WO2020207822A1 - Hydrodynamische kupplung für ein turbo-compound-system - Google Patents

Hydrodynamische kupplung für ein turbo-compound-system Download PDF

Info

Publication number
WO2020207822A1
WO2020207822A1 PCT/EP2020/058674 EP2020058674W WO2020207822A1 WO 2020207822 A1 WO2020207822 A1 WO 2020207822A1 EP 2020058674 W EP2020058674 W EP 2020058674W WO 2020207822 A1 WO2020207822 A1 WO 2020207822A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
housing
turbo
coupling
turbo coupling
Prior art date
Application number
PCT/EP2020/058674
Other languages
English (en)
French (fr)
Inventor
Manuel Schneider
Jonny PÖNITZ
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Publication of WO2020207822A1 publication Critical patent/WO2020207822A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D33/00Rotary fluid couplings or clutches of the hydrokinetic type
    • F16D33/06Rotary fluid couplings or clutches of the hydrokinetic type controlled by changing the amount of liquid in the working circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D33/00Rotary fluid couplings or clutches of the hydrokinetic type
    • F16D33/18Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0409Features relating to lubrication or cooling or heating characterised by the problem to increase efficiency, e.g. by reducing splash losses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0456Lubrication by injection; Injection nozzles or tubes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0493Gearings with spur or bevel gears
    • F16H57/0495Gearings with spur or bevel gears with fixed gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a turbo coupling for a turbo-compound system for coupling a power turbine with a drive train and a drive train for a motor vehicle.
  • a motor vehicle drive train with a supercharged internal combustion engine and a turbo compound system for driving a utility vehicle, in particular a truck or rail vehicle.
  • a turbine is arranged in the exhaust gas flow of the internal combustion engine, for example a diesel engine, which is set in rotary motion by the exhaust gas flow and which drives a compressor via a turbo coupling.
  • the compressor then feeds fresh air or a fresh air mixture in a pre-compressed form to the combustion engine.
  • turbochargers are known in which the turbine and the compressor are arranged on a common shaft, the turbocharger shaft.
  • the turbine is also referred to as a power turbine and the compressor as a turbocharger compressor.
  • a bearing for a turbo-compound system with a hydrodynamic coupling is known.
  • the hydrodynamic coupling is arranged between the power turbine and the turbocharger compressor.
  • the working space of the clutch can be filled with a working medium.
  • the object of the invention is to propose a turbo compound system which is optimized with regard to the power loss.
  • a turbo coupling for a turbo compound system for coupling a power turbine to a drive train comprises a housing in which a first rotor coupled to a drive gear and a second rotor coupled to a drive pinion are arranged, which are rotatably mounted independently of one another, the rotors forming a working space that can be filled with a working medium via a filling channel and via an emptying channel and an oil nozzle on the housing can be drained.
  • At least one oil plow element is provided within the housing, which is suitable for scraping off adhering oil from one of the rotors and / or the drive gear, the oil plow element being designed such that the removed oil is directed into an oil collecting chamber which is connected to the oil nozzle so that the removed oil can flow off.
  • the oil plow element is shaped in such a way that the oil is removed or also peeled off from the rotating components.
  • the oil plane element can have three sub-areas, one sub-area being assigned to the drive gear wheel, further sub-areas being assigned to the rotors and a sub-area being assigned to the emptying channel.
  • the oil plane element can thus be designed individually for each sub-area.
  • a flange plane can be provided on the housing part to which the utility turbine is flanged, the pinion of which engages in the drive gear and an oil-conducting connection is provided between the utility turbine and the housing part.
  • the oil for lubricating the power turbine can be fed back into the oil circuit of the drive train via the housing of the turbo coupling via the oil-conducting connection.
  • An oil channel is preferably integrated in the housing part, via which oil can be conducted from the power turbine to the oil nozzle.
  • an oil nozzle can be provided in the housing, by means of which oil can be sprayed onto the tooth area of the pinion of the power turbine.
  • the oil jet from the oil nozzle can preferably be directed at the tooth area at an angle ⁇ between 10 ° and 60 ° to a central point of the pinion.
  • the housing can have an oil collecting chamber, the oil collecting chamber being connected to the oil nozzle in such a way that the oil can be diverted via this.
