WO2020209153A1 - Elastic wave device and filter apparatus provided therewith - Google Patents

Elastic wave device and filter apparatus provided therewith Download PDF

Info

Publication number
WO2020209153A1
WO2020209153A1 PCT/JP2020/015005 JP2020015005W WO2020209153A1 WO 2020209153 A1 WO2020209153 A1 WO 2020209153A1 JP 2020015005 W JP2020015005 W JP 2020015005W WO 2020209153 A1 WO2020209153 A1 WO 2020209153A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
wave device
support substrate
layer
piezoelectric film
Prior art date
Application number
PCT/JP2020/015005
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 岡田
康政 谷口
卓也 木戸
努 ▲高▼井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020209153A1 publication Critical patent/WO2020209153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present disclosure relates to an elastic wave device and a filter device provided with the elastic wave device, and more specifically, to a technique for suppressing deterioration of characteristics of the elastic wave device.
  • Patent Document 1 there is an elastic wave device in which a piezoelectric film is laminated on a support substrate and a comb-shaped electrode (IDT: Inter Digital Transducer) is arranged on the piezoelectric film. It is disclosed.
  • IDT Inter Digital Transducer
  • semiconductor silicon Si
  • SiO 2 silicon dioxide
  • the accumulation of electrons or holes may cause a state in which the resistance is relatively lower than that of other parts of the silicon substrate.
  • an unnecessary current flows on the surface of the support substrate.
  • intermodulation distortion IMD: Inter Modulation Distortion
  • harmonic distortion is likely to occur, and the characteristics of the elastic wave device may deteriorate.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to suppress deterioration of the characteristics of an elastic wave device provided with a support substrate containing silicon.
  • An elastic wave device includes a support substrate containing silicon and a functional layer formed on the support substrate.
  • the functional layer includes a piezoelectric film and a transducer electrode formed on the piezoelectric film.
  • hydrogen is bonded to silicon.
  • the surface layer portion of the support substrate containing silicon has a structure in which silicon and hydrogen are bonded.
  • the bond between the dangling bond and oxygen can be prevented, so that the low resistance layer is less likely to be formed.
  • unnecessary current flowing through the surface layer portion of the support substrate is reduced, so that the occurrence of IMD and harmonic distortion can be suppressed. Therefore, deterioration of the characteristics of the elastic wave device can be suppressed.
  • FIG. 5 is a cross-sectional view of a first example of an elastic wave device according to the second embodiment. It is sectional drawing of the 2nd example of the elastic wave device according to Embodiment 2.
  • FIG. 5 is a cross-sectional view of a first example of an elastic wave device according to the third embodiment. It is sectional drawing of the 2nd example of the elastic wave device according to Embodiment 3.
  • FIG. 1 is a cross-sectional view of the elastic wave device 100 according to the first embodiment.
  • the elastic wave device 100 is used, for example, as a filter device for passing or attenuating a high frequency signal in a specific frequency band.
  • the thickness direction of the elastic wave device is defined as the Z-axis direction
  • the plane perpendicular to the Z-axis direction is defined by the X-axis and the Y-axis.
  • the positive direction of the Z axis in each figure may be referred to as an upward direction
  • the negative direction may be referred to as a downward direction.
  • the elastic wave device 100 includes a support substrate 110, a functional layer 115, a wiring electrode 150, and an external connection terminal 160.
  • the functional layer 115 includes a piezoelectric film 120, a wiring pattern 130, a functional element (transducer electrode) 140, a low sound velocity film 170, and a high sound velocity film 180.
  • the functional layer 115 functions as a resonator.
  • the support substrate 110 is a semiconductor substrate made of silicon (Si).
  • a hypersonic film 180, a low sound velocity film 170, and a piezoelectric film 120 are laminated in this order on the support substrate 110 in the positive direction of the Z axis.
  • the low sound velocity film 170 is formed between the piezoelectric film 120 and the support substrate 110
  • the high sound velocity film 180 is formed between the low sound velocity film 170 and the support substrate 110.
  • the piezoelectric film 120 is formed of, for example, a piezoelectric single crystal material such as lithium tantalate (LiTaO 3 ) or lithium niobate (LiNbO 3 ), or a piezoelectric laminated material composed of aluminum nitride (AlN), LiTaO 3 or LiNbO 3. Will be done.
  • a functional element 140 is formed on the upper surface of the piezoelectric film 120 (the surface in the positive direction of the Z axis). In FIG. 1, lithium tantalate (LT) is used as the piezoelectric film 120.
  • the functional element 140 is formed by using, for example, a single metal composed of at least one of aluminum, copper, silver, gold, titanium, tungsten, platinum, chromium, nickel, and molybdenum, or an electrode material such as an alloy containing these as main components. Also includes at least a pair of IDT electrodes.
  • a surface acoustic wave (SAW) resonator is formed by the piezoelectric film 120 and the IDT electrode.
  • the functional element 140 is connected to the wiring electrode 150 via a wiring pattern 130 formed on the upper surface of the piezoelectric film 120.
  • the wiring electrode 150 is connected to the external connection terminal 160.
  • a high frequency signal is transmitted from the external device to the functional element 140 through the external connection terminal 160 and the wiring electrode 150, and the high frequency signal filtered by the SAW resonator is transmitted to the external device.
  • the bass velocity film 170 is made of a material in which the bulk wave sound velocity propagating through the bass velocity film 170 is lower than the bulk wave sound velocity propagating through the piezoelectric film 120.
  • the hypersonic film 180 is made of a material in which the bulk wave sound velocity propagating through the hypersonic film 180 is higher than the elastic wave sound velocity propagating through the piezoelectric film 120.
  • the "hypersonic film 170" in the embodiment corresponds to the "first layer” in the present disclosure
  • the "hypersonic film 180" corresponds to the "second layer” in the present disclosure.
  • the bass velocity film 170 is made of silicon dioxide (SiO 2 ).
  • the bass velocity film 170 is not limited to silicon dioxide, and may be formed of, for example, other dielectrics such as glass, silicon oxynitride, and tantalum oxide, or a compound obtained by adding fluorine, carbon, boron, etc. to silicon dioxide.
  • the hypersonic film 180 is made of silicon nitride (SiN).
  • the treble velocity film 180 is not limited to silicon nitride, and may be formed of a material such as aluminum nitride, aluminum oxide (alumina), silicon oxynitride, silicon carbide, diamond-like carbon (DLC), and diamond.
