WO2020206854A1 - 一种离子型的柔性触控传感器 - Google Patents

一种离子型的柔性触控传感器 Download PDF

Info

Publication number
WO2020206854A1
WO2020206854A1 PCT/CN2019/094922 CN2019094922W WO2020206854A1 WO 2020206854 A1 WO2020206854 A1 WO 2020206854A1 CN 2019094922 W CN2019094922 W CN 2019094922W WO 2020206854 A1 WO2020206854 A1 WO 2020206854A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
conductive layer
touch sensor
flexible touch
Prior art date
Application number
PCT/CN2019/094922
Other languages
English (en)
French (fr)
Inventor
邵若梅
孙树清
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2020206854A1 publication Critical patent/WO2020206854A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to the technical field of flexible electronics, in particular to the structural design of materials and devices of an ionic flexible touch screen.
  • the controller touch screens in the current market are mostly made of glass-based indium tin oxide (ITO).
  • ITO indium tin oxide
  • This controller touch screen is rigid and transparent; this technology coats ITO on PET and thin glass, and conducts electricity through ITO. It is used as a conductive layer to make resistive touch screens and capacitive touch screens.
  • the existing core technology of flexible touch screens is mainly transparent conductive film.
  • the conductive films that have been marketed are mainly divided into two types, one is a touch screen coated with ITO on a PET substrate, and the other is a touch screen coated with FTO tin oxide and fluorine.
  • the latter is costly and its performance is not as good as the former.
  • the category is relatively single, and the technology monopoly is mainly Japan. Japan has almost monopolized the international high-quality ITO target material and almost all of the ITO conductive film market. As a developing country, my country has no core technology, and only involves low-end manufacturing in the international industrial chain.
  • ITO glass screen is rigid and fragile, with a light transmittance of less than 80%, and the color is yellow due to light wave interference.
  • indium tin oxide is a rare earth material, and the use of mobile phones and other electronic devices is gradually increasing. Large, the stock of this material is becoming less and less, and the price is rising; the market needs to develop alternative flexible touch screen materials and designs to replace the existing technology.
  • nano silver As a flexible touch screen technology that replaces conductive films, nano silver has gradually entered the stage of marketization.
  • the conductive film is made into a conductive film through the nanoization and imaging of silver metal to replace the original ITO conductive layer, thereby solving the market's demand for flexible touch and the gap of ITO materials.
  • the nano silver wire flexible touch screen technology that is about to enter the market has certain limitations. Firstly, nano-scale silver particles are imaged and self-assembled through nanotechnology. The preparation process is more complicated, and silver has a certain cost as a precious metal.
  • the flexibility of nano-silver flexible screen itself has certain limitations. It can complete mechanical crimping operation, but it is resistant Other mechanical operations such as stretching, twisting and other deep flexible work.
  • the alternative conductive film raw materials involved in the literature published at home and abroad include graphene, carbon nanotubes, zinc oxide-based, etc., which are all in the laboratory stage.
  • carbon-based conductive films such as graphene and carbon nanotubes have complex manufacturing processes and limited flexibility; in addition, because carbon-based materials have different degrees of background color, such as carbon nanotube conductive films, With dark cyan, it will bring color shift to the lower OLED screen display; furthermore, if the film coating level cannot guarantee a high degree of uniformity, it will increase the degree of display color shift.
  • Zinc oxide conductive film is colorless and transparent with high light transmittance, and it is a cheap wide-bandgap semiconductor material. It is currently used in solar panels in the market. However, the cost of large-scale industrial production of zinc oxide conductive film is relatively high. Technical application bottleneck, uniformity is difficult to guarantee; and the same as the previous transparent conductive film, it has the same restrictions on the realization of flexibility.
  • the present invention proposes an ionic flexible touch sensor, which has the advantages of high optical transparency, deep flexibility, and low manufacturing cost.
  • the invention discloses an ionic flexible touch sensor, which includes a multilayer conductive layer, a multilayer insulating layer, and two encapsulation layers.
  • the multilayer conductive layers are arranged one on top of the other, and each two conductive layers A layer of the insulating layer is laminated between, and the two layers of the encapsulation layer are respectively encapsulated on the upper and lower surfaces of the multilayered conductive layers; wherein the conductive layer is made of ion-conductive flexible gel material
  • the insulating layer and the encapsulation layer are respectively made of insulating high molecular polymer materials.
  • the conductive layer of each layer adopts ion conductive composite PAAM/sodium alginate hydrogel material, ion conductive PEGDA hydrogel material, ion conductive PMMA hydrogel material or ion conductive composite shell polymer.
  • ion conductive composite PAAM/sodium alginate hydrogel material ion conductive PEGDA hydrogel material, ion conductive PMMA hydrogel material or ion conductive composite shell polymer.
  • the preparation method of the ion-conducting composite PAAM/sodium alginate hydrogel material includes:
  • the material in the prefabricated mold is taken out and solidified to obtain the PAAM/sodium alginate hydrogel material.
  • the prefabricated mold is also placed at room temperature or in an oven at higher than room temperature for cross-linking.
  • the material in the prefabricated mold is taken out and placed under an ultraviolet lamp for light curing; further, after curing in step C, it further includes: putting the cured material into Ca 2 + Soak in a CaCl 2 aqueous solution with an ion concentration higher than 0.2wt%, take it out, and dry the surface to obtain a PAAM/sodium alginate hydrogel material.
  • the multilayered conductive layer includes a first conductive layer, a second conductive layer, and a third conductive layer
  • the multilayered insulating layer includes a first insulating layer and a second insulating layer
  • the two layers of the encapsulation layer include a first insulating layer.
  • An encapsulation layer and a second encapsulation layer, the flexible touch sensor is in accordance with the first encapsulation layer, first conductive layer, first insulating layer, second conductive layer, second insulating layer, third conductive layer, and The two encapsulation layers are arranged in order to form a stack; wherein the first encapsulation layer, the second encapsulation layer and the second insulating layer are respectively made of a flat-plate structure optically transparent insulating polymer material, the The first insulating layer is made of an optically transparent insulating high molecular polymer material with a mesh or dot structure.
  • the flexible touch sensor further includes a contact position measuring circuit, the contact position measuring circuit is respectively connected to the first positive electrode, the first negative electrode, the second positive electrode, and the second negative electrode, wherein the first A positive electrode and a first negative electrode are respectively arranged on two sides in the first direction of the first conductive layer, and the second positive electrode and a second negative electrode are respectively arranged on two sides of the second conductive layer in the second direction.
  • the first conductive layer and the second conductive layer are two adjacent conductive layers, and the first conductive layer
  • the insulating layer laminated between the layer and the second conductive layer is made of an optically transparent insulating high molecular polymer material with a mesh or dot structure.
  • the two sides in the first direction of the first conductive layer are respectively provided with first elastic stretchable electrodes arranged along the two sides in the first direction, the first positive electrode and The first negative electrode is respectively connected to the first elastic stretchable electrode provided on two sides in the first direction; the second conductive layer is provided on two sides in the second direction, respectively There are second elastic stretchable electrodes arranged along two sides in the second direction, and the second positive electrode and the second negative electrode are respectively connected to the two sides arranged in the second direction The second elastic stretchable electrode.
