WO2020206938A1 - 旋耕自动调系统及其方法 - Google Patents

旋耕自动调系统及其方法 Download PDF

Info

Publication number
WO2020206938A1
WO2020206938A1 PCT/CN2019/106972 CN2019106972W WO2020206938A1 WO 2020206938 A1 WO2020206938 A1 WO 2020206938A1 CN 2019106972 W CN2019106972 W CN 2019106972W WO 2020206938 A1 WO2020206938 A1 WO 2020206938A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
rotary tillage
automatic
rotary
monitoring
Prior art date
Application number
PCT/CN2019/106972
Other languages
English (en)
French (fr)
Inventor
陈睿
王波
王清泉
吴迪
姚远
范顺
沈永泉
Original Assignee
丰疆智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920473523.6U external-priority patent/CN211210386U/zh
Priority claimed from CN201910280793.XA external-priority patent/CN110199592B/zh
Application filed by 丰疆智能科技股份有限公司 filed Critical 丰疆智能科技股份有限公司
Publication of WO2020206938A1 publication Critical patent/WO2020206938A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B33/00Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs
    • A01B33/08Tools; Details, e.g. adaptations of transmissions or gearings

Definitions

  • the invention relates to an agricultural machine, in particular to a rotary tillage automatic adjustment system and a method thereof, so as to ensure the rotary tillage effect and reduce the operating intensity of the driver.
  • the rotary tillage unit is basically used for the cultivation of the paddy field at the time of land preparation.
  • the rotary tiller of this unit is suspended behind the agricultural machine in a three-point suspension mode, which has the advantages of simple structure and convenient operation.
  • mud in the front of the rotary tiller is often caused, and the tractor cannot be towed, so that the operator has to turn around and check whether the rotary tiller behind the agricultural machine has any mud. Severe or uneven surface conditions.
  • such an operating posture of the driver or operator turning and looking back often causes excessive fatigue and physical injury to the driver or operator.
  • the rotary tillage unit of the paddy field urgently needs a device that can automatically control the tillage depth and prevent serious mud build-up in front of the rotary tiller, which can ensure the consistent tillage depth during operation and reduce the operator's labor. At the same time, it can avoid the problems of mud clogging in front of the rotary tiller and the agricultural machinery not moving.
  • An advantage of the present invention is that it provides a rotary tillage automatic adjustment system and method thereof to automatically control the tillage depth, prevent serious mud build-up in front of the rotary tiller, and reduce the difficulty of operation and the burden on the driver. Furthermore, the automatic adjustment system for rotary tillage will avoid the problems of mud clogging in front of the rotary tiller and the agricultural machinery not being towed.
  • One advantage of the present invention is that it provides an automatic adjustment system and method for rotary tillage, so as to improve the effect of rotary tillage, and ensure consistent tillage depth during rotary tiller operation, and reduce the labor of the operator.
  • One advantage of the present invention is that it provides a rotary tillage automatic adjustment system and method thereof, wherein the rotary tillage automatic adjustment system applies the tillage depth of a rotary tillage device to agricultural machinery through intelligent control and monitoring, so as to truly realize the agricultural machinery Unmanned driving technology may reduce the operating intensity of operators.
  • An advantage of the present invention is that it provides a rotary tillage automatic adjustment system and method thereof, wherein the rotary tillage device will automatically adjust the height of the rotary tillage device according to the height of the tillage depth to ensure consistent tillage depth. Furthermore, when the automatic rotary tillage machine is running, the rotary tillage automatic adjustment system can avoid the problems of mud build-up in front of the rotary tillage device and the agricultural machinery does not move.
  • Another advantage of the present invention is that it provides a kind of adaptability, wherein the precision parts and complicated structure are not required, the manufacturing process is simple and the cost is low.
  • the present invention provides an automatic tillage adjustment method of an automatic rotary tiller, which includes the steps:
  • step (A) the appropriate pressure setting value is set through a pressure regulating valve.
  • a monitor detects the change in the depth of cultivation, so that a hydraulic oil flows between a monitoring cylinder and a hydraulic oil storage accumulator, and a pressure sensor detects The monitoring pressure value.
  • the pressure sensor converts the monitored pressure value into a pressure signal and transmits it to an automatic control adjustment module.
  • a controller compares the appropriate pressure setting value and the monitored pressure value and issues an automatic lifting command to a control reversing valve.
  • a lifting cylinder is telescopically actuated to realize the lifting and lowering of the entire rotary tillage device.
  • step (D) the monitored pressure value is greater than the appropriate pressure setting value, and the rotary tillage device rises as a whole.
  • step (D) the monitored pressure value is less than the appropriate pressure setting value, and the rotary tillage device is lowered as a whole.
  • the present invention also provides an automatic adjustment method for rotary tillage, which is suitable for automatic rotary tillers, including the steps:
  • an auxiliary monitoring module monitors a monitored pressure value and transmits it to the automatic control adjustment module
  • a controller compares the monitored pressure value with the appropriate pressure setting value
  • the controller issues an automatic lifting command to a control reversing valve
  • a lifting cylinder telescopically controls the rising or falling of the rotary tillage device.
  • the monitor detects an increase in tillage depth
  • the pressure of the monitored pressure value is increased to a rising pressure value, and the rising pressure value is greater than the appropriate pressure setting value, and the A rising pressure signal of the automatic lifting command is transmitted to the control reversing valve, the lifting cylinder is extended, and the rotary tillage device is raised as a whole.
  • step (b) when the monitor detects that the tillage depth increases, the monitor lifts and compresses a monitoring oil cylinder, wherein the hydraulic oil in the monitoring oil cylinder flows to a hydraulic oil to store energy
  • a pressure sensor transmits a rising pressure signal to a controller of the automatic control adjustment module.
  • step (d) the controller controls the control reversing valve to form a circuit for supplying oil to a lifting cylinder, the lifting cylinder extends, and the rotary tiller is raised.
  • the pressure of the monitoring oil cylinder is reduced, the hydraulic oil in the hydraulic oil storage accumulator returns to the monitoring oil cylinder, and the pressure of the auxiliary monitoring module decreases overall
  • the pressure sensor transmits an appropriate signal to the controller of the automatic control adjustment module, and the controller controls the control reversing valve to stop functioning, and the increase When the oil cylinder stops extending, the rotary tillage device will stay at a suitable working height.
  • the monitor detects that the tillage depth decreases
  • the pressure of the monitored pressure value drops to a falling pressure value, and the falling pressure value is less than the appropriate pressure setting value
  • the automatic lifting A commanded downward pressure signal is transmitted to the control reversing valve, the lifting cylinder is contracted, and the rotary tillage device is lowered as a whole.
  • step (b) when the monitor detects that the tillage depth is reduced, the monitor is lowered and the monitoring oil cylinder is extended, and the hydraulic oil stores the hydraulic oil in the accumulator
  • the pressure sensor transmits a drop signal to the controller of the automatic control adjustment module when the flow flows into the monitoring oil cylinder.
  • step (d) the controller controls the control reversing valve to form a circuit for unloading oil to the lifting cylinder, the lifting cylinder is contracted, and the rotary tillage device is under gravity Decline under the action.
  • the pressure of the monitoring oil cylinder increases, the hydraulic oil in the monitoring oil cylinder flows to the hydraulic oil storage accumulator, and the overall pressure of the auxiliary monitoring module rises to the maximum
  • the pressure sensor transmits the appropriate signal to the controller of the automatic control adjustment module, and the controller controls the control reversing valve to stop functioning, so that the increase When the oil cylinder stops retracting, the rotary tillage device will stay at a suitable working height.
  • the present invention also provides a rotary tillage automatic adjustment system suitable for automatic rotary tillers, including:
  • An auxiliary monitoring module that monitors the tillage depth of a rotary tillage device of the automatic rotary tiller and generates a pressure signal
  • An automatic control adjustment module receives the pressure signal and automatically controls the rotary tiller device to rise or fall.
  • the auxiliary monitoring module includes a monitor, a monitoring cylinder, a hydraulic oil storage accumulator, and a pressure sensor, wherein the monitor is connected to the monitoring cylinder, the monitoring cylinder The hydraulic oil storage accumulator is connected, and the pressure sensor is connected to the hydraulic oil storage accumulator.
  • the auxiliary monitoring module further includes a pressure regulating valve connected to the hydraulic oil storage accumulator and the pressure sensor for setting an appropriate pressure setting value.
  • the automatic control adjustment module includes a controller, a lift cylinder, and a control reversing valve, wherein the controller is connected to the control reversing valve, and the control reversing valve is connected In the lifting cylinder, the lifting cylinder is connected to the rotary tillage device, and the pressure sensor is connected to the controller.
  • the automatic control adjustment module further includes an oil pump, wherein the control reversing valve is respectively connected to the lift cylinder, the oil pump and the controller.
  • the monitor is selected from the group consisting of rolling wheels, floating plates, walking wheels, and pressure wheels.
