WO2020204325A1 - 무선 통신 시스템에서 상향링크 데이터 채널의 전력 제어에 기반한 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국 - Google Patents
무선 통신 시스템에서 상향링크 데이터 채널의 전력 제어에 기반한 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국 Download PDFInfo
- Publication number
- WO2020204325A1 WO2020204325A1 PCT/KR2020/001098 KR2020001098W WO2020204325A1 WO 2020204325 A1 WO2020204325 A1 WO 2020204325A1 KR 2020001098 W KR2020001098 W KR 2020001098W WO 2020204325 A1 WO2020204325 A1 WO 2020204325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- terminal
- base station
- csi
- pusch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/336—Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
Definitions
- the following description is for a wireless communication system, based on (i) beam management-related configuration information received from a base station and (ii) a method for a terminal to perform BM based on power control of an uplink data channel, and This is for a terminal and a base station supporting this.
- a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- the present disclosure provides a method of performing beam management by a terminal based on power control of an uplink data channel in a wireless communication system, and a terminal and a base station supporting the same.
- the present disclosure provides a method of performing beam management by a terminal based on power control of an uplink data channel in a wireless communication system, and a terminal and a base station supporting the same.
- a method of performing beam management (BM) by a terminal in a wireless communication system comprising: receiving configuration information related to BM from a base station; Receiving, from the base station, PUSCH power control information including ratio information related to path loss for transmission of a physical uplink shared channel (PUSCH); (i) determining beam information determined from a received reference signal based on the setting information, and (ii) determining PUSCH transmission power based on the PUSCH power control information; And reporting the beam information to the base station through the PUSCH based on the determined PUSCH transmission power, and based on the configuration information including first report configuration information, the beam information is (i) beam quality First beam information related to the highest first beam and (ii) second beam information related to one or more second beams based on an order of higher beam quality after the first beam, and second report setting information Based on the included configuration information, the beam information includes (i) the first beam information and (ii) a third channel measurement resource (CMR) having the same channel measurement resource (CMR) having the same channel measurement
- the configuration information may be received through at least one or more of higher layer signaling or downlink control information (DCI).
- DCI downlink control information
- the beam information includes reference signal received power (RSRP) information associated with each beam to be reported, or a signal to interference plus noise ratio associated with each beam to be reported. It may include at least one or more of noise ratio (SINR) information.
- RSRP reference signal received power
- SINR noise ratio
- the beam information may include at least one of RSRP information related to each of the reporting beams or SINR information related to each of the reporting beams.
- the configuration information may include CMR information related to each beam, and interference measurement resource (IMR) information related to each beam.
- IMR interference measurement resource
- the beam information is (i) the first 1 beam information, and (ii) second beam information related to N-1 second beams having the highest beam quality after the first beam, and N may be a natural number of 2 or more.
- the beam information includes (i) the first beam information, (ii) second beam information related to a second beam having a higher beam quality after the first beam, and (iii) the same CMR as the first beam.
- the third beam information related to the third beam having the lowest beam quality may be included.
- SINR information related to each beam to be reported is the report It may be calculated based on the interference power determined by averaging the power of one or more ports for an interference measurement resource (IMR) related to each beam.
- IMR interference measurement resource
- the SINR information related to the specific beam may be calculated based on the interference power determined based on the CMR related to the specific beam have.
- the beam information including signal to interference plus noise ratio (SINR) information associated with each beam to be reported, and (ii) one or more interference with respect to a specific beam
- SINR signal to interference plus noise ratio
- the SINR information related to the specific beam will be calculated based on the interference power determined by averaging the interference power from the at least one IMR related to the CMR. I can.
- the beam information including signal to interference plus noise ratio (SINR) information related to each reported beam
- the beam information is CMR information related to each reported beam And interference measurement resource (IMR) information.
- the reference signal is a channel state information reference signal (CSI-RS), or a synchronization signal physical broadcast channel block (SS/PBCH block or SSB) It may include at least one or more of.
- CSI-RS channel state information reference signal
- SS/PBCH block or SSB synchronization signal physical broadcast channel block
- a terminal performing beam management (BM) in a wireless communication system at least one transmitter; At least one receiver; At least one processor; And at least one memory that is operatively connected to the at least one processor and stores instructions for causing the at least one processor to perform a specific operation when executed, wherein the specific operation is: from a base station , Receiving configuration information related to BM; Receiving, from the base station, PUSCH power control information including ratio information related to path loss for transmission of a physical uplink shared channel (PUSCH); (i) determining beam information determined from a received reference signal based on the setting information, and (ii) determining PUSCH transmission power based on the PUSCH power control information; And reporting the beam information to the base station through the PUSCH based on the determined PUSCH transmission power, and based on the configuration information including first report configuration information, the beam information is (i) beam quality First beam information related to the highest first beam and (ii) second beam information related to one or more second beams based on an
- the terminal may communicate with at least one of a mobile terminal, a network, and an autonomous vehicle other than a vehicle including the terminal.
- a base station supporting beam management (BM) of a terminal in a wireless communication system comprising: at least one transmitter; At least one receiver; At least one processor; And at least one memory that is operatively connected to the at least one processor and stores instructions for causing the at least one processor to perform a specific operation when executed, wherein the specific operation is: the terminal To transmit BM-related configuration information; Transmitting a reference signal to the terminal; Transmits PUSCH power control information including ratio information related to path loss for transmission of a physical uplink shared channel (PUSCH) to the distributing terminal; And receiving beam information determined based on the configuration information and the reference signal through a PUSCH having a PUSCH transmission power based on the PUSCH power control information, from the terminal, and including first report configuration information.
- PUSCH physical uplink shared channel
- the beam information includes (i) first beam information related to the first beam having the highest beam quality, and (ii) one or more second beams based on an order of the highest beam quality after the first beam.
- the beam information includes (i) the first beam information and (ii) the same channel measurement resource as the first beam ( Channel measurement resource (CMR) and including third beam information related to the third beam having the lowest beam quality, is disclosed.
- CMR Channel measurement resource
- a base station may select whether to obtain beam selection flexibility or improve throughput through reporting channel state information from a terminal.
- the base station can efficiently manage the beam to the terminal through the channel state information report.
- the terminal can perform beam management with lower complexity.
- 1 is a diagram illustrating physical channels and a signal transmission method using them.
- FIG. 2 is a diagram showing a structure of a radio frame based on an NR system to which embodiments of the present disclosure are applicable.
- FIG. 3 is a diagram illustrating a slot structure based on an NR system to which embodiments of the present disclosure are applicable.
- FIG. 4 is a diagram illustrating a self-contained slot structure based on an NR system to which embodiments of the present disclosure are applicable.
- FIG. 5 is a diagram illustrating one REG structure based on an NR system to which embodiments of the present disclosure are applicable.
- FIG. 6 is a diagram briefly showing an SS/PBCH block applicable to the present disclosure.
- FIG. 7 is a diagram briefly showing a configuration in which an SS/PBCH block applicable to the present disclosure is transmitted.
- FIG. 8 is a diagram showing the configuration of a higher layer parameter CSI-ReportConfig IE applicable to the present disclosure.
- FIG. 9 is a diagram briefly showing SSB/CSI-RS beam(s) for DL BM applicable to the present disclosure.
- FIG. 10 is a flowchart illustrating an example of a DL BM procedure using SSB applicable to the present disclosure.
- FIG. 11 is a diagram illustrating an example of a DL BM procedure using a CSI-RS applicable to the present disclosure
- FIG. 12 is a flowchart illustrating an example of a reception beam determination procedure of a terminal applicable to the present disclosure.
- FIG. 13 is a flowchart illustrating an example of a transmission beam determination process of a base station applicable to the present disclosure.
- FIG. 14 is a diagram illustrating an example of resource allocation in the time and frequency domains related to the operation of FIG. 11 applicable to the present disclosure.
- 15 is a diagram illustrating an example of a UL BM procedure using an SRS applicable to the present disclosure.
- 16 is a flowchart illustrating an example of a UL BM procedure using an SRS applicable to the present disclosure.
- 17 is a diagram illustrating an example of a procedure for controlling uplink transmission power.
- FIG. 20 shows another example of a wireless device applied to the present disclosure.
- 21 illustrates a portable device applied to the present disclosure.
- 22 illustrates a vehicle or an autonomous vehicle applied to the present disclosure.
- DAS Distributed Antenna System
- 24 is a diagram illustrating an example of a procedure for beam management between a terminal and a base station to which the above-described methods in the present disclosure can be applied.
- 25 is a diagram briefly showing a network connection and communication process between a terminal and a base station applicable to the present disclosure.
- 26 is a diagram briefly showing a discontinuous reception (DRX) cycle of a terminal applicable to the present disclosure.
- FIG. 27 is a diagram briefly showing the operation of a terminal and a base station according to an example of the present disclosure
- FIG. 28 is a flowchart of an operation of a terminal according to an example of the present disclosure
- FIG. 29 is an operation of a base station according to an example of the present disclosure It is a flow chart.
- each component or feature may be considered optional unless otherwise explicitly stated.
- Each component or feature may be implemented in a form that is not combined with other components or features.
- some components and/or features may be combined to constitute an embodiment of the present disclosure.
- the order of operations described in the embodiments of the present disclosure may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
- the base station has a meaning as a terminal node of a network that directly communicates with the mobile station.
- the specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
- a network comprising a plurality of network nodes including a base station
- various operations performed for communication with a mobile station may be performed by the base station or network nodes other than the base station.
- 'base station' is to be replaced by terms such as fixed station, Node B, eNode B (eNB), gNode B (gNB), advanced base station (ABS), or access point. I can.
- a terminal is a user equipment (UE), a mobile station (MS), a subscriber station (SS), and a mobile subscriber station (MSS).
- UE user equipment
- MS mobile station
- SS subscriber station
- MSS mobile subscriber station
- AMS advanced mobile station
- the transmitting end refers to a fixed and/or mobile node that provides a data service or a voice service
- the receiving end refers to a fixed and/or mobile node that receives a data service or a voice service.
- the mobile station in the uplink, the mobile station may be the transmitting end and the base station may be the receiving end.
- the mobile station in the downlink, the mobile station may be the receiving end and the base station may be the transmitting end.
- Embodiments of the present disclosure may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system, and 3GPP2 system as radio access systems,
- 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 and 3GPP TS 38.331 documents that is, obvious steps or parts not described among the embodiments of the present disclosure may be described with reference to the above documents.
- all terms disclosed in this document can be described by the standard document.
- 3GPP NR system will be described as an example of a wireless access system in which embodiments of the present disclosure can be used.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- embodiments of the present disclosure will be mainly described with a 3GPP NR system.
- the embodiment proposed in the present disclosure may be equally applied to other wireless systems (eg, 3GPP LTE, IEEE 802.16, IEEE 802.11, etc.).
- a terminal receives information from a base station through a downlink (DL) and transmits information to the base station through an uplink (UL).
- the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
- FIG. 1 is a diagram for describing physical channels that can be used in embodiments of the present disclosure and a signal transmission method using them.
- the terminal newly entering the cell performs an initial cell search operation such as synchronizing with the base station in step S11.
- the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station, and obtains information such as cell ID.
- P-SCH Primary Synchronization Channel
- S-SCH Secondary Synchronization Channel
- the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information.
- PBCH physical broadcast channel
- the UE may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell search step.
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S12 and further Specific system information can be obtained.
- a physical downlink control channel (PDCCH)
- a physical downlink shared channel (PDSCH)
- the UE may perform a random access procedure, such as steps S13 to S16, to complete access to the base station.
- the UE transmits a preamble through a physical random access channel (PRACH) (S13), and a RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel ( Random Access Response) may be received (S14).
- the UE transmits a PUSCH (Physical Uplink Shared Channel) using the scheduling information in the RAR (S15), and a contention resolution procedure such as receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal. ) Can be performed (S16).
- the UE After performing the above-described procedure, the UE receives a physical downlink control channel signal and/or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
- a physical downlink control channel signal and/or a physical downlink shared channel signal S17
- a physical uplink shared channel PUSCH
- Uplink Shared Channel signal and/or a physical uplink control channel (PUCCH) signal may be transmitted (S18).
- UCI uplink control information
- HARQ-ACK/NACK Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK
- SR Switching Request
- CQI Choannel Quality Indication
- PMI Precoding Matrix Indication
- RI Rank Indication
- BI Beam Indication
- UCI is generally periodically transmitted through PUCCH, but may be transmitted through PUSCH according to embodiments (eg, when control information and traffic data are to be transmitted simultaneously).
- the UE may aperiodically transmit UCI through the PUSCH according to the request/instruction of the network.
- FIG. 2 is a diagram showing a structure of a radio frame based on an NR system to which embodiments of the present disclosure are applicable.
- Uplink and downlink transmission based on the NR system is based on the frame shown in FIG. 2.
- One radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HF).
- One half-frame is defined as five 1ms subframes (Subframe, SF).
- One subframe is divided into one or more slots, and the number of slots in the subframe depends on Subcarrier Spacing (SCS).
- SCS Subcarrier Spacing
- Each slot includes 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot includes 14 symbols. When the extended CP is used, each slot includes 12 symbols.
- the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or DFT-s-OFDM symbol).
- Table 1 shows the number of symbols per slot according to the SCS, the number of slots per frame, and the number of slots per subframe when a general CP is used
- Table 2 shows the number of slots per SCS when the extended CSP is used. It indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
- slot N symb denotes the number of a symbol in the slot
- N frame ⁇ denotes a slot number of a slot within a frame
- subframe N ⁇ slot is the number of slots within a subframe.
- OFDM(A) numerology eg, SCS, CP length, etc.
- OFDM(A) numerology eg, SCS, CP length, etc.
- the (absolute time) section of the time resource eg, SF, slot or TTI
- TU Time Unit
- NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth (wider carrier bandwidth) is supported, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
- SCS subcarrier spacing
- the NR frequency band is defined as a frequency range of two types (FR1, FR2).
- FR1 and FR2 can be configured as shown in the table below.
- FR2 may mean a millimeter wave (mmW).
- FIG. 3 is a diagram illustrating a slot structure based on an NR system to which embodiments of the present disclosure are applicable.
- One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
- the carrier includes a plurality of subcarriers in the frequency domain.
- RB Resource Block
- RB Resource Block
- the BWP (Bandwidth Part) is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
- numerology eg, SCS, CP length, etc.
- the carrier may contain up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated to one terminal.
- N e.g. 5
- Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
- RE resource element
- FIG. 4 is a diagram illustrating a self-contained slot structure based on an NR system to which embodiments of the present disclosure are applicable.
- the base station and the UE can sequentially perform DL transmission and UL transmission within one slot, and can transmit and receive DL data and also transmit and receive UL ACK/NACK thereto within the one slot.
- this structure reduces the time required to retransmit data when a data transmission error occurs, thereby minimizing the delay in final data transmission.
- a type gap of a certain length of time is required.
- some OFDM symbols at a time point at which the DL to UL is switched in the independent slot structure may be set as a guard period (GP).
- the self-supporting slot structure includes both a DL control area and a UL control area has been described, but the control areas may be selectively included in the self-supporting slot structure.
- the self-supporting slot structure according to the present disclosure may include a case including both a DL control region and a UL control region as shown in FIG. 4 as well as a case including only a DL control region or a UL control region.
- one slot may be configured in the order of a DL control area / DL data area / UL control area / UL data area, or may be configured in the order of UL control area / UL data area / DL control area / DL data area.
- the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
- PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
- downlink control information for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted.
- uplink control information for example, positive acknowledgment/negative acknowledgment (ACK/NACK) information for DL data, channel state information (CSI) information, scheduling request (SR), and the like may be transmitted.
- ACK/NACK positive acknowledgment/negative acknowledgment
- CSI channel state information
- SR scheduling request
- the PDSCH carries downlink data (e.g., DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
- a codeword is generated by encoding TB.
- the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers (Layer mapping). Each layer is mapped to a resource together with a demodulation reference signal (DMRS) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
- DMRS demodulation reference signal
- the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
- DCI downlink control information
- One PDCCH is composed of 1, 2, 4, 8, 16 Control Channel Elements (CCEs) according to the Aggregation Level (AL).
- CCE consists of 6 REGs (Resource Element Group).
- REG is defined by one OFDM symbol and one (P)RB.
- FIG. 5 is a diagram illustrating one REG structure based on an NR system to which embodiments of the present disclosure are applicable.
- D represents a resource element (RE) to which DCI is mapped
- R represents an RE to which DMRS is mapped.
- the DMRS is mapped to the 1st, 5th, and 9th REs in the frequency domain direction within one symbol.
- CORESET is defined as a REG set with a given pneumonology (eg, SCS, CP length, etc.).
- a plurality of CORESETs for one terminal may overlap in the time/frequency domain.
- CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
- RRC Radio Resource Control
- the number of RBs constituting CORESET and the number of symbols (maximum 3) may be set by higher layer signaling.
- PUSCH carries uplink data (e.g., UL-shared channel transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform Alternatively, it is transmitted based on a DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) waveform.
- DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
- PUSCH may be transmitted based on a waveform or a DFT-s-OFDM waveform.
- PUSCH transmission is dynamically scheduled by the UL grant in the DCI or is semi-static based on higher layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
- PUSCH transmission may be performed based on a codebook or a non-codebook.
- PUCCH carries uplink control information, HARQ-ACK and/or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
- Table 4 illustrates PUCCH formats.
- PUCCH format 0 carries UCI of a maximum size of 2 bits, and is mapped and transmitted on a sequence basis. Specifically, the terminal transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH of PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 within a PUCCH resource for SR configuration corresponding to only when transmitting a positive SR.
- PUCCH format 1 carries UCI of a maximum size of 2 bits, and the modulation symbol is spread by an orthogonal cover code (OCC) (set differently depending on whether or not frequency hopping) in the time domain.
- OCC orthogonal cover code
- the DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, it is transmitted after time division multiplexing (TDM)).
- PUCCH format 2 carries UCI of a bit size larger than 2 bits, and a modulation symbol is transmitted after DMRS and FDM (Frequency Division Multiplexing).
- the DMRS is located at symbol indexes #1, #4, #7, and #10 in a given resource block with a density of 1/3.
- a PN (Pseudo Noise) sequence is used for the DMRS sequence. Frequency hopping may be activated for 2-symbol PUCCH format 2.
- PUCCH format 3 does not perform multiplexing of terminals within the same physical resource blocks, and carries UCI with a bit size larger than 2 bits.
- the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
- the modulation symbols are transmitted after DMRS and TDM (Time Division Multiplexing).
- PUCCH format 4 supports multiplexing of up to 4 terminals in the same physical resource block, and carries UCI with a bit size larger than 2 bits.
- the PUCCH resource of PUCCH format 4 includes an orthogonal cover code.
- the modulation symbols are transmitted after DMRS and TDM (Time Division Multiplexing).
- Synchronization Signal Block (SSB or SS/PBCH block)
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- SS block Synchronization Signal Block or Synchronization Signal PBCH block
- multiplexing of other signals within the one SS block may not be excluded. (Multiplexing other signals are not precluded within a'SS block').
- the SS/PBCH block may be transmitted in a band other than the center of the system band.
- the base station may transmit a plurality of SS/PBCH blocks.
- FIG. 6 is a diagram briefly showing an SS/PBCH block applicable to the present disclosure.
- an SS/PBCH block applicable to the present disclosure may be composed of 20 RBs within four consecutive OFDM symbols.
- the SS/PBCH block is composed of PSS, SSS and PBCH, and the UE can perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SS/PBCH block. .
- the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
- Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH.
- the PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol.
- DMRS demodulation reference signal
- the location of the DMRS RE may be determined based on the cell ID (eg, a subcarrier index mapped based on the value of N cell ID mod 4 may be determined).
- the SS/PBCH block may be transmitted in a frequency band other than the center frequency of the frequency band used by the network.
- a synchronization raster which is a candidate frequency position at which the UE should detect an SS/PBCH block.
- the synchronization raster may be distinguished from a channel raster.
- the synchronization raster may indicate a frequency location of an SS/PBCH block that can be used by the UE to obtain system information when there is no explicit signaling for the location of the SS/PBCH block.
- the synchronization raster may be determined based on a Global Synchronization Channel Number (GSCN).
- GSCN Global Synchronization Channel Number
- the GSCN may be transmitted through RRC signaling (eg, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.).
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining Minimum System Information
- OSI System Information
- Such a synchronization raster is defined longer in the frequency axis than a channel raster in consideration of the complexity and detection speed of initial synchronization and has fewer blind detections.
- FIG. 7 is a diagram briefly showing a configuration in which an SS/PBCH block applicable to the present disclosure is transmitted.
- the base station may transmit an SS/PBCH block up to 64 times for 5 ms. At this time, a plurality of SS/PBCH blocks are transmitted in different transmission beams, and the UE detects the SS/PBCH block assuming that the SS/PBCH block is transmitted every 20 ms period based on one specific beam used for transmission. can do.
- the maximum number of beams that the base station can use for SS/PBCH block transmission within a 5ms time interval may be set larger as the frequency band increases. For example, in a band below 3GHz, the base station may transmit an SS/PBCH block using up to 4 different beams in a 5ms time interval, up to 8 in a 3-6GHz band, and up to 64 different beams in a band above 6GHz.
- the terminal may perform synchronization by receiving the SS/PBCH block as described above from the base station.
- the synchronization procedure largely includes a cell ID detection step and a timing detection step.
- the cell ID detection step may include a cell ID detection step based on PSS and a cell ID detection step based on SSS (eg, detecting one physical layer cell ID among a total of 1008 physical layer cell IDs).
- the timing detection step may include a timing detection step based on PBCH DM-RS (Demodulation Reference Signal) and a timing detection step based on PBCH content (eg, MIB (Master Information Block)).
- PBCH DM-RS Demodulation Reference Signal
- MIB Master Information Block
- the UE may assume that PBCH, PSS, and SSS reception occasions exist on consecutive symbols. (That is, the UE may assume that the PBCH, PSS, and SSS constitute the SS/PBCH block, as described above). Subsequently, the UE may assume that SSS, PBCH DM-RS, and PBCH data have the same Energy Per Resource Element (EPRE). In this case, the UE may assume that the ratio of PSS EPRE to SSS EPRE of the SS/PBCH block in the corresponding cell is 0 dB or 3 dB.
- ERE Energy Per Resource Element
- SI-RNTI System Information-Random Network Temporary Identifier
- P-RNTI Paging-Random Network Temporary Identifier
- RA-RNTI RA-RNTI
- the UE monitoring the PDCCH for DCI format 1_0 with CRC (Cyclic Redundancy Check) scrambled by (Random Access-Random Network Temporary Identifier) is the ratio of PDCCH DMRS EPRE to SSS EPRE (ratio of PDCCH DMRS EPRE to SSS EPRE) It can be assumed to be within -8 dB to 8 dB.
- the UE may acquire time synchronization and a physical cell ID of the detected cell through PSS and SSS detection. More specifically, the terminal may acquire symbol timing for an SS block through PSS detection, and may detect a cell ID within a cell ID group. Subsequently, the terminal detects the cell ID group through SSS detection.
- the UE may detect the time index (eg, slot boundary) of the SS block through the DM-RS of the PBCH. Subsequently, the terminal may obtain half frame boundary information and system frame number (SFN) information through the MIB included in the PBCH.
- time index eg, slot boundary
- SFN system frame number
- the PBCH may inform that the related (or corresponding) RMSI PDCCH/PDSCH is transmitted in the same band as the SS/PBCH block or in a different band.
- the UE can receive RMSI (e.g., system information other than MIB (Master Information Block, MIB)) transmitted later in the frequency band indicated by the PBCH or the frequency band in which the PBCH is transmitted after decoding the PBCH. have.
- RMSI e.g., system information other than MIB (Master Information Block, MIB)
- first symbol indices for candidate SS/PBCH blocks may be determined according to subcarrier spacing of SS/PBCH blocks as follows. At this time, index #0 corresponds to the first symbol of the first slot in the half frame.
- the first symbols of candidate SS/PBCH blocks may have symbols of ⁇ 2, 8 ⁇ + 14*n.
- n has a value of 0 or 1.
- n has a value of 0, 1, 2 or 3.
- the first symbols of candidate SS/PBCH blocks may have symbols of ⁇ 4, 8, 16, 32 ⁇ + 28*n.
- n has a value of 0.
- n has a value of 0 or 1.
- the first symbols of candidate SS/PBCH blocks may have symbols of ⁇ 2, 8 ⁇ + 14*n.
- n has a value of 0 or 1.
- n has a value of 0, 1, 2 or 3.
- the first symbols of the candidate SS/PBCH blocks may have symbols of ⁇ 4, 8, 16, 20 ⁇ + 28*n.
- n has values of 0, 1, 2, 3, 5, 6, 7, 8, 19, 11, 12, 13, 15, 16, 17 or 18.
- the first symbols of the candidate SS/PBCH blocks may have symbols of ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56*n.
- n has values of 0, 1, 2, 3, 5, 6, 7 or 8.
- the terminal may obtain system information.
- the MIB includes information/parameters for monitoring a PDCCH scheduling a PDSCH carrying a System Information Block1 (SIB1), and is transmitted by the base station to the terminal through the PBCH in the SS/PBCH block.
- SIB1 System Information Block1
- the UE may check whether there is a CORESET (Control Resource Set) for the Type0-PDCCH common search space based on the MIB.
- the Type0-PDCCH common search space is a kind of PDCCH search space, and is used to transmit a PDCCH for scheduling SI messages.
- the UE is based on information in the MIB (e.g., pdcch-ConfigSIB1), based on (i) a plurality of contiguous resource blocks constituting the CORESET and one or more consecutive (consecutive) Symbols and (ii) a PDCCH opportunity (eg, a time domain location for PDCCH reception) may be determined.
- MIB e.g., pdcch-ConfigSIB1
- a PDCCH opportunity eg, a time domain location for PDCCH reception
- pdcch-ConfigSIB1 provides information on a frequency location in which SSB/SIB1 exists and a frequency range in which SSB/SIB1 does not exist.
- SIB1 includes information related to availability and scheduling (eg, transmission period, SI-window size) of the remaining SIBs (hereinafter, SIBx, x is an integer greater than or equal to 2). For example, SIB1 may inform whether SIBx is periodically broadcast or is provided by an on-demand method (or at a request of a terminal). When SIBx is provided by an on-demand method, SIB1 may include information necessary for the UE to perform an SI request. SIB1 is transmitted through the PDSCH, the PDCCH scheduling SIB1 is transmitted through the Type0-PDCCH common search space, and SIB1 is transmitted through the PDSCH indicated by the PDCCH.
- Synchronization raster means a frequency location of an SSB that can be used by a terminal for system information acquisition when there is no explicit signaling for the SSB location.
- the global synchronization raster is defined for all frequencies.
- the frequency position of the SSB is defined by the SS REF and the corresponding number GSCN (Global Synchronization Channel Number).
- the parameters defining SS REF and GSCN for all frequency ranges are as follows.
- the mapping between the synchronization raster and the resource block of the corresponding SSB may be based on the following table.
- the mapping depends on the total number of resource blocks allocated in the channel, and can be applied to both UL and DL.
- the following DCI formats may be supported.
- the NR system may support DCI format 0_0 and DCI format 0_1 as DCI formats for PUSCH scheduling, and DCI format 1_0 and DCI format 1_1 as DCI formats for PDSCH scheduling.
- the NR system may additionally support DCI format 2_0, DCI format 2_1, DCI format 2_2, and DCI format 2_3.
- DCI format 0_0 is used to schedule TB (Transmission Block)-based (or TB-level) PUSCH
- DCI format 0_1 is TB (Transmission Block)-based (or TB-level) PUSCH or (CBG (Code Block Group))
- CBG Code Block Group
- DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
- DCI format 1_1 is a TB-based (or TB-level) PDSCH or (when CBG-based signal transmission and reception is set) CBG-based (or CBG- level) Can be used to schedule PDSCH.
- DCI format 2_0 is used to inform the slot format (used for notifying the slot format)
- DCI format 2_1 is used to inform the PRB and OFDM symbols assuming that a specific UE has no intended signal transmission ( used for notifying the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE)
- DCI format 2_2 is used for transmission of the PUCCH and PUSCH Transmission Power Control (TPC) commands.
- DCI format 2_3 may be used for transmission of a TPC command group for SRS transmission by one or more UEs (used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs).
- DCI format 1_1 includes an MCS/NDI (New Data Indicator)/RV (Redundancy Version) field for transport block (TB) 1, and the upper layer parameter maxNrofCodeWordsScheduledByDCI in the upper layer parameter PDSCH-Config is n2 (i.e. When set to 2), an MCS/NDI/RV field for transport block 2 may be further included.
- MCS/NDI New Data Indicator
- RV Redundancy Version
- n2 i.e., 2
- whether or not the transport block is substantially usable (enable/disable) may be determined by a combination of the MCS field and the RV field. More specifically, when the MCS field for a specific transport block has a value of 26 and the RV field has a value of 1, the specific transport block may be disabled.
- a list of maximum M Transmission Configuration Indicator (TCI) state settings may be configured for one terminal.
- the maximum M TCI state setting may be set by a higher layer parameter PDSCH-Config so that (the terminal) can decode the PDSCH according to the detection of the PDCCH including the DCI intended for the terminal and a given serving cell. have.
- the M value may be determined depending on the capability of the terminal.
- Each TCI-state includes a parameter for setting a QCL (quasi co-location) relationship between one or two downlink reference signals and DMRS ports of the PDSCH.
- the QCL relationship is established based on an upper layer parameter qcl-Type1 for a first downlink reference signal (DL RS) and a higher layer parameter qcl-Type2 (if set) for a second DL RS.
- DL RS downlink reference signal
- qcl-Type2 if set
- the QCL types should not be the same (shall not be the same).
- the QCL types correspond to each DL RS given by the higher layer parameter qcl-Type in the higher layer parameter QCL-Info , and the QCL types may have one of the following values.
- the UE receives an activation command used to map the maximum of 8 TCI states with a codepoint of a Transmission Configuration Indication (TCI) field in DCI.
- TCI Transmission Configuration Indication
- the mapping between the TCIs states and the code points of the TCI field in the DCI is slot #(n+3*N subframe, ⁇ slot + It can be applied from 1).
- N subframe and ⁇ slot are determined based on Table 1 or Table 2 described above.
- the UE may assume that the DMRS port(s) of the PDSCH of the serving cell are QCL with the SS/PBCH block determined in the initial access procedure in terms of'QCL-TypeD'.
- SS/PBCH Synchronization Signal/Physical Broadcast Channel
- the UE assumes that the TCI field exists in the PDCCH of DCI format 1_1 transmitted on the CORESET.
- the upper layer parameter tci-PresentInDCI is not set or the PDSCH is scheduled according to DCI format 1_0, and the time offset between the reception time of the DL DCI and the reception time of the corresponding PDSCH is a threshold Threshold-Sched -Offset (the threshold is determined based on the reported UE capability ), if greater than or equal to, in order to determine the PDSCH antenna port QCL, the UE uses the TCI state or QCL assumption for the PDSCH for PDCCH transmission. It is assumed to be the same as the TCI state or QCL assumption applied to.
- the UE uses the TCI-State based on the TCI field included in the DCI in the detected PDCCH to determine the PDSCH antenna port QCL.
- the threshold is determined based on the reported UE capability
- the DMRS port(s) are RS(s) and QCL in the TCI state for the QCL type parameter(s) given by the indicated TCI stated.
- the indicated TCI state should be based on activated TCI states in the slot of the scheduled PDSCH.
- the terminal assumes that the upper layer parameter tci-PresentInDCI is set to'enabled ' for the CORESET, and the search
- the UE is a time offset between a reception time of a PDCCH detected in the search region set and a reception time of a corresponding PDSCH Expects to be greater than or equal to the threshold Threshold-Sched-Offset .
- the QCL parameter(s) is the lowest CORESET-ID in the last slot in one or more CORESETs in the activation BWP of the serving cell monitored by the terminal for the PDCCH QCL indication of the CORESET associated with the monitored search area QCL parameter(s) used (For both the cases when higher layer parameter tci-PresentInDCI is set to'enabled ' and the higher layer parameter tci-PresentInDCI is not configured in RRC connected mode, if the offset between the reception of the DL DCI and the corresponding PDSCH is less than the threshold Threshold-Sched-Offset, the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS(s) in the TCI state with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESET
- the UE when the'QCL-TypeD' of the PDSCH DMRS is different from the'QCL-TypeD' of the PDCCH DMRS overlapping on at least one symbol, the UE expects to prioritize reception of the PDCCH associated with the corresponding CORESET.
- This operation can also be applied equally to the case of intra-band CA (if PDSCH and CORESET are in different CCs). If there is no TCI state including'QCL-TypeD' among the configured TCI states, the terminal is the TCI indicated for the scheduled PDSCH, regardless of the time offset between the reception time of the DL DCI and the reception time of the corresponding PDSCH Another QCL assumption is obtained from state.
- the UE For periodic CSI-RS resources in the upper layer parameter NZP-CSI-RS-ResourceSet in which the upper layer parameter trs-Info is configured, the UE should assume that the TCI state indicates one of the following QCL type(s):
- the UE For the CSI-RS resource in the higher layer parameter NZP-CSI-RS-ResourceSet set without the higher layer parameter trs-Info and the higher layer parameter repetition , the UE should assume that the TCI state indicates one of the following QCL type(s). :
- the upper layer parameter repetition is set 'QCL-TypeD' for periodic CSI-RS resources in the layer parameter NZP-CSI-RS-ResourceSet , or
- the UE For the CSI-RS resource in the higher layer parameter NZP-CSI-RS-ResourceSet in which the higher layer parameter repetition is configured, the UE should assume that the TCI state indicates one of the following QCL type(s):
- the upper layer parameter repetition is set 'QCL-TypeD' for CSI-RS resources in the layer parameter NZP-CSI-RS-ResourceSet , or,
- the UE For the DMRS of the PDCCH, the UE should assume that the TCI state indicates one of the following QCL type(s):
- the upper layer parameter repetition is set 'QCL-TypeD' for CSI-RS resources in the layer parameter NZP-CSI-RS-ResourceSet , or,
- the UE For the DMRS of the PDSCH, the UE should assume that the TCI state indicates one of the following QCL type(s):
- the upper layer parameter repetition is set 'QCL-TypeD' for CSI-RS resources in the layer parameter NZP-CSI-RS-ResourceSet , or,
- QCL signaling may include all signaling configurations described in the table below.
