WO2020206893A1 - 一种用于岩体快速加固的伞型锚及应用方法 - Google Patents

一种用于岩体快速加固的伞型锚及应用方法 Download PDF

Info

Publication number
WO2020206893A1
WO2020206893A1 PCT/CN2019/100266 CN2019100266W WO2020206893A1 WO 2020206893 A1 WO2020206893 A1 WO 2020206893A1 CN 2019100266 W CN2019100266 W CN 2019100266W WO 2020206893 A1 WO2020206893 A1 WO 2020206893A1
Authority
WO
WIPO (PCT)
Prior art keywords
umbrella
connecting rod
anchor
sliding mechanism
rock
Prior art date
Application number
PCT/CN2019/100266
Other languages
English (en)
French (fr)
Inventor
程永辉
熊勇
陈航
胡胜刚
任佳丽
丁遵阳
Original Assignee
长江水利委员会长江科学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长江水利委员会长江科学院 filed Critical 长江水利委员会长江科学院
Priority to US17/053,290 priority Critical patent/US11293284B2/en
Publication of WO2020206893A1 publication Critical patent/WO2020206893A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/803Ground anchors with pivotable anchoring members
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/008Anchoring or tensioning means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • E21D20/003Machines for drilling anchor holes and setting anchor bolts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • E21D20/02Setting anchoring-bolts with provisions for grouting

