WO2020203625A1 - 分岐型分解性ポリエチレングリコール誘導体 - Google Patents

分岐型分解性ポリエチレングリコール誘導体 Download PDF

Info

Publication number
WO2020203625A1
WO2020203625A1 PCT/JP2020/013598 JP2020013598W WO2020203625A1 WO 2020203625 A1 WO2020203625 A1 WO 2020203625A1 JP 2020013598 W JP2020013598 W JP 2020013598W WO 2020203625 A1 WO2020203625 A1 WO 2020203625A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyethylene glycol
glycol derivative
degradable
oligopeptide
Prior art date
Application number
PCT/JP2020/013598
Other languages
English (en)
French (fr)
Inventor
宏樹 吉岡
順規 大坂間
美華 羽村
高徳 稲葉
西山 伸宏
誠 松井
宏泰 武元
貴大 野本
シャオハン ソン
Original Assignee
日油株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社, 国立大学法人東京工業大学 filed Critical 日油株式会社
Priority to CA3135346A priority Critical patent/CA3135346A1/en
Priority to KR1020217035219A priority patent/KR20210148245A/ko
Priority to US17/599,163 priority patent/US20220153992A1/en
Priority to CN202080026503.XA priority patent/CN113677736B/zh
Priority to EP20781870.9A priority patent/EP3950776A4/en
Publication of WO2020203625A1 publication Critical patent/WO2020203625A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/3332Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing carboxamide group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Definitions

  • the present invention relates to a branched degradable polyethylene glycol derivative that decomposes in cells and is used for modifying biological substances.
  • bio-related substances such as hormones, cytokines, antibodies, and enzymes are usually rapidly excreted from the body by glomerular filtration in the kidney and uptake by macrophages in the liver and spleen when administered into the body. It ends up. Therefore, the half-life in blood is short, and it is often difficult to obtain a sufficient pharmacological effect.
  • hydrophilic polymers such as sugar chains and polyethylene glycol, albumin, and the like.
  • modification with polyethylene glycol has effects such as reduction of toxicity and antigenicity of biological substances and improvement of solubility of poorly water-soluble drugs.
  • Bio-related substances modified with polyethylene glycol are covered with a hydration layer formed by ether bonds of polyethylene glycol and hydrogen bonds with water molecules, which increases the molecular size and thus avoids glomerular filtration in the kidneys. be able to. Furthermore, it is known that the interaction with opsonin and the cell surface constituting each tissue is reduced, and the transfer to each tissue is reduced. Polyethylene glycol is an excellent material that prolongs the half-life of biological substances in the blood, and it is known that the higher the molecular weight, the higher the effect. So far, many studies have been conducted on bio-related substances modified with high molecular weight polyethylene glycol having a molecular weight of 40,000 or more, and the results have been obtained that the half-life in blood can be significantly extended.
  • Polyethylene glycol is regarded as the optimum standard among modified preparations used for improving the performance of bio-related substances, and at present, multiple polyethylene glycol modified preparations have been put on the market and are used in medical practice.
  • EMA European Medicines Agency
  • Non-Patent Document 2 when a large excess amount of polyethylene glycol was administered alone to an animal for a long period of time as compared with the usual dose of a polyethylene glycol modified preparation, no vacuole was observed at a molecular weight of 20,000, and the molecular weight was 40,000. Occurrence of vacuoles has been confirmed in. As one of the means for suppressing vacuoles, it is conceivable to reduce the molecular weight of polyethylene glycol, but if the molecular weight is reduced, there arises a problem that the half-life of bio-related substances in blood cannot be sufficiently improved.
  • Patent Document 1 describes a polyethylene glycol derivative having a sulfide bond or a peptide bond site that is cleaved in a living body. There is a description that the polyethylene glycol derivative is decomposed in vivo to a molecular weight suitable for excretion from the kidney. However, no specific data on degradation have been shown, and no data have been shown to promote renal excretion. Furthermore, there is no description about cell vacuoles.
  • Patent Document 2 describes a polyethylene glycol derivative having an acetal moiety that can be hydrolyzed in a low pH environment in a living body. There is a description that the polyethylene glycol derivative is decomposed in vivo to a molecular weight suitable for excretion from the kidney. However, there is no specific data that the excretion from the kidney was promoted, and there is no description about cell vacuoles. Further, it is known that these acetal sites capable of hydrolysis are gradually decomposed even in blood, and it is expected that the half-life of the modified bio-related substance in blood cannot be sufficiently improved.
  • Non-Patent Document 3 describes a polyethylene glycol derivative having an oligopeptide site that is degraded by an enzyme.
  • the oligopeptide is introduced as a linker between the anticancer agent and polyethylene glycol, and it has been reported that the oligopeptide is decomposed by an enzyme specifically expressed around the tumor to efficiently release the anticancer agent. ..
  • the purpose is to release anti-cancer agents, not to impart degradability to polyethylene glycol for the purpose of suppressing cell vacuoles.
  • Non-Patent Document 4 describes a hydrogel using a crosslinked molecule having an oligopeptide site that is decomposed by an enzyme and a multi-branched polyethylene glycol derivative.
  • the oligopeptide is used as a cross-linking molecule that connects multi-branched polyethylene glycol derivatives, and can further impart enzymatic degradability to the hydrogel.
  • the purpose is to prepare a degradable hydrogel, not to impart degradability to polyethylene glycol for the purpose of suppressing cell vacuoles.
  • Patent Document 3 describes a branched polyethylene glycol derivative having an oligopeptide as a skeleton.
  • the oligopeptide is used as the basic skeleton of the polyethylene glycol derivative, and does not impart enzymatic degradability.
  • oligopeptides are characterized by containing amino acids such as lysine and aspartic acid that have amino and carboxyl groups in their side chains, and the purpose is to synthesize branched polyethylene glycol derivatives that utilize them in the reaction. is there. It is not a polyethylene glycol derivative intended to suppress cell vacuoles.
  • polyethylene glycol derivatives used for modifying bio-related substances generally have a linear type and a branched type, and in Non-Patent Document 5, the branched type is significantly more bio-related than the linear type. There is a description that it prolongs the half-life in blood. In recent years, most of the polyethylene glycol modified preparations put on the market have adopted the branched type. However, there have been no reports on a branched polyethylene glycol derivative that suppresses cell vacuoles in this field.
  • An object of the present invention is to provide a high molecular weight branched polyethylene glycol derivative that does not cause cell vacuoles. More specifically, a branched degradable polyethylene glycol derivative that can be effectively used for modifying a biological substance, is stable in blood in the living body, and is decomposed in cells is industrially used. It is to be provided by a manufacturing method that can be produced.
  • the present inventors have invented a branched degradable polyethylene glycol derivative having an oligopeptide that decomposes intracellularly.
  • n 45 to 950
  • W is an oligopeptide having a symmetrical structure centered on glutamic acid and having 5 to 47 residues
  • a is 2 to 8
  • X is capable of reacting with a biorelated substance.
  • a degradable polyethylene glycol derivative which is a functional group and L 1 and L 2 are independently divalent spacers).
  • the degradable polyethylene glycol derivative according to [1], wherein the oligopeptide having a symmetrical structure centered on W glutamic acid is an oligopeptide having the following w1, w2 or w3 structure.
  • Glu is a residue of glutamic acid
  • Z is a degradable oligopeptide of 2-5 residues consisting of neutral amino acids excluding cysteine.
  • [3] The degradable polyethylene glycol derivative according to [2], wherein the degradable oligopeptide of Z is an oligopeptide having glycine as a C-terminal amino acid.
  • [4] The degradation according to any one of [2] or [3], wherein the degradable oligopeptide of Z is an oligopeptide having at least one hydrophobic neutral amino acid having a hydropathy index of 2.5 or more. Sex polyethylene glycol derivative.
  • L 1 is a carbonyl group, urethane bond, amide bond, ether bond, thioether bond, secondary amino group, or urea bond; or an alkylene group which may contain these bonds and / or groups [1]. ] To [5]. The degradable polyethylene glycol derivative according to any one of [5].