  • the low sound velocity film 170 and the high sound velocity film 180 are laminated below the piezoelectric film 120, so that the low sound velocity film 170 and the high sound velocity film 180 function as a reflective layer (mirror layer).
  • the surface acoustic wave leaking from the piezoelectric film 120 in the direction of the support substrate 110 is reflected by the hypersonic film 180 due to the difference in the propagating sound velocity and is confined in the low sound velocity film 170.
  • the loss of acoustic energy of the surface acoustic wave propagated by the reflective layer is suppressed, so that the surface acoustic wave can be efficiently propagated.
  • the silicon atom and the hydrogen atom are bonded to each other on the surface layer portion 190 of the support substrate 110 by subjecting the upper surface of the support substrate 110 made of silicon to a hydrogen termination treatment in advance.
  • the bond between the dangling bond on the silicon surface and the oxygen atom in the surface layer portion 190 of the support substrate 110 can be reduced, so that the generation of a low resistance layer can be suppressed. Therefore, the generation of IMD or harmonic distortion can be suppressed, and as a result, the deterioration of the characteristics of the elastic wave device can be suppressed.
  • FIG. 2 is a diagram showing an electrical equivalent circuit in an elastic wave device of a comparative example using a support substrate that has not been subjected to hydrogen termination treatment.
  • a parallel circuit of the IDT electrode capacitance C1 and the non-linear capacitance C2 of the leak current path is formed between the input Pin and the output Pout (between adjacent electrode fingers). It will be.
  • IMD intermodulation distortion
  • FIG. 3 is a graph comparing the IMD level of the first embodiment with the hydrogen termination treatment with the comparative example without the hydrogen termination treatment. As shown in FIG. 3, it can be seen that the IMD level, which was ⁇ 109.5 dBm in the comparative example, has been improved to about -110.5 dBm in the first embodiment.
  • the surface layer portion of the support substrate is subjected to hydrogen termination treatment, and the tongue ring bond and the oxygen atom on the silicon surface in the surface layer portion of the support substrate are formed.
  • the coupling it is possible to prevent the generation of a low resistance layer.
  • the generation of IMD and harmonic distortion can be suppressed in the elastic wave device, and the deterioration of the characteristics of the elastic wave device can be suppressed.
  • FIG. 4 and 5 are cross-sectional views of elastic wave devices 100A and 100B according to the second embodiment. Neither the functional layer 115A of the elastic wave device 100A nor the functional layer 115B of the elastic wave device 100B is provided with the reflection layer as shown in FIG.
  • the piezoelectric film 120 on which the functional element 140 is formed is included as the functional layer 115A formed on the support substrate 110, which is low in FIG.
  • the configuration does not include the sound velocity film 170 and the hypersonic film 180.
  • the surface layer portion 190 of the support substrate 110 is not subjected to hydrogen termination treatment, the surface of the support substrate 110 may be oxidized to form a silicon dioxide region.
  • a low resistance layer is generated in the region of silicon in contact with silicon dioxide, and a leak current path as described with reference to FIG. 2 can occur.
  • the occurrence of IMD and harmonic distortion can be suppressed by performing hydrogen termination treatment on the surface layer portion 190 of the support substrate 110.
  • silicon dioxide which is a low sound velocity film 170
  • the functional layer 115B of the elastic wave device 100B of FIG. 5 silicon dioxide, which is a low sound velocity film 170, is formed between the piezoelectric film 120 and the support substrate 110.
  • a layer of silicon dioxide is formed to form a reflective layer.
  • the silicon dioxide layer of the bass velocity film 170 is in contact with the support substrate 110.
  • a low resistance layer is generated in the region of the boundary portion of the support substrate 110. Therefore, when adopting the configuration as shown in FIG. 5, it is necessary to perform hydrogen termination treatment on the surface layer portion 190 of the support substrate 110.
  • the elastic wave device 100C of FIG. 6 is an example of an FBAR (Film Bulk Acoustic Resonator) type BAW resonator
  • the elastic wave device 100D of FIG. 7 is an example of an SMR (Solid Mounted Resonator) type BAW resonator.
  • flat plates 135 and 136 are formed as functional elements (transducer electrodes) on the upper surface 121 and the lower surface 122 of the piezoelectric film 120, respectively.
  • aluminum nitride (AlN) is used as the piezoelectric film 120
  • molybdenum (Mo) is used as the electrodes 135 and 136.
  • the "upper surface 121" and “lower surface 122" in the present embodiment correspond to the “first main surface” and the “second main surface” in the present disclosure, respectively.
  • the “electrode 135" and the “electrode 136" in the embodiment correspond to the "first electrode” and the “second electrode” in the present disclosure, respectively.
  • a cavity 116 is formed between the portion of the functional layer 115C where the electrodes 135 and 136 are formed and the support substrate 110.
  • the cavity 116 allows the piezoelectric film 120 to vibrate freely.
  • the support substrate 110 and the piezoelectric film 120 of the functional layer 115C are in contact with each other in the portion of the elastic wave device 100C where the cavity 116 is not formed. Then, the surface layer portion 190 in contact with the piezoelectric film 120 in the support substrate 110 is subjected to hydrogen termination treatment. As a result, it is possible to prevent the occurrence of a low resistance region in the support substrate 110, so that the occurrence of IMD and harmonic distortion can be suppressed.
  • the reflection layer is low between the electrode 136 and the support substrate 110.
  • a sound velocity film 170A and a hypersonic film 180A are formed.
  • a layer of silicon dioxide is formed as the hypersonic film 170A
  • a layer of silicon nitride is formed as the hypersonic film 180A, as in the first embodiment of FIG.
  • the elastic wave device 100D may also have a configuration in which a plurality of low sound velocity films 170A and high sound velocity films 180A are alternately laminated as a reflection layer.
  • a plate wave type elastic wave device using at least a pair of IDT electrodes as functional elements is also provided on the surface layer of the support substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

This elastic wave device (100) comprises: a support substrate (110) including silicon; and a function layer (115) formed on the support substrate (110). The function layer (115) includes a piezoelectric film (120), and an IDT electrode (140) formed on the piezoelectric film (120). In a surface layer section (190) of the support substrate (110) in contact with the function layer (115), hydrogen is bonded to the silicon.