Definitions

  • the invention relates to the technical field of rock mass reinforcement, in particular to an umbrella anchor for rapid rock mass reinforcement and an application method.
  • Rock anchoring technology is to connect the structure and the rock mass tightly through the anchor rods embedded in the rock mass, and rely on the shear strength of the anchor rod and the surrounding rock mass to resist the tensile force of the structure or make the rock mass itself get Reinforce to keep the structure and rock mass stable.
  • Rock bolts are widely used in rock and soil structures such as rock slopes, tunnels, anti-floating foundations, and anti-dumping foundations in the construction of highways, railways, water conservancy, construction, power transmission and transformation, and mining.
  • the methods of rock anchoring mainly include grouting bolts and mechanical anchoring.
  • the grouting bolt is to inject cement slurry into the borehole to bond the bolt and the rock to form an anchor solid.
  • the cement slurry needs to be solidified to reach the age before it can play a role, and the process is complicated, the grouting quality is difficult to control, and the construction requires more equipment.
  • Mechanical anchoring is to directly use the resistance of the rock mass to provide the anchoring force required for reinforcement, which can be used after the construction is completed, such as wedge-type anchors, inverted wedge-type anchors, and expansion shell anchors.
  • the wedge seam anchor is a mechanical anchor with round steel cut at the end and a wedge inserted into the wedge seam. After the rod body is inserted into the anchor hole during installation, hammering is used to make the iron wedge expand and cut the anchor head against the wall of the hole, and the frictional resistance generated by it provides anchoring force. It is mainly used to reinforce surrounding rock during construction or in caverns with a short service life to prevent rocks from falling. However, the anchoring force that can be provided is small and will decrease with time.
  • the inverted wedge anchor is a mechanical anchor whose ends are composed of fixed and movable wedges that are inverted from each other. After the rod body is inserted into the anchor hole during installation, the movable wedge is pushed into the inclined surface of the fixed wedge with a metal rod and the fixed wedge is wedged in the hole, and the frictional resistance generated by it provides the anchoring force.
  • An extensible and recyclable metal inverted wedge anchor invented by Tang Hai et al. (Patent No.: ZL201520264858.9).
  • the anchoring part adopts mutually inverted upper and lower wedges. When installing, tie the upper and lower wedges together and send them into the anchor hole. Hit the upper wedge with a metal rod for anchoring.
  • the upper and lower wedges of this kind of anchor rod that is, the fixed wedges and the movable wedges are completely separated, and when they are sent into the anchor hole, they can easily collide with the rock wall and cause the relative position to change, or even break away, and the metal rod is required to be knocked to make it tight.
  • the depth is small, the anchoring force is small, and the quality is difficult to guarantee.
  • the shell-expanded anchor is a mechanical anchor whose end is composed of an expanding shell and a conical nut (that is, a wedge). Rotate the rod body during installation to make the conical nut slide downwards, forcing the expansion shell to expand outward, and the wedge is embedded in the rock wall of the borehole, and as the rod body continues to rotate, the more wedged and firmer it becomes.
  • the expansion shell type anchor rod requires the wedge and the expansion piece to bear against the bottom of the anchor hole, and then rotate the anchor rod to open the expansion piece. If the lateral displacement occurs when the anchor rod is rotated, the expansion piece and The surrounding rock is not firmly occluded and the anchoring effect is poor.
  • the expansion pieces of some expansion bolts can not only slide along the wedge surface of the wedge, but may also be freely disengaged in the radial direction, causing the anchor head to easily bite with the surrounding rock halfway during the process of feeding into the anchor hole to the specified position. Difficulty in construction and even waste holes.
  • Wang Runzhong developed a shell-expanding bolt (patent number: ZL201420125404.9), which restricts the shell-expanding pieces in the wedge grooves through draw ropes and elastic ropes to prevent the shell-expanding pieces from biting into the surrounding rock halfway.
  • a downwardly protruding spire is provided to avoid lateral displacement.
  • the blockage of the expansion piece is different. The fixing effect of the spring rope is not good and it is easy to be broken by friction with the rock wall, which increases the difficulty of construction.
  • Umbrella anchors are currently widely used in soil reinforcement, such as the umbrella anchor (patent number CN97103512.1) invented by Zhang Jihong and others, and a drive-in umbrella anchor (patent number: ZL201510413982) invented by Cheng Zhanlin and others. 1) Both use the expanded anchor plate to squeeze the soil to form an anchoring area, and use the shear strength of the soil to obtain the anchoring force. However, the nature of the rock mass is very different from that of the soil mass. The anchor plate of the umbrella anchor used for soil reinforcement cannot be opened in the rock mass and cannot be used in the rock mass.
  • the present invention provides an umbrella-shaped anchor for rapid anchoring of rock masses and an application method.
  • the closed-state rock mass umbrella is formed by using drilling equipment.
  • the anchor is sent into the predetermined anchoring position, and the tensioning causes the load-bearing block to expand outward to resist the hole wall and reach the predetermined anchoring force. After the final locking, the anchoring force can be formed.
  • the invention converts the tensile force of the anchor rod into the squeezing force against the rock mass, and uses the higher compressive strength of the rock mass to obtain a larger anchoring force.
  • the entire process is very simple, with large applicable depth, fast construction speed, high efficiency, and structural resistance. Large, good stability and controllable quality.
  • An umbrella-shaped anchor for rapid rock reinforcement comprising a rock umbrella-shaped anchor head and a connecting rod.