  • L 2 is an alkylene group; or an alkylene group containing at least one bond and / or group selected from a carbonyl group, a urethane bond, an amide bond, an ether bond, a thioether bond, a secondary amino group, and a urea bond.
  • the degradable polyethylene glycol derivative according to any one of [1] to [6].
  • X is an active ester group, active carbonate group, aldehyde group, isocyanate group, isothiocyanate group, epoxide group, maleimide group, substituted maleimide group, vinylsulfonyl group, acrylic group, substituted sulfonate group, sulfonyloxy group, carboxyl group.
  • the degradable polyethylene glycol derivative according to any one of [1] to [7].
  • the branched degradable polyethylene glycol derivative of the present invention is stable in blood in vivo and has an oligopeptide in its structure that is degraded by intracellular enzymes. Therefore, the degradable polyethylene glycol derivative is stable in blood and can impart a blood half-life equivalent to that of the conventional non-degradable polyethylene glycol derivative to a biological substance. Furthermore, when the degradable polyethylene glycol derivative is taken up into cells, the oligopeptide site is rapidly degraded, so that the generation of cell vacuoles, which has been a problem until now, can be suppressed.
  • the oligopeptide constituting the degradable polyethylene glycol derivative has a symmetrical structure centered on glutamic acid, and the same degradable oligopeptide Z is bound to the ends of all polyethylene glycol chains. Therefore, the polyethylene glycol decomposition products generated during intracellular decomposition have the same molecular weight and the same structure, and have the characteristic of uniform discharge from tissues and cells. Cell vacuolization by polyethylene glycol is more likely to occur as the molecular weight of polyethylene glycol is larger. Therefore, it is desirable to design a molecular design in which degradable polyethylene glycol is decomposed into smaller molecular weights in cells.
  • the branched degradable polyethylene glycol of the present invention is made from an inexpensive and easily available methoxypolyethylene glycol derivative, and a degradable oligopeptide is bound thereto, and then two of them are reacted with the glutamic acid derivative at a time.
  • the polyethylene glycol chain of the above can be introduced into the structure, it is possible to greatly reduce the number of steps in the production thereof. Further, by using glycine as the C-terminal amino acid of the oligopeptide, impurities generated in the production process can be reduced, thereby industrially producing the branched degradable polyethylene glycol derivative of the present invention. Is possible.
  • An image of a section of the cerebral choroid plexus of a mouse long-administered with methoxyPEGamine 40 kDa of Example 9 (arrows indicate vacuoles) is shown. It shows images of the compound (p3) (NH 2 -E ( FG-200ME) 2) brain sections choroid plexus of mice prolonged administration of Example 9.
  • PBS of Example 10 methoxy PEG amine 40 kDa, methoxy PEG amine 20 kDa, compound (p3) image (stained portion of (NH 2 -E (FG-200ME ) 2) brain sections choroid plexus of mice prolonged administration Indicates the accumulation of PEG).
  • Example NH 2 -E (FG-200ME) of the radioactive isotopes was labeled for 11 2, 2 branched PEG amine 40 kDa, 2 branched PEG amine pharmacokinetics results of 20kDa indicating the (blood concentration).
  • the degradable polyethylene glycol derivative according to the present invention is represented by the following formula (1).
  • n 45 to 950
  • W is an oligopeptide having a symmetrical structure centered on glutamic acid and having 5 to 47 residues
  • a is 2 to 8
  • X is capable of reacting with a biorelated substance. It is a functional group
  • L 1 and L 2 are independently divalent spacers.
  • the total molecular weight of the polyethylene glycol derivative of the formula (1) of the present invention is usually 4,000 to 160,000, preferably 10,000 to 120,000, and more preferably 20,000 to 80,000. Is.
  • the polyethylene glycol derivative of the formula (1) of the present invention has a total molecular weight of 20,000 or more.
  • the molecular weight referred to here is a number average molecular weight (Mn).
  • N in the formula (1) is the number of repeating units of polyethylene glycol, usually 45 to 950, preferably 110 to 690, and more preferably 220 to 460.
  • a in the formula (1) is the number of polyethylene glycol chains bonded to the oligopeptide, which is usually 2 to 8, preferably 2 or 4 or 8, and more preferably 2 or 4. ..
  • L 1 and L 2 in the formula (1) are independently divalent spacers, and these spacers are not particularly limited as long as they are groups capable of forming a covalent bond, but L 1 is preferable.
  • L 1 is preferable.
  • L 2 is preferably an alkylene group; or an alkylene containing at least one bond and / or group selected from an amide bond, an ether bond, a thioether bond, a urethane bond, a secondary amino group, a carbonyl group, and a urea bond.
  • L 2 is preferably bonded to a repeating unit of polyethylene glycol with a carbon atom. Particularly preferred embodiments of L 1 and L 2 are those shown in group (I) below. Further, 2 to 5 spacers of the group (I) may be combined. As a divalent spacer, ester bonds and carbonate bonds are not suitable because they gradually decompose in the blood in the living body.
  • s in the equation indicates an integer of 0 to 10, preferably an integer of 0 to 6, and more preferably an integer of 0 to 3. Further, in (z2) to (z11), s in the equation may be the same or different.
  • L 1 is an asymmetric divalent spacer
  • the bonding position with other adjacent groups is not particularly limited
  • the right side of the spacer represented by the above formula in the above group (I) is the bonding position with W. It is possible to take both connection positions when the left side indicates the connection position with X and the left side indicates the connection position with W and the right side indicates the connection position with X.
  • L 2 is an asymmetric divalent spacer
  • the right side of the spacer represented by the above formula in the above group (I) indicates the bonding position with OCH 2 CH 2
  • the left side indicates the bonding position with W.
  • the L 1 in Formula (1) the group (I) of (z3), (z4), (z6), (z7), (z8), preferably a group represented by (z9) or (z10), The groups represented by (z3), (z6), (z9) or (z10) are more preferred.
  • the L 2 in Formula (1), the group (I) of (z1), (z2), (z3), (z4), (z5), (z6), (z7), (z8) or (z11 ) Is preferred, and the groups represented by (z3), (z5) or (z11) are more preferred.
  • W in the formula (1) is an oligopeptide having a symmetrical structure centered on glutamic acid and having 5 to 47 residues, which is stable in the blood in the living body and which is decomposed by an intracellular enzyme.
  • the amino acids constituting the oligopeptide preferably consist of neutral amino acids excluding cysteine, except for glutamic acid, which constitutes the central portion.
  • the oligopeptide having a symmetrical structure centered on glutamic acid as used herein means a compound in which the same peptide is bound to the carboxyl group at the ⁇ -position and the carboxyl group at the ⁇ -position of glutamic acid, and the paired peptide centered on glutamic acid is used.
  • the composition ratio of the number of neutral amino acids and glutamic acid in the oligopeptide is usually 2 to 10, preferably 2 to 8, and more preferably 2 to 2. It is 6.
  • the amino acids that make up W are basically L-type.
  • W Particularly preferred embodiments of W are those shown in Group (II) below.
  • Glu is a residue of glutamic acid
  • Z is a degradable oligopeptide of 2-5 residues consisting of neutral amino acids excluding cysteine.
  • Z in (w1) to (w3) is an oligopeptide composed of an amino acid having an amino group or a carboxyl group in the side chain, specifically, a neutral amino acid containing no lysine, aspartic acid, or glutamic acid. Is preferable.
  • the C-terminal carboxyl group of the oligopeptide is used as the polyethylene glycol derivative. It is used for the condensation reaction of.
  • the side chain is not a side reaction between the oligopeptides in the condensation reaction or the C-terminal carboxyl group which is the purpose of the polyethylene glycol derivative.
  • the introduced impurities are also generated in the carboxyl group of. Since it is difficult to remove these impurities by a purification process such as ordinary extraction or crystallization, in order to obtain the desired product with high purity, an oligopeptide consisting of amino acids having no amino group or carboxyl group in the side chain should be used. Is desirable.
