WO2020206653A1 - 用于电热用品的发热件及其制造方法 - Google Patents

用于电热用品的发热件及其制造方法 Download PDF

Info

Publication number
WO2020206653A1
WO2020206653A1 PCT/CN2019/082264 CN2019082264W WO2020206653A1 WO 2020206653 A1 WO2020206653 A1 WO 2020206653A1 CN 2019082264 W CN2019082264 W CN 2019082264W WO 2020206653 A1 WO2020206653 A1 WO 2020206653A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
heating element
carrier
heating
electric heating
Prior art date
Application number
PCT/CN2019/082264
Other languages
English (en)
French (fr)
Inventor
李忠宪
许诏智
朱崧豪
Original Assignee
李忠宪
许诏智
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李忠宪, 许诏智 filed Critical 李忠宪
Priority to PCT/CN2019/082264 priority Critical patent/WO2020206653A1/zh
Publication of WO2020206653A1 publication Critical patent/WO2020206653A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source

Definitions

  • a heating element and a manufacturing method thereof in particular to a heating element used in electric heaters, ovens, hair dryers, and the like, and a manufacturing method thereof.
  • FIG. 11 is a schematic diagram of the appearance of a commonly used heating element 91B.
  • the heating element 91B is an electric film heating element, which includes a carrier 94 and a silver rail 95 disposed on one surface of the carrier 94.
  • the silver tracks 95 are printed on the surface of the carrier 94 in a spaced arrangement.
  • the silver rail 95 When the silver rail 95 is energized, the silver rail 95 generates heat energy due to the flow of current, which causes the heating element 91B to generate heat.
  • the line shape and line width of the silver rail 95 must be designed, and the shape of the silver rail 95 must be additionally printed on the carrier 94, so that the production process More complicated; in addition, limited by the existing technology for making the silver rail 95, the silver rail 95 cannot be uniformly printed on the carrier 94, resulting in uneven resistance of each section of the silver rail 95, and the heating element 91B cannot Even heating, the efficiency of heating may be reduced after a period of use; in addition, the heating element 91B adjusts the resistance of the wire by forming a special wire shape.
  • an adhesive material for adhesion is added to the material of the silver rail 95 to increase the adhesiveness, but adhesion is added.
  • the material process itself is a more troublesome process, and the adhesive material itself is not resistant to high temperature. It will deteriorate as the heating element 91B is energized and heated, and the adhesiveness will decrease. After a period of use, the silver rail 95 may be damaged. The temperature change produces a qualitative change, which causes the impedance to rise or rupture or fall off, and the heating element 91B must be replaced, which causes inconvenience in use.
  • the current method for manufacturing the heating element 91B is not perfect, which will affect the quality of the heating element 91B and reduce the yield.
  • the conventional method for manufacturing the heating element 91B is to coat or spray ionized conductive metal on a thermally conductive substrate 85 to make the surface of the thermally conductive substrate 85 A metal conductive layer 86 is bonded on it.
  • a high-pressure device 81 provides high-pressure gas, sprays the gas into a powder feeder 82 and a gas heater 83 at a high speed, and mixes the powder with high-temperature gas through the spray gun 84.
  • the powder is sprayed on the heat-conducting substrate 85 at a high speed to form a metal conductive layer 86, and finally covered with other structures to complete the manufacture of the heating element 91B.
  • the metal conductive layer 86 cannot be uniformly disposed on the thermally conductive substrate 85, resulting in unevenness or circuit defects of the metal conductive layer 86, which may be caused by current passing when the metal conductive layer 86 is energized.
  • the unequal intensities of the heating element cause uneven heating, so that the temperature of the thermally conductive substrate 85 cannot be evenly distributed, which not only reduces the efficiency of the thermally conductive element, but also reduces the service life of the heating element 91B.
  • the present invention proposes a method for manufacturing heating elements of electric heating products, which consists of attaching a conductive layer to a carrier by physical vapor deposition. Formed, can provide better thermal energy conversion rate, short heating time, fast heat dissipation and other advantages.
  • the present invention provides a method for manufacturing a heating element of an electric heating appliance, which includes the following steps:
  • Generate charged ions dissociate a source of material to form a conductive layer to form charged ions;
  • the thickness of the conductive layer is less than 1 ⁇ m, and the difference between the maximum thickness and the minimum thickness of the conductive layer is less than 0.1 ⁇ m.
  • a high-voltage electric field is applied to a space filled with inert gas to ionize the inert gas to generate an inert gas ion flow, so that the inert gas ion flows Continuously bombard a metal material source, and knock out metal ions from the metal material source.
  • the inert gas is argon.
  • the metal material source is nickel-chromium alloy.
  • the present invention also provides a heating element for electric heating products, which includes:
  • a conductive layer is uniformly attached to one of the surfaces of the carrier by vapor deposition, wherein the voltage difference between the two ends of the conductive layer is applied by the heating device, the thickness of the conductive layer is less than 1 ⁇ m, and the thickest and most thickest part of the conductive layer The difference in thinness is less than 0.1 ⁇ m.
  • the conductive layer is a nickel-chromium anti-oxidation alloy layer.
  • the carrier is a conductive substrate, and the impedance of the carrier is higher than that of the conductive layer.
  • the heating element can quickly generate heat and dissipate heat.
  • electric heaters such as electric heaters do not need to continuously provide high-power energy to maintain the temperature of the heating element and maintain a high heat conversion rate;
  • the conductive layer also has a larger surface area. When the heating appliance is turned off, the conductive layer has a larger contact area with the air and can quickly cool down, reducing the chance of burns due to accidental touch.
  • the present invention also provides a heating element for electric heating products, which includes:
  • a conductive layer is uniformly attached to one of the surfaces of the carrier by vapor deposition, wherein the voltage difference between the two ends of the conductive layer is applied by the heating device, the thickness of the conductive layer is less than 1 ⁇ m, and the thickest and most thickest part of the conductive layer The difference in thinness is less than 0.1 ⁇ m;
  • a far infrared layer is laid on the surface of the conductive layer.
  • the far-infrared layer is formed on the surface of the conductive layer and the other surface of the carrier.
