WO2020207435A1 - 测量方法、测量配置方法、终端和网络设备 - Google Patents

测量方法、测量配置方法、终端和网络设备 Download PDF

Info

Publication number
WO2020207435A1
WO2020207435A1 PCT/CN2020/083964 CN2020083964W WO2020207435A1 WO 2020207435 A1 WO2020207435 A1 WO 2020207435A1 CN 2020083964 W CN2020083964 W CN 2020083964W WO 2020207435 A1 WO2020207435 A1 WO 2020207435A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
terminal
information
target
advance
Prior art date
Application number
PCT/CN2020/083964
Other languages
English (en)
French (fr)
Inventor
郑倩
杨晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20787041.1A priority Critical patent/EP3955627A4/en
Priority to KR1020217036126A priority patent/KR20210147051A/ko
Publication of WO2020207435A1 publication Critical patent/WO2020207435A1/zh
Priority to US17/492,715 priority patent/US20220030457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0876Aspects of the degree of configuration automation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a measurement method, a measurement configuration method, a terminal, and a network device.
  • CA Carrier Aggregation
  • a technology similar to CA also has dual connectivity (DC). If multiple serving cells configured by the network for one UE belong to two base stations, it is called DC.
  • the CA of the terminal is configured by the network (network, NW).
  • NW network
  • the network selects a cell whose signal quality meets a specific condition based on the measurement report result of the terminal on the neighboring cell, and configures it as the serving cell of the terminal.
  • the terminal's measurement parameters of neighboring cells (such as the frequency to be measured and the measurement volume, etc., the measurement volume may include Reference Signal Received Power (RSRP) and/or Reference Signal Received Quality (RSRQ, RSRQ) )) and reporting configuration (reporting trigger conditions and measurement quantities that need to be reported, etc.) are configured by the network.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • reporting configuration reporting trigger conditions and measurement quantities that need to be reported, etc.
  • the configuration and reporting of the measurement can only be performed after the security is activated, which will cause the terminal (User Equipment, UE) to experience a long delay before being configured with the CA.
  • the non-connected terminal is in the configured time period Measure the frequency point to be measured in the area and area; and report the measurement result to the network when entering the connected state or after entering the connected state.
  • This solution can effectively reduce the time delay from when the UE enters the connected state to when the UE can start transmission using CA.
  • the CA configuration process is shown in Figure 1: The network device can send the advance measurement related configuration, and the non-connected UE can start the measurement only after receiving the advance measurement related configuration including the measurement duration. For the DC configuration process is still in the discussion stage, you can continue to use the CA configuration process.
  • controlling the measurement behavior of the terminal through the measurement duration does not guarantee that the terminal has available measurement results to the network when it enters the connected state, which is not conducive to satisfying the network speed Activate the terminal's CA and/or DC requirements.
  • the embodiments of the present disclosure provide a measurement method, a measurement configuration method, a terminal, and a network device to solve the problem that the measurement behavior of the terminal is controlled by the measurement duration, which is not conducive to meeting the needs of the network to quickly activate the CA and/or DC of the terminal.
  • some embodiments of the present disclosure provide a measurement method applied to a terminal, including:
  • the advance measurement condition being determined according to related state information when a first object is started, and the first object includes at least one of carrier aggregation CA and dual connectivity DC;
  • the autonomous measurement is triggered.
  • some embodiments of the present disclosure also provide a measurement configuration method applied to a network device, including:
  • the advance measurement condition is determined according to related state information when the first object starts, the first object includes at least one of carrier aggregation CA and dual connectivity DC; the advance measurement condition is used for Trigger the terminal to measure autonomously.
  • some embodiments of the present disclosure also provide a terminal, including:
  • the first receiving module is configured to receive an advance measurement condition from a network device, the advance measurement condition is determined according to related state information when the first object is started, and the first object includes at least one of carrier aggregation CA and dual connectivity DC ;
  • the control module is used to trigger autonomous measurement if the pre-measurement condition is met in the disconnected state.
  • some embodiments of the present disclosure also provide a network device, including:
  • a first sending module configured to send an advance measurement condition to the terminal, the advance measurement condition is determined according to related state information when the first object is started, the first object includes at least one of carrier aggregation CA and dual connectivity DC;
  • the advance measurement condition is used to trigger autonomous measurement by the terminal.
  • some embodiments of the present disclosure also provide a terminal, including a memory, a processor, and a program stored on the memory and running on the processor, and the program is used by the processor. The steps in the above measurement method are implemented when executed.
  • some embodiments of the present disclosure also provide a network device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, the program being processed by the The steps in the measurement configuration method described above are implemented when the device is executed.
  • some embodiments of the present disclosure also provide a computer-readable storage medium, wherein a computer program is stored on the computer-readable storage medium, and the computer program is executed by a processor to implement the measurement configuration method described above.
  • the steps, or the steps of the measurement configuration method described above are realized when the computer program is executed by the processor.
  • Some embodiments of the present disclosure automatically trigger the terminal to perform autonomous measurement according to the advance measurement condition determined by the related state information when the first object is started, so that the measurement behavior of the terminal is controlled through the state information, thereby ensuring that the terminal is available when it enters the connected state.
  • the measurement result is provided to the network. Therefore, some embodiments of the present disclosure control the measurement behavior of the terminal based on the advance measurement condition determined by the state information, which can better meet the requirement of the network to quickly activate the CA and/or DC of the terminal.
  • Figure 1 is a traditional CA or DC configuration flow chart
  • Figure 2 is a structural diagram of a network system to which some embodiments of the present disclosure can be applied;
  • FIG. 3 is a flowchart of a measurement method provided by some embodiments of the present disclosure.
  • Fig. 4 is a flowchart of a measurement configuration method provided by some embodiments of the present disclosure.
  • Figure 5 is a structural diagram of a terminal provided by some embodiments of the present disclosure.
  • Figure 6 is a structural diagram of a network device provided by some embodiments of the present disclosure.
  • FIG. 7 is another structural diagram of a terminal provided by some embodiments of the present disclosure.
  • Fig. 8 is another structural diagram of a network device provided by some embodiments of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • a measurement method, a measurement configuration method, a terminal, and a network device provided by some embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may adopt a 5G system, or an evolved long term evolution (evolved Long Term Evolution, eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • Figure 2 is a structural diagram of a network system to which some embodiments of the present disclosure can be applied. As shown in Figure 2, it includes a terminal 21 and a network device 22, where the terminal 21 may be a user terminal or other terminals. Side devices, such as mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistant, PDA), mobile Internet devices (Mobile Internet Device, MID) or wearable For terminal-side devices such as a Wearable Device, it should be noted that in some embodiments of the present disclosure, the specific type of the terminal 21 is not limited.
  • the above-mentioned network device 22 may be a 5G base station, or a base station of a later version, or a base station in other communication systems, or called Node B, Evolved Node B, or Transmission Reception Point (TRP), or access point (Access Point, AP), or other words in the field, as long as the same technical effect is achieved, the network device is not limited to specific technical words.
  • the aforementioned network device 22 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in some embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 3 is a flowchart of a measurement method provided by some embodiments of the present disclosure. The method is applied to a terminal. As shown in FIG. 3, it includes the following steps:
  • Step 301 Receive an advance measurement condition from a network device, the advance measurement condition is determined according to related state information when a first object is started, and the first object includes at least one of carrier aggregation CA and dual connectivity DC;
  • the above-mentioned state information when the first object is started is related information recorded by using the first object when the terminal is historically started.
  • the terminal may report to the network device related state information when the first object is started.
  • the network device may configure advance measurement conditions for the terminal according to the related state information when the first object is started.
  • the above-mentioned advance measurement conditions are received before the terminal transitions from the connected state to the non-connected state.
  • the terminal may receive the advance measurement conditions sent by the network device multiple times, and use the most recent advance measurement condition received Trigger autonomous measurement as standard.
  • the foregoing advance measurement condition may be carried in the RRC release message and/or broadcast message.
  • the above-mentioned status information may include at least one of network coverage information, downlink channel quality, geographic location, serving cell, service frequency point, service attributes, power headroom information, buffer requirement information, terminal type, and number of antennas.
  • the above-mentioned network coverage information may be Reference Signal Received Power (RSRP)/Reference Signal Received Quality (RSRQ) of the serving cell.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • the aforementioned downlink channel quality may be a channel quality indicator (Channel State Indicator, CSI) and a block error rate (Block Error Rate, BLER), etc.
  • CSI Channel State Indicator
  • BLER Block Error Rate
  • the above service attributes can be the value of 5G QoS identifier (5G QoS Identifier, 5QI), some dimensions of 5QI, guaranteed flow bit rate (GFBR, Guaranteed Flow Bit Rate) and maximum flow bit rate (MFBR, Maximum Flow Bit Rate). At least one of.
  • Some dimensions of 5QI include Resource Type, Priority Level, Packet Delay Budget, Packet Error Rate, Averaging Window and Maximum Burst Data Volume (Maximum Data Burst Volume).
  • the foregoing power headroom information may be a power headroom report (Power Headroom Report, PHR).
  • PHR Power Headroom Report
  • the foregoing buffer requirement information may be a buffer size report (Buffer Size Report, BSR).
  • BSR Buffer Size Report
  • the aforementioned terminal type may be a terminal level.
  • the above-mentioned advance measurement conditions may include the measurement threshold of the serving frequency point, the target downlink channel quality, the target geographic location, the target serving cell, the target service attribute, the target power headroom, the target buffer requirement, and the target terminal type. And at least one of the number of target antennas.
  • Step 302 In the non-connected state, if the pre-measurement condition is met, the autonomous measurement is triggered.
  • autonomous measurement is performed.
  • the specific measurement configuration for autonomous measurement can be configured by the network device, or can be agreed in advance through a protocol.
  • the wireless communication system in which the UE is located is an eLTE system, a 5G system, or a subsequent evolved communication system.
  • the UE In addition to the two states of the RRC CONNECTED state and the RRC IDLE state, the UE also has an RRC inactive state (INACTIVE). ) State, where the RRC IDLE state and RRC INACTIVE state are called the non-connected state.
  • Some embodiments of the present disclosure automatically trigger the terminal to perform autonomous measurement according to the advance measurement condition determined by the related state information when the first object is started, so that the measurement behavior of the terminal is controlled through the state information, thereby ensuring that the terminal is available when it enters the connected state.
  • the measurement result is provided to the network. Therefore, some embodiments of the present disclosure control the measurement behavior of the terminal based on the advance measurement condition determined by the state information, which can better meet the requirement of the network to quickly activate the CA and/or DC of the terminal.
