WO2020203750A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2020203750A1
WO2020203750A1 PCT/JP2020/013979 JP2020013979W WO2020203750A1 WO 2020203750 A1 WO2020203750 A1 WO 2020203750A1 JP 2020013979 W JP2020013979 W JP 2020013979W WO 2020203750 A1 WO2020203750 A1 WO 2020203750A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
manufactured
epoxy
mass
Prior art date
Application number
PCT/JP2020/013979
Other languages
French (fr)
Japanese (ja)
Inventor
大河 佐藤
賢 大橋
有希 久保
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to KR1020217035087A priority Critical patent/KR20210148237A/en
Priority to CN202080025042.4A priority patent/CN113631619B/en
Publication of WO2020203750A1 publication Critical patent/WO2020203750A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/28Di-epoxy compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/06Triglycidylisocyanurates

Definitions

  • the present invention relates to a curable resin composition for a resin member characterized by heat resistance and oxygen barrier properties in electronic device applications such as organic EL, high brightness LED, and solar cell.
  • a resin member formed from a cured product of a resin composition may be used for an electronic device, particularly an organic EL, a high-brightness LED, an optical device such as a solar cell, a sealing portion, an adhesive portion, a light transmitting portion, or the like. ..
  • Such a resin member may be required to have an oxygen barrier property in order to suppress deterioration of internal elements and the like of the electronic device due to oxygen in the air.
  • heat resistance may be required to suppress deterioration of internal elements of electronic devices due to outgas generated from resin members due to heat.
  • Patent Document 1 discloses a resin composition containing a blocked isocyanate in which an isocyanate compound is blocked with imidazoles, an epoxy resin, and a phenoxy resin, but in consideration of heat resistance and oxygen barrier properties. It wasn't a thing. As described above, the conventional resin member is not always satisfactory in terms of heat resistance and oxygen barrier property, and a curable resin composition for a resin member that simultaneously satisfies these performances has been required.
  • an object of the present invention is to provide a curable resin composition having excellent heat resistance and oxygen barrier properties, which can form a cured body suitable for resin members of electronic devices such as organic ELs, high-brightness LEDs, and solar cells. To do.
  • the present inventors have found that the above problems can be solved by preparing a curable resin composition containing the following components (A) to (D). That is, the present invention includes the following contents.
  • the cured product formed by the curable resin composition of the present invention generates a small amount of outgas even when exposed to a high temperature (that is, has high heat resistance) and has a high oxygen barrier property. Therefore, the curable resin composition of the present invention is suitable for resin members of electronic devices such as organic ELs, high-brightness LEDs, and solar cells.
  • the curable resin composition of the present invention contains (A) an epoxy resin containing a nitrogen atom, (B) a siloxane compound having an epoxy group, (C) an inorganic filler and (D) a curing agent as essential components. Is.
  • the epoxy resin containing a nitrogen atom (hereinafter, also referred to as the component (A)) used in the present invention can be used without particular limitation as long as it is an epoxy resin containing a nitrogen atom in its skeleton.
  • the component (A) is preferably a glycidylamine type epoxy resin and / or a triazine derivative epoxy resin.
  • the glycidylamine type epoxy resin is an epoxy resin having a structure in which the amino group of the amine is glycidylated.
  • tetraglycidyldiaminodiphenylmethane a glycidyl compound of xylene diamine
  • triglycidylaminophenol triglycidyl-p-aminophenol
  • Triglycidyl-m-aminophenol Triglycidyl-m-aminophenol, etc.
  • Tetraglycidyl diaminodiphenylmethane Tetraglycidyl diaminodiphenyl sulfone
  • Tetraglycidyl diaminodiphenyl ether Tetraglycidyl bisaminomethylcyclohexanone
  • Diglycidyl toluidine Diglycidyl aniline, Diglycidyl methoxyaniline, Diglycidyl dimethyl Examples thereof include aniline and diglycidyl
  • Examples of commercially available products include “630” (triglycidyl-p-aminophenol; manufactured by Mitsubishi Chemical Co., Ltd.) and “604" (tetraglycidyldiaminodiphenylmethane; manufactured by Mitsubishi Chemical Company, "TETRAD-X” (glycidyl compound of xylene amine). Mitsubishi Gas Chemical Co., Ltd.), “TGDDS” (Tetraglycidyl diaminodiphenyl sulfone; Konishi Chemical Co., Ltd.), “EP-3980S” (Diglycidyl aniline, ADEKA), "GAN”, “GOT” (Diglycidyl aniline) , Made by Nippon Kayakusha), etc.
  • the epoxy equivalent of the glycidylamine type epoxy resin is preferably 50 to 1,000, more preferably 50 to 500, still more preferably 60 to 300, and particularly preferably 80 to 200, from the viewpoint of reactivity and the like.
  • the "epoxy equivalent” is the number of grams (g / eq) of the resin containing an epoxy group equivalent to 1 gram, and is measured according to the method specified in JIS K 7236.
  • Triazine derivative epoxy resin examples include 1,3,5-triazine derivative epoxy resin, and the 1,3,5-triazine derivative epoxy resin is preferably an epoxy resin having an isocyanurate ring skeleton. Further, the epoxy resin having an isocyanurate ring skeleton preferably has two or more epoxy groups with respect to one isocyanurate ring, and more preferably has three epoxy groups. Specific examples of the epoxy resin having an isocyanurate ring skeleton include 1,3,5-triglycidyl isocyanurate, tris (2,3-epoxypropyl) isocyanurate, tris ( ⁇ -methylglycidyl) isocyanurate, and tris (tris).
  • triazine derivative epoxy resins examples include 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4. 6 (1H, 3H, 5H) -Trione commercial products TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-PAS, 1,3,5-manufactured by Nissan Chemical Industry Co., Ltd. Tris (3,4-epoxybutyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione TEPIC-VL, 1,3, manufactured by Nissan Chemical Industries, Ltd.
  • the epoxy equivalent of the triazine derivative epoxy resin is preferably 50 to 1,000, more preferably 50 to 500, still more preferably 60 to 300, and particularly preferably 80 to 200, from the viewpoint of reactivity and the like.
  • the triazine derivative epoxy resin has a structure in which an amino group is glycidylated
  • such a triazine derivative epoxy resin does not belong to the above-mentioned glycidylamine type epoxy resin. That is, in the present invention, the "glycidylamine type epoxy resin" does not include those that are triazine derivatives.
  • the nitrogen atom content of the component (A) is preferably 0.05 to 50%, more preferably 1 to 45%.
  • the "nitrogen atom content” is calculated by the following formula (i).
  • Nitrogen atom content [(average number of nitrogen atoms in one molecule x nitrogen atomic weight) / (molecular weight of epoxy resin)] x 100 (i)
  • the component (A) preferably has an average number of epoxy groups of 2, 3, or 4 in the molecule.
  • the component (A) only one type may be used alone, or two or more types may be used in combination.
  • the content of the component (A) in the curable resin composition is not particularly limited, but from the viewpoint of oxygen barrier property, 1% by mass or more is preferable with respect to 100% by mass of the non-volatile content in the curable resin composition. 2, 2% by mass or more is more preferable, and 3% by mass or more is further preferable. Further, from the viewpoint of transparency, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 40% by mass or less is further preferable with respect to 100% by mass of the non-volatile content in the curable resin composition.
  • the content of the component (A) is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 8% by mass or more, based on the total amount (nonvolatile content) of the epoxy resin. preferable. Further, with respect to the total amount (nonvolatile content) of the epoxy resin, 70% by mass or less is preferable, 60% by mass or less is more preferable, and 50% by mass or less is further preferable.
  • the siloxane compound having an epoxy group (hereinafter, also referred to as component (B)) used in the present invention is a compound having a skeleton based on a siloxane bond (Si—O—Si) having an epoxy group in the molecule, and has a siloxane skeleton. Examples thereof include a cyclic siloxane skeleton, a silicone skeleton, and a polysilsesquioxane skeleton.
  • the siloxane skeleton is preferably a cyclic siloxane skeleton, that is, the component (B) is preferably a cyclic siloxane compound having an epoxy group.
  • the number of Si—O units forming the cyclic siloxane skeleton is preferably 2 to 12, more preferably 4 to 8.
  • the siloxane compound having an epoxy group is preferably one having two or more epoxy groups in one molecule. Further, in the cyclic siloxane compound having an epoxy group, those having 2 to 4 epoxy groups are preferable.
  • the epoxy group is an alicyclic having an alicyclic group on the alicyclic skeleton from the viewpoint of making the resin excellent in transparency.
  • the type epoxy group is preferable, that is, as the component (B), a siloxane compound having an alicyclic epoxy group is preferable, and a cyclic siloxane compound having an alicyclic epoxy group is more preferable.
  • the alicyclic skeleton examples include a cyclopropane skeleton, a cyclobutane skeleton, a cyclopentane skeleton, a cyclohexane skeleton, a cycloheptane skeleton, a cyclooctane skeleton, and the like, and a cyclohexane skeleton is particularly preferable. That is, the alicyclic epoxy group is particularly preferably a cyclohexene oxide group.
  • the component (B) only one type may be used alone, or two or more types may be used in combination.
  • component (B) for example, 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,4,6,6,8 , 8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,2,4,6,6,8-hexamethyl- Cyclotetrasiloxane, 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -6,8-dipropyl-2,4,6,8-tetramethyl-cyclotetra Siloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,6-dipropyl-2,4,6,8-tetramethyl-cyclotetra Siloxane, 4,8-
  • the epoxy equivalent of the siloxane compound having an epoxy group is preferably 50 to 6,000, more preferably 50 to 5,000, still more preferably 60 to 4,000, and particularly preferably 80 to 80, from the viewpoint of reactivity and the like. It is 4,000.
  • the weight average molecular weight of the siloxane compound having an epoxy group is preferably 200 to 8,000, more preferably 200 to 6,000.
  • siloxane compound having an epoxy group examples include, for example, an alicyclic epoxy-based cyclic silicone oligomer (cyclic siloxane compound having an alicyclic epoxy group) "KR-470" (4 epoxy groups), "X-40-”.
  • the content of the component (B) in the curable resin composition of the present invention is not particularly limited, but from the viewpoint of improving heat resistance, it is 10% by mass or more with respect to 100% by mass of the non-volatile content of the curable resin composition. Is more preferable, 15% by mass or more is more preferable, 20% by mass or more is further preferable, and 15% by mass or more is particularly preferable. Further, from the viewpoint of reducing the oxygen permeability, the content is preferably 90% by mass or less, more preferably 80% by mass, and more preferably 75% by mass or less with respect to 100% by mass of the non-volatile content of the curable resin composition. More preferably, 70% by mass or less is particularly preferable.
  • the content of the component (B) is preferably 15% by mass or more, more preferably 20% by mass or more, still more preferably 25% by mass or more, based on the total amount (nonvolatile content) of the epoxy resin. preferable. Further, with respect to the total amount (nonvolatile content) of the epoxy resin, 70% by mass or less is preferable, 60% by mass or less is more preferable, and 50% by mass or less is further preferable.
  • the inorganic filler used in the present invention (hereinafter, also referred to as component (C)) can be used without particular limitation. Only one type of inorganic filler may be used alone, or two or more types may be used in combination.
  • the inorganic filler is preferably a plate-shaped filler or silica from the viewpoint of achieving a higher level of oxygen barrier property.
  • plate-shaped glass and layered silicate minerals (particularly smectite and synthetic phlogopite) are required from the viewpoint of improving transparency. )
  • nanosilica are preferred.
  • the plate-shaped glass and the layered silicate mineral are both plate-shaped fillers.
  • the inorganic filler preferably comprises one or more selected from the group consisting of synthetic phlogopite, plate glass fillers and silica.
  • the plate-shaped filler is not particularly limited as long as the effect of the present invention is exhibited, and examples thereof include plate-shaped glass (A glass, C glass, E glass, etc.), layered silicate minerals, and the like.
  • the layered silicate mineral include kaolinite, halloysite, talc, smectite, mica and the like.
  • mica synthetic phlogopite is preferable from the viewpoint of improving transparency.
  • plate-shaped filler plate-shaped glass, smectite, and synthetic fluorine phlogopite are particularly preferable from the viewpoint of improving transparency. Only one kind of these plate-shaped fillers may be used alone, or two or more kinds thereof may be used in combination.
  • Synthetic fluorine phlogopite is a type of synthetic mica, and in that it is a large and highly transparent crystal, it is different from natural mica and other synthetic mica (K tetrasilicon mica, Na tetrasilicon mica, Na teniolite, Li teniolite). different.
  • the plate-shaped glass filler those having various glass compositions typified by A glass, C glass, E glass and the like can be used.
  • the plate-shaped filler has an average aspect ratio (average particle size / average thickness) of 1 or more, more preferably 1.5 or more, and even more preferably 2 or more. When the average aspect ratio is 1 or more, it tends to be easy to obtain sufficient oxygen barrier properties.
  • the average aspect ratio is preferably 1000 or less, more preferably 800 or less, and even more preferably 500 or less. When the average aspect ratio is 1000 or less, it tends to be easy to obtain sufficient dispersibility.
  • the average thickness of the plate-shaped filler is preferably 0.01 to 20 ⁇ m, more preferably 0.05 to 10 ⁇ m.
  • the average thickness is measured by the following method.
  • the sample table of the scanning electron microscope is adjusted by the sample table fine movement device so that the cross section (thickness surface) of the particles is perpendicular to the irradiation electron beam axis of the scanning electron microscope.
  • the average particle size of the plate-shaped filler is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 2 ⁇ m or more from the viewpoint of improving the oxygen barrier property. Further, from the viewpoint of transparency, 2000 ⁇ m or less is preferable, 1500 ⁇ m or less is more preferable, and 1000 ⁇ m or less is further preferable.
  • the average particle size can be measured by the laser diffraction / scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of the filler on a volume basis with a laser diffraction type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, a filler dispersed in water by ultrasonic waves can be preferably used. As the laser diffraction / scattering type particle size distribution measuring device, LA-500 manufactured by HORIBA, Ltd. or the like can be used.
  • silica so-called nanosilica having a particle size of primary particles on the nano-order is preferable.
  • Silica is usually spherical.
  • the primary particles having a grain diameter of 1 to 100 nm are preferable, and those having a grain diameter of 1 to 50 nm are more preferable. Since it is relatively difficult to measure the primary particle size of nanosilica, a value converted from a specific surface area measurement value (based on JIS Z8830) may be used. Even in silica suitable for the present invention, silica more suitable for the present invention can be obtained by setting the BET specific surface area to a predetermined value.
  • a suitable BET specific surface area is 2720 to 27 m 2 / g, more preferably 2720 to 54 m 2 / g.
  • the inorganic filler may be surface-treated with a surface treatment agent.
  • a surface treatment agent examples include aminosilane-based coupling agents, epoxysilane-based coupling agents, mercaptosilane-based coupling agents, vinylsilane-based coupling agents, imidazolesilane-based coupling agents, organosilazane compounds, titanate-based coupling agents, and the like. Can be mentioned.
  • the surface treatment agent may be used alone or in combination of two or more.
  • the content of the component (C) in the curable resin composition of the present invention is not particularly limited, but from the viewpoint of improving the oxygen barrier property, 1% by mass with respect to 100% by mass of the non-volatile content of the curable resin composition.
  • the above is preferable, 2% by mass or more is more preferable, 3% by mass or more is further preferable, and 5% by mass or more is particularly preferable.
  • the content is preferably 65% by mass or less, more preferably 60% by mass, still more preferably 55% by mass or less, based on 100% by mass of the non-volatile content of the curable resin composition. 50% by mass or less is particularly preferable.
  • the curing agent used in the present invention can be used without particular limitation as long as it has a function of curing the epoxy resin.
  • examples thereof include phenol-based curing agents, naphthol-based curing agents, acid anhydride-based curing agents, active ester-based curing agents, benzoxazine-based curing agents, cyanate ester-based curing agents, carbodiimide-based curing agents, imidazole-based curing agents, and the like. ..
  • the component (D) is preferably an acid anhydride-based curing agent.
  • the curing agent one type may be used alone, or two or more types may be used in combination.
  • Examples of the acid anhydride-based curing agent include a curing agent having one or more acid anhydride groups in one molecule.
