate appears, but there is no problem even if the copper substrate is slightly polished. However, since it is not preferable that the fin 1 is excessively polished as the height of the fin 1 changes, it is desirable that the force of applying the emery paper to the heat transfer tube be constant. When this polishing step is performed mechanically, the amount of polishing at the tip of the fin 1 can be adjusted by the polishing time.
[0024]
Then, as a primer solution, a mixture of Nissan Chemical Co., Ltd. alumina sol 520 and Nissan Chemical Co., Ltd. Snowtec O (colloidal silica) at a ratio of 2: 1 was used, and a commercially available sodium silicate 5% was used for the top coat solution. The primer solution is applied to the tip surface 1a of the fin 1 with a coating roller or a brush using an aqueous solution containing 0.1% of phosphoric acid, and kept in a drying furnace kept at 150 ° C. for 10 minutes to obtain a tip. A hydrophilic film is formed on the surface 1a. The thickness of the hydrophilic coating can be adjusted by changing the concentration of the hydrophilic coating. However, when applying the hydrophilic paint, it is necessary to make the supply of the paint from the paint roller or the brush to the painted surface uniform and take care not to overcoat.
[0025]
In the above-described manufacturing method, it is desirable that the hydrophilic paint is applied only to the front end face 1a. However, the paint used in the present embodiment does not blend with the hydrophobic coating because water is used as the solvent. . Therefore, even if the overcoat is applied and drips on the hydrophobic coating area, the hydrophilic paint is removed along the hydrophobic coating area. Therefore, it is desirable to apply the primer solution by standing the heat transfer tube 11a or to stand the heat transfer tube 11a after coating to remove the excess primer solution.
[0026]
Next, the operation of the heat transfer tube of the present embodiment configured as described above will be described. The heat transfer tube 11a of the present embodiment is incorporated in an evaporator which is a falling film heat exchanger. The working fluid (refrigerant) dropped or sprayed from the upper portion of the heat transfer tube collides with the top of the outer surface, whereby the fluid flowing inside the heat transfer tube is cooled. At this time, the working fluid flows down around the heat transfer tube while forming a liquid film.However, since the outer surface of the heat transfer tube is subjected to a coating treatment, its aggregation is obstructed macroscopically and the liquid film spreads wet. The quality improves. Microscopically, when the thickness of the thin and wet liquid film is about the same as the height of the protrusions or fins on the outer surface of the heat transfer tube, part of the liquid film collects at the tips of the protrusions or fins. When a hydrophobic coating is provided on regions other than the protrusions or the fins, the liquid film is microscopically excluded from these regions. That is, the refrigerant collects at the protrusions or the fin tips. As a result, the projection or the fin tip has relatively high heat transfer performance as compared with other regions, and thus high heat exchange performance is obtained.
[0027]
FIG. 2 is a cross-sectional view showing a liquid film distribution in the heat transfer tube 11a of the present embodiment, and FIG. 5 is a cross-sectional view showing a liquid film distribution in a conventional heat transfer tube having a hydrophilic film 6 formed on the entire outer surface. . As shown in FIG. 5, when the working fluid is dropped onto the conventional heat transfer tube, the liquid film 5 becomes thin due to its surface tension, shear force due to gas flow on the liquid film surface, gravity and the surface shape of the heat transfer tube. A flow shape having a distribution is obtained. That is, the liquid film thickness t 1 in the front end surface 1a of the fins 1 is thin, liquid film thickness t 2 at the root portion (the groove bottom 4) becomes thicker. For this reason, the heat transfer property on the outer surface of the conventional heat transfer tube is highest at the tip end surface 1a of the fin 1 which receives the shear force due to the gas flow flowing near the liquid film surface, and lowest at the groove bottom 4.
[0028]
On the other hand, as shown in FIG. 2, on the outer surface of the heat transfer tube 11a of the present embodiment, a hydrophilic film 6 is formed on the tip surface 1a of the fin 1, and a hydrophobic film 7 is formed on the other area. Thus, the liquid film 5 is gathered at the tip face 1a, the thickness t 1 of the liquid film 5 becomes thicker. On the other hand, the thickness t 2 of the liquid film 5 is reduced at the groove bottom 4 due to the effect of the hydrophobic coating 7. As a result, more working fluid is supplied to the tip end surface 1a, and the amount of evaporation increases, so that the amount of heat exchange can be increased. At the same time, the thickness of the liquid film at the groove bottom 4 is reduced, so that the thermal resistance (liquid film thickness / liquid thermal conductivity) due to the liquid film is reduced, and high heat transfer performance can be obtained. Therefore, when the heat transfer tube 11a of the present embodiment is applied to an evaporator of an absorption refrigerator, the amount of evaporation at the end surface 1a increases, and the heat transfer performance improves.
[0029]
In the present embodiment, the case where the heat transfer tube 11a is applied to an evaporator of an absorption refrigerator has been described, but the present invention is not limited to this, and is applied to, for example, an absorber of an absorption refrigerator. In this case, improvement of the heat transfer performance can be expected by optimizing the liquid film distribution in accordance with the gist of the present invention. Furthermore, in addition to the evaporator or absorber of an absorption refrigerator, the same applies to any heat transfer tube provided by a falling film heat exchanger, such as an evaporator or absorber for an absorption water heater / heater. Can be.
