WO2020203817A1 - Industrial machine, dimension estimation device, and dimension estimation method - Google Patents

Industrial machine, dimension estimation device, and dimension estimation method Download PDF

Info

Publication number
WO2020203817A1
WO2020203817A1 PCT/JP2020/014134 JP2020014134W WO2020203817A1 WO 2020203817 A1 WO2020203817 A1 WO 2020203817A1 JP 2020014134 W JP2020014134 W JP 2020014134W WO 2020203817 A1 WO2020203817 A1 WO 2020203817A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimension
work
cut
value
target
Prior art date
Application number
PCT/JP2020/014134
Other languages
French (fr)
Japanese (ja)
Inventor
板東 賢一
モハマド ムンジル
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020217027506A priority Critical patent/KR102629252B1/en
Priority to CN202080017871.8A priority patent/CN113518689B/en
Priority to DE112020000654.9T priority patent/DE112020000654T5/en
Publication of WO2020203817A1 publication Critical patent/WO2020203817A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/42Single-purpose machines or devices for grinding crankshafts or crankpins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation

Definitions

  • the present invention relates to industrial machines, dimensional estimation devices, and dimensional estimation methods.
  • the present application claims priority with respect to Japanese Patent Application No. 2019-068540 filed in Japan on March 29, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a technique for measuring the roundness of a work without removing the work from the grinding machine. According to the technique described in Patent Document 1, a three-point contact measuring instrument is contact-moved along the peripheral surface of the work, and the measured value, the rotation angle of the work, the rotation axis of the work and the three-point contact measuring instrument The roundness of the work is specified based on the position of and.
  • An object of the present invention is to provide an industrial machine, a dimensional estimation device, and a dimensional estimation method capable of estimating the dimensions of a work by removing the influence of grinding by a grindstone during grinding of the work.
  • the grinding machine includes a disk-shaped grindstone that comes into contact with the work and grinds the work, an actuator that moves the grindstone in the cutting direction, and a gauge that measures the dimensions of the work.
  • a control device for controlling the actuator includes a measurement value acquisition unit that acquires a measurement value of the dimension by the gauge, and a target cut amount specification that specifies a target cut amount by the grindstone.
  • the size of the work can be estimated by removing the influence of grinding by the grindstone.
  • FIG. 1 is a top view showing the configuration of the grinding machine according to the first embodiment.
  • the grinding machine is an example of an industrial machine.
  • the grinding machine 100 includes a base 110, a support device 120, a grindstone base 130, a sizing gauge 140, a control device 150, and a display device 160.
  • the base 110 is installed on the floor of the factory.
  • the support device 120 and the grindstone base 130 are provided on the upper surface of the base 110.
  • the support device 120 supports both ends of the work W and rotates the work W around the main axis.
  • the grindstone base 130 supports the grindstone 131 for processing the work W supported by the support device 120.
  • the direction orthogonal to the main axis on the upper surface of the base 110 is referred to as the X direction
  • the direction in which the main axis extends is referred to as the Y direction
  • the direction orthogonal to the upper surface of the base 110 is referred to as the Z direction. That is, in the following description, the positional relationship of the grinding machine 100 will be described with reference to the three-dimensional Cartesian coordinate system including the X-axis, the Y-axis, and the Z-axis. Further, hereinafter, the spindle of the grinding machine 100 is also referred to as a C axis.
  • the crankshaft is composed of a crank journal W1, a crank pin W2, and a crank arm W3.
  • the crank journal W1 is a shaft held by the bearing of the engine.
  • the shaft of the crank journal W1 coincides with the spindle during machining by the grinding machine 100.
  • the crank pin W2 is a circular cross-sectional portion connected to the connecting rod of the piston.
  • the crank pin W2 has a shaft at a position away from the shaft of the crank journal W1 so that the piston reciprocates due to the rotation of the crankshaft.
  • the crank arm W3 connects the crank journal W1 and the crank pin W2.
  • the base 110 includes a Y-axis guide portion 111 that slidably supports the grindstone base 130 in the Y-axis direction, and a Y-axis actuator 112 that moves the grindstone base 130 in the Y-axis direction along the Y-axis guide portion 111.
  • the Y-axis actuator 112 may be configured by a linear motor or a combination of a ball screw and a rotary motor.
  • the support device 120 includes a headstock 121 that supports one end of a substantially cylindrical work W, and a tailstock 122 that supports the other end.
  • the headstock 121 includes a rotary motor 123 that rotates the work W about an axis, and a spindle sensor 124 that measures the rotation angle of the rotary motor 123.
  • the grindstone base 130 includes a grindstone 131, an X-axis guide portion 132, an X-axis actuator 133, a displacement sensor 134, a rotation motor 135, and a rotation angle sensor 136.
  • the grindstone 131 is formed in a disk shape and is rotated around a central axis by a rotary motor 135.
  • the grindstone 131 is provided so that the central axis is parallel to the Y axis.
  • On the surface of the grindstone 131 a plurality of mounting holes for mounting the correction weight are provided on the same circumference at equal intervals.
  • the X-axis guide portion 132 slidably supports the grindstone base 130 with respect to the base 110 in the X-axis direction.
  • the X-axis actuator 133 moves the grindstone 131 in the X-axis direction along the X-axis guide portion 132.
  • the X-axis direction is the cutting direction of the grindstone 131.
  • the X-axis actuator 133 may be configured by a linear motor, or may be configured by a combination of a ball screw and a rotary motor.
  • the displacement sensor 134 measures the displacement of the grindstone base 130 with respect to the base 110 in the X-axis direction.
  • the displacement sensor 134 is composed of, for example, a linear encoder.
  • the rotary motor 135 rotates the grindstone 131 around the central axis.
  • the rotation angle sensor 136 measures the rotation angle of the grindstone 131.
  • the rotation angle sensor 136 is composed of, for example, a rotary encoder.
  • the work W is supported between the headstock 121 and the tailstock 122 of the support device 120, and the outer peripheral surface of the work W is ground by the grindstone 131.
  • FIG. 2 is a cross-sectional view of a grinding machine showing the positional relationship between the grindstone, the work, and the fixed size gauge.
  • the fixed size gauge 140 is provided on the grindstone base 130 and measures the dimensions of the work W while contacting the outer peripheral surface of the work W.
  • the sizing gauge 140 according to the first embodiment measures the dimensions of the work W on the same peripheral surface as the grinding point by the grindstone 131.
  • the fixed size gauge 140 includes a gauge body 141, a first arm 142, a second arm 143, and a stand 144.
  • the gauge body 141 is a horse riding gauge having a V block having recesses inscribed at two points on the peripheral surface of the work W and a measuring unit provided in the center of the recesses of the V block.
  • the first end of the first arm 142 is fixed to the gauge body 141.
  • the second end of the first arm 142 is rotatably supported by the first end of the second arm 143.
  • the second end of the second arm 143 is rotatably supported by the stand 144.
  • the stand 144 is fixed to the grindstone base 130.
  • the first arm 142 and the second arm 143 support the gauge body 141 so that the measuring portion of the gauge body 141 always contacts the crank pin W2 portion of the work W. Since the central axis of the crank pin W2 is located away from the main axis of the grinding machine 100, the position where the measuring unit hits as the work W rotates is in the same phase (for example, 35 degrees) in the cross-sectional circle of the crank pin W2. It changes about ⁇ 10 degrees from the position).
  • FIG. 3 is a schematic block diagram showing a configuration of the control device according to the first embodiment.
  • the control device 150 controls the Y-axis actuator 112, the rotary motor 123, the X-axis actuator 133, and the rotary motor 135.
  • the control device 150 includes a processor 151, a main memory 153, a storage 155, and an interface 157.
  • the processor 151 reads a program from the storage 155, expands it into the main memory 153, and executes the above processing according to the program. Further, the processor 151 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 153 according to the program.
  • the program may be for realizing a part of the functions exerted by the control device 150.
  • the program may exert its function in combination with another program already stored in the storage 155, or in combination with another program mounted on another device.
  • the control device 150 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLDs Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of storage 155 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory and the like.
  • the storage 155 may be an internal medium directly connected to the bus of the control device 150, or an external medium connected to the control device 150 via the interface 157 or a communication line. When this program is distributed to the control device 150 by a communication line, the distributed control device 150 may expand the program to the main memory 153 and execute the above processing.
  • the storage 155 is a non-temporary tangible storage medium.
  • the processor 151 executes the measurement value acquisition unit 511, the target depth of cut amount identification unit 512, the error calculation unit 513, the target state amount calculation unit 514, the command value calculation unit 515, the command output unit 516, and the measurement position compensation unit. It functions as 517, an estimation model 518, a dimension estimation unit 519, and a display control unit 520.
  • the measurement value acquisition unit 511 acquires the measurement value from the spindle sensor 124, the displacement sensor 134, and the sizing gauge 140. That is, the measurement value acquisition unit 511 acquires the measurement value L of the displacement of the grindstone 131 in the X-axis direction, the measurement value ⁇ of the rotation angle of the spindle, and the measurement value x of the dimensions of the work W.
  • the target depth of cut specifying unit 512 is based on the measured value L of the displacement of the grindstone 131 in the X-axis direction acquired by the measured value acquisition unit 511, the measured value ⁇ of the rotation angle of the spindle, and the target shape of the work W.
  • the target depth of cut x r of 131 is specified.
  • a specific method for specifying the target cut amount x r by the target cut amount specifying unit 512 will be described with reference to FIG.
  • the target depth of cut specifying unit 512 is the central axis of the crankpin W2 related to the target shape facing the grindstone 131 from the measured value ⁇ of the rotation angle of the spindle acquired by the measured value acquisition unit 511 and the target shape of the work W.
  • the target depth of cut specifying portion 512 includes the radius R of the grindstone 131, the distance E from the spindle to the central axis of the crank pin W2, the measured value L of the displacement of the X axis, the measured value ⁇ of the rotation angle of the spindle, and Based on the target radius r 0 of the work W, the target depth of cut x r in the radial direction of the work W is calculated. Specifically, the radius r of the work W is calculated based on the following equation (1).
  • the target cut amount specifying unit 512 calculates the target cut amount x r per the diameter of the work W by doubling the value obtained by subtracting the radius r 0 related to the target shape from the radius r of the work W. ..
  • the target cut amount specifying unit 512 records the specified target cut amount x r in the main memory 153 in association with the pin angle ⁇ of the contact point between the crank pin W2 and the grindstone 131 shown in FIG.
  • the error calculation unit 513 of the X-axis actuator 133 and the rotary motor 123 is based on the radius r of the work W, the displacement command value L ref , the angle command value ⁇ ref, and the target shape of the work W obtained based on the measured values.
  • the contour error per diameter of the work W caused by the control error is calculated.
  • the displacement command value L ref is the target value of the displacement of the X-axis actuator 133
  • the angle command value ⁇ ref is the target value of the rotation angle of the spindle.
  • error calculation unit 513 based on the following equation (2), calculates a drag error delta r per diameter of the workpiece W. Error calculating unit 513, the identified drag error delta r, it is recorded in the main memory 153 in association with the pin angle ⁇ of points per.
  • the target state amount calculation unit 514 calculates the target value of the state amount related to the displacement of the grindstone 131 based on the target value of the displacement of the X-axis actuator 133. Specifically, the target state quantity calculation unit 514 calculates the target speed, target acceleration, and target jerk value of the grindstone 131 in the X-axis direction.
  • the command value calculation unit 515 calculates the current command value of the X-axis actuator 133 based on the target value of the state quantity of the grindstone 131. Specifically, the command value calculation unit 515 calculates the current command value by converting the target value of the state quantity of the grindstone 131 into a current value for achieving the target value.
  • the command output unit 516 outputs the current command value calculated by the command value calculation unit 515 to the X-axis actuator 133. Further, the command output unit 516 outputs a current command value for rotating the spindle at a predetermined rotation speed to the rotary motor 123.