  • the method further includes:
  • An advance measurement configuration is received from a network device, where the advance measurement configuration is used to indicate measurement content of the autonomous measurement.
  • the foregoing advance measurement configuration includes at least one of measurement frequency, measurement bandwidth, measurement timing configuration based on synchronization signal block (SSB based Measurement Timing Configuration, SMTC), measurement reference signal, measurement target cell, and measurement effective area .
  • the advance measurement configuration may be carried in the RRC release message and/or broadcast message.
  • the network device may send the advance measurement configuration and the advance measurement condition through the same message, or may send the advance measurement configuration and the advance measurement condition through different messages, which is not further limited here.
  • the advance measurement configuration may be determined according to related state information when the first object is started.
  • the configuration when the network device configures the above-mentioned advance measurement conditions and advance measurement configuration for the first terminal, the configuration may be performed according to the state information related to the startup of the first object corresponding to the first terminal.
  • the configuration may be performed according to the state information related to the startup of the first object corresponding to the at least one second terminal, and it may also be configured based on the state information related to the startup of the first object corresponding to the first terminal and the at least one second terminal.
  • the status information before receiving the advance measurement condition from the network device, the status information may also be reported to the network device.
  • the method before receiving the advance measurement condition from the network device, the status information may also be reported to the network device.
  • the method before receiving the advance measurement condition from the network device, the method further includes:
  • the statistical result of the status information is reported to the network device, and the statistical result is used to determine the advance measurement condition.
  • the terminal has an artificial intelligence (AI) prediction function.
  • AI artificial intelligence
  • the above configuration information can be specifically understood as configuring the terminal to start the AI prediction function.
  • the AI prediction function of the terminal may be combined to configure the terminal to automatically start the advance measurement mechanism for specific network coverage and business scenarios, so as to better meet the requirements of the network to quickly activate CA and DC configuration.
  • the above-mentioned number of times may be understood as the number of activations of the first object, and the above-mentioned duration may be understood as the time for which statistics continue after the start of statistics.
  • the above-mentioned times and/or duration may be agreed by a protocol.
  • the above-mentioned times and/or duration may be configured by a network device. Specifically, when the network device configuration is adopted, the network device can configure the number or duration, and the network device can also configure the number and duration.
  • the terminal can report the statistical result when the statistics are reached, or report the statistical result when the duration is reached; in addition, the terminal can also report the number and duration of the The statistical results are reported under circumstances, and the specific implementation can be set according to actual needs, and there is no further limitation here.
  • the foregoing statistical results may include probability statistical information and/or prediction information
  • the probability statistical information is used to determine the probability that the state value of the state information is activated by the first object in different interval ranges;
  • the prediction information includes N target interval ranges corresponding to N pieces of state information, and The probability that the state values of the N pieces of state information are activated by the first object within the range of the N target intervals is greater than a preset value, and N is a positive integer.
  • the quantity of the above state information may include one or more, and two state information (downlink channel quality and power headroom information) are taken as an example for detailed description.
  • the downlink channel quality can include A1 interval range (low channel quality), A2 interval range (medium channel quality) and A3 interval range (high channel quality).
  • the power headroom information may include B1 (low power headroom). , B2 (medium power margin) and B3 (high power margin).
  • the above probability statistics information can be expressed as: when the terminal is in the first interval (downlink channel quality is in the A1 interval and power headroom information is in the B1 interval), the number of times the first object is started; the terminal is in the second interval (downlink channel When the quality is in the A1 interval and the power headroom information is in the B2 interval), the number of times the first object is started; when the terminal is in the third interval (the downlink channel quality is in the A1 interval and the power headroom information is in the B3 interval), The number of activations of the first object; the number of activations of the first object when the terminal is in the fourth interval (downlink channel quality is in the range of A2 interval and the power headroom information is the range of B1); the terminal is in the fifth interval (downlink channel quality) When it is in the A2 interval range and the power headroom information is in the B2 interval range), the number of activations of the first object; when the terminal is in the sixth interval range (the downlink channel quality is in the A2 interval range and the power headroom information
  • the foregoing N target interval ranges may specifically include a first target interval range of downlink channel quality and a second target interval range of power headroom information. For example, if the status value of the terminal's status information is in any one of the fifth, sixth, eighth, and ninth interval ranges, the activation probability of the first object is greater than or equal to 70%, The activation probability of the first object in the remaining intervals is less than 70%.
  • the first target interval range may include an A2 interval range and an A3 interval range
  • the second target interval range may include a B2 interval range and a B3 interval range.
  • the maximum value of the A2 interval range is less than or equal to the minimum value of the A3 interval range.
  • the activation probability of the first object corresponding to the A2 interval range is greater than the preset value, the activation probability of the first object corresponding to the A3 interval range is greater than the expected value.
  • the first target interval range may only include the A2 interval range.
  • the foregoing second target interval range may only include the B2 interval range.
  • the foregoing prediction information may be obtained through the AI prediction function of the terminal. Specifically, after the foregoing configuration information is received from the network device, the method may further include:
  • the prediction information is output according to the probability statistical information and the artificial intelligence AI prediction function.
  • the above prediction information can be output through the artificial intelligence AI prediction function.
  • the method further includes:
  • the radio resource control RRC connection establishment complete message or the RRC connection recovery message indicates that the advance measurement has been started.
  • the terminal when the terminal meets the above-mentioned advance measurement condition, it may indicate in the radio resource control RRC connection establishment complete message or the RRC connection recovery message that the advance measurement has been started during the handover process from the unconnected state to the connected state.
  • Step 1 The network device configures the UE to start the AI prediction function.
  • the AI prediction function is used to record statistics about the relevant information (ie, the above-mentioned state information) that the network device activates the CA and/or DC configuration for the UE.
  • the network configuration can configure related information that needs to be counted, and the number of times and/or duration that need to be counted.
  • the relevant information that needs to be counted for configuration includes:
  • the network coverage when CA and/or DC are activated such as RSRP/RSRQ of the serving cell
  • Downlink channel quality when CA and/or DC is activated such as channel quality indicator CSI and block error rate BLER;
  • Service attributes when starting CA and/or DC such as the value of 5QI; some dimensions of 5QI include resource type, priority, packet delay, packet error rate, average window length and maximum burst data volume; guaranteed stream bit Rate; maximum stream bit rate;
  • the UE type when CA and/or DC is started for example, different UE levels
  • Step 2 After the number of statistics and/or duration of step 1 are met, the "information statistics result" is reported to the network device.
  • the information statistics result includes the probability statistics information that the UE can record the activation of CA and/or DC, and/or the prediction information output based on the probability statistics information combined with the AI prediction function.
  • the reporting methods of information statistical results can include:
  • the RRC connection establishment complete message or the RRC connection recovery message indicates that there is an available information statistics result.
  • the information statistics result is reported in the RRC connection establishment complete message or the RRC connection recovery message.
  • the information statistics result is reported based on the network request.
  • the information statistics result is directly reported to the network.
  • Step 3 The network device configures the UE with advance measurement configuration and advance measurement conditions according to the "information statistics result".
  • the advance measurement configuration includes at least one of measurement frequency points, measurement bandwidth, measurement timing configuration SMTC based on the synchronization signal block, measurement reference signal, measurement target cell, and measurement effective area.
  • the advance measurement conditions include: at least one of the service frequency measurement threshold, target downlink channel quality, target geographic location, target serving cell, target service attributes, target power margin, target buffer requirement, target terminal type, and target antenna number item.
  • the advance measurement configuration and the advance measurement conditions are sent through an RRC release message and/or a broadcast message.
  • Step 4 When the UE meets the conditions for the advance measurement, the advance measurement is automatically initiated according to the advance measurement configuration of the network device.
  • the RRC connection establishment complete message or the RRC connection recovery message indicates that the advance measurement has been started.
  • FIG. 4 is a flowchart of a measurement configuration method provided by some embodiments of the present disclosure. The method is applied to a network device. As shown in FIG. 4, it includes the following steps:
  • Step 401 Send an advance measurement condition to the terminal, where the advance measurement condition is determined according to related state information when the first object is started, the first object includes at least one of carrier aggregation CA and dual connectivity DC; the advance measurement The condition is used to trigger the autonomous measurement of the terminal.
  • the method further includes:
  • the advance measurement configuration includes at least one of a measurement frequency point, a measurement bandwidth, a measurement timing configuration SMTC based on a synchronization signal block, a measurement reference signal, a measurement target cell, and a measurement effective area.
  • the status information includes at least one of network coverage information, downlink channel quality, geographic location, serving cell, service frequency, service attributes, power headroom information, buffer requirement information, terminal type, and number of antennas item
  • the method before the sending the advance measurement condition to the terminal, the method further includes:
  • the advance measurement condition is determined according to the statistical result.
  • the number and/or duration are configured by the network device.
  • the statistical result includes probability statistical information and/or prediction information
  • the probability statistical information is used to determine the probability that the state value of the state information is activated by the first object in different interval ranges;
  • the prediction information includes N target interval ranges corresponding to N pieces of state information, and The probability that the state values of the N pieces of state information are activated by the first object within the range of the N target intervals is greater than a preset value, and N is a positive integer.
  • the advance measurement conditions include the measurement threshold of the serving frequency point, the target downlink channel quality, the target serving cell, the target geographic location, the target service attribute, the target power margin, the target buffer requirement, the target terminal type, and the target antenna At least one of the number.