  • the far-infrared layer When the electric heating appliance heats the heating element, the far-infrared layer simultaneously radiates far-infrared rays, and the room is filled with the wavelength of the far-infrared rays, which can accelerate the user's blood circulation and increase the metabolism speed.
  • the present invention also provides a heating element for electric heating products, which includes:
  • a conductive layer is uniformly attached to one of the surfaces of the carrier by vapor deposition, wherein the voltage difference between the two ends of the conductive layer is applied by the heating device, the thickness of the conductive layer is less than 1 ⁇ m, and the thickest and most thickest part of the conductive layer The difference in thinness is less than 0.1 ⁇ m;
  • a far-infrared layer is laid on the surface of the conductive layer
  • An insulating layer is arranged between the conductive layer and the far-infrared layer to protect the conductive layer.
  • the heating element provided by the present invention is formed by attaching a metal layer on a carrier by a vapor deposition method (PVD or CVD), which can provide a flatter metal layer compared with the prior art, so that the metal layer is evenly attached to the carrier; and
  • PVD vapor deposition method
  • the heating element provided by the invention does not need to be wired, and the production is relatively simple and not very complicated, and the manufacturing process and cost can be saved.
  • the electric heating appliance heats the heating element, the metal layer can be evenly energized so that the carrier can be evenly heated, which improves the efficiency of heating.
  • the metal layer can be evenly attached to the carrier, the resistance of the metal layer itself is evenly distributed on the carrier, and it can be attached to the carrier without the need for adhesive materials, which saves the cost of production and increases the finished product in the production of heating elements. At the same time, increase the service life of heating elements.
  • the heating element provided by the present invention generates heat on the entire surface, the heat exchange area between the conductive layer, the carrier and the like is large, the heat conversion efficiency is high, and the energy conversion rate can be improved. At the same time, due to the large heat exchange area and fast heating and cooling speeds, the heat conversion efficiency can still be improved without the aid of additional evaporators or heat dissipation fins.
  • the heating element provided by the present invention is a thin sheet body, it is lighter and thinner than the commonly used heating element, the amount of materials used is small, the cost is lower, the difficulty of customization can be reduced, the space utilization rate of the body is higher, and the Make the temperature of the air flow even, suitable for electric heaters, hair dryers, ovens and other electric appliances of various sizes and types.
  • Figure 1 A perspective view of the first preferred embodiment of the heating element of the present invention.
  • Figure 2 A side sectional view of the first preferred embodiment of the heating element of the present invention.
  • Fig. 3 Side sectional view of the second preferred embodiment of the heating element of the present invention.
  • Figure 4 A side sectional view of the third preferred embodiment of the heating element of the present invention.
  • Fig. 5A A perspective view of the fourth preferred embodiment of the heating element of the present invention.
  • Fig. 5B A perspective view of the fifth preferred embodiment of the heating element of the present invention.
  • Fig. 6 A schematic cross-sectional view of the heating element of the present invention disposed on the electric heater.
  • Fig. 7 A partial cross-sectional view of area A in Fig. 6.
  • Fig. 8 A partial cross-sectional view of area B in Fig. 6.
  • Figure 9 Step flow chart of the manufacturing method of the heating element of the present invention.
  • Figure 10 Schematic diagram of the manufacturing method of the heating element of the present invention.
  • Figure 11 A schematic diagram of the three-dimensional appearance of commonly used heating elements.
  • FIG. 12 Schematic diagram of the commonly used production process of heating parts
  • the heating element 10 for electric heating products of the present invention includes: a carrier 11 and a conductive layer 13.
  • the carrier 11 is used to carry the conductive layer 13.
  • the carrier 11 can be a non-conductive thermally conductive ceramic plate or a conductive substrate with higher impedance than the conductive layer 13.
  • the conductive layer 13 is disposed on one surface of the carrier 11, and the conductive layer 13 is uniformly attached to one surface of the carrier 11 by vapor deposition.
  • the conductive layer 13 can be uniformly adhered to by physical vapor deposition (Physical Vapor Deposition, PVD, also known as vacuum coating, evaporation) or chemical vapor deposition (Chemical Vapor Deposition, CVD)
  • PVD Physical Vapor Deposition
  • CVD chemical vapor deposition
  • the conductive layer 13 can be an anti-oxidation metal layer made of copper, silver, or a nickel-chromium anti-oxidation alloy layer.
  • the thickness of the conductive layer 13 may be less than 1 ⁇ m, and the difference between the maximum thickness and the minimum thickness of the conductive layer 13 may be less than 0.1 ⁇ m.
  • the heating element 10 has a length of 80 mm, a width of 20 mm, and a thickness of about 1 mm, but not limited to this.
  • the heating element 10 further includes a far-infrared layer 15, which can be laid on the surface of the conductive layer 13 (as shown in FIG. 3)
  • the far-infrared layer 15 is formed either on the other side of the carrier 11, or on the surface of the conductive layer 13 and the other side of the carrier 11, respectively.
  • the far infrared layer 15 can be a structure layer with bamboo carbon particles or a far infrared ceramic layer to generate far infrared (FIR) when the heating element 10 is energized to generate heat.
  • the heating element 10 further includes an insulating layer 17 disposed between the conductive layer 13 and the far-infrared layer 15.
  • the insulating layer 17 is used to transfer heat energy from the conductive layer 13 when the conductive layer 13 is energized, and has the functions of anti-oxidation and blocking moisture to protect the conductive layer 13 to prevent moisture and air from penetrating the surface of the conductive layer 13 This causes the conductive layer 13 to oxidize or rust; in addition, when the far-infrared layer 15 is made of a conductive material, the insulating layer 17 is used to isolate the current passing through the conductive layer 13 from flowing into the far-infrared layer 15 again.
  • the insulating layer 17 may be made of silicon oxide material.
  • the heating element 10 of the present invention further provides two preferred embodiments of the heating element 10 with different shapes.
  • FIG. 5A is a schematic perspective view of a fourth preferred embodiment of the heating element 10A.
  • the heating element 10A also has the carrier 11 and the conductive layer 13 disposed on one surface of the carrier 11, wherein the carrier 11 is A cylindrical shape makes the heating element 10A look like a cylinder.