  • Fig. 1 is a schematic diagram of an automatic rotary tillage machine and a rotary tillage automatic adjustment system in a preferred embodiment according to the present invention.
  • Fig. 2 is a logical schematic diagram of an automatic adjustment system for rotary tillage according to a preferred embodiment of the present invention.
  • Figure 3 is a schematic diagram of the principle of an automatic adjustment system for rotary tillage in a preferred embodiment of the present invention. .
  • Figure 4 is a schematic cross-sectional view of a control reversing valve in a preferred embodiment of the present invention.
  • Fig. 5 is a logical schematic diagram of an automatic rotary tiller according to a preferred embodiment of the present invention.
  • a should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of a component may be one, while in other embodiments, The number can be multiple, and the term “one” cannot be understood as a restriction on the number.
  • FIG. 1 to 5 it is a rotary tillage automatic adjustment system and method according to the first preferred embodiment of the present invention, so that the automatic rotary tillage machine 1 is automatically adjusted by the rotary tillage automatic adjustment system 100
  • the height of a rotary tiller 200 of the automatic rotary tiller 1 is used to automatically control the tilling depth, prevent serious mud build-up in front of the rotary tiller 200, and reduce the difficulty of operation and the burden on the driver.
  • the automatic rotary tillage adjustment system 100 is suitable for the automatic rotary tiller 1, so as to automatically adjust the height of the rotary tiller 200 when the automatic rotary tiller 1 is traveling, so as to further ensure the depth of tillage. .
  • the automatic rotary tillage machine 1 further includes the rotary tillage device 200, wherein the rotary tillage automatic adjustment system 100 is connected to the rotary tillage device 200 to automatically control the lifting and lowering of the rotary tillage device 200 to reach a suitable height .
  • the rotary tillage automatic adjustment system 100 includes at least one auxiliary monitoring module 10 and an automatic control adjustment module 20.
  • the auxiliary monitoring module 10 is connected to the automatic control adjustment module 20, wherein when the auxiliary monitoring module 10 senses a change in the tillage depth, the automatic control adjustment module 20 will automatically control the automatic rotary tiller 1 The lifting and lowering of the rotary tilling device 200 to achieve a suitable height.
  • the auxiliary monitoring module 10 includes a monitor 11, a monitoring oil cylinder 12, a hydraulic oil storage accumulator 13, and a pressure sensor 14.
  • the monitor 11 is connected to the monitoring oil cylinder 12 for directly transmitting the sensed tillage depth to the monitoring oil cylinder 12.
  • the monitoring oil cylinder 12 is connected to the hydraulic oil storage accumulator 13.
  • the pressure sensor 14 is connected to the hydraulic oil storage accumulator 13. In this way, the condition sensed by the monitor 11 will be transmitted to the automatic control adjustment module 20 through the pressure sensor 14.
  • the automatic rotary tiller 1 when the automatic rotary tiller 1 is walking, it senses changes in the ground surface via the monitor 11, and allows hydraulic oil to flow between the monitoring cylinder 12 and the hydraulic oil storage accumulator 13 , So that the overall pressure of the auxiliary monitoring module 10 changes, the pressure sensor 14 monitors the pressure change, and transmits a pressure signal to the automatic control adjustment module 20 to be controlled by the automatic control adjustment module 20
  • the rotary tilling device 200 rises or falls.
  • the auxiliary monitoring module 10 further includes a pressure regulating valve 15, which is connected to the hydraulic oil storage accumulator 13 and the pressure sensor 14 for setting the auxiliary monitoring The initial pressure of the module 10 as a whole.
  • a suitable pressure setting value A is set by the pressure regulating valve 15, which is a suitable initial pressure value.
  • the pressure sensor 14 detects the overall pressure change of the auxiliary monitoring module 10 and forms the pressure signal, wherein the pressure The signal is transmitted to the automatic control adjustment module 20.
  • the monitor 11 is adjusted to a suitable height to ensure that the rotary tiller 200 is at a proper working height during operation, wherein the monitor 11 is connected to the ground or Muddy water surface contact.
  • the monitor 11 detects the change of the tillage depth, which will cause the overall pressure of the auxiliary monitoring module 10 to change.
  • the sensor 14 obtains a monitored pressure value B.
  • the pressure sensor 14 generates the received monitored pressure value B into the pressure signal to be transmitted to the automatic control adjustment module 20.
  • the monitor 11 can be implemented as a rolling wheel, a grounded rolling wheel, a floating plate, a traveling wheel, a pressure wheel, etc., which is not a limitation of the present invention.
  • the automatic control adjustment module 20 includes a controller 21, a lifting cylinder 22, and a control reversing valve 23.
  • the controller 21 is connected to the control reversing valve 23.
  • the control reversing valve 23 is connected to the lifting cylinder 22.
  • the pressure sensor 14 of the auxiliary monitoring module 10 is connected to the controller 21, wherein the connection can be wired connection or wireless connection, which is not a limitation of the present invention. Therefore, it can be understood that the rotary tillage device 200 of the automatic rotary tiller 1 monitors the change of the tillage depth through the monitor 11 during operation, and makes the hydraulic oil in the place when the tillage height changes.
  • the monitoring oil cylinder 12 and the hydraulic oil storage accumulator 13 flow between, so that the overall pressure of the auxiliary monitoring module 10 is changed, and the induction signal is transmitted to the automatic control through the pressure sensor 14
  • the controller 21 of the adjustment module 20, and the controller 21 of the automatic control adjustment module 20 will compare the appropriate pressure setting value A and the monitored pressure value B before switching to the control
  • the valve 23 issues an automatic lifting command to control the rotary tiller 200 to rise or fall.
  • the automatic control adjustment module 20 further includes an oil pump 24.
  • the control reversing valve 23 is respectively connected to the lifting cylinder 22, the oil pump 24 and the controller 21.
  • the lifting cylinder 22 is connected to the rotary tiller 200.
  • the monitor 11 senses ground pressure, and converts the monitored pressure value B into the pressure signal through the pressure sensor 14, and transmits it to the controller of the automatic control adjustment module 20 twenty one.
  • the controller 21 of the automatic control adjustment module 20 controls the control reversing valve 23 to make the lifting cylinder 22 telescopic, thereby realizing the overall operation of the rotary tillage device 200 Up and down.
  • control reversing valve 23 is implemented as an electromagnetic reversing valve, which includes a body 231 and a sliding shaft 232, wherein the body has a plurality of valve ports 2311.
  • the sliding shaft 232 moves in the main body 231 to open and close different valve ports 2311.
  • four valve ports 2311 are implemented, which are defined as a first valve port P, a second valve port A, a third valve port B, and a fourth valve port T for convenience of description.
  • the corresponding valve ports 2311 are connected or closed, so as to further control the lifting cylinder 22 to operate.
  • the controller 21 of the automatic control adjustment module 20 controls the hydraulic oil of the oil pump 24 to be input to the control reversing valve 23.
  • the control reversing valve 23 also has a first coil YV01 and a second coil YV02.
  • the controller 21 is respectively connected to the first coil YV01 and the second coil YV02 to input an electrical signal to the first coil YV01 or the second coil YV02.
  • the automatic lifting instruction is the electrical signal.
  • the rotary tillage automatic adjustment system 100 is composed of at least one auxiliary monitoring module 10 and an automatic control adjustment module 20.
  • the auxiliary monitoring module 10 is composed of the monitor 11, the monitoring oil cylinder 12, and The hydraulic oil storage accumulator 13 and the pressure sensor 14 are composed.
  • the automatic control adjustment module 20 is composed of the controller 21, the lifting cylinder 22, and the control reversing valve 23.
  • the auxiliary monitoring module 10 monitors the pressure value between the monitoring cylinder 12 and the hydraulic oil storage accumulator 13, and feeds back the pressure signal to the controller 21 through the pressure sensor 14, wherein
  • the controller 21 compares the monitored pressure value B with the appropriate pressure setting value A to determine the tillage depth, and then the controller 21 sends the automatic lifting command to the control reversing valve 23.
  • the control reversing valve 23 moves the sliding shaft 232 to form an oil circuit to control the expansion and contraction of the lifting cylinder 22, and then adjust the position of the rotary tillage device 200 to achieve a deep tillage effect The best condition.
  • the monitor 11 of the auxiliary monitoring module 10 compresses the monitoring oil cylinder 12, and the monitoring oil cylinder 12 shrinks.
  • the pressure sensor 14 detects that the monitored pressure value B between the monitoring cylinder 12 and the hydraulic oil storage accumulator 13 is greater than the appropriate pressure setting value A, that is, a rising pressure signal is generated And transmit it to the controller 21.
  • the controller 21 sends the automatic lifting instruction to the control reversing valve 23 of the automatic control adjustment module 20, and after the YV02 is energized, the lifting cylinder 22 extends Therefore, the rotary tilling device 200 is improved as a whole, and adjusted until the monitored pressure value is equal to the appropriate pressure setting value A, so that the tilling depth will reach an ideal state.
  • the monitor 11 of the auxiliary monitoring module 10 extends, and the monitoring oil cylinder 12 extends.
  • the pressure sensor 14 detects that the monitored pressure value B between the monitoring oil cylinder 12 and the hydraulic oil storage accumulator 13 is less than the appropriate pressure setting value A, that is, a falling pressure signal is generated and transmitted to the