  • the measurement position compensation unit 517 compensates for the phase difference between the contact point of the grindstone 131 and the contact point of the fixed size gauge 140 at the crank pin W2 with respect to the target depth of cut x r and the contour error ⁇ r . That is, the measurement position compensation unit 517 has a target depth of cut x r ( ⁇ to ) and a contour error ⁇ r of the grindstone 131 at the time of grinding corresponding to the points measured by the fixed size gauge 140 of the crank pin W2. Identify ( ⁇ ⁇ ). Specifically, the measurement position compensation unit 517 is the angle closest to the angle ⁇ to which the fixed size gauge 140 hits from the pin angle ⁇ of the contact point between the crank pin W2 and the grindstone 131 recorded in the main memory 153.
  • the measurement position compensation unit 517 determines the target depth of cut x r ( ⁇ ⁇ ) of the grindstone 131 and the contour error ⁇ r ( ⁇ ⁇ ) associated with the angle ⁇ ⁇ that the fixed size gauge 140 related to the specified angle hits. Identify.
  • Estimation model 518 by inputting a drag error delta r of the workpiece W caused by the target depth of cut x r, and the control error of the measured value x, the grinding wheel 131 of the dimensions of the workpiece W, the workpiece bending, measured disturbances, and control This is a model that outputs an estimated value of the size of the work W in consideration of the influence of an error or the like. Work deflection, measurement disturbance, and control error are examples of noise on the measured values of the work W dimensions.
  • the estimation model 518 is composed of a Kalman filter based on a mathematical model in consideration of workpiece deflection, measurement disturbance, and the positional relationship between the crank pin W2 and the grindstone 131.
  • the design concept of the estimation model 518 will be described.
  • the actual cutting amount of the work W by the grindstone 131 considering the displacement amount of the work W due to bending, input the target cutting amount x r , set the explanatory variable z related to the actual size of the work W, and T, M. Can be expressed by the equation of state with the dynamic characteristic parameter.
  • the measured value x of the dimension of the work W can be expressed by an output equation in which the explanatory variable z related to the actual dimension of the work W is the state and N is the dynamic characteristic parameter.
  • the dynamic characteristic parameters T, M and N are scalars or matrices. That is, the actual cutting amount of the work W by the grindstone 131 is expressed by the following equation (3).
  • Equation (3) is an equation of state at the contact point of the grindstone 131 on the crank pin W2.
  • the phase difference between the contact point of the grindstone 131 and the contact point of the fixed size gauge 140 at the crank pin W2 is set as the time-varying time. You can express it. That is, the portion ground at the contact point with the grindstone 131 is measured at the contact point with the fixed size gauge 140 after a certain time (time-varying time).
  • x r ( ⁇ to ) specified by the measurement position compensation unit 517 may be substituted for the target depth of cut x r in the equation (3).
  • the measured value x of the dimension can be expressed by the following equation (5).
  • a new state z ⁇ is constructed by integrating the state z related to the actual size of the work W and the measurement disturbance ⁇ d ( ⁇ ).
  • the equation (5) can be expressed as the equation (6).
  • Equation (6) the function h ⁇ z ⁇ , ⁇ r ( ⁇ ⁇ ) ⁇ state z theta and drag error delta r ([psi ⁇ ) can be expressed as.
  • the equation (3) is expressed by treating the state z related to the actual size of the work W in the equation (3) as the state z related to the actual size of the work W and the state z ⁇ of the measurement disturbance ⁇ d ( ⁇ ).
  • the equation (7) is an equation assuming that the measurement disturbance ⁇ d ( ⁇ ) is a constant value disturbance for the sake of simplicity. Since the movement of the grindstone 131 and the measurement disturbance due to the coolant are large during grinding, it is actually preferable to model these disturbances and incorporate them into the equation (7).
  • Equation (7) the function f ⁇ z ⁇ , x r ( ⁇ ⁇ ) ⁇ state z theta and a target depth of cut x r ([psi ⁇ ) can be expressed as.
  • the estimation model 518 shown in the following equation (8) can be designed.
  • estimation model 518 the estimated value z theta ⁇ state according to the dimensions and measurement disturbance, the measurement value x dimension, ( ⁇ [psi) drag error delta r, and the target depth of cut x r ([psi ⁇ ) variables It is a Kalman filter of the time evolution model that it has.
  • the dimension estimation unit 519 includes the measurement value x of the dimension acquired by the measurement value acquisition unit 511, the target depth of cut x r ( ⁇ ⁇ ) specified by the target depth of cut identification unit 512, and the contour calculated by the error calculation unit 513.
  • the error ⁇ r ( ⁇ ⁇ ) is obtained by inputting the error ⁇ r ( ⁇ ⁇ ) into the estimation model 518.
  • the display control unit 520 outputs a display signal on the screen indicating the roundness of the work W to the display device 160 based on the estimated value of the dimensions estimated by the dimension estimation unit 519.
  • FIG. 4 is a flowchart showing the operation of the control device according to the first embodiment.
  • the measurement value acquisition unit 511 determines the measurement value of the rotation angle of the spindle from the spindle sensor 124 and the measurement value of the displacement of the grindstone 131 in the X-axis direction from the displacement sensor 134.
  • the measured values of the dimensions of the work W are acquired from the dimension gauge 140 (step S1).
  • the target depth of cut specifying unit 512 determines the radius of the work W based on the measured value of the rotation angle of the spindle acquired in step S1, the measured value of the displacement of the grindstone 131 in the X-axis direction, and the above equation (1). Calculate (step S2).
  • the target cut amount specifying unit 512 specifies the target cut amount per diameter of the work W based on the calculated radius of the work W and the target shape of the work W (step S3).
  • the target cutting amount specifying unit 512 records the specified target cutting amount in the main memory 153 in association with the pin angle ⁇ of the contact point between the crank pin W2 and the grindstone 131 shown in FIG.
  • the error calculation unit 513 is based on the radius of the work W specified in step S2, the angle command value of the spindle, the displacement command value of the grindstone 131 in the X-axis direction, the target shape of the work W, and the above equation (2). Then, the contour error per diameter of the work W is calculated (step S4). Error calculating unit 513, in association with the pin angle ⁇ of points per crank pin W2 and the grindstone 131 shown in FIG. 2, and records the calculated drag error delta r in the main memory 153.
  • the target state amount calculation unit 514 calculates the target value of the state amount related to the displacement of the grindstone 131 based on the target value of the displacement of the X-axis actuator 133 (step S5).
  • the command value calculation unit 515 calculates the current command value of the X-axis actuator 133 based on the target value of the state quantity calculated in step S5 (step S6).
  • the command output unit 516 outputs the current command value calculated in step S6 to the X-axis actuator 133. Further, the command output unit 516 outputs a current command value for rotating the spindle at a predetermined rotation speed to the rotary motor 123 (step S7).
  • Step S8 Measuring the position compensation unit 517, stored in main memory 153, from the pin angle [psi points per crank pin W2 and the grindstone 131, identifies the closest to the angle [psi ⁇ the sizing gauge 140 hits (step S8).
  • the measurement position compensation unit 517 specifies the target depth of cut of the grindstone 131 and the contour error associated with the angle ⁇ to which the fixed size gauge 140 related to the angle specified in step S8 hits (step S9). That is, the measurement position compensation unit 517 specifies the target depth of cut per diameter of the work W that compensates for the phase difference between the contact point of the grindstone 131 and the contact point of the fixed size gauge 140 at the crank pin W2, and the contour error. ..
  • the dimension estimation unit 519 obtains an estimated value of the dimension of the work W by inputting the measured value of the dimension acquired in step S1 and the contour error and the target depth of cut specified in step S9 into the estimation model 518. Step S10).
  • the display control unit 520 updates the screen showing the roundness of the work W based on the estimated value of the dimensions estimated by the dimension estimation unit 519, and outputs the display signal of the screen to the display device 160 (step S11). ..
  • the control device 150 determines whether or not the machining of the work W has been completed (step S12). If the machining is not completed (step S12: NO), the machining is returned to step S1 and the machining control is continued. On the other hand, when the machining is completed (step S12: YES), the control device 150 ends the machining control.
  • the control device 150 obtains an estimated value of the dimension of the work W by inputting the measured value of the dimension by the fixed size gauge 140 and the target depth of cut of the grindstone 131 into the estimation model. .. In this way, the control device 150 estimates the dimensions of the work W based on the measured value of the dimensions by the fixed size gauge 140, the target depth of cut of the grindstone 131, and the model, so that the grindstone 131 such as the bending of the work W
  • the size of the work W can be estimated by removing the influence of grinding and measurement disturbance caused by the grinding wheel.
  • FIG. 5 is a diagram showing an example of a measurement result of roundness by the control device according to the first embodiment. As shown in FIG.
  • the roundness measured by the control device 150 in real time by the method shown in FIG. 4 can obtain the same accuracy as the roundness measured in the subsequent process.
  • the measured value of the dimension by the fixed size gauge 140 real-time measured value by the fixed size gauge
  • the size of the work W can be estimated by removing the influence of grinding by the grindstone 131 and the measurement disturbance.
  • control device 150 has the X-axis actuator 133 and the rotation motor 123 based on the displacement measurement value by the displacement sensor 134 and the rotation angle measurement value of the rotation motor 123 by the rotation angle sensor 136.
  • the contour error of the work W caused by the control error of the work W is calculated, and the estimated value of the dimension of the work W is corrected based on the contour error.
  • the control device 150 can estimate the size of the work W in consideration of the influence of the control error of the X-axis actuator 133 and the rotary motor 123.
  • the control device 150 may estimate the dimensions of the work W without taking into account the control errors of the X-axis actuator 133 and the rotary motor 123.
  • control device 150 inputs to the estimation model the contour error and the target depth of cut that compensate for the dead time for the work W to move from the position where the grindstone 131 hits to the position where the fixed size gauge 140 hits. To do. As a result, even when the grinding point by the grindstone 131 and the measurement point by the fixed size gauge 140 are different, the size of the work W can be estimated appropriately.
  • the estimation model related to the control device 150 according to the first embodiment has an observation model having a measured value of dimensions as a variable and a time evolution model having an estimated value of dimensions and a target depth of cut as variables. It is a Kalman filter.
  • the estimation model according to another embodiment may be a trained model trained to output the dimensions of the work W by inputting the measured values of the dimensions and the target depth of cut.
  • the trained model may be constructed by, for example, a neural network.
  • the control device 150 of the grinding machine 100 measures the roundness, but the present invention is not limited to this.
  • a dimensional estimation device provided with a fixed size gauge 140 and having a roundness display function may be attached to the existing grinding machine 100.
  • the dimension estimation device does not have to have the configuration of the target state quantity calculation unit 514, the command value calculation unit 515, and the command output unit 516 of the control device 150 according to the first embodiment.
  • a PC having a program for realizing the dimension estimation function according to the first embodiment is connected to a grinding machine 100 provided with a fixed size gauge 140, and the work W is a perfect circle by the PC. The degree may be estimated.
  • the fixed size gauge 140 according to the first embodiment is a horse riding gauge, but is not limited to this.
  • the sizing gauge 140 according to another embodiment may be a sizing gauge 140 according to a method other than the three-point measurement, such as one that measures the diameter by sandwiching the work W from both sides.
  • the grinding machine 100 cuts out the crankshaft from the work W, but the present invention is not limited to this.
  • the grinding machine 100 according to another embodiment may cut out another object having a circular cross section, such as a cylindrical shaft, from the work W.
  • the estimation model of the control device 150 may include grinding resistance and chatter that affect the dimensions of the work W as variables.
  • the measurement value acquisition unit 511 has the torque and rotation angle of the rotary motor 135 of the grindstone in addition to the measurement value of the rotation angle of the spindle, the measurement value of the displacement of the grindstone 131 in the X-axis direction, and the measurement value of the dimension of the work W.
  • the measured value of, the thrust of the X-axis actuator 133, and the like are also acquired.
  • control device 150 controls the grinding machine 100, but is not limited to this.
  • control device 150 according to another embodiment may control an industrial machine using a tool other than the grindstone 131.
  • the roundness of the work W may be estimated by an external measuring device instead of the control device 150.
  • the size of the work can be estimated by removing the influence of grinding by the grindstone.
  • Target depth of cut specification unit 513 ... Error calculation unit 514 .
  • Target state amount calculation unit 515 ...
  • Command value calculation unit 516 ...
  • Command output unit 517 ...
  • Measurement position compensation unit 518 ... Estimated model 519 ...
  • Dimension estimation unit 520 Display control unit W ... Work W1 ... Crank journal W2 ... Crank pin W3 ... Crank arm