  • the amino acids constituting Z are ⁇ -amino acids and are basically L-type.
  • Cysteine which is a neutral amino acid, has a mercapto group and forms a disulfide bond with other mercapto groups. Therefore, Z in (w1) to (w3) is an oligopeptide consisting of a neutral amino acid containing no cysteine. Is preferable.
  • Z in (w1) to (w3) is preferably an oligopeptide having glycine as a C-terminal amino acid.
  • glycine glycine
  • achiral glycine as the C-terminal amino acid of the oligopeptide, a high-purity target product without by-products of stereoisomers can be obtained.
  • Z in (w1) to (w3) is an oligopeptide having at least one hydrophobic neutral amino acid having a hydropathy index of 2.5 or more, specifically, phenylalanine, leucine, valine, and isoleucine. It is preferable that the oligopeptide has phenylalanine, and more preferably.
  • the hydropathy index which is created by Kyte and Doolittle and quantitatively indicates the hydrophobicity of amino acids, indicates that the larger the value, the more hydrophobic the amino acid (Kyte J & Doolittle RF, 1982, J Mol). Biol, 157: 105-132.).
  • Z in (w1) to (w3) is an oligo of 2 to 5 residues consisting of neutral amino acids excluding cysteine, which is stable in blood in the living body and has the ability to be decomposed by intracellular enzymes.
  • the peptide is not particularly limited, but specific examples include glycine-phenylalanine-leucine-glycine, glycine-glycine-phenylalanine-glycine, glycine-phenylalanine-glycine, glycine-leucine-glycine, and valine-citrulin-glycine.
  • Valin-alanine-glycine, phenylalanine-glycine, etc. preferably glycine-phenylalanine-leucine-glycine, glycine-glycine-phenylalanine-glycine, glycine-phenylalanine-glycine, valine-citrulin-glycine, valine-alanine-glycine, Or phenylalanine-glycine, more preferably glycine-phenylalanine-leucine-glycine, glycine-phenylalanine-glycine, valine-citrulin-glycine, or phenylalanine-glycine, even more preferably glycine-phenylalanine-leucine-glycine, or It is phenylalanine-glycine.
  • X in the formula (1) is particularly limited as long as it is a functional group that reacts with a functional group existing in a biological substance such as a bioactive protein, peptide, antibody, or nucleic acid to be chemically modified to form a covalent bond.
  • a biological substance such as a bioactive protein, peptide, antibody, or nucleic acid
  • X in the formula (1) is particularly limited as long as it is a functional group that reacts with a functional group existing in a biological substance such as a bioactive protein, peptide, antibody, or nucleic acid to be chemically modified to form a covalent bond.
  • a biological substance such as a bioactive protein, peptide, antibody, or nucleic acid
  • the "functional group capable of reacting with a bio-related substance” represented by X in the formula (1) is a functional group such as an amino group, a mercapto group, an aldehyde group, a carboxyl group, an unsaturated bond or an azide group possessed by the bio-related substance. It is not particularly limited as long as it is a functional group capable of chemically bonding with.
  • Alkinyl group ), allyl group, vinyl group, amino group, oxyamino group, hydrazide group and azide group, more preferably active ester group, active carbonate group, aldehyde group, maleimide group, oxyamino group and amino group. Yes, particularly preferably an aldehyde group, a maleimide group and an oxyamino group.
  • such functional groups X can be classified into the following groups (III), group (IV), group (V), group (VI), group (VII) and group (VIII). it can.
  • Group (III) Functional groups capable of reacting with amino groups of bio-related substances The following (a), (b), (c), (d), (e), (f), (g), (j) ), Or the group represented by (k).
  • Group (IV) Functional groups capable of reacting with mercapto groups of bio-related substances The following (a), (b), (c), (d), (e), (f), (g), (h) ), (I), (j), (k), or the group represented by (l).
  • Group (V) Functional group capable of reacting with an aldehyde group contained in a bio-related substance Examples thereof include groups represented by (h), (m), (n), or (p) below.
  • Group (VI) Functional groups capable of reacting with carboxyl groups of biorelated substances Examples thereof include groups represented by (h), (m), (n), or (p) below.
  • Group (VII) Functional groups capable of reacting with unsaturated bonds possessed by biorelated substances Examples thereof include groups represented by (h), (m), or (o) below.
  • Group (VIII) Functional groups capable of reacting with azide groups contained in bio-related substances Examples thereof include groups represented by (l) below.
  • W 1 in the formula represents a halogen atom such as a chlorine atom (Cl), a bromine atom (Br) or an iodine atom (I), preferably Br, or I, more preferably I. ..
  • Y 1 and Y 3 in the formula independently represent a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, preferably 1 carbon atom. It is a hydrocarbon group of ⁇ 5. Specific examples of the hydrocarbon group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tertiary butyl group and the like, and a methyl group or an ethyl group is preferable. is there.
  • Y 2 in the formula represents a hydrocarbon group having 1 to 10 carbon atoms which may contain a fluorine atom, and specifically, a methyl group, an ethyl group, a propyl group, and the like.
  • Isopropyl group butyl group, tertiary butyl group, hexyl group, nonyl group, vinyl group, phenyl group, benzyl group, 4-methylphenyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 4- Examples thereof include a (trifluoromethoxy) phenyl group, preferably a methyl group, a vinyl group, a 4-methylphenyl group, or a 2,2,2-trifluoroethyl group.
  • the active ester group is an ester group having an alkoxy group having a high desorption ability.
  • the alkoxy group having high desorption ability include an alkoxy group derived from nitrophenol, N-hydroxysuccinimide, pentafluorophenol and the like.
  • the active ester group is preferably an ester group having an alkoxy group derived from N-hydroxysuccinimide.
  • the active carbonate group is a carbonate group having an alkoxy group having a high desorption ability.
  • the alkoxy group having high desorption ability include an alkoxy group derived from nitrophenol, N-hydroxysuccinimide, pentafluorophenol and the like.
  • the active carbonate group is preferably a carbonate group having an alkoxy group derived from nitrophenol or N-hydroxysuccinimide.
  • the substituted maleimide group is a maleimide group in which a hydrocarbon group is bonded to one carbon atom of the double bond of the maleimide group.
  • a hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tertiary butyl group and the like, and a methyl group or an ethyl group is preferable.
  • the substituted sulfonate group is a sulfonate group in which a hydrocarbon group which may contain a fluorine atom is bonded to the sulfur atom of the sulfonate group.
  • a hydrocarbon group which may contain a fluorine atom
  • the hydrocarbon group that may contain a fluorine atom include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tertiary butyl group, a hexyl group, a nonyl group, a vinyl group, and a phenyl group.
  • Benzyl group 4-methylphenyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 4- (trifluoromethoxy) phenyl group and the like, preferably methyl group, vinyl group, 4- It is a methylphenyl group or a 2,2,2-trifluoroethyl group.
  • the branched degradable polyethylene glycol derivative of the present invention can be produced, for example, through the following steps.
  • PEG in the process is a polyethylene glycol chain
  • Peptide is an oligopeptide
  • Pro is a protecting group
  • L 3 is a divalent spacer.
  • the PEG in the process is a polyethylene glycol chain, and the molecular weight is as defined by n, which is the number of repeating units of polyethylene glycol described above, that is, n is 45 to 950. Therefore, the range of the molecular weight is It is 2000-42000.
  • Peptide in the process is an oligopeptide synonymous with Z.
  • an oligopeptide in which the N-terminal amino group is protected by a protecting group is used.
  • Pro in the process is a protecting group, where the protecting group is a component that prevents or prevents the reaction of a specific chemically reactive functional group in the molecule under certain reaction conditions.