  • the controller 21 sends the automatic lifting instruction to the control reversing valve 23 of the automatic control adjustment module 20, so that after the YV01 is energized, the lifting cylinder 22 is retracted, and the rotary tillage
  • the device 200 is lowered as a whole and adjusted until the monitored pressure value is equal to the appropriate pressure setting value A, which will make the tillage depth reach an ideal state.
  • the value of the pressure sensor 14 is monitored in real time and the appropriate pressure setting value A is compared, and transmitted to the controller 21 for processing and signal control of the control reversing valve 23 Open and close to control the lifting of the lifting cylinder 22 to adjust the tilling depth of the rotary tiller 200. This does not require real-time adjustment by the operator, reduces the operator's operating intensity and operating skills, and can also realize unmanned driving.
  • the monitor 11 of the auxiliary monitoring module 10 is in contact with the ground or muddy water surface, and the monitor 11 is adjusted to a suitable height to ensure the operation When the rotary tillage device 200 is at a suitable working height.
  • the appropriate pressure setting value A is set through the pressure regulating valve 15.
  • the monitor 11 When the automatic rotary tiller 1 is in operation, when the tillage depth increases, the monitor 11 synchronously lifts and compresses the monitoring oil cylinder 12, wherein the hydraulic oil in the monitoring oil cylinder 12 flows to the hydraulic oil storage and energy storage ⁇ 13. Moreover, when the pressure in the auxiliary monitoring module 10 as a whole rises to a rising pressure value Y, the pressure sensor 14 transmits the rising pressure signal to the controller 21 of the automatic control adjustment module 20, Then, the controller 21 controls the movement of the valve block that controls the reversing valve 23 to form a circuit for supplying oil to the lifting cylinder 22. At this time, the lifting cylinder 22 extends, and the rotary tiller 200 is lifted.
  • the pressure of the monitoring oil cylinder 12 decreases, the hydraulic oil in the hydraulic oil storage accumulator 13 returns to the monitoring oil cylinder 12, and the overall pressure of the auxiliary monitoring module 10 drops to At the appropriate pressure setting value A, the pressure sensor 14 transmits an appropriate signal to the controller 21 of the automatic control adjustment module 20, and then the controller 21 controls the control reversing valve 23 Stop functioning, so that the lifting cylinder 22 stops extending, and the rotary tiller 200 will stay at a suitable working height.
  • the tilling depth is reduced.
  • the monitor 11 descends synchronously, and the monitoring oil cylinder 12 is extended, wherein the hydraulic oil in the hydraulic oil storage accumulator 13 flows into the monitoring oil cylinder 12.
  • the pressure sensor 14 transmits a drop pressure signal to the controller 21 of the automatic control adjustment module 20, and then The controller 21 controls the movement of the valve block that controls the reversing valve 23 to form a circuit for unloading oil to the lifting cylinder 22.
  • the lifting cylinder 22 contracts, and the rotary tillage device 200 descends under the action of gravity.
  • the pressure of the monitoring oil cylinder 12 increases, the hydraulic oil in the monitoring oil cylinder 12 flows to the hydraulic oil storage accumulator 13, and the overall pressure of the auxiliary monitoring module 10 rises to the above
  • the pressure sensor 14 transmits the appropriate signal to the controller 21 of the automatic control adjustment module 20, and then the controller 21 controls the control reversing valve 23 to stop In this way, the lifting cylinder 22 stops retracting, and the rotary tiller 200 will stay at a suitable working height.
  • the automatic rotary tillage machine 1 includes the rotary tillage automatic adjustment system 100, a rotary tillage device 200, a machine body 300, a central control device 400, a walking device 500 and a driving device 600.
  • the rotary tillage device 200 is installed on the body 300.
  • the walking device 500 is arranged at the bottom of the body 300.
  • the driving device 600 is installed on the body 300.
  • the central control device 400 is installed in the middle of the body 300 for easy operation.
  • the rotary tillage automatic adjustment system 100, the rotary tillage device 200, the walking device 500 and the driving device 600 are respectively connected to the central control device 400.
  • the central control device 400 is a central control system of the automatic rotary tiller 1 for integrated control of various devices of the automatic rotary tiller 1.
  • the controller 21 of the automatic control adjustment module 20 of the rotary tillage automatic adjustment system 100 may also be a part of the central control device 400, which is not a limitation of the present invention.
  • the driving device 600 is respectively connected to the rotary tillage device 200, the walking device 500 and the central control device 400, and provides power for them, and the central control device 400 drives various components to perform The corresponding job.
  • the driving device 600 can be implemented as a fuel, electric or hybrid drive, which is not a limitation of the present invention.
  • the walking device 500 is used to drive the automatic rotary tiller 1 to walk, which can be crawler walking, two-wheel walking or four-wheel walking.
  • the rotary tillage automatic adjustment system 100 is used to automatically adjust the height of the rotary tillage device 200 of the automatic rotary tiller 1.
  • the automatic adjustment method for rotary tillage of the automatic rotary tiller includes the following steps:
  • step (A) the appropriate pressure setting value A is set through a pressure regulating valve 15.
  • a monitor 11 detects a change in the depth of cultivation, and a hydraulic oil flows between a monitoring cylinder 12 and a hydraulic oil storage accumulator 13, and a pressure sensor 14 detects the Monitor the pressure value B.
  • step (B) the pressure sensor 14 converts the monitored pressure value B into a pressure signal and transmits it to an automatic control adjustment module 20.
  • a controller 21 compares the appropriate pressure setting value A and the monitored pressure value B, and issues an automatic lifting command to a control reversing valve 23.
  • a lifting cylinder 22 is telescopically actuated, thereby realizing the lifting and lowering of the rotary tiller 200 as a whole.
  • step (D) the monitored pressure value B is greater than the appropriate pressure setting value A, and the rotary tillage device 200 rises as a whole.
  • step (D) the monitored pressure value B is less than the appropriate pressure setting value A, and the rotary tillage device 200 is lowered as a whole.
  • the automatic adjustment method for rotary tillage of the automatic rotary tiller includes the following steps:
  • an auxiliary monitoring module 10 monitors a monitored pressure value B and transmits it to the automatic control adjustment module 20;
  • a controller 21 compares the monitored pressure value B with the appropriate pressure set value A;
  • the controller 21 issues an automatic lifting command to a control reversing valve 23;
  • a lifting cylinder 22 telescopically controls the rising or falling of the rotary tiller 200.
  • step (a) the overall pressure of the auxiliary monitoring module 10 is set to an appropriate pressure setting A.
  • step (b) when the monitor 11 detects that the tillage depth increases, the pressure of the monitored pressure value B rises to a rising pressure value Y.
  • step (c) the rising pressure value Y is greater than the appropriate pressure setting value A.
  • step (d) a rising pressure signal of the automatic lifting command is transmitted to the control reversing valve 23.
  • step (e) the lifting cylinder 22 is extended, and the rotary tiller 200 is raised as a whole.
  • step (b) when the monitor 11 detects that the tillage depth increases, the monitor 11 lifts and compresses a monitoring oil cylinder 12, wherein the hydraulic oil in the monitoring oil cylinder 12 flows to a hydraulic oil storage accumulator 13 , A pressure sensor 14 transmits a rising pressure signal to a controller 21 of the automatic control adjustment module 20.
  • step (d) the controller 21 controls the control reversing valve 23 to form a circuit for supplying oil to a lifting cylinder 22. At this time, the lifting cylinder 22 extends, and the rotary tiller 200 is lifted.
  • the pressure of the monitoring oil cylinder 12 is reduced, the hydraulic oil in the hydraulic oil storage accumulator 13 returns to the monitoring oil cylinder 12, and the auxiliary monitoring module is integrated 10
  • the pressure sensor 14 transmits an appropriate signal to the controller 21 of the automatic control adjustment module 20, and the controller 21 controls the control switch
  • the valve 23 stops functioning, the lifting cylinder 22 stops extending, and the rotary tiller 200 will stay at a suitable working height.
  • step (b) when the monitor 11 detects that the tillage depth decreases, the pressure of the monitored pressure value B drops to a drop pressure value Z.
  • step (c) the falling pressure value Z is less than the appropriate pressure setting value A.
  • step (d) a falling pressure signal of the automatic lifting command is transmitted to the control reversing valve 23.
  • step (e) the lifting cylinder 22 is contracted and the rotary tiller 200 is lowered as a whole.
  • step (b) when the monitor 11 detects that the tillage depth is reduced, the monitor 11 descends and extends the monitoring oil cylinder 12, and the hydraulic oil in the hydraulic oil storage accumulator 13 flows to the place Said flowing into the monitoring cylinder 12, the pressure sensor 14 transmits a falling signal to the controller 21 of the automatic control adjustment module 20.
  • step (d) the controller 21 controls the control reversing valve 23 to form a circuit for discharging oil to the lifting cylinder 22.
  • the lifting cylinder 22 contracts, and the rotary tillage device 200 descends under the action of gravity.
  • the pressure of the monitoring oil cylinder 12 increases, the hydraulic oil in the monitoring oil cylinder 12 flows to the hydraulic oil storage accumulator 13, and the overall pressure of the auxiliary monitoring module 10
  • the pressure sensor 14 transmits the appropriate signal to the controller 21 of the automatic control adjustment module 20, and the controller 21 controls the control commutation
  • the valve 23 stops functioning, so that the lifting cylinder 22 stops retracting, and the rotary tiller 200 will stay at a suitable working height.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Abstract