  • the method further includes:
  • an indication that the advance measurement has been started is received from the terminal, and the indication is carried in a radio resource control RRC connection establishment complete message or an RRC connection recovery message.
  • this embodiment is used as an implementation manner of the network device corresponding to the embodiment shown in FIG. 3, and for specific implementation manners, please refer to the relevant description of the embodiment shown in FIG. 3, and achieve the same beneficial effects. In order to avoid Repeat the description, so I won’t repeat it here.
  • FIG. 5 is a structural diagram of a terminal provided by some embodiments of the present disclosure. As shown in FIG. 5, the terminal 500 includes:
  • the first receiving module 501 is configured to receive an advance measurement condition from a network device, the advance measurement condition is determined according to related state information when the first object is started, and the first object includes at least one of carrier aggregation CA and dual connectivity DC item;
  • the control module 502 is configured to trigger autonomous measurement if the pre-measurement condition is met in the disconnected state.
  • the first receiving module 501 is further configured to: receive an advance measurement configuration from a network device, where the advance measurement configuration is used to indicate the measurement content of the autonomous measurement.
  • the advance measurement configuration includes at least one of a measurement frequency point, a measurement bandwidth, a measurement timing configuration SMTC based on a synchronization signal block, a measurement reference signal, a measurement target cell, and a measurement effective area.
  • the status information includes at least one of network coverage information, downlink channel quality, geographic location, serving cell, service frequency, service attributes, power headroom information, buffer requirement information, terminal type, and number of antennas .
  • the terminal 500 further includes:
  • the second receiving module is configured to receive configuration information from the network device, where the configuration information is used to configure the terminal to start counting the status information;
  • the reporting module is configured to report the statistical result of the status information to the network device when the counted number and/or duration are reached, and the statistical result is used to determine the advance measurement condition.
  • the number and/or duration are configured by the network device.
  • the statistical result includes probability statistical information and/or prediction information
  • the probability statistical information is used to determine the probability that the state value of the state information is activated by the first object in different interval ranges;
  • the prediction information includes N target interval ranges corresponding to N pieces of state information, and The probability that the state values of the N pieces of state information are activated by the first object within the range of the N target intervals is greater than a preset value, and N is a positive integer.
  • the terminal 500 further includes:
  • the prediction module is used to output the prediction information according to the probability statistical information and the artificial intelligence AI prediction function.
  • the advance measurement conditions include the measurement threshold of the serving frequency point, the target downlink channel quality, the target geographic location, the target serving cell, the target service attribute, the target power headroom, the target buffer requirement, the target terminal type, and the number of target antennas. At least one item in the number.
  • the terminal 500 further includes:
  • the indication module is used to indicate in the radio resource control RRC connection establishment complete message or the RRC connection recovery message that the advance measurement has been started during the transition from the non-connected state to the connected state.
  • the terminal provided by some embodiments of the present disclosure can implement each process implemented by the terminal in the method embodiment of FIG. 5, and to avoid repetition, details are not described herein again.
  • FIG. 6 is a structural diagram of a network device provided by some embodiments of the present disclosure. As shown in FIG. 6, the network device 600 includes:
  • the first sending module 601 is configured to send an advance measurement condition to the terminal, the advance measurement condition is determined according to related state information when the first object is started, and the first object includes at least one of carrier aggregation CA and dual connectivity DC ;
  • the advance measurement condition is used to trigger the terminal autonomous measurement.
  • the first sending module 601 is further configured to send an advance measurement configuration to the terminal, where the advance measurement configuration is used to indicate the measurement content of the autonomous measurement.
  • the advance measurement configuration includes at least one of a measurement frequency point, a measurement bandwidth, a measurement timing configuration SMTC based on a synchronization signal block, a measurement reference signal, a measurement target cell, and a measurement effective area.
  • the status information includes at least one of network coverage information, downlink channel quality, geographic location, serving cell, service frequency, service attributes, power headroom information, buffer requirement information, terminal type, and number of antennas item.
  • the network device 600 further includes:
  • the second sending module is configured to send configuration information to a target terminal, where the configuration information is used to configure the terminal target to start counting the status information;
  • the third receiving module is configured to receive the statistical result of the status information from the target terminal when the number and/or duration of the target terminal reach the statistics;
  • the determining module is configured to determine the advance measurement condition according to the statistical result.
  • the number and/or duration are configured by the network device.
  • the statistical result includes probability statistical information and/or prediction information
  • the probability statistical information is used to determine the probability that the state value of the state information is activated by the first object in different interval ranges;
  • the prediction information includes N target interval ranges corresponding to N pieces of state information, and The probability that the state values of the N pieces of state information are activated by the first object within the range of the N target intervals is greater than a preset value, and N is a positive integer.
  • the advance measurement conditions include the measurement threshold of the serving frequency point, the target downlink channel quality, the target serving cell, the target geographic location, the target service attribute, the target power margin, the target buffer requirement, the target terminal type, and the target antenna At least one of the number.
  • the network equipment further includes:
  • the fourth receiving module is configured to receive an indication from the terminal that the advance measurement has been started during the transition process of the terminal from the non-connected state to the connected state, and the indication is carried in a radio resource control RRC connection establishment complete message or RRC Connection recovery message.
  • the network device provided by some embodiments of the present disclosure can implement each process implemented by the network device in the method embodiment of FIG. 4. In order to avoid repetition, details are not described herein again.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and a power supply 711 and other components.
  • a radio frequency unit 701 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and a power supply 711 and other components.
  • terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers
  • the radio frequency unit 701 is configured to receive an advance measurement condition from a network device, the advance measurement condition is determined according to related state information when a first object is started, and the first object includes at least one of carrier aggregation CA and dual connectivity DC;
  • the processor 705 is configured to trigger autonomous measurement if the pre-measurement condition is met in the disconnected state.
  • Some embodiments of the present disclosure automatically trigger the terminal to perform autonomous measurement according to the advance measurement condition determined by the related state information when the first object is started, so that the measurement behavior of the terminal is controlled through the state information, thereby ensuring that the terminal is available when it enters the connected state.
  • the measurement result is provided to the network. Therefore, some embodiments of the present disclosure control the measurement behavior of the terminal based on the advance measurement condition determined by the state information, which can better meet the requirement of the network to quickly activate the CA and/or DC of the terminal.
  • the radio frequency unit 701 can be used to receive and send signals during the process of sending and receiving information or talking. Specifically, after receiving downlink data from the base station, it is processed by the processor 710; , Send the uplink data to the base station.
  • the radio frequency unit 701 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 may convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into audio signals and output them as sounds. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the terminal 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the terminal 700 further includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 7061 and/or when the terminal 700 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operating).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it transmits it to the processor 710 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 708 is an interface for connecting an external device with the terminal 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 700 or can be used to communicate between the terminal 700 and the external device. Transfer data between.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 709, and calling data stored in the memory 709. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the terminal 700 may also include a power source 711 (such as a battery) for supplying power to various components.
  • a power source 711 such as a battery
  • the power source 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 700 includes some functional modules not shown, which will not be repeated here.
  • some embodiments of the present disclosure further provide a terminal, including a processor 710, a memory 709, and a program stored on the memory 709 and running on the processor 710.
  • a terminal including a processor 710, a memory 709, and a program stored on the memory 709 and running on the processor 710.
  • the program is executed by the processor 710,
  • Each process of the foregoing measurement method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 8 is a structural diagram of another network device provided by some embodiments of the present disclosure.
  • the network device 800 includes a processor 801, a transceiver 802, a memory 803, and a bus interface. among them:
  • the transceiver 802 is configured to send an advance measurement condition to the terminal, where the advance measurement condition is determined according to related state information when the first object is started, and the first object includes at least one of carrier aggregation CA and dual connectivity DC;
  • the advance measurement condition is used to trigger autonomous measurement by the terminal.
  • Some embodiments of the present disclosure automatically trigger the terminal to perform autonomous measurement according to the advance measurement condition determined by the related state information when the first object is started, so that the measurement behavior of the terminal is controlled through the state information, thereby ensuring that the terminal is available when it enters the connected state.
  • the measurement result is provided to the network. Therefore, some embodiments of the present disclosure control the measurement behavior of the terminal based on the advance measurement condition determined by the state information, which can better meet the requirement of the network to quickly activate the CA and/or DC of the terminal.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 802 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 804 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • some embodiments of the present disclosure further provide a network device, including a processor 801, a memory 803, a program stored in the memory 803 and running on the processor 801, and the program is executed by the processor 801
  • a network device including a processor 801, a memory 803, a program stored in the memory 803 and running on the processor 801, and the program is executed by the processor 801
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a processor, the measurement configuration on the network device side provided by some embodiments of the present disclosure is implemented.
  • Each process of the method embodiment, or the computer program when executed by the processor realizes the various processes of the measurement embodiment on the terminal side provided by some embodiments of the present disclosure, and can achieve the same technical effect. To avoid repetition, it will not be repeated here. Repeat.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种测量方法、测量配置方法、终端和网络设备,该测量方法,包括:从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;在非连接状态下,若满足所述提前测量条件,触发自主测量。