  • Protecting groups vary depending on the type of chemically reactive functional group protected, the conditions used and the presence of other functional or protecting groups in the molecule. Specific examples of protecting groups can be found in many common books, such as "Wuts, P.G.M.; Greene, T.W. Protective Groups in Organic Syntheses, 4th ed .; Wiley. -Interscience: New York, 2007 ”. Further, the functional group protected by the protecting group can be regenerated by deprotecting, that is, chemically reacting with the reaction conditions suitable for each protecting group. Typical deprotection conditions for protecting groups are described in the aforementioned literature.
  • L 3 in the process is a divalent spacer synonymous with L 1 and L 2 .
  • the carboxyl group of an oligopeptide in which the N-terminal amino group is protected with a protecting group and the amino group of a polyethylene glycol derivative having a methoxy group at one end are bonded by a condensation reaction to form a polyethylene glycol derivative (1).
  • the protecting group of the N-terminal amino group of the oligopeptide is not particularly limited, and examples thereof include an acyl-based protecting group and a carbamate-based protecting group, and specific examples thereof include a trifluoroacetyl group and 9-fluorenylmethyloxycarbonyl. Examples include a group (Fmoc), a tert-butyloxycarbonyl group and the like.
  • the condensation reaction is not particularly limited, but a reaction using a condensing agent is desirable.
  • a condensing agent such as dicyclohexylcarbodiimide (DCC) or 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) may be used alone, or N-hydroxysuccinimide may be used alone.
  • DCC dicyclohexylcarbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • NHS 1-hydroxybenzotriazole
  • HOAt 1-hydroxy-7-azabenzotriazole
  • HATU HATU
  • HBTU HBTU
  • TATU TATU
  • TBTU COMU
  • a condensing agent such as (DMT-MM) may be used.
  • a base such as triethylamine or dimethylaminopyridine may be used.
  • Impurities produced as a by-product in the reaction, or oligopeptides and condensing agents remaining unconsumed in the reaction are preferably purified and removed. Purification is not particularly limited, but can be purified by extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction and the like.
  • Deprotection B is a step of deprotecting the protecting group of the polyethylene glycol derivative (1) obtained in the reaction A to obtain the polyethylene glycol derivative (2).
  • the deprotection reaction can be a conventionally known method, it is necessary to use the conditions divalent spacer oligopeptide or L 3 is not decomposed. Further, this step can also be carried out as a part of the step of reaction A. Impurities produced by the deprotection reaction are preferably purified and removed. Purification is not particularly limited, but can be purified by extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction and the like.
  • Reaction C the amino group of the polyethylene glycol derivative (2) obtained by deprotection B and the two carboxyl groups of the glutamate derivative whose amino group is protected by a protecting group are bonded by a condensation reaction, and the two degradability
  • This is a step of obtaining a branched polyethylene glycol derivative (3) having a structure in which polyethylene glycol chains are linked by glutamate residues.
  • a reaction using a condensing agent is desirable, and a base such as triethylamine or dimethylaminopyridine may be used to accelerate the reaction.
  • the protecting group for the amino group of glutamic acid is not particularly limited, and examples thereof include an acyl-based protecting group and a carbamate-based protecting group, specifically, a trifluoroacetyl group and a 9-fluorenylmethyloxycarbonyl group (Fmoc). , Tert-butyloxycarbonyl group and the like.
  • Impurities produced by the reaction or polyethylene glycol derivatives remaining unconsumed in the reaction are preferably purified and removed. Purification is not particularly limited, but can be purified by extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction and the like.
  • the deprotection D is a step of deprotecting the protecting group of the polyethylene glycol derivative (3) obtained in the reaction C to obtain the polyethylene glycol derivative (4).
  • the deprotection reaction can be a conventionally known method, it is necessary to use the conditions divalent spacer oligopeptide or L 3 is not decomposed. This step can also be carried out as part of the reaction C step. Impurities produced by the deprotection reaction are preferably purified and removed. Purification is not particularly limited, but can be purified by extraction, recrystallization, adsorption treatment, reprecipitation, column chromatography, supercritical extraction and the like.
  • reaction E the amino group of the polyethylene glycol derivative (4) obtained by deprotection D and the two carboxyl groups of the glutamate derivative in which the amino group is protected by the protecting group are bonded by a condensation reaction, and four degradability
  • This is a step of obtaining a branched polyethylene glycol derivative (5) having a structure in which polyethylene glycol chains are linked by glutamate residues.
  • the reaction and purification are possible under the same conditions as the reaction C.
  • the purification technique described in JP-A-2014-208786 or JP-A-2011-79934 is used. Can be done.
  • the deprotection F is a step of deprotecting the protecting group of the polyethylene glycol derivative (5) obtained in the reaction E to obtain the polyethylene glycol derivative (6).
  • the deprotection reaction can be a conventionally known method, it is necessary to use the conditions divalent spacer oligopeptide or L 3 is not decomposed. The reaction and purification are possible under the same conditions as the deprotected D. Further, this step can also be carried out as a part of the step of reaction E.
  • reaction G the amino group of the polyethylene glycol derivative (6) obtained by deprotection F and the two carboxyl groups of the glutamate derivative in which the amino group is protected by a protecting group are bonded by a condensation reaction, and eight degradable groups are obtained.
  • This is a step of obtaining a branched polyethylene glycol derivative (7) having a structure in which polyethylene glycol chains are linked by glutamate residues.
  • the reaction and purification are possible under the same conditions as the reaction C.
  • Deprotection H is a step of deprotecting the protecting group of the polyethylene glycol derivative (7) obtained in the reaction G to obtain the polyethylene glycol derivative (8).
  • the reaction and purification are possible under the same conditions as the deprotected F. Further, this step can also be carried out as a part of the step of reaction G.
  • a bifurcated degradable polyethylene glycol derivative (4) By performing the above reactions A, deprotection B, reaction C and deprotection D, a bifurcated degradable polyethylene glycol derivative (4) can be obtained. By using the bifurcated degradable polyethylene glycol derivative (4) as a raw material and subsequently performing the reaction E and the deprotection F, the tetrabranched degradable polyethylene glycol derivative (6) can be obtained. Further, the reaction G and the deprotection H are continuously carried out to obtain an 8-branched degradable polyethylene glycol derivative (8).
  • the polyethylene glycol derivatives (4), (6) and (8) obtained by deprotection D, deprotection F and deprotection H all have one amino group, which can be utilized in various ways. It can be converted to a functional group.
  • the step of converting the amino group at the terminal of the polyethylene glycol derivative to another functional group is not particularly limited, but basically, a compound having an active ester group capable of reacting with the amino group, or an acid anhydride, By using a general reaction reagent such as acid chloride, it can be easily converted into various functional groups.
  • the desired product when it is desired to convert the amino group at the end of the polyethylene glycol derivative into a maleimide group, the desired product can be obtained by reacting with the following reagents.
  • the desired product when it is desired to convert the amino group at the end of the polyethylene glycol derivative into a carboxyl group, the desired product can be obtained by reacting with succinic anhydride or glutaric anhydride.
  • the desired product when it is desired to convert the amino group at the end of a polyethylene glycol derivative into a hydroxyl group, the desired product can be obtained by subjecting it to a condensation reaction with a ring-opening product of a cyclic ester such as caprolactone.
  • reaction reagents are low molecular weight reagents and have significantly different solubility from polyethylene glycol derivatives which are high molecular weight polymers, they can be easily removed by general purification methods such as extraction and crystallization. ..
  • the degradable polyethylene glycol obtained through the above steps is required to be stable in blood and have the ability to decompose only inside cells.
  • the following tests can be carried out to evaluate the stability of degradable polyethylene glycol in blood and its degradability in cells.
  • all the evaluation samples were unified to the polyethylene glycol derivative having one amino group.
  • the test method for evaluating the stability of the degradable polyethylene glycol derivative in blood is not particularly limited, and examples thereof include tests using sera of mice, rats, humans and the like. Specifically, the polyethylene glycol derivative is dissolved in serum to a concentration of 1 to 10 mg / mL, incubated at 37 ° C. for 96 hours, and then the polyethylene glycol derivative contained in the serum is recovered and GPC is measured. The decomposition rate can be evaluated with. The decomposition rate is calculated from the peak area% of the GPC membrane of the polyethylene glycol derivative before the stability test and the peak area% of the GPC membrane of the polyethylene glycol derivative after the stability test. Specifically, the following formula is used.