Description

弾性波デバイスおよびそれを備えたフィルタ装置Elastic wave device and filter device equipped with it
 本開示は、弾性波デバイスおよびそれを備えたフィルタ装置に関し、より特定的には、弾性波デバイスの特性低下を抑制するための技術に関する。 The present disclosure relates to an elastic wave device and a filter device provided with the elastic wave device, and more specifically, to a technique for suppressing deterioration of characteristics of the elastic wave device.
 従来から、共振子あるいは帯域フィルタとして弾性波デバイスが広く用いられている。たとえば、国際公開第2012/086639号(特許文献1)には、支持基板上に圧電膜が積層され、当該圧電膜に櫛歯状電極(IDT:Inter Digital Transducer)が配置された弾性波デバイスが開示されている。 Conventionally, elastic wave devices have been widely used as resonators or band filters. For example, in International Publication No. 2012/0866639 (Patent Document 1), there is an elastic wave device in which a piezoelectric film is laminated on a support substrate and a comb-shaped electrode (IDT: Inter Digital Transducer) is arranged on the piezoelectric film. It is disclosed.
国際公開第2012/086639号International Publication No. 2012/0866639
 このような弾性波デバイスにおいて、支持基板として半導体のシリコン(Si)が用いられる場合がある。シリコン表面には、タングリングボンドと称される、結合共有の相手がいない結合手が存在することが知られている。このタングリングボンドと酸素とが結合することによって二酸化ケイ素(SiO)の絶縁膜が形成される。 In such elastic wave devices, semiconductor silicon (Si) may be used as a support substrate. It is known that there is a bonder called a dangling bond on the silicon surface, which has no bond sharing partner. The insulating film of silicon dioxide (SiO 2 ) is formed by combining the dangling bond with oxygen.
 このシリコンと二酸化ケイ素との界面においては、電子あるいは正孔の蓄積により、シリコン基板の他の部分よりも相対的に抵抗が低い状態が生じ得る。その結果、支持基板の表面において不要な電流が流れてしまう。これにより、相互変調歪み(IMD:Inter Modulation Distortion)あるいは高調波歪みが発生しやすくなり、弾性波デバイスの特性が低下する可能性がある。 At the interface between silicon and silicon dioxide, the accumulation of electrons or holes may cause a state in which the resistance is relatively lower than that of other parts of the silicon substrate. As a result, an unnecessary current flows on the surface of the support substrate. As a result, intermodulation distortion (IMD: Inter Modulation Distortion) or harmonic distortion is likely to occur, and the characteristics of the elastic wave device may deteriorate.
 本開示は、上記のような課題を解決するためになされたものであって、その目的は、シリコンを含む支持基板を備えた弾性波デバイスの特性の低下を抑制することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to suppress deterioration of the characteristics of an elastic wave device provided with a support substrate containing silicon.
 本開示に従う弾性波デバイスは、シリコンを含む支持基板と、支持基板上に形成された機能層とを備える。機能層は、圧電膜および当該圧電膜上に形成されたトランスデューサ電極を含む。機能層と接する支持基板の表層部分においては、シリコンに水素が結合している。 An elastic wave device according to the present disclosure includes a support substrate containing silicon and a functional layer formed on the support substrate. The functional layer includes a piezoelectric film and a transducer electrode formed on the piezoelectric film. In the surface layer portion of the support substrate in contact with the functional layer, hydrogen is bonded to silicon.
 本開示に係る弾性波デバイスによれば、シリコンを含む支持基板の表層部分において、シリコンと水素とが結合した構成を有している。このような構成により、タングリングボンドと酸素との結合を防ぐことができるので、低抵抗層が形成されにくくなる。これにより、支持基板の表層部分に流れる不要な電流が低減されるので、IMDおよび高調波歪みの発生が抑制できる。したがって、弾性波デバイスの特性の低下を抑制することができる。 According to the elastic wave device according to the present disclosure, the surface layer portion of the support substrate containing silicon has a structure in which silicon and hydrogen are bonded. With such a configuration, the bond between the dangling bond and oxygen can be prevented, so that the low resistance layer is less likely to be formed. As a result, unnecessary current flowing through the surface layer portion of the support substrate is reduced, so that the occurrence of IMD and harmonic distortion can be suppressed. Therefore, deterioration of the characteristics of the elastic wave device can be suppressed.
実施の形態1に従う弾性波デバイスの断面図である。It is sectional drawing of the elastic wave device according to Embodiment 1. FIG. 比較例の弾性波装置の電気的な等価回路を示す図である。It is a figure which shows the electrical equivalent circuit of the elastic wave device of the comparative example. 実施の形態1および比較例についてのIMDレベルを説明するための図である。It is a figure for demonstrating the IMD level for Embodiment 1 and a comparative example. 実施の形態2に従う弾性波デバイスの第1例の断面図である。FIG. 5 is a cross-sectional view of a first example of an elastic wave device according to the second embodiment. 実施の形態2に従う弾性波デバイスの第2例の断面図である。It is sectional drawing of the 2nd example of the elastic wave device according to Embodiment 2. FIG. 実施の形態3に従う弾性波デバイスの第1例の断面図である。FIG. 5 is a cross-sectional view of a first example of an elastic wave device according to the third embodiment. 実施の形態3に従う弾性波デバイスの第2例の断面図である。It is sectional drawing of the 2nd example of the elastic wave device according to Embodiment 3.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 [実施の形態1]
 図1は、実施の形態1に従う弾性波デバイス100の断面図である。弾性波デバイス100は、たとえば、特定の周波数帯域の高周波信号を通過、あるいは減衰させるためのフィルタ装置に用いられる。なお、以降の説明においては、弾性波デバイスの厚さ方向をZ軸方向とし、Z軸方向に垂直な面をX軸およびY軸で規定する。また、各図におけるZ軸の正方向を上方、負方向を下方と称する場合がある。
[Embodiment 1]
FIG. 1 is a cross-sectional view of the elastic wave device 100 according to the first embodiment. The elastic wave device 100 is used, for example, as a filter device for passing or attenuating a high frequency signal in a specific frequency band. In the following description, the thickness direction of the elastic wave device is defined as the Z-axis direction, and the plane perpendicular to the Z-axis direction is defined by the X-axis and the Y-axis. Further, the positive direction of the Z axis in each figure may be referred to as an upward direction, and the negative direction may be referred to as a downward direction.
