WO2020208968A1 - 両面研磨装置 - Google Patents

両面研磨装置 Download PDF

Info

Publication number
WO2020208968A1
WO2020208968A1 PCT/JP2020/007912 JP2020007912W WO2020208968A1 WO 2020208968 A1 WO2020208968 A1 WO 2020208968A1 JP 2020007912 W JP2020007912 W JP 2020007912W WO 2020208968 A1 WO2020208968 A1 WO 2020208968A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface plate
actuator
double
shape
sided polishing
Prior art date
Application number
PCT/JP2020/007912
Other languages
English (en)
French (fr)
Inventor
佑宜 田中
将史 丸田
Original Assignee
信越半導体株式会社
不二越機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社, 不二越機械工業株式会社 filed Critical 信越半導体株式会社
Priority to KR1020217031932A priority Critical patent/KR20210149724A/ko
Priority to CN202080026268.6A priority patent/CN113661030A/zh
Publication of WO2020208968A1 publication Critical patent/WO2020208968A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • B24B37/14Lapping plates for working plane surfaces characterised by the composition or properties of the plate materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a hanging type double-sided polishing apparatus.
  • the double-sided polishing device that uses a low thermal expansion material for the surface plate can suppress the deformation of the surface plate due to the processing heat of polishing, it is excellent in the stability of the surface plate shape during polishing and, as a result, the processing accuracy of the wafer (Patent Document). 1).
  • the polishing pad (cloth) attached to the surface plate is worn by dressing and polishing while being affected by the shape accuracy of the surface plate, the shape changes, so a long-term perspective such as stacking polishing batches.
  • the processing accuracy of the wafer could not be kept constant.
  • FIG. 5 shows an example of a polishing pad that is no longer parallel due to the influence of surface plate shape accuracy
  • FIG. 6 shows an example in which the pad causes uneven wear.
  • 101 is a lower surface plate
  • 102 is an upper surface plate
  • 103 and 104 are polishing pads
  • 105 is a sun gear
  • 106 is an internal gear
  • 107 is a carrier.
  • the polishing pads 103 and 104 are not parallel to each other due to the decrease in accuracy of the lower surface plate 101 and the upper surface plate 102.
  • the carrier 107 is arranged between the lower surface plate 101 and the upper surface plate 102, uneven contact between the carrier 107 and the polishing pads 103 and 104 causes uneven wear, and the processing accuracy of the wafer is improved. I could't keep it constant.
  • FIG. 7 shows an example of a conventional double-sided polishing apparatus provided with a movable mechanism of a surface plate.
  • 102 is an upper surface plate
  • 108 is a suspended top plate
  • 109 is a disc.
  • P the force that moves the disc 109 with an air input pressure IN
  • the inclination of the disc 109 that is, Change the shape of the upper surface plate.
  • the disc 109 is made of metal
  • the disc 109 is easily deformed by heat, and the heat deformation is transmitted to the upper surface plate 102, so that the upper surface plate 102 is also easily deformed.
  • the upper surface plate shape can be deformed in only one direction, it cannot correspond to various types of pad shapes.
  • the present invention has been made to solve the above problems, and is a surface plate capable of deforming the surface plate shape into various shapes without promoting thermal deformation of the surface plate in a double-sided polishing apparatus in a suspended form.
  • the purpose is to propose a movable mechanism of.
  • a lower surface plate that is rotatably provided around a rotation shaft and has a polishing pad attached to the upper surface, and a lower surface plate that can move up and down above the lower surface plate and the rotation shaft.
  • a double-sided polishing apparatus including an upper surface plate rotatably provided around the center and a polishing pad attached to the lower surface thereof, and a suspension top plate provided above the upper surface plate, the suspension top plate and the above It is provided with a connecting portion for connecting the upper surface plate and an actuator provided between the suspended top plate and the upper surface plate at a position different from the connecting portion and capable of deforming the shape of the upper surface plate.
  • a double-sided polishing apparatus characterized by the above.
  • the upper surface plate and the suspended top plate are connected by a connecting portion, and the shape of the upper surface plate is deformed by an actuator provided at a position different from the connecting portion. That is, since the connecting portion and the actuator are independent of each other, the metal disc used in the existing technology is unnecessary. In addition, the shape of the upper surface plate can be transformed into various shapes by the actuator. Therefore, it is possible to provide a suspended double-sided polishing device provided with a movable mechanism of the surface plate that does not promote thermal deformation of the surface plate and can deform the surface plate shape into various shapes.
  • the surface plate shape can be deformed according to the pad shape. Therefore, it is possible to keep the processing accuracy of the wafer constant from a long-term viewpoint such as stacking polishing batches.
  • the connecting portion is composed of a plurality of suspension columns arranged on the same circumference in the radial direction of the upper surface plate, and the actuator is on the same circumference in the radial direction of the upper surface plate. It is preferable that one or more are arranged at different positions from the individual suspension columns.
  • the actuator on the circumference of the PCD that is different from the PCD (pitch circle diameter) of the circle drawn by (center points) of the plurality of suspension columns when the rotation axis is the center, the upper It is possible to provide a movable mechanism capable of transforming the platen shape into various shapes.
  • the actuator deforms the shape of the upper surface plate with the plurality of suspension columns as fulcrums.
  • the suspension column as a fulcrum, at least one actuator is operated according to the seesaw principle, and a repulsive force is generated between the suspension top plate and the upper surface plate, so that the upper surface plate is tilted. (Upper surface plate shape) can be easily controlled.
  • a floating joint for connecting the actuator and the upper surface plate is further provided, and the actuator is fixed to the suspension top plate.
  • the upper surface plate is preferably made of a low thermal expansion material having a linear thermal expansion coefficient of 6 ⁇ 10 -6 / K or less.
  • the advantage of the suspended form that the upper surface plate is not easily deformed by heat can be utilized. That is, since the upper surface plate is supported by the connecting portion (for example, a hanging strut), the thermal deformation of the connecting portion can be reduced to the upper surface plate by reducing the number of the connecting portions to the minimum size. It is not transmitted, and the original function of the low thermal expansion material (hard to be deformed by the frictional heat between the wafer and the polishing pad) can be exhibited.
  • the connecting portion for example, a hanging strut
  • a movable mechanism of a surface plate that does not promote thermal deformation of the surface plate and can deform the surface plate shape into various shapes is provided. be able to. Therefore, when both sides of the wafer are polished using the double-sided polishing device, the wafer shape can be stabilized for a long period of time.