- the UE when there is a CSI-RS resource set by the upper layer parameter NZP-CSI-RS-ResourceSet together with the upper layer parameter trs-Info , the UE is capable of the following two of the upper layer parameter TCI-State You can only expect settings.
- * may mean that if QCL type-D is applicable, DL RS 2 and QCL type-2 may be configured for the terminal.
- the UE is the upper layer parameter TCI-State Only the following three possible settings can be expected.
- * may mean that QCL type-D is not applicable.
- ** may mean that if QCL type-D is applicable, DL RS 2 and QCL type-2 may be configured for the terminal.
- the UE when there is a CSI-RS resource set by a higher layer parameter NZP-CSI-RS-ResourceSet together with a higher layer parameter repetition , the UE can configure the following three possible settings of the higher layer parameter TCI-State You can only expect them.
- the TRS for downlink may have a reference signal (eg, SSB or CSI-RS) for beam management (BM) as a source RS for QCL type-D. .
- a reference signal eg, SSB or CSI-RS
- BM beam management
- the UE For the DMRS of the PDCCH, the UE has only the following three possible settings of the upper layer parameter TCI-State while the fourth setting (the fourth row of the two tables below) is valid as the default setting before the TRS is configured. Can be expected.
- * may mean a setting that can be applied before the TRS is set. Accordingly, the setting is not a TCI state, but rather can be interpreted as a valid QCL assumption.
- ** may mean that QCL parameters are not directly derived from CSI-RS (or CSI).
- the UE For the DMRS of the PDCCH, the UE has only three possible settings of the upper layer parameter TCI-State while the fourth setting (the fourth row of the two tables below) is valid (by default) before the TRS is configured. Can be expected.
- * may mean a setting that can be applied before the TRS is set. Accordingly, the setting is not a TCI state, but rather can be interpreted as a valid QCL assumption.
- ** may mean that QCL parameters are not directly derived from CSI-RS (or CSI).
- the UE For the DMRS of the PDCCH, the UE has only three possible settings of the upper layer parameter TCI-State while the fourth setting (the fourth row of the two tables below) is valid (by default) before the TRS is configured. Can be expected.
- * may mean a setting that can be applied before the TRS is set. Accordingly, the setting may be interpreted as a valid QCL assumption rather than a TCI state.
- ** may mean that QCL parameters are not directly derived from CSI-RS (or CSI).
- CSI-RS channel state information reference signal
- each transmit antenna may have a separate reference signal.
- a reference signal for feedback of channel state information (CSI) may be defined as a CSI-RS.
- CSI-RS includes ZP (Zero Power) CSI-RS and NZP (Non-Zero-Power) CSI-RS.
- ZP CSI-RS and NZP CSI-RS may be defined as follows.
- the NZP CSI-RS may be configured by the NZP-CSI-RS-Resource IE (Information Element) or the CSI-RS-Resource-Mobility field in the CSI-RS-ResourceConfigMobility IE.
- the NZP CSI-RS may be defined based on a sequence generation and resource mapping method defined in the 3GPP TS 38.211 standard spec.
- -ZP CSI-RS may be set by the ZP-CSI-RS-Resource IE.
- the UE may assume that the resource configured for the ZP CSI-RS is not used for PDSCH transmission.
- the UE may perform the same measurement/reception on channels/signals except PDSCH regardless of whether the channel/signal excluding the PDSCH collides with the ZP CSI-RS. regardless of whether they collide with ZP CSI-RS or not).
- Configuration parameters for CSI reporting e.g. CSI-ReportConfig IE
- a configuration parameter for CSI reporting (eg, CSI-ReportConfig ) may be configured in the terminal.
- FIG. 8 is a diagram showing the configuration of a higher layer parameter CSI-ReportConfig IE applicable to the present disclosure.
- resourceForChannelMeasurement csi-IM-ResourceForInterference
- nzp-CSI-RS-ResourceForInterference in the CSI-ReportConfig IE may have the following relationship.
- CSI calculation may be performed as follows.
- the report for reportQuantity ⁇ cri-RSRP or ssb-Index-RSRP ⁇ can be classified as follows.
- the UE may be configured as follows.
- the terminal may perform the following report according to nrofReportedRS or groupBasedBeamReporting .
- the UE may refer to the following tables defined in Section 5.2.2.1 of 3GPP TS 38.214. More specifically, the UE may report CQI information (eg, index) closest to the measured CQI to the base station based on the following tables.
- CQI information eg, index
- the UE may refer to the following table for RSRP reporting. More specifically, the UE may report RSRP information (eg, index) closest to the measured RSRP to the base station based on the following table.
- RSRP information eg, index
- the base station reports periodic Channel State Information (CSI)/beam, semi-persistent CSI/beam report to the terminal (e.g., periodic reporting is activated only during a specific time period, or the terminal performs a number of consecutive reports), Alternatively, you can request aperiodic CSI/beam report.
- CSI Channel State Information
- the CSI report information may include one or more of the following information.
- CSI-RS resource indicator CSI-RS resource indicator.
- the beam report information includes a CRI indicating a preferred beam index when the RS for beam quality measurement is a CSI-RS, an SSBID indicating a preferred beam index when the beam quality measurement RS is SSB, and an RSRP (RS received power) indicating beam quality. ) It can be composed of a specific combination of information, etc.
- the base station For periodic and semi-persistent (SP) CSI/beam reporting of the UE, the base station provides the UE with an UL (uplink) physical channel for CSI/beam reporting during a time period in which the corresponding report is activated at a specific period (e.g. : PUCCH, PUSCH) can be allocated.
- the base station may transmit a downlink reference signal (DL RS) to the terminal.
- DL RS downlink reference signal
- the DL beam pair determination procedure includes (i) a TRP Tx beam selection procedure in which a base station transmits a DL RS corresponding to a plurality of TRP Tx beams to a terminal, and the terminal selects and/or reports one of them, and (ii ) The base station repeatedly transmits the same RS signal corresponding to each TRP Tx beam, and in response thereto, the UE measures the repeatedly transmitted signals with different UE Rx beams to select a UE Rx beam. .
- the UL beam pair determination procedure includes: (i) a UE Tx beam selection procedure in which the UE transmits UL RSs corresponding to a plurality of UE Tx beams to a base station, and the base station selects and/or signals one of them, and (ii ) It may consist of a combination of procedures in which the UE repeatedly transmits the same RS signal corresponding to the UE Tx beam, and the base station measures the repeatedly transmitted signals with different TRP Rx beams in response thereto and selects a TRP Rx beam.
- the beam reciprocity (or beam correspondence) of DL/UL is established (e.g., in communication between the base station and the terminal, it is assumed that the base station DL Tx beam and the base station UL Rx beam coincide, and the terminal UL Tx beam and the terminal DL Rx beam coincide If possible), if only one of the DL beam pair and the UL beam pair is determined, the procedure for determining the other may be omitted.
- the process of determining a DL and/or UL beam pair may be performed periodically or aperiodically. For example, when the number of candidate beams is large, the required RS overhead may increase. In this case, the process of determining a DL and/or UL beam pair may be performed at a predetermined period in consideration of the RS overhead.
- the UE may perform periodic or SP CSI reporting.
- the CSI-RS including a single or a plurality of antenna ports for CSI measurement of the UE may be beamformed and transmitted in a TRP Tx beam determined as a DL beam.
- the transmission period of the CSI-RS may be set equal to the CSI reporting period of the UE or shorter than the CSI reporting period of the UE.
- the base station may transmit the aperiodic CSI-RS according to the CSI reporting period of the terminal or more frequently than the CSI reporting period of the terminal.
- the UE may transmit the measured CSI information using a UL Tx beam determined in a periodic UL beam pair determination process.
- the beam management (BM) procedure is a base station (eg, gNB, TRP, etc.) that can be used for downlink (downlink, DL) and uplink (uplink, UL) transmission/reception.
- a base station eg, gNB, TRP, etc.
- L1 layer 1
- L2 layer 2
- the base station or the UE measures the characteristics of the received beamforming signal
- -Beam sweeping An operation of covering a spatial area using a transmission and/or reception beam for a predetermined time interval in a predetermined manner.
- -Beam report an operation in which the terminal reports information on a beam formed signal based on beam measurement
- the BM procedure can be divided into (1) a DL BM procedure using a synchronization signal (SS)/physical broadcast channel (PBCH) block or a CSI-RS, and (2) a UL BM procedure using a sounding reference signal (SRS).
- SS synchronization signal
- PBCH physical broadcast channel
- SRS sounding reference signal
- each BM procedure may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
- the DL BM procedure may include (1) transmission of beamformed DL RS (reference signals) (eg, CSI-RS or SS Block (SSB)) of the base station, and (2) beam reporting of the terminal.
- DL RS reference signals
- SSB SS Block
- the beam reporting may include a preferred (preferred) DL RS identifier (s) and a corresponding L1-RSRP (Reference Signal Received Power).
- s preferred DL RS identifier
- L1-RSRP Reference Signal Received Power
- the DL RS ID may be an SSB Resource Indicator (SSBRI) or a CSI-RS Resource Indicator (CRI).
- SSBRI SSB Resource Indicator
- CRI CSI-RS Resource Indicator
- FIG. 9 is a diagram briefly showing SSB/CSI-RS beam(s) for DL BM applicable to the present disclosure.
- the SSB beam and the CSI-RS beam may be used for beam measurement.
- the measurement metric is L1-RSRP for each resource/block.
- SSB is used for coarse beam measurement, and CSI-RS can be used for fine beam measurement.
- SSB can be used for both Tx beam sweeping and Rx beam sweeping.
- Rx beam sweeping using SSB may be performed while the UE changes the Rx beam for the same SSBRI over a plurality of SSB bursts.
- one SS burst includes one or more SSBs
- one SS burst set includes one or more SSB bursts.
- FIG. 10 is a flowchart illustrating an example of a DL BM procedure using SSB applicable to the present disclosure.
- the configuration for the beam report using SSB is performed in CSI/beam configuration in the RRC connected state (or RRC connected mode).
- the terminal receives a CSI-ResourceConfig IE including a CSI-SSB-ResourceSetList including SSB resources used for BM from the base station (S1010).
- Table 18 shows an example of CSI-ResourceConfig IE, BM configuration using SSB is not separately defined, and SSB is set like CSI-RS resource.
- the csi-SSB-ResourceSetList parameter represents a list of SSB resources used for beam management and reporting in one resource set.
- the SSB resource set is ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ... Can be set to ⁇ .
- SSB index can be defined from 0 to 63.
- the terminal receives an SSB resource from the base station based on the CSI-SSB-ResourceSetList (S1020).
- the terminal reports the best SSBRI and the corresponding L1-RSRP to the base station (beam) (S1030).
- the UE reports the best SSBRI and the corresponding L1-RSRP to the base station.
- the UE when the UE is configured with a CSI-RS resource in the same OFDM symbol(s) as SSB (SS/PBCH Block) and'QCL-TypeD' is applicable, the UE has CSI-RS and SSB'QCL-TypeD' 'From the point of view, we can assume that it is quasi co-located.
- SSB SS/PBCH Block
- the QCL TypeD may mean that QCL is performed between antenna ports in terms of a spatial Rx parameter.
- the same reception beam may be applied.
- the UE does not expect the CSI-RS to be configured in the RE overlapping the RE of the SSB.
- CSI-RS when a repetition parameter is set in a specific CSI-RS resource set and TRS_info is not set, the CSI-RS is used for beam management. ii) When the repetition parameter is not set and TRS_info is set, the CSI-RS is used for a tracking reference signal (TRS). iii) If the repetition parameter is not set and TRS_info is not set, the CSI-RS is used for CSI acquisition.
- TRS tracking reference signal
- repetition parameter may be set only for CSI-RS resource sets linked with L1 RSRP or CSI-ReportConfig having a report of'No Report (or None)'.
- CSI-ReportConfig in which reportQuantity is set to'cri-RSRP' or'none'
- CSI-ResourceConfig higher layer parameter resourcesForChannelMeasurement
- the terminal When repetition is set to'ON', it is related to the Rx beam sweeping procedure of the terminal.
- the terminal may assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same downlink spatial domain transmission filter. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam.
- at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted in different OFDM symbols.
- the UE does not expect to receive different periods in periodicityAndOffset in all CSI-RS resources in the NZP-CSI-RS-Resourceset.
- Repetition when Repetition is set to'OFF', it is related to the Tx beam sweeping procedure of the base station.
- repetition when repetition is set to'OFF', the UE does not assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same downlink spatial domain transmission filter. That is, at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through different Tx beams.
- FIG. 11 is a diagram illustrating an example of a DL BM procedure using a CSI-RS applicable to the present disclosure
- FIG. 12 is a flowchart illustrating an example of a reception beam determination procedure of a terminal applicable to the present disclosure.
- Figure 11 (a) shows the Rx beam determination (or refinement) procedure of the terminal
- Figure 11 (b) shows the Tx beam sweeping procedure of the base station.
- FIG. 11(a) shows a case where the repetition parameter is set to'ON'
- FIG. 11(b) shows a case where the repetition parameter is set to'OFF'.
- the terminal receives the NZP CSI-RS resource set IE including the higher layer parameter repetition from the base station through RRC signaling (S1210).
- the repetition parameter is set to'ON'.
- the UE repeatedly receives resource(s) in the CSI-RS resource set set to repetition'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transmission filter) of the base station (S1220).
- the terminal determines its own Rx beam (S1230).
- the UE omits the CSI report (S1240).
- the reportQuantity of the CSI report config may be set to'No report (or None)'.
- the CSI report may be omitted.
- FIG. 13 is a flowchart illustrating an example of a transmission beam determination process of a base station applicable to the present disclosure.
- the terminal receives the NZP CSI-RS resource set IE including the higher layer parameter repetition from the base station through RRC signaling (S1310).
- the repetition parameter is set to'OFF', and is related to the Tx beam sweeping procedure of the base station.
- the terminal receives resources in the CSI-RS resource set set to repetition'OFF' through different Tx beams (DL spatial domain transmission filters) of the base station (S1320).
- Tx beams DL spatial domain transmission filters
- the terminal selects (or determines) the best beam (S1330)
- the terminal reports the ID and related quality information (eg, L1-RSRP) for the selected beam to the base station (S1340).
- the reportQuantity of the CSI report config may be set to'CRI + L1-RSRP'.
- the UE reports the CRI and the L1-RSRP thereof to the base station.
- FIG. 14 is a diagram illustrating an example of resource allocation in the time and frequency domains related to the operation of FIG. 11 applicable to the present disclosure.
- the UE may receive a list of up to M candidate transmission configuration indication (TCI) states for at least QCL (Quasi Co-location) indication purposes.
- TCI transmission configuration indication
- QCL Quadrature Co-location
- Each TCI state can be set as one RS set.
- Each ID of a DL RS for spatial QCL purpose (QCL Type D) in at least an RS set may refer to one of DL RS types such as SSB, P-CSI RS, SP-CSI RS, and A-CSI RS. .
- initialization/update of the ID of the DL RS(s) in the RS set used for spatial QCL purposes may be performed through at least explicit signaling.
- Table 19 shows an example of the TCI-State IE.
- the TCI-State IE is associated with one or two DL reference signals (RS) corresponding quasi co-location (QCL) types.
- RS DL reference signals
- QCL quasi co-location
- the bwp-Id parameter indicates the DL BWP where the RS is located
- the cell parameter indicates the carrier where the RS is located
- the reference signal parameter is a reference that is a source of quasi co-location for the target antenna port(s). It represents the antenna port(s) or a reference signal including it.
- the target antenna port(s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
- a corresponding TCI state ID may be indicated in NZP CSI-RS resource configuration information.
- a TCI state ID may be indicated in each CORESET setting.
- the TCI state ID may be indicated through DCI.
- beam reciprocity (or beam correspondence) between Tx beam and Rx beam may or may not be established according to UE implementation. If reciprocity between the Tx beam and the Rx beam is established in both the base station and the terminal, a UL beam pair may be matched through a DL beam pair. However, when the reciprocity between the Tx beam and the Rx beam is not established at either of the base station and the terminal, a UL beam pair determination process is required separately from the DL beam pair determination.
- the base station can use the UL BM procedure to determine the DL Tx beam without requesting the terminal to report a preferred beam.
- UL BM may be performed through beamformed UL SRS transmission, and whether to apply UL BM of the SRS resource set is set by (higher layer parameter) usage.
- usage is set to'Beam Management (BM)', only one SRS resource may be transmitted to each of a plurality of SRS resource sets at a given time instant.
- BM Beam Management
- the terminal may receive one or more Sounding Reference Symbol (SRS) resource sets set by the (higher layer parameter) SRS-ResourceSet (through higher layer signaling, RRC signaling, etc.).
- SRS Sounding Reference Symbol
- the UE may be configured with K ⁇ 1 SRS resources (higher later parameter SRS-resource).
- K is a natural number, and the maximum value of K is indicated by SRS_capability.
- the UL BM procedure can be divided into a Tx beam sweeping of a terminal and an Rx beam sweeping of a base station.
- Figure 15 is a diagram illustrating an example of a UL BM procedure using an SRS applicable to the present disclosure.
- Figure 15 (a) shows the Rx beam determination procedure of the base station
- Figure 15 (b) shows the Tx beam sweeping procedure of the terminal.
- 16 is a flowchart illustrating an example of a UL BM procedure using an SRS applicable to the present disclosure.
- the terminal receives RRC signaling (eg, SRS-Config IE) including a usage parameter set to'beam management' from the base station (S1610).
- RRC signaling eg, SRS-Config IE
- Table 20 shows an example of an SRS-Config IE (Information Element), and the SRS-Config IE is used for SRS transmission configuration.
- the SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resources.
- the network can trigger the transmission of the SRS resource set using the configured aperiodicSRS-ResourceTrigger (L1 DCI).
- usage indicates a higher layer parameter indicating whether the SRS resource set is used for beam management, codebook-based or non-codebook-based transmission.
- the usage parameter corresponds to the L1 parameter'SRS-SetUse'.
- 'spatialRelationInfo' is a parameter indicating the setting of the spatial relation between the reference RS and the target SRS.
- the reference RS may be SSB, CSI-RS, or SRS corresponding to the L1 parameter'SRS-SpatialRelationInfo'.
- the usage is set for each SRS resource set.
- the terminal determines the Tx beam for the SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE (S1620).
- SRS-SpatialRelation Info is set for each SRS resource, and indicates whether to apply the same beam as the beam used in SSB, CSI-RS or SRS for each SRS resource.
- SRS-SpatialRelationInfo may or may not be set for each SRS resource.
- the terminal randomly determines a Tx beam and transmits the SRS through the determined Tx beam (S1630).
- the UE applies the same spatial domain transmission filter (or generated from the filter) as the spatial domain Rx filter used for SSB/PBCH reception, and the corresponding SRS resource To transmit; or
- the UE transmits SRS resources by applying the same spatial domain transmission filter used for reception of periodic CSI-RS or SP CSI-RS; or
- the UE transmits the SRS resource by applying the same spatial domain transmission filter used for transmission of periodic SRS.
- the terminal may or may not receive feedback on the SRS from the base station as in the following three cases (S1640).
- Spatial_Relation_Info When Spatial_Relation_Info is set for all SRS resources in the SRS resource set, the UE transmits the SRS through a beam indicated by the base station. For example, if Spatial_Relation_Info all indicate the same SSB, CRI, or SRI, the UE repeatedly transmits the SRS with the same beam. In this case, it corresponds to FIG. 15(a) as a use for the base station to select an Rx beam.
- Spatial_Relation_Info may not be set for all SRS resources in the SRS resource set.
- the terminal can freely transmit while changing the SRS beam. That is, in this case, the UE sweeps the Tx beam and corresponds to FIG. 15(b).
- Spatial_Relation_Info can be set only for some SRS resources in the SRS resource set.
- the SRS is transmitted through the indicated beam, and for the SRS resource for which Spatial_Relation_Info is not configured, the terminal may arbitrarily apply and transmit a Tx beam.
- a beam mismatch problem may occur according to a set beam management period.
- the optimal DL /UL beam pair can be changed.
- the optimal DL /UL beam pair can be changed.
- the terminal may determine whether such a beam failure event occurs through the reception quality of the downlink RS.
- the UE may transmit a report message for this situation or a message for a beam recovery request (hereinafter referred to as a beam failure recovery request (BFRQ) message) to the base station (or network).
- BFRQ beam failure recovery request
- the base station may receive the corresponding message and perform beam recovery through various processes such as beam RS transmission and beam reporting request for beam recovery. This series of beam recovery processes may be referred to as beam failure recovery (BFR).
- BFR beam failure recovery
- the BFR process can be configured as follows.
- BFD Beam failure detection
- the quality of the beam is measured based on a hypothetical block error rate (BLER).
- BLER block error rate
- the characteristics of the beam may be measured based on a probability that the UE fails to demodulate the corresponding information, assuming that control information is transmitted through the corresponding PDCCH.
- a plurality of search spaces to monitor the PDCCH to a specific terminal may be set.
- the beam (or resource) may be set differently for each search area. Therefore, the case in which all PDCCH beams fall below a predetermined quality value may mean a case in which the quality of all beams that can be set differently for each search area falls below the BLER threshold.
- various methods of setting may be applied/set for the BFD reference signal (or BFD RS).
- an implicit setting method may be used for the BFD reference signal.
- a control resource set (CORESET [see TS 38.213, TS 38.214, TS 38.331)], which is a resource region through which a PDCCH can be transmitted, may be set in each search space.
- the base station may indicate/set to the terminal RS information (eg, CSI-RS resource ID, SSB ID) QCL in terms of spatial RX parameters for each CORESET ID.
- the base station may indicate/set the QCL-dated RS to the UE through a transmit configuration information (TCI) indication.
- TCI transmit configuration information
- the base station instructs/sets the RS (i.e., QCL Type D in TS 38.214) QCL to the terminal in terms of the spatial RX parameter, when the terminal receives the PDCCH DMRS, the beam used for spatially QCLd RS reception. It may include indicating/setting that (or can use) should be used as it is.
- the base station indicates/sets the RS (i.e., QCL Type D in TS 38.214) QCL in terms of spatial RX parameter to the terminal, the base station indicates the same transmission beam for spatially QCL antenna ports or It may include informing the UE that the transmission will be performed by applying a similar transmission beam (eg, when the beam direction is the same/similar and the beam width is different).
- the base station may explicitly set a specific RS (eg, beam RS(s)) for BFD use to the terminal.
- the specific RS may correspond to the'all PDCCH beams'.
- a plurality of BFD RSs is defined as a BFD RS set.
- the MAC (Media Access Control) layer of the terminal may declare a beam failure.
- the UE may find a beam having a predetermined quality value (Q_in) or more among RSs set by the base station as a candidate beam RS set.
- Q_in a predetermined quality value
- the terminal may select the corresponding beam RS.
- the terminal may randomly select one beam RS from among the corresponding beam RSs.
- the UE can perform Step 2 below.
- the beam quality may be determined based on RSRP.
- the RS beam set set by the base station may be configured as one of the following three cases.
- -All beam RSs in the RS beam set are composed of CSI-RS resources
- -Beam RSs in the RS beam set are composed of SSBs and CSI-RS resources
- the UE may find a beam having a predetermined quality value (Q_in) or more among SSBs (connected to contention based PRACH resources).
- the terminal can select the corresponding SSB.
- the UE may randomly select one SSB from among the corresponding SSBs.
- the terminal can perform Step 3 below.
- the UE may select any SSB from among SSBs (connected to contention based PRACH resources).
- the BFRQ Beam Failure Recovery Request refers to a PRACH resource and a PRACH preamble that are established directly or indirectly connected to the beam RS (eg, CSI-RS or SSB) selected by the terminal in the above-described process to the base station. May include.
- BFRQ may include transmitting a PRACH preamble related to a beam RS selected by the UE in the above-described process through a PRACH resource related to a beam RS selected by the UE.
- a PRACH resource and a PRACH preamble that are directly connected can be used in the following cases.
- the indirectly connected PRACH resource and PRACH preamble may be used in the following cases.
- the UE is designated as capable of receiving with the same reception beam as the corresponding CSI-RS (for example, quasi-co-located (QCLed) with respect to spatial Rx parameter) (contention-free) PRACH resource and PRACH connected to the SSB. You can choose preamble.
- CSI-RS for example, quasi-co-located (QCLed) with respect to spatial Rx parameter
- the RSRQ based on the Contention-Free PRACH resource and the PRACH preamble is referred to as a Contention Free Random Access (CFRA) based RSRQ.
- CFRA Contention Free Random Access
- the terminal transmits the PRACH preamble to the base station, and the terminal can monitor the response of the base station (eg, gNB) for the corresponding PRACH transmission.
- the base station eg, gNB
- the response signal for the contention-free PRACH resource and PRACH preamble may be transmitted through a PDCCH masked with a cell random network temporary identifier (C-RNTI).
- C-RNTI cell random network temporary identifier
- the PDCCH may be received on a search area separately (by RRC signaling) set for BFR use.
- the search area can be set on a specific CORESET (for BFR).
- a response signal for a contention based PRACH for BFR may reuse a CORESET (eg, CORESET 0 or CORESET 1) and a search area set for a random access process based on a contention based PRACH.
- CORESET eg, CORESET 0 or CORESET 1
- the terminal if the terminal does not receive a response signal for a certain period of time, the terminal repeatedly performs the above-described new beam identification and selection process and the BFRQ & monitoring gNB's response process. can do.
- the UE may perform the above process until (i) PRACH transmission reaches a preset maximum number of times (eg, N_max) or (ii) a separately set timer expires. In this case, when the timer expires, the terminal may stop contention free PRACH transmission. However, in the case of contention based PRACH transmission by SSB selection, the terminal may perform the PRACH until N_max reaches (regardless of whether the timer expires).
- the UE may perform Contention Based Random Access (CBRA) based BFRQ.
- CBRA Contention Based Random Access
- the UE may perform CBRA-based BFRQ as a subsequent operation.
- the UE uses the PRACH resource used for uplink initial access, and thus collisions with other UEs may occur.
- Beam failure procedure may be configured (The MAC entity may be configured by RRC with a beam failure recovery procedure which is used for indicating to the serving gNB of a new SSB or CSI-RS when beam failure is detected on the serving SSB ( s)/CSI-RS(s)). Beam failure may be detected by counting a beam failure instance indication from the lower layer to the MAC entity.
- the base station may set the following parameters in the upper layer parameter BeamFailureRecoveryConfig to the terminal through RRC signaling:
- the terminal may use the following parameters for the beam failure detection procedure:
- the initial value is set to 0
- the MAC entity of the terminal may operate as follows.
- SpCell Special Cell, e.g.: Primary Cell in MCG (Macro Cell Group), or PSCell (Primary SCG Cell) in SCG (Secondary Cell Group) by applying the powerRampingStep, preambleReceivedTargetPower, and preambleTransMax parameters set in the upper layer parameter beamFailureRecoveryConfig .
- PSCell Primary Cell in MCG (Macro Cell Group)
- PSCell Primary SCG Cell
- preambleReceivedTargetPower PreambleTransMax parameters set in the upper layer parameter beamFailureRecoveryConfig .
- PCell may be defined as follows.
- PCell Primary Cell
- the UE performs an initial connection establishment procedure or initiates a connection re-establishment procedure, or indicates a primary cell within a handover procedure.
- a cell operating on a secondary frequency a cell that can be configured when an RRC connection is established or a cell used to provide additional radio resources such as an additional carrier for carrier aggregation
- contention based random access (CBRA) on SCell cannot be set.
- CFRA Contention Free Random Access
- the word'serving cells' means one or more sets including a PCell and all SCell(s).
- the CBRA of the PCell may be used, or the CFRA for the SCell BFR (if there is a SCell UL) may be additionally used.
- an operation based on a PCell set in FR1 and a SCell set in FR2 may be considered.
- the link quality of the PCell UL may be assumed to be good. Since SCell includes only DL CC (component carrier), it is possible to utilize MAC-CE in PCell as a simple solution for SCell BFR. In this case, the UE may transmit a Cell ID, a new beam RS ID, and the like through the PCell PUSCH. For a MAC-CE-based solution, the UE may need to transmit an SR (Scheduling Request) on the PUCCH.
- SR Service Request
- the terminal In order for the base station to promptly recognize the status of the terminal (e.g., whether the terminal requests a PUSCH for general data transmission or a PUSCH for BFR reporting, etc.), the terminal is an SR resource used only for BFRQ. It may be considered to allocate the SR resource dedicated to the (dedicated). Since this is a transmission initiated by the UE, in this case, the SR PUCCH format can be reused.
- the following items may be considered for beam failure recovery for a SCell configured as DL only or DL/UL in FR2.
- the PCell can operate within FR2 as well as FR1.
- PCell BFR For SCell BFR, it can be assumed that the link quality of PCell DL/UL is good enough. If the PCell is in a beam failure state, prior to recovering the SCell beam, recovery of the PCell beam may be performed first through an existing BFR mechanism. To this end, a scheme in which only PCell UL is used for request/information related to SCell beam failure may be considered.
- Option 2 Beam information for the occurrence and failure and/or survived beam(s) of SCell beam failure
- the base station may trigger a regular beam report on the PCell based on an existing (existing) beam reporting mechanism in order to obtain information for the SCell.
- the terminal may report only the occurrence of a beam failure of the SCell through the PCell UL.
- the UE may report related information through a dedicated PUCCH resource of PUCCH format 0/1 on the PCell. Accordingly, a separate signal/message/procedure may not be defined for SCell BFR.
- the transmission power control method is a requirement (e.g., Signal-to-Noise Ratio (SNR), Bit Error Ratio (BER)), Block Error Ratio (BLER) of a base station (e.g., gNB, eNB, etc.) Etc.).
- SNR Signal-to-Noise Ratio
- BER Bit Error Ratio
- BLER Block Error Ratio
- Power control as described above may be performed by an open-loop power control method and a closed-loop power control method.
- the open-loop power control method is a method of controlling transmission power without feedback from a transmitting device (eg, a base station) to a receiving device (eg, a terminal, etc.) and/or feedback from the receiving device to the transmitting device.
- a transmitting device eg, a base station
- a receiving device eg, a terminal, etc.
- the terminal may receive a specific channel/signal from the base station and estimate the strength of the received power by using this. Thereafter, the terminal may control the transmission power by using the estimated strength of the received power.
- the closed loop power control method refers to a method of controlling transmission power based on feedback from a transmitting device to a receiving device and/or feedback from a receiving device to a transmitting device.
- the base station receives a specific channel/signal from the terminal, and the optimal power level of the terminal based on the power level, SNR, BER, BLER, etc. measured by the received specific channel/signal. To decide.
- the base station transmits information (ie, feedback) on the determined optimal power level to the terminal through a control channel or the like, and the terminal can control the transmission power using the feedback provided by the base station.
- uplink data channel e.g., PUSCH (Physical Uplink Shared Channel)
- uplink control channel e.g., PUCCH (Physical Uplink Control Channel)
- SRS Sounding Reference Signal
- PRACH Physical Random Access Channel
- the terminal In the case of PUSCH transmission in the active uplink bandwidth part (UL bandwidth part, UL BWP) of the carrier (f) of the serving cell (c), the terminal is determined by Equation 1 below. A linear power value of the determined transmission power may be calculated. Thereafter, the corresponding terminal may control the transmission power by considering the calculated linear power value in consideration of the number of antenna ports and/or the number of SRS ports.
- the UE activates the carrier (f) of the serving cell (c) using a parameter set configuration based on index j and a PUSCH power control adjustment state based on index l
- the UE transmits the PUSCH transmission power at the PUSCH transmission opportunity (i) based on Equation 1 below. (dBm) can be determined.
- index j represents an index for an open loop power control parameter (eg, P o , alpha (alpha, ⁇ ), etc.), and a maximum of 32 parameter sets may be set per cell.
- Index q_d is the path loss (PL) measurement (e.g. Represents the index of the DL RS resource for ), and up to 4 measurements per cell can be set.
- Index l represents an index for a closed loop power control process, and up to two processes may be set per cell.
- P o e.g.:
- P o Is a parameter broadcast as part of system information, and may indicate a target reception power at the receiving side.
- the corresponding Po value may be set in consideration of the throughput of the terminal, the capacity of the cell, noise and/or interference.
- alpha e.g. ) May represent the ratio of performing compensation for path loss.
- Alpha may be set to a value from 0 to 1, and full pathloss compensation or fractional pathloss compensation may be performed according to the set value.
- the alpha value may be set in consideration of interference and/or data rate between terminals.
- the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
- related to the PUSCH power control adjustment state May be set or indicated based on the TPC command field of DCI (eg, DCI format 0_0, DCI format 0_1, DCI format 2_2, DCI format2_3, etc.).
- a specific Radio Resource Control (RRC) parameter (e.g., SRI-PUSCHPowerControl-Mapping, etc.) is the linkage between the SRS Resource Indicator (SRI) field of downlink control information (DCI) and the indexes j, q_d, and l described above. ) Can be represented.
- the aforementioned indexes j, l, q_d, etc. may be associated with a beam, a panel, and/or a spatial domain transmission filter, based on specific information.
- PUSCH transmission power control in units of beams, panels, and/or spatial domain transmission filters may be performed.
- parameters and/or information for PUSCH power control may be individually (ie, independently) set for each BWP.
- the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, Medium Access Control-Control Element (MAC-CE), etc.) and/or DCI.
- RRC signaling e.g, RRC signaling, Medium Access Control-Control Element (MAC-CE), etc.
- MAC-CE Medium Access Control-Control Element
- parameters and/or information for PUSCH power control may be delivered through RRC signaling PUSCH-ConfigCommon, PUSCH-PowerControl, etc.
- PUSCH-ConfigCommon and PUSCH-PowerControl may be set as shown in Table 21 below.
- the UE can determine or calculate the PUSCH transmission power, and can transmit the PUSCH using the determined or calculated PUSCH transmission power.
- the UE uses a PUCCH power control adjustment state based on index l, of the carrier (f) of the primary cell (or secondary cell) (c).
- the UE transmits PUCCH transmission power at a PUCCH transmission opportunity (i) based on Equation 2 below. (dBm) can be determined.
- q_u represents an index for an open-loop power control parameter (eg, P o ), and up to 8 parameter values may be set per cell.
- Index q_d is the path loss (PL) measure (e.g. Represents the index of the DL RS resource for ), and up to 4 measurements per cell can be set.
