WO2022163348A1 - Onboard measurement system - Google Patents

Onboard measurement system Download PDF

Info

Publication number
WO2022163348A1
WO2022163348A1 PCT/JP2022/000696 JP2022000696W WO2022163348A1 WO 2022163348 A1 WO2022163348 A1 WO 2022163348A1 JP 2022000696 W JP2022000696 W JP 2022000696W WO 2022163348 A1 WO2022163348 A1 WO 2022163348A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
frequency component
grinding
measurement
machine
Prior art date
Application number
PCT/JP2022/000696
Other languages
French (fr)
Japanese (ja)
Inventor
祐生 増田
徹 河原
眞 野々山
慎二 村上
明 齋藤
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to DE112022000851.2T priority Critical patent/DE112022000851T5/en
Priority to CN202280007806.6A priority patent/CN116529023A/en
Publication of WO2022163348A1 publication Critical patent/WO2022163348A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/04Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally

Definitions

  • This disclosure relates to an on-board measurement system.
  • Patent Document 1 describes an example of an automatic dimension measuring device.
  • This automatic dimension measuring device includes a control unit that performs roundness analysis processing. Then, the control unit controls the grinding device to perform sizing processing of the workpiece based on the measurement data measured by the sizing device, and analyzes the roundness of the workpiece based on the measurement data of the sizing device. It is designed to
  • the automatic dimension measuring device described in Patent Document 1 only analyzes the roundness using the measurement data from the sizing device.
  • a plurality of devices may be provided for measuring each of the shape of the workpiece, the state of the ground surface, the operating state of the grinding device, and the like.
  • the entire system including the grinding device becomes complicated and expensive, and it may take time to obtain processing quality.
  • An object of the present disclosure is to provide an on-machine measurement system that can obtain the processing quality of grinding at low cost and in a short time in the in-process of grinding.
  • the on-machine measurement system includes an on-machine measurement device provided in the grinding machine for measuring the surface condition of the workpiece ground by the grinding wheel in the grinding machine and outputting measurement data representing the surface condition of the workpiece;
  • the upper measuring device obtains measurement data by moving the measurement position on the surface of the workpiece relative to the workpiece at least in the circumferential direction, and obtains the low frequency component of the frequency components of the measurement data and A workpiece ground by a grinding machine using either a high-frequency component in a higher frequency range than the low-frequency component among the frequency components, or the low-frequency component and the high-frequency component among the frequency components of the measurement data.
  • an output device that performs a plurality of analyzes related to the processing quality of and outputs a plurality of analysis results.
  • the on-machine measurement device provided in the grinding machine measures the surface condition of the workpiece, and the output device acquires the low-frequency component, the high-frequency component, and the A number of analyzes relating to the machining quality of the workpiece can be performed using the measured data of either the low frequency component or the high frequency component.
  • the output device can output a plurality of analysis results obtained by the analysis.
  • the onboard measurement system for example, only the low frequency component of the measurement data, only the high frequency component of the measurement data, or both the low frequency component and the high frequency component of the measurement data are used to output a plurality of analysis results. be able to.
  • the first low frequency component and the second low frequency component of the measurement data, the first high frequency component and the second high frequency component of the measurement data, the first low frequency component of the measurement data A plurality of analysis results can be output by appropriately combining the low frequency component and the high frequency component such as the frequency component and the second high frequency component, or the second low frequency component and the first high frequency component of the measurement data.
  • the on-machine measurement system it is possible to use an on-machine measurement device with a simple configuration for measuring the surface condition of the workpiece, so the configuration of the system can be simplified and the cost can be reduced.
  • the on-board measurement system by appropriately combining the low frequency component and the high frequency component of the measurement data measured by the on-board measurement device, when collecting and analyzing each measurement data from a plurality of measurement devices Compared to , the time required to obtain analysis results can be shortened.
  • FIG. 1 is a plan view showing the configuration of the grinding device.
  • FIG. 2 is a diagram for explaining the on-board measuring device.
  • FIG. 3 is a flow chart showing the grinding process of the grinding device.
  • FIG. 4 is a diagram for explaining the surface properties of the workpiece.
  • FIG. 5 is a diagram for explaining the surface properties caused by the grindstone.
  • FIG. 6 is a diagram for explaining the surface texture caused by the grindstone.
  • FIG. 7 is a diagram for explaining the surface texture caused by center-to-center relative vibration.
  • FIG. 8 is a block diagram showing the configuration of the on-board measurement system.
  • FIG. 9 is a diagram for explaining the measurement of the first measurement data.
  • FIG. 10 is a diagram for explaining the measurement of the second measurement data.
  • FIG. 9 is a diagram for explaining the measurement of the first measurement data.
  • FIG. 11 is a block diagram showing the configuration of the first data analysis processing section of the output device.
  • FIG. 12 is a block diagram showing the configuration of the second data analysis processing section of the output device.
  • FIG. 13 is a block diagram showing the configuration of the output processing section of the output device.
  • FIG. 14 is a diagram for explaining an analysis result regarding the shape of the workpiece by the output processing unit.
  • 15A and 15B are diagrams for explaining analysis results regarding the machine state by the output processing unit.
  • FIG. FIG. 16 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit.
  • FIG. 17 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit.
  • FIG. 18 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit.
  • FIG. 19 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit.
  • FIG. 20 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit.
  • the on-machine measurement system H will be described below with reference to the drawings.
  • the on-machine measurement system H includes a grinding device 10, an on-machine measurement device 20, and an output device 30, as shown in FIG.
  • the on-machine measurement system H of this example also includes an image output device 40 .
  • the on-machine measuring device 20 measures the surface (grinding surface) of the workpiece W during or after being ground by the grinding device 10, and the output device 30 measures the on-machine measuring device 20 Various data analysis processes are performed on the basis of the measurement data measured by , and a plurality of analysis results relating to the machining quality of the workpiece W are output.
  • the image output device 40 of this example outputs the plurality of analysis results output from the output device 30 as images.
  • examples of measurement data detected by the on-machine measuring device 20 include vibration acceleration and vibration displacement (amplitude) generated corresponding to the surface state (surface texture) of the workpiece W. can be done.
  • the on-machine measuring device 20 can directly or indirectly contact the workpiece W to measure the measurement data, and can also measure the measurement data without contacting the workpiece W (non-contact). It is possible to measure In this example, the case where the on-machine measuring device 20 measures the displacement on the surface of the workpiece W and the acceleration related to the displacement will be described as an example.
  • the grinding apparatus 10 includes a bed 11, a grinding wheel 12, a grinding wheel head 13, a headstock 14, a tailstock 15, a spindle table 16, and a controller 17.
  • a measuring device 20 is provided.
  • the workpiece W rotates while being supported by the headstock 14 and the tailstock 15 at both ends in the rotation axis direction.
  • the case where the workpiece W is columnar or cylindrical is illustrated.
  • the grinding device 10 forms the shape of the workpiece W by bringing the grinding wheel 12 into contact with the surface (outer peripheral surface) of the rotating workpiece W and grinding it.
  • the grinding wheel 12 is rotatably supported on the grinding wheel base 13 around an axis parallel to the Z-axis.
  • a wheelhead guide portion 11a is fixed on the bed 11, and a wheelhead 13 is supported by the wheelhead guide portion 11a so as to be movable in the X-axis direction.
  • a grinding wheel rotating motor 12a controlled by a controller 17 applies rotational driving force to the grinding wheel 12, and the grinding wheel 12 rotates around the rotation axis.
  • the grinding wheel 13 moves in the X-axis direction, the grinding wheel 12 approaches and grinds the workpiece W spaced apart in the X-axis direction.
  • the spindle table guide portion 11b is fixed at a position separated from the wheelhead guide portion 11a in the X-axis direction.
  • the spindle table guide portion 11b supports the spindle table 16 so as to be movable in the Z-axis direction.
  • a headstock 14 and a tailstock 15 are arranged on the spindle table 16 so as to face each other. Both ends of the workpiece W are rotatably supported by the headstock 14 and the tailstock 15, and rotational driving force is applied from a spindle rotation motor 14a controlled by the controller 17 to rotate.
  • the on-machine measuring device 20 of this example is formed including a so-called sizing device. As shown in FIGS. 1 and 2, the on-machine measuring device 20 includes a pair of probes 21 that are contact portions that come into contact with the surface of the workpiece W, and a pair of fingers 22 that support the probes 21 .
  • the probe 21 is provided so as to contact the surface of the workpiece W at two points across the rotation center O of the workpiece W, as shown in FIG.
  • the pair of fingers 22 are provided with a probe 21 at their distal end portions, and are exchangeable by detaching their proximal end portions.
  • the on-machine measuring device 20 is supported by an axial movement device 23 and is movable in the axial direction of the workpiece W, that is, in the Z-axis direction. Movement of the on-machine measuring device 20 in the Z-axis direction is controlled by an axial movement control section 24 .
  • the movement in the Z-axis direction is not limited to that by the axial movement device 23, and for example, it is possible to use the shift function of the main shaft and the tailstock shaft of the grinding device 10.
  • the on-machine measuring device 20 measures the unevenness of the outer periphery of the workpiece W as the surface condition of the workpiece W by converting the mechanical displacement of the probe 21 into an electrical signal related to the displacement and acceleration.
  • the on-machine measuring device 20 measures the outer diameter of the workpiece W, that is, the surface condition of the workpiece W, in a frequency range of less than 60 Hz, for example. That is, the on-machine measuring device 20 can measure the low-frequency component of the frequency characteristics of the surface state of the workpiece W.
  • the on-board measuring device 20 also has a high-frequency component measuring device 25 attached to at least one of the pair of fingers 22 .
  • the high-frequency component measuring device 25 of this example mainly includes an acceleration sensor added by being attached to the finger 22, and among the frequency characteristics of the surface state of the workpiece W, for example, in a frequency range of 60 Hz or more, the workpiece Measure the acceleration associated with the displacement value at the W surface state. That is, the high-frequency component measuring device 25 measures the acceleration associated with the displacement (vibration) generated in the finger 22 when the probe 21 moves relative to the workpiece W while in contact with the surface of the workpiece W. It is measured as a high frequency component which is in a higher frequency region than the low frequency component in the frequency characteristic of the surface state of W.
  • the high-frequency component measuring device 25 is not limited to adding an acceleration sensor. can be used.
  • the on-board measuring device 20 measures displacement instead of acceleration, processing for converting acceleration to displacement, which will be described later, is not required.
  • the grinding device 10 grinds the workpiece W through a plurality of steps shown in FIG.
  • the grinding process is divided according to the difference in grindstone feed rate, and is performed in the order of rough grinding process St1, fine grinding process St2, fine grinding process St3, and spark-out process St4.
  • the grindstone feed rate in each process is as follows: coarse grinding process St1>fine grinding process St2>fine grinding process St3>spark-out process St4.
  • a rough shape of the workpiece W is formed.
  • the surface shape of the workpiece W is adjusted while the grindstone feed rate is decreased.
  • the final spark-out step St4 the surface of the workpiece W is finished, and the workpiece W is completed.
  • the on-machine measuring device 20 operates during the period from the rough grinding step St1 during grinding of the workpiece W to the spark-out step St4, or after the spark-out step St4 when grinding is completed.
  • the surface condition of the workpiece W is measured.
  • the on-machine measurement system H outputs a plurality of analysis results related to machining quality, which will be described later, in-process. and includes after the spark-out step St4.
  • the surface texture S which is one of the processing qualities of the workpiece W ground by the grinding device 10
  • the surface texture S of the workpiece W includes, as indicated by the solid line and the two-dot chain line in FIG.
  • the surface texture S2 is synthesized due to the center-to-center relative vibration in which the vibration generated by the relative fluctuation between the grinding wheel 12 and the workpiece W, that is, between the centers is transferred.
  • the surface texture S that is, the surface texture S1 and the surface texture S2 are measured by the on-machine measuring device 20 as measurement data.
  • the measurement data measured by the on-board measuring device 20 includes the low frequency component measured by the probe 21 and the high frequency component measured by the high frequency component measuring device 25 . Therefore, it can be said that the surface texture S is determined by synthesizing the low frequency component and the high frequency component.
  • the surface texture S1 caused by the grindstone is the surface texture of the workpiece W in the circumferential direction and the axial direction.
  • a surface texture S12 with a static workpiece reference radius including components is synthesized.
  • the surface texture S11 is, for example, chatter vibration (hereinafter referred to as “chatter degree”), which is unevenness caused by the grindstone in the circumferential direction of one cross section of the workpiece W, or chatter vibration in the axial direction of the workpiece W. It reflects the machining accuracy such as the degree of variation in degree (hereinafter referred to as "scale degree").
  • the surface texture S2 due to center-to-center relative vibration is the surface texture in the circumferential direction of one cross section of the workpiece W, and as shown in FIG. 7, low frequency components and high frequency components are synthesized. That is, the surface texture S2 is a combination of the surface texture S21, which is a high-frequency component, and the surface texture S22, which is a low-frequency component.
  • the surface texture S2 includes, for example, the shape of the workpiece W, which depends on the machining accuracy such as roundness, runout amount of the ground surface, coaxiality, vibration of the grinding device 10, and self-excited vibration during machining. , reflect machine and machining conditions such as spark-out effects.
  • the output device 30 of this example extracts low frequency components and high frequency components from the measurement data measured by the on-board measurement device 20 . Then, the output device 30 performs various data analysis processes on the extracted (acquired) low-frequency component and high-frequency component, and outputs a plurality of analysis results using the various data analysis processes.
  • the output device 30 includes a basic data acquisition unit 31, a first data analysis processing unit 32, a second data analysis processing unit 33, and an output processing unit 34, as shown in FIG.
  • the output device 30 has, for example, a processor and a memory storing instructions such as a program. The operations of the data analysis processing unit 33 and the output processing unit 34 may be performed.
  • the basic data acquisition unit 31 acquires measurement data (displacement and acceleration) detected by the on-machine measuring device 20 during or after grinding. Specifically, as shown in FIG. 8, the basic data acquisition unit 31 acquires the first measurement data K1 output from the on-board measurement device 20 as the first basic data D1, and the second measurement data K2 as the first basic data D1. Obtained as two basic data D2.
  • the on-machine measuring device 20 sets measurement positions for measuring the displacement and acceleration according to the surface state of the workpiece W in the circumferential direction and the axial direction with respect to the workpiece W.
  • the first measurement data K ⁇ b>1 in the case of relative spiral movement is detected and output to the basic data acquisition unit 31 . That is, when acquiring the first basic data D1, the probe 21 of the on-machine measuring device 20 is brought into contact with the surface of the work W while the work W is rotated, and the axial movement device 23 moves the on-machine The measuring device 20 is moved continuously in the axial direction of the workpiece W. As shown in FIG.
  • the measurement position in this example is the position where the probe 21 of the on-machine measuring device 20 contacts the surface of the workpiece W.
  • the first measurement data K1 includes the measurement data (displacement) of the low frequency component and the measurement data (acceleration) of the high frequency component measured by the high frequency component measuring device 25 .
  • the on-machine measuring device 20 does not move the measuring position spirally, but allows the measuring position to be at the same position in the axial direction (the same position in the axial direction) or at a distance in the axial direction.
  • the second measurement data K ⁇ b>2 for one round of the outer peripheral surface of the workpiece W when the workpiece W is moved to the target is detected and output to the basic data acquisition unit 31 . That is, while the workpiece W is rotated, the probe 21 of the on-machine measuring device 20 is brought into contact with the surface of the workpiece W, and the axial movement device 23 moves the on-machine measuring device 20 in the axial direction of the workpiece W. stop at the same position.
  • the second measurement data K2 includes low-frequency component measurement data (displacement) and high-frequency component measurement data (acceleration) measured by the high-frequency component measuring device 25 .
  • the basic data acquisition unit 31 acquires the spirally detected first measurement data K1 as the first basic data D1. Further, the basic data acquisition unit 31 acquires the second measurement data K2 for one round acquired at the same position in the axial direction as the second basic data D2. Then, the basic data acquisition unit 31 outputs the first basic data D1 and the second basic data D2 to the first data analysis processing unit 32 and the second data analysis processing unit 33, respectively.
  • first basic data D1 and the second basic data D2 are time-series data relating to displacement and acceleration.
  • the first basic data D1 and the second basic data D2 are generally acquired as data with the time axis as a reference. It may be converted into reference data.
  • the first data analysis processing unit 32 extracts low-frequency components from the frequency characteristics of the first basic data D1 and the second basic data D2, and performs various data analysis processes described later on the extracted low-frequency components. Calculate a plurality of first analysis results. Therefore, as shown in FIG. 11, the first data analysis processing unit 32 includes a low-frequency component extraction unit 321, a spiral low-frequency waveform generation unit 322, a low-frequency center-to-center relative vibration waveform generation unit 323, and a workpiece reference radius calculation unit. A part 324 is mainly provided.
  • the low-frequency component extraction unit 321 performs a fast Fourier transform (hereinafter referred to as "FFT") on the first basic data D1 acquired from the basic data acquisition unit 31, and out of the frequency characteristics of the first basic data D1, A low frequency component D11 is extracted.
  • FFT fast Fourier transform
  • the low-frequency component extraction unit 321 performs FFT on the second basic data D2 acquired from the basic data acquisition unit 31, and extracts the low-frequency component D21, which is the first analysis result, out of the frequency characteristics of the second basic data D2. Extract.
  • the low-frequency component extraction unit 321 extracts the low-frequency components of the first basic data D1 and the second basic data D2, which are in the frequency range of, for example, less than 60 Hz (about 15 to 50 peaks as a waveform) as the low-frequency components. Extract.
  • the spiral low-frequency waveform generator 322 performs an inverse fast Fourier transform (hereinafter referred to as "inverse FFT") on the low-frequency component D11 of the first basic data D1 extracted by the low-frequency component extractor 321.
  • the first basic data D1 is the first measurement data K1 (displacement) spirally detected along the outer peripheral surface (surface) of the workpiece W by the on-machine measuring device 20 .
  • the spiral low-frequency waveform generator 322 calculates the spiral low-frequency waveform SLW representing the waveform of the low-frequency component D11 of the displacement fluctuation, ie, the vibration, of the workpiece W in the spiral direction as the first analysis result.
  • the low-frequency center-to-center relative vibration waveform generation unit 323 performs inverse FFT on the low-frequency component D21 of the second basic data D2 extracted by the low-frequency component extraction unit 321.
  • the second basic data D2 is the second measurement data K2 (displacement) detected at the same axial position of the workpiece W by the on-machine measuring device 20 .
  • a one-section low-frequency waveform representing the low-frequency component D21 of the displacement fluctuation, ie, the vibration, in the circumferential direction (one turn) of the workpiece W can be obtained. .
  • the one-section low-frequency waveform for example, the relative position of the grinding wheel 12 and the workpiece W, which does not change greatly during grinding of one workpiece W, such as pump pulsation in the grinding device 10 and the setting accuracy of the workpiece W. It represents the relative vibration (low-frequency relative vibration between centers) generated due to the change in the center-to-center distance, and can be regarded as the same along the axial direction of the workpiece W for one workpiece W. Therefore, the low-frequency relative center-to-center vibration waveform generator 323 calculates the one-section low-frequency waveform obtained by performing the inverse FFT as the low-frequency relative center-to-center vibration waveform LDV, which is the first analysis result.
  • the workpiece reference radius calculator 324 calculates the spiral low-frequency waveform SLW generated by the spiral low-frequency waveform generator 322 and the low-frequency relative center-to-center vibration waveform LDV generated by the low-frequency relative center-to-center vibration waveform generator 323. , is used to calculate the workpiece reference radius R resulting from the transfer of the surface state of the grinding surface of the grinding wheel 12 to the surface of the ground workpiece W. Specifically, the workpiece reference radius calculator 324 calculates the workpiece reference radius R as the first analysis result by subtracting the low frequency center-to-center relative vibration waveform LDV from the spiral low frequency waveform SLW.
  • the low-frequency center-to-center relative vibration waveform LDV is a single-section low-frequency waveform that is assumed to be the same in the axial direction of the workpiece W, as described above.
  • the workpiece reference radius calculator 324 adds (copies) the low-frequency center-to-center relative vibration waveform LDV by the number that matches the spiral number C of the spiral low-frequency waveform SLW according to the following equation 1, and calculates the spiral low-frequency
  • a workpiece reference radius R is calculated by subtracting from the waveform SLW.
  • R SLW - C x LDV ... Formula 1
  • the second data analysis processing unit 33 extracts high-frequency components from the frequency characteristics of the first basic data D1 and the second basic data D2, and performs various data processing on the extracted high-frequency components to obtain a plurality of second data. Calculate the second analysis result. Therefore, as shown in FIG. 12, the second data analysis processing unit 33 includes a spiral high-frequency component extraction unit 331, a one-section high-frequency component extraction unit 332, a spiral high-frequency waveform generation unit 333, and a high-frequency center-to-center relative vibration waveform generation unit 334. , and a grindstone surface unevenness calculator 335 .
  • the spiral high-frequency component extraction unit 331 performs FFT on the first basic data D1 acquired from the basic data acquisition unit 31, and further converts the acceleration data into displacement data, thereby extracting the high-frequency component out of the frequency characteristics of the first basic data D1.
  • a component is extracted as a spiral high frequency component D12.
  • the first basic data D1 is the first measurement data K1 (acceleration) spirally detected along the outer peripheral surface of the workpiece W by the on-machine measuring device 20 .
  • the spiral high-frequency component extraction unit 331 extracts, as high-frequency components, frequency characteristics in a frequency range of, for example, 60 Hz or higher and lower than the upper limit frequency of detection by the on-board measuring device 20 (about 50 to 500 crests as a waveform) as spiral high-frequency components. Extract as D12.
  • the 1-cross-section high-frequency component extraction unit 332 performs FFT on the second basic data D2 acquired from the basic data acquisition unit 31, and further converts the acceleration data into displacement data, thereby obtaining, among the frequency characteristics of the second basic data D2, A high frequency component D22 is extracted. Further, the one-section high-frequency component extracting unit 332 extracts, from the extracted high-frequency component D22, the grinding wheel rotation frequency component fg corresponding to the number of revolutions of the grinding wheel 12 and the high-frequency component excluding its harmonics, as one-section high-frequency component D221. .
  • the second basic data D2 is the second measurement data K2 (acceleration) detected by the on-machine measuring device 20 at the same position in the axial direction of the workpiece W.
  • the high-frequency component extracted from the second basic data D2 corresponds to one round of the workpiece W in the circumferential direction, that is, one section of the workpiece W.
  • the one-section high-frequency component extraction unit 332 also extracts, as high-frequency components, a frequency range of, for example, 60 Hz or higher and lower than the upper limit frequency of detection by the on-board measuring device 20 (about 50 to 500 peaks as a waveform) as high-frequency components D22. do.
  • the spiral high-frequency waveform generation unit 333 performs inverse FFT on the spiral high-frequency component D12 of the first basic data D1 extracted by the spiral high-frequency component extraction unit 331. As a result, the spiral high-frequency waveform generator 333 calculates a spiral high-frequency waveform SHW representing the waveform of the spiral high-frequency component D12 of the displacement fluctuation, ie, the vibration, of the workpiece W in the spiral direction as the second analysis result.
  • the high-frequency center-to-center relative vibration waveform generation unit 334 performs inverse FFT on the one-section high-frequency component D221 of the second basic data D2 extracted by the one-section high-frequency component extraction unit 332.
  • the inverse FFT is performed on the one-section high-frequency component D221 obtained by excluding the grinding wheel rotation frequency component fg and its harmonics from the high-frequency component of the second basic data D2, the displacement fluctuation in the circumferential direction (one round) of the workpiece W, that is, A one-section high-frequency waveform representing the one-section high-frequency component D221 of the vibration is obtained.
  • the one-section high-frequency component D221 does not include the grinding wheel rotation frequency component fg corresponding to the number of revolutions of the grinding wheel 12 and its harmonics. Therefore, the one-section high-frequency waveform includes the surface texture S of the workpiece W (more specifically, the surface texture S2 caused by center-to-center relative vibration) other than the grinding wheel rotation frequency component fg corresponding to the rotation speed of the grinding wheel 12 and its harmonics. represents the vibration that affects the surface texture S22) in .
  • examples of vibrations that affect the surface texture S22 of the workpiece W include rotation of a servomotor that controls the movement of the wheelhead 13 and the spindle table 16, externally applied vibrations, and self-excited chatter. can be done.
  • the one-section high-frequency waveform represents the relative vibration (high-frequency center-to-center relative vibration) generated due to the change in the high-frequency region of the relative position between the grinding wheel 12 and the workpiece W, that is, the center-to-center distance. Similar to the frequency waveform, it can be considered identical along the axial direction of the workpiece W for one workpiece W. Therefore, the high-frequency relative vibration waveform generator 334 calculates the one-section high-frequency waveform obtained by performing the inverse FFT as the high-frequency relative vibration waveform HDV, which is the second analysis result.
  • the grindstone surface unevenness calculator 335 uses the spiral high-frequency waveform SHW generated by the spiral high-frequency waveform generator 333 and the high-frequency relative center-to-center vibration waveform HDV generated by the high-frequency relative center-to-center vibration waveform generator 334, A grindstone surface unevenness P caused by the transfer of the surface state of the grinding surface of the grinding wheel 12 to the outer peripheral surface of the ground workpiece W is calculated. Specifically, the grindstone surface unevenness calculator 335 calculates the grindstone surface unevenness P as the second analysis result by subtracting the high-frequency center-to-center relative vibration waveform HDV from the spiral high-frequency waveform SHW.
  • the high-frequency center-to-center relative vibration waveform HDV is a single-section high-frequency waveform that is assumed to be the same in the axial direction of the workpiece W, as described above.
  • the grindstone surface unevenness calculator 335 adds (copies) the high-frequency center-to-center relative vibration waveform HDV by the number that matches the number of spirals C of the spiral high-frequency waveform SHW, and subtracts it from the spiral high-frequency waveform SHW according to Equation 2 below. By doing so, the grindstone surface unevenness P is calculated.
  • P SHW ⁇ C ⁇ HDV ...Formula 2
  • the output processing unit 34 outputs a plurality of analysis results using a plurality of first calculation results calculated by the first data analysis processing unit 32 and a plurality of second calculation results calculated by the second data analysis processing unit 33. It can be processed and output. A plurality of output analysis results will be described below by way of example.
  • a plurality of analysis results output by the output processing unit 34 are related to the processing quality of the workpiece W ground by the grinding device 10 .
  • processing quality include the shape (processing accuracy) of the workpiece W, such as the roundness of the workpiece W, the runout amount of the ground surface, and the coaxiality of the workpiece W, which are related to the surface properties S2 described above. can be done.
  • processing state of the grinding device 10 and the mechanical state of the grinding device 10 are also related to processing quality.
  • the machining state is included in the machining accuracy, and examples include the spark-out state and the sharpness state of the grinding wheel 12 . Vibration (mechanical vibration) of the grinding device 10 can be mentioned as the mechanical state.
  • second measurement data K2 (second basic data D2) measured at the same position in the axial direction by the on-machine measuring device 20 during grinding of the workpiece W is an analysis result obtained using For this reason, these analysis results are output for each process in which the grinding apparatus 10 grinds the workpiece W, that is, for all workpieces W.
  • FIG. 1 second measurement data K2 (second basic data D2) measured at the same position in the axial direction by the on-machine measuring device 20 during grinding of the workpiece W is an analysis result obtained using For this reason, these analysis results are output for each process in which the grinding apparatus 10 grinds the workpiece W, that is, for all workpieces W.
  • the surface texture S surface texture S1
  • line roughness of the workpiece W which are included in the processing accuracy
  • the first measurement data K1 first This is an analysis result obtained using the basic data D1
  • the second measurement data K2 second basic data D2 measured at the same position in the axial direction. Therefore, these analysis results are appropriately output after the workpiece W is ground, for example, as required.
  • the output processing unit 34 of this example includes a shape analysis output unit 341 that outputs analysis results related to machining quality, a machining state output unit 342 that outputs analysis results related to machining state, a machine state and a map generation output unit 344 for outputting analysis results related to machining quality.
  • the shape analysis output unit 341, the machining state output unit 342, and the machine state output unit 343 are the second measurement data K2 (second The low frequency component and high frequency component of the basic data D2) are used.
  • the map generation output unit 344 outputs the low frequency component and the high frequency component of the first measurement data K1 (first basic data D1) measured in the circumferential direction and the axial direction of the workpiece W by the on-machine measuring device 20, and the workpiece The low frequency component and the high frequency component of the second measurement data K2 (second basic data D2) measured at the same position in the axial direction of are used.
  • the shape analysis output unit 341 acquires the low-frequency relative center-to-center vibration waveform LDV, which is the first analysis result, from the first data analysis processing unit 32 (low-frequency relative center-to-center vibration waveform generation unit 323), and performs second data analysis.
  • a high-frequency relative vibration waveform HDV which is the second analysis result, is acquired from the processing unit 33 (high-frequency relative vibration waveform generation unit 334).
  • the shape analysis output unit 341 synthesizes (adds) the low-frequency relative center-to-center vibration waveform LDV and the high-frequency relative center-to-center vibration waveform HDV, so that, as shown in FIG.
  • the circularity and the runout amount of the ground surface are output as the analysis result A1. For example, when a plurality of out-of-roundnesses and deflection amounts are analyzed in the axial direction of the workpiece W, the coaxiality of the workpiece W can also be output.
  • the machining state output unit 342 acquires the high frequency component D22 of the second basic data D2 as the second analysis result from the second data analysis processing unit 33 (one cross-section high frequency component extraction unit 332) for each grinding process. do.
  • the machining state output unit 342 sets the ratio ( fg2/fg1) is output as the analysis result A2. In this case, it is evaluated that the closer the output analysis result A2 (fg2/fg1) is to "0", the higher the grinding effect of the spark-out process St4, and the closer to "1", the lower the grinding effect of the spark-out process St4. can be done.
  • the machine state output unit 343 acquires the low frequency component D21 of the second basic data D2 as the first analysis result from the first data analysis processing unit 32 (low frequency component extraction unit 321), and the second data analysis processing unit 33 ( A high frequency component D22 of the second basic data D2 is obtained as the second analysis result from the one-section high frequency component extraction unit 332). Then, as shown in FIG. 15, the machine state output unit 343 outputs the relationship between the frequency change and the amplitude as the analysis result A3.
  • the amplitude indicated by a black square and the frequency corresponding to the same amplitude indicate the vibration state caused by the grindstone, and the other amplitudes and the frequencies corresponding to the same amplitude indicate the mechanical vibration. indicates
  • the map generation output unit 344 generates and outputs a map representing the surface texture S (surface texture S1) of the workpiece W in the circumferential and axial directions. Therefore, the map generation output unit 344 acquires the grindstone surface unevenness P, which is the second analysis result, from the second data analysis processing unit 33 (grindstone surface unevenness calculation unit 335). Then, as shown in FIG. 16, the map generation output unit 344 generates a map M1 representing the surface texture S11 due to the whetstone surface unevenness P caused by the whetstone, and outputs it as the analysis result A4.
  • the map generation output unit 344 acquires the workpiece reference radius R, which is the first analysis result, from the first data analysis processing unit 32 (the workpiece reference radius calculation unit 324). Then, as shown in FIG. 17, the map generation output unit 344 generates a map M2 representing the surface texture S12 based on the workpiece reference radius R caused by the grindstone, and outputs it as an analysis result A4.
  • the map generation output unit 344 synthesizes (adds) the map M1 and the map M2. As a result, the map generation output unit 344 generates a map M3 representing the surface texture S1 caused by the grindstone, as shown in FIG. 18, and outputs it as the analysis result A4.
  • a map M3 representing the surface texture S1 caused by the grindstone is generated by synthesizing the map M1 representing the surface texture S11 and the map M2 representing the surface texture S12.
  • the map generation output unit 344 can also generate a map representing the surface texture S of the workpiece W by further synthesizing the surface texture S2 caused by the center-to-center relative vibration with the generated map M3.
  • the map generation output unit 344 acquires the high-frequency relative center-to-center vibration waveform HDV from the second data analysis processing unit 33 (high-frequency relative center-to-center vibration waveform generation unit 334), and as shown in FIG. A map M4 representing the surface texture S21 based on the high-frequency center-to-center relative vibration waveform HDV caused by vibration is generated. Further, the map generation output unit 344 acquires the low frequency center-to-center relative vibration waveform LDV from the first data analysis processing unit 32 (low-frequency center-to-center relative vibration waveform generation unit 323), and as shown in FIG. A map M5 representing the surface texture S22 based on the low-frequency center-to-center relative vibration waveform LDV caused by the relative vibration is generated.
  • the map generation output unit 344 synthesizes (adds) the map M4 and the map M5 representing the surface texture S2 caused by the center-to-center relative vibration to the map M3 representing the surface texture S1 caused by the grindstone, thereby obtaining the final A map representing the surface texture S of the workpiece W can be generated.
  • the map generation output unit 344 is not limited to outputting the generated maps M1-M3 (further, the generated maps M4 and M5) as the analysis result A4, and other analysis based on the generated maps M1-M5. It is also possible to output result A4.
  • the map generation/output unit 344 can output the machining accuracy represented by the degree of chatter, the degree of scale, etc. as the analysis result A4 based on the map M1 representing the surface texture S11.
  • the output processing unit 34 outputs a plurality of analysis results to the image output device 40.
  • the image output device 40 displays each of the acquired analysis results on, for example, a display.
  • the sizing device provided in the grinding apparatus 10 and the high-frequency component measuring device 25 attached to the sizing device are used to form
  • the on-machine measuring device 20 measures the surface condition of the workpiece W, and the output device 30 acquires the first measurement data K1 (first basic data D1) from the on-machine measuring device 20.
  • a plurality of analyzes relating to the machining quality of the workpiece W can be performed using the low frequency component and the high frequency component of the two measurement data K2 (second basic data D2).
  • the output device 30 can output a plurality of analysis results A1-A4 obtained by the analysis.
  • the on-machine measurement device 20 having a simple configuration for measuring the surface state of the workpiece W can be used, so that the configuration of the system can be simplified and the cost can be reduced.
  • the on-board measurement system H by using the first measurement data K1 (first basic data D1) and the second measurement data K2 (second basic data D2) measured by the on-board measurement device 20, For example, the time required to obtain the analysis results A1-A4 can be shortened compared to collecting and analyzing measurement data from a plurality of measurement devices.
  • the output device 30 detects the spiral high frequency component D12, which is the low frequency component D11 and the high frequency component of the frequency components of the spirally detected first basic data D1 (first measurement data K1), in the same axial direction.
  • a plurality of analyzes can be performed using the low frequency component D21 and the high frequency component D22 of the frequency components of the second basic data D2 (second measurement data K2) detected at the position.
  • the output device 30 outputs an analysis result A1 related to the shape of the workpiece W, an analysis result A2 related to the machining state, and an analysis result A3 related to the machine state as a plurality of analysis results related to the machining quality. It can be output when the object W is ground. Further, after grinding, the output device 30 can map the surface texture of the workpiece W related to the machining quality and output it as an analysis result A4, if necessary.
  • the analysis results A1-A4 for example, by monitoring the analysis results A1-A3, it is possible to prevent the outflow of defective workpieces W that are suddenly generated due to the inclusion of dust in the grinding device 10. can be prevented. Further, by utilizing the analysis results A1-A4, it is possible to detect an abnormality occurring in the grinding apparatus 10 at an early stage, analyze the cause of the abnormality, and take measures against the abnormality at an early stage. Furthermore, by utilizing the analysis results A1-A4, it becomes possible to optimize the maintenance of the grinding apparatus 10, for example, the truing interval, and thus the manufacturing cost of the workpiece W can be reduced.
  • the on-machine measuring device 20 uses the sizing device provided in the grinding device 10 .
  • the on-board measuring device 20 can use a linear gauge. Also in this case, the same effects as in the present example described above can be obtained.
  • the high-frequency component measuring device 25 of the on-board measuring device 20 mainly includes an acceleration sensor to detect acceleration as the first and second measurement data.
  • the high-frequency component measuring device 25 is not limited to mainly including an acceleration sensor, and may mainly include a displacement sensor for detecting displacement caused by unevenness of the surface of the workpiece W.
  • Examples of the displacement sensor included in the high-frequency component measuring device 25 include a contact sizing device and linear gauge, or a non-contact laser sensor, optical sensor, eddy current sensor, and the like.
  • a contact-type sizing device or linear gauge has a contact member such as a probe 21 that contacts the surface of the workpiece W, and detects the vibrational displacement of the contact member that occurs as the workpiece W rotates.
  • the non-contact laser sensor, optical sensor, and eddy current sensor are arranged so as to be non-contact with the surface of the workpiece W. Detect displacement up to the surface.
  • Both the vibration displacement of the contact member detected by the contact sensor and the displacement detected by the non-contact sensor are measured data (time-series data) indicating the displacement of the irregularities on the surface of the workpiece. be. Therefore, even in this case, the measurement data (displacement) output from the on-board measuring device 20 is time-series data, and the basic data acquisition unit 31 obtains the first measurement data K1 and Second measurement data K2 are obtained as first basic data D1 and second basic data D2, respectively.
  • the linear gauge is equipped with a probe that contacts the workpiece W and an arm that supports the probe, and detects the displacement of the surface of the workpiece W while the probe is in contact with the rotating workpiece W. It is.
  • the linear gauge is supported by an axial movement device in the same manner as the sizing device, and is movable in the axial direction of the workpiece W, that is, in the Z direction.
  • the low-frequency component extraction unit 321 of the first data analysis processing unit 32 performs FFT
  • the spiral low-frequency waveform generation unit 322 and the low-frequency relative vibration waveform generation unit 323 perform inverse FFT. I tried to do it.
  • the spiral high-frequency component extraction unit 331 and the one-section high-frequency component extraction unit 332 of the second data analysis processing unit 33 perform FFT
  • the spiral high-frequency waveform generation unit 333 and the high-frequency center-to-center relative vibration waveform generation unit 334 perform inverse FFT. I made it
  • filters capable of extracting a desired frequency component in each of the above sections.
  • filters include low-pass filters, high-pass filters, band-pass filters, Gaussian filters, and the like.
  • Image output device A1, A2, A3, A4... Analysis result, C... Number of spirals, K1... First measurement data, K2... Second measurement data, D1... First basic data, D11... Low frequency component, D12 ... Spiral high frequency component, D2... Second basic data, D21... Low frequency component (first analysis result), D22... High frequency component (second analysis result), D221... 1 section high frequency component, LDV... Low frequency center-to-center relative vibration Waveform (first analysis result), HDV... High frequency center-to-center relative vibration waveform (second analysis result), SLW... Spiral low frequency waveform (first analysis result), SHW... Spiral high frequency waveform (second analysis result), M1, M2, M3, M4, M5... Map, O... Center of rotation, R...

Abstract

An onboard measurement system (H) comprises an onboard measurement device (20) and an output device (30). The output device (30) acquires measurement data measured as a result of the onboard measurement device (20) causing a measurement position on the surface of a workpiece (W) to move relative to the workpiece (W) in at least a circumferential direction, performs a plurality of analyses relating to processing quality of the workpiece (W) using any of a low-frequency component, a high-frequency component, and a low-frequency component and a high-frequency component from among frequency components of the measurement data, and outputs a plurality of analysis results.

Description

機上測定システムOn-machine measurement system
 本開示は、機上測定システムに関する。 This disclosure relates to an on-board measurement system.
 特許文献1には、自動寸法計測装置の一例が記載されている。この自動寸法計測装置は、真円度解析処理を行う制御部を備える。そして、制御部は、定寸装置で測定した測定データに基づいて工作物を定寸加工するように研削装置を制御すると共に、定寸装置の測定データに基づいて工作物の真円度を解析するようになっている。 Patent Document 1 describes an example of an automatic dimension measuring device. This automatic dimension measuring device includes a control unit that performs roundness analysis processing. Then, the control unit controls the grinding device to perform sizing processing of the workpiece based on the measurement data measured by the sizing device, and analyzes the roundness of the workpiece based on the measurement data of the sizing device. It is designed to
日本国特開2006-153897号公報Japanese Patent Application Laid-Open No. 2006-153897
 ところで、特許文献1に記載の自動寸法計測装置は、定寸装置による測定データを用いて、真円度を解析するのみである。工作物を研削する場合、工作物の形状、研削された表面状態、研削装置の作動状態等を測定し、研削装置によって研削された工作物の加工品質が把握できることが望ましい。このため、通常においては、工作物の形状、研削された表面状態、研削装置の作動状態等の各々を測定するための複数の装置が設けられる場合がある。その結果、研削装置を含むシステム全体が複雑化して高価になると共に、加工品質を取得するまでに時間を要する場合がある。 By the way, the automatic dimension measuring device described in Patent Document 1 only analyzes the roundness using the measurement data from the sizing device. When grinding a workpiece, it is desirable to be able to measure the shape of the workpiece, the condition of the ground surface, the operating condition of the grinding device, etc., and to be able to grasp the processing quality of the workpiece ground by the grinding device. For this reason, usually, a plurality of devices may be provided for measuring each of the shape of the workpiece, the state of the ground surface, the operating state of the grinding device, and the like. As a result, the entire system including the grinding device becomes complicated and expensive, and it may take time to obtain processing quality.
 本開示は、研削加工のインプロセスにおいて、安価且つ短時間で研削における加工品質を取得することができる機上測定システムを提供することを目的とする。 An object of the present disclosure is to provide an on-machine measurement system that can obtain the processing quality of grinding at low cost and in a short time in the in-process of grinding.
 機上測定システムは、研削装置に設けられて、研削装置にて砥石車により研削した工作物の表面状態を測定し、工作物の表面状態を表す測定データを出力する機上測定装置と、機上測定装置が工作物の表面における測定位置を少なくとも周方向に工作物に対して相対移動させることによって測定した測定データを取得し、測定データの周波数成分のうちの低周波成分と、測定データの周波数成分のうちの低周波成分よりも高周波領域の高周波成分と、測定データの周波数成分のうちの低周波成分及び高周波成分と、のうちの何れかを用いて、研削装置によって研削された工作物の加工品質に関連する複数の解析を行い、複数の解析結果を出力する出力装置と、を備える。 The on-machine measurement system includes an on-machine measurement device provided in the grinding machine for measuring the surface condition of the workpiece ground by the grinding wheel in the grinding machine and outputting measurement data representing the surface condition of the workpiece; The upper measuring device obtains measurement data by moving the measurement position on the surface of the workpiece relative to the workpiece at least in the circumferential direction, and obtains the low frequency component of the frequency components of the measurement data and A workpiece ground by a grinding machine using either a high-frequency component in a higher frequency range than the low-frequency component among the frequency components, or the low-frequency component and the high-frequency component among the frequency components of the measurement data. and an output device that performs a plurality of analyzes related to the processing quality of and outputs a plurality of analysis results.
 機上測定システムによれば、研削装置に設けられた機上測定装置が工作物の表面状態を測定し、出力装置が機上測定装置から取得した測定データの低周波成分と、高周波成分と、低周波成分及び高周波成分との何れかの測定データを用いて工作物の加工品質に関連する複数の解析を行うことができる。そして、出力装置は、解析によって得られた複数の解析結果を出力することができる。 According to the on-machine measurement system, the on-machine measurement device provided in the grinding machine measures the surface condition of the workpiece, and the output device acquires the low-frequency component, the high-frequency component, and the A number of analyzes relating to the machining quality of the workpiece can be performed using the measured data of either the low frequency component or the high frequency component. The output device can output a plurality of analysis results obtained by the analysis.
 これにより、機上測定システムにおいては、例えば、測定データの低周波成分のみ、測定データの高周波成分のみ、或いは、測定データの低周波成分及び高周波成分の両方を用いて複数の解析結果を出力することができる。又、機上測定システムにおいては、例えば、測定データの第一の低周波成分及び第二の低周波成分、測定データの第一の高周波成分及び第二の高周波成分、測定データの第一の低周波成分及び第二の高周波成分、或いは、測定データの第二の低周波成分及び第一の高周波成分等、低周波成分及び高周波成分を適宜組み合わせて用い、複数の解析結果を出力することもできる。 As a result, in the onboard measurement system, for example, only the low frequency component of the measurement data, only the high frequency component of the measurement data, or both the low frequency component and the high frequency component of the measurement data are used to output a plurality of analysis results. be able to. Further, in the on-board measurement system, for example, the first low frequency component and the second low frequency component of the measurement data, the first high frequency component and the second high frequency component of the measurement data, the first low frequency component of the measurement data A plurality of analysis results can be output by appropriately combining the low frequency component and the high frequency component such as the frequency component and the second high frequency component, or the second low frequency component and the first high frequency component of the measurement data. .
 従って、機上測定システムによれば、工作物の表面状態を測定する簡素な構成の機上測定装置を用いることができるため、システムの構成を簡素化して安価にすることができる。又、機上測定システムによれば、機上測定装置によって測定された測定データの低周波成分及び高周波成分を適宜組み合わせて用いることにより、複数の測定装置から各々の測定データを集めて解析する場合に比べて、解析結果を得るまでの時間を短縮することができる。 Therefore, according to the on-machine measurement system, it is possible to use an on-machine measurement device with a simple configuration for measuring the surface condition of the workpiece, so the configuration of the system can be simplified and the cost can be reduced. In addition, according to the on-board measurement system, by appropriately combining the low frequency component and the high frequency component of the measurement data measured by the on-board measurement device, when collecting and analyzing each measurement data from a plurality of measurement devices Compared to , the time required to obtain analysis results can be shortened.
図1は、研削装置の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of the grinding device. 図2は、機上測定装置を説明するための図である。FIG. 2 is a diagram for explaining the on-board measuring device. 図3は、研削装置の研削工程を示すフローチャートである。FIG. 3 is a flow chart showing the grinding process of the grinding device. 図4は、工作物の表面性状を説明するための図である。FIG. 4 is a diagram for explaining the surface properties of the workpiece. 図5は、砥石起因による表面性状を説明するための図である。FIG. 5 is a diagram for explaining the surface properties caused by the grindstone. 図6は、砥石起因による表面性状を説明するための図である。FIG. 6 is a diagram for explaining the surface texture caused by the grindstone. 図7は、心間相対振動起因による表面性状を説明するための図である。FIG. 7 is a diagram for explaining the surface texture caused by center-to-center relative vibration. 図8は、機上測定システムの構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of the on-board measurement system. 図9は、第一測定データの測定を説明するための図である。FIG. 9 is a diagram for explaining the measurement of the first measurement data. 図10は、第二測定データの測定を説明するための図である。FIG. 10 is a diagram for explaining the measurement of the second measurement data. 図11は、出力装置の第一データ解析処理部の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of the first data analysis processing section of the output device. 図12は、出力装置の第二データ解析処理部の構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of the second data analysis processing section of the output device. 図13は、出力装置の出力処理部の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of the output processing section of the output device. 図14は、出力処理部による工作物の形状に関する解析結果を説明するための図である。FIG. 14 is a diagram for explaining an analysis result regarding the shape of the workpiece by the output processing unit. 図15は、出力処理部による機械状態に関する解析結果を説明するための図である。15A and 15B are diagrams for explaining analysis results regarding the machine state by the output processing unit. FIG. 図16は、出力処理部による加工品質に関する解析結果(マップ)を説明するための図である。FIG. 16 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit. 図17は、出力処理部による加工品質に関する解析結果(マップ)を説明するための図である。FIG. 17 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit. 図18は、出力処理部による加工品質に関する解析結果(マップ)を説明するための図である。FIG. 18 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit. 図19は、出力処理部による加工品質に関する解析結果(マップ)を説明するための図である。FIG. 19 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit. 図20は、出力処理部による加工品質に関する解析結果(マップ)を説明するための図である。FIG. 20 is a diagram for explaining an analysis result (map) regarding processing quality by the output processing unit.
 以下、機上測定システムHについて図面を参照しながら説明する。機上測定システムHは、図1に示すように、研削装置10、機上測定装置20、出力装置30を備える。又、本例の機上測定システムHは、画像出力装置40を備える。 The on-machine measurement system H will be described below with reference to the drawings. The on-machine measurement system H includes a grinding device 10, an on-machine measurement device 20, and an output device 30, as shown in FIG. The on-machine measurement system H of this example also includes an image output device 40 .
 本例の機上測定システムHは、研削装置10によって研削中或いは研削された後の工作物Wの表面(研削面)を機上測定装置20が測定し、出力装置30が機上測定装置20によって測定された測定データに基づいて各種データ解析処理を行って工作物Wの加工品質に関連する複数の解析結果を出力する。そして、本例の画像出力装置40は、出力装置30から出力された複数の解析結果を画像として出力する。 In the on-machine measuring system H of this embodiment, the on-machine measuring device 20 measures the surface (grinding surface) of the workpiece W during or after being ground by the grinding device 10, and the output device 30 measures the on-machine measuring device 20 Various data analysis processes are performed on the basis of the measurement data measured by , and a plurality of analysis results relating to the machining quality of the workpiece W are output. The image output device 40 of this example outputs the plurality of analysis results output from the output device 30 as images.
 ここで、機上測定装置20が検出する測定データとしては、例えば、工作物Wの表面状態(表面性状)に対応して発生する振動の加速度や、振動の変位(振幅)等を例示することができる。又、機上測定装置20は、工作物Wに直接的又は間接的に接触して測定データを測定することが可能であると共に、工作物Wに接触することなく(非接触により)測定データを測定することが可能である。尚、本例においては、機上測定装置20が工作物Wの表面における変位及び変位に関連する加速度を測定する場合を例示して説明する。 Here, examples of measurement data detected by the on-machine measuring device 20 include vibration acceleration and vibration displacement (amplitude) generated corresponding to the surface state (surface texture) of the workpiece W. can be done. In addition, the on-machine measuring device 20 can directly or indirectly contact the workpiece W to measure the measurement data, and can also measure the measurement data without contacting the workpiece W (non-contact). It is possible to measure In this example, the case where the on-machine measuring device 20 measures the displacement on the surface of the workpiece W and the acceleration related to the displacement will be described as an example.
(1.研削装置10の構成)
 図1及び図2に示すように、研削装置10は、ベッド11、砥石車12、砥石台13、主軸台14、心押台15、主軸テーブル16、及び、制御器17を備えると共に、機上測定装置20を備える。工作物Wは、回転軸方向の両端を、主軸台14及び心押台15に支持され、回転する。尚、本例においては、工作物Wが円柱状又は円筒状である場合を例示する。研削装置10は、回転する工作物Wの表面(外周面)に砥石車12を当接させ、研削することにより工作物Wの形状を形成する。
(1. Configuration of Grinding Device 10)
As shown in FIGS. 1 and 2, the grinding apparatus 10 includes a bed 11, a grinding wheel 12, a grinding wheel head 13, a headstock 14, a tailstock 15, a spindle table 16, and a controller 17. A measuring device 20 is provided. The workpiece W rotates while being supported by the headstock 14 and the tailstock 15 at both ends in the rotation axis direction. In addition, in this example, the case where the workpiece W is columnar or cylindrical is illustrated. The grinding device 10 forms the shape of the workpiece W by bringing the grinding wheel 12 into contact with the surface (outer peripheral surface) of the rotating workpiece W and grinding it.
 砥石車12は、Z軸に平行な軸線回りに回転可能に砥石台13に支持される。ベッド11上には、砥石台案内部11aが固定され、砥石台13は、X軸方向に移動可能に砥石台案内部11aに支持される。砥石車12には、制御器17によって制御される砥石回転モータ12aから回転駆動力が付与され、砥石車12が回転軸回りに回転する。砥石車12は、砥石台13がX軸方向に移動することにより、X軸方向に離間して設置された工作物Wに接近し、工作物Wを研削する。 The grinding wheel 12 is rotatably supported on the grinding wheel base 13 around an axis parallel to the Z-axis. A wheelhead guide portion 11a is fixed on the bed 11, and a wheelhead 13 is supported by the wheelhead guide portion 11a so as to be movable in the X-axis direction. A grinding wheel rotating motor 12a controlled by a controller 17 applies rotational driving force to the grinding wheel 12, and the grinding wheel 12 rotates around the rotation axis. As the grinding wheel 13 moves in the X-axis direction, the grinding wheel 12 approaches and grinds the workpiece W spaced apart in the X-axis direction.
 ベッド11上において、砥石台案内部11aからX軸方向に離間した位置に、主軸テーブル案内部11bが固定される。主軸テーブル案内部11bは、主軸テーブル16をZ軸方向に移動可能に支持する。主軸テーブル16の上には、主軸台14及び心押台15が対向配置される。工作物Wは、その両端が主軸台14及び心押台15に回転可能に支持されており、制御器17によって制御される主軸回転モータ14aから回転駆動力が付与され、回転する。 On the bed 11, the spindle table guide portion 11b is fixed at a position separated from the wheelhead guide portion 11a in the X-axis direction. The spindle table guide portion 11b supports the spindle table 16 so as to be movable in the Z-axis direction. A headstock 14 and a tailstock 15 are arranged on the spindle table 16 so as to face each other. Both ends of the workpiece W are rotatably supported by the headstock 14 and the tailstock 15, and rotational driving force is applied from a spindle rotation motor 14a controlled by the controller 17 to rotate.
(2.機上測定装置20の構成)
 本例の機上測定装置20は、所謂、定寸装置を含んで形成される。機上測定装置20は、図1及び図2に示すように、工作物Wの表面に接触する接触部である一対の測定子21と、測定子21を支持する一対のフィンガー22を備える。測定子21は、図2に示すように、工作物Wの回転中心Oを挟んだ2点において工作物Wの表面に当接するように設けられる。一対のフィンガー22は、先端部分に測定子21を備え、基端部分を脱着することによって交換可能とされている。そして、機上測定装置20は、軸方向移動装置23に支持され、工作物Wの軸方向、即ち、Z軸方向に移動可能である。機上測定装置20のZ軸方向の移動は、軸方向移動制御部24によって制御される。尚、Z軸方向への移動は、軸方向移動装置23によるものに限定されず、例えば、研削装置10の主軸及び心押軸のシフト機能を用いることも可能である。
(2. Configuration of on-board measuring device 20)
The on-machine measuring device 20 of this example is formed including a so-called sizing device. As shown in FIGS. 1 and 2, the on-machine measuring device 20 includes a pair of probes 21 that are contact portions that come into contact with the surface of the workpiece W, and a pair of fingers 22 that support the probes 21 . The probe 21 is provided so as to contact the surface of the workpiece W at two points across the rotation center O of the workpiece W, as shown in FIG. The pair of fingers 22 are provided with a probe 21 at their distal end portions, and are exchangeable by detaching their proximal end portions. The on-machine measuring device 20 is supported by an axial movement device 23 and is movable in the axial direction of the workpiece W, that is, in the Z-axis direction. Movement of the on-machine measuring device 20 in the Z-axis direction is controlled by an axial movement control section 24 . The movement in the Z-axis direction is not limited to that by the axial movement device 23, and for example, it is possible to use the shift function of the main shaft and the tailstock shaft of the grinding device 10. FIG.
 機上測定装置20は、測定子21の機械的変位を変位及び加速度に関連した電気信号に変換することにより、工作物Wの表面状態としての工作物Wの外周の凹凸を測定する。ここで、機上測定装置20は、例えば、60Hz未満の周波数領域で工作物Wの外径即ち工作物Wの表面状態を測定する。即ち、機上測定装置20は、工作物Wの表面状態の周波数特性うち、低周波成分を測定することができる。 The on-machine measuring device 20 measures the unevenness of the outer periphery of the workpiece W as the surface condition of the workpiece W by converting the mechanical displacement of the probe 21 into an electrical signal related to the displacement and acceleration. Here, the on-machine measuring device 20 measures the outer diameter of the workpiece W, that is, the surface condition of the workpiece W, in a frequency range of less than 60 Hz, for example. That is, the on-machine measuring device 20 can measure the low-frequency component of the frequency characteristics of the surface state of the workpiece W.
 又、機上測定装置20は、一対のフィンガー22のうちの少なくとも一方に組み付けられた高周波成分測定装置25を有する。本例の高周波成分測定装置25は、フィンガー22に組み付けられることによって追加された加速度センサを主に備え、工作物Wの表面状態の周波数特性のうち、例えば、60Hz以上の周波数領域で、工作物Wの表面状態における変位値に関連する加速度を測定する。即ち、高周波成分測定装置25は、測定子21が工作物Wの表面に接触した状態で工作物Wに対して相対移動した際にフィンガー22に発生する変位(振動)に伴う加速度を、工作物Wの表面状態の周波数特性うちの低周波成分よりも高周波領域である高周波成分として測定する。 The on-board measuring device 20 also has a high-frequency component measuring device 25 attached to at least one of the pair of fingers 22 . The high-frequency component measuring device 25 of this example mainly includes an acceleration sensor added by being attached to the finger 22, and among the frequency characteristics of the surface state of the workpiece W, for example, in a frequency range of 60 Hz or more, the workpiece Measure the acceleration associated with the displacement value at the W surface state. That is, the high-frequency component measuring device 25 measures the acceleration associated with the displacement (vibration) generated in the finger 22 when the probe 21 moves relative to the workpiece W while in contact with the surface of the workpiece W. It is measured as a high frequency component which is in a higher frequency region than the low frequency component in the frequency characteristic of the surface state of W. FIG.
 ここで、本例においては、高周波成分測定装置25として加速度センサを、フィンガー22に組み付けて(追加して)用いる場合を例示する。但し、高周波成分測定装置25としては、加速度センサを追加することに限られるものではなく、例えば、ローパスフィルタを省略したアナログ出力アンプや、高周波デジタル出力アンプ等の定寸装置に設けられているものを用いることができる。この場合は、機上測定装置20は、加速度ではなく変位を測定するため、後述する加速度から変位に変換する処理が不要になる。 Here, in this example, a case where an acceleration sensor is attached (added) to the finger 22 as the high-frequency component measuring device 25 is illustrated. However, the high-frequency component measuring device 25 is not limited to adding an acceleration sensor. can be used. In this case, since the on-board measuring device 20 measures displacement instead of acceleration, processing for converting acceleration to displacement, which will be described later, is not required.
(3.研削装置10による工作物Wの研削工程)
 研削装置10は、図3に示す複数の工程を経て工作物Wを研削する。研削工程は、砥石送り速度の違いによって分けられ、粗研工程St1、精研工程St2、微研工程St3、スパークアウト工程St4の順で行われる。各工程の砥石送り速度は、粗研工程St1>精研工程St2>微研工程St3>スパークアウト工程St4となる。粗研工程St1では、工作物Wの大まかな形状を形成する。続く精研工程St2及び微研工程St3では、砥石送り速度を小さくしながら、工作物Wの表面形状を整える。最後のスパークアウト工程St4では、工作物Wの表面の仕上げを行い、工作物Wを完成させる。
(3. Grinding process of workpiece W by grinding device 10)
The grinding device 10 grinds the workpiece W through a plurality of steps shown in FIG. The grinding process is divided according to the difference in grindstone feed rate, and is performed in the order of rough grinding process St1, fine grinding process St2, fine grinding process St3, and spark-out process St4. The grindstone feed rate in each process is as follows: coarse grinding process St1>fine grinding process St2>fine grinding process St3>spark-out process St4. In the rough grinding step St1, a rough shape of the workpiece W is formed. In the subsequent fine grinding process St2 and fine grinding process St3, the surface shape of the workpiece W is adjusted while the grindstone feed rate is decreased. In the final spark-out step St4, the surface of the workpiece W is finished, and the workpiece W is completed.
 ここで、機上測定システムHにおいては、機上測定装置20が、工作物Wの研削中である粗研工程St1からスパークアウト工程St4までの間、或いは、研削が完了するスパークアウト工程St4後に工作物Wの表面状態を測定することが好ましい。尚、機上測定システムHは、インプロセスにおいて、後述する加工品質に関連する複数の解析結果を出力するものであるが、インプロセスとは、工作物Wが研削装置10から取り外されるまでの期間であって、スパークアウト工程St4後も含む。 Here, in the on-machine measuring system H, the on-machine measuring device 20 operates during the period from the rough grinding step St1 during grinding of the workpiece W to the spark-out step St4, or after the spark-out step St4 when grinding is completed. Preferably, the surface condition of the workpiece W is measured. Note that the on-machine measurement system H outputs a plurality of analysis results related to machining quality, which will be described later, in-process. and includes after the spark-out step St4.
(4.出力装置30の概要)
 次に、出力装置30の概要について説明する。図4に示すように、研削装置10によって研削された工作物Wの加工品質の1つである表面性状Sは、種々の要因に起因して決定される。即ち、工作物Wの表面性状Sは、図4にて実線及び二点鎖線により示すように、砥石車12の研削面の表面状態が転写される砥石起因による表面性状S1と、図4にて破線により示すように、砥石車12と工作物Wとの間つまり心間の相対的な変動により発生する振動が転写される心間相対振動起因による表面性状S2とが合成されたものである。
(4. Outline of output device 30)
Next, an overview of the output device 30 will be described. As shown in FIG. 4, the surface texture S, which is one of the processing qualities of the workpiece W ground by the grinding device 10, is determined by various factors. That is, the surface texture S of the workpiece W includes, as indicated by the solid line and the two-dot chain line in FIG. As indicated by the dashed line, the surface texture S2 is synthesized due to the center-to-center relative vibration in which the vibration generated by the relative fluctuation between the grinding wheel 12 and the workpiece W, that is, between the centers is transferred.
 そして、表面性状S、即ち、表面性状S1及び表面性状S2は、機上測定装置20によって測定データとして測定される。ここで、機上測定装置20によって測定される測定データは、測定子21によって測定される低周波成分と、高周波成分測定装置25によって測定される高周波成分とを含む。従って、表面性状Sは、低周波成分と高周波成分とが合成されて決定されるとも言える。 Then, the surface texture S, that is, the surface texture S1 and the surface texture S2 are measured by the on-machine measuring device 20 as measurement data. Here, the measurement data measured by the on-board measuring device 20 includes the low frequency component measured by the probe 21 and the high frequency component measured by the high frequency component measuring device 25 . Therefore, it can be said that the surface texture S is determined by synthesizing the low frequency component and the high frequency component.
 砥石起因による表面性状S1は、工作物Wの周方向及び軸方向における表面性状であり、図5及び図6に示すように、砥石表面凹凸が転写された高周波成分の表面性状S11と、低周波成分を含んで静的な工作物基準半径の表面性状S12とが合成されている。ここで、表面性状S11は、例えば、工作物Wの1断面の周方向における砥石起因の凹凸であるびびり振動(以下、「びびり度」と称呼する。)や、工作物Wの軸方向におけるびびり度のばらつきの程度(以下、「うろこ度」と称呼する。)等の加工精度を反映する。 The surface texture S1 caused by the grindstone is the surface texture of the workpiece W in the circumferential direction and the axial direction. As shown in FIGS. A surface texture S12 with a static workpiece reference radius including components is synthesized. Here, the surface texture S11 is, for example, chatter vibration (hereinafter referred to as “chatter degree”), which is unevenness caused by the grindstone in the circumferential direction of one cross section of the workpiece W, or chatter vibration in the axial direction of the workpiece W. It reflects the machining accuracy such as the degree of variation in degree (hereinafter referred to as "scale degree").
 又、心間相対振動起因による表面性状S2は、工作物Wの1断面の周方向における表面性状であり、図7に示すように、低周波成分と高周波成分とが合成されている。即ち、表面性状S2は、高周波成分である表面性状S21と、低周波成分である表面性状S22とが合成されている。ここで、表面性状S2は、例えば、真円度や研削加工面の振れ量、同軸度等の加工精度に依存する工作物Wの形状と、研削装置10の振動や、加工時の自励振動、スパークアウト効果等の機械状態及び機械加工状態とを反映する。 Further, the surface texture S2 due to center-to-center relative vibration is the surface texture in the circumferential direction of one cross section of the workpiece W, and as shown in FIG. 7, low frequency components and high frequency components are synthesized. That is, the surface texture S2 is a combination of the surface texture S21, which is a high-frequency component, and the surface texture S22, which is a low-frequency component. Here, the surface texture S2 includes, for example, the shape of the workpiece W, which depends on the machining accuracy such as roundness, runout amount of the ground surface, coaxiality, vibration of the grinding device 10, and self-excited vibration during machining. , reflect machine and machining conditions such as spark-out effects.
 そこで、本例の出力装置30は、機上測定装置20によって測定された測定データから低周波成分と高周波成分とを抽出する。そして、出力装置30は、抽出した(取得した)低周波成分及び高周波成分について各種データ解析処理を行い、各種データ解析処理を用いた複数の解析結果を出力する。 Therefore, the output device 30 of this example extracts low frequency components and high frequency components from the measurement data measured by the on-board measurement device 20 . Then, the output device 30 performs various data analysis processes on the extracted (acquired) low-frequency component and high-frequency component, and outputs a plurality of analysis results using the various data analysis processes.
(4-1.出力装置30の構成)
 出力装置30は、図8に示すように、基礎データ取得部31と、第一データ解析処理部32と、第二データ解析処理部33と、出力処理部34と、を備える。出力装置30は、例えば、プロセッサとプログラム等の指令を記憶したメモリとを有し、指令がプロセッサによって実行されたとき、コンピュータに、基礎データ取得部31、第一データ解析処理部32、第二データ解析処理部33、及び、出力処理部34の動作を実施させてもよい。
(4-1. Configuration of output device 30)
The output device 30 includes a basic data acquisition unit 31, a first data analysis processing unit 32, a second data analysis processing unit 33, and an output processing unit 34, as shown in FIG. The output device 30 has, for example, a processor and a memory storing instructions such as a program. The operations of the data analysis processing unit 33 and the output processing unit 34 may be performed.
(4-2.基礎データ取得部31)
 基礎データ取得部31は、研削中或いは研削した後に機上測定装置20によって検出された測定データ(変位及び加速度)を取得する。具体的に、基礎データ取得部31は、図8に示すように、機上測定装置20から出力された第一測定データK1を第一基礎データD1として取得すると共に、第二測定データK2を第二基礎データD2として取得する。
(4-2. Basic data acquisition unit 31)
The basic data acquisition unit 31 acquires measurement data (displacement and acceleration) detected by the on-machine measuring device 20 during or after grinding. Specifically, as shown in FIG. 8, the basic data acquisition unit 31 acquires the first measurement data K1 output from the on-board measurement device 20 as the first basic data D1, and the second measurement data K2 as the first basic data D1. Obtained as two basic data D2.
 ここで、機上測定装置20は、先ず、図9に示すように、工作物Wの表面状態に応じた変位及び加速度を測定する測定位置を工作物Wに対して周方向及び軸方向にて相対的に螺旋状に移動させた場合の第一測定データK1を検出し、基礎データ取得部31に出力する。即ち、第一基礎データD1を取得する場合、工作物Wを回転させた状態で、機上測定装置20の測定子21を工作物Wの表面に接触させ、軸方向移動装置23により、機上測定装置20を工作物Wの軸方向に連続的に移動させる。ここで、本例の測定位置は、機上測定装置20の測定子21が工作物Wの表面に接触する位置である。又、第一測定データK1には、低周波成分の測定データ(変位)と高周波成分測定装置25によって測定された高周波成分の測定データ(加速度)とが含まれる。 Here, as shown in FIG. 9, the on-machine measuring device 20 sets measurement positions for measuring the displacement and acceleration according to the surface state of the workpiece W in the circumferential direction and the axial direction with respect to the workpiece W. The first measurement data K<b>1 in the case of relative spiral movement is detected and output to the basic data acquisition unit 31 . That is, when acquiring the first basic data D1, the probe 21 of the on-machine measuring device 20 is brought into contact with the surface of the work W while the work W is rotated, and the axial movement device 23 moves the on-machine The measuring device 20 is moved continuously in the axial direction of the workpiece W. As shown in FIG. Here, the measurement position in this example is the position where the probe 21 of the on-machine measuring device 20 contacts the surface of the workpiece W. As shown in FIG. Further, the first measurement data K1 includes the measurement data (displacement) of the low frequency component and the measurement data (acceleration) of the high frequency component measured by the high frequency component measuring device 25 .
 又、機上測定装置20は、図10に示すように、測定位置を螺旋状に移動させることなく、測定位置を軸方向にて同一の位置(軸方向の同一位置)又は軸方向にて離間的に移動させた場合の工作物Wの外周面1周分の第二測定データK2を検出し、基礎データ取得部31に出力する。即ち、工作物Wを回転させた状態で、機上測定装置20の測定子21を工作物Wの表面に接触させ、軸方向移動装置23により、機上測定装置20を工作物Wの軸方向の同一位置にて停止させる。ここで、第二測定データK2には、低周波成分の測定データ(変位)と高周波成分測定装置25によって測定された高周波成分の測定データ(加速度)とが含まれる。 In addition, as shown in FIG. 10, the on-machine measuring device 20 does not move the measuring position spirally, but allows the measuring position to be at the same position in the axial direction (the same position in the axial direction) or at a distance in the axial direction. The second measurement data K<b>2 for one round of the outer peripheral surface of the workpiece W when the workpiece W is moved to the target is detected and output to the basic data acquisition unit 31 . That is, while the workpiece W is rotated, the probe 21 of the on-machine measuring device 20 is brought into contact with the surface of the workpiece W, and the axial movement device 23 moves the on-machine measuring device 20 in the axial direction of the workpiece W. stop at the same position. Here, the second measurement data K2 includes low-frequency component measurement data (displacement) and high-frequency component measurement data (acceleration) measured by the high-frequency component measuring device 25 .
 基礎データ取得部31は、螺旋状に検出された第一測定データK1を第一基礎データD1として取得する。又、基礎データ取得部31は、軸方向同一位置で取得された1周分の第二測定データK2を第二基礎データD2として取得する。そして、基礎データ取得部31は、第一基礎データD1及び第二基礎データD2を、第一データ解析処理部32及び第二データ解析処理部33の各々に出力する。 The basic data acquisition unit 31 acquires the spirally detected first measurement data K1 as the first basic data D1. Further, the basic data acquisition unit 31 acquires the second measurement data K2 for one round acquired at the same position in the axial direction as the second basic data D2. Then, the basic data acquisition unit 31 outputs the first basic data D1 and the second basic data D2 to the first data analysis processing unit 32 and the second data analysis processing unit 33, respectively.
 ここで、第一基礎データD1及び第二基礎データD2は、変位及び加速度に関する時系列データである。尚、第一基礎データD1及び第二基礎データD2は、一般的には、時間軸を基準とするデータとして取得されるが、時間及び工作物Wの回転速度から、工作物Wの回転角度を基準とするデータに変換されても良い。 Here, the first basic data D1 and the second basic data D2 are time-series data relating to displacement and acceleration. The first basic data D1 and the second basic data D2 are generally acquired as data with the time axis as a reference. It may be converted into reference data.
(4-3.第一データ解析処理部32)
 第一データ解析処理部32は、第一基礎データD1及び第二基礎データD2の周波数特性のうち、低周波成分を抽出し、抽出した低周波成分について後述する各種データ解析処理を行うことにより、複数の第一解析結果を算出する。このため、第一データ解析処理部32は、図11に示すように、低周波成分抽出部321、スパイラル低周波波形生成部322、低周波心間相対振動波形生成部323、工作物基準半径算出部324を主に備える。
(4-3. First data analysis processing unit 32)
The first data analysis processing unit 32 extracts low-frequency components from the frequency characteristics of the first basic data D1 and the second basic data D2, and performs various data analysis processes described later on the extracted low-frequency components. Calculate a plurality of first analysis results. Therefore, as shown in FIG. 11, the first data analysis processing unit 32 includes a low-frequency component extraction unit 321, a spiral low-frequency waveform generation unit 322, a low-frequency center-to-center relative vibration waveform generation unit 323, and a workpiece reference radius calculation unit. A part 324 is mainly provided.
 低周波成分抽出部321は、基礎データ取得部31から取得した第一基礎データD1について高速フーリエ変換(以下、「FFT」と称呼する。)を行い、第一基礎データD1の周波数特性のうち、低周波成分D11を抽出する。又、低周波成分抽出部321は、基礎データ取得部31から取得した第二基礎データD2についてFFTを行い、第二基礎データD2の周波数特性のうち、第一解析結果である低周波成分D21を抽出する。ここで、低周波成分抽出部321は、低周波成分として、例えば、60Hz未満(波形として15~50山程度)の周波数範囲となる第一基礎データD1及び第二基礎データD2の低周波成分を抽出する。 The low-frequency component extraction unit 321 performs a fast Fourier transform (hereinafter referred to as "FFT") on the first basic data D1 acquired from the basic data acquisition unit 31, and out of the frequency characteristics of the first basic data D1, A low frequency component D11 is extracted. In addition, the low-frequency component extraction unit 321 performs FFT on the second basic data D2 acquired from the basic data acquisition unit 31, and extracts the low-frequency component D21, which is the first analysis result, out of the frequency characteristics of the second basic data D2. Extract. Here, the low-frequency component extraction unit 321 extracts the low-frequency components of the first basic data D1 and the second basic data D2, which are in the frequency range of, for example, less than 60 Hz (about 15 to 50 peaks as a waveform) as the low-frequency components. Extract.
 スパイラル低周波波形生成部322は、低周波成分抽出部321によって抽出された第一基礎データD1の低周波成分D11について逆高速フーリエ変換(以下、「逆FFT」と称呼する。)を行う。ここで、第一基礎データD1は、機上測定装置20によって工作物Wの外周面(表面)に沿って螺旋状に検出された第一測定データK1(変位)である。これにより、スパイラル低周波波形生成部322は、工作物Wの螺線方向における変位変動即ち振動の低周波成分D11の波形を表すスパイラル低周波波形SLWを第一解析結果として算出する。 The spiral low-frequency waveform generator 322 performs an inverse fast Fourier transform (hereinafter referred to as "inverse FFT") on the low-frequency component D11 of the first basic data D1 extracted by the low-frequency component extractor 321. Here, the first basic data D1 is the first measurement data K1 (displacement) spirally detected along the outer peripheral surface (surface) of the workpiece W by the on-machine measuring device 20 . As a result, the spiral low-frequency waveform generator 322 calculates the spiral low-frequency waveform SLW representing the waveform of the low-frequency component D11 of the displacement fluctuation, ie, the vibration, of the workpiece W in the spiral direction as the first analysis result.
 低周波心間相対振動波形生成部323は、低周波成分抽出部321によって抽出された第二基礎データD2の低周波成分D21について逆FFTを行う。ここで、第二基礎データD2は、機上測定装置20によって工作物Wの軸方向の同一位置にて検出された第二測定データK2(変位)である。これにより、第二基礎データD2の低周波成分D21について逆FFTを行うと、工作物Wの周方向(1周)における変位変動即ち振動の低周波成分D21を表す1断面低周波波形が得られる。 The low-frequency center-to-center relative vibration waveform generation unit 323 performs inverse FFT on the low-frequency component D21 of the second basic data D2 extracted by the low-frequency component extraction unit 321. Here, the second basic data D2 is the second measurement data K2 (displacement) detected at the same axial position of the workpiece W by the on-machine measuring device 20 . As a result, when the inverse FFT is performed on the low-frequency component D21 of the second basic data D2, a one-section low-frequency waveform representing the low-frequency component D21 of the displacement fluctuation, ie, the vibration, in the circumferential direction (one turn) of the workpiece W can be obtained. .
 ところで、1断面低周波波形は、例えば、研削装置10におけるポンプ脈動や工作物Wのセット精度等、1つの工作物Wの研削中に大きく変化しない砥石車12と工作物Wとの相対位置即ち心間距離の変化に起因して発生する相対振動(低周波心間相対振動)を表し、1つの工作物Wについて工作物Wの軸方向に沿って同一とみなすことができる。従って、低周波心間相対振動波形生成部323は、逆FFTを行うことによって得られる1断面低周波波形を、第一解析結果である低周波心間相対振動波形LDVとして算出する。 By the way, the one-section low-frequency waveform, for example, the relative position of the grinding wheel 12 and the workpiece W, which does not change greatly during grinding of one workpiece W, such as pump pulsation in the grinding device 10 and the setting accuracy of the workpiece W. It represents the relative vibration (low-frequency relative vibration between centers) generated due to the change in the center-to-center distance, and can be regarded as the same along the axial direction of the workpiece W for one workpiece W. Therefore, the low-frequency relative center-to-center vibration waveform generator 323 calculates the one-section low-frequency waveform obtained by performing the inverse FFT as the low-frequency relative center-to-center vibration waveform LDV, which is the first analysis result.
 工作物基準半径算出部324は、スパイラル低周波波形生成部322によって生成されたスパイラル低周波波形SLWと、低周波心間相対振動波形生成部323によって生成された低周波心間相対振動波形LDVと、を用いて、研削された工作物Wの表面において砥石車12の研削面の表面状態が転写されることに起因する工作物基準半径Rを算出する。具体的に、工作物基準半径算出部324は、スパイラル低周波波形SLWから低周波心間相対振動波形LDVを減算することにより、工作物基準半径Rを第一解析結果として算出する。 The workpiece reference radius calculator 324 calculates the spiral low-frequency waveform SLW generated by the spiral low-frequency waveform generator 322 and the low-frequency relative center-to-center vibration waveform LDV generated by the low-frequency relative center-to-center vibration waveform generator 323. , is used to calculate the workpiece reference radius R resulting from the transfer of the surface state of the grinding surface of the grinding wheel 12 to the surface of the ground workpiece W. Specifically, the workpiece reference radius calculator 324 calculates the workpiece reference radius R as the first analysis result by subtracting the low frequency center-to-center relative vibration waveform LDV from the spiral low frequency waveform SLW.
 ここで、低周波心間相対振動波形LDVは、上述したように、工作物Wの軸方向にて同一とみなした1断面低周波波形である。このため、工作物基準半径算出部324は、下記式1に従い、スパイラル低周波波形SLWの螺旋回数Cに一致する数だけ低周波心間相対振動波形LDVを加算し(複写し)、スパイラル低周波波形SLWから減算することにより、工作物基準半径Rを算出する。
  R=SLW-C×LDV …式1
Here, the low-frequency center-to-center relative vibration waveform LDV is a single-section low-frequency waveform that is assumed to be the same in the axial direction of the workpiece W, as described above. For this reason, the workpiece reference radius calculator 324 adds (copies) the low-frequency center-to-center relative vibration waveform LDV by the number that matches the spiral number C of the spiral low-frequency waveform SLW according to the following equation 1, and calculates the spiral low-frequency A workpiece reference radius R is calculated by subtracting from the waveform SLW.
R = SLW - C x LDV ... Formula 1
(4-4.第二データ解析処理部33)
 第二データ解析処理部33は、第一基礎データD1及び第二基礎データD2の周波数特性のうち、高周波成分を抽出し、抽出した高周波成分について後述する各種データ処理を行うことにより、複数の第二解析結果を算出する。このため、第二データ解析処理部33は、図12に示すように、スパイラル高周波成分抽出部331、1断面高周波成分抽出部332、スパイラル高周波波形生成部333、高周波心間相対振動波形生成部334、砥石表面凹凸算出部335を主に備える。
(4-4. Second data analysis processing unit 33)
The second data analysis processing unit 33 extracts high-frequency components from the frequency characteristics of the first basic data D1 and the second basic data D2, and performs various data processing on the extracted high-frequency components to obtain a plurality of second data. Calculate the second analysis result. Therefore, as shown in FIG. 12, the second data analysis processing unit 33 includes a spiral high-frequency component extraction unit 331, a one-section high-frequency component extraction unit 332, a spiral high-frequency waveform generation unit 333, and a high-frequency center-to-center relative vibration waveform generation unit 334. , and a grindstone surface unevenness calculator 335 .
 スパイラル高周波成分抽出部331は、基礎データ取得部31から取得した第一基礎データD1についてFFTを行い、更に加速度データを変位データに変換することにより、第一基礎データD1の周波数特性のうち、高周波成分をスパイラル高周波成分D12として抽出する。ここで、第一基礎データD1は、機上測定装置20によって工作物Wの外周面に沿って螺旋状に検出された第一測定データK1(加速度)である。又、スパイラル高周波成分抽出部331は、高周波成分として、例えば、60Hz以上且つ機上測定装置20による検出上限の周波数以下(波形として50~500山程度)の周波数範囲の周波数特性を、スパイラル高周波成分D12として抽出する。 The spiral high-frequency component extraction unit 331 performs FFT on the first basic data D1 acquired from the basic data acquisition unit 31, and further converts the acceleration data into displacement data, thereby extracting the high-frequency component out of the frequency characteristics of the first basic data D1. A component is extracted as a spiral high frequency component D12. Here, the first basic data D1 is the first measurement data K1 (acceleration) spirally detected along the outer peripheral surface of the workpiece W by the on-machine measuring device 20 . In addition, the spiral high-frequency component extraction unit 331 extracts, as high-frequency components, frequency characteristics in a frequency range of, for example, 60 Hz or higher and lower than the upper limit frequency of detection by the on-board measuring device 20 (about 50 to 500 crests as a waveform) as spiral high-frequency components. Extract as D12.
 1断面高周波成分抽出部332は、基礎データ取得部31から取得した第二基礎データD2についてFFTを行い、更に加速度データを変位データに変換することにより、第二基礎データD2の周波数特性のうち、高周波成分D22を抽出する。更に、1断面高周波成分抽出部332は、抽出した高周波成分D22から砥石車12の回転数に対応する砥石回転周波数成分fg及びその高調波を除外した高周波成分を、1断面高周波成分D221として抽出する。 The 1-cross-section high-frequency component extraction unit 332 performs FFT on the second basic data D2 acquired from the basic data acquisition unit 31, and further converts the acceleration data into displacement data, thereby obtaining, among the frequency characteristics of the second basic data D2, A high frequency component D22 is extracted. Further, the one-section high-frequency component extracting unit 332 extracts, from the extracted high-frequency component D22, the grinding wheel rotation frequency component fg corresponding to the number of revolutions of the grinding wheel 12 and the high-frequency component excluding its harmonics, as one-section high-frequency component D221. .
 ここで、第二基礎データD2は、機上測定装置20によって工作物Wの軸方向の同一位置にて検出された第二測定データK2(加速度)である。これにより、第二基礎データD2から抽出された高周波成分は、工作物Wの周方向にて1周分、即ち、工作物Wの1断面に対応するものである。又、1断面高周波成分抽出部332も、高周波成分として、例えば、60Hz以上且つ機上測定装置20による検出上限の周波数以下(波形として50~500山程度)の周波数範囲を、高周波成分D22として抽出する。 Here, the second basic data D2 is the second measurement data K2 (acceleration) detected by the on-machine measuring device 20 at the same position in the axial direction of the workpiece W. Accordingly, the high-frequency component extracted from the second basic data D2 corresponds to one round of the workpiece W in the circumferential direction, that is, one section of the workpiece W. As shown in FIG. In addition, the one-section high-frequency component extraction unit 332 also extracts, as high-frequency components, a frequency range of, for example, 60 Hz or higher and lower than the upper limit frequency of detection by the on-board measuring device 20 (about 50 to 500 peaks as a waveform) as high-frequency components D22. do.
 スパイラル高周波波形生成部333は、スパイラル高周波成分抽出部331によって抽出された第一基礎データD1のスパイラル高周波成分D12について逆FFTを行う。これにより、スパイラル高周波波形生成部333は、工作物Wの螺線方向における変位変動即ち振動のスパイラル高周波成分D12の波形を表すスパイラル高周波波形SHWを第二解析結果として算出する。 The spiral high-frequency waveform generation unit 333 performs inverse FFT on the spiral high-frequency component D12 of the first basic data D1 extracted by the spiral high-frequency component extraction unit 331. As a result, the spiral high-frequency waveform generator 333 calculates a spiral high-frequency waveform SHW representing the waveform of the spiral high-frequency component D12 of the displacement fluctuation, ie, the vibration, of the workpiece W in the spiral direction as the second analysis result.
 高周波心間相対振動波形生成部334は、1断面高周波成分抽出部332によって抽出された第二基礎データD2の1断面高周波成分D221について逆FFTを行う。これにより、第二基礎データD2の高周波成分から砥石回転周波数成分fg及びその高調波を除外した1断面高周波成分D221について逆FFTを行うと、工作物Wの周方向(1周)における変位変動即ち振動の1断面高周波成分D221を表す1断面高周波波形が得られる。 The high-frequency center-to-center relative vibration waveform generation unit 334 performs inverse FFT on the one-section high-frequency component D221 of the second basic data D2 extracted by the one-section high-frequency component extraction unit 332. As a result, when the inverse FFT is performed on the one-section high-frequency component D221 obtained by excluding the grinding wheel rotation frequency component fg and its harmonics from the high-frequency component of the second basic data D2, the displacement fluctuation in the circumferential direction (one round) of the workpiece W, that is, A one-section high-frequency waveform representing the one-section high-frequency component D221 of the vibration is obtained.
 ところで、1断面高周波成分D221は、砥石車12の回転数に対応する砥石回転周波数成分fg及びその高調波を含まない。従って、1断面高周波波形は、砥石車12の回転数に対応する砥石回転周波数成分fg及びその高調波以外の、工作物Wの表面性状S(より詳しくは、心間相対振動起因による表面性状S2における表面性状S22)に影響を与える振動を表す。ここで、工作物Wの表面性状S22に影響を与える振動としては、例えば、砥石台13や主軸テーブル16の移動を制御するサーボモータの回転、外部から加えられる振動、自励びびり等を挙げることができる。 By the way, the one-section high-frequency component D221 does not include the grinding wheel rotation frequency component fg corresponding to the number of revolutions of the grinding wheel 12 and its harmonics. Therefore, the one-section high-frequency waveform includes the surface texture S of the workpiece W (more specifically, the surface texture S2 caused by center-to-center relative vibration) other than the grinding wheel rotation frequency component fg corresponding to the rotation speed of the grinding wheel 12 and its harmonics. represents the vibration that affects the surface texture S22) in . Here, examples of vibrations that affect the surface texture S22 of the workpiece W include rotation of a servomotor that controls the movement of the wheelhead 13 and the spindle table 16, externally applied vibrations, and self-excited chatter. can be done.
 このため、1断面高周波波形は、砥石車12と工作物Wとの相対位置即ち心間距離の高周波領域における変化に起因して発生する相対振動(高周波心間相対振動)を表し、1断面低周波波形と同様に、1つの工作物Wについて工作物Wの軸方向に沿って同一とみなすことができる。従って、高周波心間相対振動波形生成部334は、逆FFTを行うことによって得られる1断面高周波波形を、第二解析結果である高周波心間相対振動波形HDVとして算出する。 Therefore, the one-section high-frequency waveform represents the relative vibration (high-frequency center-to-center relative vibration) generated due to the change in the high-frequency region of the relative position between the grinding wheel 12 and the workpiece W, that is, the center-to-center distance. Similar to the frequency waveform, it can be considered identical along the axial direction of the workpiece W for one workpiece W. Therefore, the high-frequency relative vibration waveform generator 334 calculates the one-section high-frequency waveform obtained by performing the inverse FFT as the high-frequency relative vibration waveform HDV, which is the second analysis result.
 砥石表面凹凸算出部335は、スパイラル高周波波形生成部333によって生成されたスパイラル高周波波形SHWと、高周波心間相対振動波形生成部334によって生成された高周波心間相対振動波形HDVと、を用いて、研削された工作物Wの外周面において砥石車12の研削面の表面状態が転写されることに起因する砥石表面凹凸Pを算出する。具体的に、砥石表面凹凸算出部335は、スパイラル高周波波形SHWから高周波心間相対振動波形HDVを減算することにより、砥石表面凹凸Pを第二解析結果として算出する。 The grindstone surface unevenness calculator 335 uses the spiral high-frequency waveform SHW generated by the spiral high-frequency waveform generator 333 and the high-frequency relative center-to-center vibration waveform HDV generated by the high-frequency relative center-to-center vibration waveform generator 334, A grindstone surface unevenness P caused by the transfer of the surface state of the grinding surface of the grinding wheel 12 to the outer peripheral surface of the ground workpiece W is calculated. Specifically, the grindstone surface unevenness calculator 335 calculates the grindstone surface unevenness P as the second analysis result by subtracting the high-frequency center-to-center relative vibration waveform HDV from the spiral high-frequency waveform SHW.
 ここで、高周波心間相対振動波形HDVは、上述したように、工作物Wの軸方向にて同一とみなした1断面高周波波形である。このため、砥石表面凹凸算出部335は、下記式2に従い、スパイラル高周波波形SHWの螺旋回数Cに一致する数だけ高周波心間相対振動波形HDVを加算し(複写し)、スパイラル高周波波形SHWから減算することにより、砥石表面凹凸Pを算出する。
  P=SHW-C×HDV …式2
Here, the high-frequency center-to-center relative vibration waveform HDV is a single-section high-frequency waveform that is assumed to be the same in the axial direction of the workpiece W, as described above. For this reason, the grindstone surface unevenness calculator 335 adds (copies) the high-frequency center-to-center relative vibration waveform HDV by the number that matches the number of spirals C of the spiral high-frequency waveform SHW, and subtracts it from the spiral high-frequency waveform SHW according to Equation 2 below. By doing so, the grindstone surface unevenness P is calculated.
P=SHW−C×HDV …Formula 2
(4-5.出力処理部34)
 出力処理部34は、第一データ解析処理部32によって算出された複数の第一算出結果及び第二データ解析処理部33によって算出された複数の第二算出結果を用いて、複数の解析結果を処理して出力することが可能である。以下、出力される複数の解析結果を例示して説明する。
(4-5. Output processing unit 34)
The output processing unit 34 outputs a plurality of analysis results using a plurality of first calculation results calculated by the first data analysis processing unit 32 and a plurality of second calculation results calculated by the second data analysis processing unit 33. It can be processed and output. A plurality of output analysis results will be described below by way of example.
 出力処理部34が出力する複数の解析結果は、研削装置10によって研削された工作物Wの加工品質に関連するものである。加工品質としては、上述した表面性状S2に関連する工作物Wの真円度や、研削加工面の振れ量、工作物Wの同軸度等の工作物Wの形状(加工精度)を例示することができる。又、加工品質に関連して、研削装置10の加工状態及び研削装置10の機械状態を挙げることができる。加工状態は、加工精度に含まれ、スパークアウトの状態や砥石車12の切れ味状態を挙げることができる。機械状態としては、研削装置10の振動(機械振動)を挙げることができる。 A plurality of analysis results output by the output processing unit 34 are related to the processing quality of the workpiece W ground by the grinding device 10 . Examples of processing quality include the shape (processing accuracy) of the workpiece W, such as the roundness of the workpiece W, the runout amount of the ground surface, and the coaxiality of the workpiece W, which are related to the surface properties S2 described above. can be done. Also related to processing quality are the processing state of the grinding device 10 and the mechanical state of the grinding device 10 . The machining state is included in the machining accuracy, and examples include the spark-out state and the sharpness state of the grinding wheel 12 . Vibration (mechanical vibration) of the grinding device 10 can be mentioned as the mechanical state.
 そして、これらの加工品質、加工状態及び機械状態については、機上測定装置20が工作物Wの研削中において軸方向の同一位置にて測定された第二測定データK2(第二基礎データD2)を用いて得られる解析結果である。このため、これらの解析結果は、研削装置10が工作物Wを研削する加工毎即ち全数の工作物Wについて出力される。 As for the machining quality, machining state and machine state, second measurement data K2 (second basic data D2) measured at the same position in the axial direction by the on-machine measuring device 20 during grinding of the workpiece W is an analysis result obtained using For this reason, these analysis results are output for each process in which the grinding apparatus 10 grinds the workpiece W, that is, for all workpieces W. FIG.
 又、加工品質としては、加工精度に含まれる工作物Wの表面性状S(表面性状S1)や線粗さ等を例示することができる。そして、これらの加工品質(加工精度)については、工作物Wが研削された後、機上測定装置20が工作物Wの周方向及び軸方向にて測定された第一測定データK1(第一基礎データD1)と、軸方向の同一位置にて測定された第二測定データK2(第二基礎データD2)を用いて得られる解析結果である。従って、これらの解析結果は、必要に応じて、例えば、工作物Wの研削後に適宜出力される。 Also, as processing quality, the surface texture S (surface texture S1) and line roughness of the workpiece W, which are included in the processing accuracy, can be exemplified. Regarding these machining qualities (machining accuracy), the first measurement data K1 (first This is an analysis result obtained using the basic data D1) and the second measurement data K2 (second basic data D2) measured at the same position in the axial direction. Therefore, these analysis results are appropriately output after the workpiece W is ground, for example, as required.
 本例の出力処理部34は、図13に示すように、加工品質に関連する解析結果を出力する形状解析出力部341、加工状態に関連する解析結果を出力する加工状態出力部342、機械状態に関連する解析結果を出力する機械状態出力部343、及び、加工品質に関連する解析結果を出力するマップ生成出力部344を備える。 As shown in FIG. 13, the output processing unit 34 of this example includes a shape analysis output unit 341 that outputs analysis results related to machining quality, a machining state output unit 342 that outputs analysis results related to machining state, a machine state and a map generation output unit 344 for outputting analysis results related to machining quality.
 ここで、形状解析出力部341、加工状態出力部342、及び、機械状態出力部343は、機上測定装置20が工作物の軸方向の同一位置にて測定した第二測定データK2(第二基礎データD2)の低周波成分及び高周波成分を用いる。一方、マップ生成出力部344は、機上測定装置20が工作物Wの周方向及び軸方向にて測定した第一測定データK1(第一基礎データD1)の低周波成分及び高周波成分及び工作物の軸方向の同一位置にて測定した第二測定データK2(第二基礎データD2)の低周波成分及び高周波成分を用いる。 Here, the shape analysis output unit 341, the machining state output unit 342, and the machine state output unit 343 are the second measurement data K2 (second The low frequency component and high frequency component of the basic data D2) are used. On the other hand, the map generation output unit 344 outputs the low frequency component and the high frequency component of the first measurement data K1 (first basic data D1) measured in the circumferential direction and the axial direction of the workpiece W by the on-machine measuring device 20, and the workpiece The low frequency component and the high frequency component of the second measurement data K2 (second basic data D2) measured at the same position in the axial direction of are used.
 形状解析出力部341は、第一データ解析処理部32(低周波心間相対振動波形生成部323)から第一解析結果である低周波心間相対振動波形LDVを取得すると共に、第二データ解析処理部33(高周波心間相対振動波形生成部334)から第二解析結果である高周波心間相対振動波形HDVを取得する。そして、形状解析出力部341は、低周波心間相対振動波形LDVと高周波心間相対振動波形HDVとを合成する(加算する)ことにより、図14に示すように、工作物Wの1断面における真円度、研削加工面の振れ量を解析結果A1として出力する。尚、例えば、工作物Wの軸方向において複数の真円度及び振れ量が解析された場合には、工作物Wの同軸度を出力することもできる。 The shape analysis output unit 341 acquires the low-frequency relative center-to-center vibration waveform LDV, which is the first analysis result, from the first data analysis processing unit 32 (low-frequency relative center-to-center vibration waveform generation unit 323), and performs second data analysis. A high-frequency relative vibration waveform HDV, which is the second analysis result, is acquired from the processing unit 33 (high-frequency relative vibration waveform generation unit 334). Then, the shape analysis output unit 341 synthesizes (adds) the low-frequency relative center-to-center vibration waveform LDV and the high-frequency relative center-to-center vibration waveform HDV, so that, as shown in FIG. The circularity and the runout amount of the ground surface are output as the analysis result A1. For example, when a plurality of out-of-roundnesses and deflection amounts are analyzed in the axial direction of the workpiece W, the coaxiality of the workpiece W can also be output.
 加工状態出力部342は、図3に示した研削の工程の各々の研削効果を評価するため、砥石車12及び工作物Wの各々の回転数の比を表す回転数比の状態を解析結果A2として出力する。このため、加工状態出力部342は、研削の各々の工程について、第二データ解析処理部33(1断面高周波成分抽出部332)から第二解析結果として第二基礎データD2の高周波成分D22を取得する。 In order to evaluate the grinding effect of each of the grinding steps shown in FIG. output as For this reason, the machining state output unit 342 acquires the high frequency component D22 of the second basic data D2 as the second analysis result from the second data analysis processing unit 33 (one cross-section high frequency component extraction unit 332) for each grinding process. do.
 例えば、スパークアウト工程St4の研削効果を評価する場合、加工状態出力部342は、図3に示した粗研工程St1における砥石回転周波数成分fg1に対するスパークアウト工程St4における砥石回転周波数成分fg2の比(fg2/fg1)を解析結果A2として出力する。この場合、出力される解析結果A2(fg2/fg1)が「0」に近い程スパークアウト工程St4の研削効果が高く、「1」に近い程スパークアウト工程St4の研削効果が低いと評価することができる。 For example, when evaluating the grinding effect of the spark-out process St4, the machining state output unit 342 sets the ratio ( fg2/fg1) is output as the analysis result A2. In this case, it is evaluated that the closer the output analysis result A2 (fg2/fg1) is to "0", the higher the grinding effect of the spark-out process St4, and the closer to "1", the lower the grinding effect of the spark-out process St4. can be done.
 機械状態出力部343は、第一データ解析処理部32(低周波成分抽出部321)から第一解析結果として第二基礎データD2の低周波成分D21を取得し、第二データ解析処理部33(1断面高周波成分抽出部332)から第二解析結果として第二基礎データD2の高周波成分D22を取得する。そして、機械状態出力部343は、図15に示すように、周波数変化と振幅との関係を解析結果A3として出力する。ここで、図15に示すグラフにおいて、黒塗りの四角を付して示す振幅及び同振幅に対応する周波数は砥石起因の振動状態を示し、それ以外の振幅及び同振幅に対応する周波数は機械振動を示す。 The machine state output unit 343 acquires the low frequency component D21 of the second basic data D2 as the first analysis result from the first data analysis processing unit 32 (low frequency component extraction unit 321), and the second data analysis processing unit 33 ( A high frequency component D22 of the second basic data D2 is obtained as the second analysis result from the one-section high frequency component extraction unit 332). Then, as shown in FIG. 15, the machine state output unit 343 outputs the relationship between the frequency change and the amplitude as the analysis result A3. Here, in the graph shown in FIG. 15, the amplitude indicated by a black square and the frequency corresponding to the same amplitude indicate the vibration state caused by the grindstone, and the other amplitudes and the frequencies corresponding to the same amplitude indicate the mechanical vibration. indicates
 マップ生成出力部344は、工作物Wの周方向及び軸方向における表面性状S(表面性状S1)を表すマップを生成して出力する。このため、マップ生成出力部344は、第二データ解析処理部33(砥石表面凹凸算出部335)から第二解析結果である砥石表面凹凸Pを取得する。そして、マップ生成出力部344は、図16に示すように、砥石起因である砥石表面凹凸Pによる表面性状S11を表すマップM1を生成し、解析結果A4として出力する。 The map generation output unit 344 generates and outputs a map representing the surface texture S (surface texture S1) of the workpiece W in the circumferential and axial directions. Therefore, the map generation output unit 344 acquires the grindstone surface unevenness P, which is the second analysis result, from the second data analysis processing unit 33 (grindstone surface unevenness calculation unit 335). Then, as shown in FIG. 16, the map generation output unit 344 generates a map M1 representing the surface texture S11 due to the whetstone surface unevenness P caused by the whetstone, and outputs it as the analysis result A4.
 又、マップ生成出力部344は、第一データ解析処理部32(工作物基準半径算出部324)から第一解析結果である工作物基準半径Rを取得する。そして、マップ生成出力部344は、図17に示すように、砥石起因である工作物基準半径Rによる表面性状S12を表すマップM2を生成し、解析結果A4として出力する。 Also, the map generation output unit 344 acquires the workpiece reference radius R, which is the first analysis result, from the first data analysis processing unit 32 (the workpiece reference radius calculation unit 324). Then, as shown in FIG. 17, the map generation output unit 344 generates a map M2 representing the surface texture S12 based on the workpiece reference radius R caused by the grindstone, and outputs it as an analysis result A4.
 更に、マップ生成出力部344は、マップM1及びマップM2を合成(加算)する。これにより、マップ生成出力部344は、図18に示すように、砥石起因の表面性状S1を表すマップM3を生成し、解析結果A4として出力する。 Furthermore, the map generation output unit 344 synthesizes (adds) the map M1 and the map M2. As a result, the map generation output unit 344 generates a map M3 representing the surface texture S1 caused by the grindstone, as shown in FIG. 18, and outputs it as the analysis result A4.
 ここで、本例においては、表面性状S11を表すマップM1及び表面性状S12を表すマップM2を合成することにより、砥石起因の表面性状S1を表すマップM3を生成する。しかしながら、マップ生成出力部344は、生成したマップM3に対して、心間相対振動起因の表面性状S2を更に合成して工作物Wの表面性状Sを表すマップを生成することも可能である。 Here, in this example, a map M3 representing the surface texture S1 caused by the grindstone is generated by synthesizing the map M1 representing the surface texture S11 and the map M2 representing the surface texture S12. However, the map generation output unit 344 can also generate a map representing the surface texture S of the workpiece W by further synthesizing the surface texture S2 caused by the center-to-center relative vibration with the generated map M3.
 この場合、マップ生成出力部344は、第二データ解析処理部33(高周波心間相対振動波形生成部334)から高周波心間相対振動波形HDVを取得し、図19に示すように、心間相対振動起因である高周波心間相対振動波形HDVによる表面性状S21を表すマップM4を生成する。又、マップ生成出力部344は、第一データ解析処理部32(低周波心間相対振動波形生成部323)から低周波心間相対振動波形LDVを取得し、図20に示すように、心間相対振動起因である低周波心間相対振動波形LDVによる表面性状S22を表すマップM5を生成する。そして、マップ生成出力部344は、砥石起因の表面性状S1を表すマップM3に対して、心間相対振動起因の表面性状S2を表すマップM4及びマップM5を更に合成(加算)することにより、最終的に工作物Wの表面性状Sを表すマップを生成することができる。 In this case, the map generation output unit 344 acquires the high-frequency relative center-to-center vibration waveform HDV from the second data analysis processing unit 33 (high-frequency relative center-to-center vibration waveform generation unit 334), and as shown in FIG. A map M4 representing the surface texture S21 based on the high-frequency center-to-center relative vibration waveform HDV caused by vibration is generated. Further, the map generation output unit 344 acquires the low frequency center-to-center relative vibration waveform LDV from the first data analysis processing unit 32 (low-frequency center-to-center relative vibration waveform generation unit 323), and as shown in FIG. A map M5 representing the surface texture S22 based on the low-frequency center-to-center relative vibration waveform LDV caused by the relative vibration is generated. Then, the map generation output unit 344 synthesizes (adds) the map M4 and the map M5 representing the surface texture S2 caused by the center-to-center relative vibration to the map M3 representing the surface texture S1 caused by the grindstone, thereby obtaining the final A map representing the surface texture S of the workpiece W can be generated.
 尚、マップ生成出力部344は、生成したマップM1-M3(更には、生成したマップM4,M5)を解析結果A4として出力することに限らず、生成したマップM1-M5に基づいてその他の解析結果A4を出力することも可能である。例えば、マップ生成出力部344は、表面性状S11を表すマップM1に基づいて、びびり度やうろこ度等によって表される加工精度を解析結果A4として出力することが可能である。 Note that the map generation output unit 344 is not limited to outputting the generated maps M1-M3 (further, the generated maps M4 and M5) as the analysis result A4, and other analysis based on the generated maps M1-M5. It is also possible to output result A4. For example, the map generation/output unit 344 can output the machining accuracy represented by the degree of chatter, the degree of scale, etc. as the analysis result A4 based on the map M1 representing the surface texture S11.
 そして、出力処理部34は、複数の解析結果を画像出力装置40に出力する。これにより、画像出力装置40は、取得した複数の解析結果の各々を、例えば、ディスプレイ上に表示する。 Then, the output processing unit 34 outputs a plurality of analysis results to the image output device 40. Thereby, the image output device 40 displays each of the acquired analysis results on, for example, a display.
 以上の説明からも理解できるように、機上測定システムHによれば、研削装置10に設けられている定寸装置と定寸装置に組み付けられた高周波成分測定装置25とを用いて形成される機上測定装置20が工作物Wの表面状態を測定し、出力装置30が機上測定装置20から取得した第一測定データK1(第一基礎データD1)の低周波成分及び高周波成分と、第二測定データK2(第二基礎データD2)の低周波成分及び高周波成分を用いて工作物Wの加工品質に関連する複数の解析を行うことができる。 As can be understood from the above description, according to the on-machine measurement system H, the sizing device provided in the grinding apparatus 10 and the high-frequency component measuring device 25 attached to the sizing device are used to form The on-machine measuring device 20 measures the surface condition of the workpiece W, and the output device 30 acquires the first measurement data K1 (first basic data D1) from the on-machine measuring device 20. A plurality of analyzes relating to the machining quality of the workpiece W can be performed using the low frequency component and the high frequency component of the two measurement data K2 (second basic data D2).
 そして、出力装置30は、解析によって得られた複数の解析結果A1-A4を出力することができる。これにより、機上測定システムHによれば、工作物Wの表面状態を測定する簡素な構成の機上測定装置20を用いることができるため、システムの構成を簡素化して安価にすることができる。又、機上測定システムHによれば、機上測定装置20によって測定された第一測定データK1(第一基礎データD1)及び第二測定データK2(第二基礎データD2)を用いることにより、例えば、複数の測定装置から各々の測定データを集めて解析する場合に比べて、解析結果A1-A4を得るまでの時間を短縮することができる。 Then, the output device 30 can output a plurality of analysis results A1-A4 obtained by the analysis. As a result, according to the on-machine measurement system H, the on-machine measurement device 20 having a simple configuration for measuring the surface state of the workpiece W can be used, so that the configuration of the system can be simplified and the cost can be reduced. . Further, according to the on-board measurement system H, by using the first measurement data K1 (first basic data D1) and the second measurement data K2 (second basic data D2) measured by the on-board measurement device 20, For example, the time required to obtain the analysis results A1-A4 can be shortened compared to collecting and analyzing measurement data from a plurality of measurement devices.
 より詳しく、出力装置30は、螺旋状に検出された第一基礎データD1(第一測定データK1)の周波数成分のうちの低周波成分D11及び高周波成分であるスパイラル高周波成分D12と、軸方向同一位置にて検出された第二基礎データD2(第二測定データK2)の周波数成分のうちの低周波成分D21と高周波成分D22とを用いて複数の解析を行うことができる。そして、出力装置30は、加工品質に関連する複数の解析結果として、工作物Wの形状に関連する解析結果A1、加工状態に関連する解析結果A2、機械状態に関連する解析結果A3を、工作物Wの研削時に出力することができる。又、出力装置30は、研削の後において、必要に応じて、加工品質に関連する工作物Wの表面性状をマップ化して解析結果A4として出力することもできる。 More specifically, the output device 30 detects the spiral high frequency component D12, which is the low frequency component D11 and the high frequency component of the frequency components of the spirally detected first basic data D1 (first measurement data K1), in the same axial direction. A plurality of analyzes can be performed using the low frequency component D21 and the high frequency component D22 of the frequency components of the second basic data D2 (second measurement data K2) detected at the position. Then, the output device 30 outputs an analysis result A1 related to the shape of the workpiece W, an analysis result A2 related to the machining state, and an analysis result A3 related to the machine state as a plurality of analysis results related to the machining quality. It can be output when the object W is ground. Further, after grinding, the output device 30 can map the surface texture of the workpiece W related to the machining quality and output it as an analysis result A4, if necessary.
 これにより、解析結果A1-A4を活用することにより、例えば、解析結果A1-A3をモニタすることにより、研削装置10のごみ噛み等によって突発的に発生した工作物Wの不良品が流出することを防止することができる。又、解析結果A1-A4を活用することにより、研削装置10に発生した異常を早期に発見して要因を解析し、異常の対策を早期に施すことができる。更に、解析結果A1-A4を活用することにより、研削装置10メンテナンス、例えば、ツルーイングインターバルの最適化が可能となり、ひいては、工作物Wの製造コストを低減することも可能となる。 As a result, by utilizing the analysis results A1-A4, for example, by monitoring the analysis results A1-A3, it is possible to prevent the outflow of defective workpieces W that are suddenly generated due to the inclusion of dust in the grinding device 10. can be prevented. Further, by utilizing the analysis results A1-A4, it is possible to detect an abnormality occurring in the grinding apparatus 10 at an early stage, analyze the cause of the abnormality, and take measures against the abnormality at an early stage. Furthermore, by utilizing the analysis results A1-A4, it becomes possible to optimize the maintenance of the grinding apparatus 10, for example, the truing interval, and thus the manufacturing cost of the workpiece W can be reduced.
(5.その他の別例)
 上述した本例においては、機上測定装置20が研削装置10に設けられた定寸装置を用いるようにした。これに代えて、機上測定装置20がリニアゲージを用いることも可能である。この場合においても、上述した本例と同様の効果が得られる。
(5. Other examples)
In the present example described above, the on-machine measuring device 20 uses the sizing device provided in the grinding device 10 . Alternatively, the on-board measuring device 20 can use a linear gauge. Also in this case, the same effects as in the present example described above can be obtained.
 又、上述した本例においては、機上測定装置20の高周波成分測定装置25が加速度センサを主に備えて、第一測定データ及び第二測定データとして加速度を検出する場合を例示した。高周波成分測定装置25は、加速度センサを主に備えることに限定されず、工作物Wの表面の凹凸に起因する変位を検出する変位センサを主に備えることも可能である。 In the above-described example, the high-frequency component measuring device 25 of the on-board measuring device 20 mainly includes an acceleration sensor to detect acceleration as the first and second measurement data. The high-frequency component measuring device 25 is not limited to mainly including an acceleration sensor, and may mainly include a displacement sensor for detecting displacement caused by unevenness of the surface of the workpiece W.
 高周波成分測定装置25が備える変位センサとしては、例えば、接触型の定寸装置やリニアゲージ、或いは、非接触型のレーザ式センサ、光学式センサ、渦電流型センサ等を例示することができる。接触型の定寸装置やリニアゲージは、工作物Wの表面に接触する測定子21等の接触部材を有し、工作物Wの回転に伴い生じる接触部材の振動の変位を検出する。非接触型のレーザ式センサ、光学式センサ、渦電流型センサは、工作物Wの表面に対して非接触となるように配置され、工作物Wの回転に伴い生じる基準位置から工作物Wの表面までの変位を検出する。 Examples of the displacement sensor included in the high-frequency component measuring device 25 include a contact sizing device and linear gauge, or a non-contact laser sensor, optical sensor, eddy current sensor, and the like. A contact-type sizing device or linear gauge has a contact member such as a probe 21 that contacts the surface of the workpiece W, and detects the vibrational displacement of the contact member that occurs as the workpiece W rotates. The non-contact laser sensor, optical sensor, and eddy current sensor are arranged so as to be non-contact with the surface of the workpiece W. Detect displacement up to the surface.
 接触型のセンサにより検出される接触部材の振動の変位、及び、非接触型のセンサにより検出される変位は、何れも、工作物の表面の凹凸の変位を示す測定データ(時系列データ)である。従って、この場合においても、機上測定装置20から出力される測定データ(変位)は時系列データであり、基礎データ取得部31は、機上測定装置20から出力された第一測定データK1及び第二測定データK2を、各々、第一基礎データD1及び第二基礎データD2として取得する。 Both the vibration displacement of the contact member detected by the contact sensor and the displacement detected by the non-contact sensor are measured data (time-series data) indicating the displacement of the irregularities on the surface of the workpiece. be. Therefore, even in this case, the measurement data (displacement) output from the on-board measuring device 20 is time-series data, and the basic data acquisition unit 31 obtains the first measurement data K1 and Second measurement data K2 are obtained as first basic data D1 and second basic data D2, respectively.
 尚、リニアゲージは、工作物Wに接触する測定子と、測定子を支持するアームを備え、測定子を回転中の工作物Wに接触させた状態で工作物Wの表面の変位を検出するものである。又、リニアゲージは、定寸装置と同様に、軸方向移動装置に支持されており、工作物Wの軸方向、即ち、Z方向に移動可能とされる。 The linear gauge is equipped with a probe that contacts the workpiece W and an arm that supports the probe, and detects the displacement of the surface of the workpiece W while the probe is in contact with the rotating workpiece W. It is. In addition, the linear gauge is supported by an axial movement device in the same manner as the sizing device, and is movable in the axial direction of the workpiece W, that is, in the Z direction.
 更に、上述した本例においては、第一データ解析処理部32の低周波成分抽出部321がFFTを行い、スパイラル低周波波形生成部322及び低周波心間相対振動波形生成部323が逆FFTを行うようにした。又、第二データ解析処理部33のスパイラル高周波成分抽出部331及び1断面高周波成分抽出部332がFFTを行い、スパイラル高周波波形生成部333及び高周波心間相対振動波形生成部334が逆FFTを行うようにした。 Furthermore, in this example described above, the low-frequency component extraction unit 321 of the first data analysis processing unit 32 performs FFT, and the spiral low-frequency waveform generation unit 322 and the low-frequency relative vibration waveform generation unit 323 perform inverse FFT. I tried to do it. Further, the spiral high-frequency component extraction unit 331 and the one-section high-frequency component extraction unit 332 of the second data analysis processing unit 33 perform FFT, and the spiral high-frequency waveform generation unit 333 and the high-frequency center-to-center relative vibration waveform generation unit 334 perform inverse FFT. I made it
 このように、FFT又は逆FFTを行うことを省略するために、上記各部に所望の周波数成分を抽出可能なフィルタを設けることも可能である。フィルタとしては、例えば、ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ、或いは、ガウシアンフィルタ等を例示することができる。 In this way, in order to omit performing FFT or inverse FFT, it is also possible to provide a filter capable of extracting a desired frequency component in each of the above sections. Examples of filters include low-pass filters, high-pass filters, band-pass filters, Gaussian filters, and the like.
 本出願は、2021年1月27日出願の日本特許出願(特願2021-011364)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-011364) filed on January 27, 2021, the contents of which are incorporated herein by reference.
 10…研削装置、11…ベッド、11a…砥石台案内部、11b…主軸テーブル案内部、12…砥石車、12a…砥石回転モータ、13…砥石台、14…主軸台、14a…主軸回転モータ、15…心押台、16…主軸テーブル、17…制御器、20…機上測定装置、21…測定子、22…フィンガー、23…軸方向移動装置、24…軸方向移動制御部、25…高周波成分測定装置、30…出力装置、31…基礎データ取得部、32…第一データ解析処理部、321…低周波成分抽出部、322…スパイラル低周波波形生成部、323…低周波心間相対振動波形生成部、324…工作物基準半径算出部、33…第二データ解析処理部、331…スパイラル高周波成分抽出部、332…1断面高周波成分抽出部、333…スパイラル高周波波形生成部、334…高周波心間相対振動波形生成部、335…砥石表面凹凸算出部、34…出力処理部、341…形状解析出力部、342…加工状態出力部、343…機械状態出力部、344…マップ生成出力部、40…画像出力装置、A1,A2,A3,A4…解析結果、C…螺旋回数、K1…第一測定データ、K2…第二測定データ、D1…第一基礎データ、D11…低周波成分、D12…スパイラル高周波成分、D2…第二基礎データ、D21…低周波成分(第一解析結果)、D22…高周波成分(第二解析結果)、D221…1断面高周波成分、LDV…低周波心間相対振動波形(第一解析結果)、HDV…高周波心間相対振動波形(第二解析結果)、SLW…スパイラル低周波波形(第一解析結果)、SHW…スパイラル高周波波形(第二解析結果)、M1,M2,M3,M4,M5…マップ、O…回転中心、R…工作物基準半径(第一解析結果)、P…砥石表面凹凸(第二解析結果)、S…表面性状、S1…(砥石起因の)表面性状、S2…(心間相対振動起因の)表面性状、S11,S12,S21,S22…表面性状、H…機上測定システム、W…工作物 DESCRIPTION OF SYMBOLS 10... Grinding apparatus, 11... Bed, 11a... Wheel head guide part, 11b... Spindle table guide part, 12... Grinding wheel, 12a... Grinding wheel rotary motor, 13... Wheel head, 14... Headstock, 14a... Spindle rotary motor, 15 Tailstock 16 Spindle table 17 Controller 20 On-machine measuring device 21 Probe 22 Finger 23 Axial movement device 24 Axial movement control unit 25 High frequency Component measuring device 30 Output device 31 Basic data acquisition unit 32 First data analysis processing unit 321 Low frequency component extraction unit 322 Spiral low frequency waveform generation unit 323 Low frequency center-to-center relative vibration Waveform generation unit 324 Workpiece reference radius calculation unit 33 Second data analysis processing unit 331 Spiral high-frequency component extraction unit 332 1-section high-frequency component extraction unit 333 Spiral high-frequency waveform generation unit 334 High frequency Center-to-center relative vibration waveform generation unit 335 Grindstone surface unevenness calculation unit 34 Output processing unit 341 Shape analysis output unit 342 Machining state output unit 343 Machine state output unit 344 Map generation output unit 40... Image output device, A1, A2, A3, A4... Analysis result, C... Number of spirals, K1... First measurement data, K2... Second measurement data, D1... First basic data, D11... Low frequency component, D12 ... Spiral high frequency component, D2... Second basic data, D21... Low frequency component (first analysis result), D22... High frequency component (second analysis result), D221... 1 section high frequency component, LDV... Low frequency center-to-center relative vibration Waveform (first analysis result), HDV... High frequency center-to-center relative vibration waveform (second analysis result), SLW... Spiral low frequency waveform (first analysis result), SHW... Spiral high frequency waveform (second analysis result), M1, M2, M3, M4, M5... Map, O... Center of rotation, R... Work reference radius (first analysis result), P... Grindstone surface unevenness (second analysis result), S... Surface texture, S1... (due to grindstone ) surface texture, S2... surface texture (due to center-to-center relative vibration), S11, S12, S21, S22... surface texture, H... on-machine measurement system, W... workpiece

Claims (9)

  1.  砥石車を備えた研削装置に設けられて、前記砥石車により研削した工作物の表面状態を測定し、前記工作物の前記表面状態を表す測定データを出力する機上測定装置と、
     前記機上測定装置が前記工作物の表面における測定位置を少なくとも周方向に前記工作物に対して相対移動させることによって測定した前記測定データを取得し、前記測定データの周波数成分のうちの低周波成分と、前記測定データの前記周波数成分のうちの前記低周波成分よりも高周波領域の高周波成分と、前記測定データの前記周波数成分のうちの前記低周波成分及び前記高周波成分と、のうちの何れかを用いて、前記研削装置によって研削された前記工作物の加工品質に関連する複数の解析を行い、複数の解析結果を出力する出力装置と、
     を備えた、機上測定システム。
    an on-machine measuring device provided in a grinding apparatus having a grinding wheel for measuring a surface condition of a workpiece ground by the grinding wheel and outputting measurement data representing the surface condition of the workpiece;
    The on-machine measuring device acquires the measurement data measured by moving the measurement position on the surface of the workpiece relative to the workpiece in at least the circumferential direction, a high frequency component in a higher frequency range than the low frequency component among the frequency components of the measurement data; and the low frequency component and the high frequency component among the frequency components of the measurement data. an output device that performs a plurality of analyzes related to the processing quality of the workpiece ground by the grinding device and outputs a plurality of analysis results;
    on-machine measurement system.
  2.  前記出力装置は、
     前記測定データの前記低周波成分を用いた解析処理によって複数の第一解析結果を算出する第一データ解析処理部と、
     前記測定データの前記高周波成分を用いた解析処理によって複数の第二解析結果を算出する第二データ解析処理部と、
     前記第一解析結果及び前記第二解析結果のうちの少なくとも一方を用いて、複数の前記解析結果を出力する出力処理部と、を有する、請求項1に記載の機上測定システム。
    The output device is
    a first data analysis processing unit that calculates a plurality of first analysis results by analysis processing using the low frequency component of the measurement data;
    a second data analysis processing unit that calculates a plurality of second analysis results by analysis processing using the high frequency component of the measurement data;
    2. The on-board measurement system according to claim 1, further comprising an output processing unit that outputs a plurality of said analysis results using at least one of said first analysis result and said second analysis result.
  3.  前記複数の解析結果は、
     前記研削装置による前記工作物の研削に関する加工精度、及び、前記研削装置の研削に関する機械状態を含む、請求項1又は2に記載の機上測定システム。
    The plurality of analysis results are
    3. The on-machine measurement system according to claim 1, further comprising a machining accuracy relating to grinding of said workpiece by said grinding device and a machine condition relating to grinding of said grinding device.
  4.  前記機上測定装置は、
     前記工作物の表面における前記測定位置を前記工作物の軸方向の同一位置にて周方向に移動させることによって前記工作物の前記表面状態を測定し、前記測定データを出力する、請求項1-3の何れか一項に記載の機上測定システム。
    The on-board measuring device is
    The surface condition of the workpiece is measured by moving the measurement position on the surface of the workpiece in the circumferential direction at the same position in the axial direction of the workpiece, and the measurement data is output. 4. The on-board measurement system according to any one of 3.
  5.  前記機上測定装置は、前記研削装置による前記工作物の研削加工ごとに、前記測定データを出力する、請求項4に記載の機上測定システム。 The on-machine measurement system according to claim 4, wherein the on-machine measurement device outputs the measurement data each time the workpiece is ground by the grinding device.
  6.  前記機上測定装置は、更に、
     前記測定位置を前記工作物の周方向及び軸方向にて螺旋状に移動させることによって前記工作物の前記表面状態を測定し、前記測定データを出力する、請求項4に記載の機上測定システム。
    The on-board measuring device further
    5. The on-machine measurement system according to claim 4, wherein the surface condition of the workpiece is measured by spirally moving the measurement position in the circumferential and axial directions of the workpiece, and the measurement data is output. .
  7.  前記機上測定装置は、
     前記測定データを時系列データとして出力する、請求項1-6の何れか一項に記載の機上測定システム。
    The on-board measuring device is
    The on-board measurement system according to any one of claims 1 to 6, wherein the measurement data is output as time-series data.
  8.  前記機上測定装置は、
     前記研削装置において前記工作物の外径を測定する定寸装置を含む、請求項1-7の何れか一項に記載の機上測定システム。
    The on-board measuring device is
    The on-machine measuring system according to any one of claims 1 to 7, comprising a sizing device for measuring the outer diameter of the workpiece in the grinding device.
  9.  前記機上測定装置は、
     前記定寸装置と、前記定寸装置に組み付けられて前記工作物の前記表面状態の周波数成分のうちの前記高周波成分を測定する高周波成分測定装置と、を有し、
     前記定寸装置を用いて前記工作物の前記表面状態の周波数成分のうちの前記低周波成分を測定し、
     前記高周波成分測定装置を用いて前記工作物の前記表面状態の周波数成分のうちの前記高周波成分を測定する、請求項8に記載の機上測定システム。
     
    The on-board measuring device is
    a sizing device, and a high-frequency component measuring device mounted on the sizing device for measuring the high-frequency component out of the frequency components of the surface state of the workpiece,
    measuring the low frequency component out of the frequency components of the surface state of the workpiece using the sizing device;
    9. The on-machine measurement system according to claim 8, wherein the high frequency component of the frequency components of the surface condition of the workpiece is measured using the high frequency component measuring device.
PCT/JP2022/000696 2021-01-27 2022-01-12 Onboard measurement system WO2022163348A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022000851.2T DE112022000851T5 (en) 2021-01-27 2022-01-12 Onboard measurement system
CN202280007806.6A CN116529023A (en) 2021-01-27 2022-01-12 On-machine measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-011364 2021-01-27
JP2021011364A JP2022114895A (en) 2021-01-27 2021-01-27 On-machine measurement system

Publications (1)

Publication Number Publication Date
WO2022163348A1 true WO2022163348A1 (en) 2022-08-04

Family

ID=82653268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000696 WO2022163348A1 (en) 2021-01-27 2022-01-12 Onboard measurement system

Country Status (4)

Country Link
JP (1) JP2022114895A (en)
CN (1) CN116529023A (en)
DE (1) DE112022000851T5 (en)
WO (1) WO2022163348A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024079A (en) * 2016-08-09 2018-02-15 株式会社ジェイテクト Machine tool system having measurement function
JP2020023039A (en) * 2018-07-25 2020-02-13 株式会社ジェイテクト Grinding quality estimation model generation device, grinding quality estimation device, operation command data adjustment model generation device of grinding machine and operation command data updating device of grinding machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153897A (en) 1999-04-06 2006-06-15 Tokyo Seimitsu Co Ltd Automatic dimensional measuring device having roundness-measuring function
JP7379889B2 (en) 2019-07-08 2023-11-15 株式会社サタケ Scraper conveyor monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024079A (en) * 2016-08-09 2018-02-15 株式会社ジェイテクト Machine tool system having measurement function
JP2020023039A (en) * 2018-07-25 2020-02-13 株式会社ジェイテクト Grinding quality estimation model generation device, grinding quality estimation device, operation command data adjustment model generation device of grinding machine and operation command data updating device of grinding machine

Also Published As

Publication number Publication date
CN116529023A (en) 2023-08-01
JP2022114895A (en) 2022-08-08
DE112022000851T5 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP4828072B2 (en) Apparatus and method for measuring deviations in dimensions and shapes of crank pins at a grinding location
EP2181802A1 (en) Grinding machine and grinding method
Ahrens et al. Abrasion monitoring and automatic chatter detection in cylindrical plunge grinding
JP6674426B2 (en) Centerless grinding apparatus and grinding state monitoring method for workpiece
Denkena et al. Monitoring of grinding wheel defects using recursive estimation
Couey et al. Monitoring force in precision cylindrical grinding
WO2022163348A1 (en) Onboard measurement system
CN1225345C (en) Method for simultaneous processing and measuring paramenter for processed surface
CN112809462A (en) Flutter evaluation system
JP4517677B2 (en) Grinding equipment
JP4940904B2 (en) Bulk quantity measuring device
JP3939959B2 (en) Crankshaft processing machine pin diameter measurement method
JP2022114886A (en) Surface property estimation system
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP2021079534A (en) Surface texture estimation system
JP7380119B2 (en) Chatter evaluation system
JP7383994B2 (en) Chatter evaluation system
JP2023157268A (en) Surface texture measurement device and surface texture detection system
JP5326608B2 (en) Grinding equipment
JP7484372B2 (en) Surface Roughness Estimation System
WO2015118657A1 (en) Tire reaction force measurement device, and tire-testing device
JP2019155516A (en) Processor and processing method
CN112809463A (en) Surface property inference system
Ali The influence of strategic parameters on roundness accuracy development
JP3396733B2 (en) Separation measuring method and measuring device of circumferential shape and motion accuracy of rotating body by combination of goniometer and displacement meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007806.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022000851

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745573

Country of ref document: EP

Kind code of ref document: A1