  • Decomposition rate (Peak area% before test-Peak area% after test) ⁇ Peak area% before test x 100
  • the test method for evaluating the intracellular degradability of the degradable polyethylene glycol derivative is not particularly limited, but for example, a test in which cells are cultured using a medium containing the degradable polyethylene glycol derivative may be used. Can be mentioned.
  • the cells and medium used here are not particularly limited, but specifically, a polyethylene glycol derivative is dissolved in RPMI-1640, which is a medium, so as to have a concentration of 1 to 20 mg / mL, and this medium is used. After culturing the macrophage cell RAW264.7 at 37 ° C. for 96 hours, the polyethylene glycol derivative in the cell is recovered, and the degradation rate can be evaluated by measuring GPC.
  • the test method for evaluating the half-life in blood and the distribution in the body of the degradable polyethylene glycol derivative is not particularly limited, but for example, a radioisotope or a fluorescent substance is labeled, administered to mice or rats, and monitored. There are tests to be done.
  • the degradable peptide introduced into the polyethylene glycol derivative imparts intracellular degradability to polyethylene glycol, and it is considered that the peptide structure may change the pharmacokinetics of polyethylene glycol. Therefore, in order to confirm the effect of the introduced peptide structure on the pharmacokinetics, it is necessary to compare the half-life in blood and its distribution in the body with a polyethylene glycol derivative having the same molecular weight and having no degradability.
  • a non-degradable polyethylene glycol derivative labeled with a radioisotope and a degradable polyethylene glycol derivative were administered to mice, and the radiation doses of blood and each organ were measured at multiple time points. , Quantitative measurement can be performed.
  • the test method for evaluating the suppression of cell vacuoles of the degradable polyethylene glycol derivative is not particularly limited, but for example, as described in Non-Patent Document 2, long-term, high frequency, and high dose.
  • the polyethylene glycol derivative was dissolved in physiological saline to a concentration of 10 to 250 mg / mL, and 20 to 100 ⁇ L was continuously administered from the tail vein of the mouse 3 times a week for 4 weeks or more to generate vacuoles.
  • Paraffin sections such as the cerebral choroid plexus and spleen, which are said to be easy to use, are prepared and stained, and then the section images are confirmed by a pathological method to evaluate vacuole suppression. In this evaluation, it is necessary to administer a large excess of polyethylene glycol as compared with the general polyethylene glycol dose in the technical field.
  • Non-Patent Document 2 describes that the vacuolation of cells by high molecular weight polyethylene glycol is related to the accumulation of polyethylene glycol in tissues.
  • the test method for evaluating the accumulation of the degradable polyethylene glycol derivative in cells is not particularly limited, but can be evaluated from the section image prepared by the same method as the evaluation of vacuoles described above. Stained section images of the cerebral choroid plexus and spleen, which are organs that are said to easily accumulate polyethylene glycol, can be confirmed by a pathological method to evaluate the accumulation of polyethylene glycol. In this evaluation, it is necessary to administer a large excess of polyethylene glycol as compared with the general polyethylene glycol dose in the technical field.
  • the 1 H-NMR obtained in the following examples was obtained from JNM-ECP400 or JNM-ECA600 manufactured by JEOL Ltd. ⁇ 5mm Ju the measurement - Using parts, the deuterated solvent, using CDCl 3 and d 6-DMSO containing tetramethylsilane (TMS) as D 2 O, or internal standard.
  • TMS tetramethylsilane
  • the molecular weight and amine purity of the obtained polyethylene glycol derivative were calculated using liquid chromatography (GPC and HPLC).
  • GPC and HPLC liquid chromatography
  • As the liquid chromatography system "HLC-8320GPC EcoSEC” manufactured by Tosoh Corporation was used for GPC, and "ALLIANCE" manufactured by WATERS was used for HPLC.
  • the analysis conditions for GPC and HPLC are shown below.
  • diisopropylethylamine (192 ⁇ L, 1.2 ⁇ 10 -3 mol, manufactured by Kanto Chemical Co., Ltd.) and (1-cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylamino-morpholino-carbenium hexafluorophosphorus
  • the acid salt (COMU) (0.321 g, 7.5 ⁇ 10 -4 mol, manufactured by Sigma-Aldrich) was added and reacted at room temperature in a nitrogen atmosphere for 1 hour. After completion of the reaction, the mixture was diluted with chloroform (600 g), saturated aqueous sodium hydrogen carbonate solution (240 g) was added, and the mixture was washed by stirring at room temperature for 15 minutes.
  • a saturated aqueous sodium hydrogen carbonate solution (240 g) was added to the organic layer again, and the mixture was washed by stirring at room temperature for 15 minutes to recover the organic layer.
  • Magnesium sulfate (2.4 g) was added to the obtained organic layer (chloroform solution), and the mixture was stirred for 30 minutes to dehydrate, and then suction filtration was performed using a Kiriyama funnel on which oplite was spread on a 5A filter paper.
  • the obtained filtrate was concentrated at 40 ° C., ethyl acetate (240 g) was added to the concentrate and stirred to make it uniform, then hexane (120 g) was added, and the mixture was stirred at room temperature for 15 minutes to produce the product. Was precipitated. After suction filtration using 5A filter paper to collect the precipitate, it was dissolved again in ethyl acetate (240 g), hexane (120 g) was added, and the mixture was stirred at room temperature for 15 minutes to precipitate the product.
  • N, N'-dimethylformamide (29.4 g) was added to ME-200GF-Fmoc (4.9 g, 2.3 ⁇ 10 -4 mol) obtained in Example 1-1, and the mixture was heated at 30 ° C. Dissolved.
  • Piperidine (1.55 g, 1.8 ⁇ 10 -2 mol, manufactured by Wako Pure Chemical Industries, Ltd.) was added and allowed to react for 2 hours at room temperature under a nitrogen atmosphere. After completion of the reaction, ethyl acetate (300 g) was added and the mixture was stirred until uniform, hexane (150 g) was added and the mixture was stirred at room temperature for 15 minutes to precipitate the product.
  • Example 1-2 L-glutamic acid (Fmoc-Glu-OH) (16.0 mg, 4.3 ⁇ 10-5 mol, manufactured by Watanabe Chemical Industry Co., Ltd.) whose N-terminal was protected with an Fmoc group.
  • L-glutamic acid Fmoc-Glu-OH
  • ME-200GF-NH 2 2.0 g, 1.0 ⁇ 10 -4 mol
  • Example 2 The compound (p3) (200 mg, 5.0 ⁇ 10-6 mol) obtained in Example 1 was dissolved in acetonitrile (160 mg) and toluene (1.0 g). After that, N-methylmorpholine (10 mg, 1.0 ⁇ 10-5 mol, manufactured by Kanto Chemical Co., Ltd.) and N-succinimidyl 3-maleimidepropionate (8.0 mg, 3.0 ⁇ 10-5 mol, Osaka synthesis) Organic Chemistry Laboratory Co., Ltd. was added, and the reaction was carried out at room temperature in a nitrogen atmosphere and under shading for 6 hours.
  • N-methylmorpholine 10 mg, 1.0 ⁇ 10-5 mol, manufactured by Kanto Chemical Co., Ltd.
  • N-succinimidyl 3-maleimidepropionate 8.0 mg, 3.0 ⁇ 10-5 mol, Osaka synthesis
  • the reaction solution is diluted with ethyl acetate (50 g) containing 2,6-di-tert-butyl-p-cresol (BHT) (10 mg), and then hexane (25 g) is added to bring the mixture to room temperature. The mixture was stirred for 15 minutes to precipitate the product. After suction filtration using a 5A filter paper to collect the precipitate, it was washed with hexane (25 g) containing BHT (5 mg), suction filtered using a 5A filter paper, vacuum dried, and the above compound (p4) ( MA ). -E (FG-200ME) 2 ) was obtained. Yield 137 mg. The molecular weights are shown in Table 1. The maleimide purity was 90% ( 1 1 H-NMR).