- Index l represents an index for a closed loop power control process, and up to two processes may be set per cell.
- P o (e.g.: ) Is a parameter broadcast as part of system information, and may indicate a target reception power at the receiving side.
- the corresponding Po value may be set in consideration of the throughput of the terminal, the capacity of the cell, noise and/or interference.
- the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
- a delta function (e.g.
- PUCCH format eg, PUCCH formats 0, 1, 2, 3, 4, etc.
- related to the PUCCH power control adjustment state May be set or indicated based on a TPC command field of a DCI (eg, DCI format 1_0, DCI format 1_1, DCI format 2_2, etc.) received or detected by the terminal.
- DCI DCI format 1_0, DCI format 1_1, DCI format 2_2, etc.
- a specific RRC parameter eg, PUCCH-SpatialRelationInfo, etc.
- a specific MAC-CE command eg, PUCCH spatial relation Activation/Deactivation, etc.
- PUCCH resource and the aforementioned indexes q_u, q_d It can be used to activate or deactivate the connection relationship between, and l.
- the PUCCH spatial relation Activation/Deactivation command in MAC-CE may activate or deactivate a connection relationship between a PUCCH resource and the aforementioned indexes q_u, q_d, and l based on the RRC parameter PUCCH-SpatialRelationInfo.
- the above-described indexes q_u, q_d, l, etc. may be associated with a beam, a panel, and/or a spatial domain transmission filter based on specific information.
- PUCCH transmission power control in units of beams, panels, and/or spatial domain transmission filters may be performed.
- parameters and/or information for PUCCH power control may be set individually (ie, independently) for each BWP.
- the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) and/or DCI.
- parameters and/or information for PUCCH power control may be delivered through RRC signaling PUCCH-ConfigCommon, PUCCH-PowerControl, etc., and PUCCH-CopnfigCommon, PUCCH-PowerControl may be set as shown in Table 22 below.
- the UE can determine or calculate the PUCCH transmission power, and transmit the PUCCH using the determined or calculated PUCCH transmission power.
- the UE may calculate a linear power value of the transmit power determined by Equation P3 below. Thereafter, the UE can control the transmission power by equally dividing the calculated linear power value for antenna port(s) set for the SRS.
- the UE performs SRS transmission in the activated UL BWP (b) of the carrier (f) of the serving cell (c) using the SRS power control adjustment state based on the index l
- the terminal SRS transmission power at the SRS transmission opportunity (i) based on Equation 3 below (dBm) can be determined.
- q_s is an open-loop power control parameter (e.g., P o , alpha, ⁇ ), path loss (PL) measurement (e.g., ) Indicates an index for DL RS resources, etc.), and can be set for each SRS resource set.
- the index l represents an index for the closed loop power control process, and the index may be set independently of the PUSCH or may be set in association with the PUSCH.
- the maximum number of closed loop power control processes for SRS may be 1.
- P o e.g.:
- P o Is a parameter broadcast as part of system information, and may indicate a target reception power at the receiving side.
- the corresponding Po value may be set in consideration of the throughput of the terminal, the capacity of the cell, noise and/or interference.
- alpha e.g. ) May represent the ratio of performing compensation for path loss.
- Alpha may be set to a value from 0 to 1, and full pathloss compensation or fractional pathloss compensation may be performed according to the set value.
- the alpha value may be set in consideration of interference and/or data rate between terminals.
- the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
- related to the SRS power control adjustment state May be set or indicated based on a TPC command field and/or an RRC parameter (eg, srs-PowerControlAdjustmentStates, etc.) of a DCI (eg, DCI format 2_3, etc.) received or detected by the terminal.
- an RRC parameter eg, srs-PowerControlAdjustmentStates, etc.
- the resource for SRS transmission may be applied as a reference for the base station and/or the terminal to determine a beam, a panel, and/or a spatial domain transmission filter, and in consideration of this, SRS transmission power control , And/or a spatial domain transmission filter.
- the parameters and/or information for the above-described SRS power control may be individually (ie, independently) set for each BWP.
- the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) and/or DCI.
- parameters and/or information for SRS power control may be delivered through RRC signaling SRS-Config, SRS-TPC-CommandConfig, etc., and SRS-Config and SRS-TPC-CommandConfig may be set as shown in Table 23 below. I can.
- the terminal may determine or calculate the SRS transmission power, and may transmit the SRS using the determined or calculated SRS transmission power.
- the terminal When the terminal performs PRACH transmission in the activated UL BWP (b) of the carrier (f) of the serving cell (c), the terminal is based on Equation 4 below, PRACH transmission power at the PRACH transmission opportunity (i) (dBm) can be determined.
- Equation 4 May represent the set terminal transmission power.
- the set UE transmission power may be interpreted as'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
- Denotes the path loss for the activated UL BWP and may be determined based on the DL RS associated with PRACH transmission in the activated DL BWP of the serving cell c.
- the UE may determine a path loss related to PRACH transmission based on a Synchronization Signal (SS)/Physical Broadcast Channel (PBCH) block related to PRACH transmission.
- SS Synchronization Signal
- PBCH Physical Broadcast Channel
- parameters and/or information for PRACH power control may be individually (ie, independently) set for each BWP.
- the corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
- RRC signaling e.g, RRC signaling, MAC-CE, etc.
- RACH-ConfigGeneric RACH-ConfigGeneric, and the like, and RACH-ConfigGeneric may be set as shown in Table 24 below.
- the UE may determine or calculate the PRACH transmission power, and may transmit the PRACH using the determined or calculated PRACH transmission power.
- the terminal may be configured to allocate power for the uplink transmissions according to a priority order.
- the configured terminal transmission power is'configured maximum UE output power of the terminal' defined in 3GPP TS 38.101-1 and/or TS38.101-2 (eg: Can mean ).
- the priority for transmission power control may be set or defined in the following order.
- PCell Primary Cell
- HARQ-ACK Hybrid Automatic Repeat and ReQuest-Acknowledgement
- SR Service Request
- aperiodic SRS has a higher priority than semi-persistent SRS and/or periodic SRS
- PRACH in a serving cell other than a Pcell send
- the terminal may control the total transmission power in each symbol of the transmission opportunity i to be less than or equal to a linear value of the set terminal transmission power.
- the UE may be configured to scale and/or drop power for uplink transmission having a low priority. In this case, specific details on scaling and/or drop may be set or defined according to UE implementation.
- the terminal may consider transmission in the Pcell as a higher priority than transmission in the Scell. And/or, in the case of transmissions having the same priority in a plurality of UL carriers (eg, two UL carriers), the UE may consider a carrier in which PUCCH transmission is configured as a high priority. In addition, when PUCCH transmission is not configured for any carrier, the UE may consider transmission on a non-supplementary UL carrier with high priority.
- 17 shows an example of a procedure for controlling uplink transmission power.
- a user equipment may receive a parameter and/or information related to a transmission power (Tx power) from a base station (S1710).
- the terminal may receive corresponding parameters and/or information through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
- RRC signaling e.g., RRC signaling, MAC-CE, etc.
- the terminal may refer to parameters and/or information related to transmission power control described in Sections 1.13.1 to 1.13.4 (eg, table 21, Table 22, Table 23, Table 24, etc.) can be received.
- the terminal may receive a TPC command related to transmission power from the base station (S1720).
- the UE may receive the corresponding TPC command through lower layer signaling (eg, DCI).
- DCI lower layer signaling
- the terminal provides information on the TPC command to be used for determining the power control adjustment state, etc., as described in sections 1.13.1 to 1.13.3 above. It can be received through a TPC command field of a predefined DCI format. However, in the case of PRACH transmission, this step may be omitted.
- the terminal may determine (or calculate) transmission power for uplink transmission based on parameters, information, and/or TPC commands received from the base station (S1730).
- the terminal is based on the method described in 1) to 4) described above (eg, Equation 1, Equation 2, Equation 3, Equation 4, etc.) PUSCH transmission power, PUCCH transmission power, SRS transmission power , And/or PRACH transmission power may be determined.
- the UE performs a priority order in section 1.13.5. In consideration of it, transmission power for uplink transmission may be determined.
- the UE may transmit one or more uplink channels and/or signals (eg, PUSCH, PUCCH, SRS, PRACH, etc.) to the base station based on the determined (or calculated) transmission power. Yes (S1740).
- uplink channels and/or signals eg, PUSCH, PUCCH, SRS, PRACH, etc.
- a communication system 1 applied to the present disclosure includes a wireless device, a base station, and a network.
- the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
- wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
- the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, and a vehicle capable of performing inter-vehicle communication.
- the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
- UAV Unmanned Aerial Vehicle
- XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, including HMD (Head-Mounted Device), HUD (Head-Up Display), TV, smartphone, It can be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, and the like.
- Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
- Home appliances may include TVs, refrigerators, and washing machines.
- IoT devices may include sensors, smart meters, and the like.
- the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to another wireless device.
- the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
- AI Artificial Intelligence
- the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
- the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may perform direct communication (e.g. sidelink communication) without going through the base station / network.
- the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
- V2V Vehicle to Vehicle
- V2X Vehicle to Everything
- the IoT device eg, sensor
- the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
- Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
- wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
- the wireless communication/connection 150a, 150b, 150c may transmit/receive signals through various physical channels.
- the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
- ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 18 ⁇ Can be matched.
- the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
- the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
- the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
- the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
- the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
- the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
- the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
- the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
- the transceiver 106 may include a transmitter and/or a receiver.
- the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
- a wireless device may mean a communication modem/circuit/chip.
- the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
- the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
- the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
- the processor 202 may store information obtained from signal processing of the fourth information/signal in the memory 204 after receiving a radio signal including the fourth information/signal through the transceiver 206.
- the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed in this document. It can store software code including
- the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
- the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
- the transceiver 206 may include a transmitter and/or a receiver.
- the transceiver 206 may be used interchangeably with an RF unit.
- a wireless device may mean a communication modem/circuit/chip.
- one or more protocol layers may be implemented by one or more processors 102, 202.
- one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
- One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
- PDUs Protocol Data Units
- SDUs Service Data Units
- One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, suggestion, method, and/or operational flow chart disclosed herein.
- At least one processor (102, 202) generates a signal (e.g., a baseband signal) including PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , It may be provided to one or more transceivers (106, 206).
- One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
- signals e.g., baseband signals
- One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
- One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable Logic Devices
- FPGAs Field Programmable Gate Arrays
- the description, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
- the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are included in one or more processors 102, 202, or stored in one or more memories 104, 204, and are It may be driven by the above processors 102 and 202.
- the descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or a set of instructions.
- One or more memories 104 and 204 may be connected to one or more processors 102 and 202 and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
- One or more memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
- One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
- one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
- the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
- One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc. mentioned in the description, functions, procedures, suggestions, methods and/or operation flow charts disclosed in this document from one or more other devices.
- one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202, and may transmit and receive wireless signals.
- one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
- one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
- one or more transceivers (106, 206) may be connected with one or more antennas (108, 208), and one or more transceivers (106, 206) through one or more antennas (108, 208), the description and functionality disclosed in this document. It may be set to transmit and receive user data, control information, radio signals/channels, and the like mentioned in a procedure, a proposal, a method and/or an operation flowchart.
- one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
- One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
- One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
- one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
- the wireless device may be implemented in various forms according to use-examples/services (see FIG. 18).
- the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 19, and various elements, components, units/units, and/or modules ) Can be composed of.
- the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
- the communication unit may include a communication circuit 112 and a transceiver(s) 114.
- the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 19.
- the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 19.
- the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
- the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130.
- the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
- the additional element 140 may be variously configured according to the type of wireless device.
- the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
- wireless devices include robots (Figs. 18, 100a), vehicles (Figs. 18, 100b-1, 100b-2), XR devices (Figs. 18, 100c), portable devices (Figs. 18, 100d), and home appliances. (Figs. 18, 100e), IoT devices (Figs. 18, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 18 and 400 ), a base station (FIGS. 18 and 200 ), and a network node.
- the wireless device can be used in a mobile or fixed location depending on the use-example/service.
- various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least part of them may be wirelessly connected through the communication unit 110.
- the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
- the control unit 120 and the first unit eg, 130, 140
- each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
- the controller 120 may be configured with one or more processor sets.
- control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
- memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
- FIG. 20 An implementation example of FIG. 20 will be described in more detail with reference to the drawings.
- Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
- the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS advanced mobile station
- WT wireless terminal
- the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
- the antenna unit 108 may be configured as a part of the communication unit 110.
- Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 18, respectively.
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
- the controller 120 may perform various operations by controlling components of the portable device 100.
- the controller 120 may include an application processor (AP).
- the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100. Also, the memory unit 130 may store input/output data/information, and the like.
- the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
- the interface unit 140b may support connection between the portable device 100 and other external devices.
- the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
- the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
- the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
- the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved.
- the communication unit 110 may convert information/signals stored in the memory into wireless signals, and may directly transmit the converted wireless signals to other wireless devices or to a base station.
- the communication unit 110 may restore the received radio signal to the original information/signal. After the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
- the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), or a ship.
- AV aerial vehicle
- the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a unit (140d).
- the antenna unit 108 may be configured as a part of the communication unit 110.
- Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 21, respectively.
- the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
- the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
- the control unit 120 may include an Electronic Control Unit (ECU).
- the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
- the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
- the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
- the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
- the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, etc. may be included.
- the autonomous driving unit 140d is a technology for maintaining a driving lane, a technology for automatically adjusting the speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and for driving by automatically setting a route when a destination is set. Technology, etc. can be implemented.
- the communication unit 110 may receive map data and traffic information data from an external server.
- the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
- the controller 120 may control the driving unit 140a so that the vehicle or the autonomous driving vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
- the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
- the sensor unit 140c may acquire vehicle state and surrounding environment information.
- the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
- the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, and a driving plan to an external server.
- the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
- terminal may be replaced with a user equipment (UE).
- UE user equipment
- the higher layer signaling may include radio resource control (RRC) signaling, MAC CE, and the like.
- RRC radio resource control
- a transmission reception point may be extended and applied to a beam/panel.
- a beam may be replaced with a resource.
- L1-SINR layer 1-signal to interference and noise ratio
- L1-RSRQ layer 1-reference signal received quality
- L1-RSRP layer 1-reference signal received power
- beam quality may be extended to channel quality according to an embodiment.
- NCR#X may mean NZ-CSI-RS-Resource #X.
- that the base station provides a service to UE#Y based on NCR#X means that (i) the base station transmits a PDSCH having the same or similar beam direction as that of NCR#X to UE#Y, or (ii) the This may mean that the base station transmits a PDSCH having a DMRS with NCR#X as a QCL source in terms of a spatial QCL parameter to UE#Y.
- the following table shows the CSI-ReportConfig IE applicable to the present disclosure.
- resourcesForChannelMeasurement, csi-IM-ResourcesForInterference, nzp-CSI-RS-ResourcesForInterference are NZP CSI-RS (or SSB) for channel measurement, NZP CSI-RS (or SSB) for interference measurement, and interference It can correspond to the ZP CSI-RS for measurement.
- CMR Channel Measurement Resource
- NZP-based IMR Non-Zero-Power CSI-RS-Resource based Interference Measurement Resource
- ZP-based IMR Zero-Power CSI
- DAS Distributed Antenna System
- TRP#1 and TRP#2 may have the same cell ID.
- the base station may configure the CMR and NZP-CSI-RS based IMR of ReportConfig to the terminal as shown in the following table.
- 1, 2, and 3 may mean NZP-CSI-RS-Resource#1, #2, and #3, respectively.
- NCR may mean NZP-CSI-RS-Resource.
- CMR, NZP-based IMR, and ZP-based IMR may mean a channel measurement resource, NZP CSI-RS-based IMR (Interference Measurement Resource), and ZP CSI-RS-based IMR, respectively.
- CMR, NZP based IMR, ZP based IMR, and NZP CSI-RS based IMR (#X) correspond to resourcesForChannelMeasurement, nzp-CSI-RS-ResourceForInterference, csi-iM-ResourceForInterference (#X) of CSI-ReportConfig IE, respectively.
- I can.
- CMR and IMR may each mean a resource for measuring reception power of a channel used by the base station to transmit a PDSCH to the terminal and a resource for measuring reception power of a channel acting as interference to the terminal.
- the UE may calculate the L1-SINR as shown in Table 27 based on the CMR and NZP-CSI-RS-based IMR configuration of Table 26.
- CRI CSI-RS resource indicator
- CMR CMR resource indicator
- the UE may perform beam reporting (in the order of good performance, including CRI and L1-SINR for beam-related information with good performance/quality in terms of L1-SINR) as shown in the following equation. have.
- CRI#2 may represent a beam in which NCR#1 is the best beam in terms of L1-SINR from a viewpoint of UE#1, and a beam that NCR#3 (best beam pair) minimizes interference.
- the base station serves one PDSCH having the same or similar beam direction as NCR#1 and another PDSCH having the same or similar beam direction as NCR#3 to UE#1/#2 in the same time/frequency resource (e.g. : MU (Multi User) paring) is possible.
- CRI#4 may represent a beam in which NCR#2 is the second best beam from the viewpoint of L1-SINR from the viewpoint of UE#1, and the interference of NCR#3 is also not large. If the base station cannot service UE#1 using NCR#1, it can service UE#1 using NCR#2.
- the terminal provides information related to a beam having good performance/quality and information related to a beam having poor performance/quality in terms of L1-SINR, CRI and L1-SINR. Beam reporting including) may be performed.
- CRI#2 may represent a beam in which NCR#1 is the best beam in terms of L1-SINR from a viewpoint of UE#1, and NCR#3 is a beam that minimizes interference.
- CRI#1 may represent a beam in which NCR#2 increases interference from the viewpoint of UE#1, greatly deteriorating L1-SINR.
- the base station may not serve NCR#2 to another UE in the same time/frequency resource.
- the base station may serve the UE by simultaneously using NCR#1 and NCR#2. (Example: CoMP (Coordinated Multi Point))
- CRI#6 gives the worst L1-SINR, but CMR itself may be meaningless. Therefore, even if the terminal reports this, it may not be of great significance from the viewpoint of the base station. Meanwhile, the base station compares CRI#1 and CRI#2 to find that NCR#1 and NCR#2 are significant beams from a terminal perspective.
- the base station Based on the content reported by UE#1 through the above-described Reporting #1 and Reporting #2, the base station serves as the second best beam (Reporting#1) or the best beam in addition to the best beam from the viewpoint of UE#1.
- the beam that gives the greatest interference can be known. That is, the base station can obtain a degree of freedom for selecting a beam capable of serving UE#1 based on Reporting #1 (e.g., selecting among NCR#1 or NCR#2 related beams), based on Reporting #2
- a beam e.g., NCR#2, worst beam pair
- the terminal when nrofReportedRS is greater than 1, as shown in the following table, the terminal reports the CRI having the largest RSRP to the base station, and whether to select one or more remaining CRIs may be determined according to the terminal implementation. .
- the operation can be extended to the L1-SINR report of the terminal.
- whether the terminal will report any of the above-described Reporting #1 or #2 may be determined by the terminal implementation.
- the base station can instruct/configure to report any of Reporting #1 or #2 to the terminal, whether to obtain beam selection flexibility or to improve throughput from the viewpoint of the base station as a scheduler You can choose whether to do it.
- the base station may improve throughput through Reporting #1 of the terminal. More specifically, the base station transmits one PDSCH in the direction of NZP-CSI-RS resource #1 through TRP#1, and the same time/frequency as the PDSCH in the direction of NZP-CSI-RS resource #2 through TRP#2 When another PDSCH is transmitted to the resource, the UE can obtain a throughput gain.
- One CMR and one or more IMRs form one combination, and the CRI may be set to indicate one of a plurality of CMR and IMR combinations.
- the terminal can expect to receive setting/instruction (by a base station, etc.) at least one of the following two settings (eg, settings A and B).
- the configuration may be transmitted/configured/instructed/determined through higher layer signaling (eg, RRC and/or MAC-CE) and/or DCI between the base station and the terminal.
- One or more of the beam quality (e.g., L1-RSRP or L1-SINR, the corresponding parameter can be set by the base station) in the highest order, or the number of CRIs set by a predetermined number or higher layer parameters and/ Or report the corresponding beam quality to the base station
- the terminal may report one or more CRIs and/or corresponding beam quality to the base station that have the same CMR as the selected CRI and provide the lowest beam quality.
- the CRI has the same CMR as the CRI with the best beam quality, but may have different IMRs.
- the base station can increase the new performance of the terminal by not setting the interfering beam to another UE in the same time/frequency resource.
- CMR and IMR may be jointly encoded (eg, one CMR and one or more IMRs form a combination, etc.).
- CRI may be expressed as one of a plurality of combinations of CMR and IMR.
- the base station can accurately specify only the necessary combinations to the terminal (for scheduling, etc.) (e.g., when the base station specifies unnecessary combinations, unnecessary complexity may be caused to the terminal).
- the terminal may simply report the combination(s) useful to the base station through CRI (eg, hereinafter, Examples 1 to 3).
- the operation according to the present disclosure is not limited to the UE reporting a combination of CMR and IMR, and may be extended and applied to the UE separately reporting CMR and IMR (Example: Example 4).
- Example: Example 4 Example: Example 4
- the base station may indicate/set one of (i) configuration A, (ii) configuration B, and (iii) configuration A+B to the terminal based on RRC and/or MAC-CE and/or DCI.
- setting A+B means a case in which setting A and setting B are simultaneously set in the terminal, and Embodiment 2 shows an example related thereto.
- setting A and setting B may be expressed as shown in the following table.
- SSB may be used as CMR instead of NZP-CSI-RS-Resource.
- ssb-index-L1-SINR instead of cri-L1-SINR, ssb-index-L1-SINR may be used.
- the base station when the base station indicates/sets one of L1-RSRP or L1-SINR as beam quality to the terminal, the following method may be considered.
- the base station adds cri-SINR in addition to cri-RSRP in ReportQunatity defined by the Rel-15 standard and indicates/sets this to the terminal, so that the beam pool quality to be reported by the terminal is L1-RSRP or L1-SINR. Can be indicated/set.
- the base station may set whether to report to the terminal according to which of configuration A and configuration B.
- the terminal may report beam information in the order of the best beam quality.
- the terminal may report the same content as Reporting #1 to the base station.
- the terminal may report beam information having the best quality and beam information having the worst quality in relation to the CMR of the best beam to the base station together.
- the report may be configured as in Reporting #2.
- the reason why CRI#1 rather than CRI#3 is selected is that the CMR of CRI#1 is the same as the CMR (NCR#1) of CRI#2, which provides the best beam quality.
- this is because, when the base station provides a service to the terminal using NCR#1, the base station may not provide a service using the NCR#2 in the same time/frequency resource.
- the base station may be configured to report both configuration A & configuration B to the terminal.
- the above configuration may be performed based on higher layer signaling and/or DCI.
- the terminal may report information such as the following equation to the base station. Through this, the base station can take advantage of both Reporting #1 and #2.
- the base station may be configured to report setting A to the terminal.
- the terminal may report to the base station as shown in the following equation.
- the following report content may be composed of the same content as when setting A & B is set. This is because CRI#1 provides the third best beam quality.
- the base station may be configured to report on setting B to the terminal.
- the base station may be configured to report both configuration A & configuration B to the terminal.
- the content that the terminal reports to the base station may additionally include CRI#3.
- the UE can additionally inform the base station of NCR#1, which lowers the beam quality when CRI#3 has the same CMR as CRI#4 (e.g., NCR#2), and when paired with NCR#2. have.
- the UE may separately report CMR and/or IMR other than CRI. If the base station configures/instructs the terminal to report on setting B, and configures/instructs the L1-SINR report, the terminal may report the content as shown in the following equation.
- IMR#2 may indicate that the CMR indicated by CRI#2 (eg, NCR#1) causes the greatest interference in service to the UE. Additionally, when the base station configures/instructs the terminal to report on configuration A & configuration B, the terminal may report to the base station as follows.
- CRI#4 and IMR#1 added compared to Reporting #A are the CRI that provides the second best L1-SINR, respectively, and the greatest interference when providing services to the UE through the CMR indicated by the CRI. IMR that causes
- the base station configures (i) NZP-CSI-RS based IMR with 2 ports and (ii) configures/instructs the L1-SINR report to the terminal.
- the terminal may be configured to calculate the interference power by measuring the power of each port and then averaging the power.
- the above setting/instruction may be performed based on higher layer signaling and/or DCI.
- NZP-CSI-RS based IMR with 2 ports may be configured as shown in the following table.
- NZP-CSI-RS-Resource IE may include CSI-RS-ResourceMapping IE
- ResourceMapping IE may include nrofPorts.
- the base station may set/instruct the UE to set NZP-CSI-RS based IMR with 2 ports by setting the nrofPorts to 2.
- the UE may calculate the interference power by measuring the power in each port and summing it. This is because each port corresponds to a different interference layer 1:1.
- L1-SINR it is necessary to measure the reception power in one resource.
- the terminal needs to calculate the interference power by measuring the power of each port and then averaging it. In this case, the power gain can be obtained compared to the case of 1 port. For example, it is possible to improve 3dB performance (eg, interference performance improvement, etc.) compared to the existing method.
- the base station configures the CMR and NZP-CSI-RS based IMR of ReportConfig to the terminal.
- the terminal may report content as shown in the following table.
- the first CRI may have the same CMR and IMR.
- the terminal may be configured to measure a desired channel and interference using CMR. Specifically, the terminal may estimate the requested channel and calculate the interference power from the remaining signal after removing the estimated signal/channel from the received signal.
- the terminal may be defined/configured to calculate the final interference power by measuring the interference power from each IMR and then adding them all.
- the base station and the terminal need to calculate the L1-SINR when receiving interference from NCR#2 and #3 while receiving service through a beam in the direction of NCR#1 from the viewpoint of UE#1. I can.
- the base station may configure the CMR and NZP-CSI-RS based IMR#1/#2 of ReportConfig to the terminal.
- the desired (desired) channel power and interference power according to the CRI may be configured as shown in the following table.
- the terminal may calculate the desired channel power and interference power from NCR#1.
- the terminal may calculate the power of the desired channel and the first interference power from NCR#1. In addition, after measuring the second interference power from NCR#2, the terminal may calculate the final interference power by adding the first interference power.
- the terminal may calculate the power of the desired channel and the first interference power from NCR#1. In addition, after measuring the second interference power from NCR#3, the terminal may calculate a final interference power by adding the first interference power.
- the terminal can calculate the power of the desired channel from NCR#1.
- the terminal may calculate the final interference power by measuring the first/second interference power from NCR#2/#3, respectively, and then adding them.
- the setting may be extended and applied as shown in the following table.
- the figure below shows an example in which the base station configures the CMR of ReportConfig, NZP-CSI-RS based IMR#1/#2, and ZP based IMR to the UE.
- the desired channel power and interference power according to CRI are as follows.
- the UE may calculate the power of the desired channel from NCR#1 and calculate the interference power from ZP based IMR.
- the terminal may calculate the power of the desired channel from NCR#1 and calculate the first interference power from the ZP based IMR. In addition, after measuring the second interference power from NCR#2, the terminal may calculate a final interference power obtained by adding the first interference power and the second interference power.
- the terminal may calculate the power of the desired channel from NCR#1 and calculate the first interference power from the ZP based IMR. In addition, after measuring the second interference power from NCR#3, the terminal may calculate a final interference power obtained by adding the first interference power and the second interference power.
- the terminal may calculate the power of the desired channel from NCR#1 and calculate the first interference power from the ZP based IMR. In addition, the terminal may measure the second/third interference power from NCR#2/#3, respectively, and then calculate the final interference power obtained by adding all the first to third interference powers.
- each of CSI-ReportConfig, CSI-ResourceConfigId#100, CSI-ResourceConfigId#110, and CSI-ResourceConfigId#104 may be set as shown in the following tables.
- 24 is a diagram illustrating an example of a procedure for beam management between a terminal and a base station to which the above-described methods in the present disclosure can be applied.
- a base station (eg, BS) in FIG. 24 may mean a network side (eg, a transmission reception point (TRP), a TRP group, etc.).
- the beam management described in FIG. 24 may be related to CSI-RS based DL BM (eg, DL BM using CSI-RS, etc.).
- the terminal may receive CSI configuration information related to beam management from the base station (S2410).
- the UE provides configuration information related to CSI reporting (eg, RRC IE'CSI Reporting Setting','CSI-ReportConfig','CSI-' through higher layer signaling (eg, RRC signaling) from the base station.
- MeasConfig','CSI-ResourceConfig', etc. can be received.
- the CSI configuration is resource-related configuration (e.g., CMR, NZP-CSI-RS based IMR, etc.), reporting configuration (e.g., CRI) in the method described above in the present invention (e.g., first to fourth operation examples) , L1-SINR, IMR, etc.).
- resource-related configuration e.g., CMR, NZP-CSI-RS based IMR, etc.
- reporting configuration e.g., CRI
- L1-SINR L1-SINR, IMR, etc.
- the UE may receive at least one CSI-RS from the base station (S2420), and based on the received CSI-RS, the UE may determine/calculate the beam pair(s) and/or CSI ( S2430). For example, the UE may calculate CSI based on CSI-related information (eg, CSI configuration, etc.) transmitted through higher layer signaling and/or DCI, and a predefined rule.
- CSI-related information eg, CSI configuration, etc.
- the terminal may determine the worst (worst) beam pair(s) and/or best (best) beam pair(s) based on the methods described in the first to fourth operation examples described above. ) And so on. For example, the terminal may determine the beam pair(s) to be reported to the BS according to the method(s) described in Embodiments 1 to 4 in consideration of the above-described configuration A and/or configuration B.
- the terminal may perform channel estimation, interference measurement, and the like using the methods described in the first to fourth operation examples described above. For example, when NZP-CSI-RS based IMR with 2 ports is configured and the L1-SINR report is instructed to the UE, the UE may be configured to measure the power of each port and average it to calculate the interference power. have. And/or, when CMR and IMR are set to the same ID (or IMR is set to null or void), and L1-SINR report is instructed to the terminal, the terminal measures interference using CMR and L1-SINR It can also be set to calculate.
- the UE measures the interference power from each IMR, and then adds all these to calculate the final interference power. It can also be set.
- the UE may report the determined CSI to the BS (S2440).
- the terminal may perform CSI reporting based on the scheme proposed in the above-described first operation example (eg, Examples 1 to 4).
- the CSI report may include one or more CRI and/or L1-SINR and/or IMR.
- the CSI may be reported through the PUSCH.
- the transmission power for the CSI report (eg, PUCSH Tx power) may be determined based on the above-described power control method (eg, section 4.13).
- the UE may be configured to determine the PUSCH Tx power based on the above-described Equation 1 and signaling of FIG. 17 in performing CSI reporting through the PUSCH.
- the operation of the terminal and/or BS may be implemented by various devices described in the present disclosure.
- the processor of the terminal can control to perform CSI configuration reception, CSI-RS reception, and/or CSI reporting through the RF unit, and can control to determine beam pair(s) / CSI, and transmit/receive It can be controlled to store information, etc. in memory.
- the processor of the BS may control to perform CSI configuration transmission, CSI-RS transmission, and/or CSI report reception through the RF unit, and may control to store transmitted/received information in a memory.
- 25 is a diagram briefly showing a network connection and communication process between a terminal and a base station applicable to the present disclosure.
- the terminal may perform a network access procedure to perform the procedures and/or methods described/suggested above. For example, while accessing a network (eg, a base station), the terminal may receive system information and configuration information necessary to perform the procedures and/or methods described/suggested above and store them in a memory. Configuration information required for the present disclosure may be received through higher layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
- RRC layer Medium Access Control, MAC, layer, etc.
- a physical channel and a reference signal may be transmitted using beam-forming.
- a beam-management process may be involved in order to align beams between the base station and the terminal.
- the signal proposed in the present disclosure may be transmitted/received using beam-forming.
- RRC Radio Resource Control
- beam alignment may be performed based on a Sync Signal Block (SSB).
- SSB Sync Signal Block
- RRC CONNECTED mode beam alignment may be performed based on CSI-RS (in DL) and SRS (in UL).
- an operation related to a beam may be omitted in the following description.
- a base station may periodically transmit an SSB (S2502).
- SSB includes PSS/SSS/PBCH.
- SSB can be transmitted using beam sweeping.
- the base station may transmit Remaining Minimum System Information (RMSI) and Other System Information (OSI) (S2504).
- the RMSI may include information (eg, PRACH configuration information) necessary for the terminal to initially access the base station.
- the UE identifies the best SSB.
- the terminal may transmit the RACH preamble (Message 1, Msg1) to the base station using the PRACH resource linked/corresponding to the index (ie, the beam) of the best SSB (S2506).
- the beam direction of the RACH preamble is associated with the PRACH resource.
- the association between the PRACH resource (and/or the RACH preamble) and the SSB (index) may be set through system information (eg, RMSI).
- the base station transmits a RAR (Random Access Response) (Msg2) in response to the RACH preamble (S2508), and the terminal uses the UL grant in the RAR to send Msg3 (e.g., RRC Connection Request).
- Msg4 may include RRC Connection Setup.
- subsequent beam alignment may be performed based on SSB/CSI-RS (in DL) and SRS (in UL).
- the terminal may receive an SSB/CSI-RS (S2514).
- SSB/CSI-RS may be used by the UE to generate a beam/CSI report.
- the base station may request a beam/CSI report from the terminal through DCI (S2516).
- the UE may generate a beam/CSI report based on the SSB/CSI-RS, and transmit the generated beam/CSI report to the base station through PUSCH/PUCCH (S2518).
- the beam/CSI report may include a beam measurement result, information on a preferred beam, and the like.
- the base station and the terminal may switch the beam based on the beam/CSI report (S2520a, S2520b).
- the terminal and the base station may perform the procedures and/or methods described/suggested above.
- the terminal and the base station process information in the memory according to the proposal in the present disclosure based on the configuration information obtained in the network access process (e.g., system information acquisition process, RRC connection process through RACH, etc.) Or may process the received radio signal and store it in a memory.
- the radio signal may include at least one of a PDCCH, a PDSCH, and a reference signal (RS) in case of a downlink, and may include at least one of a PUCCH, a PUSCH, and an SRS in case of an uplink.
- RS reference signal
- 26 is a diagram briefly showing a DRX (Discontinuous Reception) cycle of a UE applicable to the present disclosure.
- the terminal may be in an RRC_CONNECTED state.