Description

测量方法、测量配置方法、终端和网络设备
相关申请的交叉引用
本申请主张在2019年4月9日在中国提交的中国专利申请号No.201910281849.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种测量方法、测量配置方法、终端和网络设备。
背景技术
众所周知,如果网络配置给一个终端(User Equipment,UE)的多个服务小区属于同一个基站,则称为载波聚合(Carrier aggregation,CA),CA指一个终端同时使用多个服务小区的频谱资源进行数据传输,以提高终端进行数据收发的吞吐量。与CA类似的技术还有双连接(Dual Connectivity,DC),如果网络配置给一个UE的多个服务小区属于两个基站,则称为DC。
终端的CA由网络(network,NW)配置,通常网络基于终端对邻小区的测量上报结果,选择信号质量满足特定条件的小区,配置作为终端的服务小区。终端对邻小区的测量参数(如待测频点和测量量等,测量量可以包括参考信号接收功率(Reference Signal Received Power,RSRP)和/或参考信号接收质量(Reference Signal Received Quality,RSRQ,RSRQ))以及上报配置(上报触发条件和需要上报的测量量等)由网络进行配置。测量的配置和上报需要在安全激活后才可进行,这样将会导致终端(User Equipment,UE)需要经历较长的时延才能被配置CA。
为了降低上述时延,在LTE中引入了提前测量技术:基于网络配置(包括:待测频点,测量时长(Validity timer),测量区域(Validity area)),非连接态终端在配置的时间段和区域内,对待测频点进行测量;并在进入连接态时或者进入连接态后,上报测量结果给网络。该方案可以有效降低从UE进入连接态到UE可以开始利用CA进行传输的时延。具体的,CA配置流程如 图1所示:网络设备可以发送提前测量相关配置,非连接态的UE在接收到提前测量相关配置中包含测量时长,才能开始测量。对于DC的配置流程还在讨论阶段,也可以继续沿用CA的配置流程。
由于不同终端的业务场景和所处的网络覆盖各有不同,因此通过测量时长来控制终端的测量行为并不能保证终端在进入连接态时有可用的测量结果提供给网络,因此不利于满足网络快速激活终端的CA和/或DC的需求。
发明内容
本公开实施例提供一种测量方法、测量配置方法、终端和网络设备,以解决通过测量时长来控制终端的测量行为,不利于满足网络快速激活终端的CA和/或DC的需求的问题。
第一方面,本公开的一些实施例提供一种测量方法,应用于终端,包括:
从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;
在非连接状态下,若满足所述提前测量条件,触发自主测量。
第二方面,本公开的一些实施例还提供了一种测量配置方法,应用于网络设备,包括:
向终端发送提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;所述提前测量条件用于触发所述终端自主测量。
第三方面,本公开的一些实施例还提供了一种终端,包括:
第一接收模块,用于从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;
控制模块,用于在非连接状态下,若满足所述提前测量条件,触发自主测量。
第四方面,本公开的一些实施例还提供了一种网络设备,包括:
第一发送模块,用于向终端发送提前测量条件,所述提前测量条件根据 第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;所述提前测量条件用于触发所述终端自主测量。
第五方面,本公开的一些实施例还提供了一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述测量方法中的步骤。
第六方面,本公开的一些实施例还提供了一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述测量配置方法中的步骤。
第七方面,本公开的一些实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述测量配置方步骤,或者所述计算机程序被处理器执行时实现上述测量配置方法的步骤。
本公开的一些实施例根据第一对象启动时相关的状态信息确定的提前测量条件自动触发终端进行自主测量,这样通过状态信息来控制终端的测量行为,从而可以保证终端在进入连接态时有可用的测量结果提供给网络,因此本公开的一些实施例基于状态信息确定的提前测量条件控制终端的测量行为,可以更好满足网络快速激活终端的CA和/或DC的需求。
附图说明
图1是传统的CA或DC配置流程图;
图2是本公开的一些实施例可应用的网络系统的结构图;
图3是本公开的一些实施例提供的测量方法的流程图;
图4是本公开的一些实施例提供的测量配置方法的流程图;
图5是本公开的一些实施例提供的终端的结构图;
图6是本公开的一些实施例提供的网络设备的结构图;
图7是本公开的一些实施例提供的终端的另一结构图;以及
图8是本公开的一些实施例提供的网络设备的另一结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开的一些实施例提供的一种测量方法、测量配置方法、终端和网络设备可以应用于无线通信系统中。该无线通信系统可以为采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
请参见图2,图2是本公开的一些实施例可应用的一种网络系统的结构图,如图2所示,包括终端21和网络设备22,其中,终端21可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端21的具体类型。上述网络设备22可以是5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网 络设备不限于特定技术词汇。另外,上述网络设备22可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开的一些实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图3,图3是本公开的一些实施例提供的一种测量方法的流程图,该方法应用于终端,如图3所示,包括以下步骤:
步骤301,从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;
本公开的一些实施例中,上述第一对象启动时的状态信息为终端历史启动使用第一对象所记录的相关信息。具体的,终端可以向网络设备上报该第一对象启动时相关的状态信息。网络设备可以根据该第一对象启动时相关的状态信息为终端配置提前测量条件。
上述提前测量条件是在终端由连接态转入到非连接态之前接收到的,在本实施例中,终端可以多次接收网络设备发送的提前测量条件,并以最近一次接收到的提前测量条件为准触发自主测量。具体的,上述提前测量条件可以承载于RRC释放消息和/或广播消息中。
其中,上述状态信息可以包括网络覆盖信息、下行信道质量、地理位置、服务小区、服务频点、业务属性、功率余量信息、缓存需求信息、终端类型和天线个数中的至少一项。
上述网络覆盖信息可以为服务小区的参考信号接收功率(Reference Signal Received Power,RSRP)/参考信号接收质量(Reference Signal Received Quality,RSRQ)。
上述下行信道质量可以为信道质量指示(Channel State Indicator,CSI)和误块率(Block Error Rate,BLER)等。
上述业务属性可以为5G QoS标识符(5G QoS Identifier,5QI)取值、5QI的部分维度、保证流比特率(GFBR,Guaranteed Flow Bit Rate)和最大流比特率(MFBR,Maximum Flow Bit Rate)中的至少一项。5QI的部分维度包括资源类型(Resource Type)、优先级(Priority Level)、包时延(Packet Delay Budget)、包错误率(Packet Error Rate)、平均窗长(Averaging window) 和最大突发数据量(Maximum Data Burst Volume)。
上述功率余量信息可以为功率余量报告(Power Headroom Report,PHR)。
上述缓存需求信息可以为缓存状态报告(Buffer Size Report,BSR)。
上述终端类型可以为终端等级。
在一可选实施例中,上述提前测量条件可以包括服务频点的测量门限、目标下行信道质量、目标地理位置、目标服务小区、目标业务属性、目标功率余量、目标缓存需求、目标终端类型和目标天线个数中的至少一项。
步骤302,在非连接状态下,若满足所述提前测量条件,触发自主测量。
在非连接状态下,若终端满足上述提前测量条件,则进行自主测量。具体的自主测量的测量配置可以由网络设备配置,也可以通过协议预先约定。
本公开的一些实施例中,UE所在的无线通信系统为eLTE系统、5G系统或者后续演进通信系统,UE除了具有RRC CONNECTED态和RRC IDLE态两种状态之外,还具有RRC非激活态(INACTIVE)态,其中,RRC IDLE态和RRC INACTIVE态称为非连接态。
本公开的一些实施例根据第一对象启动时相关的状态信息确定的提前测量条件自动触发终端进行自主测量,这样通过状态信息来控制终端的测量行为,从而可以保证终端在进入连接态时有可用的测量结果提供给网络,因此本公开的一些实施例基于状态信息确定的提前测量条件控制终端的测量行为,可以更好满足网络快速激活终端的CA和/或DC的需求。