  • the conductive layer 13 can be laid on the inner surface or the outer surface of the carrier 11.
  • FIG. 5B is a perspective view of the appearance of the fifth preferred embodiment of the heating element 10B.
  • the heating element 10B has the carrier 11 and the conductive layer 13.
  • One surface of the carrier 11 is a wavy surface with wavy patterns; the conductive layer 13 is disposed on the wavy surface of the carrier 11.
  • the above-mentioned two kinds of heating elements 10A and 10B belong to the deformation of the heating element 10 and can still provide the same functions as the heating element 10.
  • the electric heaters described below are all examples of electric heaters.
  • the heating element 10 of the present invention can be used in a fence-type array heating sheet electric heater as shown in FIG. 6.
  • the electric heater 20 includes an upper conductive frame 21, a lower conductive frame 22, a housing 24 and a plurality of supporting frames 26.
  • An accommodating space S is formed in the casing 24.
  • Each support frame 26 can be integrally formed with the housing 24 and arranged at the upper end and the lower end of the accommodating space S at intervals.
  • the upper conductive frame 21 is disposed at the upper end of the accommodating space S, and a plurality of upper conductive members 211 are provided on the lower surface of the upper conductive frame 21, and the upper conductive members 211 are arranged at intervals and extend between the supporting frames 26, each The upper conductive member 211 may be formed by integrally extending the lower surface of the upper conductive frame 21.
  • One end of each heating element 10 extends between each support frame 26, and one end of each conductive layer 13 is electrically connected to each upper conductive element 211.
  • the lower conductive frame 22 is disposed at the lower end of the accommodating space S, and a plurality of lower conductive members 221 are provided on the upper surface of the lower conductive frame 22, and the lower conductive members 221 are arranged at intervals and extend into each Between the supporting frames 26, each lower conductive member 221 may be formed by integrally extending the upper surface of the lower conductive frame 22; the other end of each conductive layer 13 is electrically connected to each lower conductive member 221; the upper conductive frame 21 is connected to the lower conductive member 221
  • the rack 22 is electrically connected to an electric heating module 27 placed in the electric heater 20, wherein the electric heating module 27 can provide direct current or alternating current.
  • the electric heating module 27 can apply a voltage difference between the upper conductive frame 21 and the lower conductive frame 22, so that current flows through the upper conductive frame 21 and each upper conductive element 211 to each heating element 10 The conductive layer 13; the current then flows through the lower conductive parts 221 and then flows back to the electric heating module 27 through the lower conductive frame 22 to complete the circuit loop.
  • the method of energization is not limited to the above, and the current can also be made to flow through the conductive layers 13 through the lower conductive frame 22 and then flow back to the upper conductive frame 21 to complete the loop.
  • each conductive layer 13 When each conductive layer 13 is energized, heat energy is generated. The heat energy is directly transferred by each conductive layer 13 or absorbed by each carrier 11 and then generates heat. Because each conductive layer 13 is relatively light and thin, each conductive layer 13 can quickly generate heat when it is energized. The fan included in the electric heater 20 blows heat, which can quickly achieve the effect of heating the room. At the same time, the heating element 10 can still reach the working temperature (about 300° C.) while the electric heating module 27 maintains a low power output.
  • each heating element 10 includes the far-infrared layer 15
  • the far-infrared layer 15 also generates heat due to the heat generated by the conductive layers 13, and then radiates the wavelength of far-infrared rays, which can accelerate the blood circulation and metabolism of the human body.
  • each conductive layer 13 of each heating element 10 are two conductive ends, the two conductive ends are respectively electrically connected to the corresponding upper conductive member 211 and the lower conductive member 221. If moisture penetrates into the electric heater 20.
  • each heating element 10 is attached, one of the upper conductive element 211 and the corresponding lower conductive element 221 can be prevented from being short-circuited due to contact with water vapor at the same time, and the two conductive ends can also be prevented from being conductive due to contact with water vapor at the same time, thereby reducing the short-circuit. Probability of causing danger.
  • each conductive layer 13 has a large contact area with the air, when the electric heater 20 is turned off, the heating elements 10 can quickly cool down, reducing the risk of burns caused by accidental touch.
  • the present invention also provides a method for manufacturing a heating element of an electric heating appliance, which includes the following steps:
  • S11 Generate charged ions.
  • a source of material for forming the conductive layer 13 is freed. Taking the physical vapor deposition method as an example, please refer to Figure 10 further.
  • a high-voltage electric field E is applied in a space V filled with inert gas G, and the inert gas G is ionized to generate an inert gas ion current, so that the inert gas ions
  • the current continuously bombards a metal material source 30, and a plurality of metal ions M are ejected from the metal material source 30. among them.
  • the inert gas G can be argon (Ar)
  • the metal material source 30 can be a single metal or multiple metals to be coated on a carrier 11, and the metal material source 30 of the present invention is preferably implemented with a nickel-chromium alloy. example.
  • two or more different metal or non-metal material sources are heated to form gaseous charged ions and mixed in a space.
  • S12 deposit the plurality of charged ions on the surface of the carrier 11.
  • the plurality of metal ions M are knocked out from the metal material source 30, they are deposited on the carrier 11 to which a voltage is applied to form the conductive layer 13.
  • gaseous charged ions are deposited on the carrier 11 to form the conductive layer 13.
  • the plurality of conductive ions can be uniformly attached to the carrier 11, so that the conductive layer 13 is relatively smooth and uniform.
  • the conductive layer 13 is energized, the current can be more evenly distributed in the conductive layer 13, and the conductive layer 13 can be evenly raised to heat the carrier 11 uniformly, so as to improve the heating efficiency and increase the service life of the conductive member.
  • the thickness of the conductive layer 13 can be less than 1 ⁇ m, and the difference between the maximum thickness and the minimum thickness of the conductive layer 13 can be less than 0.1 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)