- the terminal may perform the DRX operation while performing the procedures and/or methods described/suggested above.
- a terminal in which DRX is configured can reduce power consumption by discontinuously receiving DL signals.
- DRX may be performed in Radio Resource Control (RRC)_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
- RRC_IDLE state and RRC_INACTIVE state the DRX is used to receive paging signals discontinuously.
- RRC_CONNECTED DRX DRX performed in the RRC_CONNECTED state will be described (RRC_CONNECTED DRX).
- a DRX cycle consists of On Duration and Opportunity for DRX.
- the DRX cycle defines a time interval in which On Duration is periodically repeated.
- On Duration represents a time period during which the UE monitors to receive the PDCCH.
- the UE performs PDCCH monitoring during On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the UE operates an inactivity timer and maintains an awake state. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the terminal enters a sleep state after the On Duration is over. Accordingly, when DRX is configured, PDCCH monitoring/reception may be discontinuously performed in the time domain in performing the procedure and/or method described/proposed above.
- a PDCCH reception opportunity (eg, a slot having a PDCCH search space) in the present disclosure may be set discontinuously according to the DRX configuration.
- PDCCH monitoring/reception may be continuously performed in the time domain in performing the procedures and/or methods described/proposed above.
- a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be continuously set in the present disclosure.
- PDCCH monitoring may be restricted in a time period set as a measurement gap.
- Table 41 shows the process of the terminal related to the DRX (RRC_CONNECTED state).
- DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON/OFF is controlled by a DRX command of the MAC layer.
- RRC Radio Resource Control
- the UE may discontinuously perform PDCCH monitoring in performing the procedure and/or method described/suggested in the present disclosure, as illustrated in FIG. 26.
- the MAC-CellGroupConfig includes configuration information required to set a medium access control (MAC) parameter for a cell group.
- MAC-CellGroupConfig may also include configuration information about DRX.
- MAC-CellGroupConfig defines DRX, and may include information as follows.
- -Value of drx-InactivityTimer Defines the length of the time interval in which the UE is awake after the PDCCH opportunity in which the PDCCH indicating initial UL or DL data is detected
- -Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from receiving the initial DL transmission until the DL retransmission is received.
- the UE performs PDCCH monitoring at every PDCCH opportunity while maintaining the awake state.
- FIG. 27 is a diagram briefly showing the operation of a terminal and a base station according to an example of the present disclosure
- FIG. 28 is a flowchart of an operation of a terminal according to an example of the present disclosure
- FIG. 29 is an operation of a base station according to an example of the present disclosure It is a flow chart.
- the terminal may perform beam management (BM), and the base station may support the BM of the terminal.
- BM beam management
- the terminal may receive configuration information related to the BM from the base station (S2710 and S2810).
- the base station may transmit BM-related configuration information to the terminal (S2710 and S2910).
- the configuration information may be received through at least one or more of higher layer signaling or downlink control information (DCI).
- DCI downlink control information
- the configuration information may be received based on a combination of the higher layer signaling and the DCI.
- the terminal may receive a reference signal from the base station (S2720, S2820).
- the base station may transmit a reference signal to the terminal (S2720 and S2920).
- the reference signal is a channel state information reference signal (CSI-RS), or a synchronization signal physical broadcast channel block (SS/PBCH block or SSB) It may include at least one or more of.
- CSI-RS channel state information reference signal
- SS/PBCH block or SSB synchronization signal physical broadcast channel block
- the UE may receive PUSCH power control information including ratio information related to path loss for physical uplink shared channel (PUSCH) transmission from the base station (S2730, S2830).
- PUSCH power control information may be received through higher layer signaling.
- the PUSCH power control information may be received before, simultaneously, or following the above-described setting information, reference signal, and the like, according to an embodiment.
- the base station may transmit the PUSCH power control information to the terminal (S2630 and S2830).
- the terminal may determine beam information based on the received reference signal (S2740 and S2840). In addition, the terminal may determine the PUSCH transmission power based on the received PUSCH power control information.
- the UE may report beam information to the base station through the PUSCH based on the determined PUSCH transmission power (S2750 and S2850).
- the base station may receive the beam information from the terminal through a PUSCH having PUSCH transmission power based on the transmission power control information (S2750 and S2940).
- the beam information includes (i) first beam information related to the first beam having the highest beam quality, and (ii) following the first beam
- second beam information related to one or more second beams based on an order of high beam quality may be included.
- the beam information includes (i) the first beam information and (ii) the same channel measurement resource as the first beam; CMR) and may include third beam information related to the third beam having the lowest beam quality.
- each beam may be associated with one of the plurality of TRPs.
- the beam information includes reference signal received power (RSRP) information associated with each beam to be reported, or a signal to interference plus noise ratio associated with each beam to be reported.
- RSRP reference signal received power
- SINR signal to interference plus noise ratio associated with each beam to be reported.
- SINR may include at least one or more of information.
- the beam information may include at least one of RSRP information related to each of the reporting beams or SINR information related to each of the reporting beams.
- the configuration information may include CMR information related to each beam, and interference measurement resource (IMR) information related to each beam.
- IMR interference measurement resource
- the beam information is (i) the first 1 beam information, and (ii) second beam information related to N-1 second beams having the highest beam quality after the first beam, and N may be a natural number of 2 or more.
- the beam information includes (i) the first beam information, (ii) second beam information related to a second beam having a higher beam quality after the first beam, and (iii) the same CMR as the first beam.
- the third beam information related to the third beam having the lowest beam quality may be included.
- SINR information related to each beam to be reported is the report It may be calculated based on the interference power determined by averaging the power of one or more ports for an interference measurement resource (IMR) related to each beam.
- IMR interference measurement resource
- the SINR information related to the specific beam may be calculated based on the interference power determined based on the CMR related to the specific beam have.
- the beam information including signal to interference plus noise ratio (SINR) information associated with each beam to be reported, and (ii) one or more interference with respect to a specific beam
- SINR signal to interference plus noise ratio
- the SINR information related to the specific beam will be calculated based on the interference power determined by averaging the interference power from the at least one IMR related to the CMR. I can.
- the beam information including signal to interference plus noise ratio (SINR) information related to each reported beam
- the beam information is CMR information related to each reported beam And interference measurement resource (IMR) information.
- the UE and the base station may perform the aforementioned CSI transmission/reception operation based on the aforementioned initial access or random access, DRX configuration, and the like.
- a rule can be defined so that the base station informs the UE through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
- Embodiments of the present disclosure can be applied to various wireless access systems.
- various wireless access systems there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
- 3GPP 3rd Generation Partnership Project
- Embodiments of the present disclosure can be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
- the proposed method can be applied to a mmWave communication system using an ultra-high frequency band.
- embodiments of the present disclosure may be applied to various applications such as free-running vehicles and drones.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시에서는, 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국을 개시한다. 본 개시에 적용 가능한 일 실시예에 따르면, 단말은 기지국으로부터 수신되는 참조 신호들로부터 빔 정보를 결정하고, 상기 빔 정보를 물리 상향링크 공유 채널 (PUSCH)을 통해 상기 기지국으로 보고할 수 있다. 이때, 상기 PUSCH의 전송 전력은 상기 기지국으로부터 수신된 전력 제어 정보에 기반하여 결정될 수 있다. 이어, 상기 보고된 빔 정보에 기초하여, 상기 기지국은 상기 단말로 서비스를 제공하는 하나 이상의 빔을 제어할 수 있다.
Description
이하의 설명은 무선 통신 시스템에 대한 것으로, (i) 기지국으로부터 수신된 빔 관리 (beam management) 관련 설정 정보 및 (ii) 상향링크 데이터 채널의 전력 제어에 기반하여, 단말이 BM을 수행하는 방법 및 이를 지원하는 단말 및 기지국에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
특히, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신 기술이 제안되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템이 제안되고 있다. 이에 따라, 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등이 도입되었고, 이를 위한 다양한 기술 구성들이 제안되고 있다.
본 개시에서는 무선 통신 시스템에서 상향링크 데이터 채널의 전력 제어에 기반한 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국을 제공한다.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시는 무선 통신 시스템에서 상향링크 데이터 채널의 전력 제어에 기반한 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국을 제공한다.
본 개시의 일 예로서, 무선 통신 시스템에서 단말이 빔 관리 (beam management; BM)를 수행하는 방법 방법에 있어서, 기지국으로부터, BM과 관련된 설정 정보를 수신함; 상기 기지국으로부터, 물리 상향링크 공유 채널 (physical uplink shared channel; PUSCH) 전송을 위한 경로 손실 (path loss)와 관련된 비율 정보를 포함한 PUSCH 전력 제어 정보를 수신함; (i) 상기 설정 정보에 기반하여, 수신되는 참조 신호로부터 결정된 빔 정보를 결정하고, (ii) 상기 PUSCH 전력 제어 정보에 기반하여, PUSCH 전송 전력을 결정함; 및 상기 결정된 PUSCH 전송 전력에 기반하여, 상기 빔 정보를 PUSCH를 통해 상기 기지국으로 보고하는 것을 포함하고, 제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 빔 품질이 가장 높은 제1 빔과 관련된 제1 빔 정보 및 (ii) 상기 제1 빔 다음으로 빔 품질이 높은 순서에 기반한 하나 이상의 제2 빔과 관련된 제2 빔 정보를 포함하고, 제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 상기 제1 빔 정보 및 (ii) 상기 제1 빔과 동일한 채널 측정 자원 (channel measurement resource; CMR)을 갖고 빔 품질이 가장 낮은 제3 빔과 관련된 제3 빔 정보를 포함하는, 단말의 빔 관리 수행 방법을 개시한다.
본 개시에 있어, 상기 설정 정보는, 상위 계층 시그널링, 또는, 하향링크 제어 정보 (downlink control information; DCI) 중 적어도 하나 이상을 통해 수신될 수 있다.
본 개시에 있어, 상기 빔 정보는, 보고하는 각 빔과 관련된 참조 신호 수신 파워 (reference signal received power; RSRP) 정보, 또는, 상기 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보, 중 적어도 하나 이상을 포함할 수 있다.
이때, 상기 설정 정보에 포함된 보고 컨텐츠 설정 정보에 기반하여, 상기 빔 정보는 상기 보고하는 각 빔과 관련된 RSRP 정보, 또는 상기 보고하는 각 빔과 관련된 SINR 정보 중 적어도 하나 이상을 포함할 수 있다.
본 개시에 있어, 상기 설정 정보는, 각 빔과 관련된 CMR 정보, 및 각 빔과 관련된 간섭 측정 자원 (interference measurement resource; IMR) 정보를 포함할 수 있다.
본 개시에 있어, (i) N으로 설정된 단말이 보고하는 참조 신호의 개수 정보 및 (ii) 상기 제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는, (i) 상기 제1 빔 정보, 및 (ii) 상기 제1 빔 다음으로 빔 품질이 가장 높은 N-1 개의 제2 빔들과 관련된 제2 빔 정보를 포함하고, N은 2 이상의 자연수일 수 있다.
본 개시에 있어, (i) 3으로 설정된 단말이 보고하는 참조 신호의 개수 정보, (ii) 상기 제1 보고 설정 정보 및 (iii) 상기 제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는, (i) 상기 제1 빔 정보, (ii) 상기 제1 빔 다음으로 빔 품질이 높은 제2 빔과 관련된 제2 빔 정보, 및 (iii) 상기 제1 빔과 동일한 CMR을 갖고 빔 품질이 가장 낮은 상기 제3 빔과 관련된 상기 제3 빔 정보를 포함할 수 있다.
본 개시에 있어, 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여, 상기 보고하는 각 빔과 관련된 SINR 정보는 상기 보고하는 각 빔과 관련된 간섭 측정 자원 (interference measurement resource; IMR)을 위한 하나 이상의 포트 별 파워를 평균화하여 결정되는 간섭 파워에 기반하여 산출될 수 있다.
본 개시에 있어, 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여, 특정 빔과 관련된 CMR 및 간섭 측정 자원 (interference measurement resource; IMR)이 동일한 식별 정보를 갖거나 상기 특정 빔과 관련된 IMR이 설정되지 않는 경우, 상기 특정 빔과 관련된 SINR 정보는 상기 특정 빔과 관련된 CMR에 기반하여 결정되는 간섭 파워에 기반하여 산출될 수 있다.
본 개시에 있어, (i) 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보 및 (ii) 특정 빔과 관련하여, 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR)과 관련되는 CMR에 기초하여, 상기 특정 빔과 관련된 SINR 정보는, 상기 CMR과 관련된 상기 하나 이상의 IMR로부터의 간섭 파워를 평균화하여 결정되는 간섭 파워에 기반하여 산출될 수 있다.
본 개시에 있어, 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여, 상기 빔 정보는 각 보고하는 빔과 관련된 CMR 정보 및 간섭 측정 자원 (interference measurement resource; IMR) 정보를 더 포함할 수 있다.
본 개시에 있어, 상기 참조 신호는, 채널 상태 정보 참조 신호 (channel state information reference signal; CSI-RS), 또는, 동기 신호 물리 방송 채널 블록 (synchronization signal physical broadcast channel block; SS/PBCH block 또는 SSB), 중 적어도 하나 이상을 포함할 수 있다.
본 개시의 다른 예로서, 무선 통신 시스템에서 빔 관리 (beam management; BM)를 수행하는 단말에 있어서, 적어도 하나의 송신기; 적어도 하나의 수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 특정 동작은: 기지국으로부터, BM과 관련된 설정 정보를 수신함; 상기 기지국으로부터, 물리 상향링크 공유 채널 (physical uplink shared channel; PUSCH) 전송을 위한 경로 손실 (path loss)와 관련된 비율 정보를 포함한 PUSCH 전력 제어 정보를 수신함; (i) 상기 설정 정보에 기반하여, 수신되는 참조 신호로부터 결정된 빔 정보를 결정하고, (ii) 상기 PUSCH 전력 제어 정보에 기반하여, PUSCH 전송 전력을 결정함; 및 상기 결정된 PUSCH 전송 전력에 기반하여, 상기 빔 정보를 PUSCH를 통해 상기 기지국으로 보고하는 것을 포함하고, 제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 빔 품질이 가장 높은 제1 빔과 관련된 제1 빔 정보 및 (ii) 상기 제1 빔 다음으로 빔 품질이 높은 순서에 기반한 하나 이상의 제2 빔과 관련된 제2 빔 정보를 포함하고, 제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 상기 제1 빔 정보 및 (ii) 상기 제1 빔과 동일한 채널 측정 자원 (channel measurement resource; CMR)을 갖고 빔 품질이 가장 낮은 제3 빔과 관련된 제3 빔 정보를 포함하는, 단말을 개시한다.
본 개시에 있어, 상기 단말은, 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 적어도 하나와 통신할 수 있다.
본 개시의 또 다른 예로서, 무선 통신 시스템에서 단말의 빔 관리 (beam management; BM)를 지원하는 기지국에 있어서, 적어도 하나의 송신기; 적어도 하나의 수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 특정 동작은: 상기 단말로, BM과 관련된 설정 정보를 전송함; 상기 단말로, 참조 신호를 전송함; 산기 단말로, 물리 상향링크 공유 채널 (physical uplink shared channel; PUSCH) 전송을 위한 경로 손실 (path loss)와 관련된 비율 정보를 포함한 PUSCH 전력 제어 정보를 전송함; 및 상기 단말로부터, 상기 PUSCH 전력 제어 정보에 기반한 PUSCH 전송 전력을 갖는 PUSCH를 통해, 상기 설정 정보 및 상기 참조 신호에 기반하여 결정된 빔 정보를 수신하는 것을 포함하고, 제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 빔 품질이 가장 높은 제1 빔과 관련된 제1 빔 정보 및 (ii) 상기 제1 빔 다음으로 빔 품질이 높은 순서에 기반한 하나 이상의 제2 빔과 관련된 제2 빔 정보를 포함하고, 제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 상기 제1 빔 정보 및 (ii) 상기 제1 빔과 동일한 채널 측정 자원 (channel measurement resource; CMR)을 갖고 빔 품질이 가장 낮은 제3 빔과 관련된 제3 빔 정보를 포함하는, 기지국을 개시한다.
상술한 본 개시의 양태들은 본 개시의 바람직한 실시예들 중 일부에 불과하며, 본 개시의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 개시의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시의 실시 예들에 따르면 다음과 같은 효과가 있다.
본 개시에 따르면, 스케줄러 (scheduler) 관점에서 기지국은 단말로부터의 채널 상태 정보 보고를 통해 빔 선택 유연성 (flexibility)을 얻을 것인지 또는 쓰루풋 (throughput)을 향상시킬 것인지 여부를 선택할 수 있다. 뿐만 아니라, 상기 기지국은 상기 채널 상태 정보 보고를 통해 단말로의 빔을 효율적으로 관리할 수 있다.
뿐만 아니라, 기지국이 단말이 보고할 채널 상태 정보를 설정함으로써, 상기 단말은 보다 낮은 복잡도를 갖고 빔 관리 (beam management)를 수행할 수 있다.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공한다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임의 구조를 나타낸 도면이다.
도 3은 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 4는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 5는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 6은 본 개시에 적용 가능한 SS/PBCH block을 간단히 나타낸 도면이다.
도 7은 본 개시에 적용 가능한 SS/PBCH block이 전송되는 구성을 간단히 나타낸 도면이다.
도 8은 본 개시에 적용 가능한 상위 계층 파라미터
CSI-ReportConfig IE의 구성을 나타낸 도면이다.
도 9는 본 개시에 적용 가능한 DL BM을 위한 SSB/CSI-RS 빔(들)을 간단히 나타낸 도면이다.
도 10은 본 개시에 적용 가능한 SSB를 이용한 DL BM 절차의 예시를 나타낸 흐름도이다.
도 11은 본 개시에 적용 가능한 CSI-RS를 이용한 DL BM 절차의 예시를 나타낸 도면이고, 도 12는 본 개시에 적용 가능한 단말의 수신 빔 결정 과정의 예시를 흐름도이다.
도 13은 본 개시에 적용 가능한 기지국의 전송 빔 결정 과정의 예시를 나타낸 흐름도이다.
도 14는 본 개시에 적용 가능한 도 11의 동작과 관련된 시간 및 주파수 영역에서의 자원 할당의 예시를 나타낸 도면이다.
도 15는 본 개시에 적용 가능한 SRS를 이용한 UL BM 절차의 예시를 나타낸 도면이다.
도 16은 본 개시에 적용 가능한 SRS를 이용한 UL BM 절차의 예시를 나타낸 흐름도이다.
도 17은 상향링크 전송 전력을 제어하는 절차의 일례를 나타낸 도면이다.
도 18은 본 개시에 적용되는 통신 시스템을 예시한다.
도 19는 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 20은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다.
도 21은 본 개시에 적용되는 휴대 기기를 예시한다.
도 22는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다.
도 23은 본 개시에 적용 가능한 DAS (Distributed Antenna System)를 간단히 나타낸 도면이다.
도 24는 본 개시에서 상술한 방법들이 적용될 수 있는 단말 및 기지국 간 빔 관리 (beam management)를 위한 절차의 일 예를 나타낸 도면이다.
도 25는 본 개시에 적용 가능한 단말과 기지국 간 네트워크 접속 및 통신 과정을 간단히 나타낸 도면이다.
도 26는 본 개시에 적용 가능한 단말의 DRX (Discontinuous Reception) 사이클을 간단히 나타낸 도면이다.
도 27은 본 개시의 일 예에 따른 단말 및 기지국의 동작을 간단히 나타낸 도면이고, 도 28은 본 개시의 일 예에 따른 단말의 동작 흐름도이고, 도 29는 본 개시의 일 예에 따른 기지국의 동작 흐름도이다.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 개시의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 개시의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 개시의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 실시예들은 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 개시의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시의 기술 구성이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 개시의 실시예들에서 사용되는 특정(特定) 용어들은 본 개시의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는 본 개시의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP NR 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
본 개시의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 개시의 실시예들을 3GPP NR 시스템을 위주로 기술한다. 다만, 본 개시에서 제안하는 실시예는 다른 무선 시스템 (예: 3GPP LTE, IEEE 802.16, IEEE 802.11 등)에도 동일하게 적용될 수 있다.
1. NR 시스템
1.1. 물리 채널들 및 일반적인 신호 전송
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 개시의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication), BI (Beam Indication) 정보 등을 포함한다.
NR 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 실시예에 따라 (예: 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우) PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 무선 프레임 (Radio Frame) 구조
도 2는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임의 구조를 나타낸 도면이다.
NR 시스템에 기초한 상향링크 및 하향링크 전송은 도 2와 같은 프레임에 기초한다. 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하나의 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 2는 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.
상기 표에서, N
slot
symb 는 슬롯 내 심볼의 개수를 나타내고, N
frame,μ
slot는 프레임 내 슬롯의 개수를 나타내고, N
subframe,μ
slot는 서브프레임 내 슬롯의 개수를 나타낸다.
본 개시가 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
도 3은 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다.
BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다.
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 4에서 빗금친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간 (guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 개시에 따른 자립적 슬롯 구조는 도 4와 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다.
PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다.
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 5는 본 개시의 실시예들이 적용 가능한 NR 시스템에 기초한 하나의 REG 구조를 나타낸 도면이다.
도 5에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로 1 번째, 5 번째, 9 번째 RE에 매핑된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 4는 PUCCH 포맷들을 예시한다.
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DMRS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DMRS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 4의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
1.3. 동기 신호 블록 (Synchronization Signal Block, SSB 또는 SS/PBCH block)
본 개시가 적용 가능한 NR 시스템에서 PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal) 및/또는 PBCH (Physical Broadcast Channel) 은 하나의 동기 신호 블록 (Synchronization Signal Block 또는 Synchronization Signal PBCH block, 이하 SS block 또는 SS/PBCH block이라 함) 내에서 전송될 수 있다. 이때, 상기 하나의 SS 블록 내에서 다른 신호를 다중화하는 것은 배제되지 않을 수 있다. (Multiplexing other signals are not precluded within a 'SS block').
상기 SS/PBCH block은 시스템 대역의 중심이 아닌 대역에서 전송될 수 있고, 특히 기지국이 광대역 운영을 지원하는 경우 상기 기지국은 다수 개의 SS/PBCH block을 전송할 수 있다.
도 6은 본 개시에 적용 가능한 SS/PBCH block을 간단히 나타낸 도면이다.
도 6에 도시된 바와 같이, 본 개시에 적용 가능한 SS/PBCH block은 연속한 4개의 OFDM 심볼 내 20 RB로 구성될 수 있다. 또한, SS/PBCH block은 PSS, SSS 및 PBCH로 구성되고, 단말은 SS/PBCH block에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다.
PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다. 이때, DMRS RE의 위치는 셀 ID에 기초하여 결정될 수 있다 (예: N
cell
ID mod 4 값에 기초하여 매핑되는 부반송파 인덱스가 결정될 수 있다).
또한, 상기 SS/PBCH block은 네트워크가 사용하는 주파수 대역의 중심 주파수가 아닌 주파수 대역에서도 전송될 수 있다.
이를 위해, 본 개시가 적용 가능한 NR 시스템에서는 단말이 SS/PBCH block을 검출해야 하는 후보 주파수 위치인 동기 래스터 (synchronization raster)를 정의한다. 상기 동기 래스터는 채널 래스터 (channel raster)와 구분될 수 있다.
상기 동기 래스터는 SS/PBCH block 위치에 대한 명시적인 시그널링이 존재하지 않는 경우 단말이 시스템 정보를 획득하기 위해 사용 가능한 SS/PBCH block의 주파수 위치를 지시할 수 있다.
이때, 상기 동기 래스터는 GSCN (Global Synchronization Channel Number)에 기초하여 결정될 수 있다. 상기 GSCN은 RRC 시그널링 (예: MIB (Master Information Block), SIB (System Information Block), RMSI (Remaining Minimum System Information), OSI (Other System Information) 등)을 통해 전송될 수 있다.
이와 같은 동기 래스터는 초기 동기의 복잡도와 검출 속도를 감안하여 채널 래스터보다 주파수 축에서 길게 정의되고 블라인드 검출 수가 적다.
도 7은 본 개시에 적용 가능한 SS/PBCH block이 전송되는 구성을 간단히 나타낸 도면이다.
본 개시가 적용 가능한 NR 시스템에서 기지국은 5ms 동안 SS/PBCH block을 최대 64번 전송할 수 있다. 이때, 다수의 SS/PBCH block은 서로 다른 전송 빔으로 전송되고, 단말은 전송에 사용되는 특정 하나의 빔을 기준으로 20ms의 주기마다 SS/PBCH block이 전송된다고 가정하여 상기 SS/PBCH block을 검출할 수 있다.
기지국이 5ms 시간 구간 내에서 SS/PBCH block 전송을 위해 사용 가능한 최대 빔 개수는 주파수 대역이 높을수록 크게 설정될 수 있다. 일 예로, 3GHz 이하 대역에서 상기 기지국은 5ms 시간 구간 내 최대 4개, 3~6GHz 대역에서 최대 8개, 6GHz 이상의 대역에서 최대 64 개의 서로 다른 빔을 사용하여 SS/PBCH block 을 전송할 수 있다.
1.4. 동기화 절차 (Synchronization procedure)
단말은 기지국으로부터 상기와 같은 SS/PBCH block을 수신하여 동기화를 수행할 수 있다. 이때, 상기 동기화 절차는 크게 셀 ID 검출 (Cell ID detection) 단계 및 타이밍 검출 (timing detection) 단계를 포함한다. 여기서, 셀 ID 검출 단계는 PSS에 기반한 셀 ID 검출 단계와 SSS에 기반한 셀 ID 검출 단계(예: 총 1008개 물리 계층 셀 ID 중 하나의 물리 계층 셀 ID를 검출함)를 포함할 수 있다. 또한, 타이밍 검출 단계는 PBCH DM-RS (Demodulation Reference Signal)에 기반한 타이밍 검출 단계와 PBCH 컨텐츠 (예: MIB (Master Information Block))에 기반한 타이밍 검출 단계를 포함할 수 있다.
이를 위해, 단말은 PBCH, PSS, SSS의 수신 기회 (reception occasions)가 연속된 심볼 상에 존재함을 가정할 수 있다. (즉, 단말은 앞서 상술한 바와 같이, PBCH, PSS, SSS가 SS/PBCH block 를 구성함을 가정할 수 있다). 이어, 단말은 SSS, PBCH DM-RS 및 PBCH 데이터가 동일한 EPRE (Energy Per Resource Element)를 갖는다고 가정할 수 있다. 이때, 단말은 대응하는 셀 내 SS/PBCH block 의 SSS ERPE 대비 PSS EPRE의 비율 (ratio of PSS EPRE to SSS EPRE)는 0 dB 또는 3 dB라고 가정할 수 있다. 또는, 상기 단말에게 전용 상위 계층 파라미터 (dedicated higher layer parameters)가 제공되지 않은 경우, SI-RNTI (System Information - Random Network Temporary Identifier), P-RNTI (Paging - Random Network Temporary Identifier), 또는 RA-RNTI (Random Access - Random Network Temporary Identifier)에 의해 스크램블링된 CRC (Cyclic Redundancy Check)를 갖는 DCI 포맷 1_0를 위한 PDCCH를 모니터링하는 단말은 SSS EPRE 대비 PDCCH DMRS EPRE의 비율 (ratio of PDCCH DMRS EPRE to SSS EPRE)이 - 8 dB 내지 8 dB 이내라고 가정할 수 있다.
먼저, 단말은 PSS와 SSS 검출을 통해 시간 동기 및 검출된 셀의 물리적 셀 ID (Physical cell ID)를 획득할 수 있다. 보다 구체적으로, 상기 단말은 PSS 검출을 통해 SS 블록에 대한 심볼 타이밍을 획득하고, 셀 ID 그룹 내 셀 ID를 검출할 수 있다. 이어, 단말은 SSS 검출을 통해 셀 ID 그룹을 검출한다.
또한, 상기 단말은 PBCH의 DM-RS를 통해 SS 블록의 시간 인덱스 (예: 슬롯 경계)를 검출할 수 있다. 이어, 상기 단말은 PBCH에 포함된 MIB를 통해 하프 프레임 경계 정보 및 SFN (System Frame Number) 정보 등을 획득할 수 있다.
이때, 상기 PBCH는 관련된 (또는 대응하는) RMSI PDCCH/PDSCH가 상기 SS/PBCH block과 동일한 대역 또는 상이한 대역에서 전송됨을 알려줄 수 있다. 이에 따라, 단말은 상기 PBCH 디코딩 이후 상기 PBCH에 의해 지시된 주파수 대역 또는 상기 PBCH가 전송되는 주파수 대역에서 이후 전송되는 RMSI (예: MIB (Master Information Block, MIB) 외의 시스템 정보) 등을 수신할 수 있다.
하프 프레임 내 SS/PBCH block에 있어, 후보 SS/PBCH blocks을 위한 첫 번째 심볼 인덱스들은 다음과 같이 SS/PBCH blocks의 부반송파 간격 (subcarrier spacing)에 따라 결정될 수 있다. 이때, 인덱스 #0은 하프 프레임 내 첫 번째 슬롯의 첫 번째 심볼에 대응한다.
(케이스 A: 15 kHz subcarrier spacing) 후보 SS/PBCH blocks의 첫 번째 심볼들은 {2, 8} + 14*n의 심볼들을 가질 수 있다. 3 GHz 이하의 주파수 대역을 위해 n 은 0 또는 1 값을 갖는다. 3 GHz 초과 6 GHz 이하의 주파수 대역을 위해 n 은 0, 1, 2 또는 3 값을 갖는다.
(케이스 B: 30 kHz subcarrier spacing) 후보 SS/PBCH blocks의 첫 번째 심볼들은 {4, 8, 16, 32} + 28*n의 심볼들을 가질 수 있다. 3 GHz 이하의 주파수 대역을 위해 n 은 0 값을 갖는다. 3 GHz 초과 6 GHz 이하의 주파수 대역을 위해 n 은 0 또는 1 값을 갖는다.
(케이스 C: 30 kHz subcarrier spacing) 후보 SS/PBCH blocks의 첫 번째 심볼들은 {2, 8} + 14*n의 심볼들을 가질 수 있다. 3 GHz 이하의 주파수 대역을 위해 n 은 0 또는 1 값을 갖는다. 3 GHz 초과 6 GHz 이하의 주파수 대역을 위해 n 은 0, 1, 2 또는 3 값을 갖는다.
(케이스 D: 120 kHz subcarrier spacing) 후보 SS/PBCH blocks의 첫 번째 심볼들은 {4, 8, 16, 20} + 28*n의 심볼들을 가질 수 있다. 6 GHz 초과의 주파수 대역을 위해 n 은 0, 1, 2, 3, 5, 6, 7, 8, 19, 11, 12, 13, 15, 16, 17 또는 18 값을 갖는다.
(케이스 E: 240 kHz subcarrier spacing) 후보 SS/PBCH blocks의 첫 번째 심볼들은 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n의 심볼들을 가질 수 있다. 6 GHz 초과의 주파수 대역을 위해 n 은 0, 1, 2, 3, 5, 6, 7 또는 8 값을 갖는다.
상기 동작과 관련하여, 단말은 시스템 정보를 획득할 수 있다.
MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며, SS/PBCH block 내 PBCH를 통해 기지국에 의해 단말로 전송된다.
단말은 MIB에 기반하여 Type0-PDCCH 공통 탐색 공간(common search space)을 위한 CORESET(Control Resource Set)이 존재하는지 확인할 수 있다. Type0-PDCCH 공통 탐색 공간은 PDCCH 탐색 공간의 일종이며, SI 메시지를 스케줄링하는 PDCCH를 전송하는 데 사용된다.
Type0-PDCCH 공통 탐색 공간이 존재하는 경우, 단말은 MIB 내의 정보(예, pdcch-ConfigSIB1)에 기반하여 (i) CORESET을 구성하는 복수의 인접(contiguous) 자원 블록들 및 하나 이상의 연속된(consecutive) 심볼들과 (ii) PDCCH 기회(occasion)(예, PDCCH 수신을 위한 시간 도메인 위치)를 결정할 수 있다.
Type0-PDCCH 공통 탐색 공간이 존재하지 않는 경우, pdcch-ConfigSIB1은 SSB/SIB1이 존재하는 주파수 위치와 SSB/SIB1이 존재하지 않는 주파수 범위에 관한 정보를 제공한다.
SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. 예를 들어, SIB1은 SIBx가 주기적으로 브로드캐스트되는지 또는 on-demand 방식 (또는 단말의 요청에 의해)에 의해 제공되는지 여부를 알려줄 수 있다. SIBx가 on-demand 방식에 의해 제공되는 경우, SIB1은 단말이 SI 요청을 수행하는 데 필요한 정보를 포함할 수 있다. SIB1은 PDSCH를 통해 전송되며, SIB1을 스케줄링 하는 PDCCH는 Type0-PDCCH 공통 탐색 공간을 통해 전송되며, SIB1은 상기 PDCCH에 의해 지시되는 PDSCH를 통해 전송된다.
1.5. 동기화 래스터 (Synchronization raster)
동기화 래스터 (Synchronization raster)는, SSB 위치를 위한 명시적인 시그널링이 존재하지 않는 경우, 시스템 정보 획득을 위한 단말에 의해 사용될 수 있는 SSB의 주파수 위치를 의미한다. 글로벌 동기화 래스터는 모든 주파수를 위해 정의된다. SSB의 주파수 위치는 SS
REF 및 대응하는 번호 GSCN (Global Synchronization Channel Number)로 정의된다. 모든 주파수 범위를 위한 SS
REF 및 GSCN을 정의하는 파라미터들은 다음과 같다.
동기화 래스터 및 대응하는 SSB의 자원 블록 간 매핑은 하기 표에 기초할 수 있다. 상기 매핑은 채널 내 할당된 자원블록들의 총 개수에 의존하고, UL 및 DL에 모두 적용될 수 있다.
1.6. DCI 포맷
본 개시가 적용 가능한 NR 시스템에서는, 다음과 같은 DCI 포맷들을 지원할 수 있다. 먼저, NR 시스템에서는 PUSCH 스케줄링을 위한 DCI 포맷으로 DCI format 0_0, DCI format 0_1을 지원하고, PDSCH 스케줄링을 위한 DCI 포맷으로 DCI format 1_0, DCI format 1_1을 지원할 수 있다. 또한, 이외 목적으로 활용 가능한 DCI 포맷으로써, NR 시스템에서는 DCI format 2_0, DCI format 2_1, DCI format 2_2, DCI format 2_3을 추가적으로 지원할 수 있다.