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

According to the present invention, a measurement acquisition unit acquires measurements of workpiece dimensions measured by a gauge. A target cutting amount specification unit specifies a target amount of cutting to be done by a grindstone. An estimation model is a model that is generated on the basis of the relations between gauge measurements, a target cutting amount, and noise, and that outputs estimated values of the workpiece dimensions using inputs of the aforementioned target cutting amount and dimensional measurements. A dimension estimation unit obtains estimated dimension values that are obtained as a result of eradicating the influence of grinding by the grindstone by inputting the dimensional measurements and the target cutting amount into the estimation model.

Description

産業機械、寸法推定装置、および寸法推定方法Industrial machinery, dimensional estimation equipment, and dimensional estimation methods
 本発明は、産業機械、寸法推定装置、および寸法推定方法に関する。
 本願は、2019年3月29日に日本に出願された特願2019-068540号について優先権を主張し、その内容をここに援用する。
The present invention relates to industrial machines, dimensional estimation devices, and dimensional estimation methods.
The present application claims priority with respect to Japanese Patent Application No. 2019-068540 filed in Japan on March 29, 2019, the contents of which are incorporated herein by reference.
 特許文献1には、研削盤からワークを取り外すことなく、ワークの真円度を計測する技術が開示されている。特許文献1に記載の技術によれば、三点接触式測定器をワークの周面に沿って接触移動させ、計測値と、ワークの回転角と、ワークの回転軸と三点接触式測定器との位置とに基づいて、ワークの真円度を特定する。 Patent Document 1 discloses a technique for measuring the roundness of a work without removing the work from the grinding machine. According to the technique described in Patent Document 1, a three-point contact measuring instrument is contact-moved along the peripheral surface of the work, and the measured value, the rotation angle of the work, the rotation axis of the work and the three-point contact measuring instrument The roundness of the work is specified based on the position of and.
特開2001-66132号公報Japanese Unexamined Patent Publication No. 2001-66132.
 ところで、研削盤がワークを研削しているとき、ワークは砥石を押し当てられることによって撓む。また、研削中は砥石の移動やクーラントによる外乱の影響が大きいため、特許文献1に記載の手法によって三点接触式測定器の計測値は誤差を含む。本発明の目的は、ワークの研削中に、砥石による研削の影響を除去してワークの寸法を推定することができる産業機械、寸法推定装置、および寸法推定方法を提供することにある。 By the way, when the grinding machine is grinding the work, the work bends when the grindstone is pressed against it. Further, since the movement of the grindstone and the influence of the disturbance due to the coolant are large during grinding, the measured value of the three-point contact type measuring instrument includes an error by the method described in Patent Document 1. An object of the present invention is to provide an industrial machine, a dimensional estimation device, and a dimensional estimation method capable of estimating the dimensions of a work by removing the influence of grinding by a grindstone during grinding of the work.
 本発明の第1の態様によれば、研削盤は、ワークに接触して前記ワークを研削する円盤状の砥石と、前記砥石を切り込み方向に移動させるアクチュエータと、前記ワークの寸法を計測するゲージと、前記アクチュエータを制御する制御装置とを備え、前記制御装置は、前記ゲージによる前記寸法の計測値を取得する計測値取得部と、前記砥石による目標切込量を特定する目標切込量特定部と、前記ゲージによる計測値と前記目標切込量と雑音との関係に基づいて生成された、前記寸法の計測値および前記目標切込量を入力することで前記ワークの寸法の推定値を出力する推定モデルと、前記寸法の計測値および前記目標切込量を前記推定モデルに入力することで、砥石による研削の影響を除去した前記寸法の推定値を得る寸法推定部とを備える。 According to the first aspect of the present invention, the grinding machine includes a disk-shaped grindstone that comes into contact with the work and grinds the work, an actuator that moves the grindstone in the cutting direction, and a gauge that measures the dimensions of the work. And a control device for controlling the actuator, the control device includes a measurement value acquisition unit that acquires a measurement value of the dimension by the gauge, and a target cut amount specification that specifies a target cut amount by the grindstone. By inputting the measured value of the dimension and the target depth of cut generated based on the relationship between the unit, the value measured by the gauge, the target depth of cut, and noise, the estimated value of the dimension of the work can be obtained. It includes an estimation model to be output, and a dimension estimation unit that obtains an estimation value of the dimension from which the influence of grinding by a grindstone is removed by inputting a measurement value of the dimension and the target depth of cut into the estimation model.
 上記態様のうち少なくとも1つの態様によれば、砥石による研削の影響を除去してワークの寸法を推定することができる。 According to at least one of the above aspects, the size of the work can be estimated by removing the influence of grinding by the grindstone.
第1の実施形態に係る研削盤の構成を示す上面図である。It is a top view which shows the structure of the grinding machine which concerns on 1st Embodiment. 砥石とワークと定寸ゲージとの位置関係を示す研削盤の断面図である。It is sectional drawing of the grinding machine which shows the positional relationship between a grindstone, a work, and a constant size gauge. 第1の実施形態に係る制御装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the control device which concerns on 1st Embodiment. 第1の実施形態に係る制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the control device which concerns on 1st Embodiment. 第1の実施形態に係る制御装置による真円度の計測結果の例を示す図である。It is a figure which shows the example of the measurement result of the roundness by the control device which concerns on 1st Embodiment.
〈第1の実施形態〉
 以下、図面を参照しながら実施形態について詳しく説明する。
<First Embodiment>
Hereinafter, embodiments will be described in detail with reference to the drawings.
《研削盤の構成》
 図1は、第1の実施形態に係る研削盤の構成を示す上面図である。研削盤は、産業機械の一例である。
 研削盤100は、基台110、支持装置120、砥石台130、定寸ゲージ140、制御装置150、表示装置160を備える。基台110は、工場の床面に設置される。支持装置120および砥石台130は、基台110の上面に設けられる。支持装置120は、ワークWの両端を支持し、ワークWを主軸回りに回転させる。砥石台130は、支持装置120に支持されたワークWを加工するための砥石131を支持する。
 以下、基台110の上面において主軸と直交する方向をX方向とよび、主軸の伸びる方向をY方向とよび、基台110の上面に直交する方向をZ方向と呼ぶ。すなわち、以下の説明においては、X軸、Y軸、およびZ軸からなる三次元直交座標系を参照しながら研削盤100の位置関係を説明する。また、以下、研削盤100の主軸をC軸ともいう。
《Structure of grinding machine》
FIG. 1 is a top view showing the configuration of the grinding machine according to the first embodiment. The grinding machine is an example of an industrial machine.
The grinding machine 100 includes a base 110, a support device 120, a grindstone base 130, a sizing gauge 140, a control device 150, and a display device 160. The base 110 is installed on the floor of the factory. The support device 120 and the grindstone base 130 are provided on the upper surface of the base 110. The support device 120 supports both ends of the work W and rotates the work W around the main axis. The grindstone base 130 supports the grindstone 131 for processing the work W supported by the support device 120.
Hereinafter, the direction orthogonal to the main axis on the upper surface of the base 110 is referred to as the X direction, the direction in which the main axis extends is referred to as the Y direction, and the direction orthogonal to the upper surface of the base 110 is referred to as the Z direction. That is, in the following description, the positional relationship of the grinding machine 100 will be described with reference to the three-dimensional Cartesian coordinate system including the X-axis, the Y-axis, and the Z-axis. Further, hereinafter, the spindle of the grinding machine 100 is also referred to as a C axis.
 第1の実施形態では、研削盤100がワークWの研削によってクランクシャフトを形成する例について説明する。クランクシャフトは、クランクジャーナルW1とクランクピンW2とクランクアームW3とから構成される。クランクジャーナルW1は、エンジンの軸受けに保持される軸である。クランクジャーナルW1の軸は、研削盤100による加工時における主軸と一致する。クランクピンW2は、ピストンのコネクティングロッドに接続される円形断面状の部位である。クランクピンW2は、クランクシャフトの回転によってピストンが往復運動するように、クランクジャーナルW1の軸から離れた位置に軸を有する。クランクアームW3は、クランクジャーナルW1とクランクピンW2とを接続する。 In the first embodiment, an example in which the grinding machine 100 forms a crankshaft by grinding the work W will be described. The crankshaft is composed of a crank journal W1, a crank pin W2, and a crank arm W3. The crank journal W1 is a shaft held by the bearing of the engine. The shaft of the crank journal W1 coincides with the spindle during machining by the grinding machine 100. The crank pin W2 is a circular cross-sectional portion connected to the connecting rod of the piston. The crank pin W2 has a shaft at a position away from the shaft of the crank journal W1 so that the piston reciprocates due to the rotation of the crankshaft. The crank arm W3 connects the crank journal W1 and the crank pin W2.
 基台110には、砥石台130をY軸方向にスライド可能に支持するY軸ガイド部111と、Y軸ガイド部111に沿って砥石台130をY軸方向に移動させるY軸アクチュエータ112とを備える。Y軸アクチュエータ112は、直動モータによって構成されてもよいし、ボールねじと回転モータとの組み合わせによって構成されてもよい。 The base 110 includes a Y-axis guide portion 111 that slidably supports the grindstone base 130 in the Y-axis direction, and a Y-axis actuator 112 that moves the grindstone base 130 in the Y-axis direction along the Y-axis guide portion 111. Be prepared. The Y-axis actuator 112 may be configured by a linear motor or a combination of a ball screw and a rotary motor.
 支持装置120は、略円筒状のワークWの一端を支持する主軸台121と、他端を支持する芯押し台122とを備える。主軸台121には、ワークWを軸回りに回転させる回転モータ123と、回転モータ123の回転角を計測する主軸センサ124とを備える。 The support device 120 includes a headstock 121 that supports one end of a substantially cylindrical work W, and a tailstock 122 that supports the other end. The headstock 121 includes a rotary motor 123 that rotates the work W about an axis, and a spindle sensor 124 that measures the rotation angle of the rotary motor 123.
 砥石台130は、砥石131と、X軸ガイド部132と、X軸アクチュエータ133と、変位センサ134と、回転モータ135と、回転角センサ136とを備える。
 砥石131は、円盤状に形成され、回転モータ135によって中心軸回りに回転される。砥石131は、中心軸がY軸と平行になるように設けられる。砥石131の面には、修正錘を取り付けるための複数の取付孔が同一円周上に等間隔に設けられる。
 X軸ガイド部132は、基台110に対して砥石台130をX軸方向にスライド可能に支持する。
 X軸アクチュエータ133は、X軸ガイド部132に沿って砥石131をX軸方向に移動させる。X軸方向は砥石131の切り込み方向である。X軸アクチュエータ133は、直動モータによって構成されてもよいし、ボールねじと回転モータとの組み合わせによって構成されてもよい。
 変位センサ134は、基台110に対する砥石台130のX軸方向の変位を計測する。変位センサ134は、例えばリニアエンコーダによって構成される。
 回転モータ135は、砥石131を中心軸回りに回転させる。
 回転角センサ136は、砥石131の回転角を計測する。回転角センサ136は、例えばロータリエンコーダによって構成される。
The grindstone base 130 includes a grindstone 131, an X-axis guide portion 132, an X-axis actuator 133, a displacement sensor 134, a rotation motor 135, and a rotation angle sensor 136.
The grindstone 131 is formed in a disk shape and is rotated around a central axis by a rotary motor 135. The grindstone 131 is provided so that the central axis is parallel to the Y axis. On the surface of the grindstone 131, a plurality of mounting holes for mounting the correction weight are provided on the same circumference at equal intervals.
The X-axis guide portion 132 slidably supports the grindstone base 130 with respect to the base 110 in the X-axis direction.
The X-axis actuator 133 moves the grindstone 131 in the X-axis direction along the X-axis guide portion 132. The X-axis direction is the cutting direction of the grindstone 131. The X-axis actuator 133 may be configured by a linear motor, or may be configured by a combination of a ball screw and a rotary motor.
The displacement sensor 134 measures the displacement of the grindstone base 130 with respect to the base 110 in the X-axis direction. The displacement sensor 134 is composed of, for example, a linear encoder.
The rotary motor 135 rotates the grindstone 131 around the central axis.
The rotation angle sensor 136 measures the rotation angle of the grindstone 131. The rotation angle sensor 136 is composed of, for example, a rotary encoder.
 すなわち、第1の実施形態に係る研削盤100では、支持装置120の主軸台121および芯押し台122の間にワークWを支持し、砥石131によってワークWの外周面を研削加工する。 That is, in the grinding machine 100 according to the first embodiment, the work W is supported between the headstock 121 and the tailstock 122 of the support device 120, and the outer peripheral surface of the work W is ground by the grindstone 131.
 図2は、砥石とワークと定寸ゲージとの位置関係を示す研削盤の断面図である。
 定寸ゲージ140は、砥石台130に設けられ、ワークWの外周面に接触しながらワークWの寸法を計測する。第1の実施形態に係る定寸ゲージ140は、ワークWのうち、砥石131による研削点と同一周面上において、寸法を計測する。