  • Examples of the acid anhydride-based curing agent include phthalic acid-based acid anhydride, succinic acid-based acid anhydride, maleic acid-based anhydride, trimellitic acid-based acid anhydride, norbornene-based acid anhydride, and acid anhydride group. Examples thereof include nitrile rubber having.
  • phthalic acid anhydrides examples include phthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, 3 , 3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride and the like.
  • succinic acid anhydride include succinic anhydride, octenyl succinic anhydride, tetrapropenyl succinic anhydride, butane-1,2,3,4-tetracarboxylic dianhydride and the like.
  • maleic anhydride examples include maleic anhydride and the like.
  • trimellitic acid-based acid anhydride examples include ethylene glycol / bisamhydrotrimeritate and glycerinbis / anhydrotrimeritate / monoacetate.
  • norbornene-based acid anhydrides include methyl-5-norbornene-2,3-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, and bicyclo [2.2.1] heptane-2,3-. Examples thereof include dicarboxylic acid anhydride and methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride.
  • nitrile rubber having an acid anhydride group examples include succinic anhydride-modified hydrogenated nitrile rubber and maleic anhydride-modified hydrogenated nitrile rubber.
  • Particularly preferable acid anhydrides include norbornene-based acid anhydrides.
  • Examples of commercially available acid anhydride-based curing agents include Jamaicacid TH (1,2,3,6-tetrahydrophthalic anhydride), Jamaicacid HH (Hexahydrophthalic anhydride), and Ricacid HNA-manufactured by Shin Nihon Rika.
  • the acid anhydride equivalent of the acid anhydride-based curing agent is preferably 70 to 1,000, more preferably 80 to 900, still more preferably 90 to 800, and particularly preferably 100 to 700, from the viewpoint of reactivity and the like. is there.
  • the "acid anhydride equivalent” is the number of grams (g / eq) of an acid anhydride-based curing agent containing 1 gram equivalent of an acid anhydride group, and is a nuclear magnetic resonance apparatus (NMR) and gas chromatography (GC). ) Etc. are measured by component analysis.
  • phenol-based curing agent and the naphthol-based curing agent examples include a phenol-based curing agent having a novolak structure, a naphthol-based curing agent having a novolak structure, a triazine skeleton-containing phenol-based curing agent, a triazine skeleton-containing naphthol-based curing agent, and the like. ..
  • an active ester-based curing agent a compound having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, is generally used. Can be mentioned.
  • the active ester-based curing agent is preferably one obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-.
  • the "dicyclopentadiene-type diphenol compound” refers to a diphenol compound obtained by condensing two phenol molecules with one dicyclopentadiene molecule.
  • an active ester compound containing a dicyclopentadiene type diphenol structure an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of phenol novolac, an active ester compound containing a benzoyl product of phenol novolac, and the like are used.
  • an active ester compound containing a dicyclopentadiene type diphenol structure an active ester compound containing a naphthalene structure
  • an active ester compound containing an acetylated product of phenol novolac an active ester compound containing a benzoyl product of phenol novolac, and the like are used.
  • cyanate ester-based curing agent examples include bisphenol A disicianate, polyphenol cyanate (oligo (3-methylene-1,5-phenylencyanate)), 4,4'-methylenebis (2,6-dimethylphenylcyanate), 4, 4'-Etilidendidiphenyl disianate, hexafluorobisphenol A disyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanate phenylmethane), bis (4-cyanate-3,5-) Bifunctional cyanate resins such as dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, Examples thereof include polyfunctional cyanate resins derived from phenol novolac, cresol novolak and the like, and prepolymers in which these cyanate resin
  • imidazole-based curing agent examples include 2-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methyl imidazole, 1,2-dimethyl imidazole, 2 -Ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2 -Phenylimida
  • the content of the (D) curing agent in the curable resin composition of the present invention is not particularly limited as long as the effects of the present invention are exhibited, but from the viewpoint of optical properties such as total light transmittance and cloudiness,
  • the content is preferably 90% by mass or less, more preferably 85% by mass or less, further preferably 80% by mass or less, and particularly preferably 75% by mass or less, based on 100% by mass of the non-volatile content of the curable resin composition. ..
  • the content thereof is preferably 2% by mass or more, more preferably 5% by mass or more, and 7% by mass, based on 100% by mass of the non-volatile content of the curable resin composition. % Or more is more preferable.
  • the content of the component (D) is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 10% by mass or more, based on the total amount (nonvolatile content) of the epoxy resin. preferable. Further, 150% by mass or less is preferable, 135% by mass or less is more preferable, and 120% by mass or less is further preferable with respect to the total amount (nonvolatile content) of the epoxy resin.
  • the curable resin composition of the present invention may contain a curing accelerator (hereinafter, also referred to as component (E)) for the purpose of improving curability.
  • a curing accelerator hereinafter, also referred to as component (E)
  • the curing accelerator is not particularly limited, and examples thereof include amine-based curing accelerators, imidazole-based curing accelerators, phosphorus-based curing accelerators, guanidine-based curing accelerators, and metal-based curing accelerators.
  • the curing accelerator one type may be used alone, or two or more types may be used in combination.
  • amine-based curing accelerator examples include triethylamine, tributylamine, 4-dimethylaminopyridine (DMAP), benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo [5].
  • DMAP 4-dimethylaminopyridine
  • benzyldimethylamine 2,4,6, -tris (dimethylaminomethyl) phenol
  • imidazole-based curing accelerator examples include those described in the above-mentioned imidazole-based curing agent. When used in combination with other curing agents, the imidazole-based curing agent may function as a curing accelerator.
  • Examples of the phosphorus-based curing accelerator include triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate. , Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, methyltributylphosphonium dimethyl phosphate, tetraphenylphosphonium, tetrabutylphosphonium and the like.
  • guanidine-based curing accelerator examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, and the like.
  • the metal-based curing accelerator examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organic metal complex examples include an organic cobalt complex such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, an organic copper complex such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
  • the content of the curing accelerator when the curing accelerator is used is usually 0.05 to 0.05 with respect to the total amount (nonvolatile content) of the epoxy resin contained in the curable resin composition. It is used in the range of 5% by mass.
  • the curable resin composition of the present invention contains a radical polymerization initiator such as 2,2'-azobis (isobutyric acid) dimethyl, rubber particles, silicone powder, nylon powder, and fluoropolymer within a range that does not impair the effects of the present invention.
  • Organic fillers such as resin powders; silicone-based, fluoro-based, polymer-based defoaming agents or leveling agents; thickeners such as Orben and Benton; antioxidants; heat stabilizers; additives such as light stabilizers Can be blended.
  • the curable resin composition of the present invention is used, for example, as a resin member for an electronic device, particularly an organic EL, a high-brightness LED, an optical device such as a solar cell, a sealing portion, an adhesive portion, a light transmitting portion, and the like.
  • a varnish prepared by mixing the components of the curable resin composition and an organic solvent using a kneading roller, a rotary mixer, or the like. Varnish) is applied onto the release-treated support, and the organic solvent is removed from the varnish applied on the support by heating (hot air blowing, etc.) and / or decompression treatment using a known device. , A resin composition formed into a film is obtained (hereinafter, also referred to as "film-like resin composition").
  • Examples of the support of the release-treated support include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride; cycloolefin polymers, polyethylene terephthalate (hereinafter, may be abbreviated as “PET”), polyethylene naphthalate, and the like. Polyester; Polypropylene; Plastic films such as polyimide (preferably PET film) and metal foils such as aluminum foil, stainless steel foil, and copper foil are used.
  • Examples of the mold release treatment of the support that has been released include a mold release treatment using a mold release agent such as a silicone resin-based mold release agent, an alkyd resin-based mold release agent, and a fluororesin-based mold release agent.
  • the solid content of the resin composition varnish is preferably 20 to 80% by mass, more preferably 30 to 70% by mass.
  • the heating conditions for removing the organic solvent from the resin composition varnish are not particularly limited, but usually about 2 to 10 minutes at about 50 to 130 ° C. is preferable.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone, acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and cellosolves such as cellosolve.
  • ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone
  • acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate
  • cellosolves such as cellosolve.
  • carbitols such as butyl carbitol
  • aromatic hydrocarbons such as toluene and xylene
  • dimethylformamide dimethylacetamide
  • the thickness of the film-shaped resin composition varies depending on the apparatus to which the film-shaped resin composition is applied and the application location, but is preferably in the range of 1 to 1000 ⁇ m, more preferably 2 to 800 ⁇ m.
  • the film-like resin composition formed on the support is preferably protected by a protective film for protection until the resin composition is cured.
  • a protective film for protection until the resin composition is cured.
  • a protective film that has been subjected to a mold release treatment can be laminated on the resin composition of the above by using a known device. Examples of the equipment used for laminating the protective film include a roll laminator, a press machine, a vacuum pressurizing laminator, and the like.
  • the release-treated protective film is, for example, a polyolefin such as polyethylene, polypropylene, or polyvinyl chloride; a cycloolefin polymer, polyethylene terephthalate (hereinafter, may be abbreviated as “PET”), a polyester such as polyethylene naphthalate; a polycarbonate; A plastic film (preferably PET film) such as polyimide, or a support made of a metal foil such as aluminum foil, stainless steel foil, or copper foil, which has been subjected to a mold release treatment, is used.
  • PET polyethylene terephthalate
  • a plastic film preferably PET film
  • the mold release treatment include a mold release treatment using a mold release agent such as a silicone resin-based mold release agent, an alkyd resin-based mold release agent, and a fluororesin-based mold release agent.
  • the cured product of the present invention is a thermosetting resin composition of the present invention, and can be a resin member of an electronic device.
  • a film-shaped cured product can be obtained, which can be a film-shaped resin member.
  • the curing temperature of thermosetting is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of sufficiently advancing the curing reaction. Further, from the viewpoint of preventing coloring of the cured product, 180 ° C. or lower is preferable, and 165 ° C. or lower is more preferable.
  • the heating time is preferably 10 minutes or longer, more preferably 20 minutes or longer. Further, 150 minutes or less is preferable, and 130 minutes or less is more preferable.
  • heating means examples include a hot air circulation type oven, an infrared heater, a heat gun, a high frequency induction heating device, and heating by crimping a heat tool.
  • a liquid resin composition such as varnish can be applied to a desired portion and a curing reaction can be carried out to form a resin member having a desired shape.
  • Example 1 10 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-VL” manufactured by Nissan Chemical Co., Ltd.), 70 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic 20 parts of cyclic siloxane compound having an epoxy group ("X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 91 parts of norbornene-based acid anhydride ("HNA-100” manufactured by New Japan Chemical Co., Ltd.), plate-shaped glass filler (Nippon Plate Glass) 16 parts of "FTD010FY-F01” manufactured by Nippon Chemical Co., Ltd., 4 parts of plate-shaped glass filler ("MEG160FY” manufactured by Nippon Plate Glass Co., Ltd.) and 2.1 parts of phosphorus-based curing accelerator ("PX-4MP” manufactured by Nippon Chemical Industry Co., Ltd.) are mixed
  • Example 2 A resin composition was obtained in the same manner as in Example 1 except that 10 parts of "TEPIC-VL” were changed to 10 parts of “TEPIC-FL” and 91 parts of "HNA-100” were changed to 88 parts.
  • Example 3 Change 10 parts of "TEPIC-VL” to 10 parts of glycidylamine type epoxy resin "EP-3980S”, change 91 parts of "HNA-100” to 93 parts, and change 2.1 parts of "PX-4MP" to 2.
  • a resin composition was obtained in the same manner as in Example 1 except that it was changed to two parts.
  • Example 4 A resin composition was obtained in the same manner as in Example 3 except that 10 parts of "EP-3980S” were changed to 10 parts of "630” and 93 parts of "HNA-100” was changed to 95 parts.
  • Example 5 Each material used in Example 1 was changed to the compounding ratio shown in Table 1 and uniformly dispersed in the same manner as in Example 1 to obtain a resin composition of Example 5.
  • Example 6 30 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-VL” manufactured by Nissan Chemical Co., Ltd.), 80 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic 20 parts of cyclic siloxane compound having an epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 102 parts of norbornene-based acid anhydride (“HNA-100” manufactured by New Japan Chemical Co., Ltd.), synthetic fluorine gold mica (Topy Industry) 16 parts of "PDM-20L” manufactured by Nippon Chemical Co., Ltd., 5 parts of synthetic fluorine gold mica ("PDM-40L” manufactured by Topy Industry Co., Ltd.) and 2.6 parts of phosphorus-based curing accelerator ("PX-4MP” manufactured by Nippon Chemical Co., Ltd.) Was mixed, and then uniformly dispersed with a
  • Example 7 30 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-FL” manufactured by Nissan Chemical Co., Ltd.), 60 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic 10 parts of cyclic siloxane compound having an epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 94 parts of norbornene-based acid anhydride (“HNA-100” manufactured by New Japan Chemical Co., Ltd.), plate-shaped glass filler (Nippon Plate Glass) 20 parts of "FTD010FY-F01” manufactured by Nippon Chemical Co., Ltd., 50 parts of nanosilica (“Y10SV-AM1" manufactured by Admatex) and 2.7 parts of phosphorus-based curing accelerator ("PX-4MP” manufactured by Nippon Chemical Co., Ltd.) are mixed. After that, it was uniformly dispersed
  • Example 8 10 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-VL” manufactured by Nissan Chemical Co., Ltd.), 90 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, norbornene-based acid 96 parts of anhydride ("HNA-100” manufactured by New Japan Chemical Co., Ltd.), 20 parts of plate-shaped glass filler ("FTD010FY-F01" manufactured by Nippon Plate Glass Co., Ltd.) and phosphorus-based curing accelerator ("PX-4MP” manufactured by Nippon Chemical Industry Co., Ltd.) 2.2 parts were mixed and then uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
  • TPIC-VL isocyanurate ring skeleton
  • KR-470 manufactured by Shinetsu Chemical Co., Ltd.
  • HNA-100 norbornene-based acid 96 parts of anhydride
  • ⁇ Comparative example 1 70 parts of a cyclic siloxane compound having an alicyclic epoxy group (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.), 30 parts of a cyclic siloxane compound having an alicyclic epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), Mix 83 parts of norbornene-based acid anhydride (“HNA-100” manufactured by New Japan Chemical Co., Ltd.) and 1.9 parts of phosphorus-based curing accelerator (“PX-4MP” manufactured by Nippon Chemical Industry Co., Ltd.), and then use a high-speed rotary mixer. It was uniformly dispersed to obtain a resin composition.
  • KR-470 manufactured by Shinetsu Chemical Co., Ltd.
  • X-40-2678 manufactured by Shinetsu Chemical Co., Ltd.
  • HNA-100 norbornene-based acid anhydride
  • PX-4MP phosphorus-based curing accelerator
  • KR-470 manufactured by Shinetsu Chemical Co
  • HNA-100 norbornene-based acid anhydride
  • ⁇ Comparative example 4 10 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-FL” manufactured by Nissan Chemical Industries, Ltd.), 70 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic type 20 parts of a cyclic siloxane compound having an epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 88 parts of norbornene-based acid anhydride (“HNA-100” manufactured by Shin Nihon Rika Co., Ltd.) and a phosphorus-based curing accelerator (Japan) 1.9 parts of "PX-4MP” manufactured by Kagaku Kogyo Co., Ltd.) was mixed and then uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
  • a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.)
  • thermogravimetric loss % at 380 ° C. when heated was determined.
  • the measurement was performed by a differential thermogravimetric simultaneous measuring device (“TG / DTA STA7200RV” manufactured by Hitachi High-Tech Science Co., Ltd.).
  • TG / DTA STA7200RV manufactured by Hitachi High-Tech Science Co., Ltd.
  • 10 mg of each cured product sample was weighed in an aluminum sample pan, and the temperature was raised from 25 ° C. to 400 ° C. under the condition of 20 ° C./min in an open state without a lid.
  • the thermogravimetric reduction rate was calculated by the following formula (ii).