  • a saturated aqueous sodium hydrogen carbonate solution (10 g) was added, and the mixture was washed by stirring at room temperature for 15 minutes. After separating the aqueous layer and the organic layer, a saturated aqueous sodium hydrogen carbonate solution (10 g) was added to the organic layer again, and the mixture was washed by stirring at room temperature for 15 minutes to recover the organic layer.
  • Magnesium sulfate (1.2 g) was added to the obtained organic layer (chloroform solution), stirred for 30 minutes to dehydrate, and then suction filtration was performed using a Kiriyama rotor with Oplite spread on a 5A filter paper. It was.
  • the obtained filtrate is concentrated at 40 ° C., toluene (50 g) is added to the concentrate and stirred to be uniform, then hexane (25 g) is added, and the mixture is stirred at room temperature for 15 minutes to produce the product. Was precipitated. After suction filtration using 5A filter paper to collect the precipitate, it was dissolved again in toluene (50 g), hexane (25 g) was added, and the mixture was stirred at room temperature for 15 minutes to precipitate the product.
  • Example 3-1 The compound (p5) (500 mg, 1.3 ⁇ 10-5 mol) obtained in Example 3-1 was dissolved in dichloromethane (3.5 g). After that, di (N-succinimidyl) carbonate (51 mg, 2.0 ⁇ 10 -4 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) and pyridine (24 ⁇ L, 3.0 ⁇ 10 -4 mol, manufactured by Kanto Chemical Co., Ltd.) was added and reacted at room temperature in a nitrogen atmosphere for 8 hours. After completion of the reaction, wash the reaction solution with 5% saline solution, add magnesium sulfate (0.1 g), stir at 25 ° C. for 30 minutes, and then use a Kiriyama rotor with Oplite spread on 5A filter paper.
  • di (N-succinimidyl) carbonate 51 mg, 2.0 ⁇ 10 -4 mol, manufactured by Tokyo Chemical Industry Co., Ltd.
  • pyridine 24 ⁇ L, 3.0 ⁇ 10 -4 mol, manufactured by Kan
  • Example 3-2 The compound (p6) (250 mg, 6.3 ⁇ 10-6 mol) obtained in Example 3-2 was dissolved in chloroform (2 g). Then, 1-amino-3,3-diethoxypropane (10 ⁇ L, 6.3 ⁇ 10-5 mol, manufactured by ACROS ORGANICS) was added, and the reaction was carried out at room temperature in a nitrogen atmosphere for 3 hours. After completion of the reaction, the reaction solution was diluted with toluene (25 g), hexane (12.5 g) was added, and the mixture was stirred at room temperature for 15 minutes to precipitate the product.
  • 1-amino-3,3-diethoxypropane 10 ⁇ L, 6.3 ⁇ 10-5 mol, manufactured by ACROS ORGANICS
  • Example 3-3 The compound (p7) (150 mg, 3.8 ⁇ 10-6 mol) obtained in Example 3-3 was dissolved in a phosphate buffer solution (2.25 g) adjusted to pH 1.90, and a nitrogen atmosphere was obtained at room temperature. Reacted below for 3 hours. After the reaction, a 0.1N aqueous sodium hydroxide solution (0.89 g) was added, the pH was adjusted to 6.40, and then sodium chloride (0.56 g) was added and dissolved. A 0.1 N aqueous sodium hydroxide solution (0.60 g) was added dropwise to the obtained solution to adjust the pH to 7.06, and then chloroform (3 g) containing BHT (0.6 mg) was added at room temperature. The mixture was stirred for 20 minutes and the product was extracted into the organic layer.
  • a phosphate buffer solution (2.25 g) adjusted to pH 1.90, and a nitrogen atmosphere was obtained at room temperature. Reacted below for 3 hours. After the reaction, a 0.1N aqueous sodium hydroxide solution (0.
  • chloroform (3 g) containing BHT (0.6 mg) is added to the aqueous layer again, and the mixture is stirred at room temperature for 20 minutes to bring the product to the organic layer. Extracted.
  • the organic layers obtained in the first and second extractions were combined and concentrated at 40 ° C., the obtained concentrate was diluted with toluene (30 g), hexane (15 g) was added, and the mixture was stirred at room temperature for 15 minutes to form. The thing was precipitated.
  • Example 3-1 The compound (p5) (300 mg, 7.5 ⁇ 10-6 mol) obtained in Example 3-1 was dissolved in toluene (2.4 g) by heating at 30 ° C. and azeotropically dehydrated under reduced pressure. Then, the concentrate was dissolved in chloroform (2.4 g), N-hydroxyphthalimide (7.3 mg, 4.5 ⁇ 10-5 mol, manufactured by Wako Pure Chemical Industries, Ltd.) and triphenylphosphine (35 mg, 1). .4 ⁇ 10 -4 mol, manufactured by Kanto Chemical Industries, Ltd.
  • the concentrate After diluting the concentrate with toluene (3.0 g) and azeotropically boiling, the concentrate is dissolved in toluene (1.5 g), ethylenediamine monohydrate (24 ⁇ L, 3.0 ⁇ 10 -4 mol, Kanto Chemical Co., Ltd.) ) Was added, and the mixture was reacted at room temperature in a nitrogen atmosphere for 1 hour. After completion of the reaction, the reaction solution was diluted with toluene (50 g), hexane (25 g) was added, and the mixture was stirred at room temperature for 15 minutes to precipitate the product.
  • the reaction solution was diluted with ethyl acetate (12 g), hexane (14 g) was added, and the mixture was stirred at room temperature for 15 minutes to precipitate the product.
  • suction filtration using 5A filter paper to collect the precipitate it was dissolved again in ethyl acetate (27 g), hexane (14 g) was added, and the mixture was stirred at room temperature for 15 minutes to precipitate the product.
  • the precipitate was collected by suction filtration using a 5A filter paper, washed with hexane (30 g), suction filtered using a 5A filter paper, and vacuum dried to obtain the above compound (p17) ( LY-400BO ). .. Yield 2.7g.
  • Example 7 Stability test in serum 1 mL of mouse or human serum was added to a 1.5 mL Eppendorf tube, and various polyethylene glycol derivatives were added to a concentration of 5.0 mg / mL. After incubation at 37 ° C. for 96 hours, 200 ⁇ L was sampled, acetonitrile was added thereto, and the mixture was stirred with vortex for 1 minute to precipitate proteins in serum, centrifuged, and the supernatant was recovered. Next, in order to remove hydrophobic substances such as fatty acids, hexane was added to the recovery liquid, the mixture was stirred with vortex for 1 minute, centrifuged, and the lower layer was recovered.
  • the compounds (p3), (p13), and (p16) which are degradable polyethylene glycol derivatives are sera, like the compound (p18) which is a non-degradable polyethylene glycol derivative and methoxyPEGamine 40 kDa. No decomposition was observed inside. That is, it was shown that the degradable polyethylene glycol derivative is stable in blood.
  • Example 8 Using 10 mL of RPMI-1640 (10% FBS Pn / St), a degradability test medium using cells , RAW264.7 was seeded in a 100 mm dish at 10 ⁇ 10 6 cells, cultured at 37 ° C. for 24 hours, and then various polyethylene glycols were used. The derivative was replaced with a medium dissolved to a concentration of 10 mg / mL, and cultured at 37 ° C. for 96 hours. After culturing, the cells are dissolved in 1% SDS solution, diluted with phosphate buffered saline (PBS), acetonitrile is added thereto, and the mixture is stirred with vortex for 1 minute to remove the protein in the cell lysate.