一种自动旋耕机(1)的旋耕自动调节方法,包括步骤:(A)设定一合适压力设定值;(B)监测一监测压力值;(C)比较所述监测压力值和所述合适压力设定值;以及(D)自动调控所述旋耕装置(200)升降,通过该调节方法可以自动控制耕深、防止旋耕机前面严重壅泥,并降低操作难度和驾驶员负担。

Description

旋耕自动调系统及其方法 技术领域
本发明涉及一种农机,尤其涉及一种旋耕自动调节系统及其方法,以确保旋耕效果和减轻驾驶员的操作强度。
背景技术
随着科学技术的进步以及农业机械的发展,改变了农业的耕种方式,以达到更佳的农业生产效率。换言之,现今的农业摆脱了过去完全依靠人力耕作的落后方式,现今农业从播种、植保到收割等各个环节几乎都完全依靠农机设备来完成,现代农业可以说已经进入了机械化时代。值得一提的,农业机械除了改善农业耕种生产条件外,并代替人们进行繁重的劳动。特别地,在不适合人们工作的环境下,皆可利用农用机械来进行工作。因此,农业的机械化的发展相对提高农业生产的效率,并且为农民带来了极大的便利和效益。
值得一提的,目前对于水田的耕种在耕整地时,基本采用旋耕机组,该机组的旋耕机以三点悬挂的方式悬挂在农机后面,具有结构简单、操作方便等优点。但是,实际作业时,常常由于农田的地表面和犁底层的不平造成旋耕机前面壅泥,拖拉机牵引不动,使得操作者不得不经常扭身回头查看农机后面的旋耕机是否有壅泥严重或地表不平的情况。然而,驾驶员或操作者这样扭身回头看的操作姿态常常引起驾驶员或操作者过度疲劳和身体伤害。同时,壅泥严重或地表不平的情况将造成旋耕过的底表面不平整,耕深达不到农业生产的要求,导致旋耕作业效果差、作业效率低。所以,水田的旋耕机组急需一种能够自动控制耕深、防止旋耕机前面严重壅泥的装置,作业时能够保证耕深一致,减轻操作者的劳动。同时,可以避免旋耕机前面壅泥,农机牵引不动等问题。
发明内容
本发明的一个优势在于其提供一种旋耕自动调节系统及其方法,以自动控制耕深、防止旋耕机前面严重壅泥,并降低操作难度和驾驶员负担。进一步地说,所述旋耕自动调节系统将避免旋耕机前面壅泥,农机牵引不动等问题。
本发明的一个优势在于其提供一种旋耕自动调节系统及其方法,以提升旋耕作业效果,并在旋耕机作业时能够保证耕深一致,以及减轻操作者的劳动。
本发明的一个优势在于其提供一种旋耕自动调节系统及其方法,其中所述旋耕自动调节系统以将一旋耕装置的耕深通过智能控制和监测应用到农机上,以真正实现农机的无人驾驶技术或者降低操作人员操作强度。
本发明的一个优势在于其提供一种旋耕自动调节系统及其方法,其中所述旋耕装置将依据耕深高度自动地调节所述旋耕装置的高度,以确保耕深一致。进一步地说,自动旋耕机在行驶时,所述旋耕自动调节系统可以避免所述旋耕装置前面壅泥,农机牵引不动等问题。
本发明的另一优势在于其提供一种适于,其中该不需要精密的部件和复杂的结构,其制造工艺简单,成本低廉。
本发明的其它优势和特点通过下述的详细说明得以充分体现并可通过所附权利要求中特地指出的手段和装置的组合得以实现。
为满足本发明的以上目的以及本发明的其他目的和优势,本发明提供一自动旋耕机的耕自动调节方法,包括步骤:
(A)设定一合适压力设定值;
(B)监测一监测压力值;
(C)比较所述监测压力值和所述合适压力设定值;以及
(D)自动调控所述旋耕装置升降。
根据本发明一方法,根据步骤(A),通过一压力调节阀设置所述合适压力设定值。
根据本发明一方法,根据步骤(B),通过一监测器侦测到耕深高度的变化,使一液压油在一监测油缸和一液压油储存蓄能器之间流动,一压力传感器监测到所述监测压力值。
根据本发明一方法,根据步骤(B),所述压力传感器将所述监测压力值转换成一压力信号并传递到一自动控制调节模块。
根据本发明一方法,根据步骤(C),一控制器将比较所述合适压力设定值和所述监测压力值并向一控制换向阀下达一自动升降指令。
根据本发明一方法,根据步骤(D),一提升油缸伸缩作动,进而实现所述旋耕装置整体的抬升和下降。
根据本发明一方法,根据步骤(D),所述监测压力值大于所述合适压力设定值,所述旋耕装置整体上升。
根据本发明一方法,根据步骤(D),所述监测压力值小于所述合适压力设定值,所述旋耕装置整体下降。
另外,为满足本发明的以上目的以及本发明的其他目的和优势,本发明还提供一旋耕自动调节方法,适用于自动旋耕机,包括步骤:
(a)调整一监测器到合适高度,设定一合适压力设定值并传送到一自动控制调节模块;
(b)所述旋耕装置作动时,一辅助监测模块监测得一监测压力值并传送到所述自动控制调节模块;
(c)一控制器比较所述监测压力值和所述合适压力设定值;
(d)所述控制器对一控制换向阀下达一自动升降指令;以及
(e)一提升油缸伸缩控制所述旋耕装置上升或下降。
根据本发明一方法,当所述监测器监测到耕深增大时,所述监测压力值的压力升高至一上升压力值,所述上升压力值大于所述合适压力设定值,所述自动升降指令的一上升压力信号传输到所述控制换向阀,所述提升油缸伸出,所述旋耕装置整体提高。
根据本发明一方法,根据步骤(b),所述监测器监测到耕深增大时,所述监测器提升并压缩一监测油缸,其中所述监测油缸中液压油流向一液压油储存蓄能器,一压力传感器将一上升压力信号传递给所述自动控制调节模块的一控制器。
根据本发明一方法,根据步骤(d),所述控制器控制所述控制换向阀使形成给一提升油缸供油的回路,所述提升油缸伸出,并使所述旋耕装置抬升。
根据本发明一方法,所述旋耕装置抬升后,所述监测油缸压力减小,所述液压油储存蓄能器中的液压油返回到所述监测油缸中,整体所述辅助监测模块压力下降到所述合适压力设定值时,所述压力传感器将一合适信号传递到所述自动控制调节模块的所述控制器,由所述控制器控制所述控制换向阀停止作用,所述提升油缸停止伸出,所述旋耕装置将停留在适宜工作高度。
根据本发明一方法,当所述监测器监测到耕深减小时,所述监测压力值的压力下降至一下降压力值,所述下降压力值小于所述合适压力设定值,所述自动升降指令的一下降压力信号传输到所述控制换向阀,所述提升油缸收缩,所述旋耕装置整体下降。
根据本发明一方法,根据步骤(b),当所述监测器监测到耕深减小时,所述 监测器下降,并使所述监测油缸伸出,所述液压油储存蓄能器中液压油流向所述流入所述监测油缸中,所述压力传感器将一下降信号传递给所述自动控制调节模块的所述控制器。
根据本发明一方法,根根据步骤(d),所述控制器控制所述控制换向阀,使形成给所述提升油缸卸油的回路,所述提升油缸收缩,所述旋耕装置在重力作用下下降。
根据本发明一方法,所述旋耕装置下降后,所述监测油缸压力升高,所述监测油缸中的液压油流向所述液压油储存蓄能器,整体所述辅助监测模块压力上升到所述合适压力设定值时,所述压力传感器将所述合适信号传递到所述自动控制调节模块的所述控制器,由所述控制器控制所述控制换向阀停止作用,这样所述提升油缸停止缩回,所述旋耕装置将停留在适宜工作高度。
另外,为满足本发明的以上目的以及本发明的其他目的和优势,本发明还提供一旋耕自动调节系统,适用于自动旋耕机,包括:
一辅助监测模块,其监测该自动旋耕机的一旋耕装置的耕深高度,并产生一压力信号;和
一自动控制调节模块,其接收所述压力信号,并自动控制该旋耕装置上升或下降。
根据本发明一实施例,所述辅助监测模块包括一监测器,一监测油缸,一液压油储存蓄能器,以及一压力传感器,其中所述监测器连接于所述监测油缸,所述监测油缸连接所述液压油储存蓄能器,所述压力传感器连接于所述液压油储存蓄能器。
根据本发明一实施例,所述辅助监测模块还包括一压力调节阀,其连接于所述液压油储存蓄能器和所述压力传感器,以用于设置一合适压力设定值。
根据本发明一实施例,所述自动控制调节模块包括一控制器,一提升油缸,以及一控制换向阀,其中所述控制器连接于所述控制换向阀,所述控制换向阀连接于述提升油缸,所述提升油缸连接于该旋耕装置,所述压力传感器连接于所述控制器。
根据本发明一实施例,所述自动控制调节模块还包括一油泵,其中所述控制换向阀分别连接所述提升油缸、所述油泵以及所述控制器。
根据本发明一实施例,所述监测器系选自由滚动轮、浮板、行走轮、压力轮 所组成的群组。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1是根据本发明的一个优选实施例中自动旋耕机和旋耕自动调节系统的示意图。