Abstract

一种用于电热用品的发热件(10)及其制造方法,该发热件(10)包含:一载体(11);一导电层(13),以气相沉积法附着于该载体(11)的其中一表面;该方法包含:产生带电离子(S11);沉积带电离子至该载体(11)的其中一表面(S12);降温带电离子使其在该载体(11)的表面形成该导电层(S13);由于该导电层(13)轻薄且表面积大,可迅速加热且所需功耗较低,电热用品关闭时则散热快速;另,由该方法制造的发热件(10)拥有较为均匀的导电层(13),加热及散热平均,可提高热转换效率及制作上的成品率。

Description

用于电热用品的发热件及其制造方法 技术领域
一种发热件及其制造方法,尤其是指一种用于电暖器、烤箱、吹风机等电热用品的发热件及其制造方法。
背景技术
请参见图11,为常用的发热件91B的外观示意图。该发热件91B为电膜式发热件,其包含一载体94及设置于该载体94其中一表面的银轨95。该银轨95以间隔排列的方式印刷于该载体94的该表面上。当对该银轨95的通电时,该银轨95会因电流的流动产生热能,让该发热件91B发热。
但为使发热件91B的发热温度与功耗之间取得平衡,必须设计该银轨95的线形及线宽,并且需在该载体94上额外印刷出该银轨95的形状,使得生产的过程较为复杂;此外,受限于现有制作该银轨95的技术,使该银轨95无法均匀地印刷在该载体94上,造成该银轨95各段的电阻不均,该发热件91B无法均匀发热,使用一段时间后发热的效率可能会降低;另外,该发热件91B通过形成特殊线材形状的方式调整线材的电阻,此种将电能转换成热能的方法不但能量转换率低导致相当耗能,制作特殊线材形状的过程也较为费工费时,造成制作的成本增加。而常用的发热件91B仅有该银轨95处通电,并非整块该载体94被均匀加热,与空气的接触面积小,也会有升、降温速度慢等缺点。
此外,为了使该银轨95中的导电粉末能互相稳定接触导电,且能附着于该载体94上,会在银轨95的材料中添加黏着用的黏着素材,以增加黏着性,但添加黏着素材的步骤本身即为较麻烦的工序,且黏着素材本身不耐高温,会随着该发热件91B通电、发热而变质,黏着性随之下降,使用一段时间后可能会使该银轨95因温度变化产生质变,而导致阻抗升高或破裂、脱落,而必须更换该发热件91B,造成使用上的不便。
而除了现有发热件91B具有热转换效率低的问题外,现今制作发热件91B的方法也不甚完善,更会影响发热件91B的品质以及成品率降低。
请参见图12,现有的发热件91B制造方法是在一导热基板85上以涂布或是喷洒的方式将离子化后的导电金属附着于该导热基板85上,使得该导热基板85的表面上结合一层金属导电层86。如图12所示,以喷洒的制造方法为例,是通过一高压装置81提供 高压气体,将气体高速喷入一粉末进料器82及一气体加热器83,将粉末混入高温气体后通过喷枪84将粉末高速喷至导热基板85上形成一金属导电层86,最后再覆盖其他结构完成发热件91B的制造。
但无论是用涂布或是喷洒,皆无法让金属导电层86均匀地设置于该导热基板85上,使得该金属导电层86凹凸不平或线路缺陷,对金属导电层86通电时可能因通过电流的强度不等造成加热不均匀,使该导热基板85的温度无法平均分布,不但降低导热件的效率,也会缩减发热件91B的使用寿命。
发明内容
为解决现有电热用品的发热件存在热能转换效率低、加热时间长等问题,本发明提出一种制造电热用品发热件的方法,由在一载体上以物理气相沉积法附着一层导电层所形成,可提供较佳的热能转换率、加热时间短、散热快等优点。
为达成上述目的,本发明提供一种制造电热用品发热件的方法,包含以下步骤:
产生带电离子;将欲形成导电层的一材料源游离化形成带电离子;
沉积带电离子至一载体的表面;
降温带电离子使其在该载体的表面形成一导电层;
其中,该导电层的厚度小于1μm,该导电层的最大厚度及最小厚度的差小于0.1μm。
如所述制造电热用品发热件的方法,在产生带电离子的步骤中,通过在一填充惰性气体的空间中通以一高压电场,将惰性气体电离后产生惰性气体离子流,让惰性气体离子流持续轰击一金属材料源,从该金属材料源击出金属离子,该惰性气体为氩气。
如所述制造电热用品发热件的方法,该金属材料源为镍铬合金。
本发明另提供一种用于电热用品的发热件,包含:
一载体;
一导电层,以气相沉积法均匀附着于该载体的其中一表面,其中该导电层的两端由该电热用品施加电压差,该导电层厚度小于1μm,且该导电层的最厚处及最薄处的差小于0.1μm。
如所述用于电热用品的发热件,该导电层为镍铬抗氧化合金层。
如所述用于电热用品的发热件,该载体为一导电基板,且该载体的阻抗高于该导电层。
由于该导电层具备高导电率特性,能让该发热件迅速发热及散热,同时电暖器等电热用品不需持续提供高功率的能量维持发热件的温度,维持较高的热转换率;更进一步,该导电层同时拥有较大表面积,当电热用品关闭时,该导电层与空气接触的面积较大而能快速降温,减少因误触而烫伤的机率。
本发明另提供一种用于电热用品的发热件,包含:
一载体;
一导电层,以气相沉积法均匀附着于该载体的其中一表面,其中该导电层的两端由该电热用品施加电压差,该导电层厚度小于1μm,且该导电层的最厚处及最薄处的差小于0.1μm;
一远红外线层,铺设于该导电层的表面。
如所述用于电热用品的发热件,该导电层的表面及该载体的另一面均分别形成有该远红外线层。
电热用品在加热该发热件时,该远红外线层同时辐射出远红外线,在房间里充满远红外线的波长,可加速使用者血液循环,提高新陈代谢的速度。
本发明另提供一种用于电热用品的发热件,包含:
一载体;
一导电层,以气相沉积法均匀附着于该载体的其中一表面,其中该导电层的两端由该电热用品施加电压差,该导电层厚度小于1μm,且该导电层的最厚处及最薄处的差小于0.1μm;
一远红外线层,铺设于该导电层的表面;
一绝缘层,设置于该导电层与该远红外线层之间,用以保护该导电层。
本发明提供的发热件以气相沉积法(PVD或CVD)在载体上附着金属层所形成,比起现有技术能提供较平整的金属层,使金属层均匀地附着于该载体上;且本发明提供的发热件不须线路化,制作上较为简易不甚复杂,可节省制造工序、成本。在电热用品对该发热件加热时,该金属层可平均通电使载体能被平均加热,提高发热的效率。同时,由于金属层能平均地附着在该载体,使金属层本身的电阻均匀分布在该载体上,不需要黏着素材即能附着于该载体上,节省制作的成本,增加发热件生产上的成品率,同时提高发热件的使用寿命。
更进一步,本发明提供的发热件是整面发热,该导电层、该载体等分层之间的热交换面积大,热转换效率较高,能提高能量转换率。同时,由于热交换面积大,加热、冷 却的速度快,在不需要通过额外蒸发器或散热鳍片的辅助下依然可提高热转换效率。另外,由于本发明提供的发热件为薄形片体,比起常用的发热件较为轻薄,制作的材料用量少,成本较低,能降低定制化的难度,机体空间利用率较高,能使风流温度均匀,适用于电暖器、吹风机、烤箱等各种大小、种类的电热用品中。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1:本发明发热件的第一较佳实施例立体外观图。
图2:本发明发热件的第一较佳实施例侧视剖面图。
图3:本发明发热件的第二较佳实施例侧视剖面图。
图4:本发明发热件的第三较佳实施例侧视剖面图。
图5A:本发明发热件的第四较佳实施例立体外观图。
图5B:本发明发热件的第五较佳实施例立体外观图。
图6:本发明的发热件设置于电暖器剖面示意图。
图7:图6中的区域A的局部剖面图。
图8:图6中的区域B的局部剖面图。
图9:本发明的发热件制造方法步骤流程图。
图10:本发明的发热件制造方法示意图。
图11:常用的发热件立体外观示意图。
图12:常用制作发热件流程示意图。
具体实施方式
请参见图1,本发明用于电热用品的发热件10包含:一载体11及一导电层13。
该载体11用以承载该导电层13,在一较佳实施例中,该载体11可为非导电的导热陶瓷板,或是阻抗高于该导电层13的导电基板。
该导电层13设置于该载体11的其中一表面,其中该导电层13以气相沉积法均匀附着于该载体11的其中一表面上。在本发明的较佳实施例中,该导电层13可以物理气相 沉积法(Physical Vapor Deposition,PVD,又称真空镀膜、蒸镀)或是化学气相沉积法(Chemical Vapor Deposition,CVD)均匀附着于该载体11的其中一表面。就材料而言,该导电层13可为铜制、银制抗氧化金属层,或镍铬抗氧化合金层。在该导电层13的较佳实施例中,该导电层13的厚度可小于1μm,该导电层13的最大厚度及最小厚度的差可小于0.1μm。
请进一步参见图2,在一较佳实施例中,该发热件10的长为80mm,宽为20mm,厚度约1mm,但不以此为限。
请参见图3,在本发明的第二较佳实施例中,该发热件10更包含一远红外线层15,该远红外线层15可铺设于该导电层13的表面(如图3所示),或是于该载体11的另一面,或是于该导电层13的表面及该载体11的另一面均分别形成有该远红外线层15。该远红外线层15可采用具有竹碳粒子的结构层,或是远红外线陶瓷层,以在该发热件10通电发热时产生远红外线(far infrared,FIR)。
请参见图4,在本发明的第三较佳实施例中,该发热件10更包含一绝缘层17,该绝缘层17设置于该导电层13与该远红外线层15之间。该绝缘层17用以在该导电层13通电时传递来自该导电层13的热能,且具有抗氧化及阻绝水气等保护该导电层13的功能,避免水气及空气渗入该导电层13表面造成该导电层13氧化或锈蚀;另外,当该远红外线层15采用导电材料制成时,该绝缘层17用以隔绝通过该导电层13的电流再度流入该远红外线层15中。在一较佳实施例中,该绝缘层17可由氧化硅材料构成。
本发明该发热件10除了上述三种长板状的较佳实施例外,以下更提供两种不同形状的该发热件10的较佳实施例。