  • Thermogravimetric reduction rate (%) 100 x (mass before heating ( ⁇ g) -mass when reaching a predetermined temperature ( ⁇ g)) / mass before heating ( ⁇ g) (ii)
  • the heat resistance test was evaluated using the following criteria. Good ⁇ : Less than 20% Defective ⁇ : 20% or more
  • a frame (planar shape of the frame: 10 cm x 10 cm, flat area: 100 cm 2 ) is formed on a polyimide film (UPIREX (manufactured by Ube Industries, Ltd., thickness 75 ⁇ m)) with a tape having a thickness of 200 ⁇ m, and the frame is formed in the frame.
  • a cured product (test piece) having a thickness of about 200 ⁇ m is obtained by pouring the resin composition, bar-coating with a glass bar, heating at 90 ° C. for 2 hours in a heat circulation oven, and then heating at 150 ° C. for 2 hours. The thickness of the obtained cured product was measured with a micrometer (manufactured by Mitsutoyo Co., Ltd.) to a unit of 1 ⁇ m.
  • Table 1 below shows the composition and test results of the resin compositions of Examples and Comparative Examples. From Table 1, it can be seen that the curable resin composition of the example can form a cured product having both high heat resistance and high oxygen barrier property. Further, it can be seen that the curable resin composition of the example is also excellent in transparency.
  • the cured product of the curable resin composition of the present invention generates a small amount of outgas even when exposed to a high temperature and has excellent heat resistance. It also has excellent oxygen barrier properties, and is suitable for resin members such as sealing parts, adhesive parts, and light transmitting parts in electronic devices, especially optical devices such as organic ELs, high-intensity LEDs, and solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a curable resin composition which has excellent heat resistance and oxygen barrier properties, and which is capable of forming a cured body that is suitable for a resin member of an electronic device such as an organic EL device, a high luminance LED and a solar cell. A curable resin composition which contains the following components (A)-(D): (A) an epoxy resin containing a nitrogen atom; (B) a siloxane compound having an epoxy group; (C) an inorganic filler; and (D) a curing agent.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、有機EL、高輝度LED、太陽電池等の電子デバイス用途における耐熱性及び酸素バリア性を特徴とした樹脂部材用の硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition for a resin member characterized by heat resistance and oxygen barrier properties in electronic device applications such as organic EL, high brightness LED, and solar cell.
 電子デバイス、特に有機EL、高輝度LED、太陽電池等の光学デバイスにおける封止部位、接着部位、光透過部位等には樹脂組成物の硬化体等から形成される樹脂部材が用いられることがある。このような樹脂部材には空気中の酸素による電子デバイスの内部素子等の劣化を抑制するため、酸素バリア性が求められる場合がある。また熱により樹脂部材から発生するアウトガスによる電子デバイスの内部素子等の劣化抑制のため、耐熱性が求められる場合がある。例えば特許文献1には、イソシアネート化合物をイミダゾール類でブロックしたブロックイソシアネート、エポキシ樹脂、フェノキシ樹脂を含有することを特徴とする樹脂組成物が開示されているが、耐熱性や酸素バリア性を考慮したものではなかった。このように、従来の樹脂部材は、耐熱性および酸素バリア性に関して必ずしも満足のいくものではなく、これらの性能を同時に満たす樹脂部材用の硬化性樹脂組成物が求められていた。 A resin member formed from a cured product of a resin composition may be used for an electronic device, particularly an organic EL, a high-brightness LED, an optical device such as a solar cell, a sealing portion, an adhesive portion, a light transmitting portion, or the like. .. Such a resin member may be required to have an oxygen barrier property in order to suppress deterioration of internal elements and the like of the electronic device due to oxygen in the air. In addition, heat resistance may be required to suppress deterioration of internal elements of electronic devices due to outgas generated from resin members due to heat. For example, Patent Document 1 discloses a resin composition containing a blocked isocyanate in which an isocyanate compound is blocked with imidazoles, an epoxy resin, and a phenoxy resin, but in consideration of heat resistance and oxygen barrier properties. It wasn't a thing. As described above, the conventional resin member is not always satisfactory in terms of heat resistance and oxygen barrier property, and a curable resin composition for a resin member that simultaneously satisfies these performances has been required.
特開2011-84667号公報Japanese Unexamined Patent Publication No. 2011-84667
 従って、本発明の目的は、有機EL、高輝度LED、太陽電池等の電子デバイスの樹脂部材用に適した硬化体を形成可能な、耐熱性と酸素バリア性に優れる硬化性樹脂組成物を提供することにある。 Therefore, an object of the present invention is to provide a curable resin composition having excellent heat resistance and oxygen barrier properties, which can form a cured body suitable for resin members of electronic devices such as organic ELs, high-brightness LEDs, and solar cells. To do.
 本発明者らは、上記の課題を解決すべく鋭意研究をした結果、下記の(A)~(D)成分を含有する硬化性樹脂組成物とすることにより、前記課題が解決されることを見出し、本発明を完成するに至った。すなわち本発明は、以下の内容を含むものである。 As a result of diligent research to solve the above problems, the present inventors have found that the above problems can be solved by preparing a curable resin composition containing the following components (A) to (D). We have found and completed the present invention. That is, the present invention includes the following contents.
[1]下記の(A)~(D)成分を含有する、硬化性樹脂組成物:
 (A)窒素原子を含有するエポキシ樹脂;
 (B)エポキシ基を有するシロキサン化合物;
 (C)無機フィラー;および
 (D)硬化剤。
[2]さらに(E)硬化促進剤を含有する、[1]記載の硬化性樹脂組成物。
[3](A)窒素原子を含有するエポキシ樹脂が、グリシジルアミン型エポキシ樹脂及び/又はトリアジン誘導体エポキシ樹脂を含む、[1]または[2]記載の硬化性樹脂組成物。
[4](B)エポキシ基を有するシロキサン化合物が、環状シロキサン骨格を含む、[1]~[3]のいずれかに記載の硬化性樹脂組成物。
[5](B)エポキシ基を有するシロキサン化合物が、脂環式エポキシ基を含む、[1]~[4]のいずれかに記載の硬化性樹脂組成物。
[6](C)無機フィラーが、合成フッ素金雲母、板状ガラスフィラー及びシリカからなる群より選ばれる1種以上を含む、[1]~[5]のいずれかに記載の硬化性樹脂組成物。
[7](D)硬化剤が、酸無水物である、[1]~[6]のいずれかに記載の硬化性樹脂組成物。
[8]電子デバイスの樹脂部材用である、[1]~[7]のいずれかに記載の硬化性樹脂組成物。
[9][1]~[8]のいずれかに記載の硬化性樹脂組成物の硬化体を樹脂部材として含む、電子デバイス。
[1] A curable resin composition containing the following components (A) to (D):
(A) Epoxy resin containing nitrogen atoms;
(B) A siloxane compound having an epoxy group;
(C) Inorganic filler; and (D) Hardener.
[2] The curable resin composition according to [1], which further contains (E) a curing accelerator.
[3] The curable resin composition according to [1] or [2], wherein the epoxy resin containing the nitrogen atom (A) contains a glycidylamine type epoxy resin and / or a triazine derivative epoxy resin.
[4] The curable resin composition according to any one of [1] to [3], wherein the siloxane compound having an epoxy group (B) contains a cyclic siloxane skeleton.
[5] The curable resin composition according to any one of [1] to [4], wherein the siloxane compound having an epoxy group (B) contains an alicyclic epoxy group.
[6] The curable resin composition according to any one of [1] to [5], wherein the inorganic filler (C) contains at least one selected from the group consisting of synthetic fluorine phlogopite, plate-shaped glass filler and silica. object.
[7] The curable resin composition according to any one of [1] to [6], wherein the curing agent (D) is an acid anhydride.
[8] The curable resin composition according to any one of [1] to [7], which is used for a resin member of an electronic device.
[9] An electronic device comprising a cured product of the curable resin composition according to any one of [1] to [8] as a resin member.
 本発明の硬化性樹脂組成物により形成される硬化体は、高温に曝されてもアウトガスの発生量が少なく(すなわち、高い耐熱性を有する)、また、高い酸素バリア性を有している。そのため、本発明の硬化性樹脂組成物は、有機EL、高輝度LED、太陽電池等の電子デバイスの樹脂部材用に適している。 The cured product formed by the curable resin composition of the present invention generates a small amount of outgas even when exposed to a high temperature (that is, has high heat resistance) and has a high oxygen barrier property. Therefore, the curable resin composition of the present invention is suitable for resin members of electronic devices such as organic ELs, high-brightness LEDs, and solar cells.
 以下、本発明をその好適な実施形態に即して説明する。
[硬化性樹脂組成物]
 本発明の硬化性樹脂組成物は、必須成分として、(A)窒素原子を含有するエポキシ樹脂、(B)エポキシ基を有するシロキサン化合物、(C)無機フィラーおよび(D)硬化剤を含有するものである。
Hereinafter, the present invention will be described according to its preferred embodiment.
[Curable resin composition]
The curable resin composition of the present invention contains (A) an epoxy resin containing a nitrogen atom, (B) a siloxane compound having an epoxy group, (C) an inorganic filler and (D) a curing agent as essential components. Is.
<(A)窒素原子を含有するエポキシ樹脂>
 本発明において使用する窒素原子を含有するエポキシ樹脂(以下、(A)成分ともいう)は、その骨格中に窒素原子を含むエポキシ樹脂であれば特に制限なく使用することができる。本発明の目的(とりわけ、酸素バリア性)をより高いレベルで達成するという観点から、(A)成分は、グリシジルアミン型エポキシ樹脂及び/又はトリアジン誘導体エポキシ樹脂であることが好ましい。
<(A) Epoxy resin containing nitrogen atom>
The epoxy resin containing a nitrogen atom (hereinafter, also referred to as the component (A)) used in the present invention can be used without particular limitation as long as it is an epoxy resin containing a nitrogen atom in its skeleton. From the viewpoint of achieving the object of the present invention (particularly, oxygen barrier property) at a higher level, the component (A) is preferably a glycidylamine type epoxy resin and / or a triazine derivative epoxy resin.
(グリシジルアミン型エポキシ樹脂)
 グリシジルアミン型エポキシ樹脂とは、アミンのアミノ基がグリシジル化された構造を有するエポキシ樹脂であり、例えば、テトラグリシジルジアミノジフェニルメタン、キシレンジアミンのグリシジル化合物、トリグリシジルアミノフェノール(トリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノール等)、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、テトラグリシジルジアミノジフェニルエーテル、テトラグリシジルビスアミノメチルシクロヘキサノン、ジグリシジルトルイジン、ジグリシジルアニリン、ジグリシジルメトキシアニリン、ジグリシジルジメチルアニリン、ジグリシジルトリフルオロメチルアニリン等が挙げられる。
(Glysidylamine type epoxy resin)
The glycidylamine type epoxy resin is an epoxy resin having a structure in which the amino group of the amine is glycidylated. For example, tetraglycidyldiaminodiphenylmethane, a glycidyl compound of xylene diamine, and triglycidylaminophenol (triglycidyl-p-aminophenol) , Triglycidyl-m-aminophenol, etc.), Tetraglycidyl diaminodiphenylmethane, Tetraglycidyl diaminodiphenyl sulfone, Tetraglycidyl diaminodiphenyl ether, Tetraglycidyl bisaminomethylcyclohexanone, Diglycidyl toluidine, Diglycidyl aniline, Diglycidyl methoxyaniline, Diglycidyl dimethyl Examples thereof include aniline and diglycidyl trifluoromethylaniline.
 市販品としては、例えば、「630」(トリグリシジル-p-アミノフェノール;三菱ケミカル社製)、「604」(テトラグリシジルジアミノジフェニルメタン;三菱ケミカル社製、「TETRAD-X」(キシレンジアミンのグリシジル化合物;三菱ガス化学社製)、「TGDDS」(テトラグリシジルジアミノジフェニルスルホン;小西化学社製)、「EP-3980S」(ジグリシジルアニリン、ADEKA社製)、「GAN」、「GOT」(ジグリシジルアニリン、日本化薬社製)等が挙げられる。 Examples of commercially available products include "630" (triglycidyl-p-aminophenol; manufactured by Mitsubishi Chemical Co., Ltd.) and "604" (tetraglycidyldiaminodiphenylmethane; manufactured by Mitsubishi Chemical Company, "TETRAD-X" (glycidyl compound of xylene amine). Mitsubishi Gas Chemical Co., Ltd.), "TGDDS" (Tetraglycidyl diaminodiphenyl sulfone; Konishi Chemical Co., Ltd.), "EP-3980S" (Diglycidyl aniline, ADEKA), "GAN", "GOT" (Diglycidyl aniline) , Made by Nippon Kayakusha), etc.
 グリシジルアミン型エポキシ樹脂のエポキシ当量は、反応性等の観点から、好ましくは50~1,000、より好ましくは50~500、さらにより好ましくは60~300、特に好ましくは80~200である。なお、「エポキシ当量」とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法に従って測定される。 The epoxy equivalent of the glycidylamine type epoxy resin is preferably 50 to 1,000, more preferably 50 to 500, still more preferably 60 to 300, and particularly preferably 80 to 200, from the viewpoint of reactivity and the like. The "epoxy equivalent" is the number of grams (g / eq) of the resin containing an epoxy group equivalent to 1 gram, and is measured according to the method specified in JIS K 7236.
(トリアジン誘導体エポキシ樹脂)
 トリアジン誘導体エポキシ樹脂としては、例えば、1,3,5-トリアジン誘導体エポキシ樹脂が挙げられ、1,3,5-トリアジン誘導体エポキシ樹脂は、イソシアヌレート環骨格を有するエポキシ樹脂が好ましい。また、イソシアヌレート環骨格を有するエポキシ樹脂は、1つのイソシアヌレート環に対して、2個以上のエポキシ基を有するものが好ましく、3個のエポキシ基を有するものがより好ましい。イソシアヌレート環骨格を有するエポキシ樹脂の具体例として、例えば、1,3,5-トリグリシジルイソシアヌレート、トリス(2,3-エポキシプロピル)イソシアヌレート、トリス(α-メチルグリシジル)イソシアヌレート、トリス(1-メチル-2,3-エポキシプロピル)イソシアヌレート、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(3,4-エポキシブチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(5,6-エポキシブチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリス{2,2-ビス[(オキシラン-2-イルメトキシ)メチル]ブチル}-3,3’,3’’-[1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン-1,3,5-トリイル]トリプロパノエート等が挙げられる。
(Triazine derivative epoxy resin)
Examples of the triazine derivative epoxy resin include 1,3,5-triazine derivative epoxy resin, and the 1,3,5-triazine derivative epoxy resin is preferably an epoxy resin having an isocyanurate ring skeleton. Further, the epoxy resin having an isocyanurate ring skeleton preferably has two or more epoxy groups with respect to one isocyanurate ring, and more preferably has three epoxy groups. Specific examples of the epoxy resin having an isocyanurate ring skeleton include 1,3,5-triglycidyl isocyanurate, tris (2,3-epoxypropyl) isocyanurate, tris (α-methylglycidyl) isocyanurate, and tris (tris). 1-Methyl-2,3-epoxypropyl) isocyanurate, 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione, 1,3,5-Tris (3,4-epoxybutyl) -1,3,5-Triazine-2,4,6 (1H, 3H, 5H) -Trione, 1,3,5-Tris ( 5,6-Epoxybutyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, tris {2,2-bis [(oxylan-2-ylmethoxy) methyl] butyl} -3,3', 3''-[1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trion-1,3,5-triyl] tripropanoate and the like.
 トリアジン誘導体エポキシ樹脂(イソシアヌレート環骨格を有するエポキシ樹脂)の市販品としては、例えば、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンの市販品である日産化学工業社製TEPIC-G、TEPIC-S、TEPIC-SS、TEPIC-HP、TEPIC-L、TEPIC-PAS、1,3,5-トリス(3,4-エポキシブチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンの市販品である日産化学工業社製TEPIC-VL、1,3,5-トリス(5,6-エポキシブチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンの市販品である日産化学工業社製TEPIC-FL、トリス{2,2-ビス[(オキシラン-2-イルメトキシ)メチル]ブチル}-3,3’,3’’-[1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン-1,3,5-トリイル]トリプロパノエートの市販品である日産化学工業社製TEPIC-UC等が挙げられる。 Examples of commercially available triazine derivative epoxy resins (epoxy resins having an isocyanurate ring skeleton) include 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4. 6 (1H, 3H, 5H) -Trione commercial products TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-PAS, 1,3,5-manufactured by Nissan Chemical Industry Co., Ltd. Tris (3,4-epoxybutyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione TEPIC-VL, 1,3, manufactured by Nissan Chemical Industries, Ltd. 5-Tris (5,6-epoxybutyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -Trione, a commercially available product of Nissan Chemical Industry Co., Ltd. TEPIC-FL, Tris { 2,2-Bis [(oxylan-2-ylmethoxy) methyl] butyl} -3,3', 3''-[1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione -1,3,5-triyl] Examples thereof include TEPIC-UC manufactured by Nissan Chemical Industry Co., Ltd., which is a commercially available product of tripropanoate.
 トリアジン誘導体エポキシ樹脂のエポキシ当量は、反応性等の観点から、好ましくは50~1,000、より好ましくは50~500、さらにより好ましくは60~300、特に好ましくは80~200である。 The epoxy equivalent of the triazine derivative epoxy resin is preferably 50 to 1,000, more preferably 50 to 500, still more preferably 60 to 300, and particularly preferably 80 to 200, from the viewpoint of reactivity and the like.
 なお、本発明において、トリアジン誘導体エポキシ樹脂がアミノ基がグリシジル化された構造を有するものである場合、そのようなトリアジン誘導体エポキシ樹脂は、上記のグリシジルアミン型エポキシ樹脂に属さないものとする。すなわち、本発明において「グリシジルアミン型エポキシ樹脂」にはトリアジン誘導体であるものは含まれない。 In the present invention, when the triazine derivative epoxy resin has a structure in which an amino group is glycidylated, such a triazine derivative epoxy resin does not belong to the above-mentioned glycidylamine type epoxy resin. That is, in the present invention, the "glycidylamine type epoxy resin" does not include those that are triazine derivatives.
 本発明の硬化性樹脂組成物において、(A)成分は、窒素原子含有率が0.05~50%であることが好ましく、1~45%であることがより好ましい。窒素原子含有率がこの範囲内にあることで、十分に高い透明性及び酸素バリア性を有する硬化体を容易に得ることができ、また樹脂の硬化における反応性も良好な硬化性樹脂組成物が得られるようになる。なお、「窒素原子含有率」は下記式(i)により算出される。 In the curable resin composition of the present invention, the nitrogen atom content of the component (A) is preferably 0.05 to 50%, more preferably 1 to 45%. When the nitrogen atom content is within this range, a cured product having sufficiently high transparency and oxygen barrier property can be easily obtained, and a curable resin composition having good reactivity in curing the resin can be obtained. You will be able to obtain it. The "nitrogen atom content" is calculated by the following formula (i).
 窒素原子含有率(%)=[(1分子中の平均の窒素原子個数×窒素原子量)/(エポキシ樹脂の分子量)]×100   (i) Nitrogen atom content (%) = [(average number of nitrogen atoms in one molecule x nitrogen atomic weight) / (molecular weight of epoxy resin)] x 100 (i)
 本発明の硬化性樹脂組成物において、(A)成分は、分子中のエポキシ基の平均個数が2個、3個又は4個であるものが好ましい。 In the curable resin composition of the present invention, the component (A) preferably has an average number of epoxy groups of 2, 3, or 4 in the molecule.
 (A)成分は1種のみを単独で用いてもよく、2種以上を併用してもよい。また、硬化性樹脂組成物中の(A)成分の含有量は特に限定されないが、酸素バリア性の観点から、硬化性樹脂組成物中の不揮発分100質量%に対し、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましい。また、透明性の観点から、硬化性樹脂組成物中の不揮発分100質量%に対し、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。 As the component (A), only one type may be used alone, or two or more types may be used in combination. The content of the component (A) in the curable resin composition is not particularly limited, but from the viewpoint of oxygen barrier property, 1% by mass or more is preferable with respect to 100% by mass of the non-volatile content in the curable resin composition. 2, 2% by mass or more is more preferable, and 3% by mass or more is further preferable. Further, from the viewpoint of transparency, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 40% by mass or less is further preferable with respect to 100% by mass of the non-volatile content in the curable resin composition.
 本発明の一つの実施形態において、(A)成分の含有量は、エポキシ樹脂の総量(不揮発分)に対し、3質量%以上が好ましく、5質量%以上がより好ましく、8質量%以上がさらに好ましい。また、エポキシ樹脂の総量(不揮発分)に対し、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下がさらに好ましい。 In one embodiment of the present invention, the content of the component (A) is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 8% by mass or more, based on the total amount (nonvolatile content) of the epoxy resin. preferable. Further, with respect to the total amount (nonvolatile content) of the epoxy resin, 70% by mass or less is preferable, 60% by mass or less is more preferable, and 50% by mass or less is further preferable.
<(B)エポキシ基を有するシロキサン化合物>
 本発明において使用するエポキシ基を有するシロキサン化合物(以下、(B)成分ともいう)は、分子内にエポキシ基を有するシロキサン結合(Si-O-Si)に基づく骨格を有する化合物であり、シロキサン骨格としては、例えば、環状シロキサン骨格、シリコーン骨格、ポリシルセスキオキサン骨格等が挙げられる。耐熱性をより高いレベルで達成するという観点から、シロキサン骨格は環状シロキサン骨格が好ましく、すなわち(B)成分としては、エポキシ基を有する環状シロキサン化合物であることが好ましい。環状シロキサン骨格を形成するSi-O単位の数(シロキサン環を形成するケイ素原子の数と同じ)は、2~12が好ましく、4~8がより好ましい。
<(B) Siloxane compound having an epoxy group>
The siloxane compound having an epoxy group (hereinafter, also referred to as component (B)) used in the present invention is a compound having a skeleton based on a siloxane bond (Si—O—Si) having an epoxy group in the molecule, and has a siloxane skeleton. Examples thereof include a cyclic siloxane skeleton, a silicone skeleton, and a polysilsesquioxane skeleton. From the viewpoint of achieving a higher level of heat resistance, the siloxane skeleton is preferably a cyclic siloxane skeleton, that is, the component (B) is preferably a cyclic siloxane compound having an epoxy group. The number of Si—O units forming the cyclic siloxane skeleton (same as the number of silicon atoms forming the siloxane ring) is preferably 2 to 12, more preferably 4 to 8.