  • the oil collection space offers a relatively large volume, so that a relatively large amount of oil can be collected with a sufficient distance from the rotating parts.
  • a further improvement also with regard to the oil drainage is achieved in that the housing part has grooves and the housing cover having complementary centering segments so that the housing parts are precisely aligned with one another and there are no shoulders that favor oil accumulation. It is also advantageous if the inner wall of the housing part, in the area parallel to the drive gear, is flat, so that the wheel side friction losses are minimized.
  • a drive train in particular for a motor vehicle with an internal combustion engine that generates an exhaust gas flow, with a turbo-compound system that includes a turbo coupling corresponding to one of the embodiments according to the invention, has a significantly smaller total power loss.
  • Fig. 1 shows the coupling structure of a turbo-compound system
  • FIG. 1 is a sketch from which the coupling structure of a turbo-compound system 1 according to the invention emerges.
  • This essentially consists of the turbo clutch 2 and the power turbine 3.
  • the coupling with the output train 23 takes place via the drive pinion 7.
  • the illustrated gear pair can be arranged, for example, in the internal combustion engine or a transmission.
  • FIG. 1 shows a sectional drawing of the turbo coupling 2 without the power turbine 3.
  • the housing 11, 12 is screwed to the housing 19 of the drive train, motor housing or gear housing, so that the output pinion 7 is coupled to the drive train 23 and the oil nozzle 15 in the housing 19 reaches into it.
  • the interior spaces of the housing are thus connected so that oil can flow out of the coupling housing 11, 12 into the housing 19.
  • the turbo-compound system 1 is thus connected to the oil circuit of the drive train 23.
  • An oil flow forms the oil that is required for the turbo coupling.
  • oil reaches the working chamber 24 via the filling channel 25 in the shaft 22, as indicated here.
  • a circulatory flow is created in which part of the oil is always exited via the gap between the rotors 4, 5 Work space 24 exits.
  • the escaping oil is conducted via the emptying channel 26 along the rotor 5 in the direction of the shaft 22 and there thrown into the interior of the housing 11, 12.
  • the essential oil quantity of this oil flow is collected by means of the oil plane element section 17a and passed to the oil nozzle 15.
  • Another oil flow is formed by the return oil which has flowed through the power turbine 3 to lubricate it. This oil reaches the oil nozzle 15 via a channel 16a, b, which is cast or worked into the housing part 11 and the housing cover 12 in sections.
  • the third oil flow is formed by the oil which is removed or planed from the ⁇ lhobelelementabschnit 17b and 17c, from the rotors 4, 5 and the drive gear 8.
  • the improved oil drainage ensures that there is no undesired accumulation of oil. All three oil flows are brought together and come together via the oil nozzle 19, as indicated in FIG. 2, back into the oil circuit of the drive train 23 detect.
  • This area of the oil plane element is shaped in such a way that it comes as close as possible to the drive gear 8, so that the majority of the oil can be removed from the tooth areas of the gear and collected in the oil collection chamber 18.
  • the oil channel 16a through which the oil flow from the power turbine 3 flows, is still separated from the oil collecting space 18 in the area of the housing part 11.
  • Figure 4 shows the coupling of power turbine 3 and turbo coupling 2.
  • the tooth engagement area between pinion 27, which is driven by power turbine 3, and drive gear 8 places particularly high demands on the lubrication. Therefore, the lubrication takes place here via an oil jet from an oil nozzle 9, the oil jet, as shown, being sprayed onto the pinion 27 at an injection angle ⁇ between 40 ° and 50 ° to the center of the pinion 27.
  • the injection angle ⁇ can, however, also have a value between 10 ° and 60 °. It is important to ensure that the angle is chosen so that the pinion 27 is braked as little as possible.
  • FIG. 5 shows once again in detail the two housing halves 1 1, 12 with the ⁇ lho belqueritese 17 a, b, c.
  • the oil plunger sections extend differently into the coupling housing 11, 12. It can also be seen here that the oil nozzle 15 is an outlet for the oil collecting space 18.
  • the two housing halves 11, 12 are not shown here on the same scale, it being easy to see that the components can be mounted centered with respect to one another via the grooves 20 in the housing part 11 and the centering segments 21 in the housing cover 12.
  • a means for sealing is provided to seal the seam.
  • the flat inner wall IO can also be seen here, which runs parallel to the drive gear. All the ribs required to stiffen the housing and the required oil ducts are attached or cast on the rear side of the housing part 11 and are not shown in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Details Of Gearings (AREA)