请参见图5A,为该发热件10A的第四较佳实施例立体外观示意图,该发热件10A同样具有该载体11及设置于该载体11其中一表面的该导电层13,其中该载体11呈一圆筒状,使该发热件10A的外观呈一圆筒,该导电层13可铺设于该载体11的内表面或外表面。
请参见图5B,为该发热件10B的第五较佳实施例立体外观示意图。该发热件10B有该载体11及该导电层13,该载体11的其中一表面为一具有波浪纹的波浪面;该导电层13设置于该载体11的该波浪面上。
上述两种该发热件10A、10B属该发热件10的变形,仍然能提供与该发热件10相同的功能。
为方便说明,以下所述的电热用品皆以电暖器为例。请参见图6,本发明的该发热件10可用于如图6所示的栅栏式排列发热片电暖器。请进一步参见图7,该电暖器20包含上导电架21、下导电架22、一壳体24及多个支撑架26。在该壳体24中形成一容置空间S。各支撑架26可与该壳体24一体成形且间隔设置于该容置空间S的上端及下端。该上导电架21设置于该容置空间S的上端,该上导电架21的下表面设有多个上导电件211,各上导电件211间隔设置且伸入各支撑架26之间,各上导电件211可由该上导电架21的下表面一体延伸而成。各发热件10的其中一端伸入各支撑架26之间,其中各导电层13的其中一端与各上导电件211电连接。
请参见图8,该下导电架22设置于该容置空间S的下端,且在该下导电架22的上表面设有多个下导电件221,各下导电件221间隔设置且延伸入各支撑架26之间,各下导电件221可由该下导电架22的上表面一体延伸而成;各导电层13的另一端与各下导电件221电连接;该上导电架21与该下导电架22皆与一放置于该电暖器20中的一电热模块27电连接,其中该电热模块27可提供直流电或是交流电。
该电暖器20启动后,该电热模块27可在该上导电架21及该下导电架22之间施加电压差,使电流经由该上导电架21及各上导电件211至各发热件10的导电层13;电流接着流过各下导电件221后通过该下导电架22流回该电热模块27完成电路回路。通电方法不以上述为限,也可使电流先经由该下导电架22通过各导电层13后回流至该上导电架21完成回路。
当各导电层13通电时会产生热能,热能由各导电层13直接传递或由各载体11吸收后发热,且由于各导电层13较为轻薄,使各导电层13通电时能迅速发热,再经由包含于该电暖器20内的风扇吹送热流,能快速达到暖房的效果。同时,在该电热模块27维持低功率输出的状态下依然能使各发热件10达到工作温度(约300℃)。
更进一步,当各发热件10包含该远红外线层15时,该远红外线层15同样因各导电层13产生热能而发热,进而辐射出远红外线的波长,可加速人体的血液循环及新陈代谢。
更进一步,由于各发热件10的各导电层13的两端为两导电端,该两导电端分别与对应的上导电件211、下导电件221电连接,若有水气渗入该电暖器20而附着各发热件10时,可避免其中一上导电件211与对应的该下导电件221同时接触水气而短路,也可避免该两导电端因同时接触水气而导电,降低因短路造成危险的机率。
同时,由于各导电层13与空气的接触面积较大,当该电暖器20关闭时,各发热件10能迅速降温,减少意外触碰造成烫伤等危险。
请参见图9,本发明另提供一种制造电热用品发热件的方法,包含以下步骤:
S11:产生带电离子。将欲形成该导电层13的一材料源游离化。以物理气相沉积法为例,请进一步参见图10,本步骤中,在一填充惰性气体G的空间V中施加一高压电场E,将惰性气体G电离后产生惰性气体离子流,让惰性气体离子流持续轰击一金属材料源30,从该金属材料源30击出多个金属离子M。其中。该惰性气体G可采用氩气(Ar),该金属材料源30可采用欲镀膜在一载体11上的单一种金属或多种金属,本发明的金属材料源30以镍铬合金为较佳实施例。
若以化学气相沉积法为例,则将两种以上不同的金属或非金属材料源加热形成气体状的带电离子并在一空间中混合。
S12:沉积该多个带电离子至该载体11的表面。以物理气相沉积法为例,该多个金属离子M从该金属材料源30被击出后,会沉积到施加电压的该载体11上而形成该导电层13。以化学气相沉积法的方式亦同,气体状的带电离子会沉积到该载体11上形成该导电层13。
S13:降温该多个带电离子M使其在该载体11的表面凝固。以物理气相沉积法为例,该多个金属离子M附着到该载体11上后,会因温度降低而还原成金属,在该载体11上形成金属薄膜。以化学气相沉积法的方式亦同,气体状的带电离子附着到该载体11上后,会因温度降低而形成导电薄膜。
藉由上述方法,该多个导电离子可均匀地附着在该载体11上,使得该导电层13较为平滑均匀。在该导电层13通电时,电流较能均匀分布于该导电层13中,该导电层13即能均匀升温让该载体11均匀加热,以提高发热效率,增加该导电件的使用寿命。而藉由上述方法,能让该导电层13的厚度可小于1μm,该导电层13的最大厚度及最小厚度的差可小于0.1μm。
以上所述仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (13)