 エポキシ基を有するシロキサン化合物は、1分子中に2個以上のエポキシ基を有するものが好ましい。また、エポキシ基を有する環状シロキサン化合物においては、エポキシ基が2~4のものが好ましい。 The siloxane compound having an epoxy group is preferably one having two or more epoxy groups in one molecule. Further, in the cyclic siloxane compound having an epoxy group, those having 2 to 4 epoxy groups are preferable.
 (B)成分は光透過部位に使用するなど、樹脂部材に透明性が求められる場合において、透明性に優れたものにするという観点から、エポキシ基は脂環骨格上にエポキシ基を有する脂環式エポキシ基が好ましく、すわなち(B)成分としては、脂環式エポキシ基を有するシロキサン化合物が好ましく、脂環式エポキシ基を有する環状シロキサン化合物がより好ましい。脂環骨格としてはシクロプロパン骨格、シクロブタン骨格、シクロペンタン骨格、シクロヘキサン骨格、シクロヘプタン骨格、シクロオクタン骨格等が挙げられるが、特にシクロヘキサン骨格が好ましい。すなわち、脂環式エポキシ基はシクロヘキセンオキシド基が特に好ましい。(B)成分は、1種のみを単独で用いてもよく、2種以上を併用してもよい。 When the resin member is required to be transparent, such as when the component (B) is used for a light transmitting portion, the epoxy group is an alicyclic having an alicyclic group on the alicyclic skeleton from the viewpoint of making the resin excellent in transparency. The type epoxy group is preferable, that is, as the component (B), a siloxane compound having an alicyclic epoxy group is preferable, and a cyclic siloxane compound having an alicyclic epoxy group is more preferable. Examples of the alicyclic skeleton include a cyclopropane skeleton, a cyclobutane skeleton, a cyclopentane skeleton, a cyclohexane skeleton, a cycloheptane skeleton, a cyclooctane skeleton, and the like, and a cyclohexane skeleton is particularly preferable. That is, the alicyclic epoxy group is particularly preferably a cyclohexene oxide group. As the component (B), only one type may be used alone, or two or more types may be used in combination.
 (B)成分としては、具体的には、例えば、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8,8-ヘキサメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,2,4,6,6,8-ヘキサメチル-シクロテトラシロキサン、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6,8-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,6-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8-ペンタメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6-プロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,6,8-テトラ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,8-テトラメチル-シクロテトラシロキサン、分子内に2以上のエポキシ基を有するシルセスキオキサン等が挙げられる。 Specifically, as the component (B), for example, 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,6,8 , 8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,2,4,6,6,8-hexamethyl- Cyclotetrasiloxane, 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6,8-dipropyl-2,4,6,8-tetramethyl-cyclotetra Siloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,6-dipropyl-2,4,6,8-tetramethyl-cyclotetrasiloxane, 2,4,8-Tri [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,6,8-pentamethyl-cyclotetrasiloxane, 2,4,8 -Tri [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6-propyl-2,4,6,8-tetramethyl-cyclotetrasiloxane, 2,4,6,8 -Tetra [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,8-tetramethyl-cyclotetrasiloxane, sil with two or more epoxy groups in the molecule Examples thereof include sesquioxane.
 エポキシ基を有するシロキサン化合物のエポキシ当量は、反応性等の観点から、好ましくは50~6,000、より好ましくは50~5,000、さらにより好ましくは60~4,000、特に好ましくは80~4,000である。また、エポキシ基を有するシロキサン化合物の重量平均分子量は、好ましくは200~8,000、より好ましくは200~6,000である。 The epoxy equivalent of the siloxane compound having an epoxy group is preferably 50 to 6,000, more preferably 50 to 5,000, still more preferably 60 to 4,000, and particularly preferably 80 to 80, from the viewpoint of reactivity and the like. It is 4,000. The weight average molecular weight of the siloxane compound having an epoxy group is preferably 200 to 8,000, more preferably 200 to 6,000.
 エポキシ基を有するシロキサン化合物の市販品としては、例えば、脂環式エポキシ系環状シリコーンオリゴマー(脂環式エポキシ基を有する環状シロキサン化合物)「KR-470」(エポキシ基数4)、「X-40-2670」(エポキシ基数4)、「X-40-2678」(エポキシ基数2)(いずれも信越化学社製)、両末端に脂環式エポキシ基を有する変性シリコーンオイル「X-22-169B」、「X-22-169AS」(いずれも信越化学社製)、両末端にエポキシ基を有する変性シリコーンオイル「X-22-163」、「KF-105」、「X-22-163A」、「X-22-163B」、「X-22-163C」、側鎖に脂環式エポキシ基を有する変性シリコーンオイル「X-22-2046」、「KF-102」(いずれも信越化学社製)、側鎖にエポキシ基を有する変性シリコーンオイル「X-22-343」、「KF-101」、「KF-1001」、「X-22-2000」(いずれも信越化学社製)等が挙げられる。 Commercially available products of the siloxane compound having an epoxy group include, for example, an alicyclic epoxy-based cyclic silicone oligomer (cyclic siloxane compound having an alicyclic epoxy group) "KR-470" (4 epoxy groups), "X-40-". 2670 "(4 epoxy groups)," X-40-2678 "(2 epoxy groups) (both manufactured by Shin-Etsu Chemical Co., Ltd.), modified silicone oil" X-22-169B "with alicyclic epoxy groups at both ends, "X-22-169AS" (all manufactured by Shin-Etsu Chemical Co., Ltd.), modified silicone oils "X-22-163", "KF-105", "X-22-163A", "X" having epoxy groups at both ends -22-163B "," X-22-163C ", modified silicone oil" X-22-2046 "," KF-102 "(all manufactured by Shin-Etsu Chemical Co., Ltd.) having an alicyclic epoxy group on the side chain, side Examples thereof include modified silicone oils "X-22-343", "KF-101", "KF-1001" and "X-22-2000" (all manufactured by Shin-Etsu Chemical Co., Ltd.) having an epoxy group in the chain.
 本発明の硬化性樹脂組成物中の(B)成分の含有量は特に制限はないが、耐熱性を向上させる観点から、硬化性樹脂組成物の不揮発分100質量%に対し、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましく、15質量%以上が特に好ましい。また、酸素透過率を低下させる観点から、該含有量は、硬化性樹脂組成物の不揮発分100質量%に対し、90質量%以下が好ましく、80質量%がより好ましく、75質量%以下がより一層好ましく、70質量%以下が特に好ましい。 The content of the component (B) in the curable resin composition of the present invention is not particularly limited, but from the viewpoint of improving heat resistance, it is 10% by mass or more with respect to 100% by mass of the non-volatile content of the curable resin composition. Is more preferable, 15% by mass or more is more preferable, 20% by mass or more is further preferable, and 15% by mass or more is particularly preferable. Further, from the viewpoint of reducing the oxygen permeability, the content is preferably 90% by mass or less, more preferably 80% by mass, and more preferably 75% by mass or less with respect to 100% by mass of the non-volatile content of the curable resin composition. More preferably, 70% by mass or less is particularly preferable.
 本発明の一つの実施形態において、(B)成分の含有量は、エポキシ樹脂の総量(不揮発分)に対し、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。また、エポキシ樹脂の総量(不揮発分)に対し、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下がさらに好ましい。 In one embodiment of the present invention, the content of the component (B) is preferably 15% by mass or more, more preferably 20% by mass or more, still more preferably 25% by mass or more, based on the total amount (nonvolatile content) of the epoxy resin. preferable. Further, with respect to the total amount (nonvolatile content) of the epoxy resin, 70% by mass or less is preferable, 60% by mass or less is more preferable, and 50% by mass or less is further preferable.
<(C)無機フィラー>
 本発明において使用する無機フィラー(以下、(C)成分ともいう)は、特に制限なく使用することができる。無機フィラーは、1種のみを単独で用いてもよく、2種以上を併用してもよい。無機フィラーは、酸素バリア性をより高いレベルで達成するという観点から、板状フィラー又はシリカが好ましい。また、光透過部位に使用するなど、樹脂部材に透明性が求められる場合において、透明性を優れるものにするという観点から、板状ガラス、層状ケイ酸塩鉱物(特に、スメクタイト、合成フッ素金雲母)およびナノシリカが好ましい。ここで、板状ガラス、層状ケイ酸塩鉱物(特に、スメクタイト、合成フッ素金雲母)はいずれも板状フィラーである。
 本発明の1つの実施態様において、無機フィラーは、好ましくは、合成フッ素金雲母、板状ガラスフィラー及びシリカからなる群より選ばれる1種以上を含む。
<(C) Inorganic filler>
The inorganic filler used in the present invention (hereinafter, also referred to as component (C)) can be used without particular limitation. Only one type of inorganic filler may be used alone, or two or more types may be used in combination. The inorganic filler is preferably a plate-shaped filler or silica from the viewpoint of achieving a higher level of oxygen barrier property. In addition, when transparency is required for the resin member, such as when used for light-transmitting parts, plate-shaped glass and layered silicate minerals (particularly smectite and synthetic phlogopite) are required from the viewpoint of improving transparency. ) And nanosilica are preferred. Here, the plate-shaped glass and the layered silicate mineral (particularly smectite and synthetic phlogopite) are both plate-shaped fillers.
In one embodiment of the invention, the inorganic filler preferably comprises one or more selected from the group consisting of synthetic phlogopite, plate glass fillers and silica.
 板状フィラーは、本発明の効果が発揮されれば特に限定されるものではなく、例えば、板状ガラス(Aガラス、Cガラス、Eガラス等)、層状ケイ酸塩鉱物などが挙げられる。層状ケイ酸塩鉱物としては、例えば、カオリナイト、ハロイサイト、タルク、スメクタイト、マイカなどが挙げられる。マイカの中では、透明性を優れるものにするという観点から、合成フッ素金雲母が好ましい。板状フィラーは、透明性を優れるものにするという観点から、板状ガラス、スメクタイト、合成フッ素金雲母が特に好ましい。これらの板状フィラーは、1種のみを単独で用いてもよく、2種以上を併用してもよい。 The plate-shaped filler is not particularly limited as long as the effect of the present invention is exhibited, and examples thereof include plate-shaped glass (A glass, C glass, E glass, etc.), layered silicate minerals, and the like. Examples of the layered silicate mineral include kaolinite, halloysite, talc, smectite, mica and the like. Among mica, synthetic phlogopite is preferable from the viewpoint of improving transparency. As the plate-shaped filler, plate-shaped glass, smectite, and synthetic fluorine phlogopite are particularly preferable from the viewpoint of improving transparency. Only one kind of these plate-shaped fillers may be used alone, or two or more kinds thereof may be used in combination.
 合成フッ素金雲母は合成マイカの一種であり、大型かつ透明性の高い結晶である点で、天然マイカや他の合成マイカ(K四珪素雲母、Na四珪素雲母、Naテニオライト、Liテニオライト)とは異なる。一方、板状ガラスフィラーは、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成のものを使用することができる。 Synthetic fluorine phlogopite is a type of synthetic mica, and in that it is a large and highly transparent crystal, it is different from natural mica and other synthetic mica (K tetrasilicon mica, Na tetrasilicon mica, Na teniolite, Li teniolite). different. On the other hand, as the plate-shaped glass filler, those having various glass compositions typified by A glass, C glass, E glass and the like can be used.
 板状フィラーは、平均アスペクト比(平均粒子径/平均厚さ)1以上が好ましく、1.5以上がより好ましく、2以上がさらに好ましい。平均アスペクト比が1以上であると、十分な酸素バリア性を得やすくなる傾向となる。また、平均アスペクト比は、1000以下が好ましく、800以下がより好ましく、500以下がさらに好ましい。平均アスペクト比が1000以下であると、十分な分散性を得やすくなる傾向になる。 The plate-shaped filler has an average aspect ratio (average particle size / average thickness) of 1 or more, more preferably 1.5 or more, and even more preferably 2 or more. When the average aspect ratio is 1 or more, it tends to be easy to obtain sufficient oxygen barrier properties. The average aspect ratio is preferably 1000 or less, more preferably 800 or less, and even more preferably 500 or less. When the average aspect ratio is 1000 or less, it tends to be easy to obtain sufficient dispersibility.
 板状フィラーの平均厚さは、好ましくは0.01~20μm、より好ましくは0.05~10μmである。平均厚さは以下の方法で測定される。 The average thickness of the plate-shaped filler is preferably 0.01 to 20 μm, more preferably 0.05 to 10 μm. The average thickness is measured by the following method.
 走査型電子顕微鏡(SEM)を用い、100個の粒子につき、それぞれの厚さを測定し、それら測定値を平均することにより求める。この場合、個々の粒子を走査型電子顕微鏡で観察して測定しても良いし、フィラー(粒子群)を樹脂に充填して成形し、その成形体を破断し、その破断面を観察して測定しても良い。いずれの測定方法においても、粒子の断面(厚さ面)が走査型電子顕微鏡の照射電子線軸に垂直になるように、走査型電子顕微鏡の試料台を試料台微動装置により調整する。 Using a scanning electron microscope (SEM), measure the thickness of each of 100 particles and average the measured values. In this case, individual particles may be observed and measured with a scanning electron microscope, or a filler (particle group) may be filled in a resin for molding, the molded body may be broken, and the fracture surface thereof shall be observed. You may measure. In any of the measuring methods, the sample table of the scanning electron microscope is adjusted by the sample table fine movement device so that the cross section (thickness surface) of the particles is perpendicular to the irradiation electron beam axis of the scanning electron microscope.
 板状フィラーの平均粒子径は、酸素バリア性を向上させる観点から0.5μm以上が好ましく、1μm以上がより好ましく、2μm以上がさらに好ましい。また、透明性の観点から2000μm以下が好ましく、1500μm以下がより好ましく、1000μm以下がさらに好ましい。 The average particle size of the plate-shaped filler is preferably 0.5 μm or more, more preferably 1 μm or more, and further preferably 2 μm or more from the viewpoint of improving the oxygen barrier property. Further, from the viewpoint of transparency, 2000 μm or less is preferable, 1500 μm or less is more preferable, and 1000 μm or less is further preferable.
 平均粒子径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折式粒度分布測定装置により、フィラーの粒度分布を体積基準で作成し、そのメディアン径を平均粒子径とすることで測定することができる。測定サンプルは、フィラーを超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、堀場製作所社製LA-500等を使用することができる。 The average particle size can be measured by the laser diffraction / scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of the filler on a volume basis with a laser diffraction type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, a filler dispersed in water by ultrasonic waves can be preferably used. As the laser diffraction / scattering type particle size distribution measuring device, LA-500 manufactured by HORIBA, Ltd. or the like can be used.
 シリカは、一次粒子の粒径がナノオーダーのいわゆるナノシリカが好ましい。シリカは通常、球状のものが使用される。一次粒子の粒経が1~100nmのものが好ましく、1~50nmであるものがより好ましい。ナノシリカの1次粒子径の測定は比較的困難であることから、比表面積測定値(JIS Z8830に準拠)からの換算値が用いられることがある。本発明に好適なシリカにおいても、BET比表面積を所定の値とすることで、本発明により好適なシリカとすることができる。好適なBET比表面積は2720~27m/gであり、2720~54m/gであるのがより好ましい。 As the silica, so-called nanosilica having a particle size of primary particles on the nano-order is preferable. Silica is usually spherical. The primary particles having a grain diameter of 1 to 100 nm are preferable, and those having a grain diameter of 1 to 50 nm are more preferable. Since it is relatively difficult to measure the primary particle size of nanosilica, a value converted from a specific surface area measurement value (based on JIS Z8830) may be used. Even in silica suitable for the present invention, silica more suitable for the present invention can be obtained by setting the BET specific surface area to a predetermined value. A suitable BET specific surface area is 2720 to 27 m 2 / g, more preferably 2720 to 54 m 2 / g.
 また、無機フィラーは、表面処理剤で表面処理されていてもよい。表面処理剤としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、ビニルシラン系カップリング剤、イミダゾールシラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等が挙げられる。表面処理剤は1種または2種以上を組み合わせて使用してもよい。 Further, the inorganic filler may be surface-treated with a surface treatment agent. Examples of the surface treatment agent include aminosilane-based coupling agents, epoxysilane-based coupling agents, mercaptosilane-based coupling agents, vinylsilane-based coupling agents, imidazolesilane-based coupling agents, organosilazane compounds, titanate-based coupling agents, and the like. Can be mentioned. The surface treatment agent may be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物中の(C)成分の含有量は特に制限はないが、酸素バリア性を向上させる観点から、硬化性樹脂組成物の不揮発分100質量%に対し、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましく、5質量%以上が特に好ましい。また、透明性の観点から、該含有量は、硬化性樹脂組成物の不揮発分100質量%に対し、65質量%以下が好ましく、60質量%がより好ましく、55質量%以下がより一層好ましく、50質量%以下が特に好ましい。 The content of the component (C) in the curable resin composition of the present invention is not particularly limited, but from the viewpoint of improving the oxygen barrier property, 1% by mass with respect to 100% by mass of the non-volatile content of the curable resin composition. The above is preferable, 2% by mass or more is more preferable, 3% by mass or more is further preferable, and 5% by mass or more is particularly preferable. From the viewpoint of transparency, the content is preferably 65% by mass or less, more preferably 60% by mass, still more preferably 55% by mass or less, based on 100% by mass of the non-volatile content of the curable resin composition. 50% by mass or less is particularly preferable.
<(D)硬化剤>
 本発明において使用する硬化剤(以下、(D)成分ともいう)は、エポキシ樹脂を硬化する機能を有するものであれば特に制限なく使用することができる。例えば、フェノール系硬化剤、ナフトール系硬化剤、酸無水物系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、カルボジイミド系硬化剤、イミダゾール系硬化剤等が挙げられる。耐熱性および透明性の観点から、(D)成分は、酸無水物系硬化剤であることが好ましい。硬化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<(D) Hardener>
The curing agent used in the present invention (hereinafter, also referred to as component (D)) can be used without particular limitation as long as it has a function of curing the epoxy resin. Examples thereof include phenol-based curing agents, naphthol-based curing agents, acid anhydride-based curing agents, active ester-based curing agents, benzoxazine-based curing agents, cyanate ester-based curing agents, carbodiimide-based curing agents, imidazole-based curing agents, and the like. .. From the viewpoint of heat resistance and transparency, the component (D) is preferably an acid anhydride-based curing agent. As the curing agent, one type may be used alone, or two or more types may be used in combination.
 酸無水物系硬化剤としては、1分子内中に1個以上の酸無水物基を有する硬化剤が挙げられる。酸無水物系硬化剤としては、例えば、フタル酸系酸無水物、コハク酸系酸無水物、マレイン酸系無水物、トリメリット酸系酸無水物、ノルボルネン系酸無水物、酸無水物基を有するニトリルゴム等が挙げられる。フタル酸系酸無水物としては、無水フタル酸、1,2,3,6-テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。コハク酸系酸無水物としては、無水コハク酸、オクテニルコハク酸無水物、テトラプロペニル無水コハク酸、ブタン-1,2,3,4-テトラカルボン酸二無水物等が挙げられる。マレイン酸系無水物としては、マレイン酸無水物等が挙げられる。トリメリット酸系酸無水物としては、エチレングリコール・ビスアンヒドロトリメリテート、グリセリンビス・アンヒドロトリメリテート・モノアセテート等が挙げられる。ノルボルネン系酸無水物としては、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物等が挙げられる。酸無水物基を有するニトリルゴムとしては、無水コハク酸変性水素化ニトリルゴム、無水マレイン酸変性水素化ニトリルゴム等が挙げられる。特に好ましい酸無水物としては、ノルボルネン系酸無水物が挙げられる。 Examples of the acid anhydride-based curing agent include a curing agent having one or more acid anhydride groups in one molecule. Examples of the acid anhydride-based curing agent include phthalic acid-based acid anhydride, succinic acid-based acid anhydride, maleic acid-based anhydride, trimellitic acid-based acid anhydride, norbornene-based acid anhydride, and acid anhydride group. Examples thereof include nitrile rubber having. Examples of phthalic acid anhydrides include phthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, 3 , 3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride and the like. Examples of the succinic acid anhydride include succinic anhydride, octenyl succinic anhydride, tetrapropenyl succinic anhydride, butane-1,2,3,4-tetracarboxylic dianhydride and the like. Examples of the maleic anhydride include maleic anhydride and the like. Examples of the trimellitic acid-based acid anhydride include ethylene glycol / bisamhydrotrimeritate and glycerinbis / anhydrotrimeritate / monoacetate. Examples of norbornene-based acid anhydrides include methyl-5-norbornene-2,3-dicarboxylic acid anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, and bicyclo [2.2.1] heptane-2,3-. Examples thereof include dicarboxylic acid anhydride and methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride. Examples of the nitrile rubber having an acid anhydride group include succinic anhydride-modified hydrogenated nitrile rubber and maleic anhydride-modified hydrogenated nitrile rubber. Particularly preferable acid anhydrides include norbornene-based acid anhydrides.