  • the present inventors apart from the connecting portion that connects the suspended top plate and the upper surface plate, are different from the connecting portion between the suspended top plate and the upper surface plate. It has been found that by providing an actuator at a position and deforming the upper surface plate shape by the actuator, it is possible to deform the surface plate shape into various shapes without promoting the thermal deformation of the surface plate. That is, since the connecting portion only needs to connect the suspended top plate and the upper surface plate, if the connecting portion is configured with the minimum number and the minimum size, the thermal deformation of the connecting portion becomes the upper surface plate.
  • the present inventor states that the upper surface plate shape can be deformed into various shapes by deforming the upper surface plate shape by an actuator provided independently of the connecting portion. Et al. Found and completed the present invention.
  • the present invention is rotatably provided about a rotation axis and has a lower surface plate having a polishing pad attached to the upper surface, and can move up and down above the lower surface plate and can rotate about the rotation axis.
  • a double-sided polishing apparatus provided with an upper surface plate provided with a polishing pad attached to the lower surface and a suspension top plate provided above the upper surface plate, the suspension top plate and the upper surface plate are connected.
  • Double-sided polishing characterized by comprising an actuator provided between the suspending top plate and the upper surface plate at a position different from the connection portion and capable of deforming the shape of the upper surface plate. It is a device.
  • FIG. 1 shows an outline of the double-sided polishing apparatus of the present invention.
  • the lower platen 1 is rotatably provided around the rotation axis AX, and a polishing pad 7b is attached to the upper surface thereof.
  • the upper surface plate 2 is provided so as to be vertically movable above the lower surface plate 1 and rotatably about the rotation axis AX, and a polishing pad 7a is attached to the lower surface thereof.
  • the carrier 8 that holds the wafer (changed to, for example, a dresser at the time of dressing) 8 is arranged between the lower surface plate 1 and the upper surface plate 2.
  • the hanging top plate 3 is provided above the upper surface plate 2 and is held by the support columns 6.
  • the connecting portion 4 connects the suspended top plate 3 and the upper surface plate 2. Therefore, by moving the hanging top plate 3 up and down, the upper surface plate 2 can be moved up and down in conjunction with this.
  • the actuator 5 is provided between the suspension top plate 3 and the upper surface plate 2 at a position different from that of the connecting portion 4, and can deform the inclination (upper surface plate shape) of the upper surface plate 2.
  • the number of actuators 5 is two, but it may be one or more.
  • the position of the actuator 5 is not particularly limited as long as it is a position different from that of the connecting portion 4.
  • the two actuators 5 are arranged side by side in the radial direction perpendicular to the rotation axis AX.
  • the inclination of the upper surface plate 2 in the radial direction can be deformed by driving either one of the two actuators 5.
  • the upper surface plate 1 and the upper surface plate 1 When the lower surfaces of the upper surface plate 2 are parallel, the actuator 5 on the inner side (the side closer to the rotation axis AX) is driven in a direction of extending, that is, increasing the distance between the suspension top plate 3 and the upper surface plate 2. Then, according to the seesaw principle, the actuator 5 on the outside (the side far from the rotation axis AX) contracts in the direction of narrowing the distance between the suspension top plate 3 and the upper surface plate 2. As a result, the upper surface plate 2 is inclined so that the inner side in the radial direction is lower than the outer side.
  • the outer actuator 5 contracts, that is, is driven in a direction that narrows the distance between the suspension top plate 3 and the upper surface plate 2, the outer actuator 5 is moved above the suspension top plate 3 according to the seesaw principle. It extends in the direction of increasing the distance from the surface plate 2. As a result, the upper surface plate 2 is inclined so that the inner side in the radial direction is higher than the outer side.
  • the shape of the upper surface plate that is, the inclination of the upper surface plate 2 is determined by changing the position of the actuator 5 or by providing a plurality of actuators 5 between the suspension top plate 3 and the upper surface plate 2. By driving the actuator 5 of the above, it can be deformed into various shapes.
  • the upper surface plate is affected by the pad shape. Since the shape can be deformed, it is possible to keep the processing accuracy of the wafer constant from a long-term viewpoint such as stacking polishing batches.
  • the connecting portion 4 may connect the suspension top plate 3 and the upper surface plate, the connecting portion 4 may be configured with the minimum number and the minimum size. Therefore, the thermal deformation of the connecting portion 4 does not affect the upper surface plate 2.
  • FIG. 2 shows the details of the double-sided polishing apparatus of the present invention.
  • FIG. 3A is a plan view showing the positional relationship between the upper surface plate 2 and the connecting portion 4 and the actuator 5, and
  • FIG. 3B is a sectional view of a double-sided polishing apparatus.
  • FIG. 3 shows an example of the structure of the actuator.
  • the double-sided polishing device described below is premised on a 4-way type having each drive unit of, for example, a lower surface plate 1, an upper surface plate 2, a sun gear, and an internal gear.
  • each drive unit of, for example, a lower surface plate 1, an upper surface plate 2, a sun gear, and an internal gear.
  • the sun gear and the internal gear will be omitted here.
  • the lower surface plate 1, the upper surface plate 2, the suspension top plate 3, the connecting portion 4, the actuator 5, the support column 6, and the polishing pads 7a and 7b are the lower surface plate 1, the upper surface plate 2, and the suspension top plate 3 in FIG. 1, respectively.
  • the suspending top plate 3 has a disk shape centered on the rotating shaft AX
  • the upper surface plate 2 has a ring shape centered on the rotating shaft AX.
  • the lower platen 1 is arranged between a sun gear and an internal gear (not shown), and has a disk shape capable of rotating around the sun gear (rotation axis AX).
  • the connecting portion 4 is composed of a plurality of suspension columns arranged on the same circumference C0 in the radial direction of the upper surface plate 2.
  • the connecting portion 4 is composed of six suspension columns arranged on the same circumference C0, but the number of the suspension columns is not limited to this.
  • the material of the connecting portion 4 is not particularly limited, but is, for example, made of metal. However, it is preferable to set the number of the connecting portions 4 to the minimum number and the minimum size so that the thermal deformation of the connecting portions 4 does not affect the upper surface plate 2.
  • the connecting portion 4 functions as a fulcrum when the upper surface plate shape is deformed by the seesaw principle when the actuator 5 described later is driven. Therefore, the connecting portion 4 is preferably columnar, for example, so as to function as the fulcrum.
  • the actuator 5 is arranged on the same circumference C1 and C2 in the radial direction of the upper surface plate 2 and at a position different from that on the same circumference C0 where a plurality of suspension columns as the connecting portion 2 are arranged. ..