  • both the first elastic stretchable electrode and the second elastic stretchable electrode adopt a strip spring structure with a diameter of 0.1-2 mm, which is wound by a metal wire of 0.5 mm or less.
  • the flexible touch sensor further includes a capacitance measurement circuit, both ends of the capacitance measurement circuit are electrically connected to the second conductive layer and the third conductive layer, wherein the second conductive layer and the third conductive layer
  • the conductive layer is two adjacent conductive layers, and the insulating layer laminated between the second conductive layer and the third conductive layer adopts a flat-plate structure of an optically transparent insulating polymer polymer Made of material.
  • the ionic flexible touch sensor disclosed in the present invention includes a conductive layer, an insulating layer and an encapsulation layer, wherein the conductive layer is made of ion conductive flexible gel material,
  • the insulating layer and the encapsulation layer are made of insulating polymer materials, which have good light transmission and deep flexibility, and their configuration is simple, raw materials and production costs are low, portable, practical, and beautiful, suitable for For mass production, it is an ideal choice for a new generation of flexible touch screens and flexible touch input devices in wearable electronic devices.
  • the present invention also has the following advantages:
  • PAAM/sodium alginate hydrogel material When PAAM/sodium alginate hydrogel material is selected for the conductive layer, it has good shear scar passivation characteristics (that is, under certain stretching conditions, a blunt edge will be formed near the shear wound to prevent the spread of scars) and Excellent anti-friction and other characteristics.
  • a resistive touch sensing structure can be added.
  • the first conductive layer and the second conductive layer form contact points under pressure, so that the voltage detection points can be detected by two perpendicular directions. Obtain the voltage change value of the contact point to convert it into position coordinates, without the need for the human body or conductor to contact the conductive layer; wherein the packaging of the encapsulation layer made of upper and lower layers of insulating materials can be used regardless of whether the conductor or insulator touches the surface of the screen; , Because the conductive layer adopts ion-conducting flexible gel material, the conductive layer obtains a relatively ideal uniformity.
  • the elastic stretchable electrode by adding a voltage through the elastic stretchable electrode, a uniform potential difference can be obtained on the surface of the conductive layer.
  • a voltage By detecting the contact point voltage, Obtain ideal linear position detection, so as to realize contact detection;
  • the elastic stretchable electrode adopts a special structure, which not only guarantees the ultra-low resistance requirement of the entire electrode below 10 ⁇ , but also ensures that the The tensile properties of the glue after pouring into one body.
  • FIG. 1 is a schematic structural diagram of a flexible touch sensor according to a preferred embodiment of the present invention
  • FIG. 2 is a general structural diagram and circuit layout diagram of a flexible touch sensor according to a preferred embodiment of the present invention
  • FIG. 3 is an equivalent schematic diagram of the contact position measurement circuit of the flexible touch sensor in FIG. 2;
  • 4a to 4d are pressure test analysis curve diagrams of a flexible touch sensor according to a preferred embodiment of the present invention.
  • FIG. 5 is a working system diagram of a touch screen formed by a flexible touch sensor in a preferred embodiment of the present invention and a terminal connection.
  • the embodiment of the invention discloses an ionic flexible touch sensor, which includes a multi-layer conductive layer, a multi-layer insulation layer and two encapsulation layers.
  • the multi-layer conductive layers are arranged one on top of the other, and are arranged between every two conductive layers.
  • One layer of the insulating layer is laminated, and the two encapsulation layers are respectively encapsulated on the upper and lower surfaces of the stacked multilayer conductive layers;
  • the conductive layer is made of ion-conducting flexible gel material, and the insulating layer and the encapsulation layer are respectively used Made of insulating polymer material.
  • the flexible touch sensor of the preferred embodiment of the present invention includes a conductive layer 11, a conductive layer 12, a conductive layer 13, an insulating layer 21, an insulating layer 22, an encapsulation layer 31, and an encapsulation layer 32, wherein the The flexible touch sensor is laminated in the order of encapsulation layer 31, conductive layer 11, insulating layer 21, conductive layer 12, insulating layer 22, conductive layer 13, and encapsulation layer 32; among them, conductive layer 11, conductive layer 12 ,
  • the conductive layer 13 is respectively made of ion conductive composite PAAM (polyacrylamide)/sodium alginate hydrogel material; the structure of the insulating layer 21 is a fine grid or lattice, and the material is PDMS (poly two Methylsiloxane) or PEGDA (polyethylene glycol diacrylate) and other high light-transmitting macromolecule polymers; the structure of the insulating layer 22, the encapsulation layer 31, and the encapsulation layer 32
  • the flexible touch sensor of the preferred embodiment of the present invention includes a contact position measuring circuit to accurately position the pen touch on the touch panel formed by the flexible touch sensor in two dimensions; the contact position measuring circuit is respectively connected to the positive of the X axis
  • the negative electrodes 41, 42 and the Y-axis positive and negative electrodes 43, 44 wherein the X-axis positive and negative electrodes 41, 42 are respectively distributed on the upper and lower sides of the conductive layer 11, and the Y-axis positive and negative electrodes 43, 44 are respectively distributed on two sides on the left and right sides of the conductive layer 12, and the XY axis constitutes the physical coordinates of the touch panel.
  • elastic stretchable electrodes 45 are respectively arranged along each side, and the X-axis positive and negative electrodes 41, 42
  • the positive and negative electrodes 43 and 44 of the Y axis are respectively connected to the elastic stretchable electrode 45, which is a strip made of metal wires (aluminum, gold, silver, etc.) of 0.5 mm or less.
  • Shaped spring structure with a diameter of about 0.1 ⁇ 2mm, which not only guarantees the ultra-low resistance requirement of the whole electrode below 10 ⁇ , but also guarantees the tensile performance after pouring into one body with the composite hydrogel (depending on the winding density, it can reach Tensile performance above 5 times).
  • the entire conductive layer 11 is equivalent to Effective sliding rheostat 46; and the voltage detection terminal Y+ port is equivalent to a contact pointer of a sliding rheostat, thereby converting the X-axis physical position signal where the contact is located into a voltage signal input to the controller.
  • the conductive layer 12 where the positive and negative poles 43 and 44 of the Y-axis are located adds positive and negative voltages, and the physical location of the contact can be obtained by detecting the X+ port connected to the positive electrode 41 of the X-axis.
  • the voltage value represented by the Y axis When a computing terminal clock cycle ends, the physical address information of the coordinate axis where the contact is located can be obtained.
  • the elastic stretchable is ingeniously designed on the two sides of the upper and lower sides of the conductive layer 11 and the two sides of the left and right sides of the conductive layer 12 respectively.
  • Stretching electrode 45 using elastic stretchable electrode 45 for the flexible touch sensor and the resistive ionic touch screen formed by it, which not only ensures the uniform reduction of the potential difference on the conductive layer, but also ensures the stretching of the entire element performance.
  • the synthesis of the ion-conducting flexible gel material in the flexible touch sensor of the preferred embodiment of the present invention is cast by a mold, so that the conductive layer obtains a relatively ideal uniformity, and the voltage can be added through the strip-shaped elastic stretchable electrode.
  • the surface of the ion conductive layer obtains a uniform potential difference; by detecting the contact point voltage, an ideal linear position detection can be obtained.