  1. 一种制造电热用品发热件的方法,其特征在于,包含以下步骤:
    产生带电离子;将欲形成导电层的一材料源游离化形成带电离子;
    沉积带电离子至一载体的表面;
    降温带电离子使其在该载体的表面形成一导电层;
    其中,该导电层的厚度小于1μm,该导电层的最大厚度及最小厚度的差小于0.1μm。
  2. 如权利要求1所述制造电热用品发热件的方法,其特征在于,在产生带电离子的步骤中,通过在一填充惰性气体的空间中通以一高压电场,将惰性气体电离后产生惰性气体离子流,让惰性气体离子流持续轰击一金属材料源,从该金属材料源击出金属离子,该惰性气体为氩气。
  3. 如权利要求2所述制造电热用品发热件的方法,其特征在于,该金属材料源为镍铬合金。
  4. 一种用于电热用品的发热件,其特征在于,是应用如权利要求1至3中任一项所述制造电热用品发热件的方法所制成,该用于电热用品的发热件包含:
    一载体;
    一导电层,以气相沉积法均匀附着于该载体的其中一表面,其中该导电层的两端由该电热用品施加电压差,该导电层厚度小于1μm,且该导电层的最厚处及最薄处的差小于0.1μm。
  5. 如权利要求4所述用于电热用品的发热件,其特征在于,该导电层为镍铬抗氧化合金层。
  6. 如权利要求4或5所述用于电热用品的发热件,其特征在于,该载体为一导电基板,且该载体的阻抗高于该导电层。
  7. 一种用于电热用品的发热件,其特征在于,是应用如权利要求1至3中任一项所述制造电热用品发热件的方法所制成,该用于电热用品的发热件包含:
    一载体;
    一导电层,以气相沉积法均匀附着于该载体的其中一表面,其中该导电层的两端由该电热用品施加电压差,该导电层厚度小于1μm,且该导电层的最厚处及最薄处的差小于0.1μm;
    一远红外线层,铺设于该导电层的表面。
  8. 如权利要求7所述用于电热用品的发热件,其特征在于,该导电层的表面及该载体的另一面均分别形成有该远红外线层。
  9. 如权利要求8所述用于电热用品的发热件,其特征在于,该远红外线层为远红外线陶瓷层。
  10. 如权利要求8或9所述用于电热用品的发热件,其特征在于,该导电层为镍铬合金层。
  11. 一种用于电热用品的发热件,其特征在于,是应用如权利要求1至3中任一项所述制造电热用品发热件的方法而制成,该用于电热用品的发热件包含:
    一载体;
    一导电层,以气相沉积法均匀附着于该载体的其中一表面,其中该导电层的两端由该电热用品施加电压差,该导电层厚度小于1μm,且该导电层的最厚处及最薄处的差小于0.1μm;
    一远红外线层,铺设于该导电层的表面;
    一绝缘层,设置于该导电层与该远红外线层之间,用以保护该导电层。
  12. 如权利要求11所述用于电热用品的发热件,其特征在于,该远红外线层为远红外线陶瓷层。
  13. 如权利要求11或12所述用于电热用品的发热件,其特征在于,该导电层为镍铬合金层。
PCT/CN2019/082264 2019-04-11 2019-04-11 用于电热用品的发热件及其制造方法 WO2020206653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082264 WO2020206653A1 (zh) 2019-04-11 2019-04-11 用于电热用品的发热件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082264 WO2020206653A1 (zh) 2019-04-11 2019-04-11 用于电热用品的发热件及其制造方法