 市販されている酸無水物系硬化剤としては、例えば、新日本理化社製のリカシッドTH(1,2,3,6-テトラヒドロ無水フタル酸)、リカシッドHH(ヘキサヒドロ無水フタル酸)、リカシッドHNA-100(メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物/ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物)、リカシッドMH-700、リカシッドMH-700G(4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30)、リカシッドMH(4-メチルヘキサヒドロ無水フタル酸)、リカシッドTMEG-S、リカシッドTMEG-100、リカシッドTMEG-200、リカシッドTMEG-500、リカシッドTMEG-600(エチレングリコール・ビスアンヒドロトリメリテート)、リカシッドTMTA-C(グリセリンビス・アンヒドロトリメリテート・モノアセテート)、リカシッドMTA-15(グリセリンビス・アンヒドロトリメリテート・モノアセテートと脂環式ジカルボン酸無水物との混合物)、リカシッドDDSA(テトラプロペニル無水コハク酸)、リカシッドOSA(オクテニルコハク酸無水物)、リカシッドHF-08(脂環族酸無水物とポリアルキレングリコールとのエステル)、リカシッドSA(無水コハク酸)、リカシッドDSDA(3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物)、リカシッドBT-100(1,2,3,4-ブタンテトラカルボン酸二無水物)、リカシッドTBNシリーズ(不揮発性酸無水物)等が挙げられる。 Examples of commercially available acid anhydride-based curing agents include Ricacid TH (1,2,3,6-tetrahydrophthalic anhydride), Ricacid HH (Hexahydrophthalic anhydride), and Ricacid HNA-manufactured by Shin Nihon Rika. 100 (methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride / bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride), lycaside MH-700, lycaside MH- 700G (4-Methylhexahydroanhydride phthalic acid / Hexahydroanhydride phthalic acid = 70/30), Ricacid MH (4-Methylhexahydroanhydride phthalic acid), Ricacid TMEG-S, Ricacid TMEG-100, Ricacid TMEG-200, Ricacid TMEG-500, Ricacid TMEG-600 (ethylene glycol bisanhydrotrimerite), Ricacid TMTA-C (glycerinbis anhydrotrimerite monoacetate), Ricacid MTA-15 (glycerinbis anhydrotrimerite) Tate monoacetate and alicyclic dicarboxylic acid anhydride), licasid DDSA (tetrapropenyl anhydride succinic acid), lycaside OSA (octenyl succinic anhydride), licasid HF-08 (alicyclic acid anhydride and polyalkylene) Ester with glycol), Ricacid SA (succinic anhydride), Ricacid DSDA (3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride), Ricacid BT-100 (1,2,3,4- Butanetetracarboxylic hydride), Ricacid TBN series (nonvolatile acid anhydride) and the like.
 酸無水物系硬化剤の酸無水物当量は、反応性等の観点から、好ましくは70~1,000、より好ましくは80~900、さらにより好ましくは90~800、特に好ましくは100~700である。なお、「酸無水物当量」とは1グラム当量の酸無水物基を含む酸無水物系硬化剤のグラム数(g/eq)であり、核磁気共鳴装置(NMR)、ガスクロマトグラフィー(GC)などによる成分分析によって測定される。 The acid anhydride equivalent of the acid anhydride-based curing agent is preferably 70 to 1,000, more preferably 80 to 900, still more preferably 90 to 800, and particularly preferably 100 to 700, from the viewpoint of reactivity and the like. is there. The "acid anhydride equivalent" is the number of grams (g / eq) of an acid anhydride-based curing agent containing 1 gram equivalent of an acid anhydride group, and is a nuclear magnetic resonance apparatus (NMR) and gas chromatography (GC). ) Etc. are measured by component analysis.
 フェノール系硬化剤及びナフトール系硬化剤としては、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤、トリアジン骨格含有フェノール系硬化剤又はトリアジン骨格含有ナフトール系硬化剤等が挙げられる。 Examples of the phenol-based curing agent and the naphthol-based curing agent include a phenol-based curing agent having a novolak structure, a naphthol-based curing agent having a novolak structure, a triazine skeleton-containing phenol-based curing agent, a triazine skeleton-containing naphthol-based curing agent, and the like. ..
 活性エステル系硬化剤としては、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が挙げられる。活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 As an active ester-based curing agent, a compound having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, is generally used. Can be mentioned. The active ester-based curing agent is preferably one obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-. Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenol, trihydroxybenzophenol, tetrahydroxybenzophenone, fluoroglusin, Examples thereof include benzenetriol, dicyclopentadiene-type diphenol compounds, and phenol novolac. Here, the "dicyclopentadiene-type diphenol compound" refers to a diphenol compound obtained by condensing two phenol molecules with one dicyclopentadiene molecule.
 より具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物等が挙げられる。 More specifically, an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of phenol novolac, an active ester compound containing a benzoyl product of phenol novolac, and the like are used. Can be mentioned.
 シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。 Examples of the cyanate ester-based curing agent include bisphenol A disicianate, polyphenol cyanate (oligo (3-methylene-1,5-phenylencyanate)), 4,4'-methylenebis (2,6-dimethylphenylcyanate), 4, 4'-Etilidendidiphenyl disianate, hexafluorobisphenol A disyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanate phenylmethane), bis (4-cyanate-3,5-) Bifunctional cyanate resins such as dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, Examples thereof include polyfunctional cyanate resins derived from phenol novolac, cresol novolak and the like, and prepolymers in which these cyanate resins are partially triazined.
 イミダゾール系硬化剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。 Examples of the imidazole-based curing agent include 2-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methyl imidazole, 1,2-dimethyl imidazole, 2 -Ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2 -Phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl -(1')]-Ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino -6- [2'-methylimidazolyl- (1')] -ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid Additives, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1, 2-a] Examples thereof include imidazole compounds such as benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline, 2-phenylimidazoline, and adducts of imidazole compounds and epoxy resins.
 本発明の硬化性樹脂組成物中の(D)硬化剤の含有量は、本発明の効果が奏される限り特に制限はないが、全光線透過率や曇度等の光学特性の観点から、該含有量は、硬化性樹脂組成物の不揮発分100質量%に対し、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらにより好ましく、75質量%以下が特に好ましい。また、硬化性樹脂組成物の硬化促進の観点から、該含有量は、硬化性樹脂組成物の不揮発分100質量%に対し、2質量%以上が好ましく、5質量%以上がより好ましく、7質量%以上がさらに好ましい。 The content of the (D) curing agent in the curable resin composition of the present invention is not particularly limited as long as the effects of the present invention are exhibited, but from the viewpoint of optical properties such as total light transmittance and cloudiness, The content is preferably 90% by mass or less, more preferably 85% by mass or less, further preferably 80% by mass or less, and particularly preferably 75% by mass or less, based on 100% by mass of the non-volatile content of the curable resin composition. .. Further, from the viewpoint of accelerating the curing of the curable resin composition, the content thereof is preferably 2% by mass or more, more preferably 5% by mass or more, and 7% by mass, based on 100% by mass of the non-volatile content of the curable resin composition. % Or more is more preferable.
 本発明の一つの実施形態において、(D)成分の含有量は、エポキシ樹脂の総量(不揮発分)に対し、5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上がさらに好ましい。また、エポキシ樹脂の総量(不揮発分)に対し、150質量%以下が好ましく、135質量%以下がより好ましく、120質量%以下がさらに好ましい。 In one embodiment of the present invention, the content of the component (D) is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 10% by mass or more, based on the total amount (nonvolatile content) of the epoxy resin. preferable. Further, 150% by mass or less is preferable, 135% by mass or less is more preferable, and 120% by mass or less is further preferable with respect to the total amount (nonvolatile content) of the epoxy resin.
<(E)硬化促進剤>
 本発明の硬化性樹脂組成物は、上記(A)~(D)成分以外に、硬化性を向上させる等の目的で硬化促進剤(以下、(E)成分ともいう)を含有していてもよい。硬化促進剤としては、特に限定はされないが、例えば、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<(E) Curing accelerator>
In addition to the above components (A) to (D), the curable resin composition of the present invention may contain a curing accelerator (hereinafter, also referred to as component (E)) for the purpose of improving curability. Good. The curing accelerator is not particularly limited, and examples thereof include amine-based curing accelerators, imidazole-based curing accelerators, phosphorus-based curing accelerators, guanidine-based curing accelerators, and metal-based curing accelerators. As the curing accelerator, one type may be used alone, or two or more types may be used in combination.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン、4-ジメチルアミノピリジン(DMAP)、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン等の脂肪族アミン系硬化剤;ベンジジン、o-トリジン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の芳香族アミン系硬化剤が挙げられる。 Examples of the amine-based curing accelerator include triethylamine, tributylamine, 4-dimethylaminopyridine (DMAP), benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo [5]. .4.0] Undecene and the like, 4-dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] Undecene and other aliphatic amine-based curing agents; benzidine, o-trizine, 4,4'- Diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diethyldiphenylmethane, 4,4'-diamino-3,3', 5,5'- Tetramethyldiphenylmethane, 4,4'-diamino-3,3', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 4,4' -Diaminodiphenyl ether, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4) -Aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) neopentane, 4,4'-[1,3-phenylenebis (1-methyl-ethylidene)] bisaniline, 4,4'-[1,4 -Phenylene bis (1-methyl-ethylidene)] bisaniline, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane , 4,4'-Bis (4-aminophenoxy) Biphenyl and other aromatic amine-based curing agents.
 イミダゾール系硬化促進剤としては、前記のイミダゾール系硬化剤で記載したものを挙げることができる。前記イミダゾール系硬化剤は、他の硬化剤と併用して用いる場合、硬化促進剤として機能する場合がある。 Examples of the imidazole-based curing accelerator include those described in the above-mentioned imidazole-based curing agent. When used in combination with other curing agents, the imidazole-based curing agent may function as a curing accelerator.
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート、メチルトリブチルホスホニウムジメチルホスフェート、テトラフェニルホスホニウム、テトラブチルホスホニウム等が挙げられる。 Examples of the phosphorus-based curing accelerator include triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate. , Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, methyltributylphosphonium dimethyl phosphate, tetraphenylphosphonium, tetrabutylphosphonium and the like.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。 Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, and the like. Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadesylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -Allyl biguanide, 1-phenylbiguanide, 1- (o-tolyl) biguanide and the like can be mentioned.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of the metal-based curing accelerator include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organic metal complex include an organic cobalt complex such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, an organic copper complex such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Examples thereof include organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
 本発明の硬化性樹脂組成物において、硬化促進剤を用いる場合の硬化促進剤の含有量は、硬化性樹脂組成物中に含まれるエポキシ樹脂の総量(不揮発分)に対し、通常0.05~5質量%の範囲で使用される。 In the curable resin composition of the present invention, the content of the curing accelerator when the curing accelerator is used is usually 0.05 to 0.05 with respect to the total amount (nonvolatile content) of the epoxy resin contained in the curable resin composition. It is used in the range of 5% by mass.
<(F)添加剤>
 本発明の硬化性樹脂組成物には、本発明の効果を損なわない範囲内で、2,2’-アゾビス(イソ酪酸)ジメチル等のラジカル重合開始剤、ゴム粒子、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等の有機充填剤;シリコーン系、フッ素系、高分子系の消泡剤またはレベリング剤;オルベン、ベントン等の増粘剤;酸化防止剤;熱安定剤;光安定剤等の添加剤を配合することができる。
<(F) Additive>
The curable resin composition of the present invention contains a radical polymerization initiator such as 2,2'-azobis (isobutyric acid) dimethyl, rubber particles, silicone powder, nylon powder, and fluoropolymer within a range that does not impair the effects of the present invention. Organic fillers such as resin powders; silicone-based, fluoro-based, polymer-based defoaming agents or leveling agents; thickeners such as Orben and Benton; antioxidants; heat stabilizers; additives such as light stabilizers Can be blended.
<用途>
 本発明の硬化性樹脂組成物は、例えば、電子デバイス、特に有機EL、高輝度LED、太陽電池等の光学デバイスにおける封止部位、接着部位、光透過部位等の樹脂部材として使用される。
<Use>
The curable resin composition of the present invention is used, for example, as a resin member for an electronic device, particularly an organic EL, a high-brightness LED, an optical device such as a solar cell, a sealing portion, an adhesive portion, a light transmitting portion, and the like.
 本発明の硬化性樹脂組成物をフィルム状に成形する場合、例えば、硬化性樹脂組成物の成分と有機溶剤を、混練ローラーや回転ミキサーなどを用いて混合することで調製したワニス(樹脂組成物ワニス)を、離型処理した支持体上に塗布し、公知の機器を用いた加熱(熱風吹きつけ等)及び/または減圧処理によって、支持体上に塗布したワニスから有機溶剤を除去することで、フィルム状に成形された樹脂組成物が得られる(以下、「フィルム状樹脂組成物」ともいう)。 When the curable resin composition of the present invention is formed into a film, for example, a varnish (resin composition) prepared by mixing the components of the curable resin composition and an organic solvent using a kneading roller, a rotary mixer, or the like. Varnish) is applied onto the release-treated support, and the organic solvent is removed from the varnish applied on the support by heating (hot air blowing, etc.) and / or decompression treatment using a known device. , A resin composition formed into a film is obtained (hereinafter, also referred to as "film-like resin composition").
 離型処理した支持体の支持体としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン;シクロオレフィンポリマー、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル;ポリカーボネート;ポリイミドなどのプラスチックフィルム(好ましくは、PETフィルム)や、アルミ箔、ステンレス箔、銅箔等の金属箔が使用される。離型処理した支持体の離型処理としては、例えば、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤による離型処理が挙げられる。 Examples of the support of the release-treated support include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride; cycloolefin polymers, polyethylene terephthalate (hereinafter, may be abbreviated as “PET”), polyethylene naphthalate, and the like. Polyester; Polypropylene; Plastic films such as polyimide (preferably PET film) and metal foils such as aluminum foil, stainless steel foil, and copper foil are used. Examples of the mold release treatment of the support that has been released include a mold release treatment using a mold release agent such as a silicone resin-based mold release agent, an alkyd resin-based mold release agent, and a fluororesin-based mold release agent.
 樹脂組成物ワニスの固形分は、好ましくは20~80質量%、より好ましくは30~70質量%である。 The solid content of the resin composition varnish is preferably 20 to 80% by mass, more preferably 30 to 70% by mass.
 樹脂組成物ワニスから有機溶剤を除去するための加熱の条件に特に制限はないが、通常50~130℃程度で2~10分程度が好適である。 The heating conditions for removing the organic solvent from the resin composition varnish are not particularly limited, but usually about 2 to 10 minutes at about 50 to 130 ° C. is preferable.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ等のセロソルブ類、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。かかる有機溶剤はいずれか1種のみを使用してもよく、2種以上を併用してもよい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone, acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and cellosolves such as cellosolve. Examples thereof include carbitols such as butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. Only one of these organic solvents may be used, or two or more of them may be used in combination.
 フィルム状の樹脂組成物の厚さは、フィルム状の樹脂組成物を適用する装置や適用箇所によっても異なるが、好ましくは1~1000μm、より好ましくは2~800μmの範囲である。 The thickness of the film-shaped resin composition varies depending on the apparatus to which the film-shaped resin composition is applied and the application location, but is preferably in the range of 1 to 1000 μm, more preferably 2 to 800 μm.
 支持体上に形成されたフィルム状の樹脂組成物は、樹脂組成物を硬化する迄、保護のために、保護フィルムで保護しておくのが好ましく、例えば、支持体上に形成されたフィルム状の樹脂組成物に、公知の機器を使用して、離型処理した保護フィルムを積層しておくことができる。保護フィルムの積層に使用する機器としては、例えば、ロールラミネーター、プレス機、真空加圧式ラミネーター等が挙げられる。 The film-like resin composition formed on the support is preferably protected by a protective film for protection until the resin composition is cured. For example, the film-like resin composition formed on the support. A protective film that has been subjected to a mold release treatment can be laminated on the resin composition of the above by using a known device. Examples of the equipment used for laminating the protective film include a roll laminator, a press machine, a vacuum pressurizing laminator, and the like.
 離型処理した保護フィルムは、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン;シクロオレフィンポリマー、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル;ポリカーボネート;ポリイミドなどのプラスチックフィルム(好ましくは、PETフィルム)、或いは、アルミ箔、ステンレス箔、銅箔等の金属箔からなる支持体に、離型処理を施したものが使用される。離型処理には、例えば、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤による離型処理が挙げられる。 The release-treated protective film is, for example, a polyolefin such as polyethylene, polypropylene, or polyvinyl chloride; a cycloolefin polymer, polyethylene terephthalate (hereinafter, may be abbreviated as “PET”), a polyester such as polyethylene naphthalate; a polycarbonate; A plastic film (preferably PET film) such as polyimide, or a support made of a metal foil such as aluminum foil, stainless steel foil, or copper foil, which has been subjected to a mold release treatment, is used. Examples of the mold release treatment include a mold release treatment using a mold release agent such as a silicone resin-based mold release agent, an alkyd resin-based mold release agent, and a fluororesin-based mold release agent.
<硬化体>
 本発明の硬化体は、本発明の硬化性樹脂組成物を熱硬化させたものであり、電子デバイスの樹脂部材となりうる。フィルム状の樹脂組成物を硬化すれば、フィルム状の硬化体が得られ、フィルム状の樹脂部材になりうる。
<Hardened body>
The cured product of the present invention is a thermosetting resin composition of the present invention, and can be a resin member of an electronic device. By curing the film-shaped resin composition, a film-shaped cured product can be obtained, which can be a film-shaped resin member.
 熱硬化の硬化温度は、硬化反応を十分に進行させるという観点から、70℃以上が好ましく、80℃以上がより好ましい。また、硬化体の着色防止の観点から、180℃以下が好ましく、165℃以下がより好ましい。また、加熱時間は、10分以上が好ましく、20分以上がより好ましい。また、150分以下が好ましく、130分以下がより好ましい。 The curing temperature of thermosetting is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of sufficiently advancing the curing reaction. Further, from the viewpoint of preventing coloring of the cured product, 180 ° C. or lower is preferable, and 165 ° C. or lower is more preferable. The heating time is preferably 10 minutes or longer, more preferably 20 minutes or longer. Further, 150 minutes or less is preferable, and 130 minutes or less is more preferable.
 加熱手段としては、例えば、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱等が挙げられる。 Examples of the heating means include a hot air circulation type oven, an infrared heater, a heat gun, a high frequency induction heating device, and heating by crimping a heat tool.
 本発明の硬化性樹脂組成物は、ワニス等の液状の樹脂組成物を所望の箇所に塗布し、硬化反応を行って、所望の形状の樹脂部材を形成することもできる。 With the curable resin composition of the present invention, a liquid resin composition such as varnish can be applied to a desired portion and a curing reaction can be carried out to form a resin member having a desired shape.
 以下に実施例を示して本発明をより詳しく説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、成分の量における「部」は、特に断りがない限り、「質量部」を意味する。
 実施例及び比較例で用いた材料を以下に示す。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples. In the following description, "parts" in the amount of components means "parts by mass" unless otherwise specified.