Abstract

Es wird eine Turbokupplung für ein Turbo-Compound-System zur Koppelung einer Nutzturbine (3) mit einem Antriebsstrang (23) vorgeschlagen. Diese umfasst ein Gehäuse (11, 12) in dem ein mit einem Antriebszahnrad gekoppelter erster Rotor (4) und ein mit einem Abtriebsritzel (7) gekoppelter zweiter Rotor (5) angeordnet sind, die unabhängig voneinander drehbar gelagert sind, wobei die Rotoren einen Arbeitsraum (24) bilden der über einen Befüllkanal (25) mit einem Arbeitsmedium befüllbar und über einen Entleerkanal (26) und einen Ölstutzen (15) am Gehäuse entleerbar ist wobei innerhalb des Gehäuses zumindest ein Ölhobelelement (17a, b, c) vorgesehen ist, das dazu geeignet ist, anhaftendes ÖL von einem der Rotoren und/oder dem Antriebszahnrad abzustreifen, wobei das Ölhobelelement derart ausgeführt ist, dass das abgenommene Öl in einen Ölsammelraum (18) geleitete wird, der mit dem Ölstutzen verbunden ist, so dass das abgenommene Öl abfließen kann.

Description

HYDRODYNAMISCHE KUPPLUNG FÜR EIN TURBO-COMPOUND-SYSTEM
Die Erfindung betrifft eine Turbokupplung für ein Turbo-Compound-System zur Kop pelung einer Nutzturbine mit einem Antriebsstrang und ein Antriebsstrang für ein Kraftfahrzeug. Allgemein bekannt ist ein Kraftfahrzeugantriebsstrang mit einem aufgeladenen Ver brennungsmotor und einem Turbo-Compound-System zum Antrieb eines Nutzfahr zeugs, insbesondere Lastkraftwagens oder Schienenfahrzeugs. Im Abgasstrom des Verbrennungsmotors, beispielsweise einem Dieselmotor, ist eine Turbine angeordnet, die durch den Abgasstrom in eine Drehbewegung versetzt wird, und welche über eine Turbokupplung einen Verdichter antreibt. Der Verdichter führt dem Verbrennungsmo tor dann Frischluft oder ein Frischluftgemisch vorverdichtet zu. Weiterhin sind Turbo lader bekannt, bei denen die Turbine und der Verdichter auf einer gemeinsamen Welle, Turboladerwelle, angeordnet sind. Die Turbine wird auch als Nutzturbine und der Verdichter als Turboladerverdichter bezeichnet. Aus der Patentschrift DE 10 2012 007 765 A1 ist beispielsweise eine Lagerung für ein Turbo-Compound-System mit hydrodynamischer Kupplung bekannt. Die hydrodynamische Kupplung ist zwischen Nutzturbine und Turboladerverdichter angeordnet. Zur Schaltung ist der Arbeitsraum der Kupplung mit einem Arbeitsmedi- um befüllbar.
Eine weitere Koppelstruktur für ein Turbo-Compound-System ist aus der DE 10 2013 225 954 A1 bekannt. Hier ist die Nutzturbine über eine hydrodynamische Kupplung und eine weitere mech. Kupplung mit dem Kraftfahrzeugantriebsstrang koppelbar.
Bekannt ist weiterhin, dass bei hydrodynamischen Kupplungen Verlustleistungen auftreten. Dabei spielen unter anderem die Planschverluste eine Rolle, die auftreten wenn beispielsweise die Zähne eines Zahnrades durch eine Ölansammlung bewegt werden. Da die Drehzahl der Nutzturbine eines Turbo-Compound-Systems bei bis zu 60000 1/min liegen kann, sind die Verluste selbst bei einer großen Untersetzung zur hyd. Kupplung sehr entscheidend für den Nutzen des Systems.
Die Aufgabe der Erfindung ist es, ein Turbo-Compound-System vorzuschlagen wel ches im Hinblick auf die Verlustleistung optimiert ist.