 図1を参照して、弾性波デバイス100は、支持基板110と、機能層115と、配線電極150と、外部接続端子160とを備える。機能層115は、圧電膜120と、配線パターン130と、機能素子(トランスデューサ電極)140と、低音速膜170と、高音速膜180とを含む。機能層115は、共振器として機能する。 With reference to FIG. 1, the elastic wave device 100 includes a support substrate 110, a functional layer 115, a wiring electrode 150, and an external connection terminal 160. The functional layer 115 includes a piezoelectric film 120, a wiring pattern 130, a functional element (transducer electrode) 140, a low sound velocity film 170, and a high sound velocity film 180. The functional layer 115 functions as a resonator.
 支持基板110は、シリコン(Si)で形成された半導体基板である。支持基板110上には、Z軸の正方向に向かって、高音速膜180、低音速膜170および圧電膜120が順に積層されている。言い換えれば、低音速膜170は、圧電膜120と支持基板110との間に形成されており、高音速膜180は、低音速膜170と支持基板110との間に形成されている。 The support substrate 110 is a semiconductor substrate made of silicon (Si). A hypersonic film 180, a low sound velocity film 170, and a piezoelectric film 120 are laminated in this order on the support substrate 110 in the positive direction of the Z axis. In other words, the low sound velocity film 170 is formed between the piezoelectric film 120 and the support substrate 110, and the high sound velocity film 180 is formed between the low sound velocity film 170 and the support substrate 110.
 圧電膜120は、たとえば、タンタル酸リチウム(LiTaO)またはニオブ酸リチウム(LiNbO)のような圧電単結晶材料、あるいは、窒化アルミニウム(AlN)、LiTaOまたはLiNbOからなる圧電積層材料により形成される。圧電膜120の上面(Z軸の正方向の面)には、機能素子140が形成されている。なお、図1においては、圧電膜120として、タンタル酸リチウム(LT)が用いられている。 The piezoelectric film 120 is formed of, for example, a piezoelectric single crystal material such as lithium tantalate (LiTaO 3 ) or lithium niobate (LiNbO 3 ), or a piezoelectric laminated material composed of aluminum nitride (AlN), LiTaO 3 or LiNbO 3. Will be done. A functional element 140 is formed on the upper surface of the piezoelectric film 120 (the surface in the positive direction of the Z axis). In FIG. 1, lithium tantalate (LT) is used as the piezoelectric film 120.
 機能素子140として、たとえばアルミニウム、銅、銀、金、チタン、タングステン、白金、クロム、ニッケル、モリブデンの少なくとも一種からなる単体金属、またはこれらを主成分とする合金などの電極材を用いて形成された少なくとも一対のIDT電極が含まれる。圧電膜120とIDT電極とによって弾性表面波(SAW:Surface Acoustic Wave)共振子が形成される。機能素子140は、圧電膜120の上面に形成された配線パターン130を介して配線電極150と接続されている。配線電極150は、外部接続端子160と接続されている。外部接続端子160および配線電極150を通して、外部機器から機能素子140へ高周波信号が伝達されるとともに、SAW共振子によってフィルタリングされた高周波信号が外部機器へと伝達される。 The functional element 140 is formed by using, for example, a single metal composed of at least one of aluminum, copper, silver, gold, titanium, tungsten, platinum, chromium, nickel, and molybdenum, or an electrode material such as an alloy containing these as main components. Also includes at least a pair of IDT electrodes. A surface acoustic wave (SAW) resonator is formed by the piezoelectric film 120 and the IDT electrode. The functional element 140 is connected to the wiring electrode 150 via a wiring pattern 130 formed on the upper surface of the piezoelectric film 120. The wiring electrode 150 is connected to the external connection terminal 160. A high frequency signal is transmitted from the external device to the functional element 140 through the external connection terminal 160 and the wiring electrode 150, and the high frequency signal filtered by the SAW resonator is transmitted to the external device.
 低音速膜170は、当該低音速膜170を伝搬するバルク波音速が、圧電膜120を伝搬するバルク波音速よりも低速となる材料で形成されている。また、高音速膜180は、当該高音速膜180を伝搬するバルク波音速が、圧電膜120を伝搬する弾性波音速よりも高速となる材料で形成されている。なお、実施の形態における「低音速膜170」は本開示における「第1層」に対応し、「高音速膜180」は本開示における「第2層」に対応する。 The bass velocity film 170 is made of a material in which the bulk wave sound velocity propagating through the bass velocity film 170 is lower than the bulk wave sound velocity propagating through the piezoelectric film 120. Further, the hypersonic film 180 is made of a material in which the bulk wave sound velocity propagating through the hypersonic film 180 is higher than the elastic wave sound velocity propagating through the piezoelectric film 120. The "hypersonic film 170" in the embodiment corresponds to the "first layer" in the present disclosure, and the "hypersonic film 180" corresponds to the "second layer" in the present disclosure.
 本実施の形態1においては、低音速膜170は二酸化ケイ素(SiO)で形成されている。しかしながら、低音速膜170は二酸化ケイ素に限らず、たとえば、ガラス、酸窒化シリコン、酸化タンタルなどの他の誘電体、あるいは二酸化ケイ素にフッ素、炭素、ホウ素などを加えた化合物などで形成されてもよい。また、本実施の形態1においては、高音速膜180は窒化ケイ素(SiN)で形成されている。しかしながら、高音速膜180は窒化ケイ素に限らず、窒化アルミニウム、酸化アルミニウム(アルミナ)、酸窒化ケイ素、炭化ケイ素、ダイヤモンドライクカーボン(DLC)、ダイヤモンドなどの材料で形成されてもよい。 In the first embodiment, the bass velocity film 170 is made of silicon dioxide (SiO 2 ). However, the bass velocity film 170 is not limited to silicon dioxide, and may be formed of, for example, other dielectrics such as glass, silicon oxynitride, and tantalum oxide, or a compound obtained by adding fluorine, carbon, boron, etc. to silicon dioxide. Good. Further, in the first embodiment, the hypersonic film 180 is made of silicon nitride (SiN). However, the treble velocity film 180 is not limited to silicon nitride, and may be formed of a material such as aluminum nitride, aluminum oxide (alumina), silicon oxynitride, silicon carbide, diamond-like carbon (DLC), and diamond.