The materials used in Examples and Comparative Examples are shown below.
(A)成分
「TEPIC-VL」(日産化学工業社製):イソシアヌレート環骨格を有するエポキシ樹脂、1,3,5-トリグリシジルイソシアヌレート、エポキシ当量135g/eq、窒素含有率12%
「TEPIC-FL」(日産化学工業社製):イソシアヌレート環骨格を有するエポキシ樹脂、1,3,5-トリグリシジルイソシアヌレート、エポキシ当量175g/eq、窒素含有率9%
「EP3890S」(アデカ社製):グリシジルアミン型エポキシ樹脂、ジグリシジルアニリン、エポキシ当量115g/eq、窒素含有率6%
「630」(三菱ケミカル社製):p-アミノフェノール型エポキシ樹脂、トリグリシジル-p-アミノフェノール、エポキシ当量95g/eq、窒素含有率5%
(A) Ingredient "TEPIC-VL" (manufactured by Nissan Chemical Industries, Ltd.): Epoxy resin having an isocyanurate ring skeleton, 1,3,5-triglycidyl isocyanurate, epoxy equivalent 135 g / eq, nitrogen content 12%
"TEPIC-FL" (manufactured by Nissan Chemical Industries, Ltd.): Epoxy resin having an isocyanurate ring skeleton, 1,3,5-triglycidyl isocyanurate, epoxy equivalent 175 g / eq, nitrogen content 9%
"EP3890S" (manufactured by ADEKA CORPORATION): glycidylamine type epoxy resin, diglycidylaniline, epoxy equivalent 115 g / eq, nitrogen content 6%
"630" (manufactured by Mitsubishi Chemical Corporation): p-aminophenol type epoxy resin, triglycidyl-p-aminophenol, epoxy equivalent 95 g / eq, nitrogen content 5%
(B)成分
「KR-470」(信越化学社製):脂環式エポキシ基を有する環状シロキサン化合物、エポキシ当量200g/eq、エポキシ基数4、Si-O単位数4
「X-40-2678」(信越化学社製):脂環式エポキシ基を有する環状シロキサン化合物、エポキシ当量290g/eq、エポキシ基数2、Si-O単位数4
(B) Component "KR-470" (manufactured by Shin-Etsu Chemical Co., Ltd.): Cyclic siloxane compound having an alicyclic epoxy group, epoxy equivalent 200 g / eq, number of epoxy groups 4, number of Si—O units 4
"X-40-2678" (manufactured by Shin-Etsu Chemical Co., Ltd.): Cyclic siloxane compound having an alicyclic epoxy group, epoxy equivalent 290 g / eq, number of epoxy groups 2, number of Si—O units 4
(C)成分
「FTD010FY-F01」(日本板硝子社製):板状ガラスフィラー、平均粒子径10μm、平均アスペクト比25
「MEG160FY」(日本板硝子社製):板状ガラスフィラー、平均粒子径160μm、平均アスペクト比30
「PDM-20L」(トピー工業社製):マイカ(合成フッ素金雲母)、平均粒子径20μm、平均アスペクト比70
「PDM-40L」(トピー工業社製):マイカ(合成フッ素金雲母)、平均粒子径40μm、平均アスペクト比90
「Y10SV-AM1」(アドマテックス社製):ナノシリカ(ビニルシラン系カップリング剤表面処理)、粒径10nm、比表面積300m/g
(C) Component "FTD010FY-F01" (manufactured by Nippon Sheet Glass Co., Ltd.): Plate-shaped glass filler, average particle diameter 10 μm, average aspect ratio 25
"MEG160FY" (manufactured by Nippon Sheet Glass Co., Ltd.): Plate-shaped glass filler, average particle size 160 μm, average aspect ratio 30
"PDM-20L" (manufactured by Topy Industries, Ltd.): Mica (synthetic phlogopite), average particle diameter 20 μm, average aspect ratio 70
"PDM-40L" (manufactured by Topy Industries, Ltd.): Mica (synthetic phlogopite), average particle diameter 40 μm, average aspect ratio 90
"Y10SV-AM1" (manufactured by Admatex): Nanosilica (vinylsilane coupling agent surface treatment), particle size 10 nm, specific surface area 300 m 2 / g
(D)成分
「HNA-100」(新日本理化社製):ノルボルネン系酸無水物(ビシクロヘプタンジカルボン酸無水物)、酸無水物当量184g/eq
(D) Ingredient "HNA-100" (manufactured by New Japan Chemical Co., Ltd.): Norbornene-based acid anhydride (bicycloheptanedicarboxylic acid anhydride), acid anhydride equivalent 184 g / eq
(E)成分
「PX-4MP」(日本化学工業社製):リン系硬化促進剤(メチルトリブチルホスホニウム ジメチルホスフェート)
(E) Ingredient "PX-4MP" (manufactured by Nippon Chemical Industrial Co., Ltd.): Phosphorus-based curing accelerator (methyltributylphosphonium dimethylphosphate)
<実施例1>
 イソシアヌレート環骨格を有するエポキシ樹脂(日産化学工業社製「TEPIC-VL」)10部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「KR-470」)70部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「X-40-2678」)20部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)91部、板状ガラスフィラー(日本板硝子社製「FTD010FY-F01」)16部、板状ガラスフィラー(日本板硝子社製「MEG160FY」)4部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)2.1部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Example 1>
10 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-VL” manufactured by Nissan Chemical Co., Ltd.), 70 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic 20 parts of cyclic siloxane compound having an epoxy group ("X-40-2678" manufactured by Shinetsu Chemical Co., Ltd.), 91 parts of norbornene-based acid anhydride ("HNA-100" manufactured by New Japan Chemical Co., Ltd.), plate-shaped glass filler (Nippon Plate Glass) 16 parts of "FTD010FY-F01" manufactured by Nippon Chemical Co., Ltd., 4 parts of plate-shaped glass filler ("MEG160FY" manufactured by Nippon Plate Glass Co., Ltd.) and 2.1 parts of phosphorus-based curing accelerator ("PX-4MP" manufactured by Nippon Chemical Industry Co., Ltd.) are mixed. Then, it was uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
<実施例2>
 「TEPIC-VL」10部を「TEPIC-FL」10部に変更し、「HNA-100」91部を88部に変更したこと以外は実施例1と同様にして、樹脂組成物を得た。
<Example 2>
A resin composition was obtained in the same manner as in Example 1 except that 10 parts of "TEPIC-VL" were changed to 10 parts of "TEPIC-FL" and 91 parts of "HNA-100" were changed to 88 parts.
<実施例3>
 「TEPIC-VL」10部をグリシジルアミン型エポキシ樹脂「EP-3980S」10部に変更し、「HNA-100」91部を93部に変更し、「PX-4MP」2.1部を2.2部に変更したこと以外は実施例1と同様にして、樹脂組成物を得た。
<Example 3>
Change 10 parts of "TEPIC-VL" to 10 parts of glycidylamine type epoxy resin "EP-3980S", change 91 parts of "HNA-100" to 93 parts, and change 2.1 parts of "PX-4MP" to 2. A resin composition was obtained in the same manner as in Example 1 except that it was changed to two parts.
<実施例4>
 「EP-3980S」10部を「630」10部に変更し、「HNA-100」93部を95部に変更したこと以外は実施例3と同様にして、樹脂組成物を得た。
<Example 4>
A resin composition was obtained in the same manner as in Example 3 except that 10 parts of "EP-3980S" were changed to 10 parts of "630" and 93 parts of "HNA-100" was changed to 95 parts.
<実施例5>
 実施例1で用いた各材料を表1に記載の配合比に変更して、実施例1と同様に均一に分散して実施例5の樹脂組成物を得た。
<Example 5>
Each material used in Example 1 was changed to the compounding ratio shown in Table 1 and uniformly dispersed in the same manner as in Example 1 to obtain a resin composition of Example 5.
<実施例6>
 イソシアヌレート環骨格を有するエポキシ樹脂(日産化学工業社製「TEPIC-VL」)30部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「KR-470」)80部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「X-40-2678」)20部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)102部、合成フッ素金雲母(トピー工業社製「PDM-20L」)16部、合成フッ素金雲母(トピー工業社製「PDM-40L」)5部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)2.6部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Example 6>
30 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-VL” manufactured by Nissan Chemical Co., Ltd.), 80 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic 20 parts of cyclic siloxane compound having an epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 102 parts of norbornene-based acid anhydride (“HNA-100” manufactured by New Japan Chemical Co., Ltd.), synthetic fluorine gold mica (Topy Industry) 16 parts of "PDM-20L" manufactured by Nippon Chemical Co., Ltd., 5 parts of synthetic fluorine gold mica ("PDM-40L" manufactured by Topy Industry Co., Ltd.) and 2.6 parts of phosphorus-based curing accelerator ("PX-4MP" manufactured by Nippon Chemical Co., Ltd.) Was mixed, and then uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
<実施例7>
 イソシアヌレート環骨格を有するエポキシ樹脂(日産化学工業社製「TEPIC-FL」)30部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「KR-470」)60部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「X-40-2678」)10部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)94部、板状ガラスフィラー(日本板硝子社製「FTD010FY-F01」)20部、ナノシリカ(アドマテックス社製「Y10SV-AM1」)50部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)2.7部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Example 7>
30 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-FL” manufactured by Nissan Chemical Co., Ltd.), 60 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic 10 parts of cyclic siloxane compound having an epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 94 parts of norbornene-based acid anhydride (“HNA-100” manufactured by New Japan Chemical Co., Ltd.), plate-shaped glass filler (Nippon Plate Glass) 20 parts of "FTD010FY-F01" manufactured by Nippon Chemical Co., Ltd., 50 parts of nanosilica ("Y10SV-AM1" manufactured by Admatex) and 2.7 parts of phosphorus-based curing accelerator ("PX-4MP" manufactured by Nippon Chemical Co., Ltd.) are mixed. After that, it was uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
<実施例8>
 イソシアヌレート環骨格を有するエポキシ樹脂(日産化学工業社製「TEPIC-VL」)10部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「KR-470」)90部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)96部、板状ガラスフィラー(日本板硝子社製「FTD010FY-F01」)20部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)2.2部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Example 8>
10 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-VL” manufactured by Nissan Chemical Co., Ltd.), 90 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, norbornene-based acid 96 parts of anhydride ("HNA-100" manufactured by New Japan Chemical Co., Ltd.), 20 parts of plate-shaped glass filler ("FTD010FY-F01" manufactured by Nippon Plate Glass Co., Ltd.) and phosphorus-based curing accelerator ("PX-4MP" manufactured by Nippon Chemical Industry Co., Ltd.) 2.2 parts were mixed and then uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
<実施例9>
 「KR-470」90部を「X-40-2678」90部に変更し、「HNA-100」96部を71部に変更し、「PX-4MP」2.2部を1.9部に変更したこと以外は実施例8と同様にして、樹脂組成物を得た。
<Example 9>
"KR-470" 90 copies changed to "X-40-2678" 90 copies, "HNA-100" 96 copies changed to 71 copies, "PX-4MP" 2.2 copies changed to 1.9 copies A resin composition was obtained in the same manner as in Example 8 except that it was changed.
<比較例1>
 脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「KR-470」)70部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「X-40-2678」)30部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)83部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)1.9部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Comparative example 1>
70 parts of a cyclic siloxane compound having an alicyclic epoxy group (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.), 30 parts of a cyclic siloxane compound having an alicyclic epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), Mix 83 parts of norbornene-based acid anhydride (“HNA-100” manufactured by New Japan Chemical Co., Ltd.) and 1.9 parts of phosphorus-based curing accelerator (“PX-4MP” manufactured by Nippon Chemical Industry Co., Ltd.), and then use a high-speed rotary mixer. It was uniformly dispersed to obtain a resin composition.
<比較例2>
 脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「KR-470」)70部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「X-40-2678」)30部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)83部、板状ガラスフィラー(日本板硝子社製「FTD010FY-F01」)16部、板状ガラスフィラー(日本板硝子社製「MEG160FY」)4部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)2.1部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Comparative example 2>
70 parts of a cyclic siloxane compound having an alicyclic epoxy group (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.), 30 parts of a cyclic siloxane compound having an alicyclic epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 83 parts of norbornene-based acid anhydride ("HNA-100" manufactured by New Japan Chemical Co., Ltd.), 16 parts of plate-shaped glass filler ("FTD010FY-F01" manufactured by Nippon Plate Glass Co., Ltd.), plate-shaped glass filler ("MEG160FY" manufactured by Nippon Plate Glass Co., Ltd. ) 4 parts and 2.1 parts of a phosphorus-based curing accelerator (“PX-4MP” manufactured by Nippon Chemical Co., Ltd.) were mixed, and then uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
<比較例3>
 p-アミノフェノール型エポキシ樹脂「630」100部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)184部、板状ガラスフィラー(日本板硝子社製「FTD010FY-F01」)16部、板状ガラスフィラー(日本板硝子社製「MEG160FY」)4部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)3.1部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Comparative example 3>
100 parts of p-aminophenol type epoxy resin "630", 184 parts of norbornene-based acid anhydride ("HNA-100" manufactured by New Japan Chemical Co., Ltd.), 16 parts of plate-shaped glass filler ("FTD010FY-F01" manufactured by Nippon Sheet Glass Co., Ltd.) , 4 parts of plate glass filler ("MEG160FY" manufactured by Nippon Sheet Glass Co., Ltd.) and 3.1 parts of phosphorus-based curing accelerator ("PX-4MP" manufactured by Nippon Chemical Co., Ltd.) are mixed, and then uniformly dispersed with a high-speed rotary mixer. A resin composition was obtained.
<比較例4>
 イソシアヌレート環骨格を有するエポキシ樹脂(日産化学工業社製「TEPIC-FL」)10部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「KR-470」)70部、脂環式エポキシ基を有する環状シロキサン化合物(信越化学社製「X-40-2678」)20部、ノルボルネン系酸無水物(新日本理化社製「HNA-100」)88部およびリン系硬化促進剤(日本化学工業社製「PX-4MP」)1.9部を混合し、その後高速回転ミキサーで均一に分散して、樹脂組成物を得た。
<Comparative example 4>
10 parts of epoxy resin having an isocyanurate ring skeleton (“TEPIC-FL” manufactured by Nissan Chemical Industries, Ltd.), 70 parts of a cyclic siloxane compound (“KR-470” manufactured by Shinetsu Chemical Co., Ltd.) having an alicyclic epoxy group, alicyclic type 20 parts of a cyclic siloxane compound having an epoxy group (“X-40-2678” manufactured by Shinetsu Chemical Co., Ltd.), 88 parts of norbornene-based acid anhydride (“HNA-100” manufactured by Shin Nihon Rika Co., Ltd.) and a phosphorus-based curing accelerator (Japan) 1.9 parts of "PX-4MP" manufactured by Kagaku Kogyo Co., Ltd.) was mixed and then uniformly dispersed with a high-speed rotary mixer to obtain a resin composition.
<耐熱性試験>
 実施例及び比較例で調製した樹脂組成物を90℃で2時間加熱した後に150℃で2時間加熱することで硬化体を作製し、加熱した際の380℃における熱重量減少量(%)を示差熱熱重量同時測定装置(日立ハイテクサイエンス社製「TG/DTA STA7200RV」)により測定した。本評価はアルミニウム製のサンプルパンに硬化物サンプルをそれぞれ10mg秤量し、蓋をせずオープンの状態で、大気下で、25℃から400℃まで昇温速度20℃/分の条件で行った。熱重量減少率は、下記式(ii)により算出した。
<Heat resistance test>
The resin compositions prepared in Examples and Comparative Examples were heated at 90 ° C. for 2 hours and then heated at 150 ° C. for 2 hours to prepare a cured product, and the amount of thermogravimetric loss (%) at 380 ° C. when heated was determined. The measurement was performed by a differential thermogravimetric simultaneous measuring device (“TG / DTA STA7200RV” manufactured by Hitachi High-Tech Science Co., Ltd.). In this evaluation, 10 mg of each cured product sample was weighed in an aluminum sample pan, and the temperature was raised from 25 ° C. to 400 ° C. under the condition of 20 ° C./min in an open state without a lid. The thermogravimetric reduction rate was calculated by the following formula (ii).
 熱重量減少率(%)=100×(加熱前の質量(μg)-所定温度に達した時の質量(μg))/加熱前の質量(μg)   (ii) Thermogravimetric reduction rate (%) = 100 x (mass before heating (μg) -mass when reaching a predetermined temperature (μg)) / mass before heating (μg) (ii)
 耐熱性試験は以下の基準を用いて評価した。
良好〇:20%未満
不良×:20%以上
The heat resistance test was evaluated using the following criteria.
Good 〇: Less than 20% Defective ×: 20% or more
<酸素透過率測定>
 (1)ポリイミドフィルム(ユーピレックス(宇部興産社製、厚さ75μm)上に200μm厚さのテープで枠(枠の平面形状:10cm×10cm、平面面積:100cm)を形成し、該枠内に樹脂組成物を流し込み、ガラスバーでバーコートし、熱循環式オーブンにて90℃で2時間加熱した後に150℃で2時間加熱することで厚さが200μm前後の硬化体(試験片)を得た。得られた硬化体の厚みをマイクロメーター(ミツトヨ社製)にて1μmの単位まで測長した。
<Measurement of oxygen permeability>
(1) A frame (planar shape of the frame: 10 cm x 10 cm, flat area: 100 cm 2 ) is formed on a polyimide film (UPIREX (manufactured by Ube Industries, Ltd., thickness 75 μm)) with a tape having a thickness of 200 μm, and the frame is formed in the frame. A cured product (test piece) having a thickness of about 200 μm is obtained by pouring the resin composition, bar-coating with a glass bar, heating at 90 ° C. for 2 hours in a heat circulation oven, and then heating at 150 ° C. for 2 hours. The thickness of the obtained cured product was measured with a micrometer (manufactured by Mitsutoyo Co., Ltd.) to a unit of 1 μm.
 (2)酸素透過率測定装置(モコン社製、商品名「OX-TRAN 2/22L」)を用いて、試験片の23℃、50%RH(相対湿度)での環境下における、酸素透過率(単位:ml・200μm/m・day・atm)を測定し、以下の基準を用いて評価した。
良好〇:500ml・200μm/m・day・atm未満
不良×:500ml・200μm/m・day・atm以上
(2) Oxygen permeability of the test piece in an environment of 23 ° C. and 50% RH (relative humidity) using an oxygen permeability measuring device (manufactured by Mocon, trade name "OX-TRAN 2 / 22L"). (Unit: ml · 200 μm / m 2 · day · atm) was measured and evaluated using the following criteria.
Good 〇: 500 ml, 200 μm / m 2 , less than day, atm Defective ×: 500 ml, 200 μm / m 2 , day, atm or more
<全光線透過率測定>
(1)ボートガラス(長さ8mm、幅6mmおよび厚さ200μmの舟型ガラス)の枠内に樹脂組成物を流し込んだ後、熱循環式オーブンで90℃で2時間加熱した後に150℃で2時間加熱することで樹脂組成物を硬化させ、樹脂組成物の硬化体を有する積層体(評価用サンプル、硬化体の厚さ:200μm)を得た。
<Measurement of total light transmittance>
(1) After pouring the resin composition into the frame of boat glass (boat-shaped glass having a length of 8 mm, a width of 6 mm and a thickness of 200 μm), the resin composition is heated in a heat circulation oven at 90 ° C. for 2 hours and then at 150 ° C. for 2 hours. The resin composition was cured by heating for an hour to obtain a laminate (evaluation sample, thickness of cured product: 200 μm) having a cured product of the resin composition.
(2)短波長域の光吸収能の評価(400nmの全光線透過率の測定)
 φ80mm積分球(型名SRS-99-010、反射率99%)を装着したファイバ式分光光度計(MCPD-7700、形式311C、大塚電子社製、外部光源ユニット:ハロゲンランプMC-2564(24V、150W仕様))を使用し、積分球と評価サンプルの距離を0mmとし、光源と評価サンプルの距離を48mmとし、得られた評価サンプルの光透過率スペクトルを測定した。リファレンスは上記と同じガラスとした。得られた光透過率スペクトルから、400nmの全光線透過率(%)を求めた。
(2) Evaluation of light absorption capacity in the short wavelength range (measurement of total light transmittance at 400 nm)
Fiber type spectrophotometer (MCPD-7700, type 311C, manufactured by Otsuka Electronics Co., Ltd., external light source unit: halogen lamp MC-2564 (24V, 24V,) equipped with a φ80mm integrating sphere (model name SRS-99-010, reflectance 99%) Using 150 W specification)), the distance between the integrating sphere and the evaluation sample was set to 0 mm, the distance between the light source and the evaluation sample was set to 48 mm, and the light transmittance spectrum of the obtained evaluation sample was measured. The reference was the same glass as above. From the obtained light transmittance spectrum, the total light transmittance (%) at 400 nm was determined.
 下記表1に実施例及び比較例の樹脂組成物の構成と試験結果を示す。
 表1から、実施例の硬化性樹脂組成物は、高い耐熱性と高い酸素バリア性とを兼ね備えた硬化体を形成し得るものであることが分かる。また実施例の硬化性樹脂組成物はさらに透明性にも優れたものであることが分かる。
Table 1 below shows the composition and test results of the resin compositions of Examples and Comparative Examples.
From Table 1, it can be seen that the curable resin composition of the example can form a cured product having both high heat resistance and high oxygen barrier property. Further, it can be seen that the curable resin composition of the example is also excellent in transparency.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の硬化性樹脂組成物の硬化体は、高温に曝されてもアウトガスの発生量が少なく耐熱性に優れる。また、酸素バリア性にも優れており、電子デバイス、特に有機EL、高輝度LED、太陽電池等の光学デバイスにおける封止部位、接着部位、光透過部位等の樹脂部材用に適している。 The cured product of the curable resin composition of the present invention generates a small amount of outgas even when exposed to a high temperature and has excellent heat resistance. It also has excellent oxygen barrier properties, and is suitable for resin members such as sealing parts, adhesive parts, and light transmitting parts in electronic devices, especially optical devices such as organic ELs, high-intensity LEDs, and solar cells.
 本出願は、日本で出願された特願2019-068248を基礎としており、その内容は本明細書にすべて包含されるものである。 This application is based on Japanese Patent Application No. 2019-068248 filed in Japan, the contents of which are all included herein.