图2是根据本发明的一个优选实施例的旋耕自动调节系统的逻辑示意图。
图3是根据本发明的一个优选实施例中旋耕自动调节系统的原理示意图。。
图4是根据本发明的一个优选实施例中控制换向阀的剖面示意图。
图5是根据本发明的一个优选实施例的自动旋耕机的逻辑示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个组件的数量可以为一个,而在另外的实施例中,该组件的数量可以为多个,术语“一”不能理解为对数量的限制。
如图1至图5所示,是根据本发明的第一个优选实施例的一旋耕自动调节系统及其方法,使所述自动旋耕机1通过所述旋耕自动调节系统100自动调节所述 自动旋耕机1的一旋耕装置200的高度,以自动控制耕深、防止所述旋耕装置200前面严重壅泥,并降低操作难度和驾驶员负担。进一步地说,所述旋耕自动调节系统100适用于所述自动旋耕机1,以在所述自动旋耕机1行进时自动调节所述旋耕装置200高度,以进一步地确保耕深效果。换言之,所述自动旋耕机1还包括所述旋耕装置200,其中所述旋耕自动调节系统100连接于所述旋耕装置200,以自动控制所述旋耕装置200升降以达到合适高度。
在本发明的这个实施例中,所述旋耕自动调节系统100包括至少一辅助监测模块10和一自动控制调节模块20。所述辅助监测模块10连接于所述自动控制调节模块20,其中在所述辅助监测模块10感测到耕深高度变化时,所述自动控制调节模块20将自动控制所述自动旋耕机1的所述旋耕装置200的升降以达到合适高度。
在本发明的这个实施例中,所述辅助监测模块10包括一监测器11,一监测油缸12,一液压油储存蓄能器13,以及一压力传感器14。所述监测器11连接于所述监测油缸12,以用于将感测到的耕深高度直接传达到所述监测油缸12。所述监测油缸12连接所述液压油储存蓄能器13。所述压力传感器14连接于所述液压油储存蓄能器13。这样所述监测器11感测到的状况将通过所述压力传感器14传递到所述自动控制调节模块20。进一步地说,所述自动旋耕机1在行走时,经由所述监测器11感测地表的变化,并使液压油在所述监测油缸12和所述液压油储存蓄能器13之间流动,从而使所述辅助监测模块10的整体压力改变,所述压力传感器14监测到压力的变化,并将一压力信号传递到所述自动控制调节模块20,以由所述自动控制调节模块20控制所述旋耕装置200上升或下降。
在本发明的这个实施例中,所述辅助监测模块10还包括一压力调节阀15,其连接于所述液压油储存蓄能器13和所述压力传感器14,以用于设置所述辅助监测模块10整体的初始压力。换言之,通过所述压力调节阀15设置一合适压力设定值A,其为合适初始压力值。并且在所述自动旋耕机1的所述旋耕装置200在运作时,透过所述压力传感器14侦测所述辅助监测模块10整体的压力变化并形成所述压力信号,其中所述压力信号被传递到所述自动控制调节模块20。进一步地说,所述自动旋耕机1作业前,将所述监测器11调整到合适高度,以保证作业时所述旋耕装置200在合适的作业高度,其中所述监测器11与地面或泥水表面接触。同时,当所述自动旋耕机1的所述旋耕装置200作业时,所述监测 器11侦测到耕深高度的变化,将使所述辅助监测模块10整体压力产生改变,所述压力传感器14取得一监测压力值B,这时所述压力传感器14将接收到的所述监测压力值B产生成所述压力信号,以传递到所述自动控制调节模块20。值得一提的,所述监测器11可实施为一滚动轮、一接地滚动轮、一浮板、一行走轮、一压力轮等,这不为本发明的限制。
在本发明的这个实施例中,所述自动控制调节模块20包括一控制器21,一提升油缸22,以及一控制换向阀23。所述控制器21连接于所述控制换向阀23。所述控制换向阀23连接于述提升油缸22。所述辅助监测模块10的所述压力传感器14连接于所述控制器21,其中连接可采用有线连线和无线连接,这不为本发明的限制。因此,可以理解的,所述自动旋耕机1的所述旋耕装置200在作业时,经由所述监测器11监测耕深高度的变化,并在耕深高度的变化时使液压油在所述监测油缸12和所述液压油储存蓄能器13之间流动,从而使所述辅助监测模块10的整体压力改变,并透过所述压力传感器14将所述感应信号传递到所述自动控制调节模块20的所述控制器21,并由所述自动控制调节模块20的所述控制器21将比较所述合适压力设定值A和所述监测压力值B后,向所述控制换向阀23下达一自动升降指令,从而控制所述旋耕装置200上升或下降。
在本发明的这个实施例中,所述自动控制调节模块20还包括一油泵24。所述控制换向阀23分别连接所述提升油缸22、所述油泵24以及所述控制器21。所述提升油缸22连接于所述旋耕装置200。可以理解的,所述监测器11感测地面压力,并通过所述压力传感器14将所述监测压力值B转换成所述压力信号,且传递给所述自动控制调节模块20的所述控制器21。所述自动控制调节模块20的所述控制器21接收到所述压力信号后,对控制所述控制换向阀23使所述提升油缸22伸缩作动,进而实现所述旋耕装置200整体的抬升和下降。
值得一提的,所述控制换向阀23实施为一电磁换向阀,其包括一本体231,一滑轴232,其中所述本体具有多个阀口2311。所述滑轴232在本体231内移动,以开闭不同的所述阀口2311。进一步地说,在本实施例中实施为四个阀口2311,其为方便说明分别定义为第一阀口P,第二阀口A,第三阀口B,以及第四阀口T。所述滑轴232在本体231内移动时,使相对应的各阀口2311导通或封闭,以进一步地控制所述提升油缸22进行作动。另外,所述自动控制调节模块20的所述控制器21控制所述油泵24的液压油输入到所述控制换向阀23。值得一提的, 所述控制换向阀23还具有一第一线圈YV01和一第二线圈YV02。所述控制器21分别连接于所述第一线圈YV01、所述第二线圈YV02,以向所述第一线圈YV01或所述第二线圈YV02输入一电信号。值得一提的,所述自动升降指令为所述电信号。
进一步地说,所述旋耕自动调节系统100是由至少一辅助监测模块10和一自动控制调节模块20组成,所述辅助监测模块10是由所述监测器11,所述监测油缸12,所述液压油储存蓄能器13,和所述压力传感器14组成。所述自动控制调节模块20是由所述控制器21,所述提升油缸22,和所述控制换向阀23组成。然后通过所述辅助监测模块10监测所述监测油缸12与所述液压油储存蓄能器13之间的压力值,并通过所述压力传感器14反馈所述压力信号到所述控制器21,其中所述控制器21将所述监测压力值B与所述合适压力设定值A作比较,以判断耕深,然后由所述控制器21发出所述自动升降指令给到所述控制换向阀23,所述控制换向阀23接收到指令后移动所述滑轴232,以形成油路去控制所述提升油缸22的伸缩,进而调整所述旋耕装置200的位置,使耕深效果达到最佳的状态。
特别地,在所述旋耕装置200正常工作中,当受环境影响当耕深增大时,所述辅助监测模块10的所述监测器11压缩所述监测油缸12,所述监测油缸12缩回,然后所述压力传感器14检测到所述监测油缸12与所述液压油储存蓄能器13之间的所述监测压力值B大于所述合适压力设定值A,即产生一上升压力信号并传输到所述控制器21,所述控制器21发出所述自动升降指令到所述自动控制调节模块20的所述控制换向阀23,并使得YV02得电后,所述提升油缸22伸出,所述旋耕装置200整体提高,并调整到所述监测压力值等同于所述合适压力设定值A,这样将使耕深达到理想状态。
特别地,在所述旋耕装置200正常工作中,当受环境影响当耕深减小时,所述辅助监测模块10的所述监测器11伸出,并且所述监测油缸12伸出,所述压力传感器14检测到所述监测油缸12与所述液压油储存蓄能器13之间的所述监测压力值B小于所述合适压力设定值A,即产生一下降压力信号并传输到所述控制器21,所述控制器21发出所述自动升降指令到所述自动控制调节模块20的所述控制换向阀23,使得YV01得电后,所述提升油缸22缩回,所述旋耕装置200整体降低,并调整到所述监测压力值等同于所述合适压力设定值A,这 样将使耕深达到理想状态。
值得一提的,由于是通过实时监测所述压力传感器14的值与所述合适压力设定值A作比较,并传输到所述控制器21做处理并发信号控制所述控制换向阀23的开闭,从而控制所述提升油缸22的升降,以调整所述旋耕装置200的耕深,这样不需要操作人员实时调整,降低操作人员的操作强度和操作技能,还可以实现无人驾驶。