进一步的,当上述自主测量的测量配置由网络设备配置,则在上述触发自主测量之前,所述方法还包括:
从网络设备接收提前测量配置,所述提前测量配置用于指示所述自主测量的测量内容。
具体的,上述提前测量配置包括测量频点、测量带宽、测量基于同步信号块的测量时序配置(SSB based Measurement Timing Configuration,SMTC)、测量参考信号、测量目标小区和测量有效区域中的至少一项。该提前测量配置可以承载于RRC释放消息和/或广播消息中。其中,网络设备可以通过相同的消息发送提前测量配置和提前测量条件,也可以通过不同的消息发送提前测量配置和提前测量条件,在此不做进一步的限定。
在本公开的一些实施例中,所述提前测量配置可以根据所述第一对象启动时相关的状态信息确定。
应理解,在本公开的一些实施例中,网络设备为第一终端配置上述提前测量条件和提前测量配置时,可以是根据第一终端对应的第一对象启动时相关的状态信息进行配置,也可以根据至少一个第二终端对应的第一对象启动时相关的状态信息进行配置,还可以根据第一终端和至少一个第二终端对应的第一对象启动时相关的状态信息进行配置。
在本实施例中,从网络设备接收提前测量条件之前,还可以向网络设备上报状态信息。具体的,从网络设备接收提前测量条件之前,所述方法还包括:
从所述网络设备接收配置信息,所述配置信息用于配置所述终端开始统计所述状态信息;
在达到统计的次数和/或持续时间的情况下,向所述网络设备上报所述状态信息的统计结果,所述统计结果用于确定所述提前测量条件。
具体的,终端具有人工智能(Artificial Intelligence,AI)预测功能,上述配置信息具体可以理解为配置终端启动AI预测功能,在终端接收到该启动AI预测功能的配置信息后,将会记录网络设备为该终端激活了第一对象时相应的状态信息,并对状态信息进行统计。在本公开的一些实施例中,可以结合终端的AI预测功能,配置终端针对特定网络覆盖和业务场景自启动提前测量机制,从而更好的满足网络快速激活CA和DC配置的需求。
上述次数可以理解为第一对象激活的次数,上述持续时间可以理解为统计开始之后持续统计的时间。
在一可选实施例中,上述次数和/或持续时间可以通过协议约定,在另一可选实施例中,上述次数和/或持续时间可以由网络设备配置。具体的,当采用网络设备配置时,网络设备可以配置次数或持续时间,网络设备还可以配置次数和持续时间。当网络设备配置次数和持续时间时,终端可以在达到统计的此时的情况下进行统计结果上报,或者在达到持续时间的情况下进行统计结果上报;此外终端还可以在达到次数和持续时间的情况下进行统计结果上报,具体实现可以根据实际需要进行设置,在此不做进一步的限定。
进一步的,在本公开的一些实施例中,上述统计结果可以包括概率统计信息和/或预测信息;
其中,所述概率统计信息用于确定所述状态信息的状态值在不同区间范围下所述第一对象启动的概率;所述预测信息包括N个状态信息对应的N个目标区间范围,所述N个状态信息的状态值在所述N个目标区间范围下所述第一对象启动的概率大于预设值,N为正整数。
上述状态信息的数量可以包括一个或者多个,以两个状态信息(下行信道质量和功率余量信息)为例进行详细说明。其中,下行信道质量可以包括A1区间范围(信道质量低)、A2区间范围(信道质量中)和A3区间范围(信道质量高)三种情况,功率余量信息可以包括B1(功率余量低)、B2(功率余量中)和B3(功率余量高)三种情况。
上述概率统计信息可以表示为:终端处于第一区间范围(下行信道质量为A1区间范围和功率余量信息为B1区间范围)时,第一对象的启动次数;终端处于第二区间范围(下行信道质量为A1区间范围和功率余量信息为B2区间范围)时,第一对象的启动次数;终端处于第三区间范围(下行信道质量为A1区间范围和功率余量信息为B3区间范围)时,第一对象的启动次数;终端处于第四区间范围(下行信道质量为A2区间范围和功率余量信息为B1区间范围)时,第一对象的启动次数;终端处于第五区间范围(下行信道质量为A2区间范围和功率余量信息为B2区间范围)时,第一对象的启动次数;终端处于第六区间范围(下行信道质量为A2区间范围和功率余量信息为B3区间范围)时,第一对象的启动次数;终端处于第七区间范围(下行信道质量为A3区间范围和功率余量信息为B1区间范围)时,第一对象的启动次数;终端处于第八区间范围(下行信道质量为A3区间范围和功率余量信息为B2区间范围)时,第一对象的启动次数;终端处于第九区间范围(下行信道质量为A3区间范围和功率余量信息为B3区间范围)时,第一对象的启动次数。
上述N个目标区间范围具体可以包括下行信道质量的第一目标区间范围和功率余量信息的第二目标区间范围。例如终端的状态信息的状态值在第五区间范围、第六区间范围、第八区间范围和第九区间范围中的任一区间范围中,第一对象的启动概率均大于或等于70%,在其余区间范围中第一对象的 启动概率小于70%。则在一可选实施例中,上述第一目标区间范围可以包括A2区间范围和A3区间范围,上述第二目标区间范围可以包括B2区间范围和B3区间范围。
应理解,A2区间范围的最大值小于或等于A3区间范围的最小值,当A2区间范围对应的第一对象的启动概率大于预设值,则A3区间范围对应的第一对象的启动概率大于预设值。因此在另一可选实施例中,第一目标区间范围可以仅包括A2区间范围。同样的,上述第二目标区间范围可以仅包括B2区间范围。
需要说明的是,上述预测信息可以通过终端的AI预测功能进行得到,具体的,上述从所述网络设备接收配置信息之后,该方法还可以包括:
根据所述概率统计信息和人工智能AI预测功能输出所述预测信息。
本实施例中,可以在达到统计的次数和/或持续时间的情况下,可以通过人工智能AI预测功能输出上述预测信息。
进一步的,所述触发自主测量之后,所述方法还包括:
从非连接态到连接态的转换过程中,在无线资源控制RRC连接建立完成消息或RRC连接恢复消息中指示已经启动提前测量。
本实施例中,在终端满足上述提前测量条件时,可以在非连接态切换到连接态的切换过程中,在无线资源控制RRC连接建立完成消息或RRC连接恢复消息中指示已经启动提前测量。
为了更好的理解本公开,以下对本公开的实现过程进行详细说明:
步骤1:网络设备配置UE启动AI预测功能,该AI预测功能用于记录网络设备为该UE激活了CA和/或DC配置的相关信息(即上述状态信息)统计。具体的,网络配置可以配置需要统计的相关信息以及需要统计的次数和/或持续时间。
其中,配置需要统计的相关信息包括:
1.启动CA和/或DC时的网络覆盖,例如服务小区的RSRP/RSRQ;
2.启动CA和/或DC时的下行信道质量,例如信道质量指示CSI和误块率BLER;
3.启动CA和/或DC时的地理位置;
4.启动CA和/或DC时的服务小区
5.启动CA和/或DC时的服务频点;
6.启动CA和/或DC时的业务属性,例如5QI取值;5QI的部分维度包括资源类型、优先级、包时延、包错误率、平均窗长和最大突发数据量;保证流比特率;最大流比特率;
7.启动CA和/或DC时的功率余量信息,例如PHR;
8.启动CA和/或DC时的缓存需求信息,例如BSR;
9.启动CA和/或DC时的UE类型,例如不同的UE等级;
10.启动CA和/或DC时的天线个数。
步骤2:在满足步骤1的统计次数和/或持续时间后,将“信息统计结果”上报给网络设备。
具体的,该信息统计结果包括可以UE记录启动CA和/或DC的概率统计信息,和/或基于概率统计信息结合AI预测功能输出的预测信息。
其中,信息统计结果的上报方式可以包括:
在UE从非连接态到连接态的转换过程中,在RRC连接建立完成消息或RRC连接恢复消息中指示有可用的信息统计结果。
在UE从非连接态到连接态的转换过程中,在RRC连接建立完成消息或RRC连接恢复消息中上报信息统计结果。
在UE处于连接态时,基于网络请求后上报信息统计结果。
在UE处于连接态时,向网络直接上报信息统计结果。
步骤3,网络设备根据“信息统计结果”给UE配置提前测量配置和提前测量条件。
提前测量配置包括:测量频点、测量带宽、测量基于同步信号块的测量时序配置SMTC、测量参考信号、测量目标小区和测量有效区域中的至少一项。
提前测量条件包括:服务频点的测量门限、目标下行信道质量、目标地理位置、目标服务小区、目标业务属性、目标功率余量、目标缓存需求、目标终端类型和目标天线个数中的至少一项。
其中,所述提前测量配置和提前测量的条件通过RRC释放消息和/或广 播消息发送。
步骤4,在UE满足提前测量的条件时,根据网络设备的提前测量配置自启动提前测量。
在UE从非连接态到连接态的转换过程中,在RRC连接建立完成消息或RRC连接恢复消息中指示已经启动提前测量。
请参见图4,图4是本公开的一些实施例提供的一种测量配置方法的流程图,该方法应用于网络设备,如图4所示,包括以下步骤:
步骤401,向终端发送提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;所述提前测量条件用于触发所述终端自主测量。
可选的,所述方法还包括:
可选的,向所述终端发送提前测量配置,所述提前测量配置用于指示所述自主测量的测量内容。
可选的,所述提前测量配置包括测量频点、测量带宽、测量基于同步信号块的测量时序配置SMTC、测量参考信号、测量目标小区和测量有效区域中的至少一项。
可选的,所述状态信息包括、网络覆盖信息、下行信道质量、地理位置、服务小区、服务频点、业务属性、功率余量信息、缓存需求信息、终端类型和天线个数中的至少一项
可选的,所述向终端发送提前测量条件之前,所述方法还包括:
向目标终端发送配置信息,所述配置信息用于配置所述终端目标开始统计所述状态信息;
在所述目标终端达到统计的次数和/或持续时间的情况下,从所述目标终端接收所述状态信息的统计结果;
根据所述统计结果确定所述提前测量条件。
可选的,所述次数和/或持续时间由所述网络设备配置。
可选的,所述统计结果包括概率统计信息和/或预测信息;