  • the same circumferences C1 and C2 in which the actuator 5 is arranged are two, but the same circumference may be one, for example, only one of C1 and C2.
  • the number of actuators 5 may be one or more, but is preferably three or more.
  • the number of actuators 5 arranged on the same circumference C1 is 10, and the number of actuators 5 arranged on the same circumference C2 is also 10.
  • the number of actuators 5 arranged on the same circumference C1 inside the connecting portion 4 and the same outside the connecting portion 4 are the same.
  • the number of actuators 5 arranged on the circumference C2 can be set to be the same. However, the numbers of both may be different from each other.
  • the actuator 5 is placed on the circumference of the PCD different from the circular PCD drawn by (the center point) of the suspension column as the connecting portion 4. It is possible to provide a movable mechanism capable of transforming the board shape into various shapes.
  • the actuator 5 deforms the shape of the upper surface plate with the suspension column as the connecting portion 4 as a fulcrum. That is, when the actuator 5 is not driven, the upper surface of the lower surface plate 1 and the lower surface of the upper surface plate 2 are parallel to each other. In this state, when at least one of the actuators 5 is driven in a direction of increasing or decreasing the distance between the suspension top plate 3 and the upper surface plate 2, the upper surface plate 2 is driven by the seesaw principle with the connecting portion 4 as a fulcrum. Tilt, and the upper surface of the lower surface plate 1 and the lower surface of the upper surface plate 2 are not parallel to each other.
  • the power source of the actuator 5 is not particularly limited as long as it is a mechanism capable of locally changing the distance (distance in the vertical direction) between the suspension top plate 3 and the upper surface plate 2.
  • gas pressure such as air pressure, liquid pressure such as hydraulic pressure, electric force, and the like can be used.
  • the power supply to the actuator 5 can be performed from the outside of the double-sided polishing device, or can be performed inside the double-sided polishing device, for example, via a surface plate rotating shaft using a rotary connector.
  • the actuator 5 is an air cylinder that uses air pressure as a power source.
  • the actuator 5 is an air cylinder and includes a cylinder tube 9 and a piston 10 that is movable in the vertical direction in the cylinder tube 9.
  • the upper surface of the cylinder tube 9 is fixed to the lower surface of the suspension top plate 3.
  • the piston 10 is coupled to the upper surface plate 2 via a floating joint 11.
  • the floating joint 11 absorbs eccentricity when the axis of the piston 10 deviates from the central axis X, eccentricity when the axis of the piston 10 is tilted from the central axis X, and the like.
  • the shape of the upper surface plate that is, the inclination of the upper surface plate 2 can be controlled.
  • the upper surface plate 2 is preferably made of a low thermal expansion material (for example, a metal material) having a linear thermal expansion coefficient of 6 ⁇ 10 -6 / K or less.
  • the thermal deformation of the connecting portions 4 is not transmitted to the upper surface plate, and the original function of the low thermal expansion material (wafer and polishing pad). This is because it is difficult to be deformed by frictional heat).
  • a movable mechanism of the surface plate that can be applied to a hanging double-sided polishing device, does not promote thermal deformation of the surface plate, and can change the surface plate shape into various shapes is provided. Can be provided. Therefore, when both sides of the wafer are polished using the double-sided polishing device, the wafer shape can be stabilized for a long period of time.
  • GBIR Global Backside Ideal Range
  • the actuator is an air cylinder that uses compressed air as a drive source, and when adjusting the inclination of the upper surface plate, compressed air is supplied from an external supply source of the double-sided polishing device to the actuator in the double-sided polishing device. Was operated.
  • the shape of the upper surface plate that is, the inclination of the upper surface plate was deformed according to the pad shape.
  • the inclination of the lower surface plate and the inclination of the upper surface plate were calculated from the measured radius profiles, and adjusted so that the difference between the inclination of the lower surface plate and the inclination of the upper surface plate was 0.020 ⁇ m / mm or less. ..
  • Wafer processing and measurement conditions are as follows.
  • a P-type silicon single crystal wafer having a diameter of 300 mm was used.
  • a foamed polyurethane pad having a Shore A hardness of 85 was used.
  • FRP in which glass fiber was impregnated with epoxy resin was used as an insert on a titanium substrate.
  • Five carriers were set in the double-sided polishing apparatus as one set, and one wafer was set for each carrier.
  • a silica abrasive grain-containing material an average particle size of 35 nm, an abrasive grain concentration of 1.0 wt%, a pH of 10.5, and a KOH base was used.
  • the machining load was set to 180 gf / cm 2 .
  • the processing time was set by back calculation from the polishing rate so that the batch average value of the center thickness of the wafer was within 775 ⁇ 0.5 ⁇ m.
  • the rotation speed of each drive unit was set to an upper surface plate: -13.4 rpm, a lower surface plate: 35 rpm, a sun gear: 25 rpm, and an internal gear: 7 rpm.
  • the dressing of the polishing pad was performed by sliding a dress plate on which diamond abrasive grains were electrodeposited on each of the upper and lower polishing pads while flowing pure water at 120 gf / cm 2 .
  • the sliding contact time was 5 min, and the frequency was every 5 batches.
  • FIG. 4 shows the relationship between cross-life and GBIR for Examples and Comparative Examples.
  • the horizontal axis indicates the cross life and corresponds to the number of batch processes (integrated value).
  • the vertical axis represents GBIR.
  • one plot is the average value of five sheets per batch.
  • the number of batch processes (integrated value) at the time when GBIR reached the standard value 1 was defined as the cross life (average life) in the examples, and it was verified how much the cross life in the examples would be. ..
  • the monitoring transition of GBIR is around 0.4 at the stage where the number of batch processes (integrated value) is small in both the examples and the comparative examples.
  • the cross-life of the examples was about 1.4 with respect to the cross-life of the comparative example (standard value 1). That is, in the examples, it was confirmed that the cross-life within the GBIR standard value of 1 or less was improved about 1.4 times as compared with the comparative example.
  • the wafer shape can be stabilized for a long period of time when both sides of the wafer are polished using a double-sided polishing device.
  • a movable mechanism of the surface plate that does not promote thermal deformation of the surface plate and can deform the surface plate shape into various shapes. Can be provided. Therefore, when both sides of the wafer are polished using the double-sided polishing device, the wafer shape can be stabilized for a long period of time.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、回転軸を中心に回転可能に設けられ、上面に研磨パッドが貼り付けられた下定盤と、前記下定盤の上方に上下動可能、かつ前記回転軸を中心に回転可能に設けられ、下面に研磨パッドが貼り付けられた上定盤と、前記上定盤の上方に設けられる吊り天板とを具備する両面研磨装置において、前記吊り天板と前記上定盤とを連結する連結部と、前記吊り天板と前記上定盤との間であって前記連結部と異なる位置に設けられ、上定盤形状を変形可能なアクチュエータとを具備することを特徴とする両面研磨装置である。これにより、吊り下げ形態の両面研磨装置において、定盤の熱変形を助長せず、かつ定盤形状を様々な形に変形可能な定盤の可動機構が提供される。