  • the rock umbrella-shaped anchor head includes a sliding mechanism, a bearing block, a guide block, and a main rod of the anchor head.
  • the main rod of the anchor head passes through the square hole in the middle of the guide block, and the sliding mechanism is connected with the connecting rod through the main rod of the anchor head.
  • the upper part of each load bearing block is inserted into the groove of the guide block and completely fits with the side guide rail of the sliding mechanism;
  • the umbrella-shaped anchor used for the rapid reinforcement of rock mass as described above also includes a bearing plate and a locking device.
  • the bearing plate is used to fit on the connecting rod extending out of the rock mass.
  • the connecting rod and the pressure plate are locked and formed as a whole.
  • the locking device includes a sleeve and a slip.
  • the sleeve is a metal ring, and the middle is a rounded truncated cone-shaped hollow for passing through the connecting rod.
  • the slips are installed in the wedge-shaped gap between the sleeve and the connecting rod to lock the connecting rod, the sleeve and the pressure plate to form a whole.
  • the sliding mechanism is a hexahedron with a large cross-section on the upper and lower sides, a rectangular section guide rail is arranged in the middle of the inclined plane, the inclined plane is 70°-88°, and the height is 100mm-400mm.
  • the outer surface of the bearing block is a cylindrical surface
  • the inner surface is attached to the sliding mechanism and can slide relatively along the guide rail of the sliding mechanism; the upper part can be inserted into the groove of the guide block, And slide along the groove.
  • the guide block is a cylindrical body with a rectangular hole in the middle and a groove around the periphery.
  • the hole can allow the main rod of the anchor head to pass through.
  • the reverse anti-slip devices are respectively arranged between the anchor head main rod and the guide block, between the top of the bearing block and the guide block, and between the sliding mechanism and the bearing block.
  • the form can be a spring limit device. After the bearing block and the sliding mechanism slide relative to each other, after the bearing block and the sliding mechanism slide and expand and contact and squeeze with the hole wall, the reverse slip prevention device can restrict the sliding mechanism from moving downwards and separate from the bearing block.
  • An application method for umbrella anchors for rapid rock reinforcement including the following steps:
  • Step 1 Turn on the drilling equipment and drill into the rock body until it reaches a predetermined depth. Remove the drilling equipment. During this time, connect the rock umbrella anchor head and the connecting rod to connect the rock umbrella anchor in the collapsed state. The anchor head and connecting rod extend into the anchor hole and connect the second connecting rod until the designed anchoring depth is reached;
  • Step 2 Put the sleeve on the connecting rod and extend it into the anchor hole until it resists the guide block, pull the connecting rod outwards, and the sliding mechanism moves upwards to squeeze the bearing block to expand until the outer wall of the bearing block and Hole wall contact;
  • Step 3 Take out the casing, the reverse anti-slip device prevents the sliding mechanism from being separated downward from the bearing block, install the bearing plate and the locking device, and then install the large-stroke hollow jack on the construction platform and bearing plate, and use a card
  • the tile clamps the jack and the connecting rod;
  • Step 4 Start the jack and stretch the connecting rod at the end.
  • the jack pressure gauge shows that the pulling force reaches the predetermined anchoring force, use the locking device to lock the connecting rod and the pressure plate to form a whole, and the construction is completed.
  • the present invention converts the tensile force of the anchor rod into the squeezing force of the rock mass through the force transmission path of the connecting rod, the main rod of the anchor head, the sliding mechanism and the bearing block.
  • the greater the pressure the greater the anchoring force.
  • the present invention uses the higher compressive strength of the rock mass to obtain a larger anchoring force, and the structure has a large resistance force, which can ensure that it will not be damaged under the action of a predetermined anchoring force;
  • Umbrella anchors do not require grouting, and the resistance of the rock mass is used to provide anchoring force, and it can play a role after construction is completed, which overcomes the shortcomings of poor grouting quality and long age;
  • the outer surface of the bearing block is arc-shaped, which can fully contact the rock mass of the hole wall, the force area is large, the effective working length is long, the anchoring force is large, and the bearing block is squeezed by the sliding mechanism to open the stroke center outward Symmetrical, evenly squeezing the surrounding rock mass, and the rock mass is evenly stressed;
  • the umbrella-shaped anchor head of the rock mass is only opened when tensioned, and the anchoring angle has a wide range of applications. It can be used for the reinforcement of rock and soil structures such as slopes and structural foundations, including overall anti-skid, horizontal anti-skid, anti-floating and Anti-dumping etc.
  • Figure 1 is a schematic structural view of an umbrella-shaped anchor used for rapid rock reinforcement of the present invention
  • Figure 2 is a side view of the umbrella-shaped anchor for rapid rock reinforcement of the present invention in a folded state
  • Figure 3 is a top view and a bottom view of the umbrella-shaped anchor for rapid rock reinforcement of the present invention in a folded state;
  • Figure 4 is a cross-sectional view of the umbrella-shaped anchor head I-I for rapid rock reinforcement of the present invention
  • Figure 4(a) is a schematic view of the collapsed state
  • Figure 4(b) is a schematic view of the unfolded state
  • Fig. 5 is a diagram of the force principle of the umbrella-shaped anchor used for rapid rock reinforcement of the present invention.
  • 1 Umbrella anchor head for rock mass
  • 2 Connecting rod
  • 3 Pressure plate
  • 4 locking device
  • 5 sliding mechanism
  • 6 bearing block
  • 7 guide block
  • Rod guide block
  • 9 reverse anti-slip device
  • 10 connecting device