여기서, DCI format 0_0은 TB (Transmission Block) 기반 (또는 TB-level) PUSCH를 스케줄링하기 위해 사용되고, DCI format 0_1은 TB (Transmission Block) 기반 (또는 TB-level) PUSCH 또는 (CBG (Code Block Group) 기반 신호 송수신이 설정된 경우) CBG 기반 (또는 CBG-level) PUSCH를 스케줄링하기 위해 사용될 수 있다.
또한, DCI format 1_0은 TB 기반 (또는 TB-level) PDSCH를 스케줄링하기 위해 사용되고, DCI format 1_1은 TB 기반 (또는 TB-level) PDSCH 또는 (CBG 기반 신호 송수신이 설정된 경우) CBG 기반 (또는 CBG-level) PDSCH를 스케줄링하기 위해 사용될 수 있다.
또한, DCI format 2_0은 슬롯 포맷 (slot format)을 알리기 위해 사용되고 (used for notifying the slot format), DCI format 2_1은 특정 UE가 의도된 신호 전송이 없음을 가정하는 PRB 및 OFDM 심볼을 알리기 위해 사용되고 (used for notifying the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE), DCI format 2_2는 PUCCH 및 PUSCH의 TPC (Transmission Power Control) 명령 (command)의 전송을 위해 사용되고, DCI format 2_3은 하나 이상의 UE에 의한 SRS 전송을 위한 TPC 명령 그룹의 전송을 위해 사용될 수 있다 (used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs).
보다 구체적으로, DCI format 1_1은 전송 블록 (TB) 1을 위한 MCS/NDI (New Data Indicator)/RV(Redundancy Version) 필드를 포함하고, 상위 계층 파라미터
PDSCH-Config 내 상위 계층 파라미터
maxNrofCodeWordsScheduledByDCI 가 n2 (즉, 2)로 설정된 경우에 한해, 전송 블록 2를 위한 MCS/NDI/RV 필드를 더 포함할 수 있다.
특히, 상위 계층 파라미터
maxNrofCodeWordsScheduledByDCI 가 n2 (즉, 2)로 설정된 경우, 실질적으로 전송 블록의 사용 가능 여부 (enable/disable) 는 MCS 필드 및 RV 필드의 조합에 의해 결정될 수 있다. 보다 구체적으로, 특정 전송 블록에 대한 MCS 필드가 26 값을 갖고 RV 필드가 1 값을 갖는 경우, 상기 특정 전송 블록은 비활성화(disabled)될 수 있다.
상기 DCI 포맷에 대한 구체적인 특징은 3GPP TS 38.212 문서에 의해 뒷받침될 수 있다. 즉, DCI 포맷 관련 특징 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서를 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
1.7. 안테나 포트 의사 코-로케이션 (antenna ports quasi co-location)
하나의 단말에 대해 최대 M TCI (Transmission Configuration Indicator) 상태(state) 설정의 리스트가 설정될 수 있다. 상기 최대 M TCI 상태 설정은 상기 단말 및 주어진 서빙 셀을 위해 의도된 (intended) DCI를 포함한 PDCCH의 검출에 따라 (상기 단말이) PDSCH를 디코딩할 수 있도록 상위 계층 파라미터
PDSCH-Config에 의해 설정될 수 있다. 여기서, M 값은 단말의 캐퍼빌리티에 의존하여 결정될 수 있다.
각 TCI-state는 하나 또는 두 개의 하향링크 참조 신호들과 PDSCH의 DMRS 포트들 간 QCL (quasi co-location) 관계를 설정하기 위한 파라미터를 포함한다. 상기 QCL 관계는 제1 DL RS (downlink reference signal)을 위한 상위 계층 파라미터
qcl-Type1 및 제2 DL RS을 위한 상위 계층 파라미터
qcl-Type2 (설정될 경우)에 기초하여 설정된다. 두 DL RS들의 경우를 위해, 상기 참조 신호들이 동일한 DL RS 또는 상이한 DL RS인지 여부와 관계 없이, QCL 타입들은 동일하지 않아야 한다 (shall not be the same). QCL 타입들은 상위 계층 파라미터
QCL-Info 내 상위 계층 파라미터
qcl-Type에 의해 주어지는 각 DL RS에 대응하고, 상기 QCL 타입들은 다음 중 하나의 값을 가질 수 있다.
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
단말은 상기 최대 8 TCI states를 DCI 내 TCI (Transmission Configuration Indication) 필드의 코드 포인트(codepoint)와 매핑하기 위해 사용되는 활성화 코맨드 (activation command)를 수신한다. 상기 활성화 코맨드를 포함한 PDSCH에 대응하는 HARQ-ACK 신호가 슬롯 #n에서 전송되는 경우, 상기 TCIs states 및 상기 DCI 내 TCI 필드의 코드 포인트 간 매핑은 슬롯 #(n+3*N
subframe, μ
slot+1) 부터 적용될 수 있다. 여기서, N
subframe, μ
slot는 앞서 상술한 표 1 또는 표 2에 기초하여 결정된다. 상기 단말이 TCI states의 초기 상위 계층 설정 (initial higher layer configuration)을 수신한 이후이며 상기 단말이 활성화 코맨드를 수신하기 이전에, 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 'QCL-TypeA' 관점에서 상기 초기 접속 절차에서 결정되는 SS/PBCH (Synchronization Signal / Physical Broadcast Channel) 블록과 QCL 되었다고 가정한다. 추가적으로, 상기 시점에 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 'QCL-TypeD' 관점에서 상기 초기 접속 절차에서 결정되는 SS/PBCH 블록과 QCL 되었다고 가정할 수 있다.
PDSCH를 스케줄링하는 CORESET을 위해 상위 계층 파라미터
tci-PresentInDCI가 'enabled'로 설정되는 경우, 단말은 상기 CORESET 상에서 전송되는 DCI 포맷 1_1의 PDCCH 내 상기 TCI 필드가 존재한다고 가정한다. 상기 PDSCH를 스케줄링하는 CORESET을 위해 상위 계층 파라미터
tci-PresentInDCI가 설정되지 않거나 상기 PDSCH가 DCI 포맷 1_0에 의해 스케줄링되고, 상기 DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋이 문턱치
Threshold-Sched-Offset (상기 문턱치는 보고된 UE 캐퍼빌리티에 기초하여 결정됨) 보다 크거나 같은 경우, PDSCH 안테나 포트 QCL을 결정하기 위해, 단말은 상기 PDSCH를 위한 TCI state 또는 QCL 가정이 PDCCH 전송을 위해 사용되는 CORESET에 적용되는 TCI state 또는 QCL 가정과 동일하다고 가정한다.
상위 계층 파라미터
tci-PresentInDCI가 'enabled'로 설정되고, CC (component carrier)를 스케줄링하는 DCI 내 TCI 필드가 상기 스케줄링된 CC 또는 DL BW 내 활성화된 TCI states를 지시하는 경우 (point to), 상기 PDSCH가 DCI 포맷 1_1에 의해 스케줄링되면, 단말은 PDSCH 안테나 포트 QCL을 결정하기 위해 상기 검출된 PDCCH 내 DCI에 포함된 TCI 필드에 기초한 TCI-State를 이용한다. DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋이 문턱치
Threshold-Sched-Offset (상기 문턱치는 보고된 UE 캐퍼빌리티에 기초하여 결정됨) 보다 크거나 같은 경우, 상기 단말은 서빙 셀의 PDSCH의 DMRS 포트(들)이 지시된 TCI stated 의해 주어지는 QCL 타입 파라미터(들)에 대한 TCI state 내 RS(s)와 QCL 된다고 가정한다. 상기 단말에 대해 단일 슬롯 PDSCH가 설정되는 경우, 상기 지시된 TCI state는 상기 스케줄링된 PDSCH의 슬롯 내 활성화된 TCI states에 기초해야 한다. 크로스-반송파 스케줄링을 위한 검색 영역 세트 (search space set)와 연관된 CORESET이 상기 단말에게 설정되는 경우, 상기 단말은 상기 CORESET을 위해 상위 계층 파라미터
tci-PresentInDCI가 'enabled'로 설정된다고 가정하고, 상기 검색 영역 세트에 의해 스케줄링된 서빙 셀을 위해 설정된 하나 이상의 TCI states들이 'QCL-TypeD'를 포함하는 경우, 상기 단말은 상기 검색 영역 세트 내 검출된 PDCCH의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋은 문턱치
Threshold-Sched-Offset 보다 크거나 같을 것을 기대한다.
상위 계층 파라미터
tci-PresentInDCI가 'enabled'로 설정되거나 RRC 연결 모드에서 상기 상위 계층 파라미터
tci-PresentInDCI가 설정되지 않은 경우 모두에 대해, 만약 DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 오프셋이 문턱치
Threshold-Sched-Offset 보다 작은 경우, 상기 단말은 다음과 같은 사항을 가정한다. (i) 서빙 셀의 PDSCH의 DMRS 포트(들)은 TCI state의 RS(s)와 QCL 파라미터(들)에 대해 QCL 관계를 가짐. (ii) 이때, 상기 QCL 파라미터(들)은, 단말에 의해 모니터링되는 서빙 셀의 활성화 BWP 내 하나 이상의 CORESET에서 마지막 슬롯 내 가장 낮은 CORESET-ID로 모니터링된 검색 영역과 연관된 CORESET의 PDCCH QCL 지시를 위해 사용된 QCL 파라미터(들)임 (For both the cases when higher layer parameter
tci-PresentInDCI is set to 'enabled' and the higher layer parameter
tci-PresentInDCI is not configured in RRC connected mode, if the offset between the reception of the DL DCI and the corresponding PDSCH is less than the threshold Threshold-Sched-Offset, the UE may assume that the DM-RS ports of PDSCH of a serving cell are quasi co-located with the RS(s) in the TCI state with respect to the QCL parameter(s) used for PDCCH quasi co-location indication of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell are monitored by the UE.)
상기 경우에 있어, PDSCH DMRS의 'QCL-TypeD'가 적어도 하나의 심볼 상에서 중첩되는 PDCCH DMRS의 'QCL-TypeD'와 상이한 경우, 상기 단말은 해당 CORESET과 연관된 PDCCH의 수신을 우선시하는 것을 기대한다. 해당 동작은 또한 밴드-내 (intra band) CA 경우에도 동일하게 적용될 수 있다 (PDSCH 및 CORESET이 상이한 CC에 있는 경우). 만약 설정된 TCI states들 중 'QCL-TypeD'를 포함한 TCI state가 없는 경우, 상기 단말은, DL DCI의 수신 시점과 대응하는 PDSCH의 수신 시점 간 시간 오프셋에 관계 없이, 스케줄링된 PDSCH를 위해 지시된 TCI state로부터 다른 QCL 가정을 획득한다.
상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- SS/PBCH 블록에 대한 'QCL-TypeC', (QCL-TypeD가) 적용 가능한 경우 (when applicable), 동일한 SS/PBCH 블록에 대한 'QCL-TypeD', 또는
- SS/PBCH 블록에 대한 'QCL-TypeC' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터
repetition가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원에 대한 'QCL-TypeD'
상위 계층 파라미터
trs-Info 및 상위 계층 파라미터
repetition 없이 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, SS/PBCH 블록에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터
repetition가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 주기적 CSI-RS 자원에 대한 'QCL-TypeD', 또는
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeB', 'QCL-TypeD'가 적용 가능하지 않은 경우
상위 계층 파라미터
repetition가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원을 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터
repetition가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- SS/PBCH 블록에 대한 'QCL-TypeC' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 SS/PBCH 블록에 대한 'QCL-TypeD'
PDCCH의 DMRS를 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터
repetition가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터
trs-Info 및 상위 계층 파라미터
repetition 없이 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD'
PDSCH의 DMRS를 위해, 단말은 TCI 상태가 다음 QCL 타입(들) 중 하나를 지시한다고 가정해야 한다:
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터
trs-Info 가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 상위 계층 파라미터
repetition가 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeD', 또는,
- 상위 계층 파라미터
trs-Info 및 상위 계층 파라미터
repetition 없이 설정된 상위 계층 파라미터
NZP-CSI-RS-ResourceSet 내 CSI-RS 자원에 대한 'QCL-TypeA' 및, (QCL-TypeD가) 적용 가능한 경우, 동일한 CSI-RS 자원에 대한 'QCL-TypeD'
본 문서에 있어, QCL 시그널링은 하기 표에 기재된 모든 시그널링 구성들을 포함할 수 있다.
하기 표들에 있어, 동일한 RS 타입을 포함한 행(row)이 존재하는 경우, 동일한 RS ID가 적용된다고 가정할 수 있다.
일 예로, 상위 계층 파라미터
trs-Info 와 함께 상위 계층 파라미터
NZP-CSI-RS-ResourceSet에 의해 설정되는 CSI-RS 자원이 존재하는 경우, 단말(UE)은 상위 계층 파라미터
TCI-State의 하기 두 가지 가능한 설정들만을 기대할 수 있다.
상기 표에 있어, *는, QCL type-D 이 적용 가능한 경우, DL RS 2 및 QCL type-2 가 상기 단말을 위해 설정될 수 있음을 의미할 수 있다.
다른 예로, 상위 계층 파라미터
trs-Info 및 상위 계층 파라미터
repetition 없이, 상위 계층 파라미터
NZP-CSI-RS-ResourceSet에 의해 설정되는 CSI-RS 자원이 존재하는 경우, 단말(UE)은 상위 계층 파라미터
TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
상기 표에 있어, *는, QCL type-D가 적용 가능하지 않음을 의미할 수 있다.
상기 표에 있어, **는, QCL type-D 이 적용 가능한 경우, DL RS 2 및 QCL type-2 가 상기 단말을 위해 설정될 수 있음을 의미할 수 있다.
또 다른 예로, 상위 계층 파라미터
repetition 와 함께 상위 계층 파라미터
NZP-CSI-RS-ResourceSet에 의해 설정되는 CSI-RS 자원이 존재하는 경우, 단말(UE)은 상위 계층 파라미터
TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
다음의 두 표들에 있어, QCL type-D가 적용 가능한 경우, DL RS 2 및 QCL type-2 는, 기본 (default) 케이스 (하기 두 표들의 네 번째 행)를 제외하고, 상기 단말을 위해 설정될 수 있다. 만약 하향링크를 위한 TRS가 QCL type-D를 위해 사용되는 경우, TRS는 QCL type-D를 위한 소스 RS로써 BM(beam management)를 위한 참조 신호 (예: SSB 또는 CSI-RS)를 가질 수 있다.
PDCCH의 DMRS를 위해, 단말은 TRS가 설정되기 이전에 네 번째 설정 (하기 두 표들의 네 번째 행)이 기본(default) 설정으로써 유효한 동안, 상위 계층 파라미터
TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
상기 표에 있어, *는, TRS가 설정되기 이전에 적용될 수 있는 설정을 의미할 수 있다. 이에 따라, 해당 설정은 TCI 상태(state)가 아니며, 오히려 유효한 QCL 가정(assumption)으로 해석될 수 있다.
상기 표에 있어, **는, QCL 파라미터들이 CSI-RS (또는 CSI)로부터 직접적으로 도출되지 않음을 의미할 수 있다.
PDCCH의 DMRS를 위해, 단말은 TRS가 설정되기 이전에 네 번째 설정 (하기 두 표들의 네 번째 행)이 기본적으로 (by default) 유효한 동안, 상위 계층 파라미터
TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
상기 표에 있어, *는, TRS가 설정되기 이전에 적용될 수 있는 설정을 의미할 수 있다. 이에 따라, 해당 설정은 TCI 상태(state)가 아니며, 오히려 유효한 QCL 가정(assumption)으로 해석될 수 있다.
상기 표에 있어, **는, QCL 파라미터들이 CSI-RS (또는 CSI)로부터 직접적으로 도출되지 않음을 의미할 수 있다.
PDCCH의 DMRS를 위해, 단말은 TRS가 설정되기 이전에 네 번째 설정 (하기 두 표들의 네 번째 행)이 기본적으로 (by default) 유효한 동안, 상위 계층 파라미터
TCI-State의 하기 세 가지 가능한 설정들만을 기대할 수 있다.
상기 표에 있어, *는, TRS가 설정되기 이전에 적용될 수 있는 설정을 의미할 수 있다. 이에 따라, 해당 설정은 TCI 상태(state)이기 보다 유효한 QCL 가정으로 해석될 수도 있다.
상기 표에 있어, **는, QCL 파라미터들이 CSI-RS (또는 CSI)로부터 직접적으로 도출되지 않음을 의미할 수 있다.
1.8. CSI-RS (channel state information reference signal)
본 개시에 따른 이동통신 시스템에서는, 패킷 전송을 위해 다중 송신 안테나와 다중 수신 안테나를 채택하여 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가질 수 있다. 이때, 채널 상태 정보 (channel state information; CSI)의 피드백을 위한 참조 신호는 CSI-RS로 정의될 수 있다.
CSI-RS는 ZP (Zero Power) CSI-RS 및 NZP (Non-Zero-Power) CSI-RS를 포함한다. 이때, ZP CSI-RS 및 NZP CSI-RS는 다음과 같이 정의될 수 있다.
- NZP CSI-RS는
NZP-CSI-RS-Resource IE (Information Element) 또는
CSI-RS-ResourceConfigMobility IE 내
CSI-RS-Resource-Mobility 필드에 의해 설정될 수 있다. 상기 NZP CSI-RS는 3GPP TS 38.211 표준 spec에 정의된 시퀀스 생성 (sequence generation) 및 자원 맵핑 (resource mapping) 방법에 기초하여 정의될 수 있다.
- ZP CSI-RS는
ZP-CSI-RS-Resource IE에 의해 설정될 수 있다. 단말은 ZP CSI-RS를 위하여 설정된 자원은 PDSCH 전송을 위해 사용되지 않는다고 가정할 수 있다. 단말은 PDSCH를 제외한 채널/신호가 ZP CSI-RS와 충돌하는지 여부와 관계 없이, 상기 채널/신호 상에서 동일한 측정/수신을 수행할 수 있다 (The UE performs the same measurement/reception on channels/signals except PDSCH regardless of whether they collide with ZP CSI-RS or not).
하나의 슬롯 내 CSI-RS가 맵핑되는 위치는 CSI-RS 포트 개수, CSI-RS 밀도 (density), CDM (Code Division Multiplexing)-Type 및 상위 계층 파라미터 (예:
firstOFDMSymbolInTimeDomain,
firstOFDMSymbolInTimeDomain2 등)에 의해 동적으로 (dynamic) 결정될 수 있다.
1.9. CSI 보고를 위한 설정 파라미터 (예: CSI-ReportConfig IE)
본 개시에 적용 가능한 CSI 보고를 위해, CSI 보고를 위한 설정 파라미터 (예:
CSI-ReportConfig )가 단말에게 설정될 수 있다.
도 8은 본 개시에 적용 가능한 상위 계층 파라미터
CSI-ReportConfig IE의 구성을 나타낸 도면이다.
이때, 상기
CSI-ReportConfig IE 내
resourceForChannelMeasurement,
csi-IM-ResourceForInterference,
nzp-CSI-RS-ResourceForInterference 는 다음과 같은 관계를 가질 수 있다.
이때, 상기와 같은 관계에 기초하여, CSI 계산은 다음과 같이 수행될 수 있다.
CSI-ReportConfig IE 내
groupBasedBeamReporting 파라미터가 ‘enabled’ 또는 ‘diabled’ 인지 여부에 따라, reportQuantity = {cri-RSRP or ssb-Index-RSRP}에 대한 보고는 다음과 같이 구분될 수 있다.
L1-RSRP 계산을 위해, 단말은 다음과 같이 설정될 수 있다. 이때, 상기 단말은,
nrofReportedRS 또는
groupBasedBeamReporting 에 따라 다음과 같은 보고를 수행할 수 있다.
추가적으로, 본 개시에 따른 CSI 중 CQI (Channel Quality Indicator) 보고를 위해, 단말은 3GPP TS 38.214 5.2.2.1 절에 정의된 하기의 표들을 참고할 수 있다. 보다 구체적으로, 단말은 하기 표들에 기초하여, 측정된 CQI와 가장 가까운 CQI 정보 (예: 인덱스)를 기지국으로 보고할 수 있다.
1.10. RSRP (Reference Signal Received Power) 보고
단말은 RSRP 보고를 위해 하기 표를 참고할 수 있다. 보다 구체적으로, 단말은 하기 표에 기초하여, 측정된 RSRP와 가장 가까운 RSRP 정보 (예: 인덱스)를 기지국으로 보고할 수 있다.
1.11. 빔 관리 (Beam management)
기지국은 단말에게 periodic CSI(Channel State Information)/beam 보고, semi-persistent CSI/beam 보고(예: 특정 시간 구간 동안에만 주기적 보고가 활성화(activation)됨 혹은 단말이 연속적인 복수 번의 보고를 수행함), 또는 aperiodic CSI/beam 보고를 요청할 수 있다.
여기서 CSI 보고 정보는, 다음 중 하나 이상의 정보를 포함할 수 있다.
- RI (rank indicator). 예: 단말이 몇 개의 layer/stream를 동시 수신하기 원하는 지에 대한 정보
- PMI (precoder matrix indication). 예: 단말 입장에서 기지국이 어떠한 MIMO (Multiple Input Multiple Output) 프리코딩을 적용하기를 선호하는 지에 대한 정보
- CQI (channel quality information). 예: 단말이 희망하는 신호(desired signal) 의 강도 및 간섭 신호 (interference signal)의 강도를 고려한 채널 품질 정보
- CRI (CSI-RS resource indicator). 예: 복수의 (서로 다른 빔포밍을 적용한) CSI-RS 자원들 중에서 단말이 선호하는 CSI-RS 자원 인덱스
- LI (layer indicator). 단말 입장에서 가장 우수한 품질을 갖는 layer의 인덱스
또한, beam 보고 정보는, 빔 품질 측정을 위한 RS가 CSI-RS인 경우 선호 빔 인덱스를 나타내는 CRI, 빔 품질 측정 RS가 SSB인 경우 선호 빔 인덱스를 나타내는 SSBID, 빔 품질을 나타내는 RSRP(RS received power) 정보 등의 특정 조합으로 구성될 수 있다.
단말의 Periodic 그리고 semi-persistent(SP) CSI/beam 보고를 위해, 기지국은 상기 단말에게 특정 주기로 해당 보고가 활성화 (activation)된 시간 구간 동안의 CSI/beam 보고를 위한 UL (uplink) 물리 채널 (예: PUCCH, PUSCH)을 할당할 수 있다. 또한, 단말의 CSI 측정을 위해, 기지국은 단말에게 하향링크 참조 신호 (DL RS)를 전송할 수 있다.
(아날로그) 빔포밍이 적용된 빔포밍 시스템 (beamformed system)에 있어, 상기 DL RS 전송/수신을 위한 DL transmission(Tx)/reception(Rx) beam pair와 UCI(uplink control information: 예: CSI, ACK/NACK) 전송/수신을 위한 UL Tx/Rx beam pair의 결정이 필요하다.
DL beam pair 결정 절차는, (i) 기지국이 복수 개의 TRP Tx beam에 해당하는 DL RS를 단말에게 전송하고, 상기 단말이 이 중 하나를 선택 및/또는 보고하는 TRP Tx beam 선택 절차, 및 (ii) 기지국이 각 TRP Tx beam에 해당하는 동일한 RS 신호를 반복 전송하고 이에 대응하여 단말이 상기 반복 전송된 신호들을 서로 다른 UE Rx beam으로 측정하여 UE Rx beam을 선택하는 절차의 조합으로 구성될 수 있다.
UL beam pair 결정 절차는, (i) 단말이 복수 개의 UE Tx beam에 해당하는 UL RS를 기지국으로 전송하고, 상기 기지국이 이 중 하나를 선택 및/또는 시그널링하는 UE Tx beam 선택 절차, 및 (ii) 단말이 UE Tx beam에 해당하는 동일한 RS 신호를 반복 전송하고 이에 대응하여 기지국이 상기 반복 전송된 신호들을 서로 다른 TRP Rx beam으로 측정하여 TRP Rx beam을 선택하는 절차의 조합으로 구성될 수 있다.
DL/UL의 beam reciprocity(또는 beam correspondence)가 성립하는 경우 (예: 기지국과 단말 간 통신에서 기지국 DL Tx 빔과 기지국 UL Rx 빔이 일치하고, 단말 UL Tx 빔과 단말 DL Rx 빔이 일치한다고 가정할 수 있는 경우), DL beam pair와 UL beam pair 중 어느 하나만 결정하면 다른 하나를 결정하는 절차가 생략될 수도 있다.
DL 및/또는 UL 빔 pair에 대한 결정 과정은 주기적 또는 비주기적으로 수행될 수 있다. 일 예로, 후보 빔 수가 많은 경우, 요구되는 RS 오버헤드가 커질 수 있다. 이 경우, DL 및/또는 UL 빔 pair에 대한 결정 과정은 상기 RS 오버헤드를 고려하여 일정 주기로 수행될 수 있다.
DL/UL 빔 pair 결정 과정이 완료된 이후, 단말은 periodic 또는 SP CSI reporting 을 수행할 수 있다. 단말의 CSI측정을 위한 단일 또는 복수 개의 antenna port를 포함하는 CSI-RS는 DL 빔으로 결정된 TRP Tx beam으로 빔포밍되어 전송될 수 있다. 이때, CSI-RS의 전송 주기는 단말의 CSI 보고 주기와 같거나 또는 상기 단말의 CSI 보고 주기 보다 짧게 설정될 수 있다.
또는, 기지국은 aperiodic CSI-RS를 단말의 CSI 보고 주기에 맞춰서 또는 상기 단말의 CSI 보고 주기 보다 자주 전송할 수도 있다.
단말은 측정된 CSI 정보를 주기적인 UL beam pair결정과정에서 결정되는 UL Tx beam을 이용하여 전송할 수 있다.
보다 구체적으로, 본 개시에 있어, 빔 관리 (beam management, BM) 절차는 다운링크(downlink, DL) 및 업링크(uplink, UL) 송/수신에 사용될 수 있는 기지국(예: gNB, TRP 등) 및/또는 단말(예: UE) 빔들의 세트(set)를 획득하고 유지하기 위한 L1(layer 1)/L2(layer 2) 절차들로서, 아래와 같은 절차 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): 기지국 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작
- 빔 결정(beam determination): 기지국 또는 단말이 자신의 송신 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 일정 시간 간격 동안 송신 및/또는 수신 빔을 이용하여 공간 영역을 커버하는 동작
- 빔 보고(beam report): 단말이 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작
BM 절차는 (1) SS(synchronization signal)/PBCH(physical broadcast channel) Block 또는 CSI-RS를 이용하는 DL BM 절차와, (2) SRS(sounding reference signal)을 이용하는 UL BM 절차로 구분할 수 있다.
또한, 각 BM 절차는 Tx beam을 결정하기 위한 Tx beam sweeping과 Rx beam을 결정하기 위한 Rx beam sweeping을 포함할 수 있다.
1.11.1. DL BM
DL BM 절차는 (1) 기지국의 beamformed DL RS(reference signal)들(예: CSI-RS 또는 SS Block(SSB))에 대한 전송과, (2) 단말의 beam reporting을 포함할 수 있다.
여기서, beam reporting은 선호되는(preferred) DL RS ID(identifier)(s) 및 이에 대응하는 L1-RSRP(Reference Signal Received Power)를 포함할 수 있다.
상기 DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.
도 9는 본 개시에 적용 가능한 DL BM을 위한 SSB/CSI-RS 빔(들)을 간단히 나타낸 도면이다.
도 9와 같이, SSB beam과 CSI-RS beam은 beam measurement를 위해 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 L1-RSRP이다. SSB는 coarse한 beam measurement를 위해 사용되며, CSI-RS는 fine한 beam measurement를 위해 사용될 수 있다. SSB는 Tx beam sweeping과 Rx beam sweeping 모두에 사용될 수 있다.
SSB를 이용한 Rx beam sweeping은 다수의 SSB bursts에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx beam을 변경하면서 수행될 수 있다. 여기서, 하나의 SS burst는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS burst set은 하나 또는 그 이상의 SSB burst들을 포함한다.
도 10은 본 개시에 적용 가능한 SSB를 이용한 DL BM 절차의 예시를 나타낸 흐름도이다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC connected state(또는 RRC connected mode)에서 CSI/beam configuration 시에 수행된다.
- 단말은 BM을 위해 사용되는 SSB resource들을 포함하는 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 기지국으로부터 수신한다(S1010).
표 18은 CSI-ResourceConfig IE의 일례를 나타내며, SSB를 이용한 BM configuration은 별도로 정의되지 않고, SSB를 CSI-RS resource처럼 설정한다.
표 18에서, csi-SSB-ResourceSetList parameter는 하나의 resource set에서 beam management 및 reporting을 위해 사용되는 SSB resource들의 리스트를 나타낸다. 여기서, SSB resource set은 {SSBx1, SSBx2, SSBx3, SSBx4, …}으로 설정될 수 있다. SSB index는 0부터 63까지 정의될 수 있다.
- 단말은 상기 CSI-SSB-ResourceSetList에 기초하여 SSB resource를 상기 기지국으로부터 수신한다(S1020).
- SSBRI 및 L1-RSRP에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 단말은 best SSBRI 및 이에 대응하는 L1-RSRP를 기지국으로 (빔) report한다(S1030).
즉, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, 단말은 기지국으로 best SSBRI 및 이에 대응하는 L1-RSRP를 보고한다.
그리고, 단말은 SSB(SS/PBCH Block)와 동일한 OFDM 심볼(들)에서 CSI-RS resource가 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 단말은 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 quasi co-located라고 가정할 수 있다.
여기서, 상기 QCL TypeD는 spatial Rx parameter 관점에서 antenna port들 간에 QCL되어 있음을 의미할 수 있다. 단말이 QCL Type D 관계에 있는 복수의 DL antenna port들을 수신 시에는 동일한 수신 빔을 적용하여도 무방하다. 또한, 단말은 SSB의 RE와 중첩하는 RE에서 CSI-RS가 설정될 것으로 기대하지 않는다.
1.11.2. CSI-RS를 이용한 DL BM
CSI-RS 용도에 대해 살펴보면, i) 특정 CSI-RS resource set에 repetition parameter가 설정되고, TRS_info가 설정되지 않은 경우, CSI-RS는 빔 관리(beam management)를 위해 사용된다. ii) repetition parameter가 설정되지 않고, TRS_info가 설정된 경우, CSI-RS는 TRS(tracking reference signal)을 위해 사용된다. iii) repetition parameter가 설정되지 않고, TRS_info가 설정되지 않은 경우, CSI-RS는 CSI acquisition을 위해 사용된다.
이러한, repetition parameter는 L1 RSRP 또는 'No Report(또는 None)'의 report를 가지는 CSI-ReportConfig와 연계된 CSI-RS resource set들에 대해서만 설정될 수 있다.
만약 단말이 reportQuantity가 'cri-RSRP' 또는 'none'으로 설정된 CSI-ReportConfig를 설정받고, 채널 측정을 위한 CSI-ResourceConfig (higher layer parameter resourcesForChannelMeasurement)가 higher layer parameter 'trs-Info'를 포함하지 않고, higher layer parameter 'repetition'이 설정된 NZP-CSI-RS-ResourceSet를 포함하는 경우, 상기 단말은 NZP-CSI-RS-ResourceSet 내의 모든 CSI-RS resource들에 대해 higher layer parameter 'nrofPorts'를 가지는 동일한 번호의 포트(1-port 또는 2-port)로만 구성될 수 있다.
(higher layer parameter) repetition이 'ON'으로 설정된 경우, 단말의 Rx beam sweeping 절차와 관련된다. 이 경우, 단말이 NZP-CSI-RS-ResourceSet을 설정받으면, 상기 단말은 NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 동일한 downlink spatial domain transmission filter로 전송된다고 가정할 수 있다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 동일한 Tx beam을 통해 전송된다. 여기서, NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 서로 다른 OFDM 심볼로 전송될 수 있다. 또한, 단말은 NZP-CSI-RS-Resourceset 내의 모든 CSI-RS resource들에서 periodicityAndOffset에 서로 다른 주기(periodicity)를 수신할 것으로 기대하지 않는다.
반면, Repetition이 'OFF'로 설정된 경우는 기지국의 Tx beam sweeping 절차와 관련된다. 이 경우, repetition이 'OFF'로 설정되면, 단말은 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource가 동일한 downlink spatial domain transmission filter로 전송된다고 가정하지 않는다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 서로 다른 Tx beam을 통해 전송된다.
도 11은 본 개시에 적용 가능한 CSI-RS를 이용한 DL BM 절차의 예시를 나타낸 도면이고, 도 12는 본 개시에 적용 가능한 단말의 수신 빔 결정 과정의 예시를 흐름도이다.
도 11(a)는 단말의 Rx beam 결정(또는 refinement) 절차를 나타내며, 도 11(b)는 기지국의 Tx beam sweeping 절차를 나타낸다. 또한, 도 11(a)는, repetition parameter가 'ON'으로 설정된 경우이고, 도 11(b)는, repetition parameter가 'OFF'로 설정된 경우이다.
도 11(a) 및 도 12를 참고하여, 단말의 Rx beam 결정 과정에 대해 살펴본다.
- 단말은 higher layer parameter repetition을 포함하는 NZP CSI-RS resource set IE를 RRC signaling을 통해 기지국으로부터 수신한다(S1210). 여기서, 상기 repetition parameter는 'ON'으로 설정된다.
- 단말은 repetition 'ON'으로 설정된 CSI-RS resource set 내의 resource(들)을 기지국의 동일 Tx beam(또는 DL spatial domain transmission filter)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다(S1220).
- 단말은 자신의 Rx beam을 결정한다(S1230).
- 단말은 CSI report를 생략한다(S1240). 이 경우, CSI report config의 reportQuantity는 'No report(또는 None)'로 설정될 수 있다.
즉, 상기 단말은 repetition 'ON'으로 설정된 경우, CSI report를 생략할 수 있다.
도 13은 본 개시에 적용 가능한 기지국의 전송 빔 결정 과정의 예시를 나타낸 흐름도이다.
이하에서는, 도 11(b) 및 도 13을 참고하여, 기지국의 Tx beam 결정 과정에 대해 살펴본다.