  • the position and pressure resolution of the flexible touch sensor in the preferred embodiment of the present invention can be achieved only depending on the accuracy of the digital-to-analog conversion and the contact area of the touch pen;
  • the flexible touch sensor of the preferred embodiment of the present invention is based on voltage detection, which avoids the problem that the existing high-precision capacitive sensor is easily interfered by external electric fields. Therefore, the flexible touch sensor of the preferred embodiment of the present invention has obvious advantages in terms of linear recognition degree, resolution, and anti-voltage interference capability, and has potential for commercial application.
  • the flexible touch sensor of the preferred embodiment of the present invention further includes a capacitance measurement circuit 50 to detect the pressure/tension received by the flexible touch sensor; wherein the two ends of the capacitance measurement circuit 50 are electrically connected to the conductive layer 12 and the conductive layer 12 and the conductive layer, respectively.
  • the conductive layer 12 and the conductive layer 13 made of conductive gel material and the insulating layer 22 made of PDMS film material embedded in the middle constitute a parallel plate capacitance measurement unit, so that the capacitance measurement circuit 50 is under pressure or tension. At the same time, the capacitance signal will change accordingly.
  • the capacitance measurement circuit 50 described above is tested through specific experiments.
  • the flexible touch sensor sample size used in the pressure test is 56 ⁇ 24 mm, the thickness of the conductive layer is 2 mm, and the thickness of the insulating layer and the encapsulation layer are 0.2 mm, respectively.
  • a set of standard weights of 1 ⁇ 50g is used to test the pressure of the samples. Because the capacitance changes with pressure, a 10 ⁇ 10mm lightweight plastic gasket (weight ⁇ 0.01) is added under the standard weights during the test. g, can be ignored), so that the contact area between the weight and the sample is the same, which is convenient for pressure conversion.
  • the peak value of each protrusion is 1g, 2g, 5g, 10g, 20g, 50g, and the capacitance change caused by the weight placed on the sample;
  • Figure 4b is the peak measurement value in Figure 4a.
  • the starting point is expressed as step growth with different shapes, which is more intuitive;
  • Figure 4c is a box diagram of the data in Figure 4b, and you can see the degree of change and deviation of the test data under different pressures;
  • Figure 4d is a comparison of Figure 4c
  • the median line data in the box chart (that is, the mean data in statistics) is made into a line graph, which makes the linear change of pressure detection sensor more intuitive.
  • the capacitance measurement circuit of the flexible touch sensor of the preferred embodiment of the present invention has better sensitivity, and can perform a significant detection response to a pressure of 100Pa (that is, a 1g weight acts on There is an obvious capacitance change ⁇ C on the area of 10 ⁇ 10mm, ⁇ C ⁇ 5%). As shown in Figure 4d, it has a relatively ideal linearity between 0.01N and 0.5N, which can meet the requirements of tactile detection.
  • FIG. 5 it is a working system diagram of the touch screen 100 and the terminal 200 formed by the flexible touch sensor in the preferred embodiment of the present invention.
  • the output position signal of the touch screen 100 (X+, Y+, X-, Y-) are uploaded to the terminal 200 (computer) through the digital/analog conversion (A/D) 301 of the touch screen control board 300, signal amplification and filtering 302, and physical address to logical address mapping 303 Logical address; the logical address can output data to the driver layer 201 of the terminal 200 through the last parallel/serial signal conversion 304 through the USB interface/nine-pin serial port.
  • A/D digital/analog conversion
  • the output pressure/tension signal of the touch screen 100 is completed by the added capacitance measurement single-chip microcomputer system 400.
  • the position and pressure/tension information can be controlled by the clock of the terminal 200 (computer) to simultaneously complete the signal collection and upload to the terminal 200 through the serial port.
  • the conductive layer 11, the conductive layer 12, and the conductive layer 13 are respectively made of ion conductive composite PAAM/sodium alginate hydrogel material, and the ion conductive composite PAAM/sodium alginate water
  • the gel material has good shear scar passivation characteristics (that is, under certain stretching conditions, a blunt edge will be formed near the shear wound to prevent the scar from spreading) and excellent anti-friction properties.
  • the conductive layer 11, the conductive layer 12, and the conductive layer 13 are respectively made of Ca 2+ ionic PAAM/sodium alginate hydrogel material, the Ca 2+ ionic PAAM/sodium alginate
  • the preparation process of the hydrogel material is as follows (the following component ratios are only examples, and the preparation process can be adjusted according to actual conditions):
  • MBAA N,N-dimethylbisacrylamide
  • the conductive layer 11, the conductive layer 12, and the conductive layer 13 may also use other ion conductive gels, such as ion conductive PEGDA hydrogel materials, ion conductive PMMA hydrogels, or ion conductive composites. Type chitosan hydrogel materials and so on.
  • the conductive layer of the flexible touch sensor in the preferred embodiment of the present invention is made of ion-conducting flexible gel material. Compared with the nano-silver flexible touch screen solution, not only the cost is greatly reduced, but also the fatigue strength and tensile performance are greatly reduced. , Torsion and other extreme performance is greatly improved (stretching performance can reach more than 15 times), but also has good biocompatibility.
  • the flexible touch sensor in the preferred embodiment of the present invention belongs to a transparent conductive gel type touch sensor, and the conductive gel and silica gel used are extremely cheap, which is beneficial to market promotion. Based on the characteristics of transparent gel, it will solve the future market's exploration needs for deep flexibility (arbitrary bending, curling and stretching); it replaces the use of rare metal films (ITO) and precious metal films. More importantly, a touch controller with commercial value must meet the requirements of high linearity and high touch resolution, which is also the advantage of the present invention. In addition, in a further embodiment, pressure and tensile force sensing functions are also provided to detect the pressure and tensile force acting on it, thereby expanding market applications and improving product value.
  • the flexible touch sensor in the preferred embodiment of the present invention is a new type of flexible multifunctional touch control sensor, which has the advantages of high optical transparency, deep flexibility, and low manufacturing cost. It can complete work under stretching conditions and is a new generation of flexible touch sensors. Ideal for flexible touch input devices in control screens and wearable electronic devices.
  • a new type of conductive material is used-a resistive contact coordinate detection screen module and a pressure/tension sensor module are designed and integrated on the basis of conductive composite hydrogel and silica gel, so that the product has high precision and high Linearized contact coordinate positioning capability and highly sensitive pressure/tension parameter feedback capability; and the material selection range of the key conductive layer also includes other conductive gel materials, synthesized at room temperature and pressure, low technical cost, and good business potential.
  • the flexible touch sensor of the preferred embodiment of the present invention is a breakthrough new generation of flexible touch sensor equipment, with a broad market application prospects-ideal human-computer interaction products on wearable devices:
  • High-precision touch operation can also detect pressure and tension; it has excellent flexibility, can complete mechanical operations such as folding, curling, stretching, and twisting, and has good biocompatibility, which can be safely applied to body stickers cover.
  • the materials used in the touch panel system have good light transmittance and transparency, and can be further used as an alternative to touch screens. Taking full advantage of the material properties, this design also integrates pressure sensing and tension sensing.
  • there is a bright spot in the performance of anti-breakage performance-it has a special material shear scar passivation characteristic, which can form passivation in the damaged part, thereby prolonging the life cycle of the product without affecting the use.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Push-Button Switches (AREA)