更进一步地说,所述自动旋耕机1作业前,将所述辅助监测模块10的所述监测器11与地面或泥水表面接触,并将所述监测器11调整到合适高度,以保证作业时所述旋耕装置200在合适的作业高度。同时,通过所述压力调节阀15设置所述合适压力设定值A。
所述自动旋耕机1作业时,当遇到耕深增大,所述监测器11同步提升并压缩所述监测油缸12,其中所述监测油缸12中液压油流向所述液压油储存蓄能器13。并且,当整体所述辅助监测模块10中的压力升高至一上升压力值Y时,所述压力传感器14将所述上升压力信号传递给所述自动控制调节模块20的所述控制器21,接着由所述控制器21控制所述控制换向阀23的阀块移动,使形成给所述提升油缸22供油的回路。这时,所述提升油缸22伸出,并使所述旋耕装置200抬升。所述旋耕装置200抬升后,所述监测油缸12压力减小,所述液压油储存蓄能器13中的液压油返回到所述监测油缸12中,整体所述辅助监测模块10压力下降到所述合适压力设定值A时,所述压力传感器14将一合适信号传递到所述自动控制调节模块20的所述控制器21,接着由所述控制器21控制所述控制换向阀23停止作用,这样所述提升油缸22停止伸出,所述旋耕装置200将停留在适宜工作高度。
所述自动旋耕机1作业时,当遇到耕深减小。所述监测器11同步下降,并使所述监测油缸12伸出,其中所述液压油储存蓄能器13中液压油流向所述流入所述监测油缸12中。并且,当整体所述辅助监测模块10中的压力下降至一下降压力值Z时,所述压力传感器14将一下降压力信号传递给所述自动控制调节模块20的所述控制器21,接着由所述控制器21控制所述控制换向阀23的阀块移动,使形成给所述提升油缸22卸油的回路。这时,所述提升油缸22收缩,所述旋耕装置200在重力作用下下降。所述旋耕装置200下降后,所述监测油缸12压力升高,所述监测油缸12中的液压油流向所述液压油储存蓄能器13,整体所 述辅助监测模块10压力上升到所述合适压力设定值A时,所述压力传感器14将所述合适信号传递到所述自动控制调节模块20的所述控制器21,接着由所述控制器21控制所述控制换向阀23停止作用,这样所述提升油缸22停止缩回,所述旋耕装置200将停留在适宜工作高度。
在本发明的这个实施例中,所述自动旋耕机1包括所述旋耕自动调节系统100,一旋耕装置200,一机体300,一中心控制装置400,一行走装置500以及一驱动装置600。所述旋耕装置200安装于所述机体300。所述行走装置500设置于所述机体300的底部。所述驱动装置600安装于所述机体300。特别地,所述中心控制装置400安装于所述机体300的中部,便于操作。所述旋耕自动调节系统100,所述旋耕装置200,所述行走装置500以及所述驱动装置600分别连接于所述中心控制装置400。值得一提的,所述中心控制装置400为所述自动旋耕机1的中央控制系统,以用于整合控制所述自动旋耕机1的各项装置。特别地,所述旋耕自动调节系统100的所述自动控制调节模块20的所述控制器21也可以是所述中心控制装置400的一部份,这不为本发明的限制。另外,所述驱动装置600分别连接所述旋耕装置200,所述行走装置500和所述中心控制装置400,并为其提供动力,且通过所述中心控制装置400的控制来驱动各部件进行相应的作业。特别地,所述驱动装置600可实施为燃油、电力或油电混合的驱动,这不为本发明的限制。所述行走装置500用于带动所述自动旋耕机1进行行走,其中可为履带行走或两轮行走或四轮行走。所述旋耕自动调节系统100用于自动地调节所述自动旋耕机1的所述旋耕装置200的高度。
另外,本发明还提供的一自动旋耕机的旋耕自动调节方法将被阐述。所述自动旋耕机的旋耕自动调节方法包括以下步骤:
(A)设定一合适压力设定值A;
(B)监测一监测压力值B;
(C)比较所述监测压力值B和所述合适压力设定值A;以及
(D)自动调控所述旋耕装置200升降。
根据步骤(A),通过一压力调节阀15设置所述合适压力设定值A。
根据步骤(B),通过一监测器11侦测到耕深高度的变化,使一液压油在一监测油缸12和一液压油储存蓄能器13之间流动,一压力传感器14监测到所述监测压力值B。
根据步骤(B),所述压力传感器14将所述监测压力值B转换成一压力信号并传递到一自动控制调节模块20。
根据步骤(C),一控制器21将比较所述合适压力设定值A和所述监测压力值B,并向一控制换向阀23下达一自动升降指令。
根据步骤(D),一提升油缸22伸缩作动,进而实现所述旋耕装置200整体的抬升和下降。
根据步骤(D),所述监测压力值B大于所述合适压力设定值A,所述旋耕装置200整体上升。
根据步骤(D),所述监测压力值B小于所述合适压力设定值A,所述旋耕装置200整体下降。
另外,本发明还提供的一自动旋耕机的旋耕自动调节方法将被阐述。所述自动旋耕机的旋耕自动调节方法包括以下步骤:
(a)调整一监测器11到合适高度,设定一合适压力设定值A并传送到一自动控制调节模块20;
(b)所述旋耕装置200作动时,一辅助监测模块10监测得一监测压力值B并传送到所述自动控制调节模块20;
(c)一控制器21比较所述监测压力值B和所述合适压力设定值A;
(d)所述控制器21对一控制换向阀23下达一自动升降指令;以及
(e)一提升油缸22伸缩控制所述旋耕装置200上升或下降。
根据步骤(a),所述辅助监测模块10的整体压力被设置为一合适压力设定值A。
根据步骤(b),当所述监测器11监测到耕深增大时,所述监测压力值B的压力升高至一上升压力值Y。根据步骤(c),所述上升压力值Y大于所述合适压力设定值A。根据步骤(d),所述自动升降指令的一上升压力信号传输到所述控制换向阀23。根据步骤(e),所述提升油缸22伸出,所述旋耕装置200整体提高。
根据步骤(b),所述监测器11监测到耕深增大时,所述监测器11提升并压缩一监测油缸12,其中所述监测油缸12中液压油流向一液压油储存蓄能器13,一压力传感器14将一上升压力信号传递给所述自动控制调节模块20的一控制器21。
根据步骤(d),所述控制器21控制所述控制换向阀23使形成给一提升油缸 22供油的回路。这时,所述提升油缸22伸出,并使所述旋耕装置200抬升。
根据上述方法,所述旋耕装置200抬升后,所述监测油缸12压力减小,所述液压油储存蓄能器13中的液压油返回到所述监测油缸12中,整体所述辅助监测模块10压力下降到所述合适压力设定值A时,所述压力传感器14将一合适信号传递到所述自动控制调节模块20的所述控制器21,由所述控制器21控制所述控制换向阀23停止作用,所述提升油缸22停止伸出,所述旋耕装置200将停留在适宜工作高度。
根据步骤(b),当所述监测器11监测到耕深减小时,所述监测压力值B的压力下降至一下降压力值Z。根据步骤(c),所述下降压力值Z小于所述合适压力设定值A。根据步骤(d),所述自动升降指令的一下降压力信号传输到所述控制换向阀23。根据步骤(e),所述提升油缸22收缩,所述旋耕装置200整体下降。
根据步骤(b),当所述监测器11监测到耕深减小时,所述监测器11下降,并使所述监测油缸12伸出,所述液压油储存蓄能器13中液压油流向所述流入所述监测油缸12中,所述压力传感器14将一下降信号传递给所述自动控制调节模块20的所述控制器21。
根据步骤(d),所述控制器21控制所述控制换向阀23,使形成给所述提升油缸22卸油的回路。这时,所述提升油缸22收缩,所述旋耕装置200在重力作用下下降。
根据上述方法,所述旋耕装置200下降后,所述监测油缸12压力升高,所述监测油缸12中的液压油流向所述液压油储存蓄能器13,整体所述辅助监测模块10压力上升到所述合适压力设定值A时,所述压力传感器14将所述合适信号传递到所述自动控制调节模块20的所述控制器21,由所述控制器21控制所述控制换向阀23停止作用,这样所述提升油缸22停止缩回,所述旋耕装置200将停留在适宜工作高度。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。
本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (23)