Description

両面研磨装置
 本発明は、吊り下げ形態の両面研磨装置に関する。
 低熱膨張材を定盤に採用した両面研磨装置は研磨の加工熱による定盤変形を抑止できることから、研磨中の定盤形状精度、結果としてウェーハの加工精度の安定性に優れていた(特許文献1参照)。しかし、定盤に貼り付けられる研磨パッド(クロス)が定盤の形状精度の影響を受けながらドレス及び研磨により摩耗されて形状が変わってしまうために、研磨バッチを重ねていくといった長期的な視点では、上記両面研磨装置でもウェーハの加工精度を一定に保つことができていなかった。
 例えば、図5は、定盤形状精度の影響を受けて平行でなくなった研磨パッドの例を示し、図6は、そのパッドが偏摩耗を引き起こしている例を示す。
 図5及び図6において、101は、下定盤、102は、上定盤、103及び104は、研磨パッド、105は、サンギア、106は、インターナルギア、107は、キャリアである。これらの図に示すように、研磨パッド103、104は、下定盤101と上定盤102の精度低下に起因して平行でない状態となる。この状態で、キャリア107が下定盤101と上定盤102との間に配置されると、キャリア107と研磨パッド103、104との接触が均等でないために偏摩耗を引き起こし、ウェーハの加工精度が一定に保てなかった。
特開2001-79756号公報 特開2008-44098号公報
 そこで、上記のような研磨パッドの偏摩耗を抑制するために、該研磨パッドの形状(定盤形状精度やすでに偏摩耗した状態など)に応じて、定盤形状を変形させることが想起される。しかし、既存技術では、定盤形状を変形させるために定盤を保持する金属製のディスクが必要であり、該ディスクの熱変形が定盤に伝わってしまい、定盤に低熱膨張材を使用した場合の長所を十分に活かすことができていなかった(特許文献2)。
 例えば、図7は、定盤の可動機構を備えた従来の両面研磨装置の例を示す。
 同図において、102は、上定盤、108は、吊り天板、109は、ディスクであり、エアーの入力圧INでディスク109を動かす力Pを発生させることにより、ディスク109の傾き、すなわち、上定盤形状を変化させる。しかし、ディスク109が金属製であるために、該ディスク109が熱変形し易く、かつ熱変形が上定盤102に伝わることで、上定盤102も変形し易くなっていた。また、同図の例では、上定盤形状が一方向のみに変形可能であるため、様々な種類のパッド形状に対応できなかった。
 このようなことから、低熱膨張材の定盤を前提とした吊り下げ形態の両面研磨装置に適用可能であって、該低熱膨張材の定盤の長所を害せず、かつ様々な種類のパッド形状に応じて定盤形状を様々な形に変形可能である定盤の可動機構が求められていた。
 本発明は、上記問題を解決するためになされたものであり、吊り下げ形態の両面研磨装置において、定盤の熱変形を助長せず、かつ定盤形状を様々な形に変形可能な定盤の可動機構を提案することを目的とする。
 上記目的を達成するために、本発明では、回転軸を中心に回転可能に設けられ、上面に研磨パッドが貼り付けられた下定盤と、前記下定盤の上方に上下動可能、かつ前記回転軸を中心に回転可能に設けられ、下面に研磨パッドが貼り付けられた上定盤と、前記上定盤の上方に設けられる吊り天板とを具備する両面研磨装置において、前記吊り天板と前記上定盤とを連結する連結部と、前記吊り天板と前記上定盤との間であって前記連結部と異なる位置に設けられ、上定盤形状を変形可能なアクチュエータとを具備することを特徴とする両面研磨装置を提供する。
 このような両面研磨装置によれば、連結部により上定盤と吊り天板とが連結され、該連結部と異なる位置に設けられたアクチュエータにより上定盤形状が変形される。すなわち、連結部とアクチュエータとが互いに独立であるため、既存技術で使用される金属製のディスクが不要である。また、アクチュエータにより上定盤形状を様々な形に変形可能である。従って、定盤の熱変形を助長せず、かつ定盤形状を様々な形に変形可能な定盤の可動機構を備えた吊り下げ形態の両面研磨装置を提供できる。
 また、仮に、定盤の形状精度の影響を受けながらドレス及び研磨が繰り返されることにより、研磨パッドが偏摩耗されてしまったとしても、パッド形状に応じて定盤形状を変形させることが可能となるため、研磨バッチを重ねていくといった長期的な視点において、ウェーハの加工精度を一定に保つことが可能となる。
 前記連結部は、前記上定盤の半径方向の同一円周上に配置される複数個の吊り支柱からなり、前記アクチュエータは、前記上定盤の半径方向の同一円周上であって前記複数個の吊り支柱とは異なる位置に1個以上配置されることが好ましい。
 このように、回転軸を中心とした場合に、複数個の吊り支柱(の中心点)が描く円のPCD(ピッチ円直径)とは異なるPCDの円周上にアクチュエータを配置することで、上定盤形状を様々な形に変形可能な可動機構を提供できる。
 前記アクチュエータは、前記複数個の吊り支柱を支点にして前記上定盤形状を変形させるものであることが好ましい。
 このように、吊り支柱を支点にすることで、シーソーの原理により、少なくとも1つのアクチュエータを動作させ、吊り天板と上定盤との間で反発力を生み出すことで、該上定盤の傾斜(上定盤形状)を容易に制御することができる。
 前記アクチュエータと前記上定盤とを連結するフローティングジョイントをさらに具備し、前記アクチュエータは、前記吊り天板に固定されることが好ましい。
 このように、アクチュエータと上定盤とをフローティングジョイントで連結することにより、該アクチュエータと該上定盤との間に発生する偏心及び偏角を吸収することができ、両者の高精度での軸合わせが不要となる。
 前記上定盤は、線熱膨張係数が6×10-6/K以下の低熱膨張材からなることが好ましい。
 このように、上定盤が低熱膨張材であれば、該上定盤が熱変形し難いという吊り下げ形態の長所を生かすことができる。すなわち、上定盤は、連結部(例えば、吊り支柱)で支持されるため、該連結部を最小限の数、かつ最小限のサイズにすることで、連結部の熱変形が上定盤に伝わらなくなり、低熱膨張材の本来の機能(ウェーハと研磨パッドとの摩擦熱により変形し難い)を発揮することができる。
 以上のように、本発明によれば、吊り下げ形態の両面研磨装置において、定盤の熱変形を助長せず、かつ定盤形状を様々な形に変形可能な定盤の可動機構を提供することができる。従って、該両面研磨装置を用いてウェーハの両面を研磨する場合に、ウェーハ形状を長期的に安定化させることが可能となる。