  • 11 guide block groove
  • 12 rectangular section guide rail.
  • the present invention provides an umbrella anchor for rapid reinforcement of rock masses, which includes an umbrella anchor head 1, a connecting rod 2, a pressure bearing plate 3 and a locking device 4.
  • the rock umbrella-shaped anchor head 1 includes a sliding mechanism 5, a bearing block 6, a guide block 7, and an anchor head main rod 8.
  • the anchor head main rod 8 passes through the square hole in the middle of the guide block 7.
  • the sliding mechanism 5 is connected to the connecting rod 2 through the anchor head main rod 8, and the upper part of each bearing block 6 is inserted into the groove 11 of the guide block 7 to slide
  • the mechanism 5 is completely wrapped and in contact, and the diameter of the anchor head is smaller than the diameter of the anchor hole in the closed state, and it is easy to extend into the hole.
  • the sliding mechanism 5 is a hexahedron with a large square cross section at the top, small and the bottom, a rectangular section guide rail 12 is arranged in the middle of the inclined plane, the inclination angle of the inclined plane is 70°-88°, and the height is 100mm-400mm.
  • the upper part of the bearing block 6 can be inserted into the groove 11 of the guide block 7 (as shown in Figure 2), and slide in the groove 11;
  • the outer surface of the bearing block 6 is a cylindrical surface, and the inner surface has a rectangular groove (such as As shown in Fig. 3(b)), it is attached to the rectangular cross-section guide rail 12 of the sliding mechanism 5, and can slide relatively along the guide rail of the sliding mechanism 5.
  • the guide block 7 is a cylindrical body with a slot in the middle and the periphery of the hole.
  • the hole is square and can allow the connecting rod 2 to pass through (as shown in Figure 2(a)).
  • the shape of the upper part of the bearing block 6 is matched. After the bearing block 6 is inserted into the guide block 7, it can only slide in the lateral direction.
  • the reverse anti-slip device 9 is arranged between the anchor head main rod 8 and the guide block 7, between the top of the bearing block 6 and the guide block 7, and between the sliding mechanism 5 and the bearing block 6.
  • the form can be a spring limit device After the sliding mechanism 5 squeezes the bearing block 6 to relatively slide and open and contact with the hole wall, the reverse anti-slip device 9 works (as shown in Figure 4(b)) to prevent the bearing block from being suddenly relieved 6 The downward movement is disengaged from the sliding mechanism 5.
  • the connecting rod 2 is a thick-walled steel pipe that can withstand the tensile force required for anchoring.
  • the inside can pass through prestressed steel strands.
  • the length of a single strand is 1 to 2m.
  • a connecting device 10 is used between the umbrella-shaped anchor head 1 and the connecting rod 2.
  • the connecting device 10 is provided at the end of the anchor head main rod 8.
  • the connecting device 10 can be a threaded connection.
  • the connecting device 10 can be a steel strand.
  • the bearing plate 3 is a square or round metal member that bears the pressure required for anchoring.
  • the bottom surface (the side in contact with the rock mass) of the bearing plate 3 is a smooth plane.
  • the top surface of the bearing plate can be ribbed according to the force requirements.
  • the bending deformation of the pressure plate 3 should not exceed 1% under the design stress condition.
  • the locking device 4 includes a sleeve and slips; the sleeve is a metal ring with an inverted truncated cone-shaped cavity in the middle, which can pass through the connecting rod 2, and the slips are installed in the wedge-shaped gap between the sleeve and the connecting rod 3. , The connecting rod 2, the sleeve and the pressure plate 3 are locked and integrated.
  • the four load-bearing blocks 6 are completely embedded in the grooves 11 of the guide block 7 and are closely attached to the periphery of the sliding mechanism 5.
  • the rock umbrella-shaped anchor head 1 and the connecting rod 2 in the collapsed state extend into In the drilled anchor hole, after reaching the designed position, the sleeve is used to resist the guide block 7.
  • the connecting rod 2 is pulled upwards, the sliding mechanism 5 is driven to move upward, and the bearing block 6 moves along the guide block under the pressing force of the sliding mechanism 5.
  • the tensile force T is proportional to the extrusion force N.
  • the tensile force T is always less than the limit of ⁇ N that will slide between the bearing block 6 and the rock mass.
  • is the sliding friction coefficient, that is, the umbrella anchor and the rock mass will only become tighter and tighter without relative sliding. Therefore, the present invention can make full use of the compressive strength of the rock mass to obtain greater anchoring force.
  • the present invention provides an umbrella anchor application method for rapid rock mass reinforcement, which includes the following steps (take a side slope as an example):
  • Step 1 Turn on the drilling equipment, drill into the rock body until the predetermined depth is reached, remove the drilling equipment, and connect the rock umbrella-shaped anchor head 1 with the connecting rod 2 during which the rock umbrella in the collapsed state is connected.
  • Type anchor head 1 and connecting rod 2 extend into the anchor hole and connect the second connecting rod 2 until reaching the designed anchoring depth;
  • Step 2 Put the sleeve over the connecting rod 2 and extend into the anchor hole until it resists the guide block 7, and then stretch the connecting rod 2 outwards, and the sliding mechanism 5 moves upwards to squeeze the bearing block 6 to open it until The outer wall of the bearing block 6 is in contact with the hole wall;
  • Step 3 Take out the casing, the reverse anti-slip device 9 prevents the sliding mechanism 5 from being separated from the bearing block 6 downwards, install the bearing plate 3 and the locking device 4, and then install the large-stroke hollow jack on the construction platform and bearing the pressure On the board 3, clamp the jack and the connecting rod 2 with slips;
  • Step 4 Start the jack and stretch the connecting rod 2 at the end.
  • the jack pressure gauge shows that the pulling force reaches the predetermined anchoring force
  • use the locking device 4 to lock the connecting rod 2 and the pressure plate 3 to form a whole, and the construction is completed.