- 단말은 higher layer parameter repetition을 포함하는 NZP CSI-RS resource set IE를 RRC signaling을 통해 기지국으로부터 수신한다(S1310). 여기서, 상기 repetition parameter는 'OFF'로 설정되며, 기지국의 Tx beam sweeping 절차와 관련된다.
- 단말은 repetition 'OFF'로 설정된 CSI-RS resource set 내의 resource들을 기지국의 서로 다른 Tx beam(DL spatial domain transmission filter)을 통해 수신한다(S1320).
- 단말은 최상의(best) beam을 선택(또는 결정)한다(S1330)
- 단말은 선택된 빔에 대한 ID 및 관련 품질 정보(예: L1-RSRP)를 기지국으로 보고한다(S1340). 이 경우, CSI report config의 reportQuantity는 'CRI + L1-RSRP'로 설정될 수 있다.
즉, 상기 단말은 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 L1-RSRP를 기지국으로 보고한다.
도 14는 본 개시에 적용 가능한 도 11의 동작과 관련된 시간 및 주파수 영역에서의 자원 할당의 예시를 나타낸 도면이다.
즉, CSI-RS resource set에 repetition 'ON'이 설정된 경우, 복수의 CSI-RS resource들이 동일한 송신 빔을 적용하여 반복하여 사용되고, CSI-RS resource set에 repetition 'OFF'가 설정된 경우, 서로 다른 CSI-RS resource들이 서로 다른 송신 빔으로 전송되는 것을 볼 수 있다.
1.11.3. DL BM 관련 빔 지시 (beam indication)
단말은 적어도 QCL(Quasi Co-location) indication의 목적을 위해 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 설정받을 수 있다. 여기서, M은 64일 수 있다.
각 TCI state는 하나의 RS set으로 설정될 수 있다. 적어도 RS set 내의 spatial QCL 목적(QCL Type D)을 위한 DL RS의 각각의 ID는 SSB, P-CSI RS, SP-CSI RS, A-CSI RS 등의 DL RS type들 중 하나를 참조할 수 있다.
최소한 spatial QCL 목적을 위해 사용되는 RS set 내의 DL RS(들)의 ID의 초기화(initialization)/업데이트(update)는 적어도 명시적 시그널링(explicit signaling)을 통해 수행될 수 있다.
표 19는 TCI-State IE의 일례를 나타낸다.
TCI-State IE는 하나 또는 두 개의 DL reference signal(RS) 대응하는 quasi co-location (QCL) type과 연관시킨다.
표 19에서, bwp-Id parameter는 RS가 위치되는 DL BWP를 나타내며, cell parameter는 RS가 위치되는 carrier를 나타내며, referencesignal parameter는 해당 target antenna port(s)에 대해 quasi co-location 의 source가 되는 reference antenna port(s) 혹은 이를 포함하는reference signal을 나타낸다. 상기 target antenna port(s)는 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. 일례로 NZP CSI-RS에 대한 QCL reference RS정보를 지시하기 위해 NZP CSI-RS 자원 설정 정보에 해당 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDCCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 각 CORESET설정에 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDSCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 DCI를 통해 TCI state ID를 지시할 수 있다.
1.11.4. UL BM
UL BM은 단말 구현에 따라 Tx beam - Rx beam 간 beam reciprocity(또는 beam correspondence)가 성립할 수 있거나 또는, 성립하지 않을 수 있다. 만약 기지국과 단말 모두에서 Tx beam - Rx beam 간 reciprocity가 성립하는 경우, DL beam pair를 통해 UL beam pair를 맞출 수 있다. 하지만, 기지국과 단말 중 어느 하나라도 Tx beam - Rx beam 간 reciprocity가 성립하지 않는 경우, DL beam pair 결정과 별개로 UL beam pair 결정 과정이 필요하다.
또한, 기지국과 단말 모두 beam correspondence를 유지하고 있는 경우에도, 단말이 선호(preferred) beam의 보고를 요청하지 않고도 기지국은 DL Tx beam 결정을 위해 UL BM 절차를 사용할 수 있다.
UL BM은 beamformed UL SRS 전송을 통해 수행될 수 있으며, SRS resource set의 UL BM의 적용 여부는 (higher layer parameter) usage에 의해 설정된다. usage가 'BeamManagement(BM)'로 설정되면, 주어진 time instant에 복수의 SRS resource set들 각각에 하나의 SRS resource만 전송될 수 있다.
단말은 (higher layer parameter) SRS-ResourceSet에 의해 설정되는 하나 또는 그 이상의 Sounding Reference Symbol (SRS) resource set들을 (higher layer signaling, RRC signaling 등을 통해) 설정받을 수 있다. 각각의 SRS resource set에 대해, UE는 K≥1 SRS resource들 (higher later parameter SRS-resource)이 설정될 수 있다. 여기서, K는 자연수이며, K의 최대 값은 SRS_capability에 의해 지시된다.
DL BM과 마찬가지로, UL BM 절차도 단말의 Tx beam sweeping과 기지국의 Rx beam sweeping으로 구분될 수 있다.
도 15는 본 개시에 적용 가능한 SRS를 이용한 UL BM 절차의 예시를 나타낸 도면이다. 도 15(a)는 기지국의 Rx beam 결정 절차를 나타내고, 도 15(b)는 단말의 Tx beam sweeping 절차를 나타낸다.
도 16은 본 개시에 적용 가능한 SRS를 이용한 UL BM 절차의 예시를 나타낸 흐름도이다.
- 단말은 'beam management'로 설정된 (higher layer parameter) usage parameter를 포함하는 RRC signaling(예: SRS-Config IE)를 기지국으로부터 수신한다(S1610).
표 20은 SRS-Config IE(Information Element)의 일례를 나타내며, SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 list와 SRS-ResourceSet들의 list를 포함한다. 각 SRS resource set는 SRS-resource들의 set를 의미한다.
네트워크는 설정된 aperiodicSRS-ResourceTrigger (L1 DCI)를 사용하여 SRS resource set의 전송을 트리거할 수 있다.
표 20에서, usage는 SRS resource set이 beam management를 위해 사용되는지, codebook 기반 또는 non-codebook 기반 전송을 위해 사용되는지를 지시하는 higher layer parameter를 나타낸다. usage parameter는 L1 parameter 'SRS-SetUse'에 대응한다. 'spatialRelationInfo'는 reference RS와 target SRS 사이의 spatial relation의 설정을 나타내는 parameter이다. 여기서, reference RS는 L1 parameter 'SRS-SpatialRelationInfo'에 해당하는 SSB, CSI-RS 또는 SRS가 될 수 있다. 상기, usage는 SRS resource set 별로 설정된다.
- 단말은 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS resource에 대한 Tx beam을 결정한다(S1620). 여기서, SRS-SpatialRelation Info는 SRS resource 별로 설정되고, SRS resource 별로 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용할지를 나타낸다. 또한, 각 SRS resource에 SRS-SpatialRelationInfo가 설정되거나 또는 설정되지 않을 수 있다.
- 만약 SRS resource에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용하여 전송한다. 하지만, SRS resource에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 단말은 임의로 Tx beam을 결정하여 결정된 Tx beam을 통해 SRS를 전송한다(S1630).
보다 구체적으로, 'SRS-ResourceConfigType'가 'periodic'으로 설정된 P-SRS에 대해:
i) SRS-SpatialRelationInfo가 'SSB/PBCH'로 설정되는 경우, UE는 SSB/PBCH의 수신을 위해 사용한 spatial domain Rx filter와 동일한 (혹은 해당 filter로부터 생성된) spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다; 또는
ii) SRS-SpatialRelationInfo가 'CSI-RS'로 설정되는 경우, UE는 periodic CSI-RS 또는 SP CSI-RS의 수신을 위해 사용되는 동일한 spatial domain transmission filter를 적용하여 SRS resource를 전송한다; 또는
iii) SRS-SpatialRelationInfo가 'SRS'로 설정되는 경우, UE는 periodic SRS의 전송을 위해 사용된 동일한 spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다.
'SRS-ResourceConfigType'이 'SP-SRS' 또는 'AP-SRS'로 설정된 경우에도 위와 유사하게 빔 결정 및 전송 동작이 적용될 수 있다.
- 추가적으로, 단말은 기지국으로부터 SRS에 대한 feedback을 다음 3가지 경우와 같이, 수신받거나 또는 수신받지 않을 수 있다(S1640).
i) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되는 경우, 단말은 기지국이 지시한 빔으로 SRS를 전송한다. 예를 들어, Spatial_Relation_Info가 모두 동일한 SSB, CRI 또는 SRI를 지시하는 경우, 단말은 동일 빔으로 SRS를 반복 전송한다. 이 경우는, 기지국이 Rx beam을 selection하는 용도로서 도 15(a)에 대응한다.
ii) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되지 않을 수 있다. 이 경우, 단말은 자유롭게 SRS beam을 바꾸어가면서 전송할 수 있다. 즉, 이 경우는 단말이 Tx beam을 sweeping하는 용도로서, 도 15(b)에 대응한다.
iii) SRS resource set 내의 일부 SRS resource들에 대해서만 Spatial_Relation_Info가 설정될 수 있다. 이 경우, 설정된 SRS resource에 대해서는 지시된 빔으로 SRS를 전송하고, Spatial_Relation_Info가 설정되지 않은 SRS resource에 대해서는 단말이 임의로 Tx beam을 적용해서 전송할 수 있다.
1.12. 빔 회복 (Beam recovery) 절차
단말 및 기지국이 DL/UL 빔 관리 과정을 수행함에 있어, 설정된 beam management 의 주기에 따라 빔 mismatch문제가 발생할 수 있다.
특히, 단말이 위치를 이동하거나, 회전하거나, 또는 주변 물체의 이동으로 무선 채널 환경이 바뀌는 경우(예: LoS (Line of Sight) 상황에서 빔 블록 등에 의해 Non-LoS 상황으로 변경됨), 최적의 DL/UL beam pair는 변경될 수 있다. 이러한 변화를 보다 일반적으로 설명하면, 네트워크 지시에 의해 수행하는 빔 관리 (management) 과정에 따른 트래킹(tracking) 이 실패하였고, 이로 인해 beam failure event가 발생한 상황에 대응할 수 있다.
단말은 하향링크 RS의 수신 품질을 통해 이러한 beam failure event의 발생 여부를 판단할 수 있다.
이어, 단말은 이러한 상황에 대한 보고 메시지 또는 빔 복구 요청을 위한 메시지(이하, beam failure recovery request(BFRQ) message라 명명한다)를 기지국 (또는 네트워크)로 전송할 수 있다.
기지국은 해당 메시지를 수신하고, 빔 복구를 위해 beam RS 전송, beam reporting 요청 등 다양한 과정을 통해 beam 복구를 수행할 수 있다. 이러한 일련의 빔 복구 과정을 beam failure recovery(BFR)라 명명할 수 있다.
3GPP TS 38.213, 3GPP TS 38.321 등 표준 문서에 따르면, BFR 과정은 다음과 같이 구성될 수 있다.
(1) Beam failure detection (BFD)
모든 PDCCH 빔이 정해진 품질값(Q_out) 이하로 떨어지는 경우, 단말의 물리 계층은 한번의 beam failure instance를 선언한다(declare).
여기서, 빔의 품질은 hypothetical BLER(block error rate)을 기준으로 측정된다. 다시 말해, 상기 빔의 특징은, 해당 PDCCH로 제어 정보가 전송되었다고 가정할 경우 단말이 해당 정보의 복조에 실패할 확률을 기준으로 측정될 수 있다.
BFD RS를 위한 암시적 설정(implicit configuration)을 위해, 특정 단말에게 PDCCH를 모니터링할 복수의 검색 영역 (search space)들이 설정될 수 있다. 이때, 각 검색 영역 별로 빔(또는 자원)이 다르게 설정될 수 있다. 따라서, 모든 PDCCH빔이 정해진 품질 값 이하로 떨어지는 경우라 함은, 각 검색 영역 별로 상이하게 설정될 수 있는 모든 빔의 품질이 BLER threshold 아래로 떨어지는 경우를 의미할 수 있다.
이를 위해, BFD 참조 신호 (또는 BFD RS)를 위해 다양한 방법의 설정 방법이 적용/설정될 수 있다.
일 예로, BFD 참조 신호를 위해 암시적인(implicit) 설정 방법이 활용될 수 있다. 구체적인 일 예로, 각 검색 영역 (search space)에는 PDCCH가 전송될 수 있는 자원 영역인 control resource set(CORESET[TS 38.213, TS 38.214, TS 38.331참조]) ID가 설정될 수 있다. 그리고, 기지국은 각 CORESET ID마다 spatial RX parameter관점에서 QCL되어 있는 RS 정보(예: CSI-RS resource ID, SSB ID)를 단말에게 지시/설정될 수 있다. 예를 들어, 기지국은 단말에게 TCI(transmit configuration information) 지시를 통해 QCL된 RS를 지시/설정할 수 있다.
여기서, 기지국이 단말에게 spatial RX parameter관점에서 QCL되어 있는 RS (즉, QCL Type D in TS 38.214)를 지시/설정함은, 단말이 해당 PDCCH DMRS를 수신함에 있어 spatially QCL된 RS 수신에 사용했던 빔을 그대로 사용해야 함을 (또는 사용할 수 있음을) 지시/설정하는 것을 포함할 수 있다. 다시 말해, 기지국이 단말에게 spatial RX parameter관점에서 QCL되어 있는 RS (즉, QCL Type D in TS 38.214)를 지시/설정함은, 기지국 관점에서 상기 기지국이 spatially QCL된 antenna ports에 대해 동일 전송 빔 또는 유사한 전송 빔(예: 빔 방향은 동일/유사하면서 빔 폭이 상이한 경우)을 적용하여 전송할 것임을 단말에게 알려주는 것을 포함할 수 있다.
BFD RS를 위한 명시적 설정(explicit configuration)을 위해, 기지국은 BFD 용도의 특정 RS (예: beam RS(s))를 단말에게 명시적으로 설정할 수 있다. 이때, 상기 특정 RS라 함은 상기 '모든 PDCCH 빔'에 해당할 수 있다.
이하 설명의 편의상, 복수의 BFD RS들은 BFD RS 세트라고 정의한다.
이어, (연속적으로) 미리 설정된 횟수만큼 beam failure instance가 발생하게 되면, 단말의 MAC (Media Access Control) 계층은 beam failure를 선언(declare)할 수 있다.
(2) New beam identification & selection
(2-1) Step 1
단말은 기지국이 candidate beam RS set으로 설정한 RS 들 중에서 정해진 품질 값(Q_in) 이상을 갖는 빔을 찾을 수 있다.
- 만약 하나의 빔 RS가 정해진 품질 값(threshold)를 넘는 경우, 단말은 해당 빔 RS를 선택할 수 있다.
- 만약 복수 개의 빔 RS가 정해진 품질 값을 넘는 경우, 단말은 해당 빔 RS들 중에서 임의로 하나의 빔 RS를 선택할 수 있다.
- 만약 정해진 품질 값을 넘는 빔 RS가 없는 경우, 단말은 아래의 Step 2를 수행할 수 있다.
이때, 앞서 상술한 동작에 있어, 빔 품질은 RSRP를 기준으로 결정될 수 있다.
본 개시에 있어, 기지국이 설정한 RS beam set은 다음의 세 가지 경우 중 하나와 같이 설정될 수 있다.
- RS beam set내의 빔RS들이 모두 SSB들로 구성
- RS beam set내의 빔RS들이 모두 CSI-RS자원들로 구성
- RS beam set내의 빔RS들이 SSB들과 CSI-RS자원들로 구성
(2-2) Step 2
단말은 (contention based PRACH자원과 연결된) SSB들 중에서 정해진 품질 값(Q_in) 이상을 갖는 빔을 찾을 수 있다.
- 만약 하나의 SSB가 정해진 품질 값을 넘는 경우, 단말은 해당 SSB를 선택할 수 있다.
- 만약 복수 개의 SSB가 정해진 품질 값을 넘는 경우, 단말은 해당 SSB들 중에서 임의로 하나의 SSB를 선택할 수 있다.
- 만약 정해진 품질 값을 넘는 SSB가 없는 경우, 단말은 아래의 Step 3를 수행할 수 있다.
(2-3) Step 3
단말은 (contention based PRACH자원과 연결된) SSB들 중 임의의 SSB를 선택할 수 있다.
(3) CFRA based BFRQ & monitoring gNB's response
본 개시에 있어, BFRQ (Beam Failure Recovery Request)란, 단말이 앞서 상술한 과정에서 선택한 빔 RS(예: CSI-RS 또는 SSB)와 직접적 또는 간접적으로 연결 설정된 PRACH resource 및 PRACH preamble 을 기지국으로 전송하는 것을 포함할 수 있다. 다시 말해, BFRQ란, 단말이 앞서 상술한 과정에서 선택한 빔 RS와 관련된 PRACH preamble을 상기 단말이 선택한 빔 RS와 관련된 PRACH resource를 통해 전송하는 것을 포함할 수 있다.
본 개시에 있어, 직접적으로 연결 설정된 PRACH resource 및 PRACH preamble은 다음의 경우에 사용될 수 있다.
- BFR용도로 별도 설정된 candidate beam RS set내의 특정 RS에 대해 contention-free PRACH resource 및 PRACH preamble 이 설정된 경우
- Random access등 범용적으로 설정된 SSB들과 일대일로 맵핑된 (contention based) PRACH resource 및 PRACH preamble 이 설정된 경우
또는, 간접적으로 연결 설정된 PRACH resource 및 PRACH preamble은 다음의 경우에 사용될 수 있다.
- BFR용도로 별도 설정된 candidate beam RS set내의 특정 CSI-RS에 대해 contention-free PRACH resource 및 PRACH preamble 이 설정되지 않은 경우
- - 이 경우, 단말은 해당 CSI-RS와 동일한 수신 빔으로 수신 가능하다고 지정된(예: quasi-co-located(QCLed) with respect to spatial Rx parameter) SSB와 연결된 (contention-free) PRACH resource 및 PRACH preamble을 선택할 수 있다.
설명의 편의상, 이하 설명에 있어 Contention-Free PRACH resource 및 PRACH preamble 기반의 RSRQ는 CFRA (Contention Free Random Access) 기반 RSRQ라 명명한다.
앞서 상술한 구성에 기초하여, 단말은 PRACH preamble을 기지국으로 전송하고, 상기 단말은 해당 PRACH 전송에 대한 기지국(예: gNB)의 회신을 모니터링할 수 있다.
이때, 상기 contention-free PRACH resource 및 PRACH preamble에 대한 응답 신호는 C-RNTI(cell random network temporary identifier)로 마스킹된 PDCCH를 통해 전송될 수 있다. 상기 PDCCH는 BFR용도로 별도로 (RRC 시그널링에 의해) 설정된 검색 영역 상에서 수신될 수 있다.
상기 검색 영역은 (BFR용) 특정 CORESET 상에 설정될 수 있다.
본 개시에 있어, BFR용 Contention based PRACH에 대한 응답 신호는 contention based PRACH 에 기반한 random access과정을 위해 설정된 CORESET (예: CORESET 0 또는 CORESET 1) 및 검색 영역을 재사용할 수 있다.
앞서 상술한 구성에 있어, 만약 단말이 일정 시간 동안 응답 신호를 수신하지 못한 경우, 상기 단말은 앞서 상술한 새로운 빔 식별 및 선택 (New beam identification & selection) 과정 및 BFRQ & monitoring gNB's response 과정을 반복 수행할 수 있다.
본 개시에 있어, 단말은 상기 과정을 (i) PRACH 전송이 미리 설정된 최대 회수 (예: N_max)까지 도달하거나 (ii) 별도로 설정된 타이머가 만료(expire)할 때까지 수행할 수 있다. 이때, 상기 타이머가 만료(expire)되면 상기 단말은 contention free PRACH전송을 중지(stop)할 수 있다. 다만, SSB선택에 의한 contention based PRACH 전송의 경우, 상기 단말은 (상기 타이머의 만료 여부와 관계 없이) 상기 PRACH를 N_max가 도달할 때까지 수행할 수도 있다.
(4) CBRA based BFRQ & monitoring gNB's response
하기 경우가 발생할 경우, 단말은 CBRA (Contention Based Random Access) 기반 BFRQ을 수행할 수 있다.
- 단말이 CFRA 기반 BFRQ가 실패한 경우. 이 경우, 단말은 후속 동작으로 CBRA 기반 BFRQ을 수행할 수 있다.
- Active BWP에 CFRA가 정의되어 있지 않는 경우
- 상위 계층 파라미터
SearchSpace-BFR 와 연관된 CORESET 이 설정되지 않거나 상기 상위 계층 파라미터
SearchSpace-BFR 가설정되지 않은 경우
다만, CFRA의 경우와 달리, CBRA를 위해 단말은 상향링크 초기 접속 (initial access) 시 사용하는 PRACH 자원을 이용하는 바, 다른 단말과 충돌이 발생할 수도 있다.
앞서 상술한 빔 실패 검출 (beam failure detection) 및 빔 회복 (beam recovery) 절차는 다음과 같이 정리할 수 있다.
서빙 SSB(s)/CSI-RS(s) 상에서 빔 실패가 검출된 경우, RRC 시그널링에 의해, MAC 엔티티에 대해 서빙 기지국 (예: serving gNB)에게 새로운 SSB 또는 CSI-RS를 지시하기 위해 사용되는 빔 실패 절차가 설정될 수 있다 (The MAC entity may be configured by RRC with a beam failure recovery procedure which is used for indicating to the serving gNB of a new SSB or CSI-RS when beam failure is detected on the serving SSB(s)/CSI-RS(s)). 빔 실패는 하위 계층으로부터 MAC 엔티티로의 beam failure instance 지시를 카운팅하여 검출될 수 있다. 빔 실패 검출 및 회복 절차를 위해, 기지국은 RRC 시그널링을 통해 상위 계층 파라미터
BeamFailureRecoveryConfig 내 다음의 파라미터들을 단말에게 설정할 수 있다:
- (빔 실패 검출을 위한)
beamFailureInstanceMaxCount
- (빔 실패 검출을 위한)
beamFailureDetectionTimer
- (빔 실패 회복 절차를 위한)
beamFailureRecoveryTimer
-
rsrp-ThresholdSSB. 빔 실패 회복을 위한 RSRP 문턱치
-
powerRampingStep. 빔 실패 회복을 위한 powerRampingStep 파라미터
-
preambleReceivedTargetPower. 빔 실패 회복을 위한 preambleReceivedTargetPower 파라미터
-
preambleTransMax. 빔 실패 회복을 위한 preambleTransMax 파라미터
-
ra-ResponseWindow. contention-free Random Access Preamble을 사용하는 빔 회복 절차를 위한 응답(들)을 모니터링하기 위한 시간 윈도우
-
prach-ConfigIndex. 빔 실패 회복을 위한 prach-ConfigIndex 파라미터
-
ra-ssb-OccasionMaskIndex. 빔 실패 회복을 위한 ra-ssb-OccasionMaskIndex 파라미터
-
ra-OccasionList. 빔 실패 회복을 위한 ra-OccasionList 파라미터
단말은 하기 변수를 빔 실패 검출 절차를 위해 사용할 수 있다:
-
BFI_COUNTER. beam failure instance indication 을 위한 카운터로써 초기 값은 0으로 설정됨
단말의 MAC 엔티티는 다음과 같이 동작할 수 있다.
1> 하위 계층(들)로부터 beam failure instance indication 가 수신되는 경우:
2>
beamFailureDetectionTimer를 시작 또는 재시작함
2>
BFI_COUNTER 를 1만큼 증가시킴(increment)
2>
BFI_COUNTER >=
beamFailureInstanceMaxCount 인 경우:
3> 상위 계층 파라미터
beamFailureRecoveryConfig 가 설정된 경우:
4> (설정된 경우)
beamFailureRecoveryTimer를 시작함
4> 상위 계층 파라미터
beamFailureRecoveryConfig 내 설정된
powerRampingStep, preambleReceivedTargetPower, 및
preambleTransMax 파라미터들을 적용하여 SpCell (Special Cell, 예: MCG (Macro Cell Group) 내 Primary Cell, 또는 SCG (Secondary Cell Group) 내 PSCell (Primary SCG Cell) 등) 상에서 임의 접속 절차를 개시함(initiate)
3> 또는:
4> SpCell 상에서 임의 접속 절차를 개시함
1>
beamFailureDetectionTimer 가 만료(expire)한 경우:
2>
BFI_COUNTER 를 0으로 설정함
1> 만약 임의 접속 절차가 성공적으로 완료된 경우:
2> (설정된 경우)
beamFailureRecoveryTimer를 중지함 (stop)
2> 빔 실패 회복 절차가 성공적으로 완료된 것으로 간주함(consider)
추가적으로, 본 개시에 따른 PCell, SCell, 서빙 셀은 다음과 같이 정의될 수 있다.
[1] Primary Cell (PCell)
프라이머리 주파수 상에서 동작하는 셀로써 단말이 초기 연결 수립 절차 (initial connection establishment procedure)를 수행하거나 연결 재-수립 절차 (connection re-establishment procedure)를 개시하는 셀, 또는 핸드오버 절차 내에서 프라이머리 셀로 지시되는 셀
[2] Secondary Cell (SCell)
세컨더리 주파수 상에서 동작하는 셀로써, RRC 연결이 수립되면 설정될 수 있는 셀 또는 반송파 결합 (carrier aggregation)을 위한 추가 반송파와 같이 추가 무선 자원을 제공하기 위해 사용되는 셀
본 개시에 있어, SCell 상 CBRA (Contention Based Random Access)는 설정될 수 없다. 반면, SCell 상 CFRA (Contention Free Random Access)가 설정됨은 허용될 수 있다.
[3] Serving Cell
RRC_CONNECTED 상태이고 CA가 설정되지 않은 단말을 위해서는 PCell을 포함한 단 하나의 서빙 셀만이 존재한다. RRC_CONNECTED 상태이고 CA가 설정된 단말을 위하여, '서빙 셀들'이라는 단어는 PCell 및 모든 SCell(s)을 포함하는 하나 이상의 세트를 의미한다.
추가적으로, 본 개시에 따라 DL only인 SCell을 위한 BFRQ를 위해, PCell의 CBRA가 활용되거나, (SCell UL이 존재하는 경우) SCell BFR을 위한 CFRA가 추가적으로 활용될 수 있다.
이를 위한 일 예로, 다중-빔 기반 동작으로써 FR1 내에 설정된 PCell 및 FR2 내에 설정된 SCell에 기반한 동작이 고려될 수 있다.
이 경우, 비록 SCell에 대해 빔 실패(beam failure)가 발행하더라도, PCell UL의 링크 품질은 좋은 것으로(good) 가정될 수 있다. SCell이 오직 DL CC (component carrier)만을 포함하는 바, SCell BFR을 위한 간단한 해결 방안으로써 PCell 내 MAC-CE를 활용활 수 있다. 이 경우, 단말은 Cell ID, new beam RS ID 등을 PCell PUSCH를 통해 전송할 수 있다. MAC-CE 기반 해결 방안을 위해, 단말은 PUCCH 상으로 SR (Scheduling Request)를 전송하는 것이 필요할 수 있다. 기지국이 단말의 상황을 즉시 (promptly) 인지할 수 있도록 (예: 단말이 일반 데이터 전송을 위한 PUSCH를 요청하는지 또는 BFR 보고를 위한 PUSCH를 요청하는지 등), 오직 BFRQ를 위해 활용되는 SR 자원으로써 단말에게 전용된 (dedicated) SR 자원 을 할당하는 것이 고려될 수 있다. 이는 단말에 의해 개시되는 전송인 바, 이 경우 SR PUCCH 포맷은 재사용될 수 있다.
또 다른 예로, 다중-빔 기반 동작으로써 FR2 내에서 DL only 또는 DL/UL로 설정된 SCell을 위한 빔 실패 회복을 위해 다음과 같은 사항들이 고려될 수 있다. 이때, PCell은 FR1 뿐만 아니라 FR2내에서 동작할 수 있다.
SCell BFR을 위해, PCell DL/UL의 링크 품질은 충분히 좋다고 가정될 수 있다. 만약 PCell이 빔 실패 상태인 경우, SCell 빔을 회복하기에 앞서, 존재하는 (existing) BFR 메커니즘을 통해 우선 PCell 빔의 회복이 수행될 수 있다. 이를 위해, 오직 PCell UL 만이 SCell 빔 실패와 관련된 요청/정보를 위해 사용되는 방안이 고려될 수 있다.
PCell UL을 통해 전달되는 정보와 관련하여, 다음과 같은 다양한 옵션들이 고려될 수 있다.
옵션 1: SCell 빔 실패의 발생 (Occurrence of SCell beam failure)
옵션 2: SCell 빔 실패의 발생 및 실패 및/또는 유지되는 (survived) 빔(들)에 대한 빔 정보
옵션 1 및 옵션 2를 비교할 때, 옵션 2의 추가적인 효과/이득은 크지 않을 수 있다. 왜냐하면, PCell이 여전히 유지되는 바(alive), 기지국은, SCell을 위한 정보를 획득하기 위해, 존재하는 (existing) 빔 보고 메커니즘에 기초하여 PCell 상 (regular) 빔 보고를 트리거링할 수 있다.
따라서, 단말은 PCell UL을 통해, SCell의 빔 실패의 발생만을 보고할 수도 있다.
상기 정보의 전달을 위해, 다음과 같은 3가지 옵션이 고려될 수 있다.
옵션 1: PCell 내 PRACH
옵션 2: PCell 내 PUCCH
옵션 3: PCell 내 PUSCH
또는, SCell 빔이 실패한 경우, 단말은 PCell 상의 PUCCH format 0/1의 전용(dedicated) PUCCH 자원을 통해 관련된 정보를 보고할 수 있다. 이에, SCell BFR을 위해 별도의 신호/메시지/절차 등이 정의되지 않을 수도 있다.
1.13. 전력 제어 (Power Control)
무선 통신 시스템에서는 상황에 따라 단말(예: User Equipment, UE) 및/또는 이동 장치(mobile device)의 전송 전력을 증가 또는 감소시킬 필요가 있을 수 있다. 이와 같이 단말 및/또는 이동 장치의 전송 전력을 제어하는 것은 상향링크 전력 제어(uplink power control)로 지칭될 수 있다. 일례로, 전송 전력 제어 방식은 기지국(예: gNB, eNB 등)에서의 요구 사항(requirement)(예: SNR(Signal-to-Noise Ratio), BER(Bit Error Ratio), BLER(Block Error Ratio) 등)을 만족시키기 위해 적용될 수 있다.
상술한 바와 같은 전력 제어는 개루프(open-loop) 전력 제어 방식과 폐루프(closed-loop) 전력 제어 방식으로 수행될 수 있다.
구체적으로, 개루프 전력 제어 방식은 전송 장치(예: 기지국 등)로부터 수신 장치(예: 단말 등)로의 피드백(feedback) 및/또는 수신 장치로부터 전송 장치로의 피드백 없이 전송 전력을 제어하는 방식을 의미한다. 일례로, 단말은 기지국으로부터 특정 채널/신호(pilot channel/signal)를 수신하고, 이를 이용하여 수신 전력의 강도(strength)를 추정할 수 있다. 이후, 단말은 추정된 수신 전력의 강도를 이용하여 전송 전력을 제어할 수 있다.
이와 달리, 폐루프 전력 제어 방식은 전송 장치로부터 수신 장치로의 피드백 및/또는 수신 장치로부터 전송 장치로의 피드백에 기반하여 전송 전력을 제어하는 방식을 의미한다. 일례로, 기지국은 단말로부터 특정 채널/신호를 수신하며, 수신된 특정 채널/신호에 의해 측정된 전력 수준(power level), SNR, BER, BLER 등에 기반하여 단말의 최적 전력 수준(optimum power level)을 결정한다. 기지국은 결정된 최적 전력 수준에 대한 정보(즉, 피드백)를 제어 채널(control channel) 등을 통해 단말에게 전달하며, 해당 단말은 기지국에 의해 제공된 피드백을 이용하여 전송 전력을 제어할 수 있다.
이하, 무선 통신 시스템에서 단말 및/또는 이동 장치가 기지국으로의 상향링크 전송을 수행하는 경우들에 대한 전력 제어 방식에 대해 구체적으로 살펴본다.
구체적으로, 이하 1) 상향링크 데이터 채널(예: PUSCH(Physical Uplink Shared Channel), 2) 상향링크 제어 채널(예: PUCCH(Physical Uplink Control Channel), 3) 사운딩 참조 신호(Sounding Reference Signal, SRS), 4) 랜덤 엑세스 채널(예: PRACH(Physical Random Access Channel) 전송에 대한 전력 제어 방식들이 설명된다. 이 때, PUSCH, PUCCH, SRS 및/또는 PRACH에 대한 전송 기회(transmission occasion)(즉, 전송 시간 단위)(i)는 시스템 프레임 번호(system frame number, SFN)의 프레임 내에서의 슬롯 인덱스(slot index)(n_s), 슬롯 내의 첫 번째 심볼(S), 연속하는 심볼의 수(L) 등에 의해 정의될 수 있다.
1.13.1. 상향링크 데이터 채널의 전력 제어
이하, 설명의 편의를 위하여 단말이 PUSCH 전송을 수행하는 경우를 기준으로 전력 제어 방식이 설명된다. 해당 방식이 무선 통신 시스템에서 지원되는 다른 상향링크 데이터 채널에도 확장하여 적용될 수 있음은 물론이다.
서빙 셀(serving cell)(c)의 캐리어(carrier)(f)의 활성화된(active) 상향링크 대역폭 부분(UL bandwidth part, UL BWP)에서의 PUSCH 전송의 경우, 단말은 이하 수학식 1에 의해 결정되는 전송 전력의 선형 전력 값(linear power value)을 산출할 수 있다. 이후, 해당 단말은 산출된 선형 전력 값을 안테나 포트(antenna port) 수 및/또는 SRS 포트(SRS port) 수 등을 고려하여 전송 전력을 제어할 수 있다.
구체적으로, 단말이 인덱스 j에 기반한 파라미터 집합 구성(parameter set configuration) 및 인덱스 l에 기반한 PUSCH 전력 제어 조정 상태(PUSCH power control adjustment state)를 이용하여, 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PUSCH 전송을 수행하는 경우, 단말은 아래 수학식 1에 기반하여 PUSCH 전송 기회(i)에서의 PUSCH 전송 전력
(dBm)를 결정할 수 있다.