  • PBS phosphate buffered saline
  • the compounds (p3) and (p16), which are degradable polyethylene glycol derivatives can be effectively decomposed intracellularly (decomposition rate 99%) and decomposed to a molecular weight of 40,000 to 20,000. It could be confirmed. Further, it was confirmed that the compound (p13) was decomposed to a molecular weight of 40,000 to 10,000 at a decomposition rate of 99%. Since these degradable polyethylene glycol derivatives did not decompose in the medium used for cell culture, it was confirmed that they were specifically decomposed inside the cells. On the other hand, neither the compound (p18), which is a non-degradable polyethylene glycol derivative, nor the methoxyPEGamine 40 kDa were decomposed in cells.
  • Example 9 Vacuolation evaluation molecular weight 40,000 which is degradable polyethylene glycol derivative is a compound having an amino group to the test terminal according to animal experiment (p3) and NH 2 -E (FG-200ME) 2, methoxy PEG amine is non-degradable Using 40 kDa, the formation of air cannons was evaluated by animal experiments.
  • the mouse species was Balb / c (8 weeks old, male), and the polyethylene glycol solution was prepared by using physiological saline to a concentration of 100 mg / mL of the polyethylene glycol derivative, and 20 ⁇ L was administered from the tail vein of the mouse.
  • mice were perfused and fixed with a 4% paraformaldehyde aqueous solution to prepare paraffin sections.
  • HE staining and immunostaining with anti-PEG antibody were performed to evaluate vacuolization in choroid plexus epithelial cells of the brain.
  • an immunostaining kit (BOND Refine Polymer Detection Kit, manufactured by Leica) and an anti-PEG antibody (B-47 antibody, manufactured by Abcam) were used.
  • An image of the choroid plexus sections of brain that were immunostained with anti-PEG antibodies are shown in FIG. 5 (methoxy PEG amine 40 kDa) and FIG.
  • NH 2 -E (FG- 200ME) 2 is an exploded polyethylene glycol, as compared to the methoxy PEG amine 40 kDa, significantly inhibited the formation of vacuoles.
  • the amount of polyethylene glycol administered in this example is an amount optimized for evaluating vacuoling, and is extremely large compared to the dose of polyethylene glycol generally used in the art.
  • Example 10 Animal experiments polyethylene glycol stimulable evaluation test terminal is an exploded polyethylene glycol derivative having a molecular weight of 40,000 having an amino group compounds according the (p3) NH 2 -E (FG -200ME) 2, is a non-degradable Using 20 kDa of methoxyPEGamine, 40 kDa of methoxyPEGamine, and PBS as a control, the accumulation of polyethylene glycol was evaluated by animal experiments.
  • the mouse species was Balb / c (8 weeks old, male), and the polyethylene glycol solution was prepared by using physiological saline to a concentration of 62.5 mg / mL of the polyethylene glycol derivative, and 100 ⁇ L was administered from the tail vein of the mouse. ..
  • mice were perfused and fixed with a 4% paraformaldehyde aqueous solution to prepare paraffin sections.
  • Immunostaining with an anti-PEG antibody was performed to evaluate the accumulation in choroid plexus epithelial cells of the brain. Images of the choroid plexus sections of each immunostained brain are shown in FIG. According to FIG. 7, choroid plexus sections of mice administered with PBS containing no polyethylene glycol are not stained, whereas non-degradable methoxyPEGamine 40 kDa stains a wide range of sections in brown. confirmed. This stained area indicates that PEG is accumulated.
  • NH 2 -E (FG-200ME) 2 is an exploded polyethylene glycol, less stained portion brown, molecular weight showed comparable accumulation and half of methoxy PEG amine 20 kDa.
  • the degradable polyethylene glycol significantly suppressed the accumulation of polyethylene glycol in the tissue as compared with the non-degradable methoxyPEGamine 40 kDa having the same molecular weight.
  • the amount of polyethylene glycol administered in this example is an amount optimized for evaluating the accumulation property, and is extremely large as compared with the dose of polyethylene glycol generally used in the art.
  • the mouse species is Balb / c (8 weeks old, male), and the polyethylene glycol solution is prepared by preparing an unlabeled polyethylene glycol derivative using physiological saline to a concentration of 10 mg / mL and labeling it with a radioisotope. A small amount of the modified polyethylene glycol derivative was added, and 100 ⁇ L was administered from the tail vein of the mouse. Then, blood and each organ were taken out from the mouse at 1, 3, 6, 24, 48, and 72 hours, and the retention amount of the labeled polyethylene glycol derivative was measured using a gamma counter.
  • the blood concentration is shown in FIG.
  • NH 2 -E (FG- 200ME) 2 compared to the 2-branched PEG amine 40kDa nondegradable a same molecular weight, showed serum half-life comparable.
  • NH 2 -E (FG-200ME ) 2 compared to non-degradable 2 branched PEG amine 20kDa molecular weight 20kDa, was significantly longer blood half-life.