 図1に示すように、圧電膜120の下方に、低音速膜170および高音速膜180を積層する構成とすることによって、低音速膜170および高音速膜180は反射層(ミラー層)として機能する。すなわち、圧電膜120から支持基板110の方向に漏洩した弾性表面波は、伝搬する音速の差によって高音速膜180で反射され、低音速膜170内に閉じ込められる。このように、反射層により伝搬される弾性表面波の音響エネルギの損失が抑制されるため、効率よく弾性表面波を伝搬することができる。なお、図1においては、反射層として、低音速膜170および高音速膜180がそれぞれ1層形成される例について説明したが、反射層は複数の低音速膜170および高音速膜180が交互に配置された構成であってもよい。 As shown in FIG. 1, the low sound velocity film 170 and the high sound velocity film 180 are laminated below the piezoelectric film 120, so that the low sound velocity film 170 and the high sound velocity film 180 function as a reflective layer (mirror layer). To do. That is, the surface acoustic wave leaking from the piezoelectric film 120 in the direction of the support substrate 110 is reflected by the hypersonic film 180 due to the difference in the propagating sound velocity and is confined in the low sound velocity film 170. In this way, the loss of acoustic energy of the surface acoustic wave propagated by the reflective layer is suppressed, so that the surface acoustic wave can be efficiently propagated. In FIG. 1, an example in which one low-sound velocity film 170 and one high-sound velocity film 180 are formed as reflective layers has been described, but a plurality of low-sound velocity films 170 and high-sound velocity films 180 are alternately formed as reflective layers. It may be an arranged configuration.
 このような弾性波デバイスにおいて、支持基板として用いられるシリコンの表面には、タングリングボンドと称される、結合共有の相手がいない結合手が存在する。シリコンが空気中にさらされると、その表層部分が酸化して二酸化ケイ素の絶縁膜が形成される。このような絶縁膜とシリコンとの境界には、シリコン基板中の電子あるいは正孔が境界付近に蓄積しやすい状態が生じることが知られている。この状態においては、蓄積された電子あるいは正孔により、シリコン基板の他の部分よりも相対的に抵抗が低い状態となり得る。そうなると、IDT電極間において、支持基板の表層部分を経由する電流のリークパスが生じてしまう。その結果、相互変調歪み(IMD)あるいは高調波歪みが発生しやすくなり弾性波デバイスの特性が低下するおそれがある。 In such an elastic wave device, on the surface of silicon used as a support substrate, there is a bond called a dangling bond, which has no partner for bond sharing. When silicon is exposed to air, its surface layer is oxidized to form an insulating film of silicon dioxide. It is known that at the boundary between such an insulating film and silicon, a state in which electrons or holes in the silicon substrate are likely to accumulate near the boundary occurs. In this state, the accumulated electrons or holes may cause the resistance to be relatively lower than that of other parts of the silicon substrate. In that case, a current leak path is generated between the IDT electrodes via the surface layer portion of the support substrate. As a result, intermodulation distortion (IMD) or harmonic distortion is likely to occur, which may reduce the characteristics of the elastic wave device.
 そのため、本実施の形態1においては、シリコンで形成された支持基板110の上面に予め水素終端処理を施すことによって、支持基板110の表層部分190においてシリコン原子と水素原子とを結合させる。 Therefore, in the first embodiment, the silicon atom and the hydrogen atom are bonded to each other on the surface layer portion 190 of the support substrate 110 by subjecting the upper surface of the support substrate 110 made of silicon to a hydrogen termination treatment in advance.
 このような水素終端処理によって、支持基板110の表層部分190におけるシリコン表面のタングリングボンドと酸素原子との結合を低減できるため、低抵抗層の発生を抑制することができる。したがって、IMDあるいは高調波歪みの発生が抑制でき、結果として、弾性波デバイスの特性の低下を抑制することができる。 By such hydrogen termination treatment, the bond between the dangling bond on the silicon surface and the oxygen atom in the surface layer portion 190 of the support substrate 110 can be reduced, so that the generation of a low resistance layer can be suppressed. Therefore, the generation of IMD or harmonic distortion can be suppressed, and as a result, the deterioration of the characteristics of the elastic wave device can be suppressed.
 次に図2を用いて、支持基板110に水素終端処理が施されなかった場合に生じる問題について説明する。図2は、水素終端処理が施されていない支持基板を用いた比較例の弾性波装置における電気的な等価回路を示す図である。図2の等価回路で示されるように、入力Pinと出力Poutとの間(隣接する電極指同士の間)に、IDT電極の容量C1およびリーク電流経路の非線形容量C2の並列回路が形成されることになる。このような非線形なデバイスに対して周波数が近接した2つの正弦波を入力すると、2つの正弦波の基本周波数に近接した3次の相互変調歪み(IMD)が生じる。 Next, with reference to FIG. 2, the problem that occurs when the support substrate 110 is not subjected to hydrogen termination treatment will be described. FIG. 2 is a diagram showing an electrical equivalent circuit in an elastic wave device of a comparative example using a support substrate that has not been subjected to hydrogen termination treatment. As shown by the equivalent circuit of FIG. 2, a parallel circuit of the IDT electrode capacitance C1 and the non-linear capacitance C2 of the leak current path is formed between the input Pin and the output Pout (between adjacent electrode fingers). It will be. Inputting two sinusoids with similar frequencies to such a non-linear device results in third-order intermodulation distortion (IMD) close to the fundamental frequencies of the two sinusoids.
 一方、実施の形態1のように、支持基板の表層部分に水素終端処理を施すことによって、図2で示した非線形容量を有するリーク電流経路の形成を防止することができる。これによって、IMDあるいは高調波歪みの発生を抑制することができる。 On the other hand, by performing hydrogen termination treatment on the surface layer portion of the support substrate as in the first embodiment, it is possible to prevent the formation of a leak current path having a non-linear capacitance shown in FIG. Thereby, the occurrence of IMD or harmonic distortion can be suppressed.
 図3は、水素終端処理が施されていない比較例と、水素終端処理を施した実施の形態1のIMDレベルを比較したグラフである。図3に示されるように、比較例においては-109.5dBmであったIMDレベルが、実施の形態1においては-110.5dBm程度まで改善されていることがわかる。 FIG. 3 is a graph comparing the IMD level of the first embodiment with the hydrogen termination treatment with the comparative example without the hydrogen termination treatment. As shown in FIG. 3, it can be seen that the IMD level, which was −109.5 dBm in the comparative example, has been improved to about -110.5 dBm in the first embodiment.