FIG. 2 is a cross-sectional view of a grinding machine showing the positional relationship between the grindstone, the work, and the fixed size gauge.
The fixed size gauge 140 is provided on the grindstone base 130 and measures the dimensions of the work W while contacting the outer peripheral surface of the work W. The sizing gauge 140 according to the first embodiment measures the dimensions of the work W on the same peripheral surface as the grinding point by the grindstone 131.
 定寸ゲージ140は、ゲージ本体141、第1アーム142、第2アーム143、スタンド144を備える。ゲージ本体141は、ワークWの周面の2点に内接する凹部を有するVブロックと、Vブロックの凹部の中央に設けられた計測部とを有する馬乗りゲージである。第1アーム142の第1端は、ゲージ本体141に固定される。第1アーム142の第2端は、第2アーム143の第1端に回転可能に支持される。第2アーム143の第2端は、スタンド144に回転可能に支持される。スタンド144は、砥石台130に固定される。
 第1アーム142および第2アーム143は、ゲージ本体141の計測部が常にワークWのクランクピンW2部分に接触するようにゲージ本体141を支持する。クランクピンW2の中心軸は、研削盤100の主軸から離れた位置にあるため、ワークWの回転に伴って、計測部が当たる位置がクランクピンW2の断面円における同一位相(例えば、35度の位置)から±10度前後変化する。
The fixed size gauge 140 includes a gauge body 141, a first arm 142, a second arm 143, and a stand 144. The gauge body 141 is a horse riding gauge having a V block having recesses inscribed at two points on the peripheral surface of the work W and a measuring unit provided in the center of the recesses of the V block. The first end of the first arm 142 is fixed to the gauge body 141. The second end of the first arm 142 is rotatably supported by the first end of the second arm 143. The second end of the second arm 143 is rotatably supported by the stand 144. The stand 144 is fixed to the grindstone base 130.
The first arm 142 and the second arm 143 support the gauge body 141 so that the measuring portion of the gauge body 141 always contacts the crank pin W2 portion of the work W. Since the central axis of the crank pin W2 is located away from the main axis of the grinding machine 100, the position where the measuring unit hits as the work W rotates is in the same phase (for example, 35 degrees) in the cross-sectional circle of the crank pin W2. It changes about ± 10 degrees from the position).
《制御装置の構成》
 図3は、第1の実施形態に係る制御装置の構成を示す概略ブロック図である。
 制御装置150は、Y軸アクチュエータ112、回転モータ123、X軸アクチュエータ133、および回転モータ135を制御する。制御装置150は、プロセッサ151、メインメモリ153、ストレージ155、インタフェース157を備える。プロセッサ151は、プログラムをストレージ155から読み出してメインメモリ153に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ151は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ153に確保する。
 プログラムは、制御装置150に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ155に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、制御装置150は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ151によって実現される機能の一部または全部が当該集積回路によって実現されてよい。
<< Configuration of control device >>
FIG. 3 is a schematic block diagram showing a configuration of the control device according to the first embodiment.
The control device 150 controls the Y-axis actuator 112, the rotary motor 123, the X-axis actuator 133, and the rotary motor 135. The control device 150 includes a processor 151, a main memory 153, a storage 155, and an interface 157. The processor 151 reads a program from the storage 155, expands it into the main memory 153, and executes the above processing according to the program. Further, the processor 151 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 153 according to the program.
The program may be for realizing a part of the functions exerted by the control device 150. For example, the program may exert its function in combination with another program already stored in the storage 155, or in combination with another program mounted on another device. In another embodiment, the control device 150 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, some or all of the functions realized by the processor 151 may be realized by the integrated circuit.
 ストレージ155の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ155は、制御装置150のバスに直接接続された内部メディアであってもよいし、インタフェース157または通信回線を介して制御装置150に接続される外部メディアであってもよい。また、このプログラムが通信回線によって制御装置150に配信される場合、配信を受けた制御装置150が当該プログラムをメインメモリ153に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ155は、一時的でない有形の記憶媒体である。 Examples of storage 155 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory and the like. The storage 155 may be an internal medium directly connected to the bus of the control device 150, or an external medium connected to the control device 150 via the interface 157 or a communication line. When this program is distributed to the control device 150 by a communication line, the distributed control device 150 may expand the program to the main memory 153 and execute the above processing. In at least one embodiment, the storage 155 is a non-temporary tangible storage medium.
 プロセッサ151は、プログラムの実行により、計測値取得部511、目標切込量特定部512、誤差算出部513、目標状態量算出部514、指令値算出部515、指令出力部516、計測位置補償部517、推定モデル518、寸法推定部519、表示制御部520として機能する。 By executing the program, the processor 151 executes the measurement value acquisition unit 511, the target depth of cut amount identification unit 512, the error calculation unit 513, the target state amount calculation unit 514, the command value calculation unit 515, the command output unit 516, and the measurement position compensation unit. It functions as 517, an estimation model 518, a dimension estimation unit 519, and a display control unit 520.
 計測値取得部511は、主軸センサ124、変位センサ134、および定寸ゲージ140から計測値を取得する。つまり、計測値取得部511は、砥石131のX軸方向の変位の計測値L、主軸の回転角の計測値θ、およびワークWの寸法の計測値xを取得する。 The measurement value acquisition unit 511 acquires the measurement value from the spindle sensor 124, the displacement sensor 134, and the sizing gauge 140. That is, the measurement value acquisition unit 511 acquires the measurement value L of the displacement of the grindstone 131 in the X-axis direction, the measurement value θ of the rotation angle of the spindle, and the measurement value x of the dimensions of the work W.
 目標切込量特定部512は、計測値取得部511が取得した砥石131のX軸方向の変位の計測値L、主軸の回転角の計測値θ、およびワークWの目標形状に基づいて、砥石131の目標切込量xを特定する。ここで、図2を参照しながら、目標切込量特定部512による具体的な目標切込量xの特定方法を説明する。まず目標切込量特定部512は、計測値取得部511が取得した主軸の回転角の計測値θとワークWの目標形状とから、砥石131と対向する目標形状に係るクランクピンW2の中心軸の位置Oを特定する。次に、目標切込量特定部512は、砥石131の半径R、主軸からクランクピンW2の中心軸までの距離E、X軸の変位の計測値L、主軸の回転角の計測値θ、およびワークWの目標半径rに基づいて、ワークWの直径方向の目標切込量xを算出する。具体的には、以下の式(1)に基づいてワークWの半径rを算出する。そして、目標切込量特定部512は、ワークWの半径rから目標形状に係る半径rを減算した値を2倍することで、ワークWの直径当たりの目標切込量xを算出する。目標切込量特定部512は、特定した目標切込量xを、図2に示すクランクピンW2と砥石131の当たり点のピン角度Ψに関連付けてメインメモリ153に記録する。 The target depth of cut specifying unit 512 is based on the measured value L of the displacement of the grindstone 131 in the X-axis direction acquired by the measured value acquisition unit 511, the measured value θ of the rotation angle of the spindle, and the target shape of the work W. The target depth of cut x r of 131 is specified. Here, a specific method for specifying the target cut amount x r by the target cut amount specifying unit 512 will be described with reference to FIG. First, the target depth of cut specifying unit 512 is the central axis of the crankpin W2 related to the target shape facing the grindstone 131 from the measured value θ of the rotation angle of the spindle acquired by the measured value acquisition unit 511 and the target shape of the work W. Specify the position O of. Next, the target depth of cut specifying portion 512 includes the radius R of the grindstone 131, the distance E from the spindle to the central axis of the crank pin W2, the measured value L of the displacement of the X axis, the measured value θ of the rotation angle of the spindle, and Based on the target radius r 0 of the work W, the target depth of cut x r in the radial direction of the work W is calculated. Specifically, the radius r of the work W is calculated based on the following equation (1). Then, the target cut amount specifying unit 512 calculates the target cut amount x r per the diameter of the work W by doubling the value obtained by subtracting the radius r 0 related to the target shape from the radius r of the work W. .. The target cut amount specifying unit 512 records the specified target cut amount x r in the main memory 153 in association with the pin angle Ψ of the contact point between the crank pin W2 and the grindstone 131 shown in FIG.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 誤差算出部513は、計測値に基づいて求められたワークWの半径r、変位指令値Lref、角度指令値θrefおよびワークWの目標形状に基づいて、X軸アクチュエータ133および回転モータ123の制御誤差によって生じるワークWの直径当たりの輪郭誤差を算出する。変位指令値Lrefは、X軸アクチュエータ133の変位の目標値、角度指令値θrefは、主軸の回転角の目標値である。具体的には、誤差算出部513は、以下の式(2)に基づいて、ワークWの直径当たりの輪郭誤差Δを算出する。誤差算出部513は、特定した輪郭誤差Δを、当たり点のピン角度Ψに関連付けてメインメモリ153に記録する。 The error calculation unit 513 of the X-axis actuator 133 and the rotary motor 123 is based on the radius r of the work W, the displacement command value L ref , the angle command value θ ref, and the target shape of the work W obtained based on the measured values. The contour error per diameter of the work W caused by the control error is calculated. The displacement command value L ref is the target value of the displacement of the X-axis actuator 133, and the angle command value θ ref is the target value of the rotation angle of the spindle. Specifically, error calculation unit 513, based on the following equation (2), calculates a drag error delta r per diameter of the workpiece W. Error calculating unit 513, the identified drag error delta r, it is recorded in the main memory 153 in association with the pin angle Ψ of points per.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 目標状態量算出部514は、X軸アクチュエータ133の変位の目標値に基づいて砥石131の変位に係る状態量の目標値を算出する。具体的には、目標状態量算出部514は、砥石131のX軸方向の目標速度、目標加速度、および目標ジャークの値を算出する。 The target state amount calculation unit 514 calculates the target value of the state amount related to the displacement of the grindstone 131 based on the target value of the displacement of the X-axis actuator 133. Specifically, the target state quantity calculation unit 514 calculates the target speed, target acceleration, and target jerk value of the grindstone 131 in the X-axis direction.
 指令値算出部515は、砥石131の状態量の目標値に基づいてX軸アクチュエータ133の電流指令値を算出する。具体的には、指令値算出部515は、砥石131の状態量の目標値を当該目標値を達成するための電流値に変換することで、電流指令値を算出する。 The command value calculation unit 515 calculates the current command value of the X-axis actuator 133 based on the target value of the state quantity of the grindstone 131. Specifically, the command value calculation unit 515 calculates the current command value by converting the target value of the state quantity of the grindstone 131 into a current value for achieving the target value.
 指令出力部516は、指令値算出部515が算出した電流指令値をX軸アクチュエータ133に出力する。また指令出力部516は、所定の回転数で主軸を回転させるための電流指令値を、回転モータ123に出力する。 The command output unit 516 outputs the current command value calculated by the command value calculation unit 515 to the X-axis actuator 133. Further, the command output unit 516 outputs a current command value for rotating the spindle at a predetermined rotation speed to the rotary motor 123.
 計測位置補償部517は、目標切込量xおよび輪郭誤差Δについて、クランクピンW2における砥石131の当たり点と定寸ゲージ140の当たり点との位相差を補償する。つまり、計測位置補償部517は、クランクピンW2のうち定寸ゲージ140によって計測された点に対応した、研削された時点の砥石131の目標切込量x(Ψ)および輪郭誤差Δ(Ψ)を特定する。
 具体的には、計測位置補償部517は、メインメモリ153に記録された、クランクピンW2と砥石131の当たり点のピン角度Ψの中から、定寸ゲージ140が当たる角度Ψに最も近い角度を示すものを特定する。計測位置補償部517は、特定した角度に係る定寸ゲージ140が当たる角度Ψに関連付けられた、砥石131の目標切込量x(Ψ)、および輪郭誤差Δ(Ψ)を特定する。
The measurement position compensation unit 517 compensates for the phase difference between the contact point of the grindstone 131 and the contact point of the fixed size gauge 140 at the crank pin W2 with respect to the target depth of cut x r and the contour error Δ r . That is, the measurement position compensation unit 517 has a target depth of cut x rto ) and a contour error Δ r of the grindstone 131 at the time of grinding corresponding to the points measured by the fixed size gauge 140 of the crank pin W2. Identify (Ψ ~ ).
Specifically, the measurement position compensation unit 517 is the angle closest to the angle Ψ to which the fixed size gauge 140 hits from the pin angle Ψ of the contact point between the crank pin W2 and the grindstone 131 recorded in the main memory 153. Identify what indicates. The measurement position compensation unit 517 determines the target depth of cut x r~ ) of the grindstone 131 and the contour error Δ r~ ) associated with the angle Ψ ~ that the fixed size gauge 140 related to the specified angle hits. Identify.
 推定モデル518は、ワークWの寸法の計測値x、砥石131の目標切込量x、および制御誤差によって生じるワークWの輪郭誤差Δを入力することで、ワーク撓み、計測外乱、および制御誤差などの影響を考慮したワークWの寸法の推定値を出力するモデルである。ワーク撓み、計測外乱、および制御誤差は、ワークWの寸法の計測値に乗る雑音の一例である。推定モデル518は、ワーク撓み、計測外乱、およびクランクピンW2と砥石131との位置関係に鑑みた数理モデルに基づいたカルマンフィルタによって構成される。 Estimation model 518, by inputting a drag error delta r of the workpiece W caused by the target depth of cut x r, and the control error of the measured value x, the grinding wheel 131 of the dimensions of the workpiece W, the workpiece bending, measured disturbances, and control This is a model that outputs an estimated value of the size of the work W in consideration of the influence of an error or the like. Work deflection, measurement disturbance, and control error are examples of noise on the measured values of the work W dimensions. The estimation model 518 is composed of a Kalman filter based on a mathematical model in consideration of workpiece deflection, measurement disturbance, and the positional relationship between the crank pin W2 and the grindstone 131.
 ここで、推定モデル518の設計思想について説明する。
 砥石131によるワークWの実際の切込量は、撓みによるワークWの変位量を考慮すると、目標切込量xを入力、ワークWの実寸法に係る説明変数zを状態、およびT、Mを動特性パラメータとした状態方程式によって表すことができる。また、ワークWの寸法の計測値xは、ワークWの実寸法に係る説明変数zを状態、Nを動特性パラメータとした出力方程式によって表すことができる。なお、動特性パラメータT、MおよびNは、スカラーまたは行列である。
 つまり、砥石131によるワークWの実際の切込量は、以下の式(3)によって表される。また、寸法の計測値xは、以下の式(4)によって表される。
 式(3)は、クランクピンW2における砥石131の当たり点での状態方程式である。式(3)を、定寸ゲージ140の当たり点での状態方程式に変換するには、クランクピンW2における砥石131の当たり点と定寸ゲージ140の当たり点との位相差を時変むだ時間として表現すればよい。つまり,砥石131との当たり点で研削された部分は、ある時間(時変むだ時間)を経て定寸ゲージ140との当たり点で計測される。具体的には、式(3)の目標切込量xに計測位置補償部517で特定したx(Ψ)を代入すればよい。
Here, the design concept of the estimation model 518 will be described.
For the actual cutting amount of the work W by the grindstone 131, considering the displacement amount of the work W due to bending, input the target cutting amount x r , set the explanatory variable z related to the actual size of the work W, and T, M. Can be expressed by the equation of state with the dynamic characteristic parameter. Further, the measured value x of the dimension of the work W can be expressed by an output equation in which the explanatory variable z related to the actual dimension of the work W is the state and N is the dynamic characteristic parameter. The dynamic characteristic parameters T, M and N are scalars or matrices.
That is, the actual cutting amount of the work W by the grindstone 131 is expressed by the following equation (3). Further, the measured value x of the dimension is expressed by the following equation (4).
Equation (3) is an equation of state at the contact point of the grindstone 131 on the crank pin W2. In order to convert the equation (3) into the equation of state at the contact point of the fixed size gauge 140, the phase difference between the contact point of the grindstone 131 and the contact point of the fixed size gauge 140 at the crank pin W2 is set as the time-varying time. You can express it. That is, the portion ground at the contact point with the grindstone 131 is measured at the contact point with the fixed size gauge 140 after a certain time (time-varying time). Specifically, x rto ) specified by the measurement position compensation unit 517 may be substituted for the target depth of cut x r in the equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、計測外乱η(θ)およびワークWの輪郭誤差Δ(Ψ)を鑑みると、寸法の計測値xは、以下の式(5)のように表すことができる。 Here, in consideration of the measurement disturbance η d (θ) and the contour error Δ rto ) of the work W, the measured value x of the dimension can be expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、ワークWの実寸法に係る状態zと計測外乱η(θ)を統合した新たな状態zθを構成する。具体的には、式(5)は、式(6)として表すことができる。 Here, a new state z θ is constructed by integrating the state z related to the actual size of the work W and the measurement disturbance η d (θ). Specifically, the equation (5) can be expressed as the equation (6).
Figure JPOXMLDOC01-appb-M000006
 なお、wはカルマンフィルタにおいて鑑みられる観測ノイズの項である。つまり、式(6)は、状態zθと輪郭誤差Δ(Ψ)の関数h{zθ、Δ(Ψ)}として表すことができる。
Figure JPOXMLDOC01-appb-M000006
Note that w is a term of observed noise considered in the Kalman filter. That is, Equation (6), the function h {z θ, Δ r ( Ψ ~)} state z theta and drag error delta r ([psi ~) can be expressed as.
 ここで、式(3)におけるワークWの実寸法に係る状態zを、ワークWの実寸法に係る状態zと計測外乱η(θ)の状態zθとして扱うことで、式(3)を、式(7)として表すことができる。ただし、式(7)は、簡単のため計測外乱η(θ)が一定値外乱であると仮定した式である。研削中は砥石131の移動やクーラントによる計測外乱が大きいため、実際には、これらの外乱をモデル化して式(7)に組み込むとよい。 Here, the equation (3) is expressed by treating the state z related to the actual size of the work W in the equation (3) as the state z related to the actual size of the work W and the state z θ of the measurement disturbance η d (θ). , Can be expressed as equation (7). However, the equation (7) is an equation assuming that the measurement disturbance η d (θ) is a constant value disturbance for the sake of simplicity. Since the movement of the grindstone 131 and the measurement disturbance due to the coolant are large during grinding, it is actually preferable to model these disturbances and incorporate them into the equation (7).
Figure JPOXMLDOC01-appb-M000007
 なお、vはカルマンフィルタにおいて鑑みられるシステムノイズの項である。つまり、式(7)は、状態zθと目標切込量x(Ψ)の関数f{zθ、x(Ψ)}と表すことができる。
Figure JPOXMLDOC01-appb-M000007
Note that v is a term of system noise considered in the Kalman filter. That is, Equation (7), the function f {z θ, x r ( Ψ ~)} state z theta and a target depth of cut x r ([psi ~) can be expressed as.
 上記の式(6)および式(7)に基づいてカルマンフィルタを構成することで、以下の式(8)に示す推定モデル518を設計することができる。 By constructing the Kalman filter based on the above equations (6) and (7), the estimation model 518 shown in the following equation (8) can be designed.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 すなわち、推定モデル518は、寸法と計測外乱に係る状態の推定値zθ^、寸法の計測値x、輪郭誤差Δ(Ψ)、および目標切込量x(Ψ)を変数に持つ時間発展モデルのカルマンフィルタである。 That is, estimation model 518, the estimated value z theta ^ state according to the dimensions and measurement disturbance, the measurement value x dimension, (~ [psi) drag error delta r, and the target depth of cut x r ([psi ~) variables It is a Kalman filter of the time evolution model that it has.
 寸法推定部519は、計測値取得部511が取得した寸法の計測値x、目標切込量特定部512が特定した目標切込量x(Ψ)、および誤差算出部513が算出した輪郭誤差Δ(Ψ)を推定モデル518に入力することで、砥石による研削の様々な影響を除去したワークWの寸法の推定値を得る。ここで、目標切込量x(Ψ)と輪郭誤差Δ(Ψ)は、計測位置補償部517により特定した値を用いることで、クランクピンW2における砥石131の当たり点と定寸ゲージ140の当たり点との位相差を補償した寸法推定が可能となる。 The dimension estimation unit 519 includes the measurement value x of the dimension acquired by the measurement value acquisition unit 511, the target depth of cut x r~ ) specified by the target depth of cut identification unit 512, and the contour calculated by the error calculation unit 513. By inputting the error Δ r~ ) into the estimation model 518, an estimated value of the dimensions of the work W from which various effects of grinding by the grindstone are removed is obtained. Here, (~ [psi) target depth of cut x r~) and drag error delta r, by using the specified value by measuring the position compensation unit 517, and a point per grinding wheel 131 in the crank pin W2 sizing It is possible to estimate the dimensions by compensating for the phase difference from the contact point of the gauge 140.
 表示制御部520は、寸法推定部519が推定した寸法の推定値に基づいて、ワークWの真円度を表す画面の表示信号を表示装置160に出力する。 The display control unit 520 outputs a display signal on the screen indicating the roundness of the work W to the display device 160 based on the estimated value of the dimensions estimated by the dimension estimation unit 519.
《制御装置の動作》
 図4は、第1の実施形態に係る制御装置の動作を示すフローチャートである。
 研削盤100がワークWの加工を開始すると、計測値取得部511は、主軸センサ124から主軸の回転角の計測値を、変位センサ134から砥石131のX軸方向の変位の計測値を、定寸ゲージ140からワークWの寸法の計測値をそれぞれ取得する(ステップS1)。目標切込量特定部512は、ステップS1で取得した主軸の回転角の計測値および砥石131のX軸方向の変位の計測値と上述の式(1)とに基づいて、ワークWの半径を算出する(ステップS2)。また目標切込量特定部512は、算出したワークWの半径とワークWの目標形状とに基づいて、ワークWの直径当たりの目標切込量を特定する(ステップS3)。目標切込量特定部512は、図2に示すクランクピンW2と砥石131の当たり点のピン角度Ψに関連付けて、特定した目標切込量をメインメモリ153に記録する。
<< Operation of control device >>
FIG. 4 is a flowchart showing the operation of the control device according to the first embodiment.
When the grinding machine 100 starts machining the work W, the measurement value acquisition unit 511 determines the measurement value of the rotation angle of the spindle from the spindle sensor 124 and the measurement value of the displacement of the grindstone 131 in the X-axis direction from the displacement sensor 134. The measured values of the dimensions of the work W are acquired from the dimension gauge 140 (step S1). The target depth of cut specifying unit 512 determines the radius of the work W based on the measured value of the rotation angle of the spindle acquired in step S1, the measured value of the displacement of the grindstone 131 in the X-axis direction, and the above equation (1). Calculate (step S2). Further, the target cut amount specifying unit 512 specifies the target cut amount per diameter of the work W based on the calculated radius of the work W and the target shape of the work W (step S3). The target cutting amount specifying unit 512 records the specified target cutting amount in the main memory 153 in association with the pin angle Ψ of the contact point between the crank pin W2 and the grindstone 131 shown in FIG.
 誤差算出部513は、ステップS2で特定したワークWの半径、主軸の角度指令値、砥石131のX軸方向の変位指令値、およびワークWの目標形状と、上述の式(2)とに基づいて、ワークWの直径当たりの輪郭誤差を算出する(ステップS4)。誤差算出部513は、図2に示すクランクピンW2と砥石131の当たり点のピン角度Ψに関連付けて、算出した輪郭誤差Δをメインメモリ153に記録する。 The error calculation unit 513 is based on the radius of the work W specified in step S2, the angle command value of the spindle, the displacement command value of the grindstone 131 in the X-axis direction, the target shape of the work W, and the above equation (2). Then, the contour error per diameter of the work W is calculated (step S4). Error calculating unit 513, in association with the pin angle Ψ of points per crank pin W2 and the grindstone 131 shown in FIG. 2, and records the calculated drag error delta r in the main memory 153.
 目標状態量算出部514は、X軸アクチュエータ133の変位の目標値に基づいて砥石131の変位に係る状態量の目標値を算出する(ステップS5)。指令値算出部515は、ステップS5で算出した状態量の目標値に基づいてX軸アクチュエータ133の電流指令値を算出する(ステップS6)。指令出力部516は、ステップS6で算出した電流指令値をX軸アクチュエータ133に出力する。また指令出力部516は、所定の回転数で主軸を回転させるための電流指令値を、回転モータ123に出力する(ステップS7)。 The target state amount calculation unit 514 calculates the target value of the state amount related to the displacement of the grindstone 131 based on the target value of the displacement of the X-axis actuator 133 (step S5). The command value calculation unit 515 calculates the current command value of the X-axis actuator 133 based on the target value of the state quantity calculated in step S5 (step S6). The command output unit 516 outputs the current command value calculated in step S6 to the X-axis actuator 133. Further, the command output unit 516 outputs a current command value for rotating the spindle at a predetermined rotation speed to the rotary motor 123 (step S7).
 計測位置補償部517は、メインメモリ153に記録された、クランクピンW2と砥石131の当たり点のピン角度Ψの中から、定寸ゲージ140が当たる角度Ψに最も近いものを特定する(ステップS8)。計測位置補償部517は、ステップS8で特定した角度に係る定寸ゲージ140が当たる角度Ψに関連付けられた、砥石131の目標切込量、および輪郭誤差を特定する(ステップS9)。すなわち、計測位置補償部517は、クランクピンW2における砥石131の当たり点と定寸ゲージ140の当たり点との位相差を補償したワークWの直径当たりの目標切込量、および輪郭誤差を特定する。寸法推定部519は、ステップS1で取得した寸法の計測値、ならびにステップS9で特定した輪郭誤差および目標切込量を、推定モデル518に入力することで、ワークWの寸法の推定値を得る(ステップS10)。 Measuring the position compensation unit 517, stored in main memory 153, from the pin angle [psi points per crank pin W2 and the grindstone 131, identifies the closest to the angle [psi ~ the sizing gauge 140 hits (step S8). The measurement position compensation unit 517 specifies the target depth of cut of the grindstone 131 and the contour error associated with the angle Ψ to which the fixed size gauge 140 related to the angle specified in step S8 hits (step S9). That is, the measurement position compensation unit 517 specifies the target depth of cut per diameter of the work W that compensates for the phase difference between the contact point of the grindstone 131 and the contact point of the fixed size gauge 140 at the crank pin W2, and the contour error. .. The dimension estimation unit 519 obtains an estimated value of the dimension of the work W by inputting the measured value of the dimension acquired in step S1 and the contour error and the target depth of cut specified in step S9 into the estimation model 518. Step S10).
 表示制御部520は、寸法推定部519が推定した寸法の推定値に基づいて、ワークWの真円度を表す画面を更新し、当該画面の表示信号を表示装置160に出力する(ステップS11)。 The display control unit 520 updates the screen showing the roundness of the work W based on the estimated value of the dimensions estimated by the dimension estimation unit 519, and outputs the display signal of the screen to the display device 160 (step S11). ..
 制御装置150は、ワークWの加工が終了したか否かを判定する(ステップS12)。加工が終了していない場合(ステップS12:NO)、ステップS1に処理を戻し、加工制御を継続する。他方、加工が終了した場合(ステップS12:YES)、制御装置150は加工制御を終了する。 The control device 150 determines whether or not the machining of the work W has been completed (step S12). If the machining is not completed (step S12: NO), the machining is returned to step S1 and the machining control is continued. On the other hand, when the machining is completed (step S12: YES), the control device 150 ends the machining control.
《作用・効果》
 第1の実施形態に係る制御装置150は、定寸ゲージ140による寸法の計測値と、砥石131の目標切込量とを、推定モデルに入力することで、ワークWの寸法の推定値を得る。このように、制御装置150は、定寸ゲージ140による寸法の計測値、砥石131の目標切込量、およびモデルに基づいてワークWの寸法を推定することで、ワークWの撓みなどの砥石131による研削の影響や計測外乱を除去してワークWの寸法を推定することができる。
 図5は、第1の実施形態に係る制御装置による真円度の計測結果の例を示す図である。図5に示すように、制御装置150が図4に示す方法でリアルタイムに計測した真円度は、後工程において計測された真円度と同程度の精度が得られることがわかる。これに対して、定寸ゲージ140による寸法の計測値そのもの(定寸ゲージによるリアルタイム測定値)は、後工程において計測された真円度に対して大きく誤差を有する。このことから、第1の実施形態によれば、砥石131による研削の影響や計測外乱を除去してワークWの寸法を推定することができることがわかる。
《Action / Effect》
The control device 150 according to the first embodiment obtains an estimated value of the dimension of the work W by inputting the measured value of the dimension by the fixed size gauge 140 and the target depth of cut of the grindstone 131 into the estimation model. .. In this way, the control device 150 estimates the dimensions of the work W based on the measured value of the dimensions by the fixed size gauge 140, the target depth of cut of the grindstone 131, and the model, so that the grindstone 131 such as the bending of the work W The size of the work W can be estimated by removing the influence of grinding and measurement disturbance caused by the grinding wheel.
FIG. 5 is a diagram showing an example of a measurement result of roundness by the control device according to the first embodiment. As shown in FIG. 5, it can be seen that the roundness measured by the control device 150 in real time by the method shown in FIG. 4 can obtain the same accuracy as the roundness measured in the subsequent process. On the other hand, the measured value of the dimension by the fixed size gauge 140 (real-time measured value by the fixed size gauge) has a large error with respect to the roundness measured in the subsequent process. From this, it can be seen that according to the first embodiment, the size of the work W can be estimated by removing the influence of grinding by the grindstone 131 and the measurement disturbance.
 また、第1の実施形態に係る制御装置150は、変位センサ134による変位の計測値と回転角センサ136による回転モータ123の回転角の計測値とに基づいて、X軸アクチュエータ133および回転モータ123の制御誤差によって生じるワークWの輪郭誤差を算出し、当該輪郭誤差に基づいてワークWの寸法の推定値を補正する。これにより、制御装置150は、X軸アクチュエータ133および回転モータ123の制御誤差の影響を考慮してワークWの寸法を推定することができる。なお、他の実施形態においては、制御装置150は、X軸アクチュエータ133および回転モータ123の制御誤差を加味せずにワークWの寸法を推定してもよい。 Further, the control device 150 according to the first embodiment has the X-axis actuator 133 and the rotation motor 123 based on the displacement measurement value by the displacement sensor 134 and the rotation angle measurement value of the rotation motor 123 by the rotation angle sensor 136. The contour error of the work W caused by the control error of the work W is calculated, and the estimated value of the dimension of the work W is corrected based on the contour error. As a result, the control device 150 can estimate the size of the work W in consideration of the influence of the control error of the X-axis actuator 133 and the rotary motor 123. In another embodiment, the control device 150 may estimate the dimensions of the work W without taking into account the control errors of the X-axis actuator 133 and the rotary motor 123.
 また、第1の実施形態に係る制御装置150は、砥石131が当たる位置から定寸ゲージ140が当たる位置までワークWが移動するむだ時間を補償した輪郭誤差および目標切込量を推定モデルに入力する。これにより、砥石131による研削点と定寸ゲージ140による計測点とが異なる場合にも、適切にワークWの寸法を推定することができる。 Further, the control device 150 according to the first embodiment inputs to the estimation model the contour error and the target depth of cut that compensate for the dead time for the work W to move from the position where the grindstone 131 hits to the position where the fixed size gauge 140 hits. To do. As a result, even when the grinding point by the grindstone 131 and the measurement point by the fixed size gauge 140 are different, the size of the work W can be estimated appropriately.
 なお、第1の実施形態に係る制御装置150に係る推定モデルは、寸法の計測値を変数に持つ観測モデルと、寸法の推定値と目標切込量とを変数に持つ時間発展モデルとを有するカルマンフィルタである。他方、他の実施形態においては、これに限られない。例えば、他の実施形態に係る推定モデルは、寸法の計測値および目標切込量の入力により、ワークWの寸法を出力するように訓練された学習済みモデルであってもよい。学習済みモデルは、例えばニューラルネットワークによって構成されてよい。 The estimation model related to the control device 150 according to the first embodiment has an observation model having a measured value of dimensions as a variable and a time evolution model having an estimated value of dimensions and a target depth of cut as variables. It is a Kalman filter. On the other hand, in other embodiments, it is not limited to this. For example, the estimation model according to another embodiment may be a trained model trained to output the dimensions of the work W by inputting the measured values of the dimensions and the target depth of cut. The trained model may be constructed by, for example, a neural network.
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、第1の実施形態においては、研削盤100の制御装置150が真円度を計測するが、これに限られない。例えば、他の実施形態においては、定寸ゲージ140を備え、真円度の表示機能を有する寸法推定装置を既存の研削盤100に取り付けてもよい。この場合、寸法推定装置は、第1の実施形態に係る制御装置150の目標状態量算出部514、指令値算出部515、および指令出力部516の構成を有しなくてよい。また他の実施形態において、定寸ゲージ140を備える研削盤100に、第1の実施形態に係る寸法推定機能を実現するためのプログラムをインストールしたPCを接続し、当該PCによってワークWの真円度を推定してもよい。
Although one embodiment has been described in detail with reference to the drawings, the specific configuration is not limited to the above, and various design changes and the like can be made.
For example, in the first embodiment, the control device 150 of the grinding machine 100 measures the roundness, but the present invention is not limited to this. For example, in another embodiment, a dimensional estimation device provided with a fixed size gauge 140 and having a roundness display function may be attached to the existing grinding machine 100. In this case, the dimension estimation device does not have to have the configuration of the target state quantity calculation unit 514, the command value calculation unit 515, and the command output unit 516 of the control device 150 according to the first embodiment. Further, in another embodiment, a PC having a program for realizing the dimension estimation function according to the first embodiment is connected to a grinding machine 100 provided with a fixed size gauge 140, and the work W is a perfect circle by the PC. The degree may be estimated.
 また、第1の実施形態に係る定寸ゲージ140は、馬乗りゲージであるが、これに限られない。例えば、他の実施形態に係る定寸ゲージ140は、ワークWを両側から挟み込むことで直径を計測するものなど、三点計測以外の方式に係る定寸ゲージ140であってもよい。 Further, the fixed size gauge 140 according to the first embodiment is a horse riding gauge, but is not limited to this. For example, the sizing gauge 140 according to another embodiment may be a sizing gauge 140 according to a method other than the three-point measurement, such as one that measures the diameter by sandwiching the work W from both sides.
 また、第1の実施形態に係る研削盤100は、ワークWからクランクシャフトを切り出すが、これに限られない。例えば、他の実施形態に係る研削盤100は、ワークWから円筒状の軸など、断面円形状の他の物体を切り出すものであってもよい。 Further, the grinding machine 100 according to the first embodiment cuts out the crankshaft from the work W, but the present invention is not limited to this. For example, the grinding machine 100 according to another embodiment may cut out another object having a circular cross section, such as a cylindrical shaft, from the work W.
 また、第1の実施形態に係る制御装置150の推定モデルは、ワークWの寸法に影響を与える研削抵抗やびびりを変数に含むものであってよい。この場合、計測値取得部511は、主軸の回転角の計測値、砥石131のX軸方向の変位の計測値、ワークWの寸法の計測値以外に、砥石の回転モータ135のトルクおよび回転角の計測値、X軸アクチュエータ133の推力なども取得する。 Further, the estimation model of the control device 150 according to the first embodiment may include grinding resistance and chatter that affect the dimensions of the work W as variables. In this case, the measurement value acquisition unit 511 has the torque and rotation angle of the rotary motor 135 of the grindstone in addition to the measurement value of the rotation angle of the spindle, the measurement value of the displacement of the grindstone 131 in the X-axis direction, and the measurement value of the dimension of the work W. The measured value of, the thrust of the X-axis actuator 133, and the like are also acquired.
 例えば、第1の実施形態に係る制御装置150は、研削盤100を制御するものであるが、これに限られない。例えば、他の実施形態に係る制御装置150は、砥石131以外の工具を用いた産業機械を制御するものであってよい。また、他の実施形態においては、制御装置150に代えて、外付けの計測機器がワークWの真円度を推定してもよい。 For example, the control device 150 according to the first embodiment controls the grinding machine 100, but is not limited to this. For example, the control device 150 according to another embodiment may control an industrial machine using a tool other than the grindstone 131. Further, in another embodiment, the roundness of the work W may be estimated by an external measuring device instead of the control device 150.
 本発明の上記開示によれば、砥石による研削の影響を除去してワークの寸法を推定することができる。 According to the above disclosure of the present invention, the size of the work can be estimated by removing the influence of grinding by the grindstone.
100…研削盤 110…基台 111…Y軸ガイド部 112…Y軸アクチュエータ 120…支持装置 121…主軸台 122…芯押し台 123…回転モータ 124…主軸センサ 130…砥石台 131…砥石 132…X軸ガイド部 133…X軸アクチュエータ 134…変位センサ 135…回転モータ 136…回転角センサ 140…定寸ゲージ 141…ゲージ本体 第1142…アーム 第2143…アーム 144…スタンド 150…制御装置 151…プロセッサ 153…メインメモリ 155…ストレージ 157…インタフェース 160…表示装置 511…計測値取得部 512…目標切込量特定部 513…誤差算出部 514…目標状態量算出部 515…指令値算出部 516…指令出力部 517…計測位置補償部 518…推定モデル 519…寸法推定部 520…表示制御部 W…ワーク W1…クランクジャーナル W2…クランクピン W3…クランクアーム 100 ... Grinding machine 110 ... Base 111 ... Y-axis guide 112 ... Y-axis actuator 120 ... Support device 121 ... Headstock 122 ... tailstock 123 ... Rotating motor 124 ... Spindle sensor 130 ... Grinding table 131 ... Grinding stone 132 ... X Axis guide unit 133 ... X-axis actuator 134 ... Displacement sensor 135 ... Rotation motor 136 ... Rotation angle sensor 140 ... Fixed size gauge 141 ... Gauge body 1142 ... Arm 2143 ... Arm 144 ... Stand 150 ... Control device 151 ... Processor 153 ... Main memory 155 ... Storage 157 ... Interface 160 ... Display device 511 ... Measurement value acquisition unit 512 ... Target depth of cut specification unit 513 ... Error calculation unit 514 ... Target state amount calculation unit 515 ... Command value calculation unit 516 ... Command output unit 517 ... Measurement position compensation unit 518 ... Estimated model 519 ... Dimension estimation unit 520 ... Display control unit W ... Work W1 ... Crank journal W2 ... Crank pin W3 ... Crank arm

Claims (7)

  1.  ワークに接触して前記ワークを加工する工具と、
     前記工具を切り込み方向に移動させるアクチュエータと、
     前記ワークの寸法を計測するゲージと、
     前記アクチュエータを制御する制御装置と
     を備え、
     前記制御装置は、
     前記ゲージによる前記寸法の計測値を取得する計測値取得部と、
     前記工具による目標切込量を特定する目標切込量特定部と、
     前記ゲージによる前記寸法の計測値と前記目標切込量と雑音との関係に基づいて生成された、前記寸法の計測値および前記目標切込量を入力することで前記ワークの寸法の推定値を出力する推定モデルと、
     前記寸法の計測値および前記目標切込量を前記推定モデルに入力することで、前記寸法の推定値を得る寸法推定部と
     を備える産業機械。
    A tool that comes into contact with the work and processes the work,
    An actuator that moves the tool in the cutting direction and
    A gauge that measures the dimensions of the work and
    A control device for controlling the actuator is provided.
    The control device
    A measurement value acquisition unit that acquires the measurement value of the dimension by the gauge,
    A target cutting amount specifying part that specifies the target cutting amount by the tool,
    By inputting the measured value of the dimension and the target cut amount generated based on the relationship between the measured value of the dimension by the gauge, the target depth of cut and noise, the estimated value of the dimension of the work can be obtained. The estimated model to output and
    An industrial machine including a dimensional estimation unit that obtains an estimated value of the dimension by inputting a measured value of the dimension and the target depth of cut into the estimation model.
  2.  前記アクチュエータの変位を計測する変位センサを備え、
     前記制御装置は、前記アクチュエータの変位指令値と前記変位の計測値に基づいて前記アクチュエータの制御誤差によって生じる前記ワークの輪郭誤差を算出する誤差算出部を備え、
     前記推定モデルは、前記寸法の計測値、前記目標切込量、および前記ワークの輪郭誤差を入力することで前記ワークの寸法の推定値を出力する
     請求項1に記載の産業機械。
    A displacement sensor for measuring the displacement of the actuator is provided.
    The control device includes an error calculation unit that calculates the contour error of the work caused by the control error of the actuator based on the displacement command value of the actuator and the measured value of the displacement.
    The industrial machine according to claim 1, wherein the estimation model outputs an estimated value of the dimension of the work by inputting a measured value of the dimension, the target depth of cut, and a contour error of the work.
  3.  前記ワークを主軸回りに回転させる回転モータと、
     前記回転モータの回転角を計測する回転角センサと
     を備え、
     前記計測値取得部は、前記回転角センサによる前記回転角の計測値を取得し、
     前記誤差算出部は、前記変位指令値および前記変位の計測値、前記回転モータの角度指令値および前記回転角の計測値、ならびに前記ワークの目標形状とに基づいて、前記アクチュエータの制御誤差によって生じる前記ワークの輪郭誤差を算出する
     請求項2に記載の産業機械。
    A rotary motor that rotates the work around the spindle and
    It is equipped with a rotation angle sensor that measures the rotation angle of the rotation motor.
    The measurement value acquisition unit acquires the measurement value of the rotation angle by the rotation angle sensor, and obtains the measurement value.
    The error calculation unit is generated by a control error of the actuator based on the displacement command value and the measured value of the displacement, the angle command value of the rotating motor and the measured value of the rotation angle, and the target shape of the work. The industrial machine according to claim 2, wherein the contour error of the work is calculated.
  4.  前記寸法推定部は、前記ワークが前記工具が当たる位置から前記ゲージが当たる位置まで移動するむだ時間に基づいて、前記輪郭誤差および前記目標切込量を前記推定モデルに入力する
     請求項2または請求項3に記載の産業機械。
    Claim 2 or claim that the dimension estimation unit inputs the contour error and the target depth of cut into the estimation model based on the dead time for the work to move from the position where the tool hits to the position where the gauge hits. Item 3. The industrial machine according to item 3.
  5.  前記推定モデルは、前記寸法の計測値を変数に持つ観測モデルと、前記寸法の推定値と、前記目標切込量とを変数に持つ時間発展モデルとを有するカルマンフィルタである
     請求項1から請求項4の何れか1項に記載の産業機械。
    The estimation model is a Kalman filter having an observation model having the measured value of the dimension as a variable, an estimated value of the dimension, and a time evolution model having the target depth of cut as a variable. The industrial machine according to any one of 4.
  6.  アクチュエータにより工具を切り込み方向に移動させることで加工されるワークの寸法を推定する寸法推定装置であって
     前記寸法の計測値を取得する計測値取得部と、
     前記アクチュエータの目標切込量を特定する目標切込量特定部と、
     前記寸法の計測値と前記目標切込量と雑音との関係に基づいて生成された、前記寸法の計測値および前記アクチュエータの目標切込量を入力することで前記ワークの寸法の推定値を出力する推定モデルと、
     前記寸法の計測値および前記目標切込量を前記推定モデルに入力することで、前記寸法の推定値を得る寸法推定部と
     を備える寸法推定装置。
    A dimension estimation device that estimates the dimensions of the workpiece to be machined by moving the tool in the cutting direction with an actuator, and a measurement value acquisition unit that acquires the measurement values of the dimensions.
    A target depth of cut specifying part that specifies the target depth of cut of the actuator,
    The estimated value of the dimension of the work is output by inputting the measured value of the dimension and the target depth of cut of the actuator generated based on the relationship between the measured value of the dimension and the target depth of cut and noise. Estimated model to be
    A dimension estimation device including a dimension estimation unit that obtains an estimated value of the dimension by inputting a measured value of the dimension and the target depth of cut into the estimation model.
  7.  アクチュエータにより工具を切り込み方向に移動させることで加工されるワークの寸法推定方法であって
     前記ワークの寸法の計測値を取得するステップと、
     前記アクチュエータの目標切込量を特定するステップと、
     前記寸法の計測値と前記目標切込量と雑音との関係に基づいて生成された、前記寸法の計測値および前記アクチュエータの目標切込量を入力することで前記ワークの寸法の推定値を出力する推定モデルに、前記寸法の計測値および前記目標切込量を入力することで、前記寸法の推定値を得るステップと
     を備える寸法推定方法。
    A method of estimating the dimensions of a workpiece to be machined by moving a tool in the cutting direction with an actuator, and a step of acquiring a measured value of the dimensions of the workpiece.
    The step of specifying the target depth of cut of the actuator and
    The estimated value of the dimension of the work is output by inputting the measured value of the dimension and the target depth of cut of the actuator generated based on the relationship between the measured value of the dimension and the target depth of cut and noise. A dimensional estimation method including a step of obtaining an estimated value of the dimension by inputting a measured value of the dimension and the target depth of cut into the estimation model.
PCT/JP2020/014134 2019-03-29 2020-03-27 Industrial machine, dimension estimation device, and dimension estimation method WO2020203817A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217027506A KR102629252B1 (en) 2019-03-29 2020-03-27 Industrial machines, dimension estimation devices, and dimension estimation methods
CN202080017871.8A CN113518689B (en) 2019-03-29 2020-03-27 Industrial machine, dimension estimation device, and dimension estimation method
DE112020000654.9T DE112020000654T5 (en) 2019-03-29 2020-03-27 Industrial machine, device for estimating a size, and method for estimating a size

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068540A JP7184697B2 (en) 2019-03-29 2019-03-29 Industrial machine, dimension estimation device, and dimension estimation method
JP2019-068540 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203817A1 true WO2020203817A1 (en) 2020-10-08

Family

ID=72668264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014134 WO2020203817A1 (en) 2019-03-29 2020-03-27 Industrial machine, dimension estimation device, and dimension estimation method

Country Status (5)

Country Link
JP (1) JP7184697B2 (en)
KR (1) KR102629252B1 (en)
CN (1) CN113518689B (en)
DE (1) DE112020000654T5 (en)
WO (1) WO2020203817A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294864A (en) * 1995-04-25 1996-11-12 Toyoda Mach Works Ltd Grinding device
JP2012115987A (en) * 2012-02-16 2012-06-21 Shigiya Machinery Works Ltd Grinder
JP2017501895A (en) * 2013-12-19 2017-01-19 エルヴィン ユンカー グラインディング テクノロジー アクツィオヴァ・スポレチュノストErwin Junker Grinding Technology a.s. Method and machine for measuring and forming the outer target contour of a workpiece by grinding
JP2018001301A (en) * 2016-06-28 2018-01-11 株式会社小松製作所 Machine tool, work-piece manufacturing method, and processing system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE547895A (en) * 1955-05-18 1900-01-01
CN85105480A (en) * 1985-07-17 1987-01-14 通用电气公司 Machine tool monitor gaging technigue
JP4487387B2 (en) * 1999-06-25 2010-06-23 株式会社ジェイテクト Roundness measuring device
JP5277692B2 (en) * 2008-03-31 2013-08-28 株式会社ジェイテクト Post-process sizing controller
US8517797B2 (en) * 2009-10-28 2013-08-27 Jtekt Corporation Grinding machine and grinding method
JP6345341B2 (en) * 2015-04-08 2018-06-20 三菱電機株式会社 Grinding method and grinding apparatus
CN106312468A (en) * 2016-11-16 2017-01-11 陕西启源科技发展有限责任公司 Turntable bearing machining method
US11167382B2 (en) * 2017-09-18 2021-11-09 Agathon AG, Maschinenfabrik Method and machine equipment for manufacturing of a cutting tool
JP2019068540A (en) 2017-09-29 2019-04-25 アズビル株式会社 Battery replacement information detection device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294864A (en) * 1995-04-25 1996-11-12 Toyoda Mach Works Ltd Grinding device
JP2012115987A (en) * 2012-02-16 2012-06-21 Shigiya Machinery Works Ltd Grinder
JP2017501895A (en) * 2013-12-19 2017-01-19 エルヴィン ユンカー グラインディング テクノロジー アクツィオヴァ・スポレチュノストErwin Junker Grinding Technology a.s. Method and machine for measuring and forming the outer target contour of a workpiece by grinding
JP2018001301A (en) * 2016-06-28 2018-01-11 株式会社小松製作所 Machine tool, work-piece manufacturing method, and processing system

Also Published As

Publication number Publication date
JP2020163547A (en) 2020-10-08
CN113518689B (en) 2023-07-07
CN113518689A (en) 2021-10-19
DE112020000654T5 (en) 2021-12-09
KR20210118177A (en) 2021-09-29
KR102629252B1 (en) 2024-01-25
JP7184697B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
CN109414792B (en) Machine tool, method of manufacturing workpiece, and machining system
US8374717B2 (en) Vibration suppressing method and vibration suppressing device for machine tool
JPS6033006A (en) Truing device for cylindrical grinding wheel
JP5272569B2 (en) Chatter simulation apparatus and chatter simulation method
WO2020203817A1 (en) Industrial machine, dimension estimation device, and dimension estimation method
JP3634146B2 (en) Grinding wheel shaping error correction method, grinding wheel shaping / straight groove forming grinding error correction method, and error correction devices thereof
JP4940904B2 (en) Bulk quantity measuring device
JP5446889B2 (en) Grinding machine and grinding method
JP3939959B2 (en) Crankshaft processing machine pin diameter measurement method
JP6987174B2 (en) Grinding equipment, manufacturing method of workpieces, and grinding system
JP2019155557A (en) Method for estimation of drive shaft deviation in machine tool and machine tool with use thereof
JP7241587B2 (en) Industrial machine, eccentricity identification device, eccentricity identification method, and program
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP2020116714A (en) Grinder and operation method for probing device thereof
WO2024075303A1 (en) Workpiece mass determination device, machining estimation device, and machining system
WO2023047437A1 (en) Processing estimation device
JPS63237866A (en) Highly precision grinding machine
WO2024075284A1 (en) Contact dynamic stiffness calculation system, machining estimation device, and proccessing system
WO2022163348A1 (en) Onboard measurement system
JP5631758B2 (en) Vibration suppression device
JP3865974B2 (en) Cylindrical grinding machine
WO2001007975A1 (en) Method and device for correcting tool position errors in machine tools
JP2020114614A (en) Surface roughness estimation device and machine tool system
JP2023182240A (en) Oscillation measurement device
JP2023148918A (en) Ball screw effective diameter measurement method. and screw griding device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027506

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20782717

Country of ref document: EP

Kind code of ref document: A1