Claims (9)

  1.  下記の(A)~(D)成分を含有する、硬化性樹脂組成物:
     (A)窒素原子を含有するエポキシ樹脂;
     (B)エポキシ基を有するシロキサン化合物;
     (C)無機フィラー;および
     (D)硬化剤。
    Curable resin composition containing the following components (A) to (D):
    (A) Epoxy resin containing nitrogen atoms;
    (B) A siloxane compound having an epoxy group;
    (C) Inorganic filler; and (D) Hardener.
  2.  さらに(E)硬化促進剤を含有する、請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, further containing (E) a curing accelerator.
  3.  (A)窒素原子を含有するエポキシ樹脂が、グリシジルアミン型エポキシ樹脂及び/又はトリアジン誘導体エポキシ樹脂を含む、請求項1または2記載の硬化性樹脂組成物。 (A) The curable resin composition according to claim 1 or 2, wherein the epoxy resin containing a nitrogen atom contains a glycidylamine type epoxy resin and / or a triazine derivative epoxy resin.
  4.  (B)エポキシ基を有するシロキサン化合物が、環状シロキサン骨格を含む、請求項1~3のいずれか1項記載の硬化性樹脂組成物。 (B) The curable resin composition according to any one of claims 1 to 3, wherein the siloxane compound having an epoxy group contains a cyclic siloxane skeleton.
  5.  (B)エポキシ基を有するシロキサン化合物が、脂環式エポキシ基を含む、請求項1~4のいずれか1項記載の硬化性樹脂組成物。 (B) The curable resin composition according to any one of claims 1 to 4, wherein the siloxane compound having an epoxy group contains an alicyclic epoxy group.
  6.  (C)無機フィラーが、合成フッ素金雲母、板状ガラスフィラー及びシリカからなる群より選ばれる1種以上を含む、請求項1~5のいずれか1項記載の硬化性樹脂組成物。 (C) The curable resin composition according to any one of claims 1 to 5, wherein the inorganic filler contains at least one selected from the group consisting of synthetic fluorine phlogopite, plate-shaped glass filler, and silica.
  7.  (D)硬化剤が、酸無水物である、請求項1~6のいずれか1項記載の硬化性樹脂組成物。 (D) The curable resin composition according to any one of claims 1 to 6, wherein the curing agent is an acid anhydride.
  8.  電子デバイスの樹脂部材用である、請求項1~7のいずれか1項記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 7, which is used for a resin member of an electronic device.
  9.  請求項1~8のいずれか1項記載の硬化性樹脂組成物の硬化体を樹脂部材として含む、電子デバイス。 An electronic device including a cured product of the curable resin composition according to any one of claims 1 to 8 as a resin member.
PCT/JP2020/013979 2019-03-29 2020-03-27 Curable resin composition WO2020203750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217035087A KR20210148237A (en) 2019-03-29 2020-03-27 curable resin composition
CN202080025042.4A CN113631619B (en) 2019-03-29 2020-03-27 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068248A JP7215300B2 (en) 2019-03-29 2019-03-29 Curable resin composition
JP2019-068248 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203750A1 true WO2020203750A1 (en) 2020-10-08