Abstract

一种离子型的柔性触控传感器,包括多层导电层(11,12,13)、多层绝缘层(21,22)和两层封装层(31,32),多层所述导电层(11,12,13)相互叠层排列,且在每两层所述导电层(11,12,13)之间叠层设置一层所述绝缘层(21,22),两层所述封装层(31,32)分别封装在叠层排列的多层所述导电层(11,12,13)的上下表面处;其中所述导电层(11,12,13)采用离子导电型柔性凝胶材料制成,所述绝缘层(21,22)和所述封装层(31,32)分别采用绝缘型高分子聚合物材料制成;上述离子型的柔性触控传感器可以集成触点位置测量模块以及触点压力/拉伸力检测模块。提出了离子型的柔性触控传感器的一整套较为完备的结构设计以及制造技术解决方案,其产品具有高光学透明度、深度柔性、低制造成本、高位置测量分辨率和高灵敏度等优势。

Description

一种离子型的柔性触控传感器 技术领域
本发明涉及柔性电子技术领域,尤其涉及离子型的柔性触控屏的材料与器件的结构设计。
背景技术
现行市场的控制器触控屏多为玻璃基氧化铟锡(ITO)的制成,这种控制器触摸屏为刚性透明的;该技术将ITO涂覆在PET以及薄层玻璃上,通过ITO的导电性作为导电层来制成电阻式触摸屏以及电容式触摸屏。
市场上柔宇科技等柔性电子的独角兽公司崛起,折叠手机等电子设备上市,柔性电子材料市场非常火热。然而,柔性触摸屏依然是电子材料技术发展的蓝海。
柔性触摸屏的现有的核心技术主要是透明导电薄膜。已经市场化的导电薄膜主要分为两种,一是ITO涂覆在PET基底上的触控屏,二是FTO氧化锡氟涂覆的触控屏。后者造价高,性能不及前者。种类比较单一,技术垄断方主要为日本,日本几乎垄断了国际上高品质的ITO靶材以及几乎全部的ITO导电薄膜市场。我国作为发展中国家没有核心技术,在国际产业链条中只涉及低端制造部分。随着市场上柔性OLED电子屏的出现,手机、手表以及其他的可穿戴式电子设备对柔性电子的要求日益增加,柔性触控输入设备出现市场需求和发展契机。而ITO玻璃屏性质刚性易碎,光透过率不足80%,因光波干涉,颜色发黄;材料来源上看,氧化铟锡为一种稀土材料,随着手机等电子设备的使用量逐渐增大,这种材料的存量越来越少,价格也水涨船高;市场需要开发出替代性的柔性的触摸屏材料和设计来代替现有的技术。
纳米银作为替代性导电薄膜的柔性触摸屏技术已经逐步进入市场化阶段。通过银金属的纳米化和图像化制成导电薄膜来替换原先的ITO导电层,从而解决了市场的柔性触控需求以及ITO的材料缺口问题。然而即将进入市场的纳米银线柔性触摸屏技术存在着一定的局限性。首先通过纳米技术将纳米级银粒子图像化自组装,制备过程较为复杂,且银作为贵金属具有一定成本;其次纳米银柔性 屏本身的柔性程度有一定的限制,它可以完成机械卷曲操作,但是抗拒其他机械操作如拉伸、扭转等深度柔性工作。
此外,国内外发表的文献中涉及的替代性的导电薄膜原料有石墨烯、碳纳米管、氧化锌基等,均在实验室阶段。其中,石墨烯、碳纳米管等碳基导电薄膜存在着制造工艺上的复杂以及柔性程度的限制;除此之外,因为碳基材料自带不同程度的底色,如碳纳米管导电薄膜略带暗青色,会给下方的OLED屏幕显示带来色偏;更进一步,如果薄膜涂布程度不能够保证高度的均一性,会加重显示色偏程度。氧化锌导电薄膜无色透明透光率高,是一种价廉的宽禁带半导体材料,目前市场在太阳能电池板上有所应用,然而大面积工业化制备氧化锌导电薄膜的成本较高,存在技术应用瓶颈,均一性难以保证;并且同之前的透明导电薄膜一样,对于柔性的实现具有相同的限制。
以上背景技术内容的公开仅用于辅助理解本发明的构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
为解决上述技术问题,本发明提出一种离子型的柔性触控传感器,具有高光学透明度、深度柔性、低制造成本等优势。
为了达到上述目的,本发明采用以下技术方案:
本发明公开了一种离子型的柔性触控传感器,包括多层导电层、多层绝缘层和两层封装层,多层所述导电层相互叠层排列,且在每两层所述导电层之间叠层设置一层所述绝缘层,两层所述封装层分别封装在叠层排列的多层所述导电层的上下表面处;其中所述导电层采用离子导电型柔性凝胶材料制成,所述绝缘层和所述封装层分别采用绝缘型高分子聚合物材料制成。
优选地,各层所述导电层分别采用离子导电复合型的PAAM/海藻酸钠水凝胶材料、离子导电型PEGDA水凝胶材料、离子导电型PMMA水凝胶材料或者离子导电复合型壳聚糖类水凝胶材料制成。
优选地,其中离子导电复合型的PAAM/海藻酸钠水凝胶材料的制备方法包 括:
A、将海藻酸钠、丙烯酰胺、N,N-二甲基双丙烯酰胺、过硫酸铵混合均匀的悬浊液进行真空干燥,然后导入到预制模具中;
B、将CaSO 4·2H 2O溶液与四甲基乙二胺进行混合后,均匀滴入到所述预制模具中,然后将所述预制模具进行密封以进行交联;
C、将所述预制模具中的材料取出进行固化,即制得PAAM/海藻酸钠水凝胶材料。
优选地,在步骤B中将所述预制模具进行密封后还将所述预制模具放在室温条件下或者放入高于室温条件的烘箱中以进行交联。
优选地,在步骤C中在将所述预制模具中的材料取出后放入到紫外灯下进行光照固化;进一步地,在步骤C中进行固化后还包括:将固化后的材料放入Ca 2+离子浓度高于0.2wt%的CaCl 2水溶液中浸泡,取出后进行表面干燥,得到PAAM/海藻酸钠水凝胶材料。
优选地,多层所述导电层包括第一导电层、第二导电层和第三导电层,多层所述绝缘层包括第一绝缘层和第二绝缘层,两层所述封装层包括第一封装层和第二封装层,所述柔性触控传感器是按照所述第一封装层、第一导电层、第一绝缘层、第二导电层、第二绝缘层、第三导电层、第二封装层的顺序依次排列进行叠层形成;其中所述第一封装层、第二封装层和第二绝缘层分别采用平板式结构的光学透明的绝缘型高分子聚合物材料制成,所述第一绝缘层采用网状或点状结构的光学透明的绝缘型高分子聚合物材料制成。
优选地,所述柔性触控传感器还包括触点位置测量电路,所述触点位置测量电路分别连接第一正电极、第一负电极、第二正电极和第二负电极,其中所述第一正电极和第一负电极分别设置在第一导电层的第一方向上的两条边上,所述第二正电极和第二负电极分别设置在第二导电层的第二方向上的两条边上,其中所述第一方向和所述第二方向相互垂直,所述第一导电层与所述第二导电层为相邻的两层所述导电层,且所述第一导电层和所述第二导电层之间叠层设置的所述绝缘层采用网状或点状结构的光学透明的绝缘型高分子聚合物材料制成。