本発明の両面研磨装置の概略を示す部分拡大図である。 本発明の両面研磨装置の詳細を示す図である。 アクチュエータの構造例を示す図である。 実施例と比較例とについてクロスライフとGBIRとの関係を示す図である。 定盤形状精度の影響を受けて平行でなくなった研磨パッドの例を示す図である。 研磨パッドが偏摩耗を引き起こしている例を示す図である。 定盤の可動機構を備えた従来の両面研磨装置の例を示す図である。
 上記のとおり、従来は、長期的な視点においてウェーハの加工精度を一定に保つため、定盤の形状精度の影響を受けながらドレス及び研磨が繰り返されることで発生する研磨パッドの偏摩耗に対しては、パッド形状に応じて定盤形状を変形させることで対応していた。しかし、既存技術では、定盤を保持する金属製のディスクの熱変形が該定盤に伝わってしまう、定盤形状を一方向のみにしか変形できない、といった問題があった。
 本発明者らは、上記問題について鋭意検討を重ねた結果、吊り天板と上定盤とを連結する連結部とは別に、吊り天板と上定盤との間であって連結部と異なる位置にアクチュエータを設け、該アクチュエータにより上定盤形状を変形することで、定盤の熱変形を助長せず、かつ定盤形状を様々な形に変形可能となることを見出した。すなわち、連結部は、吊り天板と上定盤とを連結すればよいため、最小限の数、かつ最小限のサイズで連結部を構成すれば、該連結部の熱変形が上定盤に影響を与えることがない、一方、上定盤形状は、連結部とは独立に設けられたアクチュエータにより変形させれば、該上定盤形状を様々な形に変形できる、といったことを本発明者らは見出し、本発明を完成させた。
 すなわち、本発明は、回転軸を中心に回転可能に設けられ、上面に研磨パッドが貼り付けられた下定盤と、前記下定盤の上方に上下動可能、かつ前記回転軸を中心に回転可能に設けられ、下面に研磨パッドが貼り付けられた上定盤と、前記上定盤の上方に設けられる吊り天板とを具備する両面研磨装置において、前記吊り天板と前記上定盤とを連結する連結部と、前記吊り天板と前記上定盤との間であって前記連結部と異なる位置に設けられ、上定盤形状を変形可能なアクチュエータとを具備することを特徴とする両面研磨装置である。
 以下、本発明の実施の形態について、添付した図面に基づいて具体的に説明するが、本発明は、これらに限定されるものではない。
 図1は、本発明の両面研磨装置の概略を示す。
 下定盤1は、回転軸AXを中心に回転可能に設けられ、上面に研磨パッド7bが貼り付けられている。上定盤2は、下定盤1の上方に上下動可能、かつ回転軸AXを中心に回転可能に設けられ、下面に研磨パッド7aが貼り付けられている。ウェーハを保持するキャリア(ドレス時には、例えば、ドレッサに変更される)8は、下定盤1と上定盤2との間に配置される。
 吊り天板3は、上定盤2の上方に設けられ、支柱6により保持される。連結部4は、吊り天板3と上定盤2とを連結する。従って、吊り天板3を上下動させることにより、これに連動して上定盤2を上下動させることができる。
 アクチュエータ5は、吊り天板3と上定盤2との間であって連結部4と異なる位置に設けられ、上定盤2の傾き(上定盤形状)を変形させることができる。本例では、アクチュエータ5の数は、2個であるが、1個以上であればよい。また、アクチュエータ5の位置も、連結部4と異なる位置であれば、特に限定されることはない。
 本例では、2個のアクチュエータ5は、回転軸AXに垂直となる半径方向に並んで配置される。この場合、半径方向における上定盤2の傾きを2個のアクチュエータ5のいずれか一方を駆動させることで変形させることが可能となる。
 例えば、2個のアクチュエータ5が駆動されていない状態(上下方向に伸縮可能な状態で吊り天板3と上定盤2との間に単に接続されている状態)において、下定盤1の上面と上定盤2の下面が平行である場合に、内側(回転軸AXに近い側)のアクチュエータ5が、伸びる、すなわち、吊り天板3と上定盤2との距離を広げる方向に駆動されると、シーソーの原理により、外側(回転軸AXに遠い側)のアクチュエータ5が、吊り天板3と上定盤2との距離を狭める方向に縮む。その結果、上定盤2は、半径方向の内側が外側よりも低い状態に傾くことになる。
 一方、内側のアクチュエータ5が、縮む、すなわち、吊り天板3と上定盤2との距離を狭める方向に駆動されると、シーソーの原理により、外側のアクチュエータ5が、吊り天板3と上定盤2との距離を広げる方向に伸びる。その結果、上定盤2は、半径方向の内側が外側よりも高い状態に傾くことになる。
 なお、上定盤形状、すなわち、上定盤2の傾きは、アクチュエータ5の位置を変えることにより、又は吊り天板3と上定盤2との間に複数個のアクチュエータ5を設け、かつ所定のアクチュエータ5を駆動させることにより、様々な形に変形させることができる。
 従って、下定盤1及び上定盤2の形状精度の影響を受けながらドレス及び研磨が繰り返されることにより、研磨パッド7a、7bが偏摩耗されてしまったとしても、パッド形状に応じて上定盤形状を変形させることが可能となるため、研磨バッチを重ねていくといった長期的な視点において、ウェーハの加工精度を一定に保つことが可能となる。
 また、連結部4は、吊り天板3と上定盤とを連結すればよいため、最小限の数、かつ最小限のサイズで連結部4を構成すればよい。このため、連結部4の熱変形が上定盤2に影響を与えることがなくなる。
 図2は、本発明の両面研磨装置の詳細を示す。同図(a)は、上定盤2と、連結部4及びアクチュエータ5との位置関係を示す平面図であり、同図(b)は、両面研磨装置の断面図である。図3は、アクチュエータの構造例を示す。
 以下に説明する両面研磨装置は、例えば、下定盤1、上定盤2、サンギア、及びインターナルギアの各駆動部を有する4ウェイ式を前提とする。但し、説明を簡単にするため、サンギア及びインターナルギア(図5及び図6参照)については、ここでは省略する。
 下定盤1、上定盤2、吊り天板3、連結部4、アクチュエータ5、支柱6、及び研磨パッド7a、7bは、それぞれ、図1の下定盤1、上定盤2、吊り天板3、連結部4、アクチュエータ5、支柱6、及び研磨パッド7a、7bに対応する。吊り天板3は、回転軸AXを中心とする円板状であり、上定盤2は、回転軸AXを中心とするリング状である。下定盤1は、図示しないサンギアとインターナルギアとの間に配置され、サンギア(回転軸AX)を中心として自転が可能な円板状を有する。
 連結部4は、上定盤2の半径方向の同一円周C0上に配置される複数個の吊り支柱からなる。本例では、連結部4は、同一円周C0上に配置される6個の吊り支柱からなるが、該吊り支柱の数は、これに限定されることはない。但し、連結部4は、上定盤2を支えることが目的の一つであるため、安定して上定盤2を支えるために同一円周C0上に3個以上配置することが好ましい。
 連結部4の材質は、特に限定されることはないが、例えば、金属製である。但し、連結部4の熱変形が上定盤2に影響しないように、連結部4は、最小限の数、かつ最小限のサイズに設定することが好ましい。
 連結部4は、後述するアクチュエータ5が駆動されるときに、シーソーの原理により上定盤形状を変形させるときの支点として機能する。従って、連結部4は、該支点として機能するように、例えば、円柱状であることが好ましい。
 アクチュエータ5は、上定盤2の半径方向の同一円周C1、C2上であって、連結部2としての複数個の吊り支柱が配置される同一円周C0上とは異なる位置に配置される。本例では、アクチュエータ5が配置される同一円周C1、C2を2つにしているが、該同一円周は、1つ、例えば、C1及びC2のいずれか一方のみであってもよい。また、アクチュエータ5の数は、1個以上であればよいが、3個以上であることが好ましい。
 本例では、同一円周C1上に配置されるアクチュエータ5の数を10個とし、同一円周C2上に配置されるアクチュエータ5の数も10個としている。このように、アクチュエータ5が配置される同一円周C1、C2を2つとした場合、連結部4の内側の同一円周C1上に配置されるアクチュエータ5の数と、連結部4の外側の同一円周C2上に配置されるアクチュエータ5の数とは、同じに設定することができる。但し、両者の数は、互いに異なっていてもよい。
 このように、回転軸AXを中心とした場合に、連結部4としての吊り支柱(の中心点)が描く円のPCDとは異なるPCDの円周上にアクチュエータ5を配置することで、上定盤形状を様々な形に変形可能な可動機構を提供できる。
 具体的には、アクチュエータ5は、連結部4としての吊り支柱を支点にして上定盤形状を変形させる。すなわち、アクチュエータ5が駆動されていない状態では、下定盤1の上面と上定盤2の下面とは互いに平行である。この状態において、アクチュエータ5のうちの少なくとも1つが吊り天板3と上定盤2との距離を広げる又は狭める方向に駆動されると、連結部4を支点としたシーソーの原理により上定盤2が傾き、下定盤1の上面と上定盤2の下面とが互いに平行でなくなる。
 ここで、アクチュエータ5の構造例を説明する。
 アクチュエータ5は、吊り天板3と上定盤2との距離(上下方向の間隔)を局所的に変更できる機構であれば、その動力源が特に限定されることはない。例えば、アクチュエータ5の動力源は、空気圧などの気体の圧力、油圧などの液体の圧力、電動力などを利用することができる。また、アクチュエータ5への動力供給は、両面研磨装置の外部から行うこともできるし、又は両面研磨装置の内部、例えば、ロータリーコネクタを用いて定盤回転軸経由で行うこともできる。
 以下では、動力源として空気圧を用いるエアーシリンダをアクチュエータ5とする例を説明する。
 図3に示すように、アクチュエータ5は、エアーシリンダであり、シリンダチューブ9と、シリンダチューブ9内において上下方向に可動であるピストン10とを備える。シリンダチューブ9の上面は、吊り天板3の下面に固定される。ピストン10は、フローティングジョイント11を介して、上定盤2に結合される。
 そして、シリンダチューブ9内の空気12の圧力が高くなると、ピストン10は、下方向に移動するため、上定盤2を下方向に押す力を発生させる。また、シリンダチューブ9内の空気12の圧力が低くなると、ピストン10は、上方向に移動するため、上定盤2を上方向に引く力を発生させる。この時、フローティングジョイント11は、ピストン10の軸が中心軸Xからずれた場合の偏心や、ピストン10の軸が中心軸Xから傾いた場合の偏角などを吸収する。
 このように、エアーシリンダをアクチュエータ5とすることで、上定盤形状、すなわち、上定盤2の傾きを制御できる。
 なお、上定盤2は、線熱膨張係数が6×10-6/K以下の低熱膨張材(例えば、金属材料)からなることが好ましい。なお、線熱膨張係数は、低ければ低いものほどよく、下限は特にないが、例えば0.1×10-6/K以上とすることができる。この場合、連結部4を最小限の数、かつ最小限のサイズにすることで、連結部4の熱変形が上定盤に伝わらなくなり、低熱膨張材の本来の機能(ウェーハと研磨パッドとの摩擦熱により変形し難い)を発揮することができるからである。
 以上の両面研磨装置によれば、吊り下げ形態の両面研磨装置に適用可能であり、定盤の熱変形を助長せず、かつ定盤形状を様々な形に変形可能な定盤の可動機構を提供することができる。従って、該両面研磨装置を用いてウェーハの両面を研磨する場合に、ウェーハ形状を長期的に安定化させることが可能となる。
 以下に本発明の実施例を挙げて、本発明を詳細に説明するが、これらは、本発明を限定するものではない。
(実施例)
 以下に示す両面研磨装置を用いて、所定のGBIR(Global Backside Ideal Range)を実現可能なクロスライフ(研磨パッドの寿命)を検証した。ここで、GBIRとは、ウェーハの平坦度を表す指標の一つであり、裏面基準平面からウェーハ表面までの距離の最大値と最小値との差のことである。
 ・両面研磨装置の詳細
 下定盤、上定盤、サンギア、インターナルギアの各駆動部を有する4ウェイ式で20Bサイズの両面研磨装置を用いた。上定盤と吊り天板とは、同一円周上に配置される6個の吊り支柱で連結し、各吊り支柱の材料は、SUS(ステンレス鋼材)とした。下定盤及び上定盤の材料は、常温付近で熱膨張係数が小さいインバー(熱膨張係数=1.5×10-6/K~4.0×10-6/K)とした。
 6個の吊り支柱が配置される同一円周のPCDに対して、それよりも300mm小さいPCDを有する同一円周上、すなわち、6個の吊り支柱が配置される同一円周から内側に150mm離れた同一円周上に、10個のアクチュエータを配置した。また、6個の吊り支柱が配置される同一円周のPCDに対して、それよりも300mm大きいPCDを有する同一円周上、すなわち、6個の吊り支柱が配置される同一円周から外側に150mm離れた同一円周上に、10個のアクチュエータを配置した。
 アクチュエータは、圧縮空気を駆動源としたエアーシリンダとし、上定盤の傾斜を調整する際には、両面研磨装置の外部の供給源から該両面研磨装置内のアクチュエータに圧縮空気を供給してアクチュエータを動作させた。
 そして、ウェーハの研磨及びドレスを繰り返し行うに当たって、上定盤形状、すなわち、上定盤の傾きをパッド形状に応じて変形させた。但し、下定盤と上定盤の傾斜度は、それぞれ測定した半径プロファイルから算出し、下定盤の傾斜度と上定盤の傾斜度との差が0.020μm/mm以下となるように調整した。
 ・実験内容
 ウェーハの加工(研磨)及び測定条件は、以下の通りである。
 ウェーハは、直径300mmのP型シリコン単結晶ウェーハを用いた。
 研磨パッドは、ショアA硬度85の発泡ポリウレタンパッドを用いた。
 キャリアは、チタン基板に、インサートとしてガラス繊維にエポキシ樹脂を含浸したFRPを用いた。キャリアは、5枚を1セットとして上記両面研磨装置にセットし、ウェーハは、キャリア1枚毎に1枚をセットした。
 スラリーは、シリカ砥粒含有、平均粒径35nm、砥粒濃度1.0wt%、pH10.5、KOHベースを用いた。
 加工荷重は、180gf/cmに設定した。
 加工時間は、ウェーハの中心厚みのバッチ平均値が775±0.5μmに収まるように、研磨レートから逆算して設定した。
 各駆動部の回転速度は、上定盤:-13.4rpm、下定盤:35rpm、サンギア:25rpm、及びインターナルギア:7rpmに設定した。
 研磨パッドのドレッシングは、ダイヤ砥粒が電着されたドレスプレートを120gf/cmで純水を流しながら上下の各研磨パッドに摺接させることで行った。摺接時間は、5minとし、頻度は、5バッチ毎に実施した。
 加工後のウェーハに対しては、SC-1洗浄を条件(NHOH:H:HO=1:1:15)で行った。
 ・GBIRの算出
 以上の実験内容の下で、ウェーハの研磨及びドレスを繰り返し行い、洗浄後のウェーハについてそのフラットネスを測定し、かつGBIRを算出した。なお、フラットネスは、洗浄後のウェーハをKLA TencorのWaferSightを用いて測定した。GBIRは、ウェーハのエッジから2mmの領域を除外して算出した。
(比較例)
 ・両面研磨装置の詳細
 比較例では、上記実施例の両面研磨装置において、アクチュエータ(エアーシリンダ)を有しないものを用いた。すなわち、上定盤形状を変形させることなく、下定盤の上面と上定盤の下面が常に平行な状態の両面研磨装置を用いた。
 ・実験内容
 ウェーハの加工及び測定条件は、上記実施例の実験内容と同じ条件とした。
 ・GBIRの算出
 上記実施例と同じ算出方法によりGBIRの算出を行った。
(検証結果)
 図4は、実施例と比較例とについてクロスライフとGBIRとの関係を示す。
 同図において、横軸は、クロスライフを示し、バッチ処理数(積算値)に対応する。縦軸は、GBIRを示す。なお、実施例及び比較例ともに、1プロットは、1バッチ5枚の平均値である。
 ここで、GBIR及びクロスライフともに、比較例を基準に規格化することで、実施例における効果が明確化されるようにした。すなわち、GBIRは、バッチ処理数(積算値)が増えるに従い、次第に増加していく。そこで、比較例において、ウェーハのGBIRが所定値に達した時点を規格値1とし、かつGBIRが規格値1であるときのバッチ処理数(積算値)をクロスライフ(平均寿命)の規格値1とした。
 そして、実施例において、GBIRが規格値1に達した時点でのバッチ処理数(積算値)を実施例におけるクロスライフ(平均寿命)とし、実施例におけるクロスライフがどの位になるかを検証した。
 同図から明らかなように、GBIRのモニタリング推移は、実施例及び比較例ともに、バッチ処理数(積算値)が少ない段階では0.4近傍である。しかし、比較例のクロスライフ(規格値1)に対して、実施例のクロスライフは、約1.4となった。すなわち、実施例では、比較例に対して、GBIRの規格値1以下に収まるクロスライフが約1.4倍に向上することが確認された。
 以上の結果から分かるように、実施例では、両面研磨装置を用いてウェーハの両面を研磨する場合に、ウェーハ形状を長期的に安定化させることが可能であることが立証された。
 以上、説明してきたように、本発明によれば、吊り下げ形態の両面研磨装置において、定盤の熱変形を助長せず、かつ定盤形状を様々な形に変形可能な定盤の可動機構を提供することができる。従って、該両面研磨装置を用いてウェーハの両面を研磨する場合に、ウェーハ形状を長期的に安定化させることが可能となる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  回転軸を中心に回転可能に設けられ、上面に研磨パッドが貼り付けられた下定盤と、前記下定盤の上方に上下動可能、かつ前記回転軸を中心に回転可能に設けられ、下面に研磨パッドが貼り付けられた上定盤と、前記上定盤の上方に設けられる吊り天板とを具備する両面研磨装置において、
     前記吊り天板と前記上定盤とを連結する連結部と、
     前記吊り天板と前記上定盤との間であって前記連結部と異なる位置に設けられ、上定盤形状を変形可能なアクチュエータとを具備することを特徴とする両面研磨装置。
  2.  前記連結部は、前記上定盤の半径方向の同一円周上に配置される複数個の吊り支柱からなり、前記アクチュエータは、前記上定盤の半径方向の同一円周上であって前記複数個の吊り支柱とは異なる位置に1個以上配置されることを特徴とする請求項1に記載の両面研磨装置。
  3.  前記アクチュエータは、前記複数個の吊り支柱を支点にして前記上定盤形状を変形させるものであることを特徴とする請求項2に記載の両面研磨装置。
  4.  前記アクチュエータと前記上定盤とを連結するフローティングジョイントをさらに具備し、
     前記アクチュエータは、前記吊り天板に固定されることを特徴とする請求項1から請求項3のいずれか1項に記載の両面研磨装置。
  5.  前記上定盤は、線熱膨張係数が6×10-6/K以下の低熱膨張材からなることを特徴とする請求項1から請求項4のいずれか1項に記載の両面研磨装置。
PCT/JP2020/007912 2019-04-11 2020-02-27 両面研磨装置 WO2020208968A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217031932A KR20210149724A (ko) 2019-04-11 2020-02-27 양면연마장치
CN202080026268.6A CN113661030A (zh) 2019-04-11 2020-02-27 双面研磨装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075648 2019-04-11
JP2019075648A JP6965305B2 (ja) 2019-04-11 2019-04-11 両面研磨装置