Abstract

一种用于岩体快速加固的伞型锚,包括岩体伞型锚锚头(1)、连接杆(2);岩体伞型锚锚头包括滑动机构(5)、承力块(6)、导向块(7)、锚头主杆(8),锚头主杆从导向块中间的方形孔中穿过,滑动机构通过锚头主杆与连接杆相连,各承力块上部分别插入导向块凹槽(11)中,并与滑动机构侧面矩形截面导轨(12)完全贴合;安装时将收拢状态的岩体伞型锚锚头和连接杆伸入锚孔中后,对连接杆进行张拉带动滑动机构挤压承力块使其向外张开并与孔壁挤压。还公开了这种伞型锚的应用方法。该伞型锚将锚杆的拉力转换为对岩体的挤压力,利用岩体较高的抗压强度获取较大锚固力。该伞型锚适用深度大、施工速度快、效率高,无需注浆、结构抗力大、稳定性好。

Description

一种用于岩体快速加固的伞型锚及应用方法 技术领域
本发明涉及岩体加固技术领域,具体是一种用于岩体快速加固的伞型锚及应用方法。
背景技术
岩体锚固技术是通过埋设在岩体中的锚杆,将结构物与岩体紧紧地连接在一起,依赖锚杆与周围岩体的抗剪强度抵抗结构物的拉力或使岩体自身得到加固,以保持结构物和岩体的稳定。岩石锚杆在公路、铁路、水利、建筑、输变电、采矿等工程建设中的岩石边坡、隧道、抗浮基础、防倾倒基础等岩土构筑物里广泛使用。
目前,岩体锚固的方法主要包括注浆锚杆和机械锚固。
注浆锚杆是在钻孔内注入水泥浆,将锚杆与岩石粘结形成锚固体。但需要水泥浆凝固达到龄期后才能发挥作用,且工艺复杂、灌浆质量很难控制、施工需要的仪器设备较多。
机械锚固是直接利用岩体自身的抗力来提供加固所需的锚固力,施工完成后即可发挥作用,如楔缝式锚杆、倒楔式锚杆、涨壳式锚杆等。
楔缝式锚杆是端头圆钢切缝并在楔缝中插入楔子的机械型锚杆。安装时杆体插入锚孔后,通过锤击,使铁楔胀开切缝内锚头与孔壁抵紧,由其产生的摩阻力提供锚固力。主要用于在施工期间或使用年限较短的洞室中加固围岩,防止块石塌落。但可提供的锚固力较小,且会随时间的增长而降低。
倒楔式锚杆是端头由相互倒置的固定楔和活动楔组成的机械型锚杆。安装时杆体插入锚孔后,用金属杆将活动楔顶入固定楔斜面并将固定楔楔紧在孔内,由其产生的摩阻力提供锚固力。唐海等发明的一种可伸长可回收的金属倒楔式锚杆(专利号:ZL201520264858.9), 锚固部分采用相互倒置的上下楔,安装时把上下楔绑在一起送入锚孔后用金属杆敲击上楔进行锚固。但这种锚杆的上下楔,即固定楔和活动楔完全分离,送入锚孔中容易与岩壁碰擦导致相对位置变化,甚至发生脱离,且需要金属杆敲击使其楔紧,适用深度小,锚固力小,质量很难保证。
涨壳式锚杆是端头由胀壳和锥形螺帽(即楔体)组成的机械型锚杆。安装时旋转杆体,使锥形螺帽向下滑动,迫使胀壳向外张开,楔嵌入钻孔岩壁,并随着杆体的继续转动越楔越牢。但涨壳式锚杆需要将楔体和胀壳片抵住锚孔底,然后转动锚杆使胀壳片张开的安装方法,如果在转动锚杆时产生了横向位移会使胀壳片与围岩咬合不牢固,锚固效果差。有些胀壳锚杆的胀壳片不仅可沿楔体的楔面滑动外,还可能会径向自由脱开,导致锚头在送入锚孔指定位置过程中容易半途与围岩咬合导致锚杆施工困难甚至废孔。汪润中等针对这一问题研制了一种胀壳式锚杆(专利号:ZL201420125404.9),通过拉绳与弹性绳将胀壳片限制在楔槽内,防止胀壳片半途与围岩咬合,并在楔体下端中部设置向下凸出的尖顶避免横向位移发生。但是在施工过程中胀壳片的受阻情况不同,弹簧绳固定效果不佳且容易与岩壁摩擦发生断裂,增加施工难度。
伞型锚杆目前在土体加固中应用较多,张继红等发明的伞式锚具(专利号CN97103512.1)、程展林等发明的一种抢险专用击入式伞型锚(专利号:ZL201510413982.1)都是利用张开后的锚板挤压土体形成锚固区域,利用土体的抗剪强度获得锚固力。但岩体的性质与土体差别很大,用于土体加固的伞型锚的锚板无法在岩体中张开,在岩体中无法应用。
发明内容
本发明针对已有岩体锚杆和土体伞型锚的不足,提供了一种用于岩体快速锚固的伞型锚及应用方法,采用钻孔设备成孔后将闭合状态的岩体伞型锚送入预定锚固部位,张拉使承力块向外张开抵住孔壁直并达到预定锚力,最终锁定后即可形成锚固力。本发明将锚杆的拉力 转换为对岩体的挤压力,利用岩体较高的抗压强度获取较大锚固力,整个工艺非常简单,适用深度大、施工速度快、效率高,结构抗力大、稳定性好、质量可控。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种用于岩体快速加固的伞型锚,包括岩体伞型锚锚头、连接杆,所述岩体伞型锚锚头包括滑动机构、承力块、导向块、锚头主杆,锚头主杆从导向块中间的方形孔中穿过,滑动机构通过锚头主杆与连接杆相连,各承力块上部分别插入导向块凹槽中,并与滑动机构侧面导轨完全贴合;安装时岩体伞型锚锚头和连接杆伸入锚孔中后,使用套管抵住导向块,连接杆向上张拉时带动滑动机构向上移动,承力块在滑动机构挤压力作用下沿导向块凹槽向外张开,直到承力块外壁与孔壁接触,反向阻滑装置工作防止滑动机构向下运动与承力块分离,取出套管继续张拉达到预定锚力。
如上所述的用于岩体快速加固的伞型锚,还包括承压板和锁定装置,承压板用于套装在伸出岩体的连接杆上,锁定装置用于将伸出岩体的连接杆、承压板锁定并形成整体。
如上所述的用于岩体快速加固的伞型锚,所述锁定装置包括套筒和卡瓦,套筒为金属制做的圆环,中间为用于穿过连接杆的倒圆台形的空腔,卡瓦安装于套筒与连接杆间的楔形间隙,将连接杆、套筒与承压板锁定并形成整体。
如上所述的用于岩体快速加固的伞型锚,滑动机构为上小下大截面正方形的六面体,斜面中部有矩形截面导轨,斜面倾角为70°~88°,高度为100mm~400mm。
如上所述的用于岩体快速加固的伞型锚,承力块外表面为圆柱面,内表面与滑动机构贴合,可沿滑动机构导轨发生相对滑动;上部可插入导向块凹槽中,并沿凹槽滑动。
如上所述的用于岩体快速加固的伞型锚,导向块为中间开矩形洞周边开槽的圆柱体,洞口能允许锚头主杆通过,槽口共四个并均匀分布,槽口只允许承力块横向滑动。
如上所述的用于岩体快速加固的伞型锚,反向阻滑装置分别设在锚头主杆与导向块之间、承力块顶部与导向块之间、滑动机构与承力块之间,形式可为弹簧限位装置,承力块与滑动机构发生相对滑移张开与孔壁接触挤压后,反向阻滑装置可限制滑动机构向下运动与承力块脱离。
一种用于岩体快速加固的伞型锚应用方法,包括如下步骤:
步骤一、开启钻孔设备,向岩体内钻孔,直至达到预定深度,移开钻孔设备,期间将岩体伞型锚锚头与连接杆相接,将收拢状态的岩体伞型锚锚头和连接杆伸入锚孔中,并连接第二根连接杆,直至到达设计锚固深度;
步骤二、将套管套在连接杆外伸入锚孔中,直到抵住导向块,向外张拉连接杆,滑动机构向上运动挤压承力块使其张开,直至承力块外壁与孔壁接触;