优选地,所述第一导电层的第一方向上的两条边上分别设有沿着该第一方向上的两条边设置的第一弹性可拉伸电极,所述第一正电极和所述第一负电极分别 连接在该第一方向上的两条边上设置的所述第一弹性可拉伸电极上;所述第二导电层的第二方向上的两条边上分别设有沿着该第二方向上的两条边设置的第二弹性可拉伸电极,所述第二正电极和所述第二负电极分别连接在该第二方向上的两条边上设置的所述第二弹性可拉伸电极上。
优选地,所述第一弹性可拉伸电极和所述第二弹性可拉伸电极均采用0.5mm以下的金属丝绕制而成的直径为0.1~2mm的条形弹簧结构。
优选地,所述柔性触控传感器还包括电容测量电路,所述电容测量电路的两端分别电连接在第二导电层和第三导电层上,其中所述第二导电层和所述第三导电层为相邻的两层所述导电层,且所述第二导电层和所述第三导电层之间叠层设置的所述绝缘层采用平板式结构的光学透明的绝缘型高分子聚合物材料制成。
与现有技术相比,本发明的有益效果在于:本发明公开的离子型的柔性触控传感器,包括导电层、绝缘层和封装层,其中导电层采用离子导电型柔性凝胶材料制成,绝缘层和封装层采用绝缘型高分子聚合物材料制成,均具有较好的透光性和深度柔性,且其构型简单,原材料以及生产成本低廉,便携实用性、美观性较强,适合于大规模生产,是新一代柔性触控屏以及可穿戴电子设备中柔性触控输入设备的理想选择。
在进一步的方案中,本发明还具有以下优点:
(1)导电层选择PAAM/海藻酸钠水凝胶材料时,具有良好的剪切伤痕钝化特性(即在一定拉伸条件下,会在剪切伤口附近形成钝边,阻挡伤痕扩散)以及优秀的抗摩擦力等特性。
(2)在该柔性触控传感器的基础上可以增设阻式触摸感应结构,通过第一导电层和第二导电层在压力下形成接触点,从而通过两个相互垂直的方向的电压检测点可以得到接触点的电压变化值来转化为位置坐标,不需要人体或导体接触导电层;其中通过上下两层的绝缘材料制成的封装层的封装,无论导体或绝缘体接触屏幕表面均可使用;另外,由于导电层采用离子导电型柔性凝胶材料,使得导电层获得较为理想的均一性,进一步通过弹性可拉伸电极添加电压,可以在导电层表面获得均匀的电势差,通过检测接触点电压,可以获得较为理想的线性位置检测,从而实现触点检测;更进一步地,弹性可拉伸电极采用特制的结构,既保证了整个电极10Ω以下的超低阻值要求,又保证了在与复合型凝胶浇筑成一体 后的拉伸性能。
(3)在该柔性触控传感器的基础上通过利用离子导电型柔性凝胶材料的电学特性,还可以增设电容测量电路,以实现压力检测以及拉力检测;通过试验证明采用该电容测量结构对施加在该柔性触控传感器的压力或拉力具有较好的灵敏度,且具有较为理想的线性度,可以满足触感检测需求,突破了以往的触摸屏的应用局限性。
附图说明
图1是本发明优选实施例的柔性触控传感器的结构示意图;
图2是本发明优选实施例的柔性触控传感器的结构总图以及电路布局图;
图3是图2中的柔性触控传感器的触点位置测量电路的等效示意图;
图4a~4d是本发明优选实施例的柔性触控传感器的压力测试分析曲线图;
图5是本发明优选实施例的柔性触控传感器形成的触控屏与终端联机的工作系统图。
具体实施方式
下面结合具体实施方式并对照附图对本发明做进一步详细说明。其中相同的附图标记表示相同的部件,除非另外特别说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
下面结合附图通过具体实施例对本发明进行详细的介绍,以使更好的理解本发明,但下述实施例并不限制本发明范围。另外,需要说明的是,下述实施例中所提供的图示仅以示意方式说明本发明的基本构思,附图中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形状、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
需要理解的是,术语“上”、“下”、“前”、“后”、“内”、“外”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明实施例公开了一种离子型的柔性触控传感器,包括多层导电层、多层绝缘层和两层封装层,多层导电层相互叠层排列,且在每两层导电层之间叠层设置一层所述绝缘层,两层封装层分别封装在叠层排列的多层导电层的上下表面;其中导电层采用离子导电型柔性凝胶材料制成,绝缘层和封装层分别采用绝缘型高分子聚合物材料制成。
如图1和图2所示,本发明优选实施例的柔性触控传感器包括导电层11、导电层12、导电层13、绝缘层21、绝缘层22、封装层31和封装层32,其中该柔性触控传感器是按照封装层31、导电层11、绝缘层21、导电层12、绝缘层22、导电层13、封装层32的顺序依次排列进行叠层形成;其中导电层11、导电层12、导电层13分别采用离子导电复合型的PAAM(聚丙烯酰胺)/海藻酸钠水凝胶材料制成;绝缘层21的结构为细密的网格状或点阵状,材料选用PDMS(聚二甲基硅氧烷)或PEGDA(聚乙二醇二丙烯酸酯)等高透光型高分子聚合物;绝缘层22、封装层31、封装层32的结构为平板状,材料选用PDMS(聚二甲基硅氧烷)薄膜材料制成。
本发明优选实施例的柔性触控传感器包括触点位置测量电路,以对该柔性触控传感器形成的触控板上的笔触进行二维精确定位;该触点位置测量电路分别连接X轴的正负极41、42和Y轴的正负极43、44,其中X轴的正负极41、42分别分布在导电层11的上下两侧的两条边上,Y轴的正负极43、44分别分布在导电层12的左右两侧的两条边上,XY轴构成触控板的物理坐标。进一步地,在导电层11的上下两侧的两条边以及导电层12的左右两侧的两条边上分别沿着各边设置弹性可拉伸电极45,X轴的正负极41、42和Y轴的正负极43、44分别连接在弹性可拉伸电极45上,该弹性可拉伸电极45是采用0.5mm以下的金属丝(铝、金、银等)绕制而成的条形弹簧结构,直径约为0.1~2mm,既保证了整个电极10Ω以下的超低阻值要求,又保证了在与复合型水凝胶浇筑成一体后的拉伸性能(依据缠绕密度,可以达到5倍以上的拉伸性能)。