 以上のように、シリコンを含む支持基板上に形成された弾性波デバイスにおいて、支持基板の表層部分に水素終端処理を施して、支持基板の表層部分におけるシリコン表面のタングリングボンドと酸素原子との結合を低減することによって、低抵抗層の発生を防止することができる。これにより、弾性波デバイスにおいてIMDおよび高調波歪みの発生が抑制でき、弾性波デバイスの特性の低下を抑制することが可能となる。 As described above, in the elastic wave device formed on the support substrate containing silicon, the surface layer portion of the support substrate is subjected to hydrogen termination treatment, and the tongue ring bond and the oxygen atom on the silicon surface in the surface layer portion of the support substrate are formed. By reducing the coupling, it is possible to prevent the generation of a low resistance layer. As a result, the generation of IMD and harmonic distortion can be suppressed in the elastic wave device, and the deterioration of the characteristics of the elastic wave device can be suppressed.
 [実施の形態2]
 実施の形態1の弾性波デバイス100においては、圧電膜120と支持基板110との間に反射層が配置される構成について説明した。実施の形態2においては、反射層が用いられない弾性波デバイスの例について説明する。
[Embodiment 2]
In the elastic wave device 100 of the first embodiment, a configuration in which a reflective layer is arranged between the piezoelectric film 120 and the support substrate 110 has been described. In the second embodiment, an example of an elastic wave device in which a reflective layer is not used will be described.
 図4および図5は、実施の形態2に従う弾性波デバイス100A,100Bの断面図である。弾性波デバイス100Aの機能層115Aおよび弾性波デバイス100Bの機能層115Bのいずれにおいても、図1で示したような反射層が設けられない構成となっている。 4 and 5 are cross-sectional views of elastic wave devices 100A and 100B according to the second embodiment. Neither the functional layer 115A of the elastic wave device 100A nor the functional layer 115B of the elastic wave device 100B is provided with the reflection layer as shown in FIG.
 より具体的には、図4の弾性波デバイス100Aにおいては、支持基板110上に形成される機能層115Aとして、機能素子140が形成された圧電膜120のみが含まれており、図1の低音速膜170および高音速膜180が含まれない構成となっている。弾性波デバイス100Aの場合においても、支持基板110の表層部分190に水素終端処理が施されていないと、支持基板110の表面が酸化して二酸化ケイ素の領域が生じ得る。これにより、支持基板110において、二酸化ケイ素と接するシリコンの領域に低抵抗層が発生し、図2で説明したようなリーク電流経路が生じ得る。 More specifically, in the elastic wave device 100A of FIG. 4, only the piezoelectric film 120 on which the functional element 140 is formed is included as the functional layer 115A formed on the support substrate 110, which is low in FIG. The configuration does not include the sound velocity film 170 and the hypersonic film 180. Even in the case of the elastic wave device 100A, if the surface layer portion 190 of the support substrate 110 is not subjected to hydrogen termination treatment, the surface of the support substrate 110 may be oxidized to form a silicon dioxide region. As a result, in the support substrate 110, a low resistance layer is generated in the region of silicon in contact with silicon dioxide, and a leak current path as described with reference to FIG. 2 can occur.
 そのため、弾性波デバイス100Aのような反射層が設けられない構成においても、支持基板110の表層部分190に水素終端処理を施すことによって、IMDおよび高調波歪みの発生を抑制することができる。 Therefore, even in a configuration such as the elastic wave device 100A in which a reflective layer is not provided, the occurrence of IMD and harmonic distortion can be suppressed by performing hydrogen termination treatment on the surface layer portion 190 of the support substrate 110.
 また、図5の弾性波デバイス100Bの機能層115Bにおいては、圧電膜120と支持基板110との間に、低音速膜170である二酸化ケイ素が形成された構成となっている。このような二酸化ケイ素の層は、反射層を形成するために形成される。弾性波デバイス100Bにおいては、仮に支持基板110の表面が酸化していない状態で機能層が形成された場合あっても、低音速膜170の二酸化ケイ素の層と支持基板110とが接しているため、支持基板110の境界部分の領域において低抵抗層が発生する。したがって、図5のような構成を採用する場合には、支持基板110の表層部分190に水素終端処理を施しておくことが必要となる。 Further, in the functional layer 115B of the elastic wave device 100B of FIG. 5, silicon dioxide, which is a low sound velocity film 170, is formed between the piezoelectric film 120 and the support substrate 110. Such a layer of silicon dioxide is formed to form a reflective layer. In the elastic wave device 100B, even if the functional layer is formed in a state where the surface of the support substrate 110 is not oxidized, the silicon dioxide layer of the bass velocity film 170 is in contact with the support substrate 110. , A low resistance layer is generated in the region of the boundary portion of the support substrate 110. Therefore, when adopting the configuration as shown in FIG. 5, it is necessary to perform hydrogen termination treatment on the surface layer portion 190 of the support substrate 110.
 [実施の形態3]
 実施の形態1および実施の形態2においては、IDT電極を機能素子として有するSAW共振子の場合の例について説明した。実施の形態3においては、本開示の特徴を、バルク弾性波(BAW:Bulk Acoustic Wave)共振子に適用した例について説明する。
[Embodiment 3]
In the first embodiment and the second embodiment, an example in the case of a SAW resonator having an IDT electrode as a functional element has been described. In the third embodiment, an example in which the features of the present disclosure are applied to a bulk acoustic wave (BAW) resonator will be described.
 図6および図7は、実施の形態3に従う弾性波デバイス100C,100Dの断面図である。図6の弾性波デバイス100CはFBAR(Film Bulk Acoustic Resonator)型のBAW共振子の例であり、図7の弾性波デバイス100DはSMR(Solid Mounted Resonator)型のBAW共振子の例である。 6 and 7 are cross-sectional views of elastic wave devices 100C and 100D according to the third embodiment. The elastic wave device 100C of FIG. 6 is an example of an FBAR (Film Bulk Acoustic Resonator) type BAW resonator, and the elastic wave device 100D of FIG. 7 is an example of an SMR (Solid Mounted Resonator) type BAW resonator.
 図6を参照して、弾性波デバイス100Cの機能層115Cは、圧電膜120の上面121および下面122に、機能素子(トランスデューサ電極)として平板状の電極135,136がそれぞれ形成されている。図6の例においては、圧電膜120として窒化アルミニウム(AlN)が用いられており、電極135,136としてモリブデン(Mo)が用いられている。 With reference to FIG. 6, in the functional layer 115C of the elastic wave device 100C, flat plates 135 and 136 are formed as functional elements (transducer electrodes) on the upper surface 121 and the lower surface 122 of the piezoelectric film 120, respectively. In the example of FIG. 6, aluminum nitride (AlN) is used as the piezoelectric film 120, and molybdenum (Mo) is used as the electrodes 135 and 136.