Publications (1)

Publication Number Publication Date
WO2020206653A1 true WO2020206653A1 (zh) 2020-10-15

Family

ID=72751824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082264 WO2020206653A1 (zh) 2019-04-11 2019-04-11 用于电热用品的发热件及其制造方法

Country Status (1)

Country Link
WO (1) WO2020206653A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089213A (zh) * 2007-07-09 2007-12-19 王佰忠 半导体用镍基合金材料
CN203198236U (zh) * 2013-02-05 2013-09-18 袁金火 一种多区红外加热元件
CN104962861A (zh) * 2015-06-03 2015-10-07 东莞市明谷一纳米材料有限公司 一种合金复合材料及其制备方法
CN105421040A (zh) * 2015-12-29 2016-03-23 广州市新景机电股份有限公司 一种导电布及其专用生产设备和生产方法
CN205545994U (zh) * 2016-01-28 2016-08-31 佛山市顺德区美的电热电器制造有限公司 远红外发热盘及具有其的煎烤机
CN106579564A (zh) * 2016-12-23 2017-04-26 湘潭大学 一种多孔发热膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089213A (zh) * 2007-07-09 2007-12-19 王佰忠 半导体用镍基合金材料
CN203198236U (zh) * 2013-02-05 2013-09-18 袁金火 一种多区红外加热元件
CN104962861A (zh) * 2015-06-03 2015-10-07 东莞市明谷一纳米材料有限公司 一种合金复合材料及其制备方法
CN105421040A (zh) * 2015-12-29 2016-03-23 广州市新景机电股份有限公司 一种导电布及其专用生产设备和生产方法
CN205545994U (zh) * 2016-01-28 2016-08-31 佛山市顺德区美的电热电器制造有限公司 远红外发热盘及具有其的煎烤机
CN106579564A (zh) * 2016-12-23 2017-04-26 湘潭大学 一种多孔发热膜及其制备方法

Similar Documents

Publication Publication Date Title
KR100600667B1 (ko) 증발 장치의 고정 부재 및 이를 이용한 증착 장치
USRE46136E1 (en) Heating apparatus with enhanced thermal uniformity and method for making thereof
JP4454606B2 (ja) 蒸発源
TWI245808B (en) Organic EL of evaporation device for evaporation
US5239612A (en) Method for resistance heating of metal using a pyrolytic boron nitride coated graphite boat
US20130154143A1 (en) High dynamic temperature control system
TWI654699B (zh) 具有圓柱非等向導熱性之複合裝置
JPH033249A (ja) 基板保持装置
JPH02129884A (ja) 赤外線放射体
WO2020206653A1 (zh) 用于电热用品的发热件及其制造方法
JP4945031B2 (ja) 基板加熱装置および半導体製造装置
TW202038676A (zh) 用於電熱用品的發熱件及其製造方法
JP2020002436A (ja) 加熱装置,蒸発源及び蒸着装置
JP3847920B2 (ja) 静電吸着ホットプレート、真空処理装置、及び真空処理方法
TWI262217B (en) Vaporizing device
KR100794987B1 (ko) 진공 증착기에서 순간 가열 방식의 기판 가열 장치
CN111818672A (zh) 用于电热用品的发热件及其制造方法
CN211720759U (zh) 一种蒸镀用加热装置
KR101310296B1 (ko) 열증착 장치
CN216514090U (zh) 能提高热量利用率的蒸镀装置
US20180096867A1 (en) Heating apparatus with controlled thermal contact
US20120006809A1 (en) Sublimation crucible with embedded heater element
WO2017092800A1 (en) A heating element for a hairdryer and a method of manufacturing the same
CN102263073A (zh) 金刚石和铝的接合体及其制造方法
KR20140119376A (ko) 히터 블럭을 갖는 증착 소스 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924210

Country of ref document: EP

Kind code of ref document: A1