通过该柔性触控传感器形成的触控板的触点位置测量电路工作时,按照终端计算机给出的串行时钟,在规定的时间区域内对X坐标和Y坐标轮换采集数据,具体电路的等效示意图如图3所示:当采集Y轴电压时,X轴的正负极41、42所在的导电层11加正负电压,从Y轴正电极43连接的Y+端口检测触点电压, 此时由于导电层11的凝胶材料的电阻均匀分布,使得从X轴的正电极41连接的X+端到X轴的负电极42的X-端电势均匀降低,此时整个导电层11相当于等效滑动变阻器46;而电压检测端Y+端口相当于一个滑动变阻器的接触指针,从而将触点所在的X轴物理位置信号转化为电压信号输入控制器。同理,当采集X轴电压时,Y轴的正负极43、44所在的导电层12加正负电压,从X轴的正电极41连接的X+端口检测就可以得到触点所在物理位置的Y轴代表的电压值。当一个计算终端时钟周期结束后,就可以得到触点所在的坐标轴物理地址信息。
结合上述触点位置测量电路的电路结构及原理,通过在导电层11的上下两侧的两条边以及导电层12的左右两侧的两条边上分别沿着各边巧妙设计了弹性可拉伸电极45,将弹性可拉伸电极45用于该柔性触控传感器及其形成的阻式离子型触控屏,既保证了电势差在导电层上的均匀降低,又保证了整个元件的拉伸性能。
其中,本发明优选实施例的柔性触控传感器中的离子导电型柔性凝胶材料的合成采用模具浇筑,使得导电层获得较为理想的均一性,通过条状弹性可拉伸电极添加电压,可以在离子导电层表面获得均匀的电势差;通过检测接触点电压,可以获得较为理想的线性位置检测。另外,由于电压测量以及电势均匀分布的原理,使得本发明优选实施例的柔性触控传感器的位置及压力分辨率都可以做到仅仅取决于数模转换的精度以及触摸笔触的接触面积大小;而且,本发明优选实施例的柔性触控传感器是基于电压检测,规避了现有的高精度电容传感器存在的容易受到外部电场干扰的问题。因此,本发明优选实施例的柔性触控传感器在线性识别程度、分辨率、抗电伏干扰能力方面均具有明显的优势,具备商业应用潜质。
本发明优选实施例的柔性触控传感器还包括电容测量电路50,以对柔性触控传感器所受到的压力/拉力进行检测;其中该电容测量电路50的两端分别电连接在导电层12和导电层13上,通过导电凝胶材料制成的导电层12和导电层13以及中间嵌入的PDMS薄膜材料制成的绝缘层22构成平行板电容测量单元,使得该电容测量电路50在受到压力或拉力作用的同时其电容信号会相应地发生改变。
下面通过具体试验对上述电容测量电路50进行测试,压力试验采用的柔性触控传感器样品尺寸为56×24mm,导电层的厚度为2mm,绝缘层和封装层的 厚度分别为0.2mm。具体采用1~50g一套标准砝码对样品进行压力检测,由于检测的是电容随压强的变化,在试验过程中在标准砝码下方增加了10×10mm的轻质塑料垫片(重量<0.01g,可忽略不计),使得砝码与样品接触面积相同,便于压强换算。如图4a所示,每个突起的峰值分别为1g、2g、5g、10g、20g、50g的砝码放在样品上所引起的电容变化;图4b是将图4a中峰值测量值取出,放在同一时间起点用不同形状表示成阶梯增长,更加直观;图4c是将图4b的数据做成箱型图,可以看出不同压强下测试数据的变化程度以及偏差程度;图4d是将图4c中箱型图中的中位线数据(即统计学中的均值数据)做了折线图,使得对压力检测传感的线性变化有了更直观的感受。通过图4a和图4b所示,可以看出本发明优选实施例的柔性触控传感器的电容测量电路具有较好的灵敏度,可以对100Pa的压强进行显著的检测反应(也即1g砝码作用于10×10mm面积上就有明显的电容变化量ΔC,ΔC≈5%)。如图4d所示,在0.01N~0.5N之间具有较为理想的线性度,可以满足触感检测需求。
如图5所示,是本发明优选实施例的柔性触控传感器形成的触控屏100与终端200联机的工作系统图,从图中可以看出,触控屏100的输出位置信号(X+、Y+、X-、Y-)通过触控屏控制板300的数/模转换(A/D)301、信号放大与滤波302、物理地址到逻辑地址的映射303得到向终端200(计算机)上传的逻辑地址;该逻辑地址可以通过最后的并/串联信号转换304通过USB接口/九针串口向终端200的驱动层201输出数据。另外,触控屏100输出压力/拉力信号通过增加的电容测量单片机系统400来完成。综上,位置与压力/拉力信息可以通过终端200(计算机)的时钟控制同时完成信号的采集并通过串口上传终端200。
其中,在本实施例中,导电层11、导电层12、导电层13分别采用离子导电复合型的PAAM/海藻酸钠水凝胶材料制成,该离子导电复合型的PAAM/海藻酸钠水凝胶材料具有良好的剪切伤痕钝化特性(即在一定拉伸条件下,会在剪切伤口附近形成钝边,阻挡伤痕扩散)以及优秀的抗摩擦力等特性。具体地,在具体实施例中,导电层11、导电层12、导电层13分别采用Ca 2+离子型PAAM/海藻酸钠水凝胶材料制成,该Ca 2+离子型PAAM/海藻酸钠水凝胶材料的制备过程如下(下述各组分比例仅为举例说明,制备过程可根据实际情况来调整):
A、将1.5wt%海藻酸钠、12.44wt%丙烯酰胺、0.0074wt%N,N-二甲基双丙烯 酰胺(MBAA)、0.2wt%过硫酸铵混合均匀的悬浊液,放入真空干燥箱抽真空15min,取出后导入到预制模具中;
B、将0.2wt%CaSO 4·2H 2O溶液与0.03wt%四甲基乙二胺进行混合后,均匀滴入到预制模具中,加玻璃盖片密封后送入高于室温的烘箱中交联(其中加热是为了加快交联进度,也可以室温交联);
C、将预制模具中的材料小心取出放入紫外灯下进行光照固化;
D、将固化后的材料放入Ca 2+离子浓度高于0.2wt%的CaCl 2水溶液中浸泡,取出后可以放入高于室温的烘箱内进行表面干燥或者直接吹干,即得到PAAM/海藻酸钠水凝胶材料;通过将固化后的材料放入CaCl 2水溶液中浸泡,可以进一步增加海藻酸钠的交联程度,减少表面粘度。
在另一些实施例中,导电层11、导电层12、导电层13还可以分别采用其他离子导电型凝胶,例如离子导电型PEGDA水凝胶材料、离子导电型PMMA水凝胶或者离子导电复合型壳聚糖类水凝胶材料等等。
本发明优选实施例的柔性触控传感器的导电层采用离子导电型柔性凝胶材料制成,与纳米银柔性触控屏方案相比,不仅在成本上大大降低,而且在疲劳强度、拉伸性能、扭转等极限性能上大幅提升(拉伸性能可达15倍以上),还兼顾具有良好的生物相容性。
本发明优选实施例的柔性触控传感器属于透明导电凝胶型触控传感器,所使用的导电凝胶与硅胶价格极为低廉,利于市场化推广。基于透明凝胶的特性,解决未来市场对深度柔性(任意弯折、卷曲以及拉伸)的探索需求;替代了对稀有金属薄膜(ITO)以及贵金属薄膜的使用。更重要的是,具有商业价值的触控器一定是需要满足线性程度高、高触控分辨率的要求的,而这也是本发明的优势所在。除此之外,在进一步的实施例中还赋予了其压力以及拉力传感功能,对于作用其上的压力与拉伸力进行检测,扩宽市场应用,提高产品价值。