步骤三、取出套管,反向阻滑装置使滑动机构无法向下与承力块分离,安装承压板和锁定装置,然后将大行程中空千斤顶安装于施工平台和承压板上,用卡瓦将千斤顶与连接杆夹紧;
步骤四、启动千斤顶,对尾端的连接杆进行张拉,千斤顶压力计显示拉力达预定锚固力时,用锁定装置将连接杆与承压板锁定,形成整体,施工完成。
本发明提出的用于岩体快速加固的伞型锚及应用方法,较以往的加固技术有以下方面的进步和优势:
(1)本发明通过连接杆、锚头主杆、滑动机构和承力块的传力途径,将锚杆的拉力转换为对岩体的挤压力,并且拉力越大,对岩体的挤压力也越大,进而锚固力越大。与摩擦型锚杆不同,本发明利用岩体较高的抗压强度获取较大锚固力,结构抗力大,可保证在预定锚固力作用下不破坏;
(2)伞型锚锚头伸入锚孔中时,在收拢状态下承压块不容易在半途与孔壁岩体咬合,到达设计锚固位置后,使用套管将导向块抵住后张拉连接杆,承力块在滑动机构的挤压下沿导向块凹槽张开并与岩 体挤压咬合,张拉行程可控,稳定性好,无需抵住锚孔底,锚固位置可根据连接杆长度控制,可保证施工质量;
(3)伞型锚不需要注浆,利用岩体自身抗力提供锚固力,施工完成即可发挥作用,克服了灌浆质量差、龄期长等缺点;
(4)承力块外表面为圆弧形,可充分与孔壁岩体接触,受力面积大,有效工作长度长,锚固力大,且承力块受滑动机构挤压后向外张开行程中心对称,对周围岩体均匀挤压,岩体受力均匀;
(5)钻孔完成后岩体伞型锚施工只需张拉,工艺非常简单,施工速度快、效率高;
(6)岩体伞型锚锚头只在张拉时张开,锚固角度适用范围广,可用于边坡、结构物基础等岩土构筑物加固,包括整体抗滑、水平抗滑、抗浮和防倾倒等。
附图说明
图1是本发明用于岩体快速加固的伞型锚的结构示意图;
图2是本发明用于岩体快速加固的伞型锚收拢状态的侧视图;
图3是本发明用于岩体快速加固的伞型锚收拢状态的俯视图和仰视图;
图4是本发明用于岩体快速加固的伞型锚锚头I-I剖面图,图4(a)是收拢状态示意图,图4(b)是展开状态示意图;
图5是本发明用于岩体快速加固的伞型锚的受力原理图。
图中:1—岩体伞型锚锚头;2—连接杆;3—承压板;4—锁定装置;5—滑动机构;6—承力块;7—导向块;8—锚头主杆;9—反向阻滑装置;10—连接装置;11—导向块凹槽;12—矩形截面导轨。
具体实施方式
下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述。
请参考图1,本发明提供一种用于岩体快速加固的伞型锚,包括伞型锚锚头1、连接杆2、承压板3和锁定装置4。
请进一步参考图2至图4,所述岩体伞型锚锚头1包括滑动机构 5、承力块6、导向块7、锚头主杆8。锚头主杆8从导向块7中间的方形孔中穿过,滑动机构5通过锚头主杆8与连接杆2相连,各承力块6上部分别插入导向块7凹槽11中,将滑动机构5完全包裹并接触,收拢状态下锚头直径小于锚孔直径,很容易伸入孔内。
滑动机构5为上小下大正方形截面的六面体,斜面中部有矩形截面导轨12,斜面倾角为70°~88°,高度为100mm~400mm。
承力块6上部可插入导向块7凹槽11中(如图2所示),并在凹槽11中滑动;承力块6的外表面为圆柱面,内表面中部有矩形凹槽(如图3(b)所示),与滑动机构5的矩形截面导轨12贴合,可沿滑动机构5导轨发生相对滑动。
导向块7为中间开洞周边开槽的圆柱体,洞口呈正方形,能允许连接杆2通过(如图2(a)所示),导向块凹槽11共四个并均匀分布,槽口与承力块6上部形状相匹配,承力块6插入导向块7后,只能沿横向滑动。
反向阻滑装置9设在锚头主杆8与导向块7之间、承力块6顶部与导向块7之间、滑动机构5与承力块6之间,形式可为弹簧限位装置等,滑动机构5挤压承力块6发生相对滑移张开并与孔壁接触后,反向阻滑装置9工作(如图4(b)所示),防止突然卸力后承力块6向下运动与滑动机构5脱离。
连接杆2为可承受锚固所需拉伸力的厚壁钢管,内部可穿预应力钢绞线,单根长度为1~2m,伞型锚锚头1与连接杆2之间采用连接装置10连接,连接装置10设在锚头主杆8端部,当仅采用钢管与锚头1相连时,连接装置10可为螺纹连接,当采用钢绞线时,连接装置10为可将钢绞线锚固的装置。
承压板3为承受锚固所需压力的方形或圆形金属构件,承压板3底面(与岩体接触一侧)为光滑的平面,承压板顶面可根据受力要求设肋,承压板3在设计受力条件下弯曲变形量不应超过1%。
锁定装置4包括套筒和卡瓦;套筒为金属制做的圆环,中间为倒圆台形的空腔,可穿过连接杆2,卡瓦安装于套筒与连接杆间3的楔 形间隙,将连接杆2、套筒与承压板3锁定并形成整体。
初始状态时,四片承力块6完全嵌入导向块7的凹槽11中,并紧贴在滑动机构5四周,使用时,收拢状态的岩体伞型锚锚头1和连接杆2伸入钻好的锚孔内,到达设计位置后使用套管抵住导向块7,连接杆2向上张拉时带动滑动机构5向上移动,承力块6在滑动机构5挤压力作用下沿导向块7凹槽11向外张开(如图4(b)所示),直到承力块6外壁与孔壁接触,反向阻滑装置9工作防止滑动机构5向下运动与承力块6分离,取出套管继续张拉达到预定锚力。
请参考图5,本发明的受力原理为,连接杆2上用来加固岩体防止其滑动的拉力T使滑动机构5向上运动挤压承力块6,在界面上产生挤压力F n,承力块向外张开挤压岩体产生挤压力N,岩体阻止锚杆向上运动产生静摩擦力f,稳定状态时f=T。在岩体抗压强度范围内,拉力T与挤压力N成正比,当滑动机构5楔率取值合适时,拉力T始终小于承力块6与岩体间会发生滑动的限值μN,μ为滑动摩擦系数,即伞型锚与岩体只会越楔越紧,不会发生相对滑动。因此本发明可充分利用岩体的抗压强度,获取较大的锚固力。
本发明提供一种用于岩体快速加固的伞型锚应用方法,包括如下步骤(以边坡为例):
步骤一、开启钻孔设备,向岩体内钻孔,直至达到预定深度,移开钻孔设备,期间将岩体伞型锚锚头1与连接杆2相接,将收拢状态的岩体伞型锚锚头1和连接杆2伸入锚孔中,并连接第二根连接杆2,直至到达设计锚固深度;
步骤二、将套管套在连接杆2外伸入锚孔中,直到抵住导向块7,向外张拉连接杆2,滑动机构5向上运动挤压承力块6使其张开,直至承力块6外壁与孔壁接触;
步骤三、取出套管,反向阻滑装置9使滑动机构5无法向下与承力块6分离,安装承压板3和锁定装置4,然后将大行程中空千斤顶安装于施工平台和承压板3上,用卡瓦将千斤顶与连接杆2夹紧;
步骤四、启动千斤顶,对尾端的连接杆2进行张拉,千斤顶压力 计显示拉力达预定锚固力时,用锁定装置4将连接杆2与承压板3锁定,形成整体,施工完成。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (9)