  1. 一自动旋耕机的旋耕自动调节方法,其特征在于,包括步骤:
    (A)设定一合适压力设定值;
    (B)监测一监测压力值;
    (C)比较所述监测压力值和所述合适压力设定值;以及
    (D)自动调控所述旋耕装置升降。
  2. 根据权利要求1所述的旋耕自动调节方法,其中根据步骤(A),通过一压力调节阀设置所述合适压力设定值。
  3. 根据权利要求1所述的旋耕自动调节方法,其中根据步骤(B),通过一监测器侦测到耕深高度的变化,使一液压油在一监测油缸和一液压油储存蓄能器之间流动,一压力传感器监测到所述监测压力值。
  4. 根据权利要求1所述的旋耕自动调节方法,其中根据步骤(B),所述压力传感器将所述监测压力值转换成一压力信号并传递到一自动控制调节模块。
  5. 根据权利要求1所述的旋耕自动调节方法,其中根据步骤(C),一控制器将比较所述合适压力设定值和所述监测压力值并向一控制换向阀下达一自动升降指令。
  6. 根据权利要求1所述的旋耕自动调节方法,其中根据步骤(D),一提升油缸伸缩作动,进而实现所述旋耕装置整体的抬升和下降。
  7. 根据权利要求1所述的旋耕自动调节方法,其中根据步骤(D),所述监测压力值大于所述合适压力设定值,所述旋耕装置整体上升。
  8. 根据权利要求1所述的旋耕自动调节方法,其中根据步骤(D),所述监测压力值小于所述合适压力设定值,所述旋耕装置整体下降。
  9. 一自动旋耕机的旋耕自动调节方法,其特征在于,包括步骤:
    (a)调整一监测器到合适高度,设定一合适压力设定值并传送到一自动控制调节模块;
    (b)所述旋耕装置作动时,一辅助监测模块监测得一监测压力值并传送到所述自动控制调节模块;
    (c)一控制器比较所述监测压力值和所述合适压力设定值;
    (d)所述控制器对一控制换向阀下达一自动升降指令;以及
    (e)一提升油缸伸缩控制所述旋耕装置上升或下降。
  10. 根据权利要求9所述的旋耕自动调节方法,其中当所述监测器监测到耕深增大时,所述监测压力值的压力升高至一上升压力值,所述上升压力值大于所述合适压力设定值,所述自动升降指令的一上升压力信号传输到所述控制换向阀,所述提升油缸伸出,所述旋耕装置整体提高。
  11. 根据权利要求9所述的旋耕自动调节方法,其中根据步骤(b),所述监测器监测到耕深增大时,所述监测器提升并压缩一监测油缸,其中所述监测油缸中液压油流向一液压油储存蓄能器,一压力传感器将一上升压力信号传递给所述自动控制调节模块的一控制器。
  12. 根据权利要求9所述的旋耕自动调节方法,其中根据步骤(d),所述控制器控制所述控制换向阀使形成给一提升油缸供油的回路,所述提升油缸伸出,并使所述旋耕装置抬升。
  13. 根据权利要求12所述的旋耕自动调节方法,其中所述旋耕装置抬升后,所述监测油缸压力减小,所述液压油储存蓄能器中的液压油返回到所述监测油缸中,整体所述辅助监测模块压力下降到所述合适压力设定值时,所述压力传感器将一合适信号传递到所述自动控制调节模块的所述控制器,由所述控制器控制所述控制换向阀停止作用,所述提升油缸停止伸出,所述旋耕装置将停留在适宜工作高度。
  14. 根据权利要求9所述的旋耕自动调节方法,其中当所述监测器监测到耕深减小时,所述监测压力值的压力下降至一下降压力值,所述下降压力值小于所述合适压力设定值,所述自动升降指令的一下降压力信号传输到所述控制换向阀,所述提升油缸收缩,所述旋耕装置整体下降。
  15. 根据权利要求9所述的旋耕自动调节方法,其中根据步骤(b),当所述监测器监测到耕深减小时,所述监测器下降,并使所述监测油缸伸出,所述液压油储存蓄能器中液压油流向所述流入所述监测油缸中,所述压力传感器将一下降信号传递给所述自动控制调节模块的所述控制器。
  16. 根据权利要求9所述的旋耕自动调节方法,其中根据步骤(d),所述控制器控制所述控制换向阀,使形成给所述提升油缸卸油的回路,所述提升油缸收缩,所述旋耕装置在重力作用下下降。
  17. 根据权利要求16所述的旋耕自动调节方法,其中所述旋耕装置下降后,所述监测油缸压力升高,所述监测油缸中的液压油流向所述液压油储存蓄能器,整体所述辅助监测模块压力上升到所述合适压力设定值时,所述压力传感器将所述合适信号传递到所述自动控制调节模块的所述控制器,由所述控制器控制所述控制换向阀停止作用,这样所述提升油缸停止缩回,所述旋耕装置将停留在适宜工作高度。
  18. 一旋耕自动调节系统,适用于一自动旋耕机,其特征在于,包括:
    一辅助监测模块,其监测该自动旋耕机的一旋耕装置的耕深高度,并产生一压力信号;和
    一自动控制调节模块,其接收所述压力信号,并自动控制该旋耕装置上升或下降。
  19. 根据权利要求18所述的旋耕自动调节系统,其中所述辅助监测模块包括一监测器,一监测油缸,一液压油储存蓄能器,以及一压力传感器,其中所述 监测器连接于所述监测油缸,所述监测油缸连接所述液压油储存蓄能器,所述压力传感器连接于所述液压油储存蓄能器。
  20. 根据权利要求19所述的旋耕自动调节系统,其中所述辅助监测模块还包括一压力调节阀,其连接于所述液压油储存蓄能器和所述压力传感器,以用于设置一合适压力设定值。
  21. 根据权利要求20所述的旋耕自动调节系统,其中所述自动控制调节模块包括一控制器,一提升油缸,以及一控制换向阀,其中所述控制器连接于所述控制换向阀,所述控制换向阀连接于述提升油缸,所述提升油缸连接于该旋耕装置,所述压力传感器连接于所述控制器。
  22. 根据权利要求21所述的旋耕自动调节系统,其中所述自动控制调节模块还包括一油泵,其中所述控制换向阀分别连接所述提升油缸、所述油泵以及所述控制器。
  23. 根据权利要求22所述的旋耕自动调节系统,其中所述监测器系选自由滚动轮、浮板、行走轮、压力轮所组成的群组。
PCT/CN2019/106972 2019-04-09 2019-09-20 旋耕自动调系统及其方法 WO2020206938A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920473523.6U CN211210386U (zh) 2019-04-09 2019-04-09 旋耕自动调节装置
CN201910280793.XA CN110199592B (zh) 2019-04-09 2019-04-09 旋耕自动调系统及其方法
CN201920473523.6 2019-04-09
CN201910280793.X 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020206938A1 true WO2020206938A1 (zh) 2020-10-15