本发明优选实施例的柔性触控传感器是一类新型的柔性多功能触摸控制传感器,具有高光学透明度、深度柔性、低制造成本等优势,可以在拉伸条件下完成工作,是新一代柔性触控屏以及可穿戴电子设备中柔性触控输入设备的理想选择。其中采用了一类新型导电材料——在导电式复合型水凝胶以及硅胶的基础上设计集成了阻式触点坐标检测屏模块以及压力/拉力传感模块,使得产品具备了 高精度、高线性化触点坐标定位能力以及高灵敏的压力/拉力参数反馈能力;并且关键导电层的材料备选范围还包含了其他导电凝胶材料,常温常压合成,技术成本低廉,具备较好的商业潜力。
综上,本发明优选实施例的柔性触控传感器是一款具有突破意义的新一代的柔性触控传感设备,市场应用前景广泛——可穿戴设备上理想的人机交互产品:不仅可以完成高精度的触控操作,还可以检测压力与拉力;其具备优秀的柔性、可以完成折叠、卷曲甚至拉伸、扭转等机械操作,并且具有良好的生物相容性,可以安全的应用于人体贴覆。触控板系统所使用的材料均具有良好的透光性和透明度,可以进一步作为触控屏的替代方案。充分发挥材料特性,本设计还集成了压力传感以及拉力传感。除此之外,在抗破损性能表现上有亮点——具有特殊的材料剪切伤痕钝化特性,能够在出现破损的部位形成钝化,从而延长产品的生命周期,不影响使用。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种离子型的柔性触控传感器,其特征在于,包括多层导电层、多层绝缘层和两层封装层,多层所述导电层相互叠层排列,且在每两层所述导电层之间叠层设置一层所述绝缘层,两层所述封装层分别封装在叠层排列的多层所述导电层的上下表面处;其中所述导电层采用离子导电型柔性凝胶材料制成,所述绝缘层和所述封装层分别采用绝缘型高分子聚合物材料制成。
  2. 根据权利要求1所述的柔性触控传感器,其特征在于,各层所述导电层分别采用离子导电复合型的PAAM/海藻酸钠水凝胶材料、离子导电型PEGDA水凝胶材料、离子导电型PMMA水凝胶材料或者离子导电复合型壳聚糖类水凝胶材料制成。
  3. 根据权利要求2所述的柔性触控传感器,其特征在于,其中离子导电复合型的PAAM/海藻酸钠水凝胶材料的制备方法包括:
    A、将海藻酸钠、丙烯酰胺、N,N-二甲基双丙烯酰胺、过硫酸铵混合均匀的悬浊液进行真空干燥,然后导入到预制模具中;
    B、将CaSO 4·2H 2O溶液与四甲基乙二胺进行混合后,均匀滴入到所述预制模具中,然后将所述预制模具进行密封以进行交联;
    C、将所述预制模具中的材料取出进行固化,即制得PAAM/海藻酸钠水凝胶材料。
  4. 根据权利要求3所述的柔性触控传感器,其特征在于,在步骤B中将所述预制模具进行密封后还将所述预制模具放在室温条件下或者放入高于室温条件的烘箱中以进行交联。
  5. 根据权利要求3所述的柔性触控传感器,其特征在于,在步骤C中在将所述预制模具中的材料取出后放入到紫外灯下进行光照固化;进一步地,在步骤C中进行固化后还包括:将固化后的材料放入Ca 2+离子浓度高于0.2wt%的CaCl 2水溶液中浸泡,取出后进行表面干燥,得到PAAM/海藻酸钠水凝胶材料。
  6. 根据权利要求1至5任一项所述的柔性触控传感器,其特征在于,多层所述导电层包括第一导电层、第二导电层和第三导电层,多层所述绝缘层包括第一绝缘层和第二绝缘层,两层所述封装层包括第一封装层和第二封装层,所述柔性触控传感器是按照所述第一封装层、第一导电层、第一绝缘层、第二导电层、 第二绝缘层、第三导电层、第二封装层的顺序依次排列进行叠层形成;其中所述第一封装层、第二封装层和第二绝缘层分别采用平板式结构的光学透明的绝缘型高分子聚合物材料制成,所述第一绝缘层采用网状或点状结构的光学透明的绝缘型高分子聚合物材料制成。
  7. 根据权利要求1所述的柔性触控传感器,其特征在于,还包括触点位置测量电路,所述触点位置测量电路分别连接第一正电极、第一负电极、第二正电极和第二负电极,其中所述第一正电极和第一负电极分别设置在第一导电层的第一方向上的两条边上,所述第二正电极和第二负电极分别设置在第二导电层的第二方向上的两条边上,其中所述第一方向和所述第二方向相互垂直,所述第一导电层与所述第二导电层为相邻的两层所述导电层,且所述第一导电层和所述第二导电层之间叠层设置的所述绝缘层采用网状或点状结构的光学透明的绝缘型高分子聚合物材料制成。
  8. 根据权利要求7所述的柔性触控传感器,其特征在于,所述第一导电层的第一方向上的两条边上分别设有沿着该第一方向上的两条边设置的第一弹性可拉伸电极,所述第一正电极和所述第一负电极分别连接在该第一方向上的两条边上设置的所述第一弹性可拉伸电极上;所述第二导电层的第二方向上的两条边上分别设有沿着该第二方向上的两条边设置的第二弹性可拉伸电极,所述第二正电极和所述第二负电极分别连接在该第二方向上的两条边上设置的所述第二弹性可拉伸电极上。
  9. 根据权利要求8所述的柔性触控传感器,其特征在于,所述第一弹性可拉伸电极和所述第二弹性可拉伸电极均采用0.5mm以下的金属丝绕制而成的直径为0.1~2mm的条形弹簧结构。
  10. 根据权利要求1所述的柔性触控传感器,其特征在于,还包括电容测量电路,所述电容测量电路的两端分别电连接在第二导电层和第三导电层上,其中所述第二导电层和所述第三导电层为相邻的两层所述导电层,且所述第二导电层和所述第三导电层之间叠层设置的所述绝缘层采用平板式结构的光学透明的绝缘型高分子聚合物材料制成。
PCT/CN2019/094922 2019-04-11 2019-07-05 一种离子型的柔性触控传感器 WO2020206854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910290850.2A CN110058738B (zh) 2019-04-11 2019-04-11 一种离子型的柔性触控传感器
CN201910290850.2 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020206854A1 true WO2020206854A1 (zh) 2020-10-15