[0030]
In the present invention, the hydrophilic film and the hydrophobic film mean a relative relationship with other portions of the outer surface of the heat transfer tube. For example, in a hydrophilic film formed on a heat transfer tube surface of a metal or an alloy. Is not limited as long as it is more hydrophilic than the surface of the metal or alloy. However, the water-based film and the hydrophobic film of the present invention are less than 90 ° and more than 90 ° are made hydrophilic and hydrophobic, respectively, in the contact angle with water measured according to JIS K2396, and can be selected from this range. It is practically preferred. Specifically, the contact angle of water on the copper surface is 95 to 100 °, the contact angle of the hydrophilic film is 60 to 70 °, and the contact angle of the hydrophobic film is 100 to 115 °. is there.
[0031]
Next, a modified example of the heat transfer tube of the present embodiment will be described. FIG. 3 is a partial perspective view showing a first modification of the embodiment of the present invention. As shown in FIG. 3, a heat transfer tube 11b according to a first modification of the present embodiment is made of copper or a copper alloy, and has a plurality of spirally arranged truncated quadrangular pyramid-shaped protrusions 3 on its outer surface. Is formed. A groove bottom 4 is formed between adjacent projections 3. Further, the tip surface 3a of the projection 3 is more hydrophilic than other regions on the outer surface. Also in the heat transfer tube 11b of this modification, as in the first embodiment described above, a hydrophilic film is formed on the distal end surface 3a, or a hydrophobic film is formed on a region other than the distal end surface 3a. The tip surface 3a can be made more hydrophilic than other regions. Further, a hydrophilic film may be formed on the distal end surface 3a of the projection 3, and a hydrophobic film may be formed on other regions.
[0032]
Next, a second modified example will be described. FIG. 4 is a partial perspective view showing a second modification of the embodiment of the present invention. As shown in FIG. 4, a heat transfer tube 11c according to a second modification of the present embodiment is made of copper or a copper alloy, and has a plurality of semi-cylindrical projections 8 on its outer surface. They are formed at equal intervals so as to be parallel to the axial direction, and are annularly arranged along the pipe circumferential direction. The surface 8 a including the tip is a curved surface and is in contact with the groove bottom 4. Also in the heat transfer tube 11c on which the projections 8 are formed, a hydrophilic coating is formed on the distal end surface 8a of the projection 8, or a hydrophobic coating is formed on a portion other than the distal end surface 8a, and the distal end surface 8a is formed with another surface. By making the region more hydrophilic, the same effect as in the above-described embodiment and the first modification thereof can be realized. In the heat transfer tube 11c of the present modification, the region where the hydrophilic coating is formed may be a partial region including the tip of the surface 8a including the tip of the projection 8. Then, a hydrophobic film may be provided in a region other than the distal end surface 8 a on the outer surface of the heat transfer tube, and the hydrophobic film may extend to a region other than the distal end of the projection 8.
[0033]
In the heat transfer tubes of the first and second modifications, the tip surface 3a and the tip surface 8a can be made more hydrophilic than other regions by the following method. For example, when a hydrophilic film is provided on the tip surface 3a and the tip surface 8a, the tip surface 3a and the tip surface 8a are pressed by an elastic material such as a cloth previously containing a hydrophilic solution. The solution is applied, and then the hydrophilic film is fixed by heat treatment. When both a hydrophilic film and a hydrophobic film are formed, first, a solution that becomes a hydrophobic film is applied, and then a solution that becomes a hydrophilic film is applied. To be established. When a hydrophilic film or a hydrophobic film is formed as a laminated film on the outer surface of the heat transfer tube, the above method can be repeated or combined.
[0034]
【The invention's effect】
As described in detail above, according to the present invention, by making the tips of the projections or fins of the heat transfer tube having a plurality of projections or fins formed on the outer surface hydrophilic, the tip portion having high heat transfer performance is provided. Since the working fluid can be collected at a higher temperature, heat transfer performance higher than that of the conventional heat transfer tube can be realized.
[Brief description of the drawings]
FIG. 1 is a partial perspective view showing a heat transfer tube according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a liquid film distribution in the heat transfer tube according to the embodiment of the present invention.
FIG. 3 is a partial perspective view showing a heat transfer tube according to a first modification of the embodiment of the present invention.
FIG. 4 is a partial perspective view showing a heat transfer tube according to a second modification of the embodiment of the present invention.
FIG. 5 is a sectional view showing a liquid film distribution in a conventional heat transfer tube in which a hydrophilic film is formed on the entire outer surface.
[Explanation of symbols]
1; Fins 1a, 3a, 8a; Tip surface 2; Tube main body 3, 8; Projection 4; Groove bottom 5; Liquid film 6; Hydrophilic coating 7; Hydrophobic coating 11a, 11b, 11c;