수학식 1에서, 인덱스 j는 개루프 전력 제어 파라미터(예: P
o, 알파(alpha, α) 등)에 대한 인덱스를 나타내며, 셀 당 최대 32개의 파라미터 집합들이 설정될 수 있다. 인덱스 q_d는 경로 손실(PathLoss, PL) 측정(measurement)(예:
)에 대한 DL RS 자원의 인덱스를 나타내며, 셀 당 최대 4개의 측정치들이 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 셀 당 최대 2개의 프로세스들이 설정될 수 있다.
구체적으로, P
o(예:
)는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 P
o 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한, 알파(예:
)는 경로 손실에 대한 보상을 수행하는 비율을 나타낼 수 있다. 알파는 0부터 1까지의 값으로 설정될 수 있으며, 설정되는 값에 따라 완전 경로 손실 보상(full pathloss compensation) 또는 부분 경로 손실 보상(fractional pathloss compensation)이 수행될 수 있다. 이 경우, 상기 알파 값은 단말들 간의 간섭 및/또는 데이터 속도 등을 고려하여 설정될 수 있다. 또한,
는 설정된 단말 전송 전력(UE transmit power)을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
는 서브캐리어 간격(subcarrier spacing)(μ)에 기반하여 PUSCH 전송 기회에 대한 자원 블록(resource block, RB)의 수로 표현되는 PUSCH 자원 할당의 대역폭(bandwidth)을 나타낼 수 있다. 또한, PUSCH 전력 제어 조정 상태와 관련된
는 DCI(예: DCI format 0_0, DCI format 0_1, DCI format 2_2, DCI format2_3 등)의 TPC 명령 필드(TPC command field)에 기반하여 설정 또는 지시될 수 있다.
이 경우, 특정 RRC(Radio Resource Control) 파라미터(예: SRI-PUSCHPowerControl-Mapping 등)는 DCI(downlink control information)의 SRI(SRS Resource Indicator) 필드와 상술한 인덱스 j, q_d, l간의 연결 관계(linkage)를 나타낼 수 있다. 다시 말해, 상술한 인덱스 j, l, q_d 등은 특정 정보에 기반하여 빔(beam), 패널(panel), 및/또는 공간 영역 전송 필터(spatial domain trnamission filter) 등과 연관될 수 있다. 이를 통해, 빔, 패널, 및/또는 공간 영역 전송 필터 단위의 PUSCH 전송 전력 제어가 수행될 수 있다.
상술한 PUSCH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE(Medium Access Control-Control Element) 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, PUSCH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 PUSCH-ConfigCommon, PUSCH-PowerControl 등을 통해 전달될 수 있으며, PUSCH-ConfigCommon, PUSCH-PowerControl은 아래 표 21과 같이 설정될 수 있다.
상술한 바와 같은 방식을 통해 단말은 PUSCH 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 PUSCH 전송 전력을 이용하여 PUSCH를 전송할 수 있다.
1.13.2. 상향링크 제어 채널의 전력 제어
이하, 설명의 편의를 위하여 단말이 PUCCH 전송을 수행하는 경우를 기준으로 전력 제어 방식이 설명된다. 해당 방식이 무선 통신 시스템에서 지원되는 다른 상향링크 제어 채널에도 확장하여 적용될 수 있음은 물론이다.
구체적으로, 단말이 인덱스 l에 기반한 PUCCH 전력 제어 조정 상태(PUCCH power control adjustment state)를 이용하여, 프라이머리 셀(primary cell)(또는 세컨더리 셀(secondary cell))(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PUCCH 전송을 수행하는 경우, 단말은 아래 수학식 2에 기반하여 PUCCH 전송 기회(i)에서의 PUCCH 전송 전력
(dBm)를 결정할 수 있다.
수학식 2에서, q_u는 개루프 전력 제어 파라미터(예: P
o 등)에 대한 인덱스를 나타내며, 셀 당 최대 8개의 파라미터 값들이 설정될 수 있다. 인덱스 q_d는 경로 손실(PL) 측정(예:
)에 대한 DL RS 자원의 인덱스를 나타내며, 셀 당 최대 4개의 측정치들이 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 셀 당 최대 2개의 프로세스들이 설정될 수 있다.
구체적으로, P
o(예:
)는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 P
o 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한,
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
는 서브캐리어 간격(μ)에 기반하여 PUCCH 전송 기회에 대한 자원 블록(RB)의 수로 표현되는 PUCCH 자원 할당의 대역폭을 나타낼 수 있다. 또한, 델타 함수(delta function)(예:
,
)는 PUCCH 포맷(예: PUCCH formats 0, 1, 2, 3, 4 등)을 고려하여 설정될 수 있다. 또한, PUCCH 전력 제어 조정 상태와 관련된
는, 단말이 수신한 또는 검출한 DCI(예: DCI format 1_0, DCI format 1_1, DCI format 2_2 등)의 TPC 명령 필드에 기반하여 설정 또는 지시될 수 있다.
이 경우, 특정 RRC 파라미터(예: PUCCH-SpatialRelationInfo 등) 및/또는 특정 MAC-CE 명령(command)(예: PUCCH spatial relation Activation/Deactivation 등)은 PUCCH 자원(PUCCH resource)와 상술한 인덱스 q_u, q_d, l간의 연결 관계를 활성화 또는 비활성화하기 위해 이용될 수 있다. 일례로, MAC-CE에서의 PUCCH spatial relation Activation/Deactivation 명령은 RRC 파라미터 PUCCH-SpatialRelationInfo에 기반하여 PUCCH 자원과 상술한 인덱스 q_u, q_d, l간의 연결 관계를 활성화 또는 비활성화할 수 있다. 다시 말해, 상술한 인덱스 q_u, q_d, l 등은 특정 정보에 기반하여 빔, 패널, 및/또는 공간 영역 전송 필터 등과 연관될 수 있다. 이를 통해, 빔, 패널, 및/또는 공간 영역 전송 필터 단위의 PUCCH 전송 전력 제어가 수행될 수 있다.
상술한 PUCCH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, PUCCH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 PUCCH-ConfigCommon, PUCCH-PowerControl 등을 통해 전달될 수 있으며, PUCCH-CopnfigCommon, PUCCH-PowerControl은 아래 표 22와 같이 설정될 수 있다.
상술한 바와 같은 방식을 통해 단말은 PUCCH 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 PUCCH 전송 전력을 이용하여 PUCCH를 전송할 수 있다.
1.13.3. 사운딩 참조 신호의 전력 제어
서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP에서의 사운딩 참조 신호(SRS) 전송과 관련하여, 단말은 이하 수학식 P3에 의해 결정되는 전송 전력의 선형 전력 값을 산출할 수 있다. 이후, 해당 단말은 산출된 선형 전력 값을 SRS를 위해 설정된 안테나 포트(들)에 대해서 균등하게 분할하여 전송 전력을 제어할 수 있다.
구체적으로, 단말이 인덱스 l에 기반한 SRS 전력 제어 조정 상태(SRS power control adjustment state)를 이용하여, 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 SRS 전송을 수행하는 경우, 단말은 아래 수학식 3에 기반하여 SRS 전송 기회(i)에서의 SRS 전송 전력
(dBm)를 결정할 수 있다.
수학식 3에서, q_s는 개루프 전력 제어 파라미터(예: P
o, 알파(alpha, α), 경로 손실(PL) 측정(예:
)에 대한 DL RS 자원 등)에 대한 인덱스를 나타내며, SRS 자원 집합(SRS resource set) 별로 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 해당 인덱스는 PUSCH와 독립적으로 설정되거나, 연관되어 설정될 수도 있다. SRS 전력 제어가 PUSCH와 연관되지 않는 경우, SRS를 위한 폐루프 전력 제어 프로세스의 최대 수는 1일 수 있다.
구체적으로, P
o(예:
)는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 P
o 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한, 알파(예:
)는 경로 손실에 대한 보상을 수행하는 비율을 나타낼 수 있다. 알파는 0부터 1까지의 값으로 설정될 수 있으며, 설정되는 값에 따라 완전 경로 손실 보상(full pathloss compensation) 또는 부분 경로 손실 보상(fractional pathloss compensation)이 수행될 수 있다. 이 경우, 상기 알파 값은 단말들 간의 간섭 및/또는 데이터 속도 등을 고려하여 설정될 수 있다. 또한,
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
는 서브캐리어 간격(μ)에 기반하여 SRS 전송 기회에 대한 자원 블록(RB)의 수로 표현되는 SRS 자원 할당의 대역폭을 나타낼 수 있다. 또한, SRS 전력 제어 조정 상태와 관련된
는, 단말이 수신한 또는 검출한 DCI(예: DCI format 2_3 등)의 TPC 명령 필드 및/또는 RRC 파라미터(예: srs-PowerControlAdjustmentStates 등)에 기반하여 설정 또는 지시될 수 있다.
SRS 전송에 대한 자원은 기지국 및/또는 단말이 빔, 패널, 및/또는 공간 영역 전송 필터 등을 결정하기 위한 기준(reference)으로 적용될 수 있으며, 이러한 점을 고려할 때 SRS 전송 전력 제어는 빔, 패널, 및/또는 공간 영역 전송 필터 단위로 수행될 수 있다.
상술한 SRS 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, SRS 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 SRS-Config, SRS-TPC-CommandConfig 등을 통해 전달될 수 있으며, SRS-Config, SRS-TPC-CommandConfig는 아래 표 23과 같이 설정될 수 있다.
상술한 바와 같은 방식을 통해 단말은 SRS 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 SRS 전송 전력을 이용하여 SRS를 전송할 수 있다.
1.13.4. 랜덤 엑세스 채널의 전력 제어
단말이 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 PRACH 전송을 수행하는 경우, 단말은 아래 수학식 4에 기반하여 PRACH 전송 기회(i)에서의 PRACH 전송 전력
(dBm)를 결정할 수 있다.
수학식 4에서,
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
는 활성화된 UL BWP에 대해 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등)을 통해 제공되는 PRACH 타겟 수신 전력(PRACH target reception power)을 나타낸다. 또한,
는 활성화된 UL BWP에 대한 경로 손실을 나타내며, 서빙 셀(c)의 활성화된 DL BWP에서의 PRACH 전송과 연관된 DL RS에 기반하여 결정될 수 있다. 일례로, 단말은 PRACH 전송과 연관된 SS(Synchronization Signal)/PBCH(Physical Broadcast Channel) 블록 등에 기반하여 PRACH 전송과 관련된 경로 손실을 결정할 수 있다.
상술한 PRACH 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 등을 통해 설정 또는 지시될 수 있다. 일례로, PRACH 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 RACH-ConfigGeneric 등을 통해 전달될 수 있으며, RACH-ConfigGeneric은 아래 표 24와 같이 설정될 수 있다.
상술한 바와 같은 방식을 통해 단말은 PRACH 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 PRACH 전송 전력을 이용하여 PRACH를 전송할 수 있다.
1.13.5. 전송 전력 제어를 위한 우선 순위
캐리어 병합(carrier aggregation)의 상황에서의 단일 셀 동작(single cell operation) 또는 다수의 UL 캐리어들(예: 두 개의 UL 캐리어들)의 상황에서의 동작에서의 단일 셀 동작의 경우를 고려한, 단말의 전송 전력을 제어하는 방법에 대해 이하 살펴본다.
이 때, 각각의 전송 기회(transmission occasion)(i)에서의 상향링크 전송들(예: 상술한 1.13.1 내지 1.13.4 절에서의 PUSCH, PUCCH, SRS, 및/또는 PRACH 전송들)을 위한 단말의 총 전송 전력(total UE transmit power)이 설정된 단말 전송 전력의 선형 값(linear value)(예:
)을 초과하는 경우, 단말은 우선 순위 순서(priority order)에 따라 상기 상향링크 전송들에 대한 전력을 할당하도록 설정될 수 있다. 일례로, 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'(예:
)을 의미할 수 있다.
이 때, 전송 전력 제어를 위한 우선 순위는 다음과 같은 순서대로 설정 또는 정의될 수 있다.
- PCell(Primary Cell)에서의 PRACH 전송
- HARQ-ACK(Hybrid Automatic Repeat and reQuest-Acknowledgement) 정보 및/또는 SR(Scheduling Request)을 위한 PUCCH, 또는 HARQ-ACK 정보를 위한 PUSCH
- CSI(Channel State Information)을 위한 PUCCH 또는 PUSCH
- HARQ-ACK 정보 또는 CSI를 위한 것이 아닌 PUSCH
- SRS 전송(다만, 비주기적(aperiodic) SRS는 반-지속적(semi-persistent) SRS 및/또는 주기적(periodic) SRS보다 높은 우선 순위를 가짐) 또는 Pcell이 아닌 서빙 셀(serving cell)에서의 PRACH 전송
상술한 바와 같은 우선 순위 순서에 기반한 전력 할당을 통해, 단말은 전송 기회(i)의 각각의 심볼들에서의 총 전송 전력을 설정된 단말 전송 전력의 선형 값보다 작거나 같도록 제어할 수 있다. 일레로, 이를 위해, 단말은 낮은 우선 순위를 갖는 상향링크 전송에 대한 전력을 스케일링(scaling) 및/또는 드롭(drop)하도록 설정될 수 있다. 이 경우, 스케일링 및/또는 드롭에 대한 구체적인 사항은 단말 구현(UE implementation)에 따르도록 설정 또는 정의될 수 있다.
또한, 구체적인 예로, 캐리어 병합에서 동일한 우선 순위를 갖는 전송들의 경우, 단말은 Pcell에서의 전송을 Scell에서의 전송보다 높은 우선 순위로 고려할 수 있다. 그리고/또는, 다수의 UL 캐리어들(예: 두 개의 UL 캐리어들)에서 동일한 우선 순위를 갖는 전송들의 경우, 단말은 PUCCH 전송이 설정된 캐리어를 높은 우선 순위로 고려할 수 있다. 또한, 어느 캐리어에도 PUCCH 전송이 설정되지 않은 경우, 단말은 non-supplementary UL 캐리어에서의 전송을 높은 우선 순위로 고려할 수도 있다.
1.13.6. 전송 전력 제어 절차
도 17은 상향링크 전송 전력을 제어하는 절차의 일례를 나타낸다.
먼저, 단말(User equipment)은 기지국(Base station)으로부터 전송 전력(Tx power)와 관련된 파라미터 및/또는 정보를 수신할 수 있다(S1710). 이 경우, 단말은 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 등을 통해 해당 파라미터 및/또는 정보를 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송, SRS 전송, 및/또는 PRACH 전송과 관련하여, 단말은 상술한 1.13.1 내지 1.13.4 절에서 설명된 전송 전력 제어와 관련된 파라미터 및/또는 정보(예: 표 21, 표 22, 표 23, 표 24 등)를 수신할 수 있다.
이후, 단말은 기지국으로부터 전송 전력과 관련된 TPC 명령(TPC command)를 수신할 수 있다(S1720). 이 경우, 단말은 하위 계층 시그널링(예: DCI) 등을 통해 해당 TPC 명령을 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송 및/또는 SRS 전송과 관련하여, 단말은 상술한 1.13.1 내지 1.13.3절에서 설명한 바와 같이, 전력 제어 조정 상태 등을 결정에 이용될 TPC 명령에 대한 정보를 미리 정의된 DCI 포맷의 TPC 명령 필드를 통해 수신할 수 있다. 다만, PRACH 전송의 경우 해당 단계가 생략될 수도 있다.
이후, 단말은 기지국으로부터 수신한 파라미터, 정보, 및/또는 TPC 명령에 기반하여, 상향링크 전송을 위한 전송 전력을 결정(또는 산출)할 수 있다(S1730). 일례로, 단말은 상술한 1) 내지 4)에서 설명된 방식(예: 수학식 1, 수학식 2, 수학식 3, 수학식 4 등)에 기반하여 PUSCH 전송 전력, PUCCH 전송 전력, SRS 전송 전력, 및/또는 PRACH 전송 전력을 결정할 수 있다. 그리고/또는, 캐리어 병합과 같은 상황과 같이, 두 개 이상의 상향링크 채널 및/또는 신호들이 중첩하여 전송될 필요가 있는 경우, 단말은 상술한 1.13.5 절에서의 우선 순위 순서(priority) 등을 고려하여 상향링크 전송을 위한 전송 전력을 결정할 수도 있다.
이후, 단말은 결정된(또는 산출된) 전송 전력에 기반하여, 기지국에 대해 하나 또는 그 이상의 상향링크 채널들 및/또는 신호들(예: PUSCH, PUCCH, SRS, PRACH 등)의 전송을 수행할 수 있다(S1740).
2. 본 개시가 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 18은 본 개시에 적용되는 통신 시스템(1)을 예시한다.
도 18을 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
3. 본 개시가 적용되는 무선 기기 예
도 19는 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 19를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 18의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
4. 본 개시가 적용되는 무선 기기 활용 예
도 20은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 18 참조).
도 20을 참조하면, 무선 기기(100, 200)는 도 19의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 19의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 19의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 18, 100a), 차량(도 18, 100b-1, 100b-2), XR 기기(도 18, 100c), 휴대 기기(도 18, 100d), 가전(도 18, 100e), IoT 기기(도 18, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 18, 400), 기지국(도 18, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 20에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 20의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
4.1. 본 개시가 적용되는 휴대기기 예
도 21은 본 개시에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 21을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 18의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
4.2. 본 개시가 적용되는 차량 또는 자율 주행 차량 예
도 22는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 22를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 21의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
5. 본 개시에 적용 가능한 단말 및 기지국의 동작 예
본 개시에 있어, 단말이라 함은, 사용자 기기 (User Equipment, UE)로 대체될 수 있다.
본 개시에 있어, 상위 계층 시그널링이라 함은 RRC (radio resource control) 시그널링, MAC CE 등을 포함할 수 있다.
본 개시에 있어, TRP (Transmission Reception Point)는 빔(beam)/패널(panel)로도 확장 적용될 수 있다.
본 개시에 있어, 빔(beam)은 자원(resource)으로 대체될 수 있다.
본 개시에 있어, L1-SINR (layer 1 - signal to interference and noise ratio)는 실시예에 따라 L1-RSRQ (layer 1 - reference signal received quality) 또는 L1-RSRP (layer 1 - reference signal received power)로 확장 적용될 수 있다.
본 개시에 있어, 빔 품질은 실시예에 따라 채널 품질로 확장 적용될 수 있다.
본 개시에 있어, NCR#X 이라 함은 NZ-CSI-RS-Resource #X을 의미할 수 있다. 그리고, 기지국이 NCR#X에 기반하여 UE#Y에게 서비스를 제공한다는 것은, (i) 상기 기지국이 NCR#X와 동일한 또는 유사한 빔 방향을 갖는 PDSCH를 UE#Y에게 전송하거나, (ii) 상기 기지국이 NCR#X을 공간적 QCL 파라미터 (spatial QCL parameter) 관점의 QCL 소스로 하는 DMRS을 갖는 PDSCH을 UE#Y에게 전송하는 것을 의미할 수 있다.
하기 표는 본 개시에 적용 가능한 CSI-ReportConfig IE을 나타낸다. 하기 표에 있어, resourcesForChannelMeasurement, csi-IM-ResourcesForInterference, nzp-CSI-RS-ResourcesForInterference 각각은 채널 측정을 위한 NZP CSI-RS (또는 SSB), 간섭 측정을 위한 NZP CSI-RS (또는 SSB), 및 간섭 측정을 위한 ZP CSI-RS에 대응할 수 있다.
본 개시에 있어, 앞서 상술한 3가지 파라미터는 각각 순서대로 CMR (Channel Measurement Resource), NZP 기반 IMR (Non-Zero-Power CSI-RS-Resource based Interference Measurement Resource), ZP 기반 IMR (Zero-Power CSI-RS-Resource based Interference Measurement Resource)로 표현 될 수 있다.
이하에서는, 최고의 (best) 또는 최저의 (worst) 빔 페어를 보고하기 위한 L1-SINR 보고의 설정 방법에 대해 상세히 설명한다.
도 23은 본 개시에 적용 가능한 DAS (Distributed Antenna System)를 간단히 나타낸 도면이다.
도 23에 있어, TRP#1 및 TRP#2은 동일한 셀 ID를 가질 수 있다.
도 23에 있어, 기지국은 하기 표와 같이 ReportConfig의 CMR과 NZP-CSI-RS based IMR을 단말에게 설정할 수 있다. 하기 표에 있어, 1, 2, 3은 각각 NZP-CSI-RS-Resource#1, #2, #3을 의미할 수 있다.
앞서 상술한 바와 같이, NCR은 NZP-CSI-RS-Resource을 의미할 수 있다. 그리고, CMR, NZP 기반 IMR, ZP 기반 IMR은 각각 채널 측정 자원 (Channel Measurement Resource), NZP CSI-RS 기반 IMR (Interference Measurement Resource), ZP CSI-RS 기반 IMR을 의미할 수 있다. 또한, CMR, NZP based IMR, ZP based IMR, NZP CSI-RS based IMR(#X)은 각각 CSI-ReportConfig IE의 resourcesForChannelMeasurement, nzp-CSI-RS-ResourceForInterference, csi-iM-ResourceForInterference(#X) 에 대응할 수 있다. 이 경우, CMR, IMR은 각각 기지국이 단말에게 PDSCH 전송시 사용하는 채널의 수신 파워 측정을 위한 자원 및 상기 단말에게 간섭으로 작용하는 채널의 수신 파워 측정을 위한 자원을 의미할 수 있다.
단말은, 표 26의 CMR 및 NZP-CSI-RS 기반 IMR 설정에 기반하여, 표 27과 같이 L1-SINR을 계산할 수 있다. 이때, CRI (CSI-RS resource indicator)는 표 26에서 가로 기준으로 각 조합 (CMR, NZP based IMR)의 순서를 나타낼 수 있다.
일 예로, 표 27에 기초하여, 단말은 하기 수학식과 같이 (L1-SINR 관점에서 성능/품질이 좋은 빔 관련 정보를 CRI와 L1-SINR을 포함하며 성능이 좋은 순서대로) 빔 보고를 수행할 수 있다.
상기 수학식에 있어, CRI#2는 UE#1 관점에서 NCR#1이 L1-SINR 관점에서 최상의 빔이며, NCR#3 (best beam pair)가 간섭을 최소로 주는 빔을 나타낼 수 있다. 이 경우, 기지국은 NCR#1과 동일한 또는 유사한 빔 방향을 갖는 PDSCH 하나와 NCR#3과 동일한 또는 유사한 빔 방향을 갖는 다른 PDSCH을 각각 UE#1/#2에게 동일한 시간/주파수 자원에서 서비스 (예: MU (Multi User) paring) 할 수 있다.
상기 수학식에 있어, CRI#4는 UE#1 관점에서 NCR#2가 L1-SINR 관점에서 두 번째로 좋은 빔이며, NCR#3의 간섭 역시 크지 않는 빔을 나타낼 수 있다. 만약 기지국이 NCR#1을 이용하여 UE#1에게 서비스 할 수 없다면, NCR#2을 이용하여 UE#1에게 서비스 할 수 있다.
다른 예로, 표 27에 기초하여, 단말은 하기 수학식과 같이 (L1-SINR 관점에서 성능/품질이 좋은 빔 관련 정보와, L1-SINR 관점에서 성능/품질이 나쁜 빔 관련 정보를 CRI와 L1-SINR을 포함하는) 빔 보고를 수행할 수 있다.
상기 수학식에 있어, CRI#2는 UE#1 관점에서 NCR#1이 L1-SINR 관점에서 최상의 빔이며, NCR#3가 간섭을 최소로 주는 빔을 나타낼 수 있다.
상기 수학식에 있어, CRI#1는 UE#1 관점에서 NCR#2가 간섭을 크게 주어, L1-SINR을 크게 나쁘게 하는 빔을 나타낼 수 있다. 이때, 기지국이 UE#1을 NCR#1으로 서비스하는 경우, 상기 기지국은 NCR#2을 동일한 시간/주파수 자원에서 다른 UE에게 서비스 하지 않을 수 있다. 또는, 상기 기지국은 NCR#1과 NCR#2을 동시에 이용하여 UE에게 서비스 할 수도 있다. (예: CoMP (Coordinated Multi Point))
표 27에 기초하여, CRI#6은 가장 좋지 않은 L1-SINR을 제공하지만, CMR 자체가 의미가 없을 수 있다. 따라서, 단말이 이를 보고하더라도, 기지국 관점에서는 큰 의미가 없을 수 있다. 한편, 기지국은 CRI#1 과 CRI#2을 비교하여 NCR#1 및 NCR#2가 단말관점에서 유의미한 빔이라는 것을 알 수 있다.
앞서 상술한 Reporting#1과 Reporting#2을 통해, UE#1이 보고하는 컨텐츠에 기초하여, 기지국은 UE#1 관점에서 최상의 빔 외에 두 번째로 좋은 빔 (Reporting#1) 또는 최상의 빔으로 서비스 시 가장 큰 간섭을 주는 빔 (Reporting#2)을 알 수 있다. 즉, 기지국은 Reporting#1에 기초하여 UE#1을 서비스할 수 있는 빔 선택에 대한 자유도를 얻을 수 있는 반면 (예: NCR#1 또는 NCR#2 관련 빔 중 선택), Reporting#2에 기초하여 UE#1을 NCR#1으로 서비스 할 때 동시에 피해주어야 할 빔 (예: NCR#2, worst beam pair)을 알 수도 있다.
본 개시에 있어, nrofReportedRS가 1보다 큰 경우, 하기 표와 같이, 단말은 가장 큰 (largest) RSRP을 갖는 CRI을 기지국으로 보고하고, 하나 이상의 나머지 CRI의 선택할 지 여부를 단말 구현에 따라 결정할 수 있다.
본 개시에 있어, 상기 동작은 단말의 L1-SINR 보고에도 확장 적용될 수 있다. 구체적인 예로, 단말이 앞서 상술한 Reporting#1 또는 #2중 어떤 것을 보고할지 여부가 단말 구현에 의해 결정될 수 있다.
또는, 앞서 확인한 바와 같이, 기지국이 단말에게 Reporting #1 또는 #2 중 어떤 것을 보고하도록 지시/설정할 수 있는 경우, 스케줄러 (scheduler)인 기지국 관점에서 빔 선택 유연성 (flexibility)을 얻을 것인지 또는 쓰루풋을 향상 시킬 것인지를 선택할 수 있다. 일 예로, 단말이 CoMP을 지원한다면, 상기 기지국은 단말의 Reporting#1을 통해 쓰루풋을 향상 시킬 수도 있다. 보다 구체적으로, 기지국이 TRP#1을 통해 NZP-CSI-RS resource#1 방향으로 하나의 PDSCH를 전송하고, TRP#2을 통해 NZP-CSI-RS resource#2 방향으로 상기 PDSCH와 동일한 시간/주파수 자원에 다른 하나의 PDSCH을 전송하는 경우, 단말은 쓰루풋 게인을 얻을 수 있다.
5.1. 제1 동작 예
(L1-SINR 을 이용한 Beam reporting 시) 하나의 CMR과 하나 이상의 IMR이 하나의 조합을 이루며, CRI는 복수의 CMR과 IMR 조합들 중 하나를 나타내도록 설정될 수 있다. 이 경우, 단말은 하기 두 가지 설정 (예: 설정 A, B) 중 한 개 이상을 (기지국 등에 의해) 설정/지시 받을 것을 기대할 수 있다. 상기 설정은 기지국과 단말 간의 상위 계층 시그널링 (예: RRC and/or MAC-CE) 및/또는 DCI을 통해서 전달/설정/지시/결정될 수 있다.
(설정 A) 빔 품질 (예: L1-RSRP 또는 L1-SINR, 해당 파라미터는 기지국에 의해 설정 가능함)이 높은 순서대로 하나 이상 또는 기 지정된 개수의 또는 상위 계층 파라미터에 의해 설정된 개수의 의 CRI 및/또는 대응하는 빔 품질을 기지국으로 보고
(설정 B) 가장 좋은 (best) 빔 품질 (예: L1-RSRP 또는 L1-SINR, 해당 파라미터는 기지국에 의해 설정 가능함)이 좋은 CRI 및/또는 이에 대응하는 빔 품질을 기지국으로 보고. 일 예로, 상기 설정 B에 기초하여, 단말은 상기 선택된 CRI와 동일한 CMR을 가지면서 가장 낮은 빔 품질을 제공하는 하나 이상의 CRI 및/또는 대응하는 빔 품질을 상기 기지국으로 보고할 수 있다. 이때, 해당 CRI는 가장 빔 품질이 좋은 CRI와 동일한 CMR을 가지지만, 서로 다른 IMR을 가질 수 있다. 이를 통해, 기지국은 간섭을 주는 빔을 동일한 시간/주파수 자원에서 다른 UE에게 설정하지 않도록 하여 단말의 신 성능을 높일 수 있다.
본 개시에 있어, CMR과 IMR은 조인트 인코딩될 수 있다 (예: 하나의 CMR과 하나 이상의 IMR이 하나의 조합을 이룸 등). 이때, CRI는 복수의 CMR과 IMR의 조합들 중 하나로 표현될 수 있다. 이를 통해, 기지국은 단말에게 (스케줄링 등을 위해) 필요한 조합만을 정확히 명시할 수 있다 (예: 기지국이 불필요한 조합을 명시한 경우 단말에게 불필요한 복잡도를 유발할 수 있다.). 이에 대응하여, 단말은 기지국에게 유용한 조합(들)을 CRI을 통해 간단히 보고할 수 있다 (예: 이하, 실시 예 1 내지 3). 추가적으로, 본 개시에 따른 동작은 단말이 CMR과 IMR의 조합을 보고하는 것으로 한정되지 않으며, 상기 단말이 CMR과 IMR을 별도로 보고하는 것으로도 확장 적용될 수 있다 (예: 실시 예 4). 이하, 각 실시 예에 대해 구체적으로 살펴본다.
본 개시에 있어, 기지국은 단말에게 (i) 설정 A, (ii) 설정 B, (iii) 설정 A+B 중 하나를 RRC 및/또는 MAC-CE 및/또는 DCI에 기반하여 지시/설정할 수 있다. 이때, 설정 A+B는 설정 A 및 설정 B가 동시에 단말에게 설정되는 경우를 의미하고, 실시 예2는 이와 관련된 예를 보여준다.
본 개시에 있어, Rel-15 표준에 의해 정의된 상위 계층 파라미터 reportQuantity에 기반하여, 설정 A, 설정 B은 하기 표와 같이 표현될 수 있다. 한편, NZP-CSI-RS-Resource 대신 SSB가 CMR로 사용될 수 있다. 이 경우, cri-L1-SINR 대신, ssb-index-L1-SINR이 사용될 수 있다.
본 개시에 있어, 기지국이 빔 품질로 L1-RSRP 또는 L1-SINR 중 하나를 단말에게 지시/설정하는 경우, 다음과 같은 방법이 고려될 수 있다. 일 예로, 기지국은 Rel-15 표준에 의해 정의된 ReportQunatity 내 cri-RSRP 외에 cri-SINR을 추가하고 이를 단말에게 지시/설정함으로써, 단말이 보고할 빔 풀질이 L1-RSRP인지 또는 L1-SINR인지 여부를 지시/설정할 수 있다.
5.1.1. 실시 예 1
본 개시에 있어, 기지국은 단말에게 설정 A와 설정 B중 어느 설정에 따라 보고할 것인지를 설정할 수 있다.
일 예로, 기지국이 단말에게 설정 A를 지시/설정한 경우, 상기 단말은 가장 좋은 빔 품질 순서대로 빔 정보를 보고할 수 있다. 앞서 상술한 예를 참고하면, 단말은 Reporting#1와 같은 내용을 기지국으로 보고할 수 있다.
다른 예로, 기지국이 단말에게 설정 B를 지시/설정한 경우, 상기 단말은 가장 좋은 품질을 갖는 빔 정보 및 상기 가장 좋은 빔의 CMR과 관련하여 가장 나쁜 품질을 갖는 빔 정보를 같이 상기 기지국으로 보고할 수 있다. 일 예로, 상기 보고는 Reporting#2와 같이 구성될 수 있다. 상기 Reporting#2에서, CRI#3이 아닌 CRI#1가 선택된 이유는, CRI#1의 CMR이, 가장 좋은 빔 품질을 제공하는 CRI#2의 CMR(NCR#1)와 동일하기 때문이다. 또한, 이는, 기지국이 단말에게 NCR#1를 이용하여 서비스를 제공할 때, 상기 기지국이 동일 시간/주파수 자원에서 NCR#2를 이용하여 서비스를 제공하지 않을 수 있기 때문이다.
5.1.2. 실시 예 2
nrofReportedRS 수 (예: 단말이 보고할 CRI의 수)가 3으로 설정된 경우, 기지국은 단말에게 설정 A & 설정 B에 대해 모두 보고하도록 설정할 수 있다. 이때, 상기와 같은 설정은 상위 계층 시그널링 및/또는 DCI 등에 기초하여 수행될 수 있다. 이 경우, 상기 단말은 하기 수학식과 같은 정보를 상기 기지국으로 보고할 수 있다. 이를 통해 기지국은 Reporting#1 및 #2의 장점을 모두 취할 수 있다.
또는, nrofReportedRS 수가 3으로 설정된 경우, 기지국은 단말에게 설정 A에 대해 보고하도록 설정할 수도 있다. 이 경우, 단말은 하기 수학식과 같이 기지국으로 보고할 수 있다. 이때, 하기 보고 내용은 설정 A & 설정 B가 설정된 경우와 동일한 콘텐츠로 구성될 수 있다. 왜냐하면, CRI#1이 세 번째로 좋은 빔 품질을 제공하기 때문이다.
또는, nrofReportedRS 수가 3으로 설정된 경우, 기지국은 단말에게 설정 B에 대해 보고하도록 설정할 수도 있다.
5.1.3. 실시 예 3
nrofReportedRS 수가 4로 설정된 경우, 기지국은 단말에게 설정 A & 설정 B에 대해 모두 보고하도록 설정할 수 있다. 이때, 실시 예2와 달리, 단말이 기지국으로 보고하는 컨텐츠는 CRI#3을 추가로 포함할 수 있다. 단말은 상기 보고를 통해, 기지국에게 CRI#3이 CRI#4와 동일한 CMR을 가지며 (예: NCR#2), NCR#2와 같이 페어링 되었을 때 가장 빔 품질을 낮추는 NCR#1을 추가로 알려줄 수 있다.