  1. 一种用于岩体快速加固的伞型锚,包括岩体伞型锚锚头(1)及与伞型锚锚头(1)连接的连接杆(2),其特征在于:所述伞型锚锚头(1)包括滑动机构(5)、承力块(6)、导向块(7)、锚头主杆(8),锚头主杆(8)从导向块(7)中间的方形孔中穿过,滑动机构(5)通过锚头主杆(8)与连接杆(2)相连,多个承力块(6)上部分别插入导向块(7)周边凹槽中,并与滑动机构(5)侧面导轨完全贴合;安装时收拢状态的岩体伞型锚锚头(1)和连接杆(2)伸入钻孔中后,使用套管抵住导向块(7),连接杆(2)向上张拉时带动滑动机构(5)向上移动,承力块(6)在滑动机构(5)挤压力作用下沿导向块(7)凹槽向外张开类似伞状,直到承力块(6)外壁与孔壁接触,反向阻滑装置(9)工作防止滑动机构(5)向下运动与承力块(6)分离,取出套管继续张拉达到预定锚力。
  2. 如权利要求1所述的用于岩体快速加固的伞型锚,其特征在于:连接杆(2)内部可穿预应力钢绞线,并与岩体伞型锚锚头(1)相连。
  3. 如权利要求1所述的用于岩体快速加固的伞型锚,其特征在于:还包括承压板(3)和锁定装置(4),承压板(3)用于套装在伸出岩体的连接杆(2)上,锁定装置(4)用于将伸出岩体的连接杆(2)、承压板(3)锁定并形成整体。
  4. 如权利要求3所述的用于岩体快速加固的伞型锚,其特征在于:所述锁定装置(4)包括套筒和卡瓦,套筒为金属制做的圆环,中间为用于穿过连接杆(2)的倒圆台形的空腔,卡瓦安装于套筒与连接杆间(3)的楔形间隙,将连接杆(2)、套筒与承压板(3)锁定并形成整体。
  5. 如权利要求1所述的用于岩体快速加固的伞型锚,其特征在于:滑动机构(5)为上小下大正方形截面的六面体,斜面中部有矩形截面导轨,斜面倾角为70°~88°,高度为100mm~400mm。
  6. 如权利要求1所述的用于岩体快速加固的伞型锚,其特征在于:承力块(6)外表面为圆柱面,内表面与滑动机构(5)咬合,可沿滑动机构(5)导轨发生相对滑动;上部可插入导向块(7)凹槽中,并沿凹槽滑动。
  7. 如权利要求1所述的用于岩体快速加固的伞型锚,其特征在于:导向块(7)为中间开方形洞周边开槽的圆柱体,洞口能允许锚头主杆(8)通过,槽口共四个并均匀分布,槽口只允许承力块(6)横向滑动。
  8. 如权利要求1所述的用于岩体快速加固的伞型锚,其特征在于:反向阻滑装置(9)分别设在锚头主杆(8)与导向块(7)之间、承力块(6)顶部与导向块(7)之间、滑动机构(5)与承力块(6)之间,形式可为弹簧限位装置,承力块(6)与滑动机构(5)发生相对滑移张开与孔壁接触挤压后,反向阻滑装置(9)可限制滑动机构(5)向下运动与承力块(6)脱离。
  9. 一种用于岩体快速加固的伞型锚应用方法,包括如下步骤:
    步骤一、开启钻孔设备,向岩体内钻孔,直至达到预定深度,移开钻孔设备,期间将岩体伞型锚锚头(1)与连接杆(2)相接,将收拢状态的岩体伞型锚锚头(1)和连接杆(2)伸入锚孔中,并连接第二根连接杆(2),直至到达设计锚固深度;
    步骤二、将套管套在连接杆(2)外伸入锚孔中,直到抵住导向块(7),向外张拉连接杆(2),滑动机构(5)向上运动挤压承力块(6)使其张开,直至承力块(6)外壁与孔壁接触;
    步骤三、取出套管,反向阻滑装置(9)使滑动机构(5)无法向下与承力块(6)分离,安装承压板(3)和锁定装置(4),然后将大行程中空千斤顶安装于施工平台和承压板(3)上,用卡瓦将千斤顶与连接杆(2)夹紧;
    步骤四、启动千斤顶,对尾端的连接杆(2)进行张拉,千斤顶压力计显示拉力达预定锚固力时,用锁定装置(4)将连接杆(2)与承压板(3)锁定,形成整体,施工完成。
PCT/CN2019/100266 2019-04-12 2019-08-12 一种用于岩体快速加固的伞型锚及应用方法 WO2020206893A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/053,290 US11293284B2 (en) 2019-04-12 2019-08-12 Umbrella-shaped anchor for quick reinforcement of rock mass, and application method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910292672.7 2019-04-12
CN201910292672.7A CN110043300B (zh) 2019-04-12 2019-04-12 一种用于岩体快速加固的伞型锚及应用方法