其中,所述概率统计信息用于确定所述状态信息的状态值在不同区间范围下所述第一对象启动的概率;所述预测信息包括N个状态信息对应的N个 目标区间范围,所述N个状态信息的状态值在所述N个目标区间范围下所述第一对象启动的概率大于预设值,N为正整数。
可选的,所述提前测量条件包括、服务频点的测量门限、目标下行信道质量、目标服务小区、目标地理位置、目标业务属性、目标功率余量、目标缓存需求、目标终端类型和目标天线个数中的至少一项。
可选的,所述向终端发送提前测量条件之后,所述方法还包括:
在所述终端从非连接态到连接态的转换过程中,从所述终端接收已经启动提前测量的指示,所述指示承载于无线资源控制RRC连接建立完成消息或RRC连接恢复消息中。
需要说明的是,本实施例作为图3所示的实施例对应的网络设备的实施方式,其具体的实施方式可以参见图3所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图5,图5是本公开的一些实施例提供的一种终端的结构图,如图5所示,终端500包括:
第一接收模块501,用于从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;
控制模块502,用于在非连接状态下,若满足所述提前测量条件,触发自主测量。
可选的,所述第一接收模块501还用于:从网络设备接收提前测量配置,所述提前测量配置用于指示所述自主测量的测量内容。
可选的,所述提前测量配置包括测量频点、测量带宽、测量基于同步信号块的测量时序配置SMTC、测量参考信号、测量目标小区和测量有效区域中的至少一项。
可选的,所述状态信息包括网络覆盖信息、下行信道质量、地理位置、服务小区、服务频点、业务属性、功率余量信息、缓存需求信息、终端类型和天线个数中的至少一项。
可选的,所述终端500还包括:
第二接收模块,用于从所述网络设备接收配置信息,所述配置信息用于 配置所述终端开始统计所述状态信息;
上报模块,用于在达到统计的次数和/或持续时间的情况下,向所述网络设备上报所述状态信息的统计结果,所述统计结果用于确定所述提前测量条件。
可选的,所述次数和/或持续时间由所述网络设备配置。
可选的,所述统计结果包括概率统计信息和/或预测信息;
其中,所述概率统计信息用于确定所述状态信息的状态值在不同区间范围下所述第一对象启动的概率;所述预测信息包括N个状态信息对应的N个目标区间范围,所述N个状态信息的状态值在所述N个目标区间范围下所述第一对象启动的概率大于预设值,N为正整数。
可选的,所述终端500还包括:
预测模块,用于根据所述概率统计信息和人工智能AI预测功能输出所述预测信息。
可选的,所述提前测量条件包括服务频点的测量门限、目标下行信道质量、目标地理位置、目标服务小区、目标业务属性、目标功率余量、目标缓存需求、目标终端类型和目标天线个数中的至少一项。
可选的,所述终端500还包括:
指示模块,用于从非连接态到连接态的转换过程中,在无线资源控制RRC连接建立完成消息或RRC连接恢复消息中指示已经启动提前测量。
本公开的一些实施例提供的终端能够实现图5的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
请参见图6,图6是本公开的一些实施例提供的一种网络设备的结构图,如图6所示,网络设备600包括:
第一发送模块601,用于向终端发送提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;所述提前测量条件用于触发所述终端自主测量。
可选的,所述第一发送模块601还用于向所述终端发送提前测量配置,所述提前测量配置用于指示所述自主测量的测量内容。
可选的,所述提前测量配置包括测量频点、测量带宽、测量基于同步信 号块的测量时序配置SMTC、测量参考信号、测量目标小区和测量有效区域中的至少一项。
可选的,所述状态信息包括、网络覆盖信息、下行信道质量、地理位置、服务小区、服务频点、业务属性、功率余量信息、缓存需求信息、终端类型和天线个数中的至少一项。
可选的,所述网络设备600还包括:
第二发送模块,用于向目标终端发送配置信息,所述配置信息用于配置所述终端目标开始统计所述状态信息;
第三接收模块,用于在所述目标终端达到统计的次数和/或持续时间的情况下,从所述目标终端接收所述状态信息的统计结果;
确定模块,用于根据所述统计结果确定所述提前测量条件。
可选的,所述次数和/或持续时间由所述网络设备配置。
可选的,所述统计结果包括概率统计信息和/或预测信息;
其中,所述概率统计信息用于确定所述状态信息的状态值在不同区间范围下所述第一对象启动的概率;所述预测信息包括N个状态信息对应的N个目标区间范围,所述N个状态信息的状态值在所述N个目标区间范围下所述第一对象启动的概率大于预设值,N为正整数。
可选的,所述提前测量条件包括、服务频点的测量门限、目标下行信道质量、目标服务小区、目标地理位置、目标业务属性、目标功率余量、目标缓存需求、目标终端类型和目标天线个数中的至少一项。
可选的,所述网络设备还包括:
第四接收模块,用于在所述终端从非连接态到连接态的转换过程中,从所述终端接收已经启动提前测量的指示,所述指示承载于无线资源控制RRC连接建立完成消息或RRC连接恢复消息中。
本公开的一些实施例提供的网络设备能够实现图4的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
图7为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单 元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
射频单元701,用于从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;
处理器705,用于在非连接状态下,若满足所述提前测量条件,触发自主测量。
本公开的一些实施例根据第一对象启动时相关的状态信息确定的提前测量条件自动触发终端进行自主测量,这样通过状态信息来控制终端的测量行为,从而可以保证终端在进入连接态时有可用的测量结果提供给网络,因此本公开的一些实施例基于状态信息确定的提前测量条件控制终端的测量行为,可以更好满足网络快速激活终端的CA和/或DC的需求。
应理解的是,本公开的一些实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与终端700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处 理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
终端700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在终端700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送 给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与终端700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端700内的一个或多个元件或者可以用于在终端700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作 系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
终端700还可以包括给各个部件供电的电源711(比如电池),可选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端700包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种终端,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的程序,该程序被处理器710执行时实现上述测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图8,图8是本公开的一些实施例提供的另一种网络设备的结构图,如图8所示,该网络设备800包括:处理器801、收发机802、存储器803和总线接口,其中:
收发机802,用于向终端发送提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;所述提前测量条件用于触发所述终端自主测量。
本公开的一些实施例根据第一对象启动时相关的状态信息确定的提前测量条件自动触发终端进行自主测量,这样通过状态信息来控制终端的测量行为,从而可以保证终端在进入连接态时有可用的测量结果提供给网络,因此本公开的一些实施例基于状态信息确定的提前测量条件控制终端的测量行为,可以更好满足网络快速激活终端的CA和/或DC的需求。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
可选的,本公开的一些实施例还提供一种网络设备,包括处理器801,存储器803,存储在存储器803上并可在所述处理器801上运行的程序,该程序被处理器801执行时实现上述测量配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开的一些实施例提供的网络设备侧的测量配置方法实施例的各个过程,或者该计算机程序被处理器执行时实现本公开的一些实施例提供的终端侧的测量实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介 质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (25)