Family

ID=72750596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106972 WO2020206938A1 (zh) 2019-04-09 2019-09-20 旋耕自动调系统及其方法

Country Status (1)

Country Link
WO (1) WO2020206938A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2790140Y (zh) * 2005-04-28 2006-06-28 新疆机械研究院 仿地形全液压浮动悬挂装置
JP2012200237A (ja) * 2011-03-28 2012-10-22 Iseki & Co Ltd トラクタの耕深自動制御装置
CN204837095U (zh) * 2015-07-22 2015-12-09 桂林众一科技开发有限公司 一种甘蔗收割机专用液压全自动仿地形系统
CN105850240A (zh) * 2016-04-11 2016-08-17 当阳市天工实业有限公司 一种智能旋耕机及其智能控制方法
JP2017112866A (ja) * 2015-12-22 2017-06-29 井関農機株式会社 トラクタ
CN107340712A (zh) * 2017-07-03 2017-11-10 西安工业大学 自适应调节耕作刀具运行高低的控制系统及其控制方法
CN108243635A (zh) * 2018-03-09 2018-07-06 浙江理工大学 一种拖拉机旋耕机组耕深自动控制装置及其控制方法
CN110199592A (zh) * 2019-04-09 2019-09-06 丰疆智能科技股份有限公司 旋耕自动调系统及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2790140Y (zh) * 2005-04-28 2006-06-28 新疆机械研究院 仿地形全液压浮动悬挂装置
JP2012200237A (ja) * 2011-03-28 2012-10-22 Iseki & Co Ltd トラクタの耕深自動制御装置
CN204837095U (zh) * 2015-07-22 2015-12-09 桂林众一科技开发有限公司 一种甘蔗收割机专用液压全自动仿地形系统
JP2017112866A (ja) * 2015-12-22 2017-06-29 井関農機株式会社 トラクタ
CN105850240A (zh) * 2016-04-11 2016-08-17 当阳市天工实业有限公司 一种智能旋耕机及其智能控制方法
CN107340712A (zh) * 2017-07-03 2017-11-10 西安工业大学 自适应调节耕作刀具运行高低的控制系统及其控制方法
CN108243635A (zh) * 2018-03-09 2018-07-06 浙江理工大学 一种拖拉机旋耕机组耕深自动控制装置及其控制方法
CN110199592A (zh) * 2019-04-09 2019-09-06 丰疆智能科技股份有限公司 旋耕自动调系统及其方法

Similar Documents

Publication Publication Date Title
WO2020206943A1 (zh) 自动收割机、割台自动调节系统及其方法
CN201869533U (zh) 一种轮式拖拉机犁耕深度控制装置
US8418776B2 (en) Implement control systems
EP2269432B1 (de) Landwirtschaftliches Fahrzeug
US11696523B2 (en) System and method for hydraulically leveling a multi-wing agricultural implement
WO2015019942A1 (ja) 作業機の姿勢制御装置
CN110199592B (zh) 旋耕自动调系统及其方法
WO2021213399A1 (zh) 电控液压系统及其自动调整方法
WO2021213400A1 (zh) 电控液压系统和液压驱动方法
CN108843635A (zh) 一种丘陵山区拖拉机的液压传动控制系统及控制方法
CZ2017745A3 (cs) Způsob a zařízení k dotěžování hnacích zadních kol traktorů při zpracovávání půdy
WO2020206938A1 (zh) 旋耕自动调系统及其方法
CN105402207B (zh) 拖拉机犁具电控智能系统及方法
WO2021213356A1 (zh) 电控液压系统和带有电控液压系统的农机
CN204069638U (zh) 折腰式遥控水田旋耕机
CN211210386U (zh) 旋耕自动调节装置
CN104494716A (zh) 一种智能升降坡地手扶拖拉机电子自动平衡系统
EP3172953A1 (en) System and method for improved ride control for a work vehicle when transporting a drawn implement
US10912245B2 (en) System and method for regulating the flow of fluid supplied to actuators of an agricultural implement
CN210130080U (zh) 具有可调底盘的智能农机及其底盘
CN208845451U (zh) 一种丘陵山区拖拉机的液压传动控制系统
CN104206055B (zh) 折腰式遥控水田旋耕机
CN213426853U (zh) 一种拖拉机自动平衡液压悬挂装置
WO2020215608A1 (zh) 耕地设备及其犁具保护系统和保护方法
CN215719878U (zh) 一种旋耕机电控液压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924211

Country of ref document: EP

Kind code of ref document: A1