 なお、本実施の形態における「上面121」および「下面122」は、本開示における「第1主面」および「第2主面」にそれぞれ対応する。また、実施の形態における「電極135」および「電極136」は、本開示における「第1電極」および「第2電極」にそれぞれ対応する。 Note that the "upper surface 121" and "lower surface 122" in the present embodiment correspond to the "first main surface" and the "second main surface" in the present disclosure, respectively. Further, the "electrode 135" and the "electrode 136" in the embodiment correspond to the "first electrode" and the "second electrode" in the present disclosure, respectively.
 FBAR型のBAW共振子では、機能層115Cにおける電極135,136が形成される部分と、支持基板110との間に空洞116が形成されている。この空洞116により、圧電膜120を自由に振動させることができる。 In the FBAR type BAW resonator, a cavity 116 is formed between the portion of the functional layer 115C where the electrodes 135 and 136 are formed and the support substrate 110. The cavity 116 allows the piezoelectric film 120 to vibrate freely.
 弾性波デバイス100Cの空洞116が形成されていない部分において、支持基板110と機能層115Cの圧電膜120とが接している。そして、支持基板110において圧電膜120と接する表層部分190に水素終端処理が施される。これによって、支持基板110において低抵抗領域の発生を防止できるため、IMDおよび高調波歪みの発生を抑制することができる。 The support substrate 110 and the piezoelectric film 120 of the functional layer 115C are in contact with each other in the portion of the elastic wave device 100C where the cavity 116 is not formed. Then, the surface layer portion 190 in contact with the piezoelectric film 120 in the support substrate 110 is subjected to hydrogen termination treatment. As a result, it is possible to prevent the occurrence of a low resistance region in the support substrate 110, so that the occurrence of IMD and harmonic distortion can be suppressed.
 次に、図7を参照して、SMR型のBAW共振子では、機能層115Dとして、圧電膜120および電極135,136に加えて、電極136と支持基板110との間に、反射層として低音速膜170Aおよび高音速膜180Aが形成される。図7の例においては、図1の実施の形態1と同様に、低音速膜170Aとして二酸化ケイ素の層が形成され、高音速膜180Aとして窒化ケイ素の層が形成されている。なお、弾性波デバイス100Dにおいても、反射層として複数の低音速膜170Aおよび高音速膜180Aが交互に積層された構成であってもよい。 Next, referring to FIG. 7, in the SMR type BAW resonator, as the functional layer 115D, in addition to the piezoelectric film 120 and the electrodes 135 and 136, the reflection layer is low between the electrode 136 and the support substrate 110. A sound velocity film 170A and a hypersonic film 180A are formed. In the example of FIG. 7, a layer of silicon dioxide is formed as the hypersonic film 170A, and a layer of silicon nitride is formed as the hypersonic film 180A, as in the first embodiment of FIG. The elastic wave device 100D may also have a configuration in which a plurality of low sound velocity films 170A and high sound velocity films 180A are alternately laminated as a reflection layer.
 SMR型の弾性波デバイス100Dにおいても、支持基板110において機能層115Dと接する表層部分190に水素終端処理を施すことによって、支持基板110における低抵抗領域の発生を防止できる。これによって、IMDおよび高調波歪みの発生を抑制することができる。 Even in the SMR type elastic wave device 100D, it is possible to prevent the generation of a low resistance region in the support substrate 110 by performing hydrogen termination treatment on the surface layer portion 190 in contact with the functional layer 115D in the support substrate 110. Thereby, the generation of IMD and harmonic distortion can be suppressed.
 なお、図示していないが、図6の弾性波デバイス100Cおよび図7の弾性波デバイス100Dにおいて、機能素子として少なくとも一対のIDT電極を用いた板波型の弾性波デバイスについても、支持基板の表層部分に水素終端処理を施すことによって、IMDおよび高調波歪みの発生を抑制することができる。 Although not shown, in the elastic wave device 100C of FIG. 6 and the elastic wave device 100D of FIG. 7, a plate wave type elastic wave device using at least a pair of IDT electrodes as functional elements is also provided on the surface layer of the support substrate. By applying hydrogen termination treatment to the portion, it is possible to suppress the occurrence of IMD and harmonic distortion.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 100,100A~100D 弾性波デバイス、110 支持基板、115,115A~115D 機能層、116 空洞、120 圧電膜、121 上面、122 下面、130 配線パターン、135,136 電極、140 機能素子、150 配線電極、160 外部接続端子、170,170A 低音速膜、180,180A 高音速膜、190 表層部分。 100, 100A-100D elastic wave device, 110 support substrate, 115, 115A-115D functional layer, 116 cavity, 120 piezoelectric film, 121 upper surface, 122 lower surface, 130 wiring pattern, 135, 136 electrode, 140 functional element, 150 wiring electrode , 160 external connection terminal, 170, 170A bass velocity film, 180, 180A treble velocity film, 190 surface layer part.

Claims (9)

  1.  シリコンを含む支持基板と、
     前記支持基板上に形成され、圧電膜および前記圧電膜上に形成されたトランスデューサ電極を含む機能層とを備え、
     前記機能層と接する前記支持基板の表層部分においては、シリコンに水素が結合している、弾性波デバイス。
    Support substrate containing silicon and
    It comprises a piezoelectric film formed on the support substrate and a functional layer including a transducer electrode formed on the piezoelectric film.
    An elastic wave device in which hydrogen is bonded to silicon in a surface layer portion of the support substrate in contact with the functional layer.
  2.  前記表層部分は、水素終端処理が施されている、請求項1に記載の弾性波デバイス。 The elastic wave device according to claim 1, wherein the surface layer portion is subjected to hydrogen termination treatment.
  3.  前記機能層は、前記圧電膜と前記支持基板との間に形成された第1層をさらに含み、
     前記第1層は酸化物層である、請求項1または2に記載の弾性波デバイス。
    The functional layer further includes a first layer formed between the piezoelectric film and the support substrate.
    The elastic wave device according to claim 1 or 2, wherein the first layer is an oxide layer.