Publications (1)

Publication Number Publication Date
WO2020206893A1 true WO2020206893A1 (zh) 2020-10-15

Family

ID=67276903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100266 WO2020206893A1 (zh) 2019-04-12 2019-08-12 一种用于岩体快速加固的伞型锚及应用方法

Country Status (3)

Country Link
US (1) US11293284B2 (zh)
CN (1) CN110043300B (zh)
WO (1) WO2020206893A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605949A (zh) * 2021-07-21 2021-11-05 安徽理工大学 一种自钻式锚杆的支护结构

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110043300B (zh) 2019-04-12 2020-05-19 长江水利委员会长江科学院 一种用于岩体快速加固的伞型锚及应用方法
CN113897954A (zh) * 2021-08-24 2022-01-07 陈丽 一种提高锚杆预拉拔力的辅助器
CN114608504A (zh) * 2022-01-20 2022-06-10 温州市瓯江引水发展有限公司 一种引水隧洞的可更换位移测量装置
CN114753305B (zh) * 2022-04-02 2023-08-01 三峡大学 一种随水位变化边坡自动加载加固装置及加固方法
CN114875847B (zh) * 2022-05-06 2023-04-25 江西中一建工集团有限公司 一种用于水利建筑边坡支护装置
CN114790735A (zh) * 2022-05-10 2022-07-26 长江水利委员会长江科学院 一种实现伞型锚与注浆体协同抗拔的方法
CN115404859B (zh) * 2022-08-12 2023-07-11 中建八局第一建设有限公司 一种新型的压力型预应力抗浮锚杆及其施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87200415U (zh) * 1987-01-10 1987-11-25 中南工业大学 一种能回收的管锥式锚杆
CN2208100Y (zh) * 1994-11-19 1995-09-20 李永和 倒楔膨胀式塑钢全长锚杆
CN200971785Y (zh) * 2006-09-12 2007-11-07 鹤壁市中大矿业科技有限公司 镦头杆体涨壳锚杆
CN103334780A (zh) * 2013-07-17 2013-10-02 中国科学院武汉岩土力学研究所 一种胀壳式恒阻预应力锚杆
CN203879522U (zh) * 2014-03-19 2014-10-15 汪润中 一种涨壳式锚杆
JP2016011504A (ja) * 2014-06-27 2016-01-21 株式会社豊和 アンカーボルトの施工方法
CN110043300A (zh) * 2019-04-12 2019-07-23 长江水利委员会长江科学院 一种用于岩体快速加固的伞型锚及应用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1045161A (en) * 1963-02-07 1966-10-12 Bayliss Jones & Bayliss Ltd Improvements relating to anchor bolts
DE3025816A1 (de) * 1980-07-08 1982-02-04 Werkzeugfabrik Fritz Mächtle GmbH & Co KG, 7015 Korntal Verfahren zum befestigen von lasten mittels spreizanker sowie spreizanker zur durchfuehrung dieses verfahrens
ATA416181A (de) * 1981-09-18 1983-12-15 Maechtle Werkzeugfab Fritz Spreizanker
DE19541564A1 (de) * 1995-11-08 1997-05-15 Fischer Artur Werke Gmbh Metallspreizanker
US8277149B2 (en) * 2010-08-04 2012-10-02 Fci Holdings Delaware, Inc. Tensionable cable bolt with crimped shaft

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87200415U (zh) * 1987-01-10 1987-11-25 中南工业大学 一种能回收的管锥式锚杆
CN2208100Y (zh) * 1994-11-19 1995-09-20 李永和 倒楔膨胀式塑钢全长锚杆
CN200971785Y (zh) * 2006-09-12 2007-11-07 鹤壁市中大矿业科技有限公司 镦头杆体涨壳锚杆
CN103334780A (zh) * 2013-07-17 2013-10-02 中国科学院武汉岩土力学研究所 一种胀壳式恒阻预应力锚杆
CN203879522U (zh) * 2014-03-19 2014-10-15 汪润中 一种涨壳式锚杆
JP2016011504A (ja) * 2014-06-27 2016-01-21 株式会社豊和 アンカーボルトの施工方法
CN110043300A (zh) * 2019-04-12 2019-07-23 长江水利委员会长江科学院 一种用于岩体快速加固的伞型锚及应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605949A (zh) * 2021-07-21 2021-11-05 安徽理工大学 一种自钻式锚杆的支护结构

Also Published As

Publication number Publication date
CN110043300A (zh) 2019-07-23
CN110043300B (zh) 2020-05-19
US11293284B2 (en) 2022-04-05
US20210246787A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2020206893A1 (zh) 一种用于岩体快速加固的伞型锚及应用方法
CN105626112B (zh) 一种基于内置式恒阻器的支护装置及其使用方法
CN211397620U (zh) 可回收胀缩式锚杆
KR100847358B1 (ko) 압축형 영구 앵커
CN110374085B (zh) 一种针对珊瑚砂地基的双层螺纹钢管桩及施工方法
CN103103989A (zh) 端头膨胀型可回收锚杆
CN104947663B (zh) 一种抢险专用击入式伞型锚及应用方法
CN103758125B (zh) 挤压锁头弹簧承压板应力分散型大吨位扩大头锚索
CN103758550A (zh) 一种液胀式让压抗震抗高地温锚杆
CN205399435U (zh) 一种防滑预应力锚索
CN102953744A (zh) 中空注浆让压锚杆
CN106088088B (zh) 可回收锚筋的应力分散型加劲桩的施工方法
KR101135076B1 (ko) 제거식 앵커의 강연선 제거공법
CN209430233U (zh) 一种涨壳锚固头
CN108547289B (zh) 一种三爪式固定锚
CN111648361A (zh) 一种预应力锚索可回收装置及其施工方法
CN203867598U (zh) 一种可重复施加预应力的锚索
KR101075157B1 (ko) 제거식 앵커
CN115354671B (zh) 一种用于原地加固危岩的锚拉结构
CN103883339B (zh) 一种重复施加预应力的锚索支护方法
CN112962597A (zh) 一种可回收锚筋的应力分散型加劲桩的施工方法
KR101222477B1 (ko) 파쇄대 지반에서도 인장이 가능한 확공지압형 앵커
CN204982875U (zh) 一种抢险专用击入式伞型锚
CN112878388B (zh) 一种检测可回收锚杆端部灌浆体受压承载力的试验方法
CN203655326U (zh) 一种液胀式让压抗震抗高地温锚杆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924492

Country of ref document: EP

Kind code of ref document: A1