Die Aufgabe wird erfindungsgemäß durch eine Ausführung der Turbokupplung ent- sprechend Anspruch 1 gelöst. Weitere vorteilhafte Merkmale der erfindungsgemäßen Ausführung finden sich in den Unteransprüchen.
Es wird eine Turbokupplung für ein Turbo-Compound-System zur Koppelung einer Nutzturbine mit einem Antriebsstrang vorgeschlagen. Diese umfasst ein Gehäuse in dem ein mit einem Antriebszahnrad gekoppelter erster Rotor und ein mit einem Ab triebsritzel gekoppelter zweiter Rotor angeordnet sind, die unabhängig voneinander drehbar gelagert sind, wobei die Rotoren einen Arbeitsraum bilden der über einen Befüllkanal mit einem Arbeitsmedium befüllbar und über einen Entleerkanal und einen Ölstutzen am Gehäuse entleerbar ist.
Erfindungsgemäß wird vorgeschlagen, dass innerhalb des Gehäuses zumindest ein Ölhobelelement vorgesehen ist, das dazu geeignet ist, anhaftendes ÖL von einem der Rotoren und/oder dem Antriebszahnrad abzustreifen, wobei das Ölhobelelement derart ausgeführt ist, dass das abgenommene Öl in einen Ölsammelraum geleitete wird, der mit dem Ölstutzen verbunden ist, so dass das abgenommene Öl abfließen kann.
Durch das abstreifen den Öls von zumindest einem der drehenden Bauteile wird vermieden, dass es zu sogenannten Planschverlusten kommt die auftreten, wenn drehende Bauteile schnell durch eine Ölansammlung bewegt werden. Das Ölhobelelement ist derart geformt, dass das Öl von den drehenden Bauteilen abgenommen oder auch abgehobelt wird.
In einer bevorzugten Ausführung kann das Ölhobelelement drei Teilbereiche aufwei- sen, wobei ein Teilbereich dem Antriebszahnrad, weitere Teilbereiche den Rotoren und ein Teilbereich dem Entleerkanal derart zugeordnet ist. Das Ölhobelelement kann so für jeden Teilbereich individuelle ausgelegt werden.
Weiterhin kann am Gehäuseteil eine Flanschebene vorgesehen sein, an der die Nutz- turbine angeflanscht ist, wobei deren Ritzel in das Antriebszahnrad eingreift und eine Ölleitende Verbindung zwischen Nutzturbine und Gehäuseteil vorgesehen ist. Über die ölleitende Verbindung kann das Öl zur Schmierung der Nutzturbine über das Gehäuse der Turbokupplung zurück in den Ölkreislauf des Antriebstrangs geleitet werden. Vorzugsweise ist im Gehäuseteil ein Ölkanal integriert, über den Öl aus der Nutzturbine zum Ölstutzen leitbar ist.
Des Weiteren kann im Gehäuse eine Öldüse vorgesehen sein, mittels der Öl auf den Zahnbereich des Ritzels der Nutzturbine spritzbar ist. Vorzugsweise kann der Ölstrahl aus der Öldüse mit einem Winkel a zwischen 10° und 60° zu einer Zentrale des Rit- zels auf den Zahnbereich gerichtet sein.
Das Gehäuse kann einen Ölsammelraum aufweisen, wobei der Ölsammelraum derart mit dem Ölstutzen in Verbindung steht, das Öl über diesen ableitbar ist. Der Ölsam melraum bietet ein verhältnismäßig großes Volumen, so dass relativ viel Öl mit einem ausreichenden Abstand zu den drehenden Teilen gesammelt werden kann.
Eine weiterer Verbesserung auch in Bezug auf die Ölabführung wird dadurch erreicht, dass das Gehäuseteil Nuten und der Gehäusedeckel komplementäre Zentrierseg mente aufweisen, so dass die Gehäuseteile genau zueinander fluchten und keine Absätze entstehen, die eine Ölansammlung begünstigen. Vorteilhaft ist es weiterhin, wenn die Innenwand des Gehäuseteils, im Bereich parallel zum Antriebszahnrad, eben ausgeführt ist, so dass die Radseitenreibverluste mini miert sind.
Ein Antriebsstrang, insbesondere für ein Kraftfahrzeug mit einem Verbrennungsmotor der einen Abgasstrom erzeugt, mit einem Turbo-Compound-System das eine Turbo kupplung entsprechen einer der erfindungsgemäßen Ausführungsformen umfasst, weist eine wesentlich kleinere Gesamtverlustleistung auf.
Die folgende Beschreibung der Figuren erläutert unter Bezugnahme auf die Zeich nungen vorteilhafte Ausprägungen der Erfindung:
Im Einzelnen zeigt:
Fig.1 die Koppelstruktur eines Turbo-Compound-Systems
Fig.2 eine Schnittzeichnung der Turbokupplung
Fig.3 Ansicht auf den Rotor
Fig 4. die Kopplung von Nutzturbine und Turbokupplung
Fig 5. die beiden Gehäusehälften mit den Ölhobelquerschnitten
Figur 1 ist eine Skizze aus der die Koppelstruktur eines erfindungsgemäßen Turbo- Compound-Systems 1 hervorgeht. Im Wesentlichen besteht dieses aus der Turbo kupplung 2 und der Nutzturbine 3. Die Koppelung mit dem Abtriebsstrang 23 erfolgt über das Antriebsritzel 7. Das dargestellte Zahnradpaar kann beispielsweise in dem Verbrennungsmotor oder einem Getriebe angeordnet sein.
Die Abgase 6, die von dem Verbrennungsmotor kommen, werden in die Nutzturbine 3 geleitet, die sich dadurch mit bis zu 60000 1/min Umdrehungen dreht. Über das Ritzel 27 und das Antriebszahnrad 8 wird der Rotor 4 in Drehung versetzt. Der Rotor 5 ist über das Abtriebsritzel 7 mit dem Antriebsstrang gekoppelt. Der von den Rotoren 4, 5 gebildete tourusförmige Arbeitsraum 24 kann mit Öl geregelt befüllt werden, wobei über den Füllstand im Arbeitsraum 24 der Schlupf der Kupplung geregelt wird. Figur 2 zeigt eine Schnittzeichnung der Turbokupplung 2 ohne die Nutzturbine 3. Das Gehäuse 11 , 12 ist mit dem Gehäuse 19 des Antriebsstrangs, Motorgehäuse oder Getriebegehäuse, verschraubt, so dass das Abtriebsritzel 7 mit dem Antriebsstrang 23 gekoppelt ist und der Ölstutzen 15 in das Gehäuse 19 hineinreicht. Die Innenräu me der Gehäuse stehen somit in Verbindung, so dass Öl aus dem Kupplungsgehäu se 11 , 12 in das Gehäuse 19 strömen kann. Das Turbo-Compound-System 1 ist somit am Ölkreislauf des Antriebsstrangs 23 angeschlossen.
Im Wesentlichen gibt es drei Ölströme die über das Kupplungsgehäuse 11 , 12 in den Ölkreislauf des Antriebsstrangs zurückgeleitet werden müssen.
Ein Ölstrom bildet das Öl, welches für die Turbokupplung benötigt wird. Hier gelangt Öl über den Befüllkanal 25 in der Welle 22, wie hier angedeutet, in den Arbeitsraum 24. Bei entsprechenden Drehzahlen der Rotoren 4, 5 entsteht eine Kreislaufströmung bei der immer ein Teil des Öls über den Spalt zwischen den Rotoren 4, 5 aus dem Arbeitsraum 24 austritt. Das austretende Öl wird über den Entleerkanal 26 am Rotor 5 entlang in Richtung Welle 22 geleitet und dort in den Innenraum des Gehäuses 11 , 12 geschleudert. Mittels des Ölhobelelementabschnitts 17a wird die wesentliche Ölmen ge dieses Ölstroms aufgefangen und zum Ölstutzen 15 geleitet.
Ein weiterer Ölstrom wird vom Rücklauföl gebildet, welches für die Schmierung der Nutzturbine 3 durch diese hindurchgeströmt ist. Dieses Öl gelangt über einen Kanal 16a, b, der Abschnittsweise in das Gehäuseteil 11 und den Gehäusedeckel 12 einge gossen bzw. eingearbeitet ist, zum Ölstutzen 15.
Der dritte Ölstrom wird durch das Öl gebildet, welches vom Ölhobelelementabschnit ten 17b und 17c, von den Rotoren 4, 5 und dem Antriebszahnrad 8 abgenommen bzw. abgehobelt wird. Durch den verbesserten Ölabfluss wird erreicht, dass es nicht zu einer unerwünschten Ölansammlung kommt. Alle drei Ölströme werden zusammengeführt und gelangen über den Ölstutzen 19 zusammen, wie in Fig. 2 angedeutet, zurück in den Ölkreislauf des Antriebsstrangs 23. Figur 3 zeigt eine Ansicht auf den Rotor 4 und das Gehäuseteil 11. Hier ist das Ölho belelementbereich 17c gut zu erkennen. Dieser Bereich des Ölhobelelements ist derart geformt, dass er möglichst nah ans Antriebszahnrad 8 heranreicht, so dass der Großteil des Öls aus den Zahnbereichen des Zahnrades abgenommen und im Öl sammelraum 18 gesammelt werden kann.
Der Ölkanal 16a, durch den der Ölstrom von der Nutzturbine 3 strömt, ist im Bereich des Gehäuseteils 11 noch vom Ölsammelraum 18 getrennt.
Figur 4 zeigt die Kopplung von Nutzturbine 3 und Turbokupplung 2. Der Zahnein griffsbereich zwischen Ritzel 27, welches von der Nutzturbine 3 angetrieben wird, und Antriebszahnrad 8 stellt besonders hohe Anforderungen an die Schmierung. Deshalb erfolgt die Schmierung hier über einen Ölstrahl aus einer Öldüse 9, wobei der Ölstrahl, wie dargestellt, unter einem Einspritzwinkel a zwischen 40° und 50° zur Zentrale des Ritzels 27 auf das Ritzel 27 gesprüht wird. Der Einspritzwinkel a kann aber auch eine Wert zwischen 10° und 60° aufweisen. Dabei ist darauf zu achten, dass der Winkel so gewählt wird, dass es zu einer möglichst geringen Abbremsung des Ritzels 27 kommt.
Figur 5 zeigt noch einmal im Detail die beiden Gehäusehälften 1 1 , 12 mit den Ölho belquerschnitten 17 a, b, c. Wie schon in Figur 2 dargestellt reichen die Ölhobelab- schnitte unterschiedlich weit in das Kupplungsgehäuse 11 , 12. Zu erkennen ist hier auch, dass der Ölstutzen 15 ein Auslass für den Ölsammelraum 18 ist.
Die beiden Gehäusehälften 11 , 12 hier nicht im gleichen Maßstab dargestellt, wobei gut zu erkennen ist, dass die Bauteile über die Nuten 20 im Gehäuseteil 11 und den Zentriersegmenten 21 im Gehäusedeckel 12 zueinander zentriert montierbar sind. Zur Abdichtung der Nahtstelle ist ein Mittel zur Abdichtung vorgesehen. Zu erkennen ist hier auch noch mal die ebene InnenwandIO die parallel zum An triebszahnrad verläuft. Alle benötigten Rippen zur Versteifung des Gehäuses und die erforderlichen Ölkanäle sind auf der Rückseite des Gehäuseteils 11 angebracht bzw. angegossen und hier nicht detailliert dargestellt.
Bezugszeichenliste
1 Turbo-Compound-System
2 Turbokupplung
3 Nutzturbine
4 Rotor
5 Rotor
6 Abgase
7 Abtriebsritzel
8 Antriebszahnrad
9 Öldüse
10a, b, c Innenwand
1 1 Gehäuseteil
12 Gehäusedeckel
13 Flanschebene
14a, b, Lager
15 Ölstutzen
16a, b Ölkanal
17a, b, c Ölhobelelementabschnitte 1 8 Ölsammelraum
19 Gehäuse
20 Nut
21 Zentriersegmente
22 Welle
23 Antriebsstrang
24 Arbeitsraum
25 Befüllkanal
26 Entleerkanal
27 Ritzel a Einspritzwinkel

Claims

Patentansprüche
1. Turbokupplung (2), für ein Turbo-Compound-System (1 ) zur Koppelung einer Nutzturbine (3) mit einem Antriebsstrang (23), umfassend ein Gehäuse (11 , 12) in dem ein mit einem Antriebszahnrad (8) gekoppelter erster Rotor (4) und ein mit einem Abtriebsritzel (7) gekoppelter zweiter Rotor (5) angeordnet sind, die unabhängig voneinander drehbar gelagert sind, wobei die Rotoren (4, 5) einen Arbeitsraum (24) bilden der über einen Befüllkanal (25) mit einem Ar beitsmedium befüllbar und über einen Entleerkanal (26) und einen Ölstutzen (15) am Gehäuse (12) entleerbar ist,
dadurch gekennzeichnet, dass
innerhalb des Gehäuses (11 , 12) zumindest ein Ölhobelelement (17a, b, c) vorgesehen ist , das dazu geeignet ist, anhaftendes ÖL von einem der Roto ren (4, 5) und/oder dem Antriebszahnrad (8) abzustreifen, wobei das Ölho belelement (17a, b, c) derart ausgeführt ist, dass das abgenommene Öl in ei nen Ölsammelraum (18) geleitete wird, der mit dem Ölstutzen (15) verbunden ist, so dass das abgenommene Öl abfließen kann.
2. Turbokupplung (2) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
das Ölhobelelement (17a, b, c) drei Teilbereiche aufweist, wobei ein Teilbe reich (17a) dem Antriebszahnrad (8), ein Teilbereich den Rotoren (4, 5) und ein Teilbereich dem Entleerkanal (26) zugeordnet ist
3. Turbokupplung (2) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
am Gehäuseteil (11 ) eine Flanschebene (13) vorgesehen ist, an der die Nutz turbine (3) angeflanscht ist, wobei deren Ritzel (27) in das Antriebszahnrad (8) eingreift und eine ölleitende Verbindung zwischen Nutzturbine (3) und Gehäu seteil (11 ) im Flanschbereich angeordnet ist.
4. Turbokupplung (2) nach Anspruch 3,
dadurch gekennzeichnet, dass
das im Gehäuseteil (11 ) ein Ölkanal (16a, b) integriert ist, über den Öl aus der Nutzturbine (3) über die ölleitende Verbindung zum Ölstutzen (15) leitbar ist.
5. Turbokupplung (2) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
im Gehäuse (11 , 12) eine Öldüse (9) vorgesehen ist, mittels der Öl auf den Zahnbereich des Ritzels (27) spritzbar ist.
6. Turbokupplung (2) nach Anspruch 5,
dadurch gekennzeichnet, dass
der Ölstrahl aus der Öldüse (9) mit einem Winkel a zwischen 10° und 60° zu einer Zentrale des Ritzels (27) auf den Zahnbereich gerichtet ist.
7. Turbokupplung (2) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
das Gehäuse (11 , 12) einen Ölsammelraum (18) aufweist, wobei der Ölsam melraum (18) derart mit dem Ölstutzen (15) in Verbindung steht, das Öl über diesen ableitbar ist.
8. Turbokupplung (2) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
das Gehäuseteil (11 ) Nuten (20) und der Gehäusedeckel (12) komplementäre Zentriersegmente (21 ) aufweisen.
9. Turbokupplung (2) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Innenwand 10 des Gehäuseteils 4, im Bereich parallel zum Antriebszahn rad 8 eben ausgeführt ist.
10. Antriebsstrang, insbesondere für ein Kraftfahrzeug mit einem Verbrennungs motor der einen Abgasstrom erzeugt;
dadurch gekennzeichnet, dass
der Antriebsstrang ein Turbo-Compound-System (1 ) mit einer Turbokupplung (2) nach einem der Ansprüche 1 bis 9 umfasst.
PCT/EP2020/058674 2019-04-12 2020-03-27 Hydrodynamische kupplung für ein turbo-compound-system WO2020207822A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019109683.9 2019-04-12
DE102019109683 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020207822A1 true WO2020207822A1 (de) 2020-10-15

Family

ID=70154377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/058674 WO2020207822A1 (de) 2019-04-12 2020-03-27 Hydrodynamische kupplung für ein turbo-compound-system

Country Status (1)

Country Link
WO (1) WO2020207822A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041532U (ja) * 1983-08-31 1985-03-23 株式会社小松製作所 タ−ボコンポウンドエンジンの潤滑装置
DE102008018613A1 (de) * 2008-04-11 2009-10-15 Voith Patent Gmbh Triebstrang, insbesondere in einem Turbocompoundsystem
DE102012007765A1 (de) 2012-04-20 2013-10-24 Voith Patent Gmbh Turbocompoundlagerung zur Anbindung eines Turbocompoundsystems an eine Brennkraftmaschine
DE102013225954B3 (de) 2013-12-13 2015-05-13 Voith Patent Gmbh Kraftfahrzeugantriebsstrang mit einer im Abgasstrom positionierten Nutzturbine
DE102017203527A1 (de) * 2017-03-03 2018-09-06 Zf Friedrichshafen Ag Vorrichtung zur Kühlung und Schmierung eines Getriebes für ein Fahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041532U (ja) * 1983-08-31 1985-03-23 株式会社小松製作所 タ−ボコンポウンドエンジンの潤滑装置
DE102008018613A1 (de) * 2008-04-11 2009-10-15 Voith Patent Gmbh Triebstrang, insbesondere in einem Turbocompoundsystem
DE102012007765A1 (de) 2012-04-20 2013-10-24 Voith Patent Gmbh Turbocompoundlagerung zur Anbindung eines Turbocompoundsystems an eine Brennkraftmaschine
DE102013225954B3 (de) 2013-12-13 2015-05-13 Voith Patent Gmbh Kraftfahrzeugantriebsstrang mit einer im Abgasstrom positionierten Nutzturbine
DE102017203527A1 (de) * 2017-03-03 2018-09-06 Zf Friedrichshafen Ag Vorrichtung zur Kühlung und Schmierung eines Getriebes für ein Fahrzeug

Similar Documents

Publication Publication Date Title
DE112008000155B4 (de) Antriebsstrang mit nasser Anfahrkupplung für Hybridanwendungen
DE19536017B4 (de) Turboladerantrieb und Planetenlager dafür
DE3619754C2 (de)
DE3906330A1 (de) Oelreservoiranordnung fuer ein automatik-getriebe
EP2313626B1 (de) Turbo-compound-system für eine antriebsvorrichtung
DE4108658C2 (de) Kraftfahrzeug mit einem einem Zahnräderwechselgetriebe nachgeschalteten, hydrodynamischen Retarder
DE102019212670A1 (de) Hybridantriebseinheit und Antriebsstrang für ein Kraftfahrzeug
DE4134369B4 (de) Getriebegehäuse für ein Automatgetriebe eines Kraftfahrzeugs
DE102007052834A1 (de) Getriebe mit Doppelantriebskupplung und einem Drehmomentwandlerpumpenantrieb
WO2012139820A2 (de) Antriebsvorrichtung mit einer kühlbaren rotoranordnung
WO2012116787A1 (de) Turbo-compound-system, insbesondere eines kraftfahrzeugs
EP0365574B1 (de) Vorrichtung zur reinigung von schmieröl im getriebe
WO2014059965A2 (de) Anordnung einer kühlmittelpumpe
WO2019175068A1 (de) Doppelkupplungsgetriebe
DE102007001841A1 (de) Verfahren zur Hybridnachrüstung und Hybridantriebseinheit
DE10016071B4 (de) Schmieranordnung für einen Viertaktmotor
DE102019204189A1 (de) Getriebe und Antriebsstrang für ein Kraftfahrzeug
DE102006003213A1 (de) Vorrichtung zur Schmierölversorgung eines elektrodynamischen Antriebssystems eines Kraftfahrzeuges
DE102006033976A1 (de) Abgasturbolader für eine Brennkraftmaschine
WO2020207822A1 (de) Hydrodynamische kupplung für ein turbo-compound-system
DE102008005201A1 (de) Turbolader-Turbocompoundsystem
EP1066456B1 (de) Luftgekühlter verbrennungsmotor mit um eine vertikale achse rotierender kurbelwelle, insbesondere einzylinder-dieselmotor
DE102022109970A1 (de) Getriebemotor für ein Kraftfahrzeug und Kraftfahrzeug mit einem Getriebemotor
WO2019175074A1 (de) Doppelkupplungsgetriebe
EP3482105B1 (de) Fahrzeuggetriebe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20716413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20716413

Country of ref document: EP

Kind code of ref document: A1