  4.  前記第1層を伝搬するバルク波音速は、前記圧電膜を伝搬するバルク波音速よりも低速である、請求項3に記載の弾性波デバイス。 The elastic wave device according to claim 3, wherein the bulk wave sound velocity propagating in the first layer is lower than the bulk wave sound velocity propagating in the piezoelectric film.
  5.  前記機能層は、前記第1層と前記支持基板との間に形成された第2層をさらに含み、
     前記第2層を伝搬するバルク波音速は、前記圧電膜を伝搬する弾性波音速よりも高速である、請求項4に記載の弾性波デバイス。
    The functional layer further includes a second layer formed between the first layer and the support substrate.
    The elastic wave device according to claim 4, wherein the bulk wave sound velocity propagating in the second layer is higher than the elastic wave sound velocity propagating in the piezoelectric film.
  6.  前記トランスデューサ電極が形成された領域における、前記支持基板と前記機能層との間に空洞が形成されている、請求項1または2に記載の弾性波デバイス。 The elastic wave device according to claim 1 or 2, wherein a cavity is formed between the support substrate and the functional layer in the region where the transducer electrode is formed.
  7.  前記圧電膜は、対向する第1主面および第2主面を含み、
     前記トランスデューサ電極は、前記第1主面に形成された平板状の第1電極、および前記第2主面に形成された平板状の第2電極を含む、請求項1~6のいずれか1項に記載の弾性波デバイス。
    The piezoelectric film includes a first main surface and a second main surface facing each other.
    One of claims 1 to 6, wherein the transducer electrode includes a flat plate-shaped first electrode formed on the first main surface and a flat plate-shaped second electrode formed on the second main surface. The elastic wave device described in.
  8.  前記トランスデューサ電極は、少なくとも一対のIDT電極を含む、請求項1~6のいずれか1項に記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 6, wherein the transducer electrode includes at least a pair of IDT electrodes.
  9.  請求項1~8のいずれか1項に記載の弾性波デバイスを備えた、フィルタ装置。 A filter device provided with the elastic wave device according to any one of claims 1 to 8.
PCT/JP2020/015005 2019-04-08 2020-04-01 Elastic wave device and filter apparatus provided therewith WO2020209153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-073614 2019-04-08
JP2019073614 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020209153A1 true WO2020209153A1 (en) 2020-10-15

Family

ID=72751239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015005 WO2020209153A1 (en) 2019-04-08 2020-04-01 Elastic wave device and filter apparatus provided therewith

Country Status (1)

Country Link
WO (1) WO2020209153A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230723A1 (en) * 2021-04-30 2022-11-03 株式会社村田製作所 Elastic wave device
JP7375799B2 (en) 2020-11-11 2023-11-08 株式会社村田製作所 Laterally excited film bulk acoustic resonator with low thermal impedance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237998A (en) * 1994-02-25 1995-09-12 Sumitomo Electric Ind Ltd Thin film base of aluminum nitride and production thereof
JPH08153915A (en) * 1994-11-30 1996-06-11 Matsushita Electric Ind Co Ltd Composite piezoelectric substrate and its manufacture
JP2007081645A (en) * 2005-09-13 2007-03-29 Murata Mfg Co Ltd Piezoelectric device and manufacturing method thereof
JP2007228340A (en) * 2006-02-24 2007-09-06 Ngk Insulators Ltd Piezoelectric thin-film device
JP2009124696A (en) * 2007-10-26 2009-06-04 Panasonic Electric Works Co Ltd Resonance device
WO2015186661A1 (en) * 2014-06-04 2015-12-10 株式会社村田製作所 Elastic wave device
WO2017043427A1 (en) * 2015-09-07 2017-03-16 株式会社村田製作所 Elastic wave device, high-frequency front-end circuit and communication device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237998A (en) * 1994-02-25 1995-09-12 Sumitomo Electric Ind Ltd Thin film base of aluminum nitride and production thereof
JPH08153915A (en) * 1994-11-30 1996-06-11 Matsushita Electric Ind Co Ltd Composite piezoelectric substrate and its manufacture
JP2007081645A (en) * 2005-09-13 2007-03-29 Murata Mfg Co Ltd Piezoelectric device and manufacturing method thereof
JP2007228340A (en) * 2006-02-24 2007-09-06 Ngk Insulators Ltd Piezoelectric thin-film device
JP2009124696A (en) * 2007-10-26 2009-06-04 Panasonic Electric Works Co Ltd Resonance device
WO2015186661A1 (en) * 2014-06-04 2015-12-10 株式会社村田製作所 Elastic wave device
WO2017043427A1 (en) * 2015-09-07 2017-03-16 株式会社村田製作所 Elastic wave device, high-frequency front-end circuit and communication device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375799B2 (en) 2020-11-11 2023-11-08 株式会社村田製作所 Laterally excited film bulk acoustic resonator with low thermal impedance
WO2022230723A1 (en) * 2021-04-30 2022-11-03 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
JP5392258B2 (en) Sheet wave element and electronic device using the same
WO2020209152A1 (en) Acoustic wave device and filter device comprising same
WO2020130128A1 (en) Elastic wave device, splitter, and communication device
CN109075770B (en) Composite substrate and elastic wave device using same
WO2013080461A1 (en) Ladder-type elastic wave filter and antenna duplexer using same
US20220014175A1 (en) Acoustic wave device
JP2012209980A (en) Elastic wave element and electronic apparatus using the same
JP6870684B2 (en) Multiplexer
WO2020209153A1 (en) Elastic wave device and filter apparatus provided therewith
WO2023246515A1 (en) Structure of longitudinal leaky surface acoustic wave resonator, and filter
US11936359B2 (en) Acoustic wave device and multiplexer
JP2014175885A (en) Acoustic wave element and electronic apparatus using the same
WO2020184621A1 (en) Elastic wave device
CN210405249U (en) Filtering device
JP2020182130A (en) Filter and multiplexer
JPWO2020138290A1 (en) Filter device and multiplexer
WO2019082806A1 (en) Acoustic wave element
JP2014192676A (en) Acoustic wave element
WO2021187200A1 (en) Elastic wave device and composite filter device
JPWO2005036744A1 (en) Boundary acoustic wave device
JP2019180064A (en) Acoustic wave filter, branching filter, and communication device
JPWO2005036743A1 (en) Boundary acoustic wave device
JP2022171054A (en) Acoustic wave resonator, filter, and multiplexer
WO2020261808A1 (en) Elastic wave filter
US20240113682A1 (en) Acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP