WO2020203798A1 - Image pickup element and image pickup device - Google Patents

Image pickup element and image pickup device Download PDF

Info

Publication number
WO2020203798A1
WO2020203798A1 PCT/JP2020/014102 JP2020014102W WO2020203798A1 WO 2020203798 A1 WO2020203798 A1 WO 2020203798A1 JP 2020014102 W JP2020014102 W JP 2020014102W WO 2020203798 A1 WO2020203798 A1 WO 2020203798A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
region
wiring
photoelectric conversion
signal
Prior art date
Application number
PCT/JP2020/014102
Other languages
French (fr)
Japanese (ja)
Inventor
周太郎 加藤
高木 徹
崇志 瀬尾
良次 安藤
智史 中山
佳之 渡邉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2021512014A priority Critical patent/JP7272423B2/en
Publication of WO2020203798A1 publication Critical patent/WO2020203798A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to an image pickup device and an image pickup device.
  • Patent Document 1 There is known an image sensor that collects a plurality of pixels into blocks and reads signals in parallel in block units (see Patent Document 1). With such an image sensor, it is difficult to perform interpolation processing when a defect occurs in the block.
  • the image pickup device is provided in each of a first region, a second region, and a third region between the first region and the second region, and charges light by photoelectric conversion.
  • a signal based on the electric charge generated by the plurality of photoelectric conversion units provided in the first region, and the plurality of photoelectric conversion units provided in the second region. It includes a first output unit that outputs at least one of a charge-based signal, and a second output unit that outputs a charge-based signal generated by a plurality of the photoelectric conversion units provided in the third region.
  • the image pickup apparatus is a generation unit that generates image data based on the image pickup device according to the first aspect and signals output from at least one of the first output unit and the second output unit. And.
  • 11 (a) and 11 (b) are diagrams for explaining another wiring example of the output signal line.
  • 12 (a) and 12 (b) are diagrams for explaining the relationship between the arrangement of the color filter and the block according to the first modification. It is a figure which illustrates the relationship between the arrangement of a color filter and a block by modification 2. It is a figure exemplifying the relationship between the arrangement of the color filter and the block according to the modification 3. It is a figure which illustrates the relationship between the arrangement of the color filter and the block by the modification 4. It is a figure which illustrates the relationship between the arrangement of the color filter and the block by the modification 5.
  • 17 (a) to 17 (i) are diagrams for explaining the first to ninth blocks according to the modified example 6, respectively. It is a figure explaining an example of wiring of an output signal line. It is a figure explaining an example of wiring of a control signal line. It is a figure explaining an example of wiring of a control signal line.
  • FIG. 1 is a diagram schematically showing a configuration example of a digital camera including an image sensor 101 according to an embodiment.
  • the digital camera is composed of an interchangeable lens 110 and a camera body 100, and the interchangeable lens 110 is attached to the camera body 100 via a lens mounting portion 105.
  • the digital camera may be configured as a camera with an integrated lens instead of an interchangeable lens type.
  • the xyz axes constituting the coordinate systems orthogonal to each other are defined. It is assumed that the light from the subject is incident in the positive direction of the z-axis of FIG. Further, as shown in the coordinate axes, the front direction of the paper surface orthogonal to the z-axis is defined as the x-axis plus direction, and the upward direction orthogonal to the z-axis and the x-axis is defined as the y-axis plus direction. In some subsequent figures, the coordinate axes are displayed so that the orientation of each figure can be understood with reference to the coordinate axes of FIG.
  • the interchangeable lens 110 includes, for example, a lens control unit 111, a zoom lens 112, a focus lens 113, an anti-vibration lens 114, an aperture member 115, a lens operation unit 116, and the like.
  • the lens control unit 111 includes a CPU and peripheral components such as a memory.
  • the lens control unit 111 controls the drive of the focus lens 113, the anti-vibration lens 114, and the aperture member 115, detects the positions of the zoom lens 112 and the focus lens 113, transmits information on the interchangeable lens 110 to the camera body 100, and the camera body 100. Receives camera information from.
  • the camera body 100 includes, for example, an image sensor 101, a body control unit 102, a body operation unit 103, a display unit 104, and the like.
  • the image sensor 101 is arranged on the planned image plane (planned focal plane) of the interchangeable lens 110, and photoelectrically converts the subject image imaged by the interchangeable lens 110.
  • the body operation unit 103 includes a shutter button, an operation member for various settings, and the like.
  • the display unit 104 is composed of, for example, a liquid crystal monitor (also referred to as a rear monitor) mounted on the back surface of the camera body 100.
  • the body control unit 102 includes a CPU and peripheral parts such as a memory.
  • the body control unit 102 controls the operation of the digital camera, such as drive control of the image sensor 101, reading of a signal from the image sensor 101, focus detection calculation and focus adjustment of the interchangeable lens 110, processing and recording of an image signal. Further, the body control unit 102 communicates with the lens control unit 111 via an electric contact 106 provided in the lens mounting unit 105 to receive information on the interchangeable lens 110 and camera information (defocus amount, aperture value, etc.). To send.
  • a subject image is formed on the light receiving surface of the image sensor 101 by the light flux passing through the interchangeable lens 110.
  • This subject image is photoelectrically converted by the image pickup element 101, and the signal after the photoelectric conversion is sent to the body control unit 102.
  • the body control unit 102 detects the defocus amount of the interchangeable lens 110 by performing a known focus detection calculation based on the signal from the image sensor 101.
  • the defocus amount is the amount of deviation between the position of the subject image (imaging surface) formed by the interchangeable lens 110 and the position of the light receiving surface of the image sensor 101.
  • the defocus amount detected by the body control unit 102 is sent to the lens control unit 111.
  • the lens control unit 111 calculates the drive amount of the focus lens 113 based on the received defocus amount. Then, the focus lens 113 is moved to the in-focus position by driving a motor or the like (not shown) based on the calculated drive amount.
  • the body control unit 102 processes a signal from the image sensor 101 to generate image data.
  • the image data is recorded on a memory card (not shown) or used when displaying an image on the display unit 104.
  • the image processing for the signal from the image sensor 101 includes a correction process described in detail later, a color interpolation process, and the like.
  • the body control unit 102 further causes the display unit 104 to display a monitor image (also referred to as a through image) based on the signal from the image sensor 101.
  • FIG. 2 is a schematic diagram illustrating an outline of the image sensor 101.
  • the image sensor 101 is composed of a CMOS image sensor.
  • the image sensor 101 includes a pixel area 201, a vertical control unit 202, a horizontal control unit 203, a sensor output unit 204, and a sensor control unit 205.
  • the power supply unit and the detailed circuit are omitted.
  • the pixel area 201 has, for example, a plurality of pixels arranged two-dimensionally in the x-axis direction (first direction) and the y-axis direction (second direction). Each pixel has a photodiode as a photoelectric conversion unit that generates an electric charge according to the amount of incident light. Each of the plurality of pixels is controlled by the vertical control unit 202 and the horizontal control unit 203, and a signal based on the charge generated by the photodiode of each pixel is read out (output) via the signal line 210.
  • the sensor output unit 204 performs correlation double sampling (CDS) on the signal output from each pixel, and applies gain as necessary.
  • CDS correlation double sampling
  • the signal processed by the sensor output unit 204 is output to a signal processing unit (not shown) in the subsequent stage.
  • the sensor output unit 204 outputs an analog signal to the signal processing unit in the subsequent stage
  • the sensor output unit 204 is provided with an A / D converter and the signal after the A / D conversion is digitally output. It may be configured to output.
  • the pixel area 201 is divided into a plurality of areas.
  • Each region has a plurality (eg, 4) photodiodes.
  • a predetermined number (for example, four) of the plurality of regions are connected by signal lines between the regions described later.
  • a predetermined number of regions connected by signal lines between regions are called blocks.
  • the signal generated by the photodiode in any region of the block is output via the signal line 210 of the block. Therefore, the number of signal lines 210 is equal to the number of blocks.
  • the sensor output unit 204 inputs signals from a plurality of blocks in parallel, processes the signals from the input multiple blocks in parallel, and performs signal processing units in the subsequent stage (not shown). ) Can be output in parallel.
  • a plurality of signal lines 210 may be provided in one block.
  • the sensor control unit 205 controls each unit of the image sensor 101 described above. That is, the operation of the image sensor 101 described below is performed based on the control of the sensor control unit 205 that receives the command of the body control unit 102.
  • the photodiode and the output unit that outputs a signal based on the electric charge generated by the photodiode are referred to as "pixels".
  • the output unit includes each transfer transistor, a floating diffusion (FD) region, an amplification transistor, and a selection transistor described later, and a signal line for outputting a signal, but the range of the output unit is not necessarily the same as in this example. It does not have to be.
  • FIG. 3 is a diagram illustrating a cross section of the image sensor 101. Note that FIG. 3 shows only a part of the cross section of the entire image sensor 101.
  • the image sensor 101 is configured as a so-called back-illuminated image sensor, and photoelectrically converts incident light in the plus direction of the z-axis.
  • the image sensor 101 is configured by, for example, laminating a first semiconductor substrate 70 and a second semiconductor substrate 80.
  • the first semiconductor substrate 70 includes at least a PD layer 71 and a wiring layer 72.
  • the PD layer 71 is arranged on the back surface side (z-axis minus side) of the wiring layer 72.
  • a plurality of photodiode PDs are arranged two-dimensionally on the PD layer 71.
  • the wiring 61, the wiring 62, the wiring 63, and the wiring 64 form the wiring of the signal line 210, the signal line in the area described later, the signal line between the areas described later, and the control line described later in the wiring layer 72. ..
  • the wiring 61 to 64 are formed in different layers of the wiring layer 72, respectively.
  • the above wiring may be formed by using only the wiring of the same layer in the wiring layer 72, or may be formed by using the wiring of different layers of the wiring layer 72. Although the wiring of four layers is illustrated in FIG. 3, the number of layers may be changed as appropriate.
  • the layers of the wiring layer 72 can be connected by, for example, vias (not shown).
  • Various circuits such as the sensor output unit 204 are arranged on the second semiconductor substrate 80, for example.
  • the second semiconductor substrate 80 may also be configured in multiple layers.
  • a plurality of color filters 73 corresponding to each of the plurality of photodiode PDs are provided on the incident side (z-axis minus side) of the incident light in the PD layer 71.
  • the color filter 73 is provided with any one of three color filters (color filters) having different spectral characteristics of, for example, red (R), green (G), and blue (B).
  • the color filter 73 includes a color filter having a spectral characteristic for dispersing light in the first wavelength region (red (R) light) of the incident light, and light in the second wavelength region of the incident light (light of the incident light).
  • color filter 73 includes a color filter having a spectral characteristic for dispersing green (G) light) and a color filter having a spectral characteristic for separating light in a third wavelength region (blue (B) light) among incident light. Is done.
  • Three types of color filters 73 for example, corresponding to red (R), green (G), and blue (B), are arranged so as to form the Bayer arrangement illustrated in FIG. Although the Bayer array will be described as an example in this embodiment, the color filter 73 may have an array other than the Bayer array.
  • a plurality of microlenses 74 corresponding to each of the plurality of color filters 73 are provided on the incident side (z-axis minus side) of the incident light in the color filter 73.
  • the microlens 74 collects incident light toward the corresponding photodiode PD.
  • the incident light that has passed through the microlens 74 is transmitted by the color filter 73 only in a part of the wavelength region and is incident on the photodiode PD.
  • the photodiode PD photoelectrically converts the incident light to generate an electric charge.
  • a plurality of joining pads 75 are arranged on the surface (z-axis plus side) of the wiring layer 72.
  • a plurality of bonding pads 76 facing the plurality of bonding pads 75 are arranged on the surface (z-axis minus side) of the second semiconductor substrate 80 facing the wiring layer 72.
  • the first semiconductor substrate 70 and the second semiconductor substrate 80 are electrically connected to each other via the plurality of bonding pads 75 and the plurality of bonding pads 76.
  • the number of the joining pads 75 and the plurality of joining pads 76 can be equal to the number of blocks described above, respectively. That is, a set of joining pads 75 and 76 is provided corresponding to one block.
  • one pixel of the image sensor 101 is composed of a first pixel portion 30x provided on the first semiconductor substrate 70 and a second pixel portion 30y provided on the second semiconductor substrate 80. ..
  • the first pixel portion 30x can include a transistor described in detail later, wiring 61 to wiring 64 connecting the pixel portions 30P, and the like.
  • the second pixel unit 30y can include a circuit such as the sensor output unit 204.
  • FIG. 5 is a circuit diagram illustrating a block configuration of the image sensor 101.
  • each block has four regions A to D.
  • Four first pixel units 30x-1 to 30x-4 are arranged in the area A.
  • Four first pixel units 30x-5 to 30x-8 are arranged in the area B.
  • Four first pixel units 30x-9 to 30x-12 are arranged in the area C.
  • Four first pixel units 30x-13 to 30x-16 are arranged in the area D.
  • the first pixel unit 30x includes a photodiode PD as a photoelectric conversion unit, four transistors (transfer transistor Tx functioning as a transfer unit, a reset transistor RST functioning as a reset unit, and an amplification transistor SF functioning as an amplification unit, respectively. It has a selection transistor SEL) that functions as a switch and an FD region. Each part of the first pixel part 30x is connected as shown in FIG. In FIG. 5, reference numeral VDD indicates a power supply voltage.
  • the transfer transistor Tx transfers the electric charge generated by the photodiode PD to the FD region.
  • the transfer transistor Tx is turned on when the corresponding control signal ⁇ Tx reaches the High level to transfer charges, and turns off when the corresponding control signal ⁇ Tx reaches the Low level.
  • the FD region accumulates the transferred charge and converts the transferred charge into a voltage.
  • the amplification transistor SF forms a source follower circuit and outputs a signal corresponding to the potential in the FD region.
  • the reset transistor RST resets (discharges) the electric charge of the FD region and the photodiode PD.
  • the reset transistor RST turns on when the corresponding control signal ⁇ RST reaches the High level, and turns off when the corresponding control signal ⁇ RST reaches the Low level.
  • the selection transistor SEL outputs the signal output from the amplification transistor SF to the signal line 60 in the region.
  • the selection transistor SEL is turned on when the corresponding control signal ⁇ SEL reaches the High level to output a signal, and turns off when the corresponding control signal ⁇ SEL reaches the Low level.
  • the signal line 60 in the region connects the output units (drains) of a plurality of (four in this example) selection transistors SEL in the region in each of the regions A to D.
  • the signal lines 90 between the regions are the output units of a plurality of (four in this example) regions A to D in the block, that is, the signal lines 60 in the region A, the signal lines 60 in the region B, and the regions C.
  • the signal line 60 of the above and the signal line 60 in the area D are connected. Since the signal lines in the block are connected in this way, the signal generated by the photodiode PD in any region in the block includes the signal line 60 in the region, the signal line 90 between the regions, and the signal line 210. It is output via.
  • the sensor control unit 205 can supply independent control signals ⁇ SEL-1 to ⁇ SEL-16 to the selection transistors SEL of the 16 first pixel units 30x in the block. For example, when the sensor control unit 205 sequentially supplies the high level control signals ⁇ SEL-1 to ⁇ SEL-16, the 16 selection transistors SEL are turned on in order and a signal is output to the signal line 210. In this way, the signals generated by the 16 first pixel units 30x in the block can be output individually.
  • the sensor control unit 205 may output a signal to the signal line 210 by combining a plurality of the 16 selection transistors SEL.
  • the sensor control unit 205 supplies a high level control signal ⁇ SEL to a plurality of first pixel units 30x among the first pixel units 30x-1 to 30x-16.
  • the signals output from the plurality of first pixel units 30x to which the high level control signal ⁇ SEL is supplied are added to the signal line 60 in the region, the signal line 90 between the regions, and the signal line 210, and binning. It is also possible to do.
  • the sensor control unit 205 can supply independent control signals ⁇ Tx-1 to ⁇ Tx-16 to the transfer transistors Tx of the 16 first pixel units 30x in the block. For example, by supplying the high level control signals ⁇ Tx-1 to ⁇ Tx-16 in order by the sensor control unit 205, the 16 transfer transistors Tx are turned on in order, and the electric charge generated by the photodiode PD is in the FD region. Transferred to. In this way, the charges generated by the 16 first pixel units 30x in the block can be individually transferred.
  • the sensor control unit 205 may turn on a plurality of the 16 transfer transistors Tx at the same timing. For example, the sensor control unit 205 supplies a high level control signal ⁇ Tx to a plurality of first pixel units 30x among the first pixel units 30x-1 to 30x-16. In this way, the charges generated in the plurality of first pixel units 30x to which the high level control signal ⁇ Tx is supplied are transferred to the respective FD regions.
  • FIG. 6 is a schematic diagram illustrating the relationship between the arrangement of the color filters and the blocks, and shows a partial configuration 301 of the pixel area 201 (FIG. 2).
  • the configuration 301 is repeatedly arranged, for example, in the x-axis direction and the y-axis direction.
  • the 64 pixels included in the configuration 301 are divided into 16 regions.
  • One area is composed of four pixels in a Bayer array. That is, a pixel (referred to as an R pixel) having a color filter 73 that transmits light in the wavelength region corresponding to red (R) and a pixel having a color filter 73 that transmits light in the wavelength region corresponding to blue (B).
  • B pixel a pixel (referred to as G pixel) having a color filter 73 located on the GR row and transmitting light in the wavelength region corresponding to green (G), and a pixel (referred to as G pixel) located on the GB row.
  • G pixels pixels having a color filter 73 that transmits light in a wavelength region corresponding to green (G).
  • one block is composed of four regions arranged apart from each other. As a result, the configuration 301 has four blocks.
  • FIG. 7A is a diagram illustrating the first block.
  • the first block has four regions 11 to 14 arranged apart from each other. Regions 11 to 14 correspond to regions A to D in FIG.
  • FIG. 7B is a diagram illustrating the second block.
  • the second block has four regions 21 to 24 that are spaced apart from each other. Regions 21 to 24 correspond to regions A to D in FIG.
  • FIG. 7C is a diagram illustrating the third block.
  • the third block has four regions 31 to 34 that are spaced apart from each other. Regions 31 to 34 correspond to regions A to D in FIG.
  • FIG. 7D is a diagram illustrating the fourth block.
  • the fourth block has four regions 41 to 44 that are spaced apart from each other. Regions 41 to 44 correspond to regions A to D in FIG.
  • the 16 pixels of the first block are shaded. Further, the 16 pixels of the second block are indicated by dots. Further, the 16 pixels of the third block are indicated by vertical stripes. Furthermore, the 16 pixels of the fourth block are indicated by horizontal stripes.
  • one block has an area separated from each other instead of an area arranged adjacent to each other.
  • the image sensor 101 performs interpolation processing using signals from other pixels arranged around a pixel that cannot output the signal. Generates a signal at a pixel position where the signal cannot be output.
  • the image pickup element 101 is based on the signal from another pixel arranged around the pixel position where the image data cannot be generated. The image data at the pixel position where the image data could not be generated is generated by the correction process for correcting the image data.
  • the body control unit 102 or the sensor control unit 205 Interpolation processing is performed using signals from other pixels arranged around the pixel of interest.
  • the defects of the first block include a failure of the signal line 210 of the first block, a failure of the signal line 90 between the regions of the first block, and a defect of the signal line 60 in the region of the first block.
  • FIG. 8 is a diagram illustrating the interpolation process.
  • the R pixel surrounded by a solid line circle and included in the region 14 constituting the first block of FIG. 7A is set as the pixel of interest.
  • the body control unit 102 or the sensor control unit 205 is, for example, four R pixels surrounded by a broken line circle, and the R pixels included in the regions 23 and 24 constituting the second block of FIG. 7B, respectively.
  • the signal from the R pixel included in the regions 32 and 34 constituting the third block in FIG. 7C is used to interpolate the signal at the position of the pixel of interest.
  • the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform the interpolation process with high accuracy. For example, when the pixel in the region 24 of the second block is the pixel of interest, a signal from a pixel included in another configuration (not shown) located on the x-axis plus direction side of the configuration 301 may be used.
  • FIG. 9A illustrates the wiring of the signal line 90-1 between the regions of the first block, the signal line 90-2 between the regions of the second block, and the signal line 60 in the regions of the third and fourth blocks. It is a figure to do.
  • the signal lines 90-1 between the regions of the first block are shaded.
  • the signal lines 90-2 between the regions of the second block are indicated by dots.
  • the double circle indicates that the wiring and the output unit (drain) output unit of the selection transistor SEL in the first pixel unit 30x are connected.
  • FIG. 9B shows the wiring of the signal line 90-3 between the regions of the third block, the signal line 90-4 between the regions of the fourth block, and the signal line 60 in the regions of the first and second blocks. It is a figure exemplifying.
  • the signal lines 90-3 between the regions of the third block are indicated by vertical stripes.
  • the signal lines 90-4 between the regions of the fourth block are indicated by horizontal stripes.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • the wiring of the signal line 60 in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other.
  • the wiring of the signal line 90 between the regions connects the signal lines 60 in the regions of the four regions of each block to each other.
  • the wiring examples of FIGS. 9A and 9B the wiring can be housed in two of the wiring layers 72. In other words, the number of layers occupied by the signal line 60 in the region and the signal line 90 between the regions can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
  • FIG. 10A is a diagram illustrating the wiring of the signal line 90-1 between the regions of the first block, the signal line between the regions of the fourth block, and the signal line 60 in the regions of the third and fourth blocks. is there.
  • the signal lines 90-1 between the regions of the first block are shaded.
  • the signal lines between the regions of the fourth block are indicated by horizontal stripes.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • FIG. 10B shows the wiring of the signal line 90-2 between the regions of the second block, the signal line 90-3 between the regions of the third block, and the signal line 60 in the regions of the first and second blocks. It is a figure exemplifying.
  • the signal lines 90-2 between the regions of the second block are indicated by dots.
  • the signal lines between the regions of the third block are indicated by vertical stripes.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • the wiring of the signal line 60 in the region connects the output units (drains) of the selection transistors SEL of the four first pixel units 30x constituting each region to each other, and the wiring of the signal line 90 between the regions is each.
  • the point of connecting the signal lines 60 in the regions of the four regions of the block to each other is the same as the wiring illustrated in FIGS. 9 (a) and 9 (b).
  • the wiring can be stored in two of the wiring layers 72 in the same manner as the wiring illustrated in FIGS. 9 (a) and 9 (b). it can. In other words, the number of layers occupied by the signal line 60 in the region and the signal line 90 between the regions can be reduced.
  • FIG. 11A shows a signal line 90-1 between the regions of the first block, a signal line 90-2 between the regions of the second block, a signal line 90-3 between the regions of the third block, and a fourth.
  • the first wiring and the third wiring in the x-axis direction and a part of the wiring of the signal line 60 in the region of the first block to the fourth block are illustrated. It is a figure.
  • the signal lines 90-1 between the regions of the first block are shaded.
  • the signal lines 90-2 between the regions of the second block are indicated by dots.
  • the signal lines 90-3 between the regions of the third block are indicated by vertical stripes.
  • the signal lines 90-4 between the regions of the fourth block are indicated by horizontal stripes.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • FIG. 11B shows signal lines 90-1 between the regions of the first block, signal lines 90-2 between the regions of the second block, signal lines 90-3 between the regions of the third block, and Of the wiring of the signal line 90-4 between the regions of the fourth block, the second wiring and the fourth wiring in the y-axis direction, and the remaining portion of the wiring of the signal line 60 in the region of the first block to the fourth block.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • the wiring of the signal line 60 in the region connects the output units (drains) of the selection transistors SEL of the four first pixel units 30x constituting each region to each other, and the wiring of the signal line 90 between the regions is each.
  • the points connecting the wirings of the signal lines 60 in the regions of the four regions of the block to each other are the wirings exemplified in FIGS. 9A, 9B, 10A, and 10B. The same is true.
  • the wiring examples illustrated in FIGS. 11 (a) and 11 (b) are also described above, similarly to the wiring illustrated in FIGS. 9 (a), 9 (b), 10 (a), and 10 (b).
  • the wiring can be housed in two of the wiring layers 72. In other words, the number of layers occupied by the signal line 60 in the region and the signal line 90 between the regions can be reduced.
  • the image sensor 101 is provided in a region 11 as a first region, a region 12 as a second region, and a region 21 as a third region between the region 11 and the region 12, respectively, and transmits light.
  • a plurality of first pixel units 30x that are converted to generate charges, a signal based on the charges generated by the plurality of first pixel units 30x provided in the region 11, and a plurality of first pixel units 30x provided in the region 12.
  • a first output unit (signal line 60 in the region of the first block, signal line 90-1 between regions, signal line 210) that outputs at least one of the signals based on the charge generated in the above and the region 21 are provided.
  • a second output unit (signal line 60 in the region of the second block, signal line 90-2 between regions, signal line 210) that outputs a signal based on the charge generated by the plurality of first pixel units 30x. Be prepared. Since the region 21 is arranged between the region 11 and the region 12 in this way, if the region 11 or the region 12 becomes defective, the signal to be obtained from the first pixel portion 30x in the region 11 and the region 12 The interpolation process and the correction process for generating the signal obtained from the first pixel unit 30x in the region 21 located between the regions 11 and 12 can be performed with high accuracy.
  • the plurality of first pixel units 30x are provided in the first direction and the second direction in the area 11, the area 12, and the area 21, respectively.
  • the interpolation processing and correction processing can be performed with high accuracy by using the signals obtained from the first pixel unit 30x whose positions in the first direction and the second direction correspond to each other in each region.
  • the first output unit of the above (1) is wired in at least one of the first direction and the second direction, and serves as a first signal line that outputs a signal based on the electric charge generated by the first pixel unit 30x. It has a signal line 90-1 between regions, and the second output unit of the above (1) is wired in at least one of the first direction and the second direction, and is a signal based on the charge generated by the first pixel unit 30x. It has a signal line 90-2 between regions as a second signal line to output. With this configuration, even if the region 11 or region 12 becomes defective and no signal is output from the signal line 90-1 between the regions, the signal obtained from the first pixel unit 30x in the region 21 can be output between the regions. It can be output from the signal line 90-2 of.
  • the wirings in the first direction and the second direction are crossed in one layer. Can be wired properly without. Further, the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
  • the signal line 90-1 between the regions and the signal line 90-2 between the regions are provided in the same layer of the wiring layer 72 and are wired so as not to intersect each other, the first direction and the first layer in one layer. Wiring can be performed appropriately without crossing the wiring in two directions. Further, the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
  • the signal line 90-1 between the regions has a first wiring wired in the first direction of FIG. 11A and a second wiring wired in the second direction of FIG. 11B.
  • the first wiring and the second wiring are provided in different layers of the wiring layer 72.
  • the wiring in the first direction and the wiring in the second direction can be appropriately wired in one layer without intersecting each other.
  • the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
  • the signal line 90-2 between the regions has a third wiring wired in the first direction of FIG. 11A and a fourth wiring wired in the second direction of FIG. 11B.
  • the first wiring and the third wiring are provided in the same layer of the wiring layer 72 (FIG. 11A), and the second wiring and the fourth wiring are in the same layer of the wiring layer 72 (the same layer of the wiring layer 72. It is provided in FIG. 11 (b)).
  • the wiring in the first direction and the wiring in the second direction can be appropriately wired in one layer without intersecting each other. Further, the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
  • the plurality of first pixel units 30x include a photoelectric conversion unit that photoelectrically converts light of the first wavelength and a photoelectric conversion unit that photoelectrically converts light of a second wavelength different from the first wavelength. With this configuration, light of different wavelengths can be photoelectrically converted.
  • a body control unit 102 as a generation unit that generates image data based on a signal output from at least one of the first output unit and the second output unit of the above (1) is provided. With this configuration, it is possible to generate an image for recording and an image for a monitor.
  • the body control unit 102 corrects the signal output from the first output unit of the above (1) based on the signal output from the second output unit of the above (1) to generate image data. To do. With this configuration, it is possible to appropriately generate an image for recording and an image for a monitor.
  • the body control unit 102 corrects the image data based on the signal output from the second output unit of (1) to obtain an image. Generate data. With this configuration, it is possible to appropriately generate an image for recording and an image for a monitor.
  • the body control unit 102 When the signal is not output from the first output unit of the above (1), the body control unit 102 outputs the data corresponding to the signal output from the first output unit in the image data from the second output unit. Generated based on the output signal. With this configuration, it is possible to appropriately generate an image for recording and an image for a monitor.
  • Modification example 1 In the above-described embodiment, an example in which one block has four regions (16 pixels) has been described. Instead, one block may have nine regions (36 pixels).
  • 12 (a) and 12 (b) are schematic views illustrating the relationship between the arrangement of the color filter and the block according to the first modification and the wiring of the output signal line, and are the schematic views of the pixel area 201 (FIG. 2).
  • a partial configuration 302 is shown. In the pixel area 201, the configurations 302 are repeatedly arranged, for example, in the x-axis direction (first direction) and the y-axis direction (second direction).
  • the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels.
  • 144 pixels included in the configuration 302 are divided into 36 regions.
  • One area is composed of four pixels in a Bayer array.
  • one block is composed of nine regions arranged apart from each other.
  • the configuration 302 has four blocks.
  • the 36 pixels of the first block are shaded. Further, the 36 pixels of the second block are indicated by dots. Further, the 36 pixels of the third block are indicated by vertical stripes. Furthermore, the 36 pixels of the fourth block are indicated by horizontal stripes.
  • one block has a region separated from each other, not a region arranged adjacent to each other. Since it is configured in this way, for example, the area located next to the area of the first block including the pixel of interest is included in another block (any of the second block to the fourth block) different from the first block. Is done. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
  • FIG. 12A illustrates the wiring of the signal lines between the regions of the first block, the signal lines between the regions of the second block, and the signal lines in the regions of the third and fourth blocks.
  • the signal lines between the regions of the first block are shaded.
  • the signal lines between the regions of the second block are indicated by dots.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • FIG. 12B illustrates the wiring of the signal lines between the regions of the third block, the signal lines between the regions of the fourth block, and the signal lines in the regions of the first and second blocks.
  • the signal lines between the regions of the third block are indicated by vertical stripes.
  • the signal lines between the regions of the second block are indicated by horizontal stripes.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • the wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other. Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the nine regions of each block to each other. As illustrated in FIGS. 12 (a) and 12 (b), the wiring can be housed in two layers even in the case of the first modification. Therefore, the number of wiring layers in the wiring layer 72 can be reduced from 4 to 2 to reduce the cost as compared with the case where the wiring of the first block to the fourth block is formed in four different layers of the wiring layer 72. ..
  • FIG. 13 is a schematic view illustrating the relationship between the arrangement of the color filter and the block according to the modified example 2, and shows a partial configuration 303 of the pixel area 201 (FIG. 2).
  • the configuration 303 is repeatedly arranged, for example, in the x-axis direction (first direction) and the y-axis direction (second direction).
  • the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels.
  • 256 pixels included in the configuration 303 are divided into 64 regions.
  • One area is composed of four pixels in a Bayer array.
  • one block is composed of 16 regions arranged apart from each other.
  • the configuration 303 has four blocks.
  • the 64 pixels of the first block are shaded. Further, the 64 pixels of the second block are indicated by dots. Further, the 64 pixels of the third block are indicated by vertical stripes. Furthermore, the 64 pixels of the fourth block are indicated by horizontal stripes.
  • one block has a region separated from each other, not a region arranged adjacent to each other. Since it is configured in this way, for example, the area located next to the area of the first block including the pixel of interest is included in another block (any of the second block to the fourth block) different from the first block. Is done. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
  • FIGS. 9 (a) and 9 (b) referred to in the description of the above embodiment
  • FIG. 12 (a) referred to in the description of the modified example 1.
  • Wiring can be performed according to FIG. 12 (b). That is, in one layer of the wiring layer 72, the signal line between the regions of the first block, the signal line between the regions of the second block, and the signal line in the regions of the third and fourth blocks are 1 of the wiring layer 72. In the other layers of the wiring layer 72, the signal lines between the regions of the third block, the signal lines between the regions of the fourth block, and the signal lines in the regions of the first and second blocks are wired. Wired to another layer of layer 72.
  • the above wiring can be stored in two layers even in the case of the modified example 2. Therefore, the number of wiring layers in the wiring layer 72 can be reduced from 4 to 2 to reduce the cost as compared with the case where the wiring of the first block to the fourth block is formed in four different layers of the wiring layer 72. ..
  • FIG. 14 is a schematic diagram illustrating the relationship between the arrangement of the color filter and the block according to the modification 3 and the wiring of the output signal line, and shows a partial configuration 304 of the pixel area 201 (FIG. 2).
  • the configurations 304 are repeatedly arranged, for example, in the x-axis direction and the y-axis direction.
  • the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels.
  • the 32 pixels included in the configuration 304 are divided into eight regions.
  • One area is composed of four pixels in a Bayer array.
  • one block is composed of four regions arranged apart from each other.
  • configuration 304 has two blocks.
  • 16 pixels included in the first block are shaded.
  • the 16 pixels of the second block are indicated by dots.
  • one block is not composed of regions arranged adjacent to each other, but is composed of regions separated from each other.
  • the regions located next to the region of the first block including the pixel of interest are all included in the second block different from the first block. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
  • FIG. 14 illustrates the wiring of the signal lines between the regions of the first block, the signal lines between the regions of the second block, and the signal lines within the regions of the first and second blocks.
  • the wiring direction is the direction sandwiched between the x-axis and the y-axis. For example, if the direction sandwiched between the x-axis plus direction and the y-axis plus direction is the first direction, the direction sandwiched between the x-axis plus direction and the y-axis minus direction is the second direction.
  • the wiring of the signal lines between the regions of the first block and the signal lines within the regions is shown in shading.
  • the wiring of the signal lines between the regions of the second block and the signal lines within the regions is indicated by dots.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • the wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other. Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the four regions constituting each block to each other.
  • the wiring of the output signal line in the case of the modification 3 can be housed in one layer of the wiring layer 72. Therefore, the number of wiring layers in the wiring layer 72 is increased as compared with the case where the wiring of the signal line between the regions of the first block to the second block and the signal line in the region are formed in two different layers of the wiring layer 72. The cost can be reduced by reducing from 2 to 1.
  • FIG. 15 is a schematic diagram illustrating the relationship between the arrangement of the color filter and the block according to the modified example 4 and the wiring of the output signal line, and shows a partial configuration 305 of the pixel area 201 (FIG. 2).
  • the configuration 305 is repeatedly arranged, for example, in the x-axis direction and the y-axis direction.
  • the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels.
  • 72 pixels included in the configuration 305 are divided into 18 regions.
  • One area is composed of four pixels in a Bayer array.
  • one block is composed of nine regions arranged apart from each other.
  • configuration 305 has two blocks.
  • the 36 pixels of the first block are shaded.
  • the 36 pixels of the second block are indicated by dots.
  • one block is composed of regions separated from each other, not regions arranged adjacent to each other.
  • the regions located next to the region of the first block including the pixel of interest are all included in the second block different from the first block. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
  • FIG. 15 illustrates the wiring of the signal lines between the regions of the first block, the signal lines between the regions of the second block, and the signal lines within the regions of the first and second blocks.
  • the wiring direction is the direction sandwiched between the x-axis and the y-axis. For example, if the direction sandwiched between the x-axis plus direction and the y-axis plus direction is the first direction, the direction sandwiched between the x-axis plus direction and the y-axis minus direction is the second direction.
  • the wiring of the signal lines between the regions of the first block and the signal lines within the regions is shown in shading.
  • the wiring of the signal lines between the regions of the second block and the signal lines within the regions is indicated by dots.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • the area wiring connects the output units (drains) of the selection transistors SEL of the four first pixel units 30x constituting each region to each other. Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the nine regions constituting each block to each other.
  • the wiring of the output signal line can be housed in one layer of the wiring layer 72. Therefore, the number of wiring layers in the wiring layer 72 is increased as compared with the case where the wiring of the signal line between the regions of the first block to the second block and the signal line in the region are formed in two different layers of the wiring layer 72. The cost can be reduced by reducing from 2 to 1.
  • FIG. 16 is a schematic diagram illustrating the relationship between the arrangement of the color filter and the block according to the modified example 5 and the wiring of the output signal line, and shows a partial configuration 306 of the pixel area 201 (FIG. 2).
  • the configuration 306 is repeatedly arranged, for example, in the x-axis direction (first direction) and the y-axis direction (second direction).
  • the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels.
  • 256 pixels included in the configuration 306 are divided into 64 regions.
  • One area is composed of four pixels in a Bayer array.
  • one block is composed of nine regions arranged apart from each other.
  • the 36 pixels of the first block are shaded. Further, the 36 pixels of the second block are indicated by dots. Further, the 36 pixels of the third block are indicated by vertical stripes. Furthermore, the 36 pixels of the fourth block are indicated by horizontal stripes.
  • the first block and the second block partially overlap each other in the x-axis direction of the blocks. Further, the first block and the third block partially overlap each other in the y-axis direction of the blocks. Further, the second block and the fourth block partially overlap each other in the y-axis direction of the blocks. Furthermore, the third block and the fourth block partially overlap each other in the x-axis direction of the blocks. As described above, in the case of the modified example 5, the four blocks are not accommodated in the configuration 306, but the four blocks are arranged so as to partially overlap in the x-axis or y-axis direction.
  • one block is composed of regions separated from each other, not regions arranged adjacent to each other. Since it is configured in this way, for example, the area located next to the area of the first block including the pixel of interest is included in another block (any of the second block to the fourth block) different from the first block. Is done. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
  • FIG. 16 shows a signal line between the regions of the first block, a signal line between the regions of the second block, a signal line between the regions of the third block, a signal line between the regions of the fourth block, and first to fourth. Illustrate the wiring of signal lines in the area of the block. The signal lines between the regions of the first block are shaded. The signal lines between the regions of the second block are indicated by dots. The signal lines between the regions of the third block are indicated by vertical stripes. The signal lines between the regions of the fourth block are indicated by horizontal stripes.
  • the double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
  • the wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other. Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the nine regions constituting each block to each other.
  • the regions of the first block are connected in a spiral shape starting from the first pixel portion 30x of the region located at the center of the first block shown by shading.
  • Wire For example, from the R pixel in the area located in the center of the first block to the R pixel in the area one area away in the y-axis plus direction are connected by a signal line between the shaded areas, and one area in the x-axis plus direction.
  • the distant G pixels are connected by signal lines between the shaded areas.
  • the G pixel (RG column) in the region located at the center of the first block is connected to the G pixel in the region separated by one region in the plus direction of the x-axis by a signal line between the shaded areas, and further y.
  • the R pixels in a region separated by one region in the minus direction of the axis are connected by a signal line between the shaded regions.
  • the B pixel in the region located in the center of the first block is connected to the B pixel in the region one region away in the minus direction of the y-axis by a signal line between the shaded areas, and further 1 in the minus direction of the x-axis.
  • the G pixels that are separated from each other are connected by signal lines between the shaded areas.
  • the G pixel (GB row) in the region located at the center of the first block is connected to the G pixel in the region one region away in the minus direction of the x-axis by a signal line between the shaded areas, and further y.
  • the B pixels in the region separated by one region in the plus direction of the axis are connected by signal lines between the shaded regions.
  • each block spirally starts from the first pixel portion 30x of the region located at the center of each block.
  • the first pixel portion 30x of the region constituting the above is connected and wired.
  • the wiring of the output signal line in the case of the modification 5 can be housed in one layer of the wiring layer 72. Therefore, the number of wiring layers in the wiring layer 72 is increased as compared with the case where the wiring of the signal line between the regions of the first block to the fourth block and the signal line in the region are formed in four different layers of the wiring layer 72. The cost can be reduced by reducing from 4 to 1.
  • FIG. 17A is a diagram illustrating the first block in the modified example 6, and the first block has four regions 11, 14, 29, and 32 arranged two regions apart from each other.
  • the frame indicated by reference numeral 307 is a configuration 307 including, for example, 144 pixels (12 in the x-axis direction ⁇ 12 in the y-axis direction) as a part of the pixel area 201 (FIG. 2).
  • FIG. 17B is a diagram illustrating a second block in the modified example 6, and the second block has four regions 12, 15, 30, and 33 arranged two regions apart from each other.
  • FIG. 17C is a diagram for explaining the third block in the modified example 6, and the third block has four regions 13, 16, 31, and 34 arranged two regions apart from each other.
  • FIG. 17D is a diagram for explaining the fourth block in the modified example 6, and the fourth block has four regions 17, 20, 35, and 38 which are arranged two regions apart from each other.
  • FIG. 17E is a diagram for explaining the fifth block in the modified example 6, and the fifth block has four regions 18, 21, 36, and 39 which are arranged two regions apart from each other.
  • FIG. 17F is a diagram illustrating the sixth block in the modified example 6, and the sixth block has four regions 19, 22, 37, and 40 arranged two regions apart from each other.
  • FIG. 17 (g) is a diagram illustrating the seventh block in the modified example 6, and the seventh block has four regions 23, 26, 41, and 44 which are arranged two regions apart from each other.
  • FIG. 17 (h) is a diagram illustrating the eighth block in the modified example 6, and the eighth block has four regions 24, 27, 42, and 45 arranged two regions apart from each other.
  • FIG. 17 (i) is a diagram illustrating the ninth block in the modified example 6, and the ninth block has four regions 25, 28, 43, and 46 arranged two regions apart from each other.
  • the regions constituting each block are arranged two regions apart.
  • the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels.
  • 144 pixels included in the configuration 307 are divided into 36 regions.
  • One area is composed of four pixels in a Bayer array.
  • one block is composed of four regions arranged so as to be separated from each other by two regions.
  • the configuration 307 has nine blocks shown in FIGS. 17 (a) to 17 (i).
  • FIG. 18 is a schematic diagram illustrating an example of wiring of the output signal line in the configuration 307.
  • the wiring shown by shading is the wiring in the x-axis direction (first direction) of the wiring of the signal lines between the regions from the first block to the ninth block, and the signal lines in the regions 1-7 and 9. It is a figure which illustrates a part of the wiring of.
  • the wiring indicated by dots is a diagram illustrating wiring in the y-axis direction (second direction) of the signal lines between the regions from the first block to the ninth block and wiring of signal lines in regions other than the above. is there.
  • one layer of the wiring layer 72 is shaded with wiring, and the other layer of the wiring layer 72 is dotted.
  • the double circle indicates that the wiring between different layers is connected between the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x.
  • the wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other. Further, in the wiring of the signal lines between the regions, the signal lines in the regions of the four regions constituting each block are indicated by the output unit (drain) of the selection transistor SEL in the first pixel unit 30x or the connection point indicated by a double circle. Connect to each other via.
  • the wiring of the output signal line can be stored in two layers even in the case of the modification example 6. Therefore, the number of wiring layers in the wiring layer 72 is reduced from 9 to 2, as compared with the case where the wiring of the signal line between the regions of the first block to the ninth block is formed in nine different layers of the wiring layer 72. The cost can be suppressed.
  • Modification 7 In the above-described embodiment and modification, the case where the number of regions constituting the block is arranged N in the x-axis direction and N in the y-axis direction is illustrated. Instead, the number of regions constituting the block may be arranged N in the x-axis direction and M in the y-axis direction. The magnitude relationship between M and N may be N ⁇ M or N> M.
  • ⁇ Wiring for supplying control signals ⁇ SEL-1 to ⁇ SEL-N> the wiring of the output signal line has been mainly described, but the control signals ⁇ SEL-1 to ⁇ SEL are applied to each of the selection transistors SEL of the plurality of first pixel units 30x constituting each block.
  • the control line for supplying ⁇ N may also be wired to the wiring layer 72.
  • the layer on which the control line is wired may be separated from the layer on which the output signal line is wired, or a part of the control line may be wired on the same layer as the output signal line.
  • control line may be common between blocks.
  • the control line can be wired as illustrated in FIG.
  • wirings 1-1 to 1-16 are provided as wiring for the control lines to the first and second blocks of the configuration 301
  • wiring 2-1 is provided as wiring for the control lines to the third and fourth blocks of the configuration 301.
  • ⁇ 2-16 is provided.
  • the double circle indicates that the wiring and the control unit (gate) of the selection transistor SEL of the first pixel units 30x-1 to 30x-16 are connected.
  • the sensor control unit 205 connects the G pixel on the GB row included in the area 11 and the G pixel on the GB row included in the area 21 to the control signal ⁇ SEL-1 (No. 1) at the same timing via the wiring 1-1. 1 block), ⁇ SEL-1 (second block) is supplied. That is, the control lines of the control signals ⁇ SEL-1 of the first and second blocks are shared.
  • the sensor control unit 205 also sends control signals ⁇ SEL-2 (first block) and ⁇ SEL-2 to the R pixel included in the area 11 and the R pixel included in the area 21 at the same timing via the wiring 1-2. (Second block) is supplied. That is, the control lines of the control signals ⁇ SEL-2 of the first and second blocks are shared.
  • the sensor control unit 205 sends a control signal ⁇ SEL-3 (to the G pixel on the GB row included in the area 12 and the G pixel on the GB row included in the area 22 at the same timing via the wiring 1-3. 1st block), ⁇ SEL-3 (2nd block) is supplied. That is, the control lines of the control signals ⁇ SEL-3 of the first and second blocks are shared.
  • the sensor control unit 205 also sends control signals ⁇ SEL-4 (first block) and ⁇ SEL-4 to the R pixel included in the area 12 and the R pixel included in the area 22 at the same timing via the wiring 1-4. (Second block) is supplied. That is, the control lines of the control signals ⁇ SEL-4 of the first and second blocks are shared.
  • the sensor control unit 205 sends the control signals ⁇ SEL-5 (first block) and ⁇ SEL- to the B pixel included in the area 11 and the B pixel included in the area 21 at the same timing via the wiring 1-5. 5 (second block) is supplied. That is, the control lines of the control signals ⁇ SEL-5 of the first and second blocks are shared.
  • the sensor control unit 205 also sends a control signal ⁇ SEL-6 (to the G pixel on the RG row included in the area 11 and the G pixel on the RG row included in the area 21 at the same timing via the wiring 1-6. 1st block), ⁇ SEL-6 (2nd block) is supplied. That is, the control lines of the control signals ⁇ SEL-6 of the first and second blocks are shared.
  • the sensor control unit 205 sends control signals ⁇ SEL-7 (first block) and ⁇ SEL-7 to the B pixel included in the area 12 and the B pixel included in the area 22 at the same timing via the wiring 1-7. (Second block) is supplied. That is, the control lines of the control signals ⁇ SEL-7 of the first and second blocks are shared.
  • the sensor control unit 205 also sends a control signal ⁇ SEL-8 (to the G pixel on the RG row included in the area 12 and the G pixel on the RG row included in the area 22 at the same timing via the wiring 1-8). 1st block), ⁇ SEL-8 (2nd block) is supplied. That is, the control lines of the control signals ⁇ SEL-8 of the first and second blocks are shared.
  • the sensor control unit 205 connects the G pixel on the GB row included in the area 13 and the G pixel on the GB row included in the area 23 to the control signal ⁇ SEL-9 at the same timing via the wiring 1-9.
  • (1st block) ⁇ SEL-9 (2nd block) is supplied. That is, the control lines of the control signals ⁇ SEL-9 of the first and second blocks are shared.
  • the sensor control unit 205 also sends control signals ⁇ SEL-10 (first block) and ⁇ SEL-10 to the R pixel included in the area 13 and the R pixel included in the area 23 at the same timing via the wiring 1-10. (Second block) is supplied. That is, the control lines of the control signals ⁇ SEL-10 of the first and second blocks are shared.
  • the sensor control unit 205 connects the G pixel on the GB row included in the area 14 and the G pixel on the GB row included in the area 24 to the control signal ⁇ SEL-11 (at the same timing via wiring 1-11).
  • the first block) and ⁇ SEL-11 (second block) are supplied. That is, the control lines of the control signals ⁇ SEL-11 of the first and second blocks are shared.
  • the sensor control unit 205 also sends control signals ⁇ SEL-12 (first block) and ⁇ SEL-12 to the R pixel included in the area 14 and the R pixel included in the area 24 at the same timing via the wiring 1-12. (Second block) is supplied. That is, the control lines of the control signals ⁇ SEL-12 of the first and second blocks are shared.
  • the sensor control unit 205 sends the control signals ⁇ SEL-13 (first block) and ⁇ SEL- to the B pixel included in the area 13 and the B pixel included in the area 23 at the same timing via the wiring 1-13. 13 (second block) is supplied. That is, the control lines of the control signals ⁇ SEL-13 of the first and second blocks are shared.
  • the sensor control unit 205 also sends a control signal ⁇ SEL-14 (to the G pixel on the RG row included in the area 13 and the G pixel on the RG row included in the area 23 at the same timing via the wiring 1-14. 1st block), ⁇ SEL-14 (2nd block) is supplied. That is, the control lines of the control signals ⁇ SEL-14 of the first and second blocks are shared.
  • the sensor control unit 205 sends control signals ⁇ SEL-15 (first block) and ⁇ SEL-15 to the B pixel included in the area 14 and the B pixel included in the area 24 at the same timing via the wiring 1-15. (Second block) is supplied. That is, the control lines of the control signals ⁇ SEL-15 of the first and second blocks are shared.
  • the sensor control unit 205 also sends a control signal ⁇ SEL-16 (to the G pixel on the RG row included in the area 14 and the G pixel on the RG row included in the area 24 at the same timing via wiring 1-16. 1st block), ⁇ SEL-16 (2nd block) is supplied. That is, the control lines of the control signals ⁇ SEL-16 of the first and second blocks are shared.
  • the plurality of first pixel portions 30x provided in the region 11 or region 12 of the first block are the first pixel portion 30x-1 and the first pixel portion 30x provided in the first direction or the second direction.
  • the plurality of first pixel portions 30x having -2 and provided in the region 21 of the second block are the first pixel portion 30x-1 and the first pixel portion 30x-2 provided in the first direction or the second direction.
  • the first output unit is selected as a first switch for outputting a signal based on the charge generated by the first pixel unit 30x-1 of the first block to the signal line 90-1 between regions.
  • Selection as a second switch for outputting a signal based on the charge generated by the transistor SEL-1 (first block) and the first pixel unit 30x-2 of the first block to the signal line 90-1 between regions It has a transistor SEL-2 (first block), and the second output unit outputs a signal based on the charge generated by the first pixel unit 30x-1 of the second block to the signal line 90-2 between regions.
  • a signal based on the charge generated by the selection transistor SEL-1 (second block) as the third switch and the first pixel portion 30x-2 of the second block is output to the signal line 90-2 between the regions.
  • It has a selection transistor SEL-2 (second block) as a fourth switch, and is wired in the first direction row or the second direction, and has a selection transistor SEL-1 (first block) as a first switch. ) And the selection transistor SEL-1 (second block) as the third switch, and the first control line (wiring 1-1), which is wired in the first or second direction, as the second switch. It has a second control line (wiring 1-2) for controlling the selection transistor SEL-2 (first block) and the selection transistor SEL-2 (second block) as the fourth switch.
  • control line wirings 1-1 to 1-16 for the first and second blocks have been described, but the same applies to the control line wirings 2-1 to 2-16 for the third and fourth blocks. is there.
  • the number of control lines may be increased according to the number of pixels.
  • control lines for supplying the control signals ⁇ Tx-1 to ⁇ Tx-N to each of the transfer transistors Tx of the plurality of first pixel units 30x constituting each block are also the control signals ⁇ SEL described with reference to FIG. Similar to the control line for supplying -1 to ⁇ SEL-N, the wiring layer 72 may be wired. Further, the control line for supplying the control signals ⁇ Tx-1 to ⁇ Tx ⁇ N may also be common between the blocks. By sharing the control lines between the blocks, it is possible to simplify the wiring of the control lines as compared with the case where the control lines are not shared.
  • the control lines may be wired in a matrix as illustrated in FIG.
  • FIG. 20 as the wiring of the control signals ⁇ SEL-1 to ⁇ SEL-N for the first to fourth blocks of the configuration 301, wirings a1 to a8 in the x-axis direction and wirings b1 to b8 in the y-axis direction are provided. It is assumed that each first pixel portion 30x is provided with two selection transistors SEL.
  • any of the wirings a1 to a8 is connected to the control unit (gate) of one of the selection transistors SEL, and any of the wirings b1 to b8 is connected to the control unit (gate) of the other selection transistor SEL. Is connected.
  • the sensor control unit 205 supplies the control signal ⁇ SEL to the first pixel unit 30x, which is the target of signal reading (the target of outputting the signal), via the intersecting wirings a1 to a8 and b1 to b8.
  • the signal generated by the first pixel unit 30x in which the two selection transistors SEL are turned on by the control signals ⁇ SEL supplied by the wirings a1 to a8 and the wirings b1 to b8 is transmitted to the signal line 210. It is output.
  • the image sensor 101 may be mounted on an electronic device such as a smartphone, a tablet terminal, or a wearable terminal in addition to the digital camera.

Abstract

This image pickup element comprises: a plurality of photoelectric conversion units which are provided in each of a first region, a second region, and a third region between the first region and the second region, and photoelectrically convert light to generate charges; a first output unit which outputs at least one among a signal based on the charges generated by the plurality of photoelectric conversion units provided in the first region and a signal based on the charges generated by the plurality of photoelectric conversion units provided in the second region; and a second output unit which outputs a signal based on the charges generated by the plurality of photoelectric conversion units provided in the third region.

Description

撮像素子および撮像装置Image sensor and image sensor
 本発明は、撮像素子および撮像装置に関する。 The present invention relates to an image pickup device and an image pickup device.
 複数の画素をブロックにまとめて、ブロック単位で信号を並列に読出す撮像素子が知られている(特許文献1参照)。このような撮像素子では、ブロック内に欠陥が生じた場合の補間処理が困難であった。 There is known an image sensor that collects a plurality of pixels into blocks and reads signals in parallel in block units (see Patent Document 1). With such an image sensor, it is difficult to perform interpolation processing when a defect occurs in the block.
日本国特開2016-171455号公報Japanese Patent Application Laid-Open No. 2016-171455
 本発明の第1の態様による撮像素子は、第1領域、第2領域、および前記第1領域と前記第2領域との間にある第3領域にそれぞれ設けられ、光を光電変換して電荷を生成する複数の光電変換部と、前記第1領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号と、前記第2領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号との少なくとも一方を出力する第1出力部と、前記第3領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号を出力する第2出力部と、を備える。
 本発明の第2の態様による撮像装置は、第1の態様による撮像素子と、前記第1出力部および前記第2出力部の少なくとも一方から出力される信号に基づいて画像データを生成する生成部と、を備える。
The image pickup device according to the first aspect of the present invention is provided in each of a first region, a second region, and a third region between the first region and the second region, and charges light by photoelectric conversion. A signal based on the electric charge generated by the plurality of photoelectric conversion units provided in the first region, and the plurality of photoelectric conversion units provided in the second region. It includes a first output unit that outputs at least one of a charge-based signal, and a second output unit that outputs a charge-based signal generated by a plurality of the photoelectric conversion units provided in the third region.
The image pickup apparatus according to the second aspect of the present invention is a generation unit that generates image data based on the image pickup device according to the first aspect and signals output from at least one of the first output unit and the second output unit. And.
デジタルカメラの構成例を示す図である。It is a figure which shows the configuration example of a digital camera. 撮像素子の概要を説明する図である。It is a figure explaining the outline of the image sensor. 撮像素子の断面を説明する図である。It is a figure explaining the cross section of an image sensor. ベイヤー配列を例示する図である。It is a figure which illustrates the Bayer arrangement. ブロックの構成を説明する回路図である。It is a circuit diagram explaining the structure of a block. カラーフィルタの配置とブロックの関係性を例示する模式図である。It is a schematic diagram which illustrates the relationship between the arrangement of a color filter and a block. 図7(a)~図7(d)は、それぞれ第1ブロックから第4ブロックを説明する図である。7 (a) to 7 (d) are diagrams for explaining the first block to the fourth block, respectively. 補間処理を説明する図である。It is a figure explaining the interpolation processing. 図9(a)、図9(b)は出力信号線の配線例を説明する図である。9 (a) and 9 (b) are diagrams for explaining a wiring example of the output signal line. 図10(a)、図10(b)は出力信号線の他の配線例を説明する図である。10 (a) and 10 (b) are diagrams for explaining other wiring examples of the output signal line. 図11(a)、図11(b)は出力信号線の別の配線例を説明する図である。11 (a) and 11 (b) are diagrams for explaining another wiring example of the output signal line. 図12(a)、図12(b)は変形例1によるカラーフィルタの配置とブロックの関係性等を説明する図である。12 (a) and 12 (b) are diagrams for explaining the relationship between the arrangement of the color filter and the block according to the first modification. 変形例2によるカラーフィルタの配置とブロックの関係性を例示する図である。It is a figure which illustrates the relationship between the arrangement of a color filter and a block by modification 2. 変形例3によるカラーフィルタの配置とブロックの関係性等を例示する図である。It is a figure exemplifying the relationship between the arrangement of the color filter and the block according to the modification 3. 変形例4によるカラーフィルタの配置とブロックの関係性等を例示する図である。It is a figure which illustrates the relationship between the arrangement of the color filter and the block by the modification 4. 変形例5によるカラーフィルタの配置とブロックの関係性等を例示する図である。It is a figure which illustrates the relationship between the arrangement of the color filter and the block by the modification 5. 図17(a)~図17(i)は、それぞれ変形例6による第1ブロックから第9ブロックを説明する図である。17 (a) to 17 (i) are diagrams for explaining the first to ninth blocks according to the modified example 6, respectively. 出力信号線の配線の一例を説明する図である。It is a figure explaining an example of wiring of an output signal line. 制御信号線の配線の一例を説明する図である。It is a figure explaining an example of wiring of a control signal line. 制御信号線の配線の一例を説明する図である。It is a figure explaining an example of wiring of a control signal line.
 本実施の形態による撮像素子は、光を光電変換する光電変換部が複数設けられた領域が、複数配置されている。以下、図面を参照して詳細に説明する。
 図1は、一実施の形態による撮像素子101を備えるデジタルカメラの構成例を模式的に示す図である。デジタルカメラは、交換レンズ110とカメラボディ100とから構成され、交換レンズ110がレンズ取り付け部105を介してカメラボディ100に装着される。
 なお、デジタルカメラをレンズ交換式ではなく、レンズ一体式のカメラとして構成してもよい。
In the image pickup device according to the present embodiment, a plurality of regions provided with a plurality of photoelectric conversion units for photoelectric conversion of light are arranged. Hereinafter, a detailed description will be given with reference to the drawings.
FIG. 1 is a diagram schematically showing a configuration example of a digital camera including an image sensor 101 according to an embodiment. The digital camera is composed of an interchangeable lens 110 and a camera body 100, and the interchangeable lens 110 is attached to the camera body 100 via a lens mounting portion 105.
The digital camera may be configured as a camera with an integrated lens instead of an interchangeable lens type.
 図1において、互いに直交する座標系を構成するxyz軸を規定する。被写体からの光は、図1のz軸プラス方向に向かって入射するものとする。また、座標軸に示すように、z軸に直交する紙面手前方向をx軸プラス方向、z軸およびx軸に直交する上方向をy軸プラス方向とする。以降のいくつかの図においては、図1の座標軸を基準として、それぞれの図の向きがわかるように座標軸を表示する。 In FIG. 1, the xyz axes constituting the coordinate systems orthogonal to each other are defined. It is assumed that the light from the subject is incident in the positive direction of the z-axis of FIG. Further, as shown in the coordinate axes, the front direction of the paper surface orthogonal to the z-axis is defined as the x-axis plus direction, and the upward direction orthogonal to the z-axis and the x-axis is defined as the y-axis plus direction. In some subsequent figures, the coordinate axes are displayed so that the orientation of each figure can be understood with reference to the coordinate axes of FIG.
 交換レンズ110は、例えば、レンズ制御部111、ズームレンズ112、フォーカスレンズ113、防振レンズ114、絞り部材115、レンズ操作部116などを備えている。レンズ制御部111は、CPUとメモリなどの周辺部品とを含む。レンズ制御部111は、フォーカスレンズ113、防振レンズ114、および絞り部材115の駆動制御、ズームレンズ112やフォーカスレンズ113の位置検出、カメラボディ100への交換レンズ110の情報の送信およびカメラボディ100からのカメラ情報の受信などを行う。 The interchangeable lens 110 includes, for example, a lens control unit 111, a zoom lens 112, a focus lens 113, an anti-vibration lens 114, an aperture member 115, a lens operation unit 116, and the like. The lens control unit 111 includes a CPU and peripheral components such as a memory. The lens control unit 111 controls the drive of the focus lens 113, the anti-vibration lens 114, and the aperture member 115, detects the positions of the zoom lens 112 and the focus lens 113, transmits information on the interchangeable lens 110 to the camera body 100, and the camera body 100. Receives camera information from.
 カメラボディ100は、例えば、撮像素子101、ボディ制御部102、ボディ操作部103、および表示部104などを備えている。撮像素子101は、交換レンズ110の予定結像面(予定焦点面)に配置され、交換レンズ110により結像される被写体像を光電変換する。ボディ操作部103は、シャッターボタンや、各種設定のための操作部材などを含む。表示部104は、例えばカメラボディ100の背面に搭載された液晶モニタ(背面モニタとも称される)によって構成される。 The camera body 100 includes, for example, an image sensor 101, a body control unit 102, a body operation unit 103, a display unit 104, and the like. The image sensor 101 is arranged on the planned image plane (planned focal plane) of the interchangeable lens 110, and photoelectrically converts the subject image imaged by the interchangeable lens 110. The body operation unit 103 includes a shutter button, an operation member for various settings, and the like. The display unit 104 is composed of, for example, a liquid crystal monitor (also referred to as a rear monitor) mounted on the back surface of the camera body 100.
 ボディ制御部102は、CPUとメモリなどの周辺部品とを含む。ボディ制御部102は、撮像素子101の駆動制御、撮像素子101からの信号の読み出し、焦点検出演算および交換レンズ110の焦点調節、画像信号の処理および記録などデジタルカメラの動作制御を行う。また、ボディ制御部102は、レンズ取り付け部105に設けられた電気接点106を介してレンズ制御部111と通信を行い、交換レンズ110の情報の受信およびカメラ情報(デフォーカス量や絞り値など)の送信を行う。 The body control unit 102 includes a CPU and peripheral parts such as a memory. The body control unit 102 controls the operation of the digital camera, such as drive control of the image sensor 101, reading of a signal from the image sensor 101, focus detection calculation and focus adjustment of the interchangeable lens 110, processing and recording of an image signal. Further, the body control unit 102 communicates with the lens control unit 111 via an electric contact 106 provided in the lens mounting unit 105 to receive information on the interchangeable lens 110 and camera information (defocus amount, aperture value, etc.). To send.
 撮像素子101の受光面上には、交換レンズ110を通過した光束によって被写体像が形成される。この被写体像は撮像素子101によって光電変換され、光電変換後の信号がボディ制御部102へ送られる。 A subject image is formed on the light receiving surface of the image sensor 101 by the light flux passing through the interchangeable lens 110. This subject image is photoelectrically converted by the image pickup element 101, and the signal after the photoelectric conversion is sent to the body control unit 102.
 ボディ制御部102は、撮像素子101からの信号に基づいて公知の焦点検出演算を行うことにより、交換レンズ110のデフォーカス量を検出する。デフォーカス量は、交換レンズ110が形成した被写体像の位置(結像面)と撮像素子101の受光面位置とのずれ量である。
 ボディ制御部102によって検出されたデフォーカス量は、レンズ制御部111へ送出される。レンズ制御部111は、受信したデフォーカス量に基づいてフォーカスレンズ113の駆動量を算出する。そして、算出した駆動量に基づいて不図示のモーター等を駆動することにより、フォーカスレンズ113を合焦位置へ移動させる。
The body control unit 102 detects the defocus amount of the interchangeable lens 110 by performing a known focus detection calculation based on the signal from the image sensor 101. The defocus amount is the amount of deviation between the position of the subject image (imaging surface) formed by the interchangeable lens 110 and the position of the light receiving surface of the image sensor 101.
The defocus amount detected by the body control unit 102 is sent to the lens control unit 111. The lens control unit 111 calculates the drive amount of the focus lens 113 based on the received defocus amount. Then, the focus lens 113 is moved to the in-focus position by driving a motor or the like (not shown) based on the calculated drive amount.
 また、ボディ制御部102は、撮像素子101からの信号を処理して画像データを生成する。画像データは、不図示のメモリカードに記録されたり、表示部104に画像を表示する際に用いられたりする。撮像素子101からの信号に対する画像処理には、後に詳述する補正処理と、色補間処理等が含まれる。ボディ制御部102はさらに、撮像素子101からの信号に基づくモニタ用画像(スルー画像とも称される)を表示部104に表示させる。 Further, the body control unit 102 processes a signal from the image sensor 101 to generate image data. The image data is recorded on a memory card (not shown) or used when displaying an image on the display unit 104. The image processing for the signal from the image sensor 101 includes a correction process described in detail later, a color interpolation process, and the like. The body control unit 102 further causes the display unit 104 to display a monitor image (also referred to as a through image) based on the signal from the image sensor 101.
<撮像素子の構成>
 図2は、撮像素子101の概要を説明する模式図である。撮像素子101は、CMOSイメージセンサによって構成される。撮像素子101は、画素エリア201と、垂直制御部202と、水平制御部203と、センサ出力部204と、センサ制御部205とを有する。なお、図2では、電源部や詳細回路は省略している。
<Structure of image sensor>
FIG. 2 is a schematic diagram illustrating an outline of the image sensor 101. The image sensor 101 is composed of a CMOS image sensor. The image sensor 101 includes a pixel area 201, a vertical control unit 202, a horizontal control unit 203, a sensor output unit 204, and a sensor control unit 205. In FIG. 2, the power supply unit and the detailed circuit are omitted.
 画素エリア201には、例えば、x軸方向(第1方向)、および、y軸方向(第2方向)に二次元状に配置された複数の画素を有する。各画素は、入射光量に応じた電荷を生成する、光電変換部としてのフォトダイオードを有する。複数の画素は、それぞれが垂直制御部202および水平制御部203によって制御され、各画素のフォトダイオードで生成された電荷に基づく信号が、信号線210を介して読出される(出力される)。 The pixel area 201 has, for example, a plurality of pixels arranged two-dimensionally in the x-axis direction (first direction) and the y-axis direction (second direction). Each pixel has a photodiode as a photoelectric conversion unit that generates an electric charge according to the amount of incident light. Each of the plurality of pixels is controlled by the vertical control unit 202 and the horizontal control unit 203, and a signal based on the charge generated by the photodiode of each pixel is read out (output) via the signal line 210.
 センサ出力部204は、各画素から出力された信号に対して相関二重サンプリング(CDS)を行ったり、必要に応じてゲインをかけたりする。センサ出力部204で処理された信号は、後段の信号処理部(不図示)へ出力される。 The sensor output unit 204 performs correlation double sampling (CDS) on the signal output from each pixel, and applies gain as necessary. The signal processed by the sensor output unit 204 is output to a signal processing unit (not shown) in the subsequent stage.
 なお、以上の説明では、センサ出力部204が後段の信号処理部へアナログ信号として出力する例を説明したが、センサ出力部204にA/Dコンバータを備え、A/D変換後の信号をデジタル出力する構成にしてもよい。 In the above description, an example in which the sensor output unit 204 outputs an analog signal to the signal processing unit in the subsequent stage has been described, but the sensor output unit 204 is provided with an A / D converter and the signal after the A / D conversion is digitally output. It may be configured to output.
 本実施の形態では、画素エリア201が複数の領域に分けられている。各領域は、それぞれ複数(例えば4つ)のフォトダイオードを有する。複数の領域のうち所定数(例えば4つ)の領域が後述する領域間の信号線で接続される。領域間の信号線で接続された所定数の領域をブロックと称する。ブロック内のいずれかの領域のフォトダイオードで生成された信号は、ブロックの信号線210を介して出力される。そのため、信号線210の数はブロックの数と等しい。このように構成したので、センサ出力部204は、複数のブロックからの信号を並列に入力し、入力した複数のブロックからの信号に対して並列に処理を行い、後段の信号処理部(不図示)へ並列に出力することができる。
 なお、1つのブロックに複数の信号線210を設けてもよい。
In the present embodiment, the pixel area 201 is divided into a plurality of areas. Each region has a plurality (eg, 4) photodiodes. A predetermined number (for example, four) of the plurality of regions are connected by signal lines between the regions described later. A predetermined number of regions connected by signal lines between regions are called blocks. The signal generated by the photodiode in any region of the block is output via the signal line 210 of the block. Therefore, the number of signal lines 210 is equal to the number of blocks. With this configuration, the sensor output unit 204 inputs signals from a plurality of blocks in parallel, processes the signals from the input multiple blocks in parallel, and performs signal processing units in the subsequent stage (not shown). ) Can be output in parallel.
A plurality of signal lines 210 may be provided in one block.
 センサ制御部205は、上述した撮像素子101の各部を制御する。すなわち、以降に説明する撮像素子101の動作は、ボディ制御部102の指令を受けたセンサ制御部205の制御に基づいて行われる。
 なお、本実施の形態では、フォトダイオードと、フォトダイオードで生成された電荷に基づく信号を出力する出力部とを含めて「画素」と呼ぶ。出力部は、後述する各転送トランジスタ、フローティングディフュージョン(FD)領域、増幅トランジスタ、および選択トランジスタ、および信号を出力する信号線を含む例を説明するが、出力部の範囲は、必ずしも本例の通りでなくてもよい。
The sensor control unit 205 controls each unit of the image sensor 101 described above. That is, the operation of the image sensor 101 described below is performed based on the control of the sensor control unit 205 that receives the command of the body control unit 102.
In the present embodiment, the photodiode and the output unit that outputs a signal based on the electric charge generated by the photodiode are referred to as "pixels". An example will be described in which the output unit includes each transfer transistor, a floating diffusion (FD) region, an amplification transistor, and a selection transistor described later, and a signal line for outputting a signal, but the range of the output unit is not necessarily the same as in this example. It does not have to be.
 図3は、撮像素子101の断面を説明する図である。なお図3では、撮像素子101の全体のうち、一部の断面のみを示している。撮像素子101は、いわゆる裏面照射型の撮像素子として構成されており、z軸プラス方向に向かう入射光を光電変換する。撮像素子101は、例えば、第1半導体基板70と、第2半導体基板80とが積層して構成されている。 FIG. 3 is a diagram illustrating a cross section of the image sensor 101. Note that FIG. 3 shows only a part of the cross section of the entire image sensor 101. The image sensor 101 is configured as a so-called back-illuminated image sensor, and photoelectrically converts incident light in the plus direction of the z-axis. The image sensor 101 is configured by, for example, laminating a first semiconductor substrate 70 and a second semiconductor substrate 80.
 第1半導体基板70は、少なくともPD層71と、配線層72とを備える。PD層71は、配線層72の裏面側(z軸マイナス側)に配置される。PD層71には、複数のフォトダイオードPDが二次元状に配置される。配線層72には、配線61、配線62、配線63、配線64によって信号線210、後述する領域内の信号線、後述する領域間の信号線、および、後述する制御線の配線が形成される。配線61から配線64は、それぞれ配線層72の異なる層に形成される。上記の配線は、配線層72において同層の配線のみを用いて形成してもよいし、配線層72の異なる層の配線をそれぞれ用いて形成してもよい。
 図3には4層の配線を例示したが、層数は適宜変更して構わない。配線層72の層間は、例えば不図示のビア(via)によって接続することができる。第2半導体基板80には、例えば、上記センサ出力部204等の各種回路が配置される。第2半導体基板80についても、多層に構成して構わない。
The first semiconductor substrate 70 includes at least a PD layer 71 and a wiring layer 72. The PD layer 71 is arranged on the back surface side (z-axis minus side) of the wiring layer 72. A plurality of photodiode PDs are arranged two-dimensionally on the PD layer 71. The wiring 61, the wiring 62, the wiring 63, and the wiring 64 form the wiring of the signal line 210, the signal line in the area described later, the signal line between the areas described later, and the control line described later in the wiring layer 72. .. The wiring 61 to 64 are formed in different layers of the wiring layer 72, respectively. The above wiring may be formed by using only the wiring of the same layer in the wiring layer 72, or may be formed by using the wiring of different layers of the wiring layer 72.
Although the wiring of four layers is illustrated in FIG. 3, the number of layers may be changed as appropriate. The layers of the wiring layer 72 can be connected by, for example, vias (not shown). Various circuits such as the sensor output unit 204 are arranged on the second semiconductor substrate 80, for example. The second semiconductor substrate 80 may also be configured in multiple layers.
 PD層71における入射光の入射側(z軸マイナス側)には、複数のフォトダイオードPDの各々に対応する複数のカラーフィルタ73が設けられる。カラーフィルタ73には、例えば赤(R)、緑(G)、青(B)の異なる分光特性を有する3つのカラーフィルタ(色フィルタ)のいずれかが設けられる。カラーフィルタ73には、入射した光のうち第1の波長域の光(赤(R)の光)を分光する分光特性を有するカラーフィルタと、入射した光のうち第2の波長域の光(緑(G)の光)を分光する分光特性を有するカラーフィルタと、入射した光のうち第3の波長域の光(青(B)の光)を分光する分光特性を有するカラーフィルタとが含まれる。カラーフィルタ73は、例えば赤(R)、緑(G)、青(B)に対応する3種類が、図4に例示するベイヤー配列を為すように配列される。
 なお、本実施の形態ではベイヤー配列を例に説明するが、カラーフィルタ73をベイヤー配列以外の配列にしてもよい。
A plurality of color filters 73 corresponding to each of the plurality of photodiode PDs are provided on the incident side (z-axis minus side) of the incident light in the PD layer 71. The color filter 73 is provided with any one of three color filters (color filters) having different spectral characteristics of, for example, red (R), green (G), and blue (B). The color filter 73 includes a color filter having a spectral characteristic for dispersing light in the first wavelength region (red (R) light) of the incident light, and light in the second wavelength region of the incident light (light of the incident light). It includes a color filter having a spectral characteristic for dispersing green (G) light) and a color filter having a spectral characteristic for separating light in a third wavelength region (blue (B) light) among incident light. Is done. Three types of color filters 73, for example, corresponding to red (R), green (G), and blue (B), are arranged so as to form the Bayer arrangement illustrated in FIG.
Although the Bayer array will be described as an example in this embodiment, the color filter 73 may have an array other than the Bayer array.
 カラーフィルタ73における入射光の入射側(z軸マイナス側)には、複数のカラーフィルタ73の各々に対応する複数のマイクロレンズ74が設けられる。マイクロレンズ74は、対応するフォトダイオードPDに向けて入射光を集光する。マイクロレンズ74を通過した入射光は、カラーフィルタ73により一部の波長領域のみが透過され、フォトダイオードPDに入射する。フォトダイオードPDは、入射光を光電変換して電荷を生成する。 A plurality of microlenses 74 corresponding to each of the plurality of color filters 73 are provided on the incident side (z-axis minus side) of the incident light in the color filter 73. The microlens 74 collects incident light toward the corresponding photodiode PD. The incident light that has passed through the microlens 74 is transmitted by the color filter 73 only in a part of the wavelength region and is incident on the photodiode PD. The photodiode PD photoelectrically converts the incident light to generate an electric charge.
 配線層72の表面(z軸プラス側)には複数の接合パッド75が配置される。第2半導体基板80の、配線層72に対向する面(z軸マイナス側)には、複数の接合パッド75に対向する複数の接合パッド76が配置される。複数の接合パッド75と複数の接合パッド76とが互いに接合されると、複数の接合パッド75と複数の接合パッド76とを介して、第1半導体基板70と第2半導体基板80とが電気的に接続される。
 接合パッド75および複数の接合パッド76の数は、それぞれ上述したブロックの数と等しくすることができる。すなわち、1つのブロックに対応して一組の接合パッド75、接合パッド76が設けられる。
A plurality of joining pads 75 are arranged on the surface (z-axis plus side) of the wiring layer 72. A plurality of bonding pads 76 facing the plurality of bonding pads 75 are arranged on the surface (z-axis minus side) of the second semiconductor substrate 80 facing the wiring layer 72. When the plurality of bonding pads 75 and the plurality of bonding pads 76 are joined to each other, the first semiconductor substrate 70 and the second semiconductor substrate 80 are electrically connected to each other via the plurality of bonding pads 75 and the plurality of bonding pads 76. Connected to.
The number of the joining pads 75 and the plurality of joining pads 76 can be equal to the number of blocks described above, respectively. That is, a set of joining pads 75 and 76 is provided corresponding to one block.
 本実施の形態では、撮像素子101の1つの画素が、第1半導体基板70に設けられた第1画素部30xと、第2半導体基板80に設けられた第2画素部30yとによって構成される。第1画素部30xには、マイクロレンズ74、カラーフィルタ73、フォトダイオードPDの他に、後に詳述するトランジスタや、画素部30P間を接続する配線61から配線64等を含めることができる。第2画素部30yには、上記センサ出力部204等の回路を含めることができる。 In the present embodiment, one pixel of the image sensor 101 is composed of a first pixel portion 30x provided on the first semiconductor substrate 70 and a second pixel portion 30y provided on the second semiconductor substrate 80. .. In addition to the microlens 74, the color filter 73, and the photodiode PD, the first pixel portion 30x can include a transistor described in detail later, wiring 61 to wiring 64 connecting the pixel portions 30P, and the like. The second pixel unit 30y can include a circuit such as the sensor output unit 204.
<ブロックの説明>
 図5は、撮像素子101のブロックの構成を説明する回路図である。図5に示す例では、ブロック1つ当たり4つの領域A~領域Dを有する。領域Aに、4つの第1画素部30x-1~30x-4が配置される。領域Bに、4つの第1画素部30x-5~30x-8が配置される。領域Cに、4つの第1画素部30x-9~30x-12が配置される。領域Dに、4つの第1画素部30x-13~30x-16が配置される。
<Explanation of blocks>
FIG. 5 is a circuit diagram illustrating a block configuration of the image sensor 101. In the example shown in FIG. 5, each block has four regions A to D. Four first pixel units 30x-1 to 30x-4 are arranged in the area A. Four first pixel units 30x-5 to 30x-8 are arranged in the area B. Four first pixel units 30x-9 to 30x-12 are arranged in the area C. Four first pixel units 30x-13 to 30x-16 are arranged in the area D.
 第1画素部30xは、それぞれ、光電変換部としてのフォトダイオードPDと、4つのトランジスタ(転送部として機能する転送トランジスタTx、リセット部として機能するリセットトランジスタRST、増幅部として機能する増幅トランジスタSF、スイッチとして機能する選択トランジスタSEL)と、FD領域とを有する。
 第1画素部30xの各部は、図5に示すように接続されている。図5において符号VDDは、電源電圧を示す。
 転送トランジスタTxは、フォトダイオードPDで生成された電荷をFD領域へ転送する。転送トランジスタTxは、対応する制御信号φTxがHighレベルになるとオンして電荷を転送し、対応する制御信号φTxがLowレベルになるとオフする。
The first pixel unit 30x includes a photodiode PD as a photoelectric conversion unit, four transistors (transfer transistor Tx functioning as a transfer unit, a reset transistor RST functioning as a reset unit, and an amplification transistor SF functioning as an amplification unit, respectively. It has a selection transistor SEL) that functions as a switch and an FD region.
Each part of the first pixel part 30x is connected as shown in FIG. In FIG. 5, reference numeral VDD indicates a power supply voltage.
The transfer transistor Tx transfers the electric charge generated by the photodiode PD to the FD region. The transfer transistor Tx is turned on when the corresponding control signal φTx reaches the High level to transfer charges, and turns off when the corresponding control signal φTx reaches the Low level.
 FD領域は、転送された電荷を蓄積するとともに、転送された電荷を電圧に変換する。増幅トランジスタSFは、ソースフォロワ回路を形成し、FD領域の電位に応じた信号を出力する。リセットトランジスタRSTは、FD領域やフォトダイオードPDの電荷をリセット(排出)する。リセットトランジスタRSTは、対応する制御信号φRSTがHighレベルになるとオンし、対応する制御信号φRSTがLowレベルになるとオフする。 The FD region accumulates the transferred charge and converts the transferred charge into a voltage. The amplification transistor SF forms a source follower circuit and outputs a signal corresponding to the potential in the FD region. The reset transistor RST resets (discharges) the electric charge of the FD region and the photodiode PD. The reset transistor RST turns on when the corresponding control signal φRST reaches the High level, and turns off when the corresponding control signal φRST reaches the Low level.
 選択トランジスタSELは、増幅トランジスタSFから出力された信号を領域内の信号線60へ出力する。選択トランジスタSELは、対応する制御信号φSELがHighレベルになるとオンして信号を出力し、対応する制御信号φSELがLowレベルになるとオフする。 The selection transistor SEL outputs the signal output from the amplification transistor SF to the signal line 60 in the region. The selection transistor SEL is turned on when the corresponding control signal φSEL reaches the High level to output a signal, and turns off when the corresponding control signal φSEL reaches the Low level.
 領域内の信号線60は、領域A~領域Dのそれぞれにおいて、領域内の複数(本例では4つ)の選択トランジスタSELの出力部(ドレイン)を接続する。領域間の信号線90は、ブロック内の複数(本例では4つ)の領域A~領域Dの出力部、すなわち、領域A内の信号線60、領域B内の信号線60、領域C内の信号線60、および、領域D内の信号線60を接続する。
 ブロックにおける信号線をこのように接続したので、ブロック内のいずれかの領域のフォトダイオードPDで生成された信号は、領域内の信号線60、領域間の信号線90、および、信号線210を介して出力される。
The signal line 60 in the region connects the output units (drains) of a plurality of (four in this example) selection transistors SEL in the region in each of the regions A to D. The signal lines 90 between the regions are the output units of a plurality of (four in this example) regions A to D in the block, that is, the signal lines 60 in the region A, the signal lines 60 in the region B, and the regions C. The signal line 60 of the above and the signal line 60 in the area D are connected.
Since the signal lines in the block are connected in this way, the signal generated by the photodiode PD in any region in the block includes the signal line 60 in the region, the signal line 90 between the regions, and the signal line 210. It is output via.
 センサ制御部205は、ブロック内の16個の第1画素部30xの選択トランジスタSELに、それぞれ独立した制御信号φSEL-1~φSEL-16を供給することができる。例えば、センサ制御部205がHighレベルの制御信号φSEL-1~φSEL-16を順番に供給することで、16個の選択トランジスタSELが順番にオンになり信号線210へ信号が出力される。このように、ブロック内の16個の第1画素部30xによって生成された信号は、個別に出力することも可能である。 The sensor control unit 205 can supply independent control signals φSEL-1 to φSEL-16 to the selection transistors SEL of the 16 first pixel units 30x in the block. For example, when the sensor control unit 205 sequentially supplies the high level control signals φSEL-1 to φSEL-16, the 16 selection transistors SEL are turned on in order and a signal is output to the signal line 210. In this way, the signals generated by the 16 first pixel units 30x in the block can be output individually.
 なお、センサ制御部205は、16個の選択トランジスタSELのうちの複数個を組み合わせて信号線210へ信号を出力させてもよい。例えば、センサ制御部205は、第1画素部30x-1~30x-16のうち複数の第1画素部30xへHighレベルの制御信号φSELを供給する。このように、Highレベルの制御信号φSELが供給された複数の第1画素部30xからそれぞれ出力された信号が領域内の信号線60、領域間の信号線90および信号線210において加算され、ビニングを行うことも可能である。 Note that the sensor control unit 205 may output a signal to the signal line 210 by combining a plurality of the 16 selection transistors SEL. For example, the sensor control unit 205 supplies a high level control signal φSEL to a plurality of first pixel units 30x among the first pixel units 30x-1 to 30x-16. In this way, the signals output from the plurality of first pixel units 30x to which the high level control signal φSEL is supplied are added to the signal line 60 in the region, the signal line 90 between the regions, and the signal line 210, and binning. It is also possible to do.
 また、センサ制御部205は、ブロック内の16個の第1画素部30xの転送トランジスタTxに、それぞれ独立した制御信号φTx-1~φTx-16を供給することができる。例えば、センサ制御部205によってHighレベルの制御信号φTx-1~φTx-16を順番に供給することで、16個の転送トランジスタTxが順番にオンになりフォトダイオードPDで生成された電荷がFD領域へ転送される。このように、ブロック内の16個の第1画素部30xによって生成された電荷は、個別に転送することも可能である。 Further, the sensor control unit 205 can supply independent control signals φTx-1 to φTx-16 to the transfer transistors Tx of the 16 first pixel units 30x in the block. For example, by supplying the high level control signals φTx-1 to φTx-16 in order by the sensor control unit 205, the 16 transfer transistors Tx are turned on in order, and the electric charge generated by the photodiode PD is in the FD region. Transferred to. In this way, the charges generated by the 16 first pixel units 30x in the block can be individually transferred.
 なお、センサ制御部205は、16個の転送トランジスタTxのうちの複数個を同じタイミングでオンさせてもよい。例えば、センサ制御部205は、第1画素部30x-1~30x-16のうち複数の第1画素部30xへHighレベルの制御信号φTxを供給する。このように、Highレベルの制御信号φTxが供給された複数の第1画素部30xにおいて生成された電荷がそれぞれのFD領域へ転送される。 Note that the sensor control unit 205 may turn on a plurality of the 16 transfer transistors Tx at the same timing. For example, the sensor control unit 205 supplies a high level control signal φTx to a plurality of first pixel units 30x among the first pixel units 30x-1 to 30x-16. In this way, the charges generated in the plurality of first pixel units 30x to which the high level control signal φTx is supplied are transferred to the respective FD regions.
 図6は、カラーフィルタの配置とブロックの関係性を例示する模式図であり、画素エリア201(図2)の一部の構成301を示す。画素エリア201には、構成301が、例えばx軸方向およびy軸方向に繰り返し配置されている。 FIG. 6 is a schematic diagram illustrating the relationship between the arrangement of the color filters and the blocks, and shows a partial configuration 301 of the pixel area 201 (FIG. 2). In the pixel area 201, the configuration 301 is repeatedly arranged, for example, in the x-axis direction and the y-axis direction.
<配置>
 本実施の形態では、複数の領域に、それぞれ4つの画素が配置されている。図6の例では、構成301に含まれる64画素が16個の領域に分けられている。1つの領域は、ベイヤー配列の4画素によって構成される。
 すなわち、赤(R)に対応する波長領域の光を透過するカラーフィルタ73を有する画素(R画素と称する)と、青(B)に対応する波長領域の光を透過するカラーフィルタ73を有する画素(B画素と称する)と、GR列上に位置して緑(G)に対応する波長領域の光を透過するカラーフィルタ73を有する画素(G画素と称する)と、GB列上に位置して緑(G)に対応する波長領域の光を透過するカラーフィルタ73を有する画素(G画素と称する)とによって、1つの領域が構成される。
 そして、1つのブロックは、互いに離間して配置されている4つの領域により構成される。これにより、構成301は4つのブロックを有する。
<Arrangement>
In the present embodiment, four pixels are arranged in each of the plurality of regions. In the example of FIG. 6, the 64 pixels included in the configuration 301 are divided into 16 regions. One area is composed of four pixels in a Bayer array.
That is, a pixel (referred to as an R pixel) having a color filter 73 that transmits light in the wavelength region corresponding to red (R) and a pixel having a color filter 73 that transmits light in the wavelength region corresponding to blue (B). (Referred to as B pixel), a pixel (referred to as G pixel) having a color filter 73 located on the GR row and transmitting light in the wavelength region corresponding to green (G), and a pixel (referred to as G pixel) located on the GB row. One region is composed of pixels (referred to as G pixels) having a color filter 73 that transmits light in a wavelength region corresponding to green (G).
And one block is composed of four regions arranged apart from each other. As a result, the configuration 301 has four blocks.
 図7(a)は第1ブロックを説明する図である。第1ブロックは互いに離間して配置されている4つの領域11~領域14を有する。領域11~領域14は、図5の領域A~領域Dに対応する。図7(b)は第2ブロックを説明する図である。第2ブロックは互いに離間して配置されている4つの領域21~領域24を有する。領域21~領域24は、図5の領域A~領域Dに対応する。図7(c)は第3ブロックを説明する図である。第3ブロックは互いに離間して配置されている4つの領域31~領域34を有する。領域31~領域34は、図5の領域A~領域Dに対応する。図7(d)は第4ブロックを説明する図である。第4ブロックは互いに離間して配置されている4つの領域41~領域44を有する。領域41~領域44は、図5の領域A~領域Dに対応する。 FIG. 7A is a diagram illustrating the first block. The first block has four regions 11 to 14 arranged apart from each other. Regions 11 to 14 correspond to regions A to D in FIG. FIG. 7B is a diagram illustrating the second block. The second block has four regions 21 to 24 that are spaced apart from each other. Regions 21 to 24 correspond to regions A to D in FIG. FIG. 7C is a diagram illustrating the third block. The third block has four regions 31 to 34 that are spaced apart from each other. Regions 31 to 34 correspond to regions A to D in FIG. FIG. 7D is a diagram illustrating the fourth block. The fourth block has four regions 41 to 44 that are spaced apart from each other. Regions 41 to 44 correspond to regions A to D in FIG.
 図6および図7において、第1ブロックが有する16個の画素を網掛けで示す。また、第2ブロックが有する16個の画素をドットで示す。さらに、第3ブロックが有する16個の画素を縦縞で示す。さらにまた、第4ブロックが有する16個の画素を横縞で示す。 In FIGS. 6 and 7, the 16 pixels of the first block are shaded. Further, the 16 pixels of the second block are indicated by dots. Further, the 16 pixels of the third block are indicated by vertical stripes. Furthermore, the 16 pixels of the fourth block are indicated by horizontal stripes.
 1つのブロックが、互いに隣接して配置されている領域ではなく、互いに離間した領域を有する理由を説明する。一般に、撮像素子101に生じた欠陥によってある画素からの信号を出力させることができない場合、撮像素子101は信号を出力できない画素の周囲に配置されている他の画素からの信号を用いた補間処理によって、信号を出力できない画素位置における信号を生成する。また、撮像素子101に生じた欠陥によってある画素からの信号に基づく画像データを生成できない場合、撮像素子101は画像データを生成できない画素位置の周囲に配置されている他の画素からの信号に基づいた画像データを補正する補正処理によって、画像データを生成できなかった画素位置における画像データを生成する。 Explain the reason why one block has an area separated from each other instead of an area arranged adjacent to each other. Generally, when a signal from a certain pixel cannot be output due to a defect generated in the image sensor 101, the image sensor 101 performs interpolation processing using signals from other pixels arranged around a pixel that cannot output the signal. Generates a signal at a pixel position where the signal cannot be output. Further, when the image data based on the signal from a certain pixel cannot be generated due to the defect generated in the image pickup element 101, the image pickup element 101 is based on the signal from another pixel arranged around the pixel position where the image data cannot be generated. The image data at the pixel position where the image data could not be generated is generated by the correction process for correcting the image data.
 本実施の形態では、例えば、第1ブロックに生じた欠陥により、第1ブロック内の画素(注目画素と称する)からの信号を出力できなくなると、例えばボディ制御部102またはセンサ制御部205が、注目画素の周囲に配置されている他の画素からの信号を用いて補間処理を行う。第1ブロックの欠陥には、第1ブロックの信号線210に故障が生じた場合、第1ブロックの領域間の信号線90に故障が生じた場合、第1ブロックの領域内の信号線60に故障が生じた場合、上記注目画素そのものに故障が生じた場合が含まれる。 In the present embodiment, for example, when a defect generated in the first block makes it impossible to output a signal from a pixel (referred to as a pixel of interest) in the first block, for example, the body control unit 102 or the sensor control unit 205 Interpolation processing is performed using signals from other pixels arranged around the pixel of interest. The defects of the first block include a failure of the signal line 210 of the first block, a failure of the signal line 90 between the regions of the first block, and a defect of the signal line 60 in the region of the first block. When a failure occurs, the case where the failure occurs in the attention pixel itself is included.
 図8は、補間処理を説明する図である。図8において、実線の円で囲んだR画素であって、図7(a)の第1ブロックを構成する領域14に含まれるR画素を注目画素とする。ボディ制御部102またはセンサ制御部205は、例えば、破線の円で囲んだ4つのR画素であって、図7(b)の第2ブロックを構成する領域23、24にそれぞれ含まれるR画素と、図7(c)の第3ブロックを構成する領域32、34にそれぞれ含まれるR画素からの信号を用いて、注目画素の位置における信号を補間する。 FIG. 8 is a diagram illustrating the interpolation process. In FIG. 8, the R pixel surrounded by a solid line circle and included in the region 14 constituting the first block of FIG. 7A is set as the pixel of interest. The body control unit 102 or the sensor control unit 205 is, for example, four R pixels surrounded by a broken line circle, and the R pixels included in the regions 23 and 24 constituting the second block of FIG. 7B, respectively. , The signal from the R pixel included in the regions 32 and 34 constituting the third block in FIG. 7C is used to interpolate the signal at the position of the pixel of interest.
 このような補間処理を行う場合、注目画素の位置から近い位置に配置されている画素からの信号を用いる方が、注目画素の位置から遠い位置に配置されている画素からの信号を用いるよりも、補間処理の精度が高まる点で有利である。仮に、1つのブロックが、互いに隣接した領域を有するとすれば、注目画素を含む領域の周囲に位置する領域も、注目画素と同じ欠陥ブロックに含まれる可能性が高まる。注目画素を含む領域の周囲の領域が欠陥であると、ボディ制御部102またはセンサ制御部205は、注目画素の位置からさらに離れた位置に配置されている他のブロックに含まれる画素からの信号を用いて補間しなければならず、補間処理の精度が低くなってしまう。 When performing such interpolation processing, it is better to use a signal from a pixel arranged at a position close to the position of the pixel of interest than to use a signal from a pixel arranged at a position far from the position of the pixel of interest. , It is advantageous in that the accuracy of the interpolation processing is improved. If one block has regions adjacent to each other, it is highly possible that a region located around the region including the pixel of interest is also included in the same defect block as the pixel of interest. If the area around the area containing the pixel of interest is defective, the body control unit 102 or the sensor control unit 205 may use a signal from a pixel contained in another block located further away from the position of the pixel of interest. It is necessary to perform interpolation using, and the accuracy of the interpolation processing becomes low.
 しかしながら、本実施の形態によれば、1つのブロックが、互いに離間した領域を有する構成にしたので、注目画素を含む第1ブロックの領域14の隣に位置する領域32、34、23、24は、いずれも第1ブロックと異なる第3ブロックまたは第2ブロックに含まれる。すなわち、注目画素を含む領域の周囲の領域は欠陥ブロックと異なるブロックに含まれるので、ボディ制御部102またはセンサ制御部205は、注目画素の位置から近い位置に配置されている画素からの信号を用いて、補間処理を精度よく行うことができる。
 なお、例えば、第2ブロックの領域24の画素を注目画素とする場合、構成301のx軸プラス方向側に位置する他の構成(不図示)に含まれる画素からの信号を用いればよい。
However, according to the present embodiment, since one block is configured to have regions separated from each other, the regions 32, 34, 23, and 24 located next to the region 14 of the first block including the pixel of interest are , Both are included in a third block or a second block different from the first block. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform the interpolation process with high accuracy.
For example, when the pixel in the region 24 of the second block is the pixel of interest, a signal from a pixel included in another configuration (not shown) located on the x-axis plus direction side of the configuration 301 may be used.
<配線>
 図9(a)~図9(b)は、構成301の出力信号線のうち領域間の信号線90の配線と領域内の信号線60の配線の一例を説明する模式図である。図9(a)は、第1ブロックの領域間の信号線90-1、第2ブロックの領域間の信号線90-2、第3および第4ブロックの領域内の信号線60の配線を例示する図である。第1ブロックの領域間の信号線90-1は、網掛けで示される。第2ブロックの領域間の信号線90-2は、ドットで示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)出力部とが接続されることを示す。
<Wiring>
9 (a) to 9 (b) are schematic views illustrating an example of wiring of the signal line 90 between the regions and wiring of the signal line 60 in the region among the output signal lines of the configuration 301. FIG. 9A illustrates the wiring of the signal line 90-1 between the regions of the first block, the signal line 90-2 between the regions of the second block, and the signal line 60 in the regions of the third and fourth blocks. It is a figure to do. The signal lines 90-1 between the regions of the first block are shaded. The signal lines 90-2 between the regions of the second block are indicated by dots. The double circle indicates that the wiring and the output unit (drain) output unit of the selection transistor SEL in the first pixel unit 30x are connected.
 また、図9(b)は、第3ブロックの領域間の信号線90-3、第4ブロックの領域間の信号線90-4、第1および第2ブロックの領域内の信号線60の配線を例示する図である。第3ブロックの領域間の信号線90-3は、縦縞で示される。第4ブロックの領域間の信号線90-4は、横縞で示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。 Further, FIG. 9B shows the wiring of the signal line 90-3 between the regions of the third block, the signal line 90-4 between the regions of the fourth block, and the signal line 60 in the regions of the first and second blocks. It is a figure exemplifying. The signal lines 90-3 between the regions of the third block are indicated by vertical stripes. The signal lines 90-4 between the regions of the fourth block are indicated by horizontal stripes. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 以上説明したように、領域内の信号線60の配線は、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する。
 また、領域間の信号線90の配線は、各ブロックが有する4つの領域の領域内の信号線60を互いに接続する。
 図9(a)、図9(b)の配線例によれば、上記配線を配線層72のうちの2層に納めることができる。換言すれば、領域内の信号線60と領域間の信号線90とが、配線層72で占有する層の数を少なくすることができる。配線の層数を少なくすることで、コスト抑制の効果を得ることができる。
As described above, the wiring of the signal line 60 in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other.
Further, the wiring of the signal line 90 between the regions connects the signal lines 60 in the regions of the four regions of each block to each other.
According to the wiring examples of FIGS. 9A and 9B, the wiring can be housed in two of the wiring layers 72. In other words, the number of layers occupied by the signal line 60 in the region and the signal line 90 between the regions can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
<他の配線の例示(1)>
 図10(a)~図10(b)は、構成301における出力信号線の他の配線例を説明する模式図である。図10(a)は、第1ブロックの領域間の信号線90-1、第4ブロックの領域間の信号線、第3および第4ブロックの領域内の信号線60の配線を例示する図である。第1ブロックの領域間の信号線90-1は、網掛けで示される。第4ブロックの領域間の信号線は、横縞で示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。
<Example of other wiring (1)>
10 (a) to 10 (b) are schematic views illustrating another wiring example of the output signal line in the configuration 301. FIG. 10A is a diagram illustrating the wiring of the signal line 90-1 between the regions of the first block, the signal line between the regions of the fourth block, and the signal line 60 in the regions of the third and fourth blocks. is there. The signal lines 90-1 between the regions of the first block are shaded. The signal lines between the regions of the fourth block are indicated by horizontal stripes. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 また、図10(b)は、第2ブロックの領域間の信号線90-2、第3ブロックの領域間の信号線90-3、第1および第2ブロックの領域内の信号線60の配線を例示する図である。第2ブロックの領域間の信号線90-2は、ドットで示される。第3ブロックの領域間の信号線は、縦縞で示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。 Further, FIG. 10B shows the wiring of the signal line 90-2 between the regions of the second block, the signal line 90-3 between the regions of the third block, and the signal line 60 in the regions of the first and second blocks. It is a figure exemplifying. The signal lines 90-2 between the regions of the second block are indicated by dots. The signal lines between the regions of the third block are indicated by vertical stripes. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 領域内の信号線60の配線が、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する点と、領域間の信号線90の配線が、各ブロックが有する4つの領域の領域内の信号線60を互いに接続する点は、図9(a)、図9(b)に例示した配線と同様である。図10(a)、図10(b)の配線例でも、図9(a)、図9(b)に例示した配線と同様に、上記配線を配線層72のうちの2層に納めることができる。換言すれば、領域内の信号線60と領域間の信号線90とが、配線層72で占有する層の数を少なくすることができる。 The wiring of the signal line 60 in the region connects the output units (drains) of the selection transistors SEL of the four first pixel units 30x constituting each region to each other, and the wiring of the signal line 90 between the regions is each. The point of connecting the signal lines 60 in the regions of the four regions of the block to each other is the same as the wiring illustrated in FIGS. 9 (a) and 9 (b). In the wiring examples of FIGS. 10 (a) and 10 (b), the wiring can be stored in two of the wiring layers 72 in the same manner as the wiring illustrated in FIGS. 9 (a) and 9 (b). it can. In other words, the number of layers occupied by the signal line 60 in the region and the signal line 90 between the regions can be reduced.
<他の配線の例示(2)>
 図11(a)~図11(b)は、構成301における出力信号線の別の配線例を説明する模式図である。図11(a)は、第1ブロックの領域間の信号線90-1、第2ブロックの領域間の信号線90-2、第3ブロックの領域間の信号線90-3、および、第4ブロックの領域間の信号線90-4の配線のうちx軸方向の第1配線、第3配線と、第1ブロックから第4ブロックの領域内の信号線60の配線の一部とを例示する図である。第1ブロックの領域間の信号線90-1は、網掛けで示される。第2ブロックの領域間の信号線90-2は、ドットで示される。第3ブロックの領域間の信号線90-3は、縦縞で示される。第4ブロックの領域間の信号線90-4は、横縞で示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。
<Example of other wiring (2)>
11 (a) to 11 (b) are schematic views illustrating another wiring example of the output signal line in the configuration 301. FIG. 11A shows a signal line 90-1 between the regions of the first block, a signal line 90-2 between the regions of the second block, a signal line 90-3 between the regions of the third block, and a fourth. Of the wiring of the signal line 90-4 between the block regions, the first wiring and the third wiring in the x-axis direction and a part of the wiring of the signal line 60 in the region of the first block to the fourth block are illustrated. It is a figure. The signal lines 90-1 between the regions of the first block are shaded. The signal lines 90-2 between the regions of the second block are indicated by dots. The signal lines 90-3 between the regions of the third block are indicated by vertical stripes. The signal lines 90-4 between the regions of the fourth block are indicated by horizontal stripes. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 また、図11(b)は、第1ブロックの領域間の信号線90-1、第2ブロックの領域間の信号線90-2、第3ブロックの領域間の信号線90-3、および、第4ブロックの領域間の信号線90-4の配線のうちy軸方向の第2配線、第4配線と、第1ブロックから第4ブロックの領域内の信号線60の配線の残り部分とを例示する図である。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。 Further, FIG. 11B shows signal lines 90-1 between the regions of the first block, signal lines 90-2 between the regions of the second block, signal lines 90-3 between the regions of the third block, and Of the wiring of the signal line 90-4 between the regions of the fourth block, the second wiring and the fourth wiring in the y-axis direction, and the remaining portion of the wiring of the signal line 60 in the region of the first block to the fourth block. It is a figure which exemplifies. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 領域内の信号線60の配線が、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する点と、領域間の信号線90の配線が、各ブロックが有する4つの領域の領域内の信号線60の配線を互いに接続する点は、図9(a)、図9(b)および図10(a)、図10(b)に例示した配線と同様である。 図11(a)、図11(b)に例示した配線例でも、図9(a)、図9(b)および図10(a)、図10(b)に例示した配線と同様に、上記配線を配線層72のうちの2層に納めることができる。換言すれば、領域内の信号線60と領域間の信号線90とが、配線層72で占有する層の数を少なくすることができる。 The wiring of the signal line 60 in the region connects the output units (drains) of the selection transistors SEL of the four first pixel units 30x constituting each region to each other, and the wiring of the signal line 90 between the regions is each. The points connecting the wirings of the signal lines 60 in the regions of the four regions of the block to each other are the wirings exemplified in FIGS. 9A, 9B, 10A, and 10B. The same is true. The wiring examples illustrated in FIGS. 11 (a) and 11 (b) are also described above, similarly to the wiring illustrated in FIGS. 9 (a), 9 (b), 10 (a), and 10 (b). The wiring can be housed in two of the wiring layers 72. In other words, the number of layers occupied by the signal line 60 in the region and the signal line 90 between the regions can be reduced.
 以上説明した実施の形態によれば、次の作用効果が得られる。
(1)撮像素子101は、第1領域としての領域11、第2領域としての領域12、および領域11と領域12との間にある第3領域としての領域21にそれぞれ設けられ、光を光電変換して電荷を生成する複数の第1画素部30xと、領域11に設けられる複数の第1画素部30xで生成された電荷に基づく信号と、領域12に設けられる複数の第1画素部30xで生成された電荷に基づく信号との少なくとも一方を出力する第1出力部(第1ブロックの領域内の信号線60、領域間の信号線90-1、信号線210)と、領域21に設けられる複数の第1画素部30xで生成された電荷に基づく信号を出力する第2出力部(第2ブロックの領域内の信号線60、領域間の信号線90-2、信号線210)とを備える。このように、領域11と領域12との間に領域21を配置したため、仮に、領域11または領域12が欠陥になった場合に、領域11、領域12における第1画素部30xから得られるべき信号を、領域11、領域12の間に位置する領域21における第1画素部30xから得られた信号を用いて生成する補間処理、補正処理を精度よく行うことができる。
According to the embodiment described above, the following effects can be obtained.
(1) The image sensor 101 is provided in a region 11 as a first region, a region 12 as a second region, and a region 21 as a third region between the region 11 and the region 12, respectively, and transmits light. A plurality of first pixel units 30x that are converted to generate charges, a signal based on the charges generated by the plurality of first pixel units 30x provided in the region 11, and a plurality of first pixel units 30x provided in the region 12. A first output unit (signal line 60 in the region of the first block, signal line 90-1 between regions, signal line 210) that outputs at least one of the signals based on the charge generated in the above and the region 21 are provided. A second output unit (signal line 60 in the region of the second block, signal line 90-2 between regions, signal line 210) that outputs a signal based on the charge generated by the plurality of first pixel units 30x. Be prepared. Since the region 21 is arranged between the region 11 and the region 12 in this way, if the region 11 or the region 12 becomes defective, the signal to be obtained from the first pixel portion 30x in the region 11 and the region 12 The interpolation process and the correction process for generating the signal obtained from the first pixel unit 30x in the region 21 located between the regions 11 and 12 can be performed with high accuracy.
(2)複数の第1画素部30xは、第1方向および第2方向に、領域11、領域12および領域21においてそれぞれ設けられる。このように構成したので、各領域において第1方向および第2方向の位置が対応する第1画素部30xから得られる信号を用いることで、補間処理、補正処理を精度よく行うことができる。 (2) The plurality of first pixel units 30x are provided in the first direction and the second direction in the area 11, the area 12, and the area 21, respectively. With this configuration, the interpolation processing and correction processing can be performed with high accuracy by using the signals obtained from the first pixel unit 30x whose positions in the first direction and the second direction correspond to each other in each region.
(3)上記(1)の第1出力部は、第1方向および第2方向の少なくとも一方に配線され、第1画素部30xで生成された電荷に基づく信号を出力する第1信号線としての領域間の信号線90-1を有し、上記(1)の第2出力部は、第1方向および第2方向の少なくとも一方に配線され、第1画素部30xで生成された電荷に基づく信号を出力する第2信号線としての領域間の信号線90-2を有する。このように構成したので、仮に、領域11または領域12が欠陥になって領域間の信号線90-1から信号が出力されない場合でも、領域21における第1画素部30xから得られる信号を領域間の信号線90-2から出力させることができる。 (3) The first output unit of the above (1) is wired in at least one of the first direction and the second direction, and serves as a first signal line that outputs a signal based on the electric charge generated by the first pixel unit 30x. It has a signal line 90-1 between regions, and the second output unit of the above (1) is wired in at least one of the first direction and the second direction, and is a signal based on the charge generated by the first pixel unit 30x. It has a signal line 90-2 between regions as a second signal line to output. With this configuration, even if the region 11 or region 12 becomes defective and no signal is output from the signal line 90-1 between the regions, the signal obtained from the first pixel unit 30x in the region 21 can be output between the regions. It can be output from the signal line 90-2 of.
(4)領域間の信号線90-1と領域間の信号線90-2とは、配線層72の異なる層に設けたので、1つの層において第1方向および第2方向の配線を交差させずに適切に配線することができる。また、配線層72で領域間の信号線90が占有する層の数を少なくすることができる。配線の層数を少なくすることで、コスト抑制の効果を得ることができる。 (4) Since the signal line 90-1 between the regions and the signal line 90-2 between the regions are provided in different layers of the wiring layer 72, the wirings in the first direction and the second direction are crossed in one layer. Can be wired properly without. Further, the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
(5)領域間の信号線90-1と領域間の信号線90-2とは、配線層72の同じ層に設けられ、交差しないよう配線されるので、1つの層において第1方向および第2方向の配線を交差させずに適切に配線することができる。また、配線層72で領域間の信号線90が占有する層の数を少なくすることができる。配線の層数を少なくすることで、コスト抑制の効果を得ることができる。 (5) Since the signal line 90-1 between the regions and the signal line 90-2 between the regions are provided in the same layer of the wiring layer 72 and are wired so as not to intersect each other, the first direction and the first layer in one layer. Wiring can be performed appropriately without crossing the wiring in two directions. Further, the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
(6)領域間の信号線90-1は、図11(a)の第1方向に配線される第1配線と、図11(b)の第2方向に配線される第2配線とを有し、上記第1配線と上記第2配線とは、配線層72の異なる層に設けられる。このように構成したので、1つの層において第1方向および第2方向の配線を交差させずに適切に配線することができる。また、配線層72で領域間の信号線90が占有する層の数を少なくすることができる。配線の層数を少なくすることで、コスト抑制の効果を得ることができる。 (6) The signal line 90-1 between the regions has a first wiring wired in the first direction of FIG. 11A and a second wiring wired in the second direction of FIG. 11B. However, the first wiring and the second wiring are provided in different layers of the wiring layer 72. With this configuration, the wiring in the first direction and the wiring in the second direction can be appropriately wired in one layer without intersecting each other. Further, the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
(7)領域間の信号線90-2は、図11(a)の第1方向に配線される第3配線と、図11(b)の第2方向に配線される第4配線とを有し、上記第1配線と上記第3配線とは、配線層72の同じ層(図11(a))に設けられ、上記第2配線と上記第4配線とは、配線層72の同じ層(図11(b))に設けられる。このように構成したので、1つの層において第1方向および第2方向の配線を交差させずに適切に配線することができる。また、配線層72で領域間の信号線90が占有する層の数を少なくすることができる。配線の層数を少なくすることで、コスト抑制の効果を得ることができる。 (7) The signal line 90-2 between the regions has a third wiring wired in the first direction of FIG. 11A and a fourth wiring wired in the second direction of FIG. 11B. The first wiring and the third wiring are provided in the same layer of the wiring layer 72 (FIG. 11A), and the second wiring and the fourth wiring are in the same layer of the wiring layer 72 (the same layer of the wiring layer 72. It is provided in FIG. 11 (b)). With this configuration, the wiring in the first direction and the wiring in the second direction can be appropriately wired in one layer without intersecting each other. Further, the number of layers occupied by the signal lines 90 between the regions in the wiring layer 72 can be reduced. By reducing the number of wiring layers, the effect of cost reduction can be obtained.
(8)領域11、領域12および領域21と異なる、第4領域としての領域22に設けられる複数の第1画素部30xを備え、上記(1)の第2出力部は、領域21に設けられる複数の第1画素部30xで生成された電荷に基づく信号と、領域22に設けられる複数の第1画素部30xで生成された電荷に基づく信号との少なくとも一方を出力する。このように構成したので、仮に、領域12が欠陥になって領域間の信号線90-1から信号が出力されない場合でも、領域21または領域22における第1画素部30xで得られる信号を第2信号線としての領域間の信号線90-2から出力させることができる。 (8) A plurality of first pixel units 30x provided in the region 22 as a fourth region, which is different from the region 11, the region 12, and the region 21, are provided, and the second output portion of the above (1) is provided in the region 21. At least one of a signal based on the charge generated by the plurality of first pixel units 30x and a signal based on the charge generated by the plurality of first pixel units 30x provided in the region 22 is output. With this configuration, even if the region 12 becomes defective and no signal is output from the signal lines 90-1 between the regions, the signal obtained by the first pixel unit 30x in the region 21 or the region 22 can be second. It can be output from the signal line 90-2 between the regions as the signal line.
(9)複数の第1画素部30xは、第1波長の光を光電変換する光電変換部と、第1波長と異なる第2波長の光を光電変換する光電変換部とを有する。このように構成したので、異なる波長の光をそれぞれ光電変換することができる。 (9) The plurality of first pixel units 30x include a photoelectric conversion unit that photoelectrically converts light of the first wavelength and a photoelectric conversion unit that photoelectrically converts light of a second wavelength different from the first wavelength. With this configuration, light of different wavelengths can be photoelectrically converted.
(10)上記(1)の第1出力部および第2出力部の少なくとも一方から出力される信号に基づいて画像データを生成する生成部としてのボディ制御部102とを備える。このように構成したので、記録用の画像、モニタ用の画像を生成することができる。 (10) A body control unit 102 as a generation unit that generates image data based on a signal output from at least one of the first output unit and the second output unit of the above (1) is provided. With this configuration, it is possible to generate an image for recording and an image for a monitor.
(11)ボディ制御部102は、上記(1)の第2出力部から出力される信号に基づいて、上記(1)の第1出力部から出力される信号を補正して、画像データを生成する。このように構成したので、記録用の画像、モニタ用の画像を適切に生成することができる。 (11) The body control unit 102 corrects the signal output from the first output unit of the above (1) based on the signal output from the second output unit of the above (1) to generate image data. To do. With this configuration, it is possible to appropriately generate an image for recording and an image for a monitor.
(12)ボディ制御部102は、上記(1)の第1出力部から信号が出力されない場合、上記(1)の第2出力部から出力される信号に基づいて画像データを補正して、画像データを生成する。このように構成したので、記録用の画像、モニタ用の画像を適切に生成することができる。 (12) When the signal is not output from the first output unit of (1), the body control unit 102 corrects the image data based on the signal output from the second output unit of (1) to obtain an image. Generate data. With this configuration, it is possible to appropriately generate an image for recording and an image for a monitor.
(13)ボディ制御部102は、は、上記(1)の第1出力部から信号が出力されない場合、画像データにおいて第1出力部から出力される信号に対応するデータを、第2出力部から出力される信号に基づいて生成する。このように構成したので、記録用の画像、モニタ用の画像を適切に生成することができる。 (13) When the signal is not output from the first output unit of the above (1), the body control unit 102 outputs the data corresponding to the signal output from the first output unit in the image data from the second output unit. Generated based on the output signal. With this configuration, it is possible to appropriately generate an image for recording and an image for a monitor.
 次のような変形も本発明の範囲内であり、変形例の1つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
 上述した実施の形態では、1つのブロックが4つの領域(16画素)を有する例を説明した。この代わりに、1つのブロックが9つの領域(36画素)を有する構成にしてもよい。
 図12(a)、図12(b)は、変形例1によるカラーフィルタの配置とブロックの関係性、および、出力信号線の配線を例示する模式図であり、画素エリア201(図2)の一部の構成302を示す。画素エリア201には、構成302が、例えばx軸方向(第1方向)およびy軸方向(第2方向)に繰り返し配置されている。
The following modifications are also within the scope of the present invention, and one or more of the modifications can be combined with the above-described embodiment.
(Modification example 1)
In the above-described embodiment, an example in which one block has four regions (16 pixels) has been described. Instead, one block may have nine regions (36 pixels).
12 (a) and 12 (b) are schematic views illustrating the relationship between the arrangement of the color filter and the block according to the first modification and the wiring of the output signal line, and are the schematic views of the pixel area 201 (FIG. 2). A partial configuration 302 is shown. In the pixel area 201, the configurations 302 are repeatedly arranged, for example, in the x-axis direction (first direction) and the y-axis direction (second direction).
<配置>
 変形例1の場合も、画素エリア201を4画素ごとに区分けすることにより複数の領域に分ける。図12(a)、図12(b)の例では、構成302に含まれる144画素が36個の領域に分けられている。1つの領域は、ベイヤー配列の4画素によって構成される。そして、互いに離間して配置されている9つの領域により、1つのブロックを構成する。これにより、構成302は4つのブロックを有する。
<Arrangement>
Also in the case of the modification 1, the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels. In the examples of FIGS. 12A and 12B, 144 pixels included in the configuration 302 are divided into 36 regions. One area is composed of four pixels in a Bayer array. Then, one block is composed of nine regions arranged apart from each other. As a result, the configuration 302 has four blocks.
 図12(a)、図12(b)において、第1ブロックが有する36個の画素を網掛けで示す。また、第2ブロックが有する36個の画素をドットで示す。さらに、第3ブロックが有する36個の画素を縦縞で示す。さらにまた、第4ブロックが有する36個の画素を横縞で示す。 In FIGS. 12 (a) and 12 (b), the 36 pixels of the first block are shaded. Further, the 36 pixels of the second block are indicated by dots. Further, the 36 pixels of the third block are indicated by vertical stripes. Furthermore, the 36 pixels of the fourth block are indicated by horizontal stripes.
 変形例1においても、1つのブロックが、互いに隣接して配置されている領域ではなく、互いに離間した領域を有する。このように構成したので、例えば、注目画素を含む第1ブロックの領域の隣に位置する領域は、いずれも第1ブロックと異なる他のブロック(第2ブロック~第4ブロックのいずれか)に含まれる。すなわち、注目画素を含む領域の周囲の領域は欠陥ブロックと異なるブロックに含まれるので、ボディ制御部102またはセンサ制御部205は、注目画素の位置から近い位置に配置されている画素からの信号を用いて、補間処理、補正処理を精度よく行うことができる。 Also in the modified example 1, one block has a region separated from each other, not a region arranged adjacent to each other. Since it is configured in this way, for example, the area located next to the area of the first block including the pixel of interest is included in another block (any of the second block to the fourth block) different from the first block. Is done. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
<配線>
 図12(a)には、第1ブロックの領域間の信号線、第2ブロックの領域間の信号線、第3および第4ブロックの領域内の信号線の配線を例示する。第1ブロックの領域間の信号線は、網掛けで示される。第2ブロックの領域間の信号線は、ドットで示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。
<Wiring>
FIG. 12A illustrates the wiring of the signal lines between the regions of the first block, the signal lines between the regions of the second block, and the signal lines in the regions of the third and fourth blocks. The signal lines between the regions of the first block are shaded. The signal lines between the regions of the second block are indicated by dots. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 また、図12(b)には、第3ブロックの領域間の信号線、第4ブロックの領域間の信号線、第1および第2ブロックの領域内の信号線の配線を例示する。第3ブロックの領域間の信号線は、縦縞で示される。第2ブロックの領域間の信号線は、横縞で示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。 Further, FIG. 12B illustrates the wiring of the signal lines between the regions of the third block, the signal lines between the regions of the fourth block, and the signal lines in the regions of the first and second blocks. The signal lines between the regions of the third block are indicated by vertical stripes. The signal lines between the regions of the second block are indicated by horizontal stripes. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 領域内の信号線の配線は、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する。
 また、領域間の信号線の配線は、各ブロックが有する9つの領域の領域内の信号線を互いに接続する。
 図12(a)、図12(b)に例示するように、変形例1の場合にも上記配線を2層に納めることができる。そのため、第1ブロック~第4ブロックの配線を配線層72の異なる4つの層にそれぞれ形成する場合と比べて、配線層72における配線の層数を4から2へ減らしてコストを抑えることができる。
The wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other.
Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the nine regions of each block to each other.
As illustrated in FIGS. 12 (a) and 12 (b), the wiring can be housed in two layers even in the case of the first modification. Therefore, the number of wiring layers in the wiring layer 72 can be reduced from 4 to 2 to reduce the cost as compared with the case where the wiring of the first block to the fourth block is formed in four different layers of the wiring layer 72. ..
(変形例2)
 1つのブロックが64画素を有する構成にしてもよい。図13は、変形例2によるカラーフィルタの配置とブロックの関係性を例示する模式図であり、画素エリア201(図2)の一部の構成303を示す。画素エリア201には、構成303が、例えばx軸方向(第1方向)およびy軸方向(第2方向)に繰り返し配置されている。
(Modification 2)
One block may have 64 pixels. FIG. 13 is a schematic view illustrating the relationship between the arrangement of the color filter and the block according to the modified example 2, and shows a partial configuration 303 of the pixel area 201 (FIG. 2). In the pixel area 201, the configuration 303 is repeatedly arranged, for example, in the x-axis direction (first direction) and the y-axis direction (second direction).
<配置>
 変形例2の場合も、画素エリア201を4画素ごとに区分けすることにより複数の領域に分ける。図13の例では、構成303に含まれる256画素が64個の領域に分けられている。1つの領域は、ベイヤー配列の4画素によって構成される。そして、1つのブロックは、互いに離間して配置されている16個の領域により構成される。これにより、構成303は4つのブロックを有する。
<Arrangement>
Also in the case of the modification 2, the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels. In the example of FIG. 13, 256 pixels included in the configuration 303 are divided into 64 regions. One area is composed of four pixels in a Bayer array. And one block is composed of 16 regions arranged apart from each other. As a result, the configuration 303 has four blocks.
 図13において、第1ブロックが有する64個の画素を網掛けで示す。また、第2ブロックが有する64個の画素をドットで示す。さらに、第3ブロックが有する64個の画素を縦縞で示す。さらにまた、第4ブロックが有する64個の画素を横縞で示す。 In FIG. 13, the 64 pixels of the first block are shaded. Further, the 64 pixels of the second block are indicated by dots. Further, the 64 pixels of the third block are indicated by vertical stripes. Furthermore, the 64 pixels of the fourth block are indicated by horizontal stripes.
 変形例2においても、1つのブロックは、互いに隣接して配置されている領域ではなく、互いに離間した領域を有する。このように構成したので、例えば、注目画素を含む第1ブロックの領域の隣に位置する領域は、いずれも第1ブロックと異なる他のブロック(第2ブロック~第4ブロックのいずれか)に含まれる。すなわち、注目画素を含む領域の周囲の領域は欠陥ブロックと異なるブロックに含まれるので、ボディ制御部102またはセンサ制御部205は、注目画素の位置から近い位置に配置されている画素からの信号を用いて、補間処理、補正処理を精度よく行うことができる。 Also in the second modification, one block has a region separated from each other, not a region arranged adjacent to each other. Since it is configured in this way, for example, the area located next to the area of the first block including the pixel of interest is included in another block (any of the second block to the fourth block) different from the first block. Is done. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
<配線>
 図示を省略するが、変形例2における信号線の配線は、上記実施の形態の説明で参照した図9(a)、図9(b)、変形例1の説明で参照した図12(a)、図12(b)にならって配線することができる。すなわち、配線層72の1つの層において、第1ブロックの領域間の信号線、第2ブロックの領域間の信号線、第3および第4ブロックの領域内の信号線は、配線層72の1つの層に配線され、配線層72の他の層において、第3ブロックの領域間の信号線、第4ブロックの領域間の信号線、第1および第2ブロックの領域内の信号線は、配線層72の他の層に配線される。
<Wiring>
Although not shown, the wiring of the signal line in the modified example 2 is shown in FIGS. 9 (a) and 9 (b) referred to in the description of the above embodiment, and FIG. 12 (a) referred to in the description of the modified example 1. , Wiring can be performed according to FIG. 12 (b). That is, in one layer of the wiring layer 72, the signal line between the regions of the first block, the signal line between the regions of the second block, and the signal line in the regions of the third and fourth blocks are 1 of the wiring layer 72. In the other layers of the wiring layer 72, the signal lines between the regions of the third block, the signal lines between the regions of the fourth block, and the signal lines in the regions of the first and second blocks are wired. Wired to another layer of layer 72.
 このように配線することにより、変形例2の場合にも上記配線を2層に納めることができる。そのため、第1ブロック~第4ブロックの配線を配線層72の異なる4つの層にそれぞれ形成する場合と比べて、配線層72における配線の層数を4から2へ減らしてコストを抑えることができる。 By wiring in this way, the above wiring can be stored in two layers even in the case of the modified example 2. Therefore, the number of wiring layers in the wiring layer 72 can be reduced from 4 to 2 to reduce the cost as compared with the case where the wiring of the first block to the fourth block is formed in four different layers of the wiring layer 72. ..
(変形例3)
 ブロックが有する複数の領域の領域内の信号線を互いに接続する領域間の信号線を、x軸およびy軸に挟まれる方向に配線してもよい。図14は、変形例3によるカラーフィルタの配置とブロックの関係性、および、出力信号線の配線を例示する模式図であり、画素エリア201(図2)の一部の構成304を示す。画素エリア201には、構成304が、例えばx軸方向およびy軸方向に繰り返し配置されている。
(Modification 3)
The signal lines between the regions connecting the signal lines in the regions of the plurality of regions of the block may be wired in the direction sandwiched between the x-axis and the y-axis. FIG. 14 is a schematic diagram illustrating the relationship between the arrangement of the color filter and the block according to the modification 3 and the wiring of the output signal line, and shows a partial configuration 304 of the pixel area 201 (FIG. 2). In the pixel area 201, the configurations 304 are repeatedly arranged, for example, in the x-axis direction and the y-axis direction.
<配置>
 変形例3の場合も、画素エリア201を4画素ごとに区分けすることにより複数の領域に分ける。図14の例では、構成304に含まれる32画素が8個の領域に分けられている。1つの領域は、ベイヤー配列の4画素によって構成される。そして、1つのブロックは、互いに離間して配置されている4個の領域により構成される。これにより、構成304は2つのブロックを有する。
 図14において、第1ブロックが有する16個の画素を網掛けで示す。また、第2ブロックが有する16個の画素をドットで示す。
<Arrangement>
Also in the case of the modification 3, the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels. In the example of FIG. 14, the 32 pixels included in the configuration 304 are divided into eight regions. One area is composed of four pixels in a Bayer array. And one block is composed of four regions arranged apart from each other. As a result, configuration 304 has two blocks.
In FIG. 14, 16 pixels included in the first block are shaded. Further, the 16 pixels of the second block are indicated by dots.
 変形例3においても、1つのブロックは、互いに隣接して配置されている領域ではなく、互いに離間した領域によって構成される。このように構成したので、例えば、注目画素を含む第1ブロックの領域の隣に位置する領域は、いずれも第1ブロックと異なる第2ブロックに含まれる。すなわち、注目画素を含む領域の周囲の領域は欠陥ブロックと異なるブロックに含まれるので、ボディ制御部102またはセンサ制御部205は、注目画素の位置から近い位置に配置されている画素からの信号を用いて、補間処理、補正処理を精度よく行うことができる。 Also in the modified example 3, one block is not composed of regions arranged adjacent to each other, but is composed of regions separated from each other. With this configuration, for example, the regions located next to the region of the first block including the pixel of interest are all included in the second block different from the first block. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
<配線>
 図14には、第1ブロックの領域間の信号線、第2ブロックの領域間の信号線、第1および第2ブロックの領域内の信号線の配線を例示する。配線方向は、x軸とy軸に挟まれる方向である。例えば、x軸プラス方向およびy軸プラス方向に挟まれる方向を第1方向とすると、x軸プラス方向およびy軸マイナス方向に挟まれる方向は第2方向である。第1ブロックの領域間の信号線および領域内の信号線の配線は、網掛けで示される。第2ブロックの領域間の信号線および領域内の信号線の配線は、ドットで示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。
 領域内の信号線の配線は、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する。
 また、領域間の信号線の配線は、各ブロックを構成する4つの領域の領域内の信号線を互いに接続する。
<Wiring>
FIG. 14 illustrates the wiring of the signal lines between the regions of the first block, the signal lines between the regions of the second block, and the signal lines within the regions of the first and second blocks. The wiring direction is the direction sandwiched between the x-axis and the y-axis. For example, if the direction sandwiched between the x-axis plus direction and the y-axis plus direction is the first direction, the direction sandwiched between the x-axis plus direction and the y-axis minus direction is the second direction. The wiring of the signal lines between the regions of the first block and the signal lines within the regions is shown in shading. The wiring of the signal lines between the regions of the second block and the signal lines within the regions is indicated by dots. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
The wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other.
Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the four regions constituting each block to each other.
 図14に示すように、変形例3の場合の出力信号線の配線は、配線層72の1つの層に納めることができる。そのため、第1ブロック~第2ブロックの領域間の信号線、領域内の信号線の配線を配線層72の異なる2つの層にそれぞれ形成する場合と比べて、配線層72における配線の層数を2から1へ減らしてコストを抑えることができる。 As shown in FIG. 14, the wiring of the output signal line in the case of the modification 3 can be housed in one layer of the wiring layer 72. Therefore, the number of wiring layers in the wiring layer 72 is increased as compared with the case where the wiring of the signal line between the regions of the first block to the second block and the signal line in the region are formed in two different layers of the wiring layer 72. The cost can be reduced by reducing from 2 to 1.
(変形例4)
 上述した変形例3では、1つのブロックが16画素を有する例を説明した。この代わりに、1つのブロックが36画素を有する構成にしてもよい。図15は、変形例4によるカラーフィルタの配置とブロックの関係性、および、出力信号線の配線を例示する模式図であり、画素エリア201(図2)の一部の構成305を示す。画素エリア201には、構成305が、例えばx軸方向およびy軸方向に繰り返し配置されている。
(Modification example 4)
In the above-mentioned modification 3, an example in which one block has 16 pixels has been described. Instead, one block may have 36 pixels. FIG. 15 is a schematic diagram illustrating the relationship between the arrangement of the color filter and the block according to the modified example 4 and the wiring of the output signal line, and shows a partial configuration 305 of the pixel area 201 (FIG. 2). In the pixel area 201, the configuration 305 is repeatedly arranged, for example, in the x-axis direction and the y-axis direction.
<配置>
 変形例4の場合も、画素エリア201を4画素ごとに区分けすることにより複数の領域に分ける。図15の例では、構成305に含まれる72画素が18個の領域に分けられている。1つの領域は、ベイヤー配列の4画素によって構成される。そして、1つのブロックは、互いに離間して配置されている9個の領域により構成される。これにより、構成305は2つのブロックを有する。
 図15において、第1ブロックが有する36個の画素を網掛けで示す。また、第2ブロックが有する36個の画素をドットで示す。
<Arrangement>
Also in the case of the modification 4, the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels. In the example of FIG. 15, 72 pixels included in the configuration 305 are divided into 18 regions. One area is composed of four pixels in a Bayer array. And one block is composed of nine regions arranged apart from each other. As a result, configuration 305 has two blocks.
In FIG. 15, the 36 pixels of the first block are shaded. Further, the 36 pixels of the second block are indicated by dots.
 変形例4においても、1つのブロックは、互いに隣接して配置されている領域ではなく、互いに離間した領域によって構成され。このように構成したので、例えば、注目画素を含む第1ブロックの領域の隣に位置する領域は、いずれも第1ブロックと異なる第2ブロックに含まれる。すなわち、注目画素を含む領域の周囲の領域は欠陥ブロックと異なるブロックに含まれるので、ボディ制御部102またはセンサ制御部205は、注目画素の位置から近い位置に配置されている画素からの信号を用いて、補間処理、補正処理を精度よく行うことができる。 Also in the modified example 4, one block is composed of regions separated from each other, not regions arranged adjacent to each other. With this configuration, for example, the regions located next to the region of the first block including the pixel of interest are all included in the second block different from the first block. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
<配線>
 図15には、第1ブロックの領域間の信号線、第2ブロックの領域間の信号線、第1および第2ブロックの領域内の信号線の配線を例示する。配線方向は、x軸とy軸に挟まれる方向である。例えば、x軸プラス方向およびy軸プラス方向に挟まれる方向を第1方向とすると、x軸プラス方向およびy軸マイナス方向に挟まれる方向は第2方向である。第1ブロックの領域間の信号線および領域内の信号線の配線は、網掛けで示される。第2ブロックの領域間の信号線および領域内の信号線の配線は、ドットで示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。
 領域配線は、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する。
 また、領域間の信号線の配線は、各ブロックを構成する9つの領域の領域内の信号線を互いに接続する。
<Wiring>
FIG. 15 illustrates the wiring of the signal lines between the regions of the first block, the signal lines between the regions of the second block, and the signal lines within the regions of the first and second blocks. The wiring direction is the direction sandwiched between the x-axis and the y-axis. For example, if the direction sandwiched between the x-axis plus direction and the y-axis plus direction is the first direction, the direction sandwiched between the x-axis plus direction and the y-axis minus direction is the second direction. The wiring of the signal lines between the regions of the first block and the signal lines within the regions is shown in shading. The wiring of the signal lines between the regions of the second block and the signal lines within the regions is indicated by dots. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
The area wiring connects the output units (drains) of the selection transistors SEL of the four first pixel units 30x constituting each region to each other.
Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the nine regions constituting each block to each other.
 図15に示すように、変形例4の場合にも、出力信号線の配線を配線層72の1つの層に納めることができる。そのため、第1ブロック~第2ブロックの領域間の信号線、領域内の信号線の配線を配線層72の異なる2つの層にそれぞれ形成する場合と比べて、配線層72における配線の層数を2から1へ減らしてコストを抑えることができる。 As shown in FIG. 15, even in the case of the modified example 4, the wiring of the output signal line can be housed in one layer of the wiring layer 72. Therefore, the number of wiring layers in the wiring layer 72 is increased as compared with the case where the wiring of the signal line between the regions of the first block to the second block and the signal line in the region are formed in two different layers of the wiring layer 72. The cost can be reduced by reducing from 2 to 1.
(変形例5)
 出力信号線の配線を、配線層72の1つの層に納める他の例を説明する。図16は、変形例5によるカラーフィルタの配置とブロックの関係性、および、出力信号線の配線を例示する模式図であり、画素エリア201(図2)の一部の構成306を示す。画素エリア201には、構成306が、例えばx軸方向(第1方向)およびy軸方向(第2方向)に繰り返し配置されている。
(Modification 5)
Another example will be described in which the wiring of the output signal line is housed in one layer of the wiring layer 72. FIG. 16 is a schematic diagram illustrating the relationship between the arrangement of the color filter and the block according to the modified example 5 and the wiring of the output signal line, and shows a partial configuration 306 of the pixel area 201 (FIG. 2). In the pixel area 201, the configuration 306 is repeatedly arranged, for example, in the x-axis direction (first direction) and the y-axis direction (second direction).
<配置>
 変形例5の場合も、画素エリア201を4画素ごとに区分けすることにより複数の領域に分ける。図16の例では、構成306に含まれる256画素が64個の領域に分けられている。1つの領域は、ベイヤー配列の4画素によって構成される。そして、互いに離間して配置されている9つの領域により、1つのブロックを構成する。
<Arrangement>
Also in the case of the modification 5, the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels. In the example of FIG. 16, 256 pixels included in the configuration 306 are divided into 64 regions. One area is composed of four pixels in a Bayer array. Then, one block is composed of nine regions arranged apart from each other.
 図16において、第1ブロックが有する36個の画素を網掛けで示す。また、第2ブロックが有する36個の画素をドットで示す。さらに、第3ブロックが有する36個の画素を縦縞で示す。さらにまた、第4ブロックが有する36個の画素を横縞で示す。
 変形例5では、第1ブロックと第2ブロックとが互いにブロックのx軸方向に一部が重なり合う。また、第1ブロックと第3ブロックとが互いにブロックのy軸方向に一部で重なり合う。さらに、第2ブロックと第4ブロックとが互いにブロックのy軸方向に一部が重なり合う。さらにまた、第3ブロックと第4ブロックとが互いにブロックのx軸方向に一部が重なり合う。
 このように、変形例5の場合は構成306に4つのブロックが収まるわけではなく、4つのブロックがx軸またはy軸方向に部分的に重なるように配置される。
In FIG. 16, the 36 pixels of the first block are shaded. Further, the 36 pixels of the second block are indicated by dots. Further, the 36 pixels of the third block are indicated by vertical stripes. Furthermore, the 36 pixels of the fourth block are indicated by horizontal stripes.
In the fifth modification, the first block and the second block partially overlap each other in the x-axis direction of the blocks. Further, the first block and the third block partially overlap each other in the y-axis direction of the blocks. Further, the second block and the fourth block partially overlap each other in the y-axis direction of the blocks. Furthermore, the third block and the fourth block partially overlap each other in the x-axis direction of the blocks.
As described above, in the case of the modified example 5, the four blocks are not accommodated in the configuration 306, but the four blocks are arranged so as to partially overlap in the x-axis or y-axis direction.
 変形例5においても、1つのブロックは、互いに隣接して配置されている領域ではなく、互いに離間した領域によって構成される。このように構成したので、例えば、注目画素を含む第1ブロックの領域の隣に位置する領域は、いずれも第1ブロックと異なる他のブロック(第2ブロック~第4ブロックのいずれか)に含まれる。すなわち、注目画素を含む領域の周囲の領域は欠陥ブロックと異なるブロックに含まれるので、ボディ制御部102またはセンサ制御部205は、注目画素の位置から近い位置に配置されている画素からの信号を用いて、補間処理、補正処理を精度よく行うことができる。 Also in the modified example 5, one block is composed of regions separated from each other, not regions arranged adjacent to each other. Since it is configured in this way, for example, the area located next to the area of the first block including the pixel of interest is included in another block (any of the second block to the fourth block) different from the first block. Is done. That is, since the area around the area including the pixel of interest is included in a block different from the defect block, the body control unit 102 or the sensor control unit 205 receives a signal from a pixel arranged at a position close to the position of the pixel of interest. It can be used to perform interpolation processing and correction processing with high accuracy.
<配線>
 図16には、第1ブロックの領域間の信号線、第2ブロックの領域間の信号線、第3ブロックの領域間の信号線、第4ブロックの領域間の信号線、第1~第4ブロックの領域内の信号線の配線を例示する。第1ブロックの領域間の信号線は、網掛けで示される。第2ブロックの領域間の信号線は、ドットで示される。第3ブロックの領域間の信号線は、縦縞で示される。第4ブロックの領域間の信号線は、横縞で示される。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)とが接続されることを示す。
<Wiring>
FIG. 16 shows a signal line between the regions of the first block, a signal line between the regions of the second block, a signal line between the regions of the third block, a signal line between the regions of the fourth block, and first to fourth. Illustrate the wiring of signal lines in the area of the block. The signal lines between the regions of the first block are shaded. The signal lines between the regions of the second block are indicated by dots. The signal lines between the regions of the third block are indicated by vertical stripes. The signal lines between the regions of the fourth block are indicated by horizontal stripes. The double circle indicates that the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x are connected.
 領域内の信号線の配線は、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する。
 また、領域間の信号線の配線は、各ブロックを構成する9つの領域の領域内の信号線を互いに接続する。
The wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other.
Further, the wiring of the signal lines between the regions connects the signal lines in the regions of the nine regions constituting each block to each other.
 図16において、例えば破線で囲む第1ブロックを例にすると、網掛けで示す第1ブロックの中心に位置する領域の第1画素部30xを起点に、渦巻き状に第1ブロックの領域をつないで配線する。例えば、第1ブロックの中心に位置する領域のR画素から、y軸プラス方向に1領域離れた領域のR画素まで網掛けで示す領域間の信号線でつなぎ、さらにx軸プラス方向に1領域離れたG画素まで網掛けで示す領域間の信号線でつなぐ。続いて、上記第1ブロックの中心に位置する領域のG画素(RG列)から、x軸プラス方向に1領域離れた領域のG画素まで網掛けで示す領域間の信号線でつなぎ、さらにy軸マイナス方向に1領域離れた領域のR画素まで網掛けで示す領域間の信号線でつなぐ。 In FIG. 16, for example, taking the first block surrounded by a broken line as an example, the regions of the first block are connected in a spiral shape starting from the first pixel portion 30x of the region located at the center of the first block shown by shading. Wire. For example, from the R pixel in the area located in the center of the first block to the R pixel in the area one area away in the y-axis plus direction are connected by a signal line between the shaded areas, and one area in the x-axis plus direction. The distant G pixels are connected by signal lines between the shaded areas. Subsequently, the G pixel (RG column) in the region located at the center of the first block is connected to the G pixel in the region separated by one region in the plus direction of the x-axis by a signal line between the shaded areas, and further y. The R pixels in a region separated by one region in the minus direction of the axis are connected by a signal line between the shaded regions.
 同様に、第1ブロックの中心に位置する領域のB画素から、y軸マイナス方向に1領域離れた領域のB画素まで網掛けで示す領域間の信号線でつなぎ、さらにx軸マイナス方向に1領域離れたG画素まで網掛けで示す領域間の信号線でつなぐ。続いて、上記第1ブロックの中心に位置する領域のG画素(GB列)から、x軸マイナス方向に1領域離れた領域のG画素まで網掛けで示す領域間の信号線でつなぎ、さらにy軸プラス方向に1領域離れた領域のB画素まで網掛けで示す領域間の信号線でつなぐ。 Similarly, the B pixel in the region located in the center of the first block is connected to the B pixel in the region one region away in the minus direction of the y-axis by a signal line between the shaded areas, and further 1 in the minus direction of the x-axis. The G pixels that are separated from each other are connected by signal lines between the shaded areas. Subsequently, the G pixel (GB row) in the region located at the center of the first block is connected to the G pixel in the region one region away in the minus direction of the x-axis by a signal line between the shaded areas, and further y. The B pixels in the region separated by one region in the plus direction of the axis are connected by signal lines between the shaded regions.
 ドットで示す第2ブロック、縦縞で示す第3ブロック、および横縞で示す第4ブロックについても、同様に、各ブロックの中心に位置する領域の第1画素部30xを起点に、渦巻き状に各ブロックを構成する領域の第1画素部30xをつないで配線する。 Similarly, for the second block indicated by dots, the third block indicated by vertical stripes, and the fourth block indicated by horizontal stripes, each block spirally starts from the first pixel portion 30x of the region located at the center of each block. The first pixel portion 30x of the region constituting the above is connected and wired.
 図16に示すように、変形例5の場合の出力信号線の配線は、配線層72の1つの層に納めることができる。そのため、第1ブロック~第4ブロックの領域間の信号線、領域内の信号線の配線を配線層72の異なる4つの層にそれぞれ形成する場合と比べて、配線層72における配線の層数を4から1へ減らしてコストを抑えることができる。 As shown in FIG. 16, the wiring of the output signal line in the case of the modification 5 can be housed in one layer of the wiring layer 72. Therefore, the number of wiring layers in the wiring layer 72 is increased as compared with the case where the wiring of the signal line between the regions of the first block to the fourth block and the signal line in the region are formed in four different layers of the wiring layer 72. The cost can be reduced by reducing from 4 to 1.
(変形例6)
 上述した実施の形態および変形例では、ブロックが有する領域が、1領域離間して配置される場合を例示した。この代わりに、ブロックが有する領域を、2領域以上離間して配置してもよい。
(Modification 6)
In the above-described embodiment and modification, the case where the regions of the blocks are arranged one region apart is illustrated. Instead, the regions of the block may be arranged at a distance of two or more regions.
<配置>
 図17(a)は変形例6における第1ブロックを説明する図であり、第1ブロックは互いに2領域離して配置されている4つの領域11、14、29、32を有する。符号307で示す枠は、画素エリア201(図2)の一部として、例えば144画素(x軸方向12×y軸方向12)を含む構成307である。
 図17(b)は変形例6における第2ブロックを説明する図であり、第2ブロックは互いに2領域離して配置されている4つの領域12、15、30、33を有する。
<Arrangement>
FIG. 17A is a diagram illustrating the first block in the modified example 6, and the first block has four regions 11, 14, 29, and 32 arranged two regions apart from each other. The frame indicated by reference numeral 307 is a configuration 307 including, for example, 144 pixels (12 in the x-axis direction × 12 in the y-axis direction) as a part of the pixel area 201 (FIG. 2).
FIG. 17B is a diagram illustrating a second block in the modified example 6, and the second block has four regions 12, 15, 30, and 33 arranged two regions apart from each other.
 図17(c)は変形例6における第3ブロックを説明する図であり、第3ブロックは互いに2領域離して配置されている4つの領域13、16、31、34を有する。図17(d)は変形例6における第4ブロックを説明する図であり、第4ブロックは互いに2領域離して配置されている4つの領域17、20、35、38を有する。 FIG. 17C is a diagram for explaining the third block in the modified example 6, and the third block has four regions 13, 16, 31, and 34 arranged two regions apart from each other. FIG. 17D is a diagram for explaining the fourth block in the modified example 6, and the fourth block has four regions 17, 20, 35, and 38 which are arranged two regions apart from each other.
 図17(e)は変形例6における第5ブロックを説明する図であり、第5ブロックは互いに2領域離して配置されている4つの領域18、21、36、39を有する。図17(f)は変形例6における第6ブロックを説明する図であり、第6ブロックは互いに2領域離して配置されている4つの領域19、22、37、40を有する。 FIG. 17E is a diagram for explaining the fifth block in the modified example 6, and the fifth block has four regions 18, 21, 36, and 39 which are arranged two regions apart from each other. FIG. 17F is a diagram illustrating the sixth block in the modified example 6, and the sixth block has four regions 19, 22, 37, and 40 arranged two regions apart from each other.
 図17(g)は変形例6における第7ブロックを説明する図であり、第7ブロックは互いに2領域離して配置されている4つの領域23、26、41、44を有する。図17(h)は変形例6における第8ブロックを説明する図であり、第8ブロックは互いに2領域離して配置されている4つの領域24、27、42、45を有する。 FIG. 17 (g) is a diagram illustrating the seventh block in the modified example 6, and the seventh block has four regions 23, 26, 41, and 44 which are arranged two regions apart from each other. FIG. 17 (h) is a diagram illustrating the eighth block in the modified example 6, and the eighth block has four regions 24, 27, 42, and 45 arranged two regions apart from each other.
 図17(i)は変形例6における第9ブロックを説明する図であり、第9ブロックは互いに2領域離して配置されている4つの領域25、28、43、46を有する。
 図17(a)~図17(i)に示すように、各ブロックを構成する領域は、2領域離して配置される。変形例6の場合も、画素エリア201を4画素ごとに区分けすることにより複数の領域に分ける。図17の例では、構成307に含まれる144画素が36個の領域に分けられている。1つの領域は、ベイヤー配列の4画素によって構成される。そして、互いに2領域おきに離間して配置されている4つの領域により、1つのブロックを構成する。これにより、構成307は図17(a)~図17(i)に示す9つのブロックを有する。
FIG. 17 (i) is a diagram illustrating the ninth block in the modified example 6, and the ninth block has four regions 25, 28, 43, and 46 arranged two regions apart from each other.
As shown in FIGS. 17 (a) to 17 (i), the regions constituting each block are arranged two regions apart. Also in the case of the modification 6, the pixel area 201 is divided into a plurality of areas by dividing the pixel area 201 into four pixels. In the example of FIG. 17, 144 pixels included in the configuration 307 are divided into 36 regions. One area is composed of four pixels in a Bayer array. Then, one block is composed of four regions arranged so as to be separated from each other by two regions. As a result, the configuration 307 has nine blocks shown in FIGS. 17 (a) to 17 (i).
<配線>
 図18は、構成307における出力信号線の配線の一例を説明する模式図である。網掛けで示す配線は、第1ブロックから第9ブロックまでの領域間の信号線の配線のうちx軸方向(第1方向)の配線と、第1-7、9領域の領域内の信号線の配線の一部とを例示する図である。
 ドットで示す配線は、第1ブロックから第9ブロックまでの領域間の信号線のうちy軸方向(第2方向)の配線と、上記以外の領域内の信号線の配線とを例示する図である。 例えば、配線層72の1つの層において網掛けで示す配線を行い、配線層72の他の層においてドットで示す配線を行う。二重丸は、上記配線と第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)との間、異なる層間の配線が接続されることを示す。
<Wiring>
FIG. 18 is a schematic diagram illustrating an example of wiring of the output signal line in the configuration 307. The wiring shown by shading is the wiring in the x-axis direction (first direction) of the wiring of the signal lines between the regions from the first block to the ninth block, and the signal lines in the regions 1-7 and 9. It is a figure which illustrates a part of the wiring of.
The wiring indicated by dots is a diagram illustrating wiring in the y-axis direction (second direction) of the signal lines between the regions from the first block to the ninth block and wiring of signal lines in regions other than the above. is there. For example, one layer of the wiring layer 72 is shaded with wiring, and the other layer of the wiring layer 72 is dotted. The double circle indicates that the wiring between different layers is connected between the wiring and the output unit (drain) of the selection transistor SEL in the first pixel unit 30x.
 領域内の信号線の配線は、各領域を構成する4つの第1画素部30xの選択トランジスタSELの出力部(ドレイン)を互いに接続する。
 また、領域間の信号線の配線は、各ブロックを構成する4つの領域の領域内の信号線を、第1画素部30xにおける選択トランジスタSELの出力部(ドレイン)または二重丸で示す接続点を介して互いに接続する。
The wiring of the signal line in the region connects the output portions (drains) of the selection transistors SEL of the four first pixel portions 30x constituting each region to each other.
Further, in the wiring of the signal lines between the regions, the signal lines in the regions of the four regions constituting each block are indicated by the output unit (drain) of the selection transistor SEL in the first pixel unit 30x or the connection point indicated by a double circle. Connect to each other via.
 このように配線することにより、変形例6の場合にも出力信号線の配線を2層に納めることができる。そのため、第1ブロック~第9ブロックの領域間の信号線の配線を配線層72の異なる9つの層にそれぞれ形成する場合と比べて、配線層72における配線の層数を9から2へ減らしてコストを抑えることができる。 By wiring in this way, the wiring of the output signal line can be stored in two layers even in the case of the modification example 6. Therefore, the number of wiring layers in the wiring layer 72 is reduced from 9 to 2, as compared with the case where the wiring of the signal line between the regions of the first block to the ninth block is formed in nine different layers of the wiring layer 72. The cost can be suppressed.
(変形例7)
 上述した実施の形態および変形例では、ブロックを構成する領域の数が、x軸方向にN個、y軸方向にN個配置される場合を例示した。この代わりに、ブロックを構成する領域の数が、x軸方向にN個、y軸方向にM個配置されるようにしてもよい。MとNの大小関係は、N<Mでも、N>Mでもよい。
(Modification 7)
In the above-described embodiment and modification, the case where the number of regions constituting the block is arranged N in the x-axis direction and N in the y-axis direction is illustrated. Instead, the number of regions constituting the block may be arranged N in the x-axis direction and M in the y-axis direction. The magnitude relationship between M and N may be N <M or N> M.
<制御信号φSEL-1~φSEL-Nを供給するための配線>
 上記の実施の形態および変形例では、出力信号線の配線を中心に説明したが、各ブロックを構成する複数の第1画素部30xの選択トランジスタSELのそれぞれに対し、制御信号φSEL-1~φSEL-Nを供給するための制御線も、上記配線層72に配線してよい。制御線を配線する層は、出力信号線を配線する層と分けてもよいし、制御線の一部を出力信号線と同じ層に配線してもよい。
<Wiring for supplying control signals φSEL-1 to φSEL-N>
In the above-described embodiment and modification, the wiring of the output signal line has been mainly described, but the control signals φSEL-1 to φSEL are applied to each of the selection transistors SEL of the plurality of first pixel units 30x constituting each block. The control line for supplying −N may also be wired to the wiring layer 72. The layer on which the control line is wired may be separated from the layer on which the output signal line is wired, or a part of the control line may be wired on the same layer as the output signal line.
 また、制御線は、ブロック間で共通にしてもよい。例えば、図6、図7を参照して説明した構成301の場合、図19に例示するように制御線を配線することができる。
 図19の場合、構成301の第1および第2ブロックに対する制御線の配線として配線1-1~1-16を設け、構成301の第3および第4ブロックに対する制御線の配線として配線2-1~2-16を設ける。二重丸は、上記配線と第1画素部30x-1~30x-16の選択トランジスタSELの制御部(ゲート)とが接続されることを示す。
Further, the control line may be common between blocks. For example, in the case of the configuration 301 described with reference to FIGS. 6 and 7, the control line can be wired as illustrated in FIG.
In the case of FIG. 19, wirings 1-1 to 1-16 are provided as wiring for the control lines to the first and second blocks of the configuration 301, and wiring 2-1 is provided as wiring for the control lines to the third and fourth blocks of the configuration 301. ~ 2-16 is provided. The double circle indicates that the wiring and the control unit (gate) of the selection transistor SEL of the first pixel units 30x-1 to 30x-16 are connected.
 センサ制御部205は、領域11に含まれるGB列上のG画素と、領域21に含まれるGB列上のG画素とに、配線1-1を介して同じタイミングで制御信号φSEL-1(第1ブロック)、φSEL-1(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-1の制御線を共通にする。
 センサ制御部205はまた、領域11に含まれるR画素と、領域21に含まれるR画素とに、配線1-2を介して同じタイミングで制御信号φSEL-2(第1ブロック)、φSEL-2(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-2の制御線を共通にする。
The sensor control unit 205 connects the G pixel on the GB row included in the area 11 and the G pixel on the GB row included in the area 21 to the control signal φSEL-1 (No. 1) at the same timing via the wiring 1-1. 1 block), φSEL-1 (second block) is supplied. That is, the control lines of the control signals φSEL-1 of the first and second blocks are shared.
The sensor control unit 205 also sends control signals φSEL-2 (first block) and φSEL-2 to the R pixel included in the area 11 and the R pixel included in the area 21 at the same timing via the wiring 1-2. (Second block) is supplied. That is, the control lines of the control signals φSEL-2 of the first and second blocks are shared.
 さらにセンサ制御部205は、領域12に含まれるGB列上のG画素と、領域22に含まれるGB列上のG画素とに、配線1-3を介して同じタイミングで制御信号φSEL-3(第1ブロック)、φSEL-3(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-3の制御線を共通にする。
 センサ制御部205はまた、領域12に含まれるR画素と、領域22に含まれるR画素とに、配線1-4を介して同じタイミングで制御信号φSEL-4(第1ブロック)、φSEL-4(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-4の制御線を共通にする。
Further, the sensor control unit 205 sends a control signal φSEL-3 (to the G pixel on the GB row included in the area 12 and the G pixel on the GB row included in the area 22 at the same timing via the wiring 1-3. 1st block), φSEL-3 (2nd block) is supplied. That is, the control lines of the control signals φSEL-3 of the first and second blocks are shared.
The sensor control unit 205 also sends control signals φSEL-4 (first block) and φSEL-4 to the R pixel included in the area 12 and the R pixel included in the area 22 at the same timing via the wiring 1-4. (Second block) is supplied. That is, the control lines of the control signals φSEL-4 of the first and second blocks are shared.
 そして、センサ制御部205は、領域11に含まれるB画素と、領域21に含まれるB画素とに、配線1-5を介して同じタイミングで制御信号φSEL-5(第1ブロック)、φSEL-5(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-5の制御線を共通にする。
 センサ制御部205はまた、領域11に含まれるRG列上のG画素と、領域21に含まれるRG列上のG画素とに、配線1-6を介して同じタイミングで制御信号φSEL-6(第1ブロック)、φSEL-6(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-6の制御線を共通にする。
Then, the sensor control unit 205 sends the control signals φSEL-5 (first block) and φSEL- to the B pixel included in the area 11 and the B pixel included in the area 21 at the same timing via the wiring 1-5. 5 (second block) is supplied. That is, the control lines of the control signals φSEL-5 of the first and second blocks are shared.
The sensor control unit 205 also sends a control signal φSEL-6 (to the G pixel on the RG row included in the area 11 and the G pixel on the RG row included in the area 21 at the same timing via the wiring 1-6. 1st block), φSEL-6 (2nd block) is supplied. That is, the control lines of the control signals φSEL-6 of the first and second blocks are shared.
 さらにセンサ制御部205は、領域12に含まれるB画素と、領域22に含まれるB画素とに、配線1-7を介して同じタイミングで制御信号φSEL-7(第1ブロック)、φSEL-7(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-7の制御線を共通にする。
 センサ制御部205はまた、領域12に含まれるRG列上のG画素と、領域22に含まれるRG列上のG画素とに、配線1-8を介して同じタイミングで制御信号φSEL-8(第1ブロック)、φSEL-8(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-8の制御線を共通にする。
Further, the sensor control unit 205 sends control signals φSEL-7 (first block) and φSEL-7 to the B pixel included in the area 12 and the B pixel included in the area 22 at the same timing via the wiring 1-7. (Second block) is supplied. That is, the control lines of the control signals φSEL-7 of the first and second blocks are shared.
The sensor control unit 205 also sends a control signal φSEL-8 (to the G pixel on the RG row included in the area 12 and the G pixel on the RG row included in the area 22 at the same timing via the wiring 1-8). 1st block), φSEL-8 (2nd block) is supplied. That is, the control lines of the control signals φSEL-8 of the first and second blocks are shared.
 そして、センサ制御部205は、領域13に含まれるGB列上のG画素と、領域23に含まれるGB列上のG画素とに、配線1-9を介して同じタイミングで制御信号φSEL-9(第1ブロック)、φSEL-9(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-9の制御線を共通にする。
 センサ制御部205はまた、領域13に含まれるR画素と、領域23に含まれるR画素とに、配線1-10を介して同じタイミングで制御信号φSEL-10(第1ブロック)、φSEL-10(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-10の制御線を共通にする。
Then, the sensor control unit 205 connects the G pixel on the GB row included in the area 13 and the G pixel on the GB row included in the area 23 to the control signal φSEL-9 at the same timing via the wiring 1-9. (1st block), φSEL-9 (2nd block) is supplied. That is, the control lines of the control signals φSEL-9 of the first and second blocks are shared.
The sensor control unit 205 also sends control signals φSEL-10 (first block) and φSEL-10 to the R pixel included in the area 13 and the R pixel included in the area 23 at the same timing via the wiring 1-10. (Second block) is supplied. That is, the control lines of the control signals φSEL-10 of the first and second blocks are shared.
 さらにセンサ制御部205は、領域14に含まれるGB列上のG画素と、領域24に含まれるGB列上のG画素とに、配線1-11を介して同じタイミングで制御信号φSEL-11(第1ブロック)、φSEL-11(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-11の制御線を共通にする。
 センサ制御部205はまた、領域14に含まれるR画素と、領域24に含まれるR画素とに、配線1-12を介して同じタイミングで制御信号φSEL-12(第1ブロック)、φSEL-12(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-12の制御線を共通にする。
Further, the sensor control unit 205 connects the G pixel on the GB row included in the area 14 and the G pixel on the GB row included in the area 24 to the control signal φSEL-11 (at the same timing via wiring 1-11). The first block) and φSEL-11 (second block) are supplied. That is, the control lines of the control signals φSEL-11 of the first and second blocks are shared.
The sensor control unit 205 also sends control signals φSEL-12 (first block) and φSEL-12 to the R pixel included in the area 14 and the R pixel included in the area 24 at the same timing via the wiring 1-12. (Second block) is supplied. That is, the control lines of the control signals φSEL-12 of the first and second blocks are shared.
 そして、センサ制御部205は、領域13に含まれるB画素と、領域23に含まれるB画素とに、配線1-13を介して同じタイミングで制御信号φSEL-13(第1ブロック)、φSEL-13(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-13の制御線を共通にする。
 センサ制御部205はまた、領域13に含まれるRG列上のG画素と、領域23に含まれるRG列上のG画素とに、配線1-14を介して同じタイミングで制御信号φSEL-14(第1ブロック)、φSEL-14(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-14の制御線を共通にする。
Then, the sensor control unit 205 sends the control signals φSEL-13 (first block) and φSEL- to the B pixel included in the area 13 and the B pixel included in the area 23 at the same timing via the wiring 1-13. 13 (second block) is supplied. That is, the control lines of the control signals φSEL-13 of the first and second blocks are shared.
The sensor control unit 205 also sends a control signal φSEL-14 (to the G pixel on the RG row included in the area 13 and the G pixel on the RG row included in the area 23 at the same timing via the wiring 1-14. 1st block), φSEL-14 (2nd block) is supplied. That is, the control lines of the control signals φSEL-14 of the first and second blocks are shared.
 さらにセンサ制御部205は、領域14に含まれるB画素と、領域24に含まれるB画素とに、配線1-15を介して同じタイミングで制御信号φSEL-15(第1ブロック)、φSEL-15(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-15の制御線を共通にする。
 センサ制御部205はまた、領域14に含まれるRG列上のG画素と、領域24に含まれるRG列上のG画素とに、配線1-16を介して同じタイミングで制御信号φSEL-16(第1ブロック)、φSEL-16(第2ブロック)を供給する。すなわち、第1および第2ブロックの制御信号φSEL-16の制御線を共通にする。
Further, the sensor control unit 205 sends control signals φSEL-15 (first block) and φSEL-15 to the B pixel included in the area 14 and the B pixel included in the area 24 at the same timing via the wiring 1-15. (Second block) is supplied. That is, the control lines of the control signals φSEL-15 of the first and second blocks are shared.
The sensor control unit 205 also sends a control signal φSEL-16 (to the G pixel on the RG row included in the area 14 and the G pixel on the RG row included in the area 24 at the same timing via wiring 1-16. 1st block), φSEL-16 (2nd block) is supplied. That is, the control lines of the control signals φSEL-16 of the first and second blocks are shared.
 以上説明したように、第1ブロックの領域11または領域12に設けられる複数の第1画素部30xは、第1方向または第2方向に設けられる第1画素部30x-1と第1画素部30x-2とを有し、第2ブロックの領域21に設けられる複数の第1画素部30xは、第1方向または第2方向に設けられる第1画素部30x-1と第1画素部30x-2とを有し、第1出力部は、第1ブロックの第1画素部30x-1で生成された電荷に基づく信号を領域間の信号線90-1に出力するための第1スイッチとしての選択トランジスタSEL-1(第1ブロック)と、第1ブロックの第1画素部30x-2で生成された電荷に基づく信号を領域間の信号線90-1に出力するための第2スイッチとしての選択トランジスタSEL-2(第1ブロック)とを有し、第2出力部は、第2ブロックの第1画素部30x-1で生成された電荷に基づく信号を領域間の信号線90-2に出力するための第3スイッチとしての選択トランジスタSEL-1(第2ブロック)と、第2ブロックの第1画素部30x-2で生成された電荷に基づく信号を領域間の信号線90-2に出力するための第4スイッチとしての選択トランジスタSEL-2(第2ブロック)と、を有し、第1方向行または第2方向に配線され、第1スイッチとしての選択トランジスタSEL-1(第1ブロック)と第3スイッチとしての選択トランジスタSEL-1(第2ブロック)とを制御するための第1制御線(配線1-1)と、第1方向または第2方向に配線され、第2スイッチとしての選択トランジスタSEL-2(第1ブロック)と第4スイッチとしての選択トランジスタSEL-2(第2ブロック)とを制御するための第2制御線(配線1-2)と、を有する。このように構成したので、ブロック間の制御線を共通にすることにより、制御線を共通にしない場合と比べて、制御線の配線をシンプルにすることができる。 As described above, the plurality of first pixel portions 30x provided in the region 11 or region 12 of the first block are the first pixel portion 30x-1 and the first pixel portion 30x provided in the first direction or the second direction. The plurality of first pixel portions 30x having -2 and provided in the region 21 of the second block are the first pixel portion 30x-1 and the first pixel portion 30x-2 provided in the first direction or the second direction. The first output unit is selected as a first switch for outputting a signal based on the charge generated by the first pixel unit 30x-1 of the first block to the signal line 90-1 between regions. Selection as a second switch for outputting a signal based on the charge generated by the transistor SEL-1 (first block) and the first pixel unit 30x-2 of the first block to the signal line 90-1 between regions. It has a transistor SEL-2 (first block), and the second output unit outputs a signal based on the charge generated by the first pixel unit 30x-1 of the second block to the signal line 90-2 between regions. A signal based on the charge generated by the selection transistor SEL-1 (second block) as the third switch and the first pixel portion 30x-2 of the second block is output to the signal line 90-2 between the regions. It has a selection transistor SEL-2 (second block) as a fourth switch, and is wired in the first direction row or the second direction, and has a selection transistor SEL-1 (first block) as a first switch. ) And the selection transistor SEL-1 (second block) as the third switch, and the first control line (wiring 1-1), which is wired in the first or second direction, as the second switch. It has a second control line (wiring 1-2) for controlling the selection transistor SEL-2 (first block) and the selection transistor SEL-2 (second block) as the fourth switch. With this configuration, by sharing the control lines between the blocks, it is possible to simplify the wiring of the control lines as compared with the case where the control lines are not shared.
 上記の説明では、第1および第2ブロックに対する制御線の配線1-1~1-16を説明したが、第3および第4ブロックに対する制御線の配線2-1~2-16についても同様である。
 なお、ブロックが有する領域の数、すなわち画素の数を増やす場合は、画素の数に応じて制御線の数を増やせばよい。
In the above description, the control line wirings 1-1 to 1-16 for the first and second blocks have been described, but the same applies to the control line wirings 2-1 to 2-16 for the third and fourth blocks. is there.
In addition, when increasing the number of regions possessed by a block, that is, the number of pixels, the number of control lines may be increased according to the number of pixels.
<制御信号φTx-1~φTx-Nを供給するための配線>
 各ブロックを構成する複数の第1画素部30xの転送トランジスタTxのそれぞれに対し、制御信号φTx-1~φTx-Nを供給するための制御線も、図19を参照して説明した制御信号φSEL-1~φSEL-Nを供給するための制御線と同様に、上記配線層72に配線してもよい。
 また、制御信号φTx-1~φTx-Nを供給するための制御線も、ブロック間で共通にしてもよい。ブロック間の制御線を共通にすることにより、制御線を共通にしない場合と比べて、制御線の配線をシンプルにすることができる。
<Wiring for supplying control signals φTx-1 to φTx-N>
The control lines for supplying the control signals φTx-1 to φTx-N to each of the transfer transistors Tx of the plurality of first pixel units 30x constituting each block are also the control signals φSEL described with reference to FIG. Similar to the control line for supplying -1 to φSEL-N, the wiring layer 72 may be wired.
Further, the control line for supplying the control signals φTx-1 to φTx−N may also be common between the blocks. By sharing the control lines between the blocks, it is possible to simplify the wiring of the control lines as compared with the case where the control lines are not shared.
<マトリクス状の配線>
 図6、図7を参照して説明した構成301の場合、図20に例示するようなマトリクス状に制御線を配線してもよい。図20の場合、構成301の第1-第4ブロックに対する制御信号φSEL-1~φSEL-Nの配線として、x軸方向の配線a1~a8およびy軸方向の配線b1~b8を設ける。各第1画素部30xには、2つの選択トランジスタSELが設けられているものとする。各第1画素部30xにおいて、一方の選択トランジスタSELの制御部(ゲート)に配線a1~a8のいずれかが接続され、他方の選択トランジスタSELの制御部(ゲート)に配線b1~b8のいずれかが接続される。
<Matrix wiring>
In the case of the configuration 301 described with reference to FIGS. 6 and 7, the control lines may be wired in a matrix as illustrated in FIG. In the case of FIG. 20, as the wiring of the control signals φSEL-1 to φSEL-N for the first to fourth blocks of the configuration 301, wirings a1 to a8 in the x-axis direction and wirings b1 to b8 in the y-axis direction are provided. It is assumed that each first pixel portion 30x is provided with two selection transistors SEL. In each first pixel unit 30x, any of the wirings a1 to a8 is connected to the control unit (gate) of one of the selection transistors SEL, and any of the wirings b1 to b8 is connected to the control unit (gate) of the other selection transistor SEL. Is connected.
 センサ制御部205は、交差する配線a1~a8、b1~b8を介して、信号読出しの対象(信号を出力させる対象)とする第1画素部30xへ制御信号φSELを供給する。このように構成することにより、配線a1~a8、配線b1~b8により供給された制御信号φSELによって2つの選択トランジスタSELがともにオンする第1画素部30xで生成された信号が、信号線210へ出力される。 The sensor control unit 205 supplies the control signal φSEL to the first pixel unit 30x, which is the target of signal reading (the target of outputting the signal), via the intersecting wirings a1 to a8 and b1 to b8. With this configuration, the signal generated by the first pixel unit 30x in which the two selection transistors SEL are turned on by the control signals φSEL supplied by the wirings a1 to a8 and the wirings b1 to b8 is transmitted to the signal line 210. It is output.
 以上の説明では、撮像素子101をデジタルカメラに搭載する例を説明したが、撮像素子101は、デジタルカメラ以外にもスマートフォンやタブレット端末、ウェアラブル端末等の電子機器に搭載してもよい。 In the above description, an example of mounting the image sensor 101 on a digital camera has been described, but the image sensor 101 may be mounted on an electronic device such as a smartphone, a tablet terminal, or a wearable terminal in addition to the digital camera.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特願2019-069144号(2019年3月29日出願)
The disclosure content of the next priority basic application is incorporated here as a quotation.
Japanese Patent Application No. 2019-069144 (filed on March 29, 2019)
 11-46…領域、30P…画素部、30x-1~30x-N…第1画素部、60…領域内の信号線、61~64…配線、71…PD層、72…配線層、73…カラーフィルタ、90、90-1~4-…領域間の信号線、100…カメラボディ、101…撮像素子、102…ボディ制御部、201…画素エリア、204…出力部、205…制御部、210…信号線、PD…フォトダイオード、SEL…選択トランジスタ、SF…増幅トランジスタ、Tx…転送トランジスタ 11-46 ... region, 30P ... pixel portion, 30x-1 to 30x-N ... first pixel portion, 60 ... signal line in the region, 61 to 64 ... wiring, 71 ... PD layer, 72 ... wiring layer, 73 ... Color filter, 90, 90-1 to 4-... signal lines between regions, 100 ... camera body, 101 ... image sensor, 102 ... body control unit, 201 ... pixel area, 204 ... output unit, 205 ... control unit, 210 ... signal line, PD ... photodiode, SEL ... selection transistor, SF ... amplification transistor, Tx ... transfer transistor

Claims (15)

  1.  第1領域、第2領域、および前記第1領域と前記第2領域との間にある第3領域にそれぞれ設けられ、光を光電変換して電荷を生成する複数の光電変換部と、
     前記第1領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号と、前記第2領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号との少なくとも一方を出力する第1出力部と、
     前記第3領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号を出力する第2出力部と、
     を備える撮像素子。
    A plurality of photoelectric conversion units provided in the first region, the second region, and the third region between the first region and the second region, respectively, to generate electric charges by photoelectric conversion of light.
    Outputs at least one of a signal based on the electric charge generated by the plurality of photoelectric conversion units provided in the first region and a signal based on the electric charge generated by the plurality of photoelectric conversion units provided in the second region. 1st output unit and
    A second output unit that outputs a signal based on the electric charge generated by the plurality of photoelectric conversion units provided in the third region, and a second output unit.
    An image sensor comprising.
  2.  請求項1に記載の撮像素子において、
     複数の前記光電変換部は、第1方向、および前記第1方向と交差する第2方向に、前記第1領域、前記第2領域、および前記第3領域にそれぞれ設けられる撮像素子。
    In the image pickup device according to claim 1,
    The plurality of photoelectric conversion units are image pickup devices provided in the first region, the second region, and the third region, respectively, in the first direction and the second direction intersecting the first direction.
  3.  請求項2に記載の撮像素子において、
     前記第1出力部は、前記第1方向および前記第2方向の少なくとも一方に配線され、前記光電変換部で生成された電荷に基づく信号を出力する第1信号線を有し、
     前記第2出力部は、前記第1方向および前記第2方向の少なくとも一方に配線され、前記光電変換部で生成された電荷に基づく信号を出力する第2信号線を有する撮像素子。
    In the image pickup device according to claim 2,
    The first output unit has a first signal line that is wired in at least one of the first direction and the second direction and outputs a signal based on the electric charge generated by the photoelectric conversion unit.
    The second output unit is an image pickup device having a second signal line that is wired in at least one of the first direction and the second direction and outputs a signal based on the electric charge generated by the photoelectric conversion unit.
  4.  請求項3に記載の撮像素子において、
     前記第1信号線と前記第2信号線とは、異なる配線層に設けられる撮像素子。
    In the image pickup device according to claim 3,
    An image pickup device in which the first signal line and the second signal line are provided in different wiring layers.
  5.  請求項3に記載の撮像素子において、
     前記第1信号線と前記第2信号線とは、同じ配線層に設けられ、交差しないよう配線される撮像素子。
    In the image pickup device according to claim 3,
    An image pickup device in which the first signal line and the second signal line are provided in the same wiring layer and are wired so as not to intersect with each other.
  6.  請求項3に記載の撮像素子において、
     前記第1信号線は前記第1方向に配線される第1配線と、前記第2方向に配線される第2配線と、を有し、
     前記第1配線と前記第2配線とは、異なる配線層に設けられる撮像素子。
    In the image pickup device according to claim 3,
    The first signal line has a first wiring wired in the first direction and a second wiring wired in the second direction.
    The first wiring and the second wiring are image pickup devices provided in different wiring layers.
  7.  請求項6に記載の撮像素子において、
     前記第2信号線は、前記第1方向に配線される第3配線と、前記第2方向に配線される第4配線と、を有し、
     前記第1配線と前記第3配線とは、同じ配線層に設けられ、
     前記第2配線と前記第4配線とは、同じ配線層に設けられる撮像素子。
    In the image pickup device according to claim 6,
    The second signal line has a third wiring wired in the first direction and a fourth wiring wired in the second direction.
    The first wiring and the third wiring are provided in the same wiring layer.
    The second wiring and the fourth wiring are image pickup devices provided in the same wiring layer.
  8.  請求項3から7のいずれか一項に記載の撮像素子において、
     前記第1領域または前記第2領域に設けられる複数の前記光電変換部は、前記第1方向または前記第2方向に設けられる第1光電変換部と第2光電変換部とを有し、
     前記第3領域に設けられる複数の前記光電変換部は、前記第1方向または前記第2方向に設けられる第3光電変換部と第4光電変換部とを有し、
     前記第1出力部は、前記第1光電変換部で生成された電荷を第1蓄積部に転送する第1転送部と、前記第2光電変換部で生成された電荷を第2蓄積部に転送する第2転送部と、を有し、
     前記第2出力部は、前記第3光電変換部で生成された電荷を第3蓄積部に転送する第3転送部と、前記第4光電変換部で生成された電荷を第4蓄積部に転送する第4転送部と、を有し、
     前記第1方向または前記第2方向に配線され、前記第1転送部と前記第3転送部とを制御するための第1制御線と、
     前記第1方向または前記第2方向に配線され、前記第2転送部と前記第4転送部とを制御するための第2制御線と、
     を備える撮像素子。
    In the image pickup device according to any one of claims 3 to 7.
    The plurality of photoelectric conversion units provided in the first region or the second region have a first photoelectric conversion unit and a second photoelectric conversion unit provided in the first direction or the second direction.
    The plurality of photoelectric conversion units provided in the third region include a third photoelectric conversion unit and a fourth photoelectric conversion unit provided in the first direction or the second direction.
    The first output unit transfers the electric charge generated by the first photoelectric conversion unit to the first storage unit and the electric charge generated by the second photoelectric conversion unit to the second storage unit. It has a second transfer unit and
    The second output unit transfers the electric charge generated by the third photoelectric conversion unit to the third storage unit and the electric charge generated by the fourth photoelectric conversion unit to the fourth storage unit. It has a fourth transfer unit and
    A first control line that is wired in the first direction or the second direction and controls the first transfer unit and the third transfer unit.
    A second control line that is wired in the first direction or the second direction and controls the second transfer unit and the fourth transfer unit.
    An image sensor comprising.
  9.  請求項3から7のいずれか一項に記載の撮像素子において、
     前記第1領域または前記第2領域に設けられる複数の前記光電変換部は、前記第1方向または前記第2方向に設けられる第1光電変換部と第2光電変換部とを有し、
     前記第3領域に設けられる複数の前記光電変換部は、前記第1方向または前記第2方向に設けられる第3光電変換部と第4光電変換部とを有し、
     前記第1出力部は、前記第1光電変換部で生成された電荷に基づく信号を前記第1信号線に出力するための第1スイッチと、前記第2光電変換部で生成された電荷に基づく信号を前記第1信号線に出力するための第2スイッチとを有し、
     前記第2出力部は、前記第3光電変換部で生成された電荷に基づく信号を前記第2信号線に出力するための第3スイッチと、前記第4光電変換部で生成された電荷に基づく信号を前記第2信号線に出力するための第4スイッチと、を有し、
     前記第1方向または前記第2方向に配線され、前記第1スイッチと前記第3スイッチとを制御するための第1制御線と、
     前記第1方向または前記第2方向に配線され、前記第2スイッチと前記第4スイッチとを制御するための第2制御線と、
     を備える撮像素子。
    In the image pickup device according to any one of claims 3 to 7.
    The plurality of photoelectric conversion units provided in the first region or the second region have a first photoelectric conversion unit and a second photoelectric conversion unit provided in the first direction or the second direction.
    The plurality of photoelectric conversion units provided in the third region include a third photoelectric conversion unit and a fourth photoelectric conversion unit provided in the first direction or the second direction.
    The first output unit is based on a first switch for outputting a signal based on the charge generated by the first photoelectric conversion unit to the first signal line and a charge generated by the second photoelectric conversion unit. It has a second switch for outputting a signal to the first signal line, and has.
    The second output unit is based on a third switch for outputting a signal based on the charge generated by the third photoelectric conversion unit to the second signal line and a charge generated by the fourth photoelectric conversion unit. It has a fourth switch for outputting a signal to the second signal line, and has.
    A first control line that is wired in the first direction or the second direction and controls the first switch and the third switch.
    A second control line, which is wired in the first direction or the second direction and for controlling the second switch and the fourth switch,
    An image sensor comprising.
  10.  請求項1から9のいずれか一項に記載の撮像素子において、
     前記第1領域、前記第2領域および前記第3領域と異なる、第4領域に設けられる複数の前記光電変換部を備え、
     前記第2出力部は、前記第3領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号と、前記第4領域に設けられる複数の前記光電変換部で生成された電荷に基づく信号との少なくとも一方を出力する撮像素子。
    In the image pickup device according to any one of claims 1 to 9.
    A plurality of the photoelectric conversion units provided in the fourth region, which are different from the first region, the second region, and the third region, are provided.
    The second output unit is based on a signal based on the charges generated by the plurality of photoelectric conversion units provided in the third region and the charges generated by the plurality of photoelectric conversion units provided in the fourth region. An image sensor that outputs at least one of the signals.
  11.  請求項1から10のいずれか一項に記載の撮像素子において、
     複数の前記光電変換部は、第1波長の光を光電変換する光電変換部と、前記第1波長と異なる第2波長の光を光電変換する光電変換部とを有する撮像素子。
    In the image pickup device according to any one of claims 1 to 10.
    The plurality of photoelectric conversion units are imaging elements having a photoelectric conversion unit that photoelectrically converts light of the first wavelength and a photoelectric conversion unit that photoelectrically converts light of a second wavelength different from the first wavelength.
  12.  請求項1から11のいずれか一項に記載の撮像素子と、
     前記第1出力部および前記第2出力部の少なくとも一方から出力される信号に基づいて画像データを生成する生成部と、を備える撮像装置。
    The image sensor according to any one of claims 1 to 11.
    An imaging device including a generation unit that generates image data based on a signal output from at least one of the first output unit and the second output unit.
  13.  請求項12に記載の撮像装置において、
     前記生成部は、前記第2出力部から出力される信号に基づいて、前記第1出力部から出力される信号を補正して、前記画像データを生成する撮像装置。
    In the imaging apparatus according to claim 12,
    The generation unit is an imaging device that generates the image data by correcting the signal output from the first output unit based on the signal output from the second output unit.
  14.  請求項12または13に記載の撮像装置において、
     前記生成部は、前記第1出力部から信号が出力されない場合、前記第2出力部から出力される信号に基づいて前記画像データを補正して、前記画像データを生成する撮像装置。
    In the imaging apparatus according to claim 12 or 13,
    The generation unit is an imaging device that generates the image data by correcting the image data based on the signal output from the second output unit when the signal is not output from the first output unit.
  15.  請求項14に記載の撮像装置において、
     前記生成部は、前記第1出力部から信号が出力されない場合、前記画像データにおいて前記第1出力部から出力される信号に対応するデータを、前記第2出力部から出力される信号に基づいて生成する撮像装置。
    In the imaging apparatus according to claim 14,
    When the signal is not output from the first output unit, the generation unit obtains data corresponding to the signal output from the first output unit in the image data based on the signal output from the second output unit. An imaging device to generate.
PCT/JP2020/014102 2019-03-29 2020-03-27 Image pickup element and image pickup device WO2020203798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021512014A JP7272423B2 (en) 2019-03-29 2020-03-27 Imaging element and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019069144 2019-03-29
JP2019-069144 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203798A1 true WO2020203798A1 (en) 2020-10-08

Family

ID=72668160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014102 WO2020203798A1 (en) 2019-03-29 2020-03-27 Image pickup element and image pickup device

Country Status (2)

Country Link
JP (1) JP7272423B2 (en)
WO (1) WO2020203798A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044680A (en) * 2007-08-10 2009-02-26 Canon Inc Imaging system
JP2016171455A (en) * 2015-03-12 2016-09-23 株式会社東芝 Solid state image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044680A (en) * 2007-08-10 2009-02-26 Canon Inc Imaging system
JP2016171455A (en) * 2015-03-12 2016-09-23 株式会社東芝 Solid state image pickup device

Also Published As

Publication number Publication date
JP7272423B2 (en) 2023-05-12
JPWO2020203798A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6822454B2 (en) Image sensor and electronic equipment
US9905604B2 (en) Imaging device and imaging unit
JP5556823B2 (en) Solid-state imaging device and electronic camera
WO2017009944A1 (en) Solid-state image pickup device
JP2008028105A (en) Solid-state imaging element and imaging apparatus using same
WO2015166900A1 (en) Solid-state image pickup device and image pickup apparatus
JP2014107596A (en) Imaging element and imaging unit
WO2014196255A1 (en) Semiconductor device, solid-state imaging device, and imaging device
JP6413233B2 (en) Imaging device and imaging device
US20160133664A1 (en) Solid-state imaging device and imaging apparatus
JP2023181484A (en) Imaging element
WO2020203798A1 (en) Image pickup element and image pickup device
JP7047857B2 (en) Image sensor and image sensor
JP6680310B2 (en) Imaging device
JP6921375B2 (en) Image sensor and image sensor
JP6217794B2 (en) Solid-state imaging device and electronic camera
JP7230946B2 (en) Imaging element and imaging device
WO2023027011A1 (en) Imaging element and imaging device
JP6635098B2 (en) Imaging device and imaging device
JP6988874B2 (en) Image sensor and image sensor
WO2022210917A1 (en) Imaging element and imaging device
JP6825665B2 (en) Image sensor and image sensor
WO2020202414A1 (en) Image capture device and control program
WO2020202413A1 (en) Image capture element and image capture device
JP5958497B2 (en) Solid-state imaging device and electronic camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782450

Country of ref document: EP

Kind code of ref document: A1