Family

ID=67318835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094922 WO2020206854A1 (zh) 2019-04-11 2019-07-05 一种离子型的柔性触控传感器

Country Status (2)

Country Link
CN (1) CN110058738B (zh)
WO (1) WO2020206854A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112472033A (zh) * 2020-12-11 2021-03-12 西安建筑科技大学 多层离子皮肤手指关节运动角度测量系统和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11678579B2 (en) * 2020-04-29 2023-06-13 The University Of Hong Kong Stretchable ionic hydrogel with high thermopower for low-grade heat harvesting
CN113623158A (zh) * 2020-05-07 2021-11-09 福建师范大学 压力调制致动器及其制作方法
CN111857415B (zh) * 2020-07-01 2024-02-27 清华大学深圳国际研究生院 一种多点式电阻触控屏及寻址方法
CN112358823A (zh) * 2020-10-20 2021-02-12 临沂京瑞新材料科技有限公司 一种电子皮肤及其制备方法
CN112522837B (zh) * 2020-11-05 2022-06-07 青岛大学 一种多应力感知型智能电子纺织品及其制备方法
CN113248734B (zh) * 2021-05-14 2022-04-08 福州大学 一种功能化双网络水凝胶及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424214A (zh) * 2013-08-26 2013-12-04 中国科学院合肥物质科学研究院 柔性电容式触觉传感器及其柔性电容单元的制备方法
CN106648270A (zh) * 2016-12-14 2017-05-10 西安交通大学 使用凝胶的柔性电容式多点触控触摸屏及制作方法
CN106775133A (zh) * 2017-03-27 2017-05-31 上海天马有机发光显示技术有限公司 一种柔性触控显示面板及柔性触控显示装置
CN107656641A (zh) * 2017-09-19 2018-02-02 武汉华星光电半导体显示技术有限公司 柔性触控面板及其制备方法、触控装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447192B (zh) * 2010-11-24 2014-08-01 Lg Hausys Ltd 觸控面板用黏結劑組合物、黏結薄膜及觸控面板
CN103396562B (zh) * 2013-07-09 2015-07-08 西安交通大学 一种基于海藻酸钠-聚丙烯酰胺水凝胶的制备方法
KR101758438B1 (ko) * 2014-12-02 2017-07-17 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
CN107482040A (zh) * 2017-08-14 2017-12-15 武汉华星光电半导体显示技术有限公司 Oled触控显示面板及oled触控显示器
CN109337096B (zh) * 2018-10-17 2020-10-30 燕山大学 一种柔性水凝胶材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424214A (zh) * 2013-08-26 2013-12-04 中国科学院合肥物质科学研究院 柔性电容式触觉传感器及其柔性电容单元的制备方法
CN106648270A (zh) * 2016-12-14 2017-05-10 西安交通大学 使用凝胶的柔性电容式多点触控触摸屏及制作方法
CN106775133A (zh) * 2017-03-27 2017-05-31 上海天马有机发光显示技术有限公司 一种柔性触控显示面板及柔性触控显示装置
CN107656641A (zh) * 2017-09-19 2018-02-02 武汉华星光电半导体显示技术有限公司 柔性触控面板及其制备方法、触控装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112472033A (zh) * 2020-12-11 2021-03-12 西安建筑科技大学 多层离子皮肤手指关节运动角度测量系统和方法
CN112472033B (zh) * 2020-12-11 2024-04-05 西安建筑科技大学 多层离子皮肤手指关节运动角度测量系统和方法

Also Published As

Publication number Publication date
CN110058738B (zh) 2020-09-25
CN110058738A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2020206854A1 (zh) 一种离子型的柔性触控传感器
Kang et al. Graphene-based three-dimensional capacitive touch sensor for wearable electronics
Liu et al. Flexible and degradable paper-based strain sensor with low cost
CN100530065C (zh) 透明触控面板结构
CN105929998B (zh) 触控显示面板及其制造方法
CN109813467A (zh) 一种压力传感器及其制备方法和用途
TW201432523A (zh) 導電膜及其製備方法以及包含該導電膜之觸控式螢幕
CN110398259A (zh) 多感知功能的柔性传感器件及制备方法
KR20110072854A (ko) 투명 전극 필름 및 이의 제조 방법
Kim et al. A rationally designed flexible self-healing system with a high performance supercapacitor for powering an integrated multifunctional sensor
CN203894715U (zh) 一种柔性触摸屏及触控设备
CN104252279A (zh) 触控显示面板及其制作方法、驱动方法、触控显示装置
CN203490679U (zh) 触控电极装置
Liu et al. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices
CN111504527B (zh) 一种海胆状氧化物基复合膜仿生压力传感器及其制备方法
CN107525613A (zh) 可拉伸的柔性压力传感器及其制造方法
Huang et al. Highly stretchable, strain-stiffening, self-healing ionic conductors for wearable sensors
CN105185898A (zh) 一种柔性透明功能器件及其制备方法
He et al. Multifunctional triboelectric nanogenerator based on flexible and self-healing sandwich structural film
CN203706175U (zh) 一种彩膜基板、内嵌式触摸屏及显示装置
Li et al. A leaf vein-like hierarchical silver grids transparent electrode towards high-performance flexible electrochromic smart windows
Guo et al. Skin-inspired self-healing semiconductive touch panel based on novel transparent stretchable hydrogels
Wang et al. Multi-functional and multi-responsive layered double hydroxide-reinforced polyacrylic acid composite hydrogels as ionic skin sensors
CN204066082U (zh) 触控显示面板及触控显示装置
CN109273598B (zh) 一种银纳米线复合石墨烯忆阻器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924584

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19924584

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19924584

Country of ref document: EP

Kind code of ref document: A1