Publications (1)

Publication Number Publication Date
WO2020208968A1 true WO2020208968A1 (ja) 2020-10-15

Family

ID=72751820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007912 WO2020208968A1 (ja) 2019-04-11 2020-02-27 両面研磨装置

Country Status (4)

Country Link
JP (1) JP6965305B2 (ja)
KR (1) KR20210149724A (ja)
CN (1) CN113661030A (ja)
WO (1) WO2020208968A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103709A1 (de) 2021-02-17 2022-08-18 Lapmaster Wolters Gmbh Doppel- oder Einseiten-Bearbeitungsmaschine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235071B2 (ja) * 2021-06-11 2023-03-08 株式会社Sumco ワークの両面研磨方法及びワークの両面研磨装置
CN115365922B (zh) * 2022-10-24 2023-02-28 西安奕斯伟材料科技有限公司 研磨轮、研磨设备及硅片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217456A (ja) * 1990-12-19 1992-08-07 Kawasaki Steel Corp ラップ定盤装置
JPH09309064A (ja) * 1996-05-24 1997-12-02 Kao Corp 研磨装置及び研磨方法
JP2000225563A (ja) * 1999-02-05 2000-08-15 Super Silicon Kenkyusho:Kk 研磨定盤支持機構

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290356A (ja) * 1994-04-25 1995-11-07 Nippon Steel Corp 研磨装置
JP2001079756A (ja) 1999-09-10 2001-03-27 Shin-Hokoku Steel Corp 研磨定盤および付帯部品ならびに研磨装置
JP2002154049A (ja) * 2000-11-15 2002-05-28 Fujikoshi Mach Corp 研磨方法
KR20040031071A (ko) * 2001-09-28 2004-04-09 신에쯔 한도타이 가부시키가이샤 연마용 워크지지반, 워크의 연마장치 및 연마방법
EP1489649A1 (en) * 2002-03-28 2004-12-22 Shin-Etsu Handotai Co., Ltd Double side polishing device for wafer and double side polishing method
JP4144698B2 (ja) * 2003-01-14 2008-09-03 浜井産業株式会社 研磨装置
DE102006037490B4 (de) 2006-08-10 2011-04-07 Peter Wolters Gmbh Doppelseiten-Bearbeitungsmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217456A (ja) * 1990-12-19 1992-08-07 Kawasaki Steel Corp ラップ定盤装置
JPH09309064A (ja) * 1996-05-24 1997-12-02 Kao Corp 研磨装置及び研磨方法
JP2000225563A (ja) * 1999-02-05 2000-08-15 Super Silicon Kenkyusho:Kk 研磨定盤支持機構

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021103709A1 (de) 2021-02-17 2022-08-18 Lapmaster Wolters Gmbh Doppel- oder Einseiten-Bearbeitungsmaschine
EP4046748A1 (de) 2021-02-17 2022-08-24 Lapmaster Wolters GmbH Doppel- oder einseiten-bearbeitungsmaschine

Also Published As

Publication number Publication date
JP6965305B2 (ja) 2021-11-10
KR20210149724A (ko) 2021-12-09
CN113661030A (zh) 2021-11-16
JP2020171997A (ja) 2020-10-22
TW202045305A (zh) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2020208968A1 (ja) 両面研磨装置
US20100190417A1 (en) Apparatus for dressing a polishing pad, chemical mechanical polishing apparatus and method
US6402588B1 (en) Polishing apparatus
KR100779554B1 (ko) 양면연마장치를 사용한 반도체 웨이퍼의 연마방법
US9199354B2 (en) Flexible diaphragm post-type floating and rigid abrading workholder
KR20040011433A (ko) 반도체 웨이퍼, 연마 장치 및 방법
WO2010023829A1 (ja) 研磨ヘッド及び研磨装置
US9815171B2 (en) Substrate holder, polishing apparatus, polishing method, and retaining ring
US20120270478A1 (en) Wafer pads for fixed-spindle floating-platen lapping
JP2003285262A (ja) ウエーハの両面研磨装置及び両面研磨方法
CN110744440A (zh) 一种双面研磨装置及方法
US20220168865A1 (en) Double-side polishing method
JPH07314302A (ja) 硬質ウエハ−の研磨方法及び研磨装置
KR100755011B1 (ko) 연마용 정반, 이를 사용한 연마장치 및 연마방법
TWI839479B (zh) 雙面研磨裝置
US7097545B2 (en) Polishing pad conditioner and chemical mechanical polishing apparatus having the same
JP2010082746A (ja) 研磨処理物の製造方法、基板及びフォトマスク
JPH09254021A (ja) 高平坦研磨方法および高平坦研磨装置
CN113579987A (zh) 一种曲率自适应集群磁流变抛光自由曲面的方法及装置
JP2019171492A (ja) 基板保持装置およびドライブリングの製造方法
US7175515B2 (en) Static pad conditioner
CN109551360B (zh) 抛光垫的修整方法、修整装置、抛光垫及双面抛光装置
JP2006116675A (ja) 研磨クロス及びウェーハ研磨装置
JP2007061975A (ja) 研磨装置及び研磨方法
CN114871941A (zh) 一种抛光头及抛光机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786956

Country of ref document: EP

Kind code of ref document: A1