5.1.4. 실시 예 4
해당 실시예에 따르면, 단말은 CRI가 아닌 CMR 및/또는 IMR을 별도로 보고할 수도 있다. 만약 기지국이 단말에게 설정 B에 대해 보고하도록 설정/지시하고, L1-SINR 보고를 설정/지시하는 경우, 상기 단말은 하기 수학식과 같은 컨턴츠를 보고할 수 있다.
여기서, IMR#2은CRI#2가 지시한 CMR (예: NCR#1)이 단말에게 서비스 시 가장 큰 간섭을 유발함을 나타낼 수 있다. 추가적으로, 기지국이 단말에게 설정 A & 설정 B에 대해 보고하도록 설정/지시한 경우, 상기 단말은 다음과 같이 상기 기지국으로 보고할 수 있다.
여기서, 상기 Reporting#A와 비교하여 추가된 CRI#4 및 IMR#1은 각각 두 번째로 좋은 L1-SINR을 제공하는 CRI 및 상기 CRI가 지시한 CMR을 통해 UE에게 서비스를 제공할 때 가장 큰 간섭을 유발하는 IMR을 나타낸다.
5.2. 제2 동작 예
기지국이 단말에게 (i) NZP-CSI-RS based IMR with 2 ports를 설정하고, (ii) L1-SINR 보고를 설정/지시하였다고 가정한다. 이때, 상기 단말은 각 port의 파워를 측정 후 이를 평균화 하여 간섭 파워를 계산하도록 설정될 수 있다. 본 실시예에 있어, 상기와 같은 설정/지시는, 상위 계층 시그널링 및/또는 DCI 등에 기초하여 수행될 수 있다.
본 실시예에 있어, NZP-CSI-RS based IMR with 2 ports은 하기 표와 같이 설정될 수 있다. 하기 표와 같이, NZP-CSI-RS-Resource IE는 CSI-RS-ResourceMapping IE을 포함할 수 있고, ResourceMapping IE는 nrofPorts을 포함할 수 있다. 이때, 기지국은 상기 nrofPorts을 2로 설정함으로써, NZP-CSI-RS based IMR with 2 ports을 단말에게 설정/지시할 수 있다.
보다 구체적으로, NZP-CSI-RS based IMR with 2 ports의 경우, 단말은 각 port에서 파워를 측정 후 이를 합하여 간섭 파워를 계산할 수 있다. 왜냐하면, 각각의 port가 서로 다른 간섭 레이어와 1:1로 대응하기 때문이다. 다만, L1-SINR의 경우, 하나의 자원 내 수신 파워의 측정이 필요한 바, 비록 2 ports라도, 단말은 각 port의 파워를 측정 후 이를 평균화 하여 간섭 파워를 계산할 필요가 있다. 이 경우, 1 port 경우와 비교하여 파워 게인을 얻을 수 있다. 일 예로, 기존 방법 대비 3dB 성능 (예: 간섭 성능 향상 등) 을 향상 시킬 수 있다.
5.3. 제3 동작 예
CMR과 IMR이 동일한 ID로 설정되고 (또는 IMR이 null 또는 void로 설정되는 경우 등), 단말에게 L1-SINR 보고가 설정/지시되는 경우, 상기 단말은 CMR을 이용하여 간섭을 측정하고 L1-SINR을 계산하도록 설정될 수 있다.
보다 구체적으로, 기지국이 ReportConfig의 CMR과 NZP-CSI-RS based IMR을 단말에게 설정하는 경우를 가정한다. 이 경우, 단말은 하기 표와 같은 컨텐츠를 보고할 수 있다. 이때, 1번째 CRI은 CMR과 IMR이 동일할 수 있다. 이 경우, 상기 단말은 CMR을 이용하여 요구 채널 (desired channel) 및 간섭을 측정하도록 설정될 수 있다. 구체적으로, 상기 단말은 상기 요구 채널을 추정하고, 수신 신호로부터 상기 추정된 신호/채널을 제거한 후 남은 신호로부터 간섭 파워를 계산할 수 있다.
5.4. 제4 동작 예
하나의 CMR이 한 개 이상의 IMR과 맵핑되고, 단말에게 L1-SINR 보고가 지시/설정되는 경우를 가정한다. 이 경우, 상기 단말은 각각의 IMR로부터 간섭 파워를 측정한 후, 이를 모두 더하여 최종 간섭 파워를 계산하도록 정의/설정될 수 있다. 일 예로, 도 23에 있어, 기지국 및 단말은, UE#1 관점에서 NCR#1 방향의 빔을 통해 서비스 받으면서, NCR#2, #3로부터 동시에 간섭을 받는 경우의 L1-SINR 계산을 필요로 할 수 있다.
5.4.1. 실시 예 1
본 실시예에 있어, 기지국은 ReportConfig의 CMR과 NZP-CSI-RS based IMR#1/#2을 단말에게 설정할 수 있다. 이 경우, CRI에 따른 요구 (desired) 채널 파워 및 간섭 파워는 하기 표와 같이 구성될 수 있다.
CRI#1의 경우, 단말은 NCR#1로부터 desired 채널의 파워 및 interference 파워를 계산할 수 있다.
CRI#2의 경우, 단말은 NCR#1로부터 desired 채널의 파워 및 제1 간섭 파워를 계산할 수 있다. 그리고, 상기 단말은 NCR#2로부터 제2 간섭 파워를 측정한 후, 상기 제1 간섭 파워와 합하여 최종 간섭 파워를 계산할 수 있다.
CRI#3의 경우, 단말은 NCR#1로부터 desired 채널의 파워 및 제1 간섭 파워를 계산할 수 있다. 그리고, 상기 단말은 NCR#3로부터 제2 간섭 파워를 측정한 후, 상기 제1 간섭 파워와 합하여 최종 간섭 파워를 계산할 수 있다.
CRI#4의 경우, 단말은 NCR#1로부터 desired 채널의 파워를 계산할 수 있다. 그리고, 상기 단말은 NCR#2/#3로부터 각각 제1/제2 간섭 파워를 측정 후 이를 합하여 최종 간섭 파워를 계산할 수 있다.
한편, 상기 설정은 하기 표와 같이 확장 적용될 수도 있다.
5.4.2. 실시 예 2
하기 그림은 기지국이ReportConfig의 CMR과 NZP-CSI-RS based IMR#1/#2, ZP based IMR을 UE에게 설정하는 일 예를 나타낸다. 이 경우, CRI에 따른 desired 채널 파워 및 interference 파워는 다음과 같다.
CRI#1의 경우, 단말은 NCR#1로부터 desired 채널의 파워를 계산하고, ZP based IMR로부터 간섭 파워를 계산할 수 있다.
CRI#2의 경우, 단말은 NCR#1로부터 desired 채널의 파워를 계산하고, ZP based IMR로부터 제1 간섭 파워를 계산할 수 있다. 그리고, 상기 단말은 NCR#2로부터 제2 간섭 파워를 측정한 후, 상기 제1 간섭 파워와 상기 제2 간섭 파워가 더해진 최종 간섭 파워를 계산할 수 있다.
CRI#3의 경우, 단말은 NCR#1로부터 desired 채널의 파워를 계산하고, ZP based IMR로부터 제1 간섭 파워를 계산할 수 있다. 그리고, 상기 단말은 NCR#3로부터 제2 간섭 파워를 측정한 후, 상기 제1 간섭 파워와 상기 제2 간섭 파워가 더해진 최종 간섭 파워를 계산할 수 있다.
CRI#4의 경우, 단말은 NCR#1로부터 desired 채널의 파워를 계산하고, ZP based IMR로부터 제1 간섭 파워를 계산할 수 있다. 그리고, 상기 단말은 NCR#2/#3로부터 각각 제2/제3 간섭 파워를 측정한 후, 상기 제1 내지 제3 간섭 파워를 모두 더한 최종 간섭 파워를 계산할 수 있다.
한편, 앞서 상술한 설정은 하기 표와 같은 설정으로 확장 적용될 수도 있다.
본 개시에 있어, 앞서 상술한 설정들에 기초하여 하기와 같은 RRC 파라미터들이 설정될 수 있다. 일 예로, CSI-ReportConfig, CSI-ResourceConfigId#100, CSI-ResourceConfigId#110, CSI-ResourceConfigId#104 각각은 하기 표들과 같이 설정될 수 있다.
도 24는 본 개시에서 상술한 방법들이 적용될 수 있는 단말 및 기지국 간 빔 관리 (beam management)를 위한 절차의 일 예를 나타낸 도면이다.
도 24는 단지 설명의 편의를 위한 것일 뿐, 본 문서에서 개시하는 기술의 권리 범위를 제한하는 것이 아니다. 도 24에서의 기지국 (예: BS)은 네트워크 측 (예: TRP (transmission reception point), TRP group 등)을 의미할 수 있다. 도 24에서 설명되는 빔 관리는 CSI-RS 기반 DL BM(예: CSI-RS를 이용한 DL BM 등)과 관련될 수 있다.
단말은 기지국으로부터 빔 관리와 관련된 CSI 설정 정보를 수신할 수 있다(S2410). 일 예로, 상술한 바와 같이, 단말은 기지국으로부터 상위 계층 시그널링 (예: RRC signaling) 등을 통해 CSI 보고와 관련된 설정 정보(예: RRC IE ‘CSI Reporting Setting’, ‘CSI-ReportConfig’, ‘CSI-MeasConfig’, ‘CSI-ResourceConfig’ 등)를 수신할 수 있다.
구체적인 예로, 상기 CSI 설정은 본 발명에서 상술한 방법 (예: 제1 내지 제4 동작 예)에서의 자원 관련 설정 (예: CMR, NZP-CSI-RS based IMR 등), 보고 설정 (예: CRI, L1-SINR, IMR 등)에 대한 설정/지시를 포함할 수 있다.
이후, 단말은 기지국으로부터 적어도 하나의 CSI-RS를 수신할 수 있으며(S2420), 수신한 CSI-RS에 기반하여, 상기 단말은 빔 페어(들) 및/또는 CSI를 결정/산출할 수 있다(S2430). 예를 들어, 상기 단말은 상위 계층 시그널링 및/또는 DCI 등을 통해 전달되는 CSI 관련 정보 (예: CSI configuration 등), 미리 정의된 규칙 등에 기반하여 CSI를 산출할 수 있다.
빔 페어(들) 결정과 관련하여, 단말은 상술한 제1 내지 제4 동작 예에서 설명된 방식들에 기초하여 최저의 (worst) 빔 페어(들) 및/또는 최고의 (best) 빔 페어(들) 등을 결정할 수 있다. 예를 들어, 상기 단말은 상술한 설정 A 및/또는 설정 B를 고려한 실시예들 1 내지 4에서 설명된 방식(들)에 따라, BS로 보고할 빔 페어(들)을 결정할 수 있다.
특히, L1-SINR의 결정/산출과 관련하여, 단말은 상술한 제1 내지 제4 동작 예에서 설명된 방식들을 이용하여 채널 추정, 간섭 측정 등을 수행할 수 있다. 예를 들어, NZP-CSI-RS based IMR with 2 ports가 설정 되고, 단말에게 L1-SINR 보고가 지시되는 경우, 상기 단말은 각 port의 파워를 측정 후 이를 평균화 하여 간섭 파워를 산출하도록 설정될 수 있다. 그리고/또는, CMR과 IMR이 동일한 ID로 설정 되고 (혹은 IMR이 null or void로 설정), 단말에게 L1-SINR 보고가 지시되는 경우, 상기 단말은 CMR을 이용하여 간섭을 측정하고 L1-SINR을 계산하도록 설정될 수도 있다. 그리고/또는, 하나의 CMR이 한 개 이상의 IMR과 맵핑 되고, 단말에게 L1-SINR 보고가 지시되는 경우, 상기 단말은 각각의 IMR로부터 간섭 파워를 측정한 후, 이를 모두 더하여 최종 간섭 파워를 계산하도록 설정될 수도 있다.
이후, 단말은 결정된 CSI를 BS로 보고(reporting)할 수 있다(S2440). 예를 들어, 상기 단말은 상술한 제1 동작 예에서 제안한 방식(예: 실시 예들 1 내지 4)에 기반하여 CSI 보고를 수행할 수 있다. 구체적으로, 상기 CSI 보고에는 하나 이상의 CRI 및/또는 L1-SINR 및/또는 IMR 등이 포함될 수 있다.
이때, 상기 CSI는 PUSCH를 통해 보고될 수 있다. 이 경우, 상기 CSI 보고를 위한 전송 전력 (예: PUCSH Tx power)은 앞서 상술한 전력 제어 방법 (예: 4.13 절)에 기반하여 결정될 수 있다. 일례로, 상기 단말은 PUSCH를 통한 CSI 보고를 수행함에 있어 PUSCH Tx power를 상술한 수학식 1 및 도 17의 시그널링 등에 기반하여 결정하도록 설정될 수 있다.
이와 관련하여 단말 및/또는 BS의 동작은 본 개시에서 설명하는 다양한 장치에 의해 구현될 수 있다. 구체적인 예로, 단말의 프로세서는 RF 유닛을 통해 CSI configuration 수신, CSI-RS 수신, 및/또는CSI 보고 등을 수행하도록 제어할 수 있으며, beam pair(s) / CSI를 결정하도록 제어할 수 있으며, 송수신되는 정보 등을 memory에 저장하도록 제어할 수도 있다. 또한, BS의 processor는 RF unit을 통해 CSI configuration 전송, CSI-RS 전송, 및/또는CSI 보고 수신 등을 수행하도록 제어할 수 있으며, 송수신되는 정보 등을 memory에 저장하도록 제어할 수도 있다.
도 25는 본 개시에 적용 가능한 단말과 기지국 간 네트워크 접속 및 통신 과정을 간단히 나타낸 도면이다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 개시에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
NR시스템에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍-기반의 신호 전송이 지원되는 경우, 기지국과 단말간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 개시에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB(Sync Signal Block)를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍-기반의 신호 전송이 지원되지 않는 경우, 이하의 설명에서 빔과 관련된 동작은 생략될 수 있다.
도 25를 참조하면, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(S2502). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다. 이후, 기지국은 RMSI(Remaining Minimum System Information)와 OSI(Other System Information)를 전송할 수 있다(S2504). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(S2506). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, RACH 과정의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(S2508), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(S2510), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(S2512). Msg4는 RRC Connection Setup을 포함할 수 있다.
RACH 과정을 통해 기지국과 단말간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(S2514). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(S2516). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(S2518). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭 할 수 있다(S2520a, S2520b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 본 개시에서 제안에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
도 26은 본 개시에 적용 가능한 단말의 DRX (Discontinuous Reception) 사이클을 간단히 나타낸 도면이다. 도 26에 있어, 단말은 RRC_CONNECTED 상태일 수 있다.
본 문서에 있어, 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 이하, RRC_CONNECTED 상태에서 수행되는 DRX에 관해 설명한다(RRC_CONNECTED DRX).
도 26을 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 개시에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 개시에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 41은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 41을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 도 26에서 예시한 바와 같이, 본 개시에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
도 27은 본 개시의 일 예에 따른 단말 및 기지국의 동작을 간단히 나타낸 도면이고, 도 28은 본 개시의 일 예에 따른 단말의 동작 흐름도이고, 도 29는 본 개시의 일 예에 따른 기지국의 동작 흐름도이다.
본 개시에 따르면, 단말은 빔 관리 (beam management; BM)를 수행할 수 있고, 기지국은 상기 단말의 BM을 지원할 수 있다.
단말은 기지국으로부터 BM과 관련된 설정 정보를 수신할 수 있다 (S2710, S2810). 이에 대응하여, 상기 기지국은 상기 단말로 BM과 관련된 설정 정보를 전송할 수 있다 (S2710, S2910).
본 개시에 있어, 상기 설정 정보는, 상위 계층 시그널링, 또는, 하향링크 제어 정보 (downlink control information; DCI) 중 적어도 하나 이상을 통해 수신될 수 있다. 또는, 상기 설정 정보는, 상기 상위 계층 시그널링 및 상기 DCI의 조합에 기초하여 수신될 수도 있다.
이어, 단말은 기지국으로부터 참조 신호를 수신할 수 있다 (S2720, S2820). 이에 대응하여, 상기 기지국은 상기 단말로 참조 신호를 전송할 수 있다 (S2720, S2920).
본 개시에 있어, 상기 참조 신호는, 채널 상태 정보 참조 신호 (channel state information reference signal; CSI-RS), 또는, 동기 신호 물리 방송 채널 블록 (synchronization signal physical broadcast channel block; SS/PBCH block 또는 SSB), 중 적어도 하나 이상을 포함할 수 있다.
단말은 기지국으로부터 물리 상향링크 공유 채널 (physical uplink shared channel; PUSCH) 전송을 위한 경로 손실 (path loss)와 관련된 비율 정보를 포함한 PUSCH 전력 제어 정보를 수신할 수 있다 (S2730, S2830). 일 예로, 상기 PUSCH 전력 제어 정보는 상위 계층 시그널링을 통해 수신될 수 있다. 본 개시에 있어, 상기 PUSCH 전력 제어 정보는, 실시예에 따라, 앞서 상술한 설정 정보, 참조 신호 등보다 선행하여 수신되거나, 동시에 수신되거나, 후행하여 수신될 수 있다. 이에 대응하여, 상기 기지국은 상기 단말로 상기 PUSCH 전력 제어 정보를 전송할 수 있다 (S2630, S2830).
단말은, 수신된 참조 신호에 기초하여 빔 정보를 결정할 수 있다 (S2740, S2840). 이와 함께, 상기 단말은 수신된 PUSCH 전력 제어 정보에 기초하여 PUSCH 전송 전력을 결정할 수 있다.
단말은, 결정된 PUSCH 전송 전력에 기반하여, 빔 정보를 PUSCH를 통해 기지국으로 보고할 수 있다 (S2750, S2850). 이에 대응하여, 상기 기지국은, 상기 전송 전력 제어 정보에 기반한 PUSCH 전송 전력을 갖는 PUSCH를 통해, 상기 단말로부터 상기 빔 정보를 수신할 수 있다 (S2750, S2940).
본 개시에 있어, 제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 빔 품질이 가장 높은 제1 빔과 관련된 제1 빔 정보 및 (ii) 상기 제1 빔 다음으로 빔 품질이 높은 순서에 기반한 하나 이상의 제2 빔과 관련된 제2 빔 정보를 포함할 수 있다.
본 개시에 있어, 제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 상기 제1 빔 정보 및 (ii) 상기 제1 빔과 동일한 채널 측정 자원 (channel measurement resource; CMR)을 갖고 빔 품질이 가장 낮은 제3 빔과 관련된 제3 빔 정보를 포함할 수 있다.
상기의 경우들에 있어, 각 빔은 상기 복수의 TRP들 중 하나의 TRP와 관련될 수 있다.
본 개시에 있어, 빔 정보는, 보고하는 각 빔과 관련된 참조 신호 수신 파워 (reference signal received power; RSRP) 정보, 또는, 상기 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보, 중 적어도 하나 이상을 포함할 수 있다.
이때, 상기 설정 정보에 포함된 보고 컨텐츠 설정 정보에 기반하여, 상기 빔 정보는 상기 보고하는 각 빔과 관련된 RSRP 정보, 또는 상기 보고하는 각 빔과 관련된 SINR 정보 중 적어도 하나 이상을 포함할 수 있다.
본 개시에 있어, 상기 설정 정보는, 각 빔과 관련된 CMR 정보, 및 각 빔과 관련된 간섭 측정 자원 (interference measurement resource; IMR) 정보를 포함할 수 있다.
본 개시에 있어, (i) N으로 설정된 단말이 보고하는 참조 신호의 개수 정보 및 (ii) 상기 제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는, (i) 상기 제1 빔 정보, 및 (ii) 상기 제1 빔 다음으로 빔 품질이 가장 높은 N-1 개의 제2 빔들과 관련된 제2 빔 정보를 포함하고, N은 2 이상의 자연수일 수 있다.
본 개시에 있어, (i) 3으로 설정된 단말이 보고하는 참조 신호의 개수 정보, (ii) 상기 제1 보고 설정 정보 및 (iii) 상기 제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는, (i) 상기 제1 빔 정보, (ii) 상기 제1 빔 다음으로 빔 품질이 높은 제2 빔과 관련된 제2 빔 정보, 및 (iii) 상기 제1 빔과 동일한 CMR을 갖고 빔 품질이 가장 낮은 상기 제3 빔과 관련된 상기 제3 빔 정보를 포함할 수 있다.
본 개시에 있어, 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여, 상기 보고하는 각 빔과 관련된 SINR 정보는 상기 보고하는 각 빔과 관련된 간섭 측정 자원 (interference measurement resource; IMR)을 위한 하나 이상의 포트 별 파워를 평균화하여 결정되는 간섭 파워에 기반하여 산출될 수 있다.
본 개시에 있어, 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여, 특정 빔과 관련된 CMR 및 간섭 측정 자원 (interference measurement resource; IMR)이 동일한 식별 정보를 갖거나 상기 특정 빔과 관련된 IMR이 설정되지 않는 경우, 상기 특정 빔과 관련된 SINR 정보는 상기 특정 빔과 관련된 CMR에 기반하여 결정되는 간섭 파워에 기반하여 산출될 수 있다.
본 개시에 있어, (i) 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보 및 (ii) 특정 빔과 관련하여, 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR)과 관련되는 CMR에 기초하여, 상기 특정 빔과 관련된 SINR 정보는, 상기 CMR과 관련된 상기 하나 이상의 IMR로부터의 간섭 파워를 평균화하여 결정되는 간섭 파워에 기반하여 산출될 수 있다.
본 개시에 있어, 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여, 상기 빔 정보는 각 보고하는 빔과 관련된 CMR 정보 및 간섭 측정 자원 (interference measurement resource; IMR) 정보를 더 포함할 수 있다.
본 개시에 있어, 단말 및 기지국은, 앞서 상술한 초기 접속 (initial access) 또는 임의 접속 (random access), DRX 설정 등에 기초하여, 앞서 상술한 CSI 송수신 동작을 수행할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.
추가적으로, 본 개시의 실시예들은 자유 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.
Claims (15)
- 무선 통신 시스템에서 단말이 빔 관리 (beam management; BM)를 수행하는 방법 방법에 있어서,기지국으로부터, BM과 관련된 설정 정보를 수신함;상기 기지국으로부터, 물리 상향링크 공유 채널 (physical uplink shared channel; PUSCH) 전송을 위한 경로 손실 (path loss)와 관련된 비율 정보를 포함한 PUSCH 전력 제어 정보를 수신함;(i) 상기 설정 정보에 기반하여, 수신되는 참조 신호로부터 결정된 빔 정보를 결정하고, (ii) 상기 PUSCH 전력 제어 정보에 기반하여, PUSCH 전송 전력을 결정함; 및상기 결정된 PUSCH 전송 전력에 기반하여, 상기 빔 정보를 PUSCH를 통해 상기 기지국으로 보고하는 것을 포함하고,제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 빔 품질이 가장 높은 제1 빔과 관련된 제1 빔 정보 및 (ii) 상기 제1 빔 다음으로 빔 품질이 높은 순서에 기반한 하나 이상의 제2 빔과 관련된 제2 빔 정보를 포함하고,제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 상기 제1 빔 정보 및 (ii) 상기 제1 빔과 동일한 채널 측정 자원 (channel measurement resource; CMR)을 갖고 빔 품질이 가장 낮은 제3 빔과 관련된 제3 빔 정보를 포함하는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,상기 설정 정보는,상위 계층 시그널링, 또는,하향링크 제어 정보 (downlink control information; DCI) 중 적어도 하나 이상을 통해 수신되는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,상기 빔 정보는,보고하는 각 빔과 관련된 참조 신호 수신 파워 (reference signal received power; RSRP) 정보, 또는,상기 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보,중 적어도 하나 이상을 포함하는, 단말의 빔 관리 수행 방법.
- 제 3항에 있어서,상기 설정 정보에 포함된 보고 컨텐츠 설정 정보에 기반하여, 상기 빔 정보는 상기 보고하는 각 빔과 관련된 RSRP 정보, 또는 상기 보고하는 각 빔과 관련된 SINR 정보 중 적어도 하나 이상을 포함하는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,상기 설정 정보는,각 빔과 관련된 CMR 정보, 및각 빔과 관련된 간섭 측정 자원 (interference measurement resource; IMR) 정보를 포함하는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,(i) N으로 설정된 단말이 보고하는 참조 신호의 개수 정보 및 (ii) 상기 제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는,(i) 상기 제1 빔 정보, 및(ii) 상기 제1 빔 다음으로 빔 품질이 가장 높은 N-1 개의 제2 빔들과 관련된 제2 빔 정보를 포함하고,N은 2 이상의 자연수인, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,(i) 3으로 설정된 단말이 보고하는 참조 신호의 개수 정보, (ii) 상기 제1 보고 설정 정보 및 (iii) 상기 제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는,(i) 상기 제1 빔 정보,(ii) 상기 제1 빔 다음으로 빔 품질이 높은 제2 빔과 관련된 제2 빔 정보, 및(iii) 상기 제1 빔과 동일한 CMR을 갖고 빔 품질이 가장 낮은 상기 제3 빔과 관련된 상기 제3 빔 정보를 포함하는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여, 상기 보고하는 각 빔과 관련된 SINR 정보는 상기 보고하는 각 빔과 관련된 간섭 측정 자원 (interference measurement resource; IMR)을 위한 하나 이상의 포트 별 파워를 평균화하여 결정되는 간섭 파워에 기반하여 산출되는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여,특정 빔과 관련된 CMR 및 간섭 측정 자원 (interference measurement resource; IMR)이 동일한 식별 정보를 갖거나 상기 특정 빔과 관련된 IMR이 설정되지 않는 경우, 상기 특정 빔과 관련된 SINR 정보는 상기 특정 빔과 관련된 CMR에 기반하여 결정되는 간섭 파워에 기반하여 산출되는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,(i) 보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보 및 (ii) 특정 빔과 관련하여, 하나 이상의 간섭 측정 자원 (interference measurement resource; IMR)과 관련되는 CMR에 기초하여,상기 특정 빔과 관련된 SINR 정보는, 상기 CMR과 관련된 상기 하나 이상의 IMR로부터의 간섭 파워를 평균화하여 결정되는 간섭 파워에 기반하여 산출되는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,보고하는 각 빔과 관련된 신호 대 간섭 및 잡음 비율 (signal to interference plus noise ratio; SINR) 정보를 포함하는 상기 빔 정보에 기초하여,상기 빔 정보는 각 보고하는 빔과 관련된 CMR 정보 및 간섭 측정 자원 (interference measurement resource; IMR) 정보를 더 포함하는, 단말의 빔 관리 수행 방법.
- 제 1항에 있어서,상기 참조 신호는,채널 상태 정보 참조 신호 (channel state information reference signal; CSI-RS), 또는,동기 신호 물리 방송 채널 블록 (synchronization signal physical broadcast channel block; SS/PBCH block 또는 SSB), 중 적어도 하나 이상을 포함하는, 단말의 빔 관리 수행 방법.
- 무선 통신 시스템에서 빔 관리 (beam management; BM)를 수행하는 단말에 있어서,적어도 하나의 송신기;적어도 하나의 수신기;적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,상기 특정 동작은:기지국으로부터, BM과 관련된 설정 정보를 수신함;상기 기지국으로부터, 물리 상향링크 공유 채널 (physical uplink shared channel; PUSCH) 전송을 위한 경로 손실 (path loss)와 관련된 비율 정보를 포함한 PUSCH 전력 제어 정보를 수신함;(i) 상기 설정 정보에 기반하여, 수신되는 참조 신호로부터 결정된 빔 정보를 결정하고, (ii) 상기 PUSCH 전력 제어 정보에 기반하여, PUSCH 전송 전력을 결정함; 및상기 결정된 PUSCH 전송 전력에 기반하여, 상기 빔 정보를 PUSCH를 통해 상기 기지국으로 보고하는 것을 포함하고,제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 빔 품질이 가장 높은 제1 빔과 관련된 제1 빔 정보 및 (ii) 상기 제1 빔 다음으로 빔 품질이 높은 순서에 기반한 하나 이상의 제2 빔과 관련된 제2 빔 정보를 포함하고,제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 상기 제1 빔 정보 및 (ii) 상기 제1 빔과 동일한 채널 측정 자원 (channel measurement resource; CMR)을 갖고 빔 품질이 가장 낮은 제3 빔과 관련된 제3 빔 정보를 포함하는, 단말.
- 제 13항에 있어서,상기 단말은, 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 적어도 하나와 통신하는, 단말.
- 무선 통신 시스템에서 단말의 빔 관리 (beam management; BM)를 지원하는 기지국에 있어서,적어도 하나의 송신기;적어도 하나의 수신기;적어도 하나의 프로세서; 및상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,상기 특정 동작은:상기 단말로, BM과 관련된 설정 정보를 전송함;상기 단말로, 참조 신호를 전송함;산기 단말로, 물리 상향링크 공유 채널 (physical uplink shared channel; PUSCH) 전송을 위한 경로 손실 (path loss)와 관련된 비율 정보를 포함한 PUSCH 전력 제어 정보를 전송함; 및상기 단말로부터, 상기 PUSCH 전력 제어 정보에 기반한 PUSCH 전송 전력을 갖는 PUSCH를 통해, 상기 설정 정보 및 상기 참조 신호에 기반하여 결정된 빔 정보를 수신하는 것을 포함하고,제1 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 빔 품질이 가장 높은 제1 빔과 관련된 제1 빔 정보 및 (ii) 상기 제1 빔 다음으로 빔 품질이 높은 순서에 기반한 하나 이상의 제2 빔과 관련된 제2 빔 정보를 포함하고,제2 보고 설정 정보를 포함하는 상기 설정 정보에 기초하여, 상기 빔 정보는 (i) 상기 제1 빔 정보 및 (ii) 상기 제1 빔과 동일한 채널 측정 자원 (channel measurement resource; CMR)을 갖고 빔 품질이 가장 낮은 제3 빔과 관련된 제3 빔 정보를 포함하는, 기지국.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0037495 | 2019-03-29 | ||
KR20190037495 | 2019-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020204325A1 true WO2020204325A1 (ko) | 2020-10-08 |
Family
ID=72667348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/001098 WO2020204325A1 (ko) | 2019-03-29 | 2020-02-10 | 무선 통신 시스템에서 상향링크 데이터 채널의 전력 제어에 기반한 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020204325A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114430557A (zh) * | 2022-01-06 | 2022-05-03 | 中国联合网络通信集团有限公司 | 一种波束管理方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018164332A1 (ko) * | 2017-03-09 | 2018-09-13 | 엘지전자(주) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 |
KR20180113138A (ko) * | 2017-04-03 | 2018-10-15 | 주식회사 케이티 | 다중 빔 기반으로 데이터를 송수신하는 방법 및 장치 |
KR20180120114A (ko) * | 2017-04-26 | 2018-11-05 | 아서스테크 컴퓨터 인코포레이션 | 무선 통신 시스템에서 제어 엘리먼트 전송을 위한 자원을 요청하기 위한 방법 및 장치 |
KR20190016944A (ko) * | 2016-05-11 | 2019-02-19 | 아이디에이씨 홀딩스, 인크. | 빔포밍된 업링크 전송을 위한 시스템 및 방법 |
JP2019033420A (ja) * | 2017-08-09 | 2019-02-28 | シャープ株式会社 | 端末装置、通信方法、および、集積回路 |
-
2020
- 2020-02-10 WO PCT/KR2020/001098 patent/WO2020204325A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190016944A (ko) * | 2016-05-11 | 2019-02-19 | 아이디에이씨 홀딩스, 인크. | 빔포밍된 업링크 전송을 위한 시스템 및 방법 |
WO2018164332A1 (ko) * | 2017-03-09 | 2018-09-13 | 엘지전자(주) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 |
KR20180113138A (ko) * | 2017-04-03 | 2018-10-15 | 주식회사 케이티 | 다중 빔 기반으로 데이터를 송수신하는 방법 및 장치 |
KR20180120114A (ko) * | 2017-04-26 | 2018-11-05 | 아서스테크 컴퓨터 인코포레이션 | 무선 통신 시스템에서 제어 엘리먼트 전송을 위한 자원을 요청하기 위한 방법 및 장치 |
JP2019033420A (ja) * | 2017-08-09 | 2019-02-28 | シャープ株式会社 | 端末装置、通信方法、および、集積回路 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114430557A (zh) * | 2022-01-06 | 2022-05-03 | 中国联合网络通信集团有限公司 | 一种波束管理方法及装置 |
CN114430557B (zh) * | 2022-01-06 | 2023-04-28 | 中国联合网络通信集团有限公司 | 一种波束管理方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020204322A1 (ko) | 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국 | |
WO2020167060A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 | |
WO2020032691A1 (ko) | 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치 | |
WO2020032740A1 (ko) | 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2020184836A1 (ko) | 무선 통신 시스템에서 단말의 빔 정보 전송 방법 및 이를 지원하는 단말 및 기지국 | |
WO2020032750A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020159172A1 (ko) | 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국 | |
WO2020171405A1 (ko) | 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국 | |
WO2020159189A1 (ko) | 무선 통신 시스템에서 단말의 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국 | |
WO2020167048A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 | |
WO2020060339A1 (ko) | 무선 통신 시스템에서 다수 빔 및/또는 다수 패널을 고려한 상향링크 송수신을 수행하기 위한 방법 및 이를 위한 장치 | |
WO2020167051A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 | |
WO2020190117A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 | |
WO2020032748A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2020204323A1 (ko) | 무선 통신 시스템에서 상향링크 제어 채널의 전력 제어에 기반한 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국 | |
WO2020091496A1 (ko) | 무선 통신 시스템에서 단말 및 기지국의 동작 방법 및 이를 지원하는 장치 | |
WO2020050682A1 (ko) | 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 단말 | |
WO2020166848A1 (ko) | 무선 통신 시스템에서 단말의 빔 관련 상향링크 피드백 정보 전송 방법 및 이를 지원하는 단말 및 기지국 | |
WO2021066606A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 | |
WO2020145784A1 (ko) | 비면허 대역에서 장치의 채널 접속 절차 | |
WO2020167058A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 | |
WO2020226396A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 | |
WO2020145575A1 (ko) | 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국 | |
WO2020032756A1 (ko) | 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2021066602A1 (ko) | 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20784445 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20784445 Country of ref document: EP Kind code of ref document: A1 |