  1. 一种测量方法,应用于终端,包括:
    从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;
    在非连接状态下,若满足所述提前测量条件,触发自主测量。
  2. 根据权利要求1所述的方法,其中,所述触发自主测量之前,所述方法还包括:
    从网络设备接收提前测量配置,所述提前测量配置用于指示所述自主测量的测量内容。
  3. 根据权利要求2所述的方法,其中,所述提前测量配置包括测量频点、测量带宽、测量基于同步信号块的测量时序配置SMTC、测量参考信号、测量目标小区和测量有效区域中的至少一项。
  4. 根据权利要求1或2所述的方法,其中,所述状态信息包括网络覆盖信息、下行信道质量、地理位置、服务小区、服务频点、业务属性、功率余量信息、缓存需求信息、终端类型和天线个数中的至少一项。
  5. 根据权利要求1或2所述的方法,其中,所述从网络设备接收提前测量条件之前,所述方法还包括:
    从所述网络设备接收配置信息,所述配置信息用于配置所述终端开始统计所述状态信息;
    在达到统计的次数和/或持续时间的情况下,向所述网络设备上报所述状态信息的统计结果,所述统计结果用于确定所述提前测量条件。
  6. 根据权利要求5所述的方法,其中,所述次数和/或持续时间由所述网络设备配置。
  7. 根据权利要求5所述的方法,其中,所述统计结果包括概率统计信息和/或预测信息;
    其中,所述概率统计信息用于确定所述状态信息的状态值在不同区间范围下所述第一对象启动的概率;所述预测信息包括N个状态信息对应的N个 目标区间范围,所述N个状态信息的状态值在所述N个目标区间范围下所述第一对象启动的概率大于预设值,N为正整数。
  8. 根据权利要求7所述的方法,其中,所述从所述网络设备接收配置信息之后,所述方法还包括:
    根据所述概率统计信息和人工智能AI预测功能输出所述预测信息。
  9. 根据权利要求1所述的方法,其中,所述提前测量条件包括服务频点的测量门限、目标下行信道质量、目标地理位置、目标服务小区、目标业务属性、目标功率余量、目标缓存需求、目标终端类型和目标天线个数中的至少一项。
  10. 根据权利要求1或2所述的方法,其中,所述触发自主测量之后,所述方法还包括:
    从非连接态到连接态的转换过程中,在无线资源控制RRC连接建立完成消息或RRC连接恢复消息中指示已经启动提前测量。
  11. 根据权利要求1所述的方法,其中,所述非连接态为空闲态或者非激活态。
  12. 一种测量配置方法,应用于网络设备,包括:
    向终端发送提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;所述提前测量条件用于触发所述终端自主测量。
  13. 根据权利要求12所述的方法,包括:
    向所述终端发送提前测量配置,所述提前测量配置用于指示所述自主测量的测量内容。
  14. 根据权利要求13所述的方法,其中,所述提前测量配置包括测量频点、测量带宽、测量基于同步信号块的测量时序配置SMTC、测量参考信号、测量目标小区和测量有效区域中的至少一项。
  15. 根据权利要求12或13所述的方法,其中,所述状态信息包括、网络覆盖信息、下行信道质量、地理位置、服务小区、服务频点、业务属性、功率余量信息、缓存需求信息、终端类型和天线个数中的至少一项。
  16. 根据权利要求12或13所述的方法,其中,所述向终端发送提前测 量条件之前,所述方法还包括:
    向目标终端发送配置信息,所述配置信息用于配置所述终端目标开始统计所述状态信息;
    在所述目标终端达到统计的次数和/或持续时间的情况下,从所述目标终端接收所述状态信息的统计结果;
    根据所述统计结果确定所述提前测量条件。
  17. 根据权利要求16所述的方法,其中,所述次数和/或持续时间由所述网络设备配置。
  18. 根据权利要求16所述的方法,其中,所述统计结果包括概率统计信息和/或预测信息;
    其中,所述概率统计信息用于确定所述状态信息的状态值在不同区间范围下所述第一对象启动的概率;所述预测信息包括N个状态信息对应的N个目标区间范围,所述N个状态信息的状态值在所述N个目标区间范围下所述第一对象启动的概率大于预设值,N为正整数。
  19. 根据权利要求12所述的方法,其中,所述提前测量条件包括、服务频点的测量门限、目标下行信道质量、目标服务小区、目标地理位置、目标业务属性、目标功率余量、目标缓存需求、目标终端类型和目标天线个数中的至少一项。
  20. 根据权利要求12或13所述的方法,其中,所述向终端发送提前测量条件之后,所述方法还包括:
    在所述终端从非连接态到连接态的转换过程中,从所述终端接收已经启动提前测量的指示,所述指示承载于无线资源控制RRC连接建立完成消息或RRC连接恢复消息中。
  21. 一种终端,包括:
    第一接收模块,用于从网络设备接收提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;
    控制模块,用于在非连接状态下,若满足所述提前测量条件,触发自主测量。
  22. 一种网络设备,包括:
    第一发送模块,用于向终端发送提前测量条件,所述提前测量条件根据第一对象启动时相关的状态信息确定,所述第一对象包括载波聚合CA和双连接DC中的至少一项;所述提前测量条件用于触发所述终端自主测量。
  23. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至11中任一项所述的测量方法中的步骤。
  24. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求12至20中任一项所述的测量配置方法中的步骤。
  25. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的测量配置方步骤,或者所述计算机程序被处理器执行时实现如权利要求12至20中任一项所述的测量配置方法的步骤。
PCT/CN2020/083964 2019-04-09 2020-04-09 测量方法、测量配置方法、终端和网络设备 WO2020207435A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20787041.1A EP3955627A4 (en) 2019-04-09 2020-04-09 MEASUREMENT METHOD, MEASUREMENT CONFIGURATION METHOD, TERMINAL AND NETWORK DEVICE
KR1020217036126A KR20210147051A (ko) 2019-04-09 2020-04-09 측정 방법, 측정 구성 방법, 단말 및 네트워크 장치
US17/492,715 US20220030457A1 (en) 2019-04-09 2021-10-04 Measurement method, measurement configuration method, terminal and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910281849.3 2019-04-09
CN201910281849.3A CN111615141B (zh) 2019-04-09 2019-04-09 测量方法、测量配置方法、终端和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/492,715 Continuation US20220030457A1 (en) 2019-04-09 2021-10-04 Measurement method, measurement configuration method, terminal and network device