Family

ID=72668382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013979 WO2020203750A1 (en) 2019-03-29 2020-03-27 Curable resin composition

Country Status (4)

Country Link
JP (1) JP7215300B2 (en)
KR (1) KR20210148237A (en)
CN (1) CN113631619B (en)
WO (1) WO2020203750A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797434A (en) * 1993-09-29 1995-04-11 Nissan Chem Ind Ltd Epoxy resin composition
JP2008156475A (en) * 2006-12-25 2008-07-10 Dow Corning Toray Co Ltd Curable silicone composition
WO2014038446A1 (en) * 2012-09-07 2014-03-13 株式会社ダイセル Curable epoxy resin composition and cured product thereof, and optical semiconductor device
JP2017155145A (en) * 2016-03-02 2017-09-07 株式会社ダイセル Curable epoxy resin composition for optical material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577667B2 (en) 2009-10-16 2014-08-27 味の素株式会社 Resin composition
JP5764432B2 (en) * 2011-01-07 2015-08-19 株式会社ダイセル Curable epoxy resin composition
JP6123177B2 (en) * 2012-07-04 2017-05-10 味の素株式会社 Resin composition
JP2018119032A (en) 2017-01-23 2018-08-02 株式会社ダイセル Curable resin composition for light reflection and cured product thereof, and optical semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797434A (en) * 1993-09-29 1995-04-11 Nissan Chem Ind Ltd Epoxy resin composition
JP2008156475A (en) * 2006-12-25 2008-07-10 Dow Corning Toray Co Ltd Curable silicone composition
WO2014038446A1 (en) * 2012-09-07 2014-03-13 株式会社ダイセル Curable epoxy resin composition and cured product thereof, and optical semiconductor device
JP2017155145A (en) * 2016-03-02 2017-09-07 株式会社ダイセル Curable epoxy resin composition for optical material

Also Published As

Publication number Publication date
JP2020164699A (en) 2020-10-08
JP7215300B2 (en) 2023-01-31
KR20210148237A (en) 2021-12-07
CN113631619B (en) 2024-02-27
CN113631619A (en) 2021-11-09

Similar Documents

Publication Publication Date Title
US9775238B2 (en) Resin composition, and prepreg and laminate using the same
US10450407B2 (en) Coated particles
JP5004483B2 (en) Epoxy resin curable composition for prepreg
JP2002284963A (en) Flame-retardant epoxy resin composition and use thereof
JPWO2006129480A1 (en) Epoxy resin curable composition
US11446845B2 (en) Method for manufacturing FRP precursor and method for manufacturing FRP
EP2940053A1 (en) Resin composition, prepreg, and film
JP6519128B2 (en) Thermosetting resin composition and method for producing the same, and prepreg, laminate and printed wiring board using the same
TW201940589A (en) Resin composition, prepreg, laminate, metal foil-clad laminate, and printed circuit board having excellent dielectric properties, high flame retardancy, good heat resistance, low water absorption, low coefficient of thermal expansion, and high adhesion to a conductor after curing
WO2020080437A1 (en) Liquid composition, resin composite, liquid sealing material, sealing material, and electronic device
CN111253855A (en) Resin composition
JP2022059058A (en) Thermosetting material
JP6555042B2 (en) Granular resin composition
JP4987161B1 (en) Insulation material
JP7215300B2 (en) Curable resin composition
JP6303627B2 (en) Epoxy resin composition and cured product
US11359062B1 (en) Polymer compositions and their uses
JP2022111097A (en) Method for manufacturing printed wiring board
JP2022047423A (en) Resin composition
JPWO2017204249A1 (en) Metal-clad laminate, printed wiring board and semiconductor package
JP7211175B2 (en) resin composition
JP2013107353A (en) Laminated structure
JP2020094213A (en) Resin material and multilayer printed wiring board
WO2018181287A1 (en) Prepreg and production method therefor, stacked plate, printed circuit board and semiconductor package
KR20200107819A (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217035087

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20784660

Country of ref document: EP

Kind code of ref document: A1