Publications (1)

Publication Number Publication Date
WO2020207435A1 true WO2020207435A1 (zh) 2020-10-15

Family

ID=72199419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083964 WO2020207435A1 (zh) 2019-04-09 2020-04-09 测量方法、测量配置方法、终端和网络设备

Country Status (5)

Country Link
US (1) US20220030457A1 (zh)
EP (1) EP3955627A4 (zh)
KR (1) KR20210147051A (zh)
CN (1) CN111615141B (zh)
WO (1) WO2020207435A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242536A1 (zh) * 2021-05-21 2022-11-24 大唐移动通信设备有限公司 数据处理方法、装置、设备及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230035110A (ko) * 2020-07-07 2023-03-10 오피노 엘엘씨 비활성 상태에서 사전 구성된 리소스의 검증
CN114531214A (zh) * 2020-11-23 2022-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN115119301B (zh) * 2021-03-23 2023-11-17 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
CN115836541A (zh) * 2021-07-16 2023-03-21 北京小米移动软件有限公司 通信处理方法、装置、通信设备及存储介质
CN115835314A (zh) * 2021-09-16 2023-03-21 维沃移动通信有限公司 测量、测量配置方法、装置、终端及网络侧设备
CN116017608A (zh) * 2021-10-21 2023-04-25 维沃移动通信有限公司 通信方法、装置、终端及网络设备
CN114337872B (zh) * 2022-01-04 2024-05-17 维沃移动通信有限公司 网络信号测量方法及装置
CN115669035A (zh) * 2022-09-13 2023-01-31 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238618A (zh) * 2010-05-04 2011-11-09 中兴通讯股份有限公司 多载波中测量任务的启动方法及用户设备
US20180110082A1 (en) * 2016-10-14 2018-04-19 Nokia Technologies Oy Fast Activation Of Multi-Connectivity Utilizing Uplink Signals
US20190037425A1 (en) * 2017-07-26 2019-01-31 Kt Corporation Methods of controlling measurement process in rrc idle mode and apparatuses thereof
CN109429360A (zh) * 2017-07-11 2019-03-05 华为技术有限公司 一种连接建立的方法、装置及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891394B2 (en) * 2010-01-21 2014-11-18 Lg Electronics Inc. Method for reporting the results of specific reference-cell-based quality measurement in a mobile communication system using carrier aggregation, and apparatus for the method
CN102158867B (zh) * 2010-02-11 2013-04-17 华为技术有限公司 协作资源调度及协作通信的方法、装置及系统
CN104145504A (zh) * 2012-09-20 2014-11-12 华为技术有限公司 测量控制方法、用户设备、控制节点及系统
US9955373B2 (en) * 2012-11-05 2018-04-24 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for controlling logging and reporting under constraints
CN103813376A (zh) * 2012-11-14 2014-05-21 株式会社日立制作所 信号测量装置及信号测量方法
EP2949062B1 (en) * 2013-01-25 2018-01-17 LG Electronics Inc. Method and apparatus for performing a measurement to discover small cells in wireless communication system
CN104519542A (zh) * 2013-09-26 2015-04-15 中兴通讯股份有限公司 一种状态转换预处理方法、装置和系统
EP3089506B1 (en) * 2013-12-26 2020-07-29 Fujitsu Limited Channel measurement configuration devices and system
CN105848098B (zh) * 2015-01-15 2019-09-06 中国电信股份有限公司 定位终端的方法和网元
CN108307686B (zh) * 2015-04-30 2021-05-28 瑞典爱立信有限公司 宽松的测量报告与控制平面双连接
US10200170B2 (en) * 2016-03-09 2019-02-05 Samsung Electronics Co., Ltd. Method and apparatus for a multi-cell full-dimension MIMO system
CN107734574B (zh) * 2016-08-12 2020-12-01 华为技术有限公司 小区间切换的方法和控制器
EP3393174A1 (en) * 2017-04-21 2018-10-24 Gemalto M2M GmbH Method for cell reselection for user equipments supporting narrowband modulation
WO2018227585A1 (zh) * 2017-06-16 2018-12-20 Oppo广东移动通信有限公司 测量同步信号块的方法和设备
CN109495924B (zh) * 2017-09-11 2023-06-02 维沃移动通信有限公司 一种测量、测量配置方法、终端及基站
US11129041B2 (en) * 2018-07-20 2021-09-21 FG Innovation Company Limited Reporting early measurement results in the next generation wireless networks
US20220182868A1 (en) * 2019-03-28 2022-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Quantized early measurements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238618A (zh) * 2010-05-04 2011-11-09 中兴通讯股份有限公司 多载波中测量任务的启动方法及用户设备
US20180110082A1 (en) * 2016-10-14 2018-04-19 Nokia Technologies Oy Fast Activation Of Multi-Connectivity Utilizing Uplink Signals
CN109429360A (zh) * 2017-07-11 2019-03-05 华为技术有限公司 一种连接建立的方法、装置及系统
US20190037425A1 (en) * 2017-07-26 2019-01-31 Kt Corporation Methods of controlling measurement process in rrc idle mode and apparatuses thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
APPLE: "R2-1903611, Early Measurement Report in NR", 3GPP TSG-RAN WG2 MEETING #105BIS, 29 March 2019 (2019-03-29), XP051692876 *
NOKIA ET AL.: "R4-1807541, Requirements for fast CA setup for euCA", 3GPP TSG-RAN WG4 MEETING #87, 25 May 2018 (2018-05-25), XP051577717 *
OPPO: "R2-1903085, Rules to store and perform early measurement", 3GPP TSG-RAN2#105BIS, 28 March 2019 (2019-03-28), XP051692366 *
QUALCOMM INC.: "R2-1903237, Summary of email discussion [105#54] [NR/eCA-DC]: measurement configuration", 3GPP TSG-RAN WG2 MEETING#105BIS, 29 March 2019 (2019-03-29), XP051692511 *
QUALCOMM INC.: "R4-1804423, Discussion on open issues in Idle mode Scell candidate measurement", 3GPP TSG-RAN WG4 MEETING #86BIS, 20 April 2018 (2018-04-20), XP051418083 *
See also references of EP3955627A4 *
VIVO: "R2-1804682, Validity timer for early measurement", 3GPP TSG-RAN WG2 MEETING#101BIS, 20 April 2018 (2018-04-20), XP051414835 *
ZTE CORPORATION ET AL.: "R2-1904248, Further consideration on early measurement reporting", 3GPP TSG-RAN WG2 MEETING#105BIS, 29 March 2019 (2019-03-29), XP051693472 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242536A1 (zh) * 2021-05-21 2022-11-24 大唐移动通信设备有限公司 数据处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3955627A1 (en) 2022-02-16
US20220030457A1 (en) 2022-01-27
EP3955627A4 (en) 2022-06-08
CN111615141A (zh) 2020-09-01
KR20210147051A (ko) 2021-12-06
CN111615141B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2020207435A1 (zh) 测量方法、测量配置方法、终端和网络设备
US20220053350A1 (en) Measurement method, configuration method, terminal, and network-side device
US11991770B2 (en) Method for detecting link failure of sidelink and terminal
WO2020156432A1 (zh) 指示信号的传输方法、终端和网络设备
WO2020156436A1 (zh) 测量方法、终端、测量指示方法及网络侧设备
WO2020029823A1 (zh) 小区波束失败处理方法、移动通信终端和网络侧设备
US11963027B2 (en) Measurement method, terminal and network side device
CN110505638B (zh) 测量控制方法、终端和网络侧设备
CN112788676B (zh) 小区管理方法、小区管理配置方法、终端和网络侧设备
WO2020192514A1 (zh) 传输路径的选择方法、信息配置方法、终端及网络设备
US20220322050A1 (en) Transmission method and transmission processing method of multicast service and related device
WO2021129478A1 (zh) 小区拥塞的处理方法、终端及网络侧设备
WO2019242465A1 (zh) 一种资源请求方法及用户设备
JP2022554221A (ja) 情報伝送方法及び機器
WO2019238027A1 (zh) 链路质量监测方法及终端
US20220022081A1 (en) Reporting method, configuration method, terminal, and network device
WO2021115198A1 (zh) 测量方法和终端
WO2021190589A1 (zh) 业务的接收方法、配置方法、终端和网络侧设备
WO2020192512A1 (zh) 上行授权变更方法、信息发送方法及通信装置
WO2021197192A1 (zh) 参考信号的确定方法及相关设备
US20210211918A1 (en) Reporting method, receiving method, terminal, and network-side device
WO2021004523A1 (zh) 传输方法、终端和网络设备
WO2020063282A1 (zh) 信息指示方法、指示接收方法、终端及网络侧设备
WO2019137307A1 (zh) Bsr上报方法和移动终端
US20240237121A1 (en) Method for detecting link failure of sidelink and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036126

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020787041

Country of ref document: EP

Effective date: 20211109