  • the degradable polyethylene glycol derivative of the present invention is a high molecular weight polyethylene glycol derivative that does not cause cell vacuoles, can be effectively used for modifying biological substances, and is stable in blood in the living body. Yes and is degraded intracellularly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Polyethers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、下式(1)で示される生体関連物質を修飾する用途に使用される細胞内で分解する分岐型の分解性ポリエチレングリコール誘導体を提供する。(式中、各記号は本明細書中で定義した通りである。)

Description

分岐型分解性ポリエチレングリコール誘導体
 本発明は、生体関連物質を修飾する用途に使用される細胞内で分解する分岐型の分解性ポリエチレングリコール誘導体に関する発明である。
 ホルモンやサイトカイン、抗体、酵素などの生体関連物質を用いた医薬品は、通常生体内へ投与されると腎臓における糸球体濾過や肝臓や脾臓などにおけるマクロファージによる取り込みによって、生体内から速やかに排出されてしまう。そのため血中半減期が短く、十分な薬理効果を得ることが困難であることが多い。この問題を解決するため、生体関連物質を糖鎖やポリエチレングリコールなどの親水性高分子やアルブミンなどによって化学修飾する試みが行われている。その結果、分子量の増大や水和層の形成などにより生体関連物質の血中半減期を延長することが可能となる。また、ポリエチレングリコールで修飾することで、生体関連物質の毒性や抗原性の低下、難水溶性薬剤の溶解性向上などの効果が得られることも良く知られている。
 ポリエチレングリコールで修飾された生体関連物質は、ポリエチレングリコールのエーテル結合と水分子との水素結合で形成される水和層で覆われ、分子サイズが大きくなることから、腎臓における糸球体濾過を回避することができる。さらにオプソニンや各組織を構成する細胞表面との相互作用が低下し、各組織への移行が減少することが知られている。ポリエチレングリコールは生体関連物質の血中半減期を延長させる優れた素材であり、その性能は分子量が大きいほど効果が高いことが分かっている。これまで、分子量4万以上の高分子量のポリエチレングリコールで修飾した生体関連物質の研究が多数行なわれており、有意にその血中半減期を延長できる結果が得られている。
 ポリエチレングリコールは生体関連物質の性能改善に用いられる修飾製剤の中で至適基準とされており、現在ではポリエチレングリコール修飾製剤が複数上市され、医療現場で使用されている。一方で、2012年に欧州医薬品庁(EMA)から、分子量4万以上の高分子量のポリエチレングリコールで修飾した生体関連物質を一定の投与量以上で長期間動物に投与すると、一部の組織の細胞内に空胞が発生するとの現象が報告された(非特許文献1)。現時点において、空胞の発生自体が人体に悪影響を与えるとの報告はなく、また、先のEMAの報告において用いられた投与量は、医療現場において一般的に適用される投与量と比べて極めて高用量であることなどを考慮すれば、現在製造販売されている分子量が4万以上のポリエチレングリコールで修飾された治療製剤の安全性は問題ないといえる。しかしながら、非常に特殊な疾患(例えば、小人症など)の治療においては、ポリエチレングリコール修飾製剤を高用量、且つ、長期間に患者へ投与する治療プロトコルが採用されることも想定され得る。従って、かかる特殊な状況においても適用可能な、細胞に空胞を発生させないポリエチレングリコール修飾製剤の開発には潜在的な需要があると予想される。
 非特許文献2においては、通常のポリエチレングリコール修飾製剤の投与量に比べ、大過剰量のポリエチレングリコールを単独で動物に長期間投与したところ、分子量2万では空胞は見られず、分子量4万において空胞の発生が確認されている。空胞を抑制する手段の一つとして、ポリエチレングリコールの分子量を小さくすることが考えられるが、分子量を小さくすると生体関連物質の血中半減期を十分に改善することができないという問題が生じる。
 高分子量のポリエチレングリコールを体内で低分子量のポリエチレングリコールに分解し、腎臓からの排出を促進する技術については報告例がある。特許文献1には、生体内で切断されるスルフィド結合やペプチド結合部位を有したポリエチレングリコール誘導体に関する記載がなされている。当該ポリエチレングリコール誘導体は、生体内で腎臓からの排出に適した分子量まで分解されるとの記載がある。しかし、具体的な分解に関するデータは全く示されておらず、腎臓からの排出が促進されたというデータもない。さらに細胞の空胞に関する記載はない。
 特許文献2には、生体内の低pH環境下において加水分解可能なアセタール部位を有したポリエチレングリコール誘導体に関する記載がなされている。当該ポリエチレングリコール誘導体は、生体内で腎臓からの排出に適した分子量まで分解されるとの記載がある。しかし、具体的に腎臓からの排出が促進されたというデータは無く、さらに細胞の空胞に関する記載もない。また、これら加水分解が可能なアセタール部位は血中でも徐々に分解することが知られており、修飾した生体関連物質の血中半減期を十分に改善することができないと予想される。
 一方で、薬物を効果的にリリースするために分解性のオリゴペプチドを導入したポリエチレングリコール誘導体や体内で分解するハイドロゲルなどの報告例はある。
 非特許文献3には、酵素によって分解するオリゴペプチド部位を有したポリエチレングリコール誘導体に関する記載がなされている。ここではオリゴペプチドは、抗癌剤とポリエチレングリコールの間のリンカーとして導入されており、腫瘍周辺に特異的に発現している酵素によってオリゴペプチドが分解し、効率よく抗癌剤をリリースすることが報告されている。目的は抗癌剤のリリースであり、細胞の空胞を抑制する目的でポリエチレングリコールに分解性を付与するものではない。
 非特許文献4には、酵素によって分解するオリゴペプチド部位を有した架橋分子と多分岐型のポリエチレングリコール誘導体を用いたハイドロゲルに関する記載がなされている。ここではオリゴペプチドは多分岐型のポリエチレングリコール誘導体を繋ぎ合わせる架橋分子として用いられ、さらに酵素による分解性をハイドロゲルに付与することができる。目的は分解性のハイドロゲルの調製であり、細胞の空胞を抑制する目的でポリエチレングリコールに分解性を付与するものではない。
 特許文献3には、オリゴペプチドを骨格とした分岐型のポリエチレングリコール誘導体に関する記載がなされている。ここではオリゴペプチドは、ポリエチレングリコール誘導体の基本骨格として用いられており、酵素による分解性を付与するものではない。また、オリゴペプチドにリジンやアスパラギン酸など、側鎖にアミノ基やカルボキシル基を有したアミノ酸を含むことが特徴であり、それらを反応に利用した分岐型のポリエチレングリコール誘導体を合成することが目的である。細胞の空胞を抑制する目的のポリエチレングリコール誘導体ではない。
 さらに生体関連物質を修飾する用途に用いられるポリエチレングリコール誘導体においては、一般的に直鎖型と分岐型があり、非特許文献5には、直鎖型よりも分岐型のほうが有意に生体関連物質の血中半減期を延長させるとの記載がある。近年、上市されたポリエチレングリコール修飾製剤のほとんどは分岐型が採用されている。しかし、これまで当該分野において、細胞の空胞を抑制する分岐型のポリエチレングリコール誘導体に関する報告はない。
 以上のように、血中では安定で、修飾した生体関連物質の血中半減期を改善し、細胞に取り込まれた際に細胞内で特異的に分解して、細胞の空胞の発生を抑制することができる分岐型の高分子量のポリエチレングリコール誘導体が求められている。
特表2009-527581号公報 国際公開第2005/108463号 国際公開第2006/088248号
EMA/CHMP/SWP/647258/2012 Daniel G. Rudmann, et al.,Toxicol. Pathol., 41, 970-983(2013) Francesco M Veronese, et al., Bioconjugate Chem., 16, 775-784(2005) Jiyuan Yang, et al., Marcomol. Biosci., 10(4), 445-454(2010) Yulia Vugmeysterang, et al., Bioconjugate Chem., 23, 1452-1462(2012)
 本発明の課題は、細胞の空胞を引き起こさない高分子量の分岐型ポリエチレングリコール誘導体を提供することにある。より具体的には、生体関連物質を修飾する用途に効果的に用いることができ、生体内の血中で安定であり、且つ細胞内で分解される分岐型分解性ポリエチレングリコール誘導体を、工業的に生産可能な製法にて提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、細胞内にて分解するオリゴペプチドを有した分岐型の分解性ポリエチレングリコール誘導体を発明した。
 即ち、本発明は以下に示すとおりである。
 [1]下式(1):
Figure JPOXMLDOC01-appb-C000005
(式中、nは45~950であり、Wはグルタミン酸を中心とした対称構造の5~47残基のオリゴペプチドであり、aは2~8であり、Xは生体関連物質と反応可能な官能基であり、ならびにLおよびLはそれぞれ独立して、2価のスペーサーである。)で示される分解性ポリエチレングリコール誘導体。
 [2]Wのグルタミン酸を中心とした対称構造のオリゴペプチドが、以下のw1、w2またはw3の構造を有するオリゴペプチドである[1]記載の分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式中、Gluはグルタミン酸の残基であり、およびZはシステインを除く中性アミノ酸からなる2~5残基の分解性オリゴペプチドである。)
[3]Zの分解性オリゴペプチドが、C末端のアミノ酸としてグリシンを有するオリゴペプチドである[2]記載の分解性ポリエチレングリコール誘導体。
[4]Zの分解性オリゴペプチドが、ハイドロパシー指標が2.5以上である疎水性の中性アミノ酸を少なくとも1つ有するオリゴペプチドである[2]または[3]のいずれかに記載の分解性ポリエチレングリコール誘導体。
[5]総分子量が20,000以上である[1]~[4]のいずれかに記載の分解性ポリエチレングリコール誘導体。
[6]Lがカルボニル基、ウレタン結合、アミド結合、エーテル結合、チオエーテル結合、2級アミノ基、またはウレア結合;またはこれらの結合および/または基を含んでいてもよいアルキレン基である[1]~[5]のいずれかに記載の分解性ポリエチレングリコール誘導体。
[7]Lがアルキレン基;またはカルボニル基、ウレタン結合、アミド結合、エーテル結合、チオエーテル結合、2級アミノ基、およびウレア結合から選択される少なくとも一つの結合および/または基を含むアルキレン基である[1]~[6]のいずれかに記載の分解性ポリエチレングリコール誘導体。
[8]Xが活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシド基、マレイミド基、置換マレイミド基、ビニルスルホニル基、アクリル基、置換スルホネート基、スルホニルオキシ基、カルボキシル基、メルカプト基、ピリジルジチオ基、α-ハロアセチル基、アルキルカルボニル基、ヨードアセトアミド基、アルケニル基、アルキニル基、置換アルキニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基からなる群より選択される、[1]~[7]のいずれかに記載の分解性ポリエチレングリコール誘導体。
 本発明の分岐型分解性ポリエチレングリコール誘導体は、生体内の血中では安定であり、細胞内の酵素によって分解するオリゴペプチドを構造内に有している。そのため、当該分解性ポリエチレングリコール誘導体は、血中では安定であり、従来の分解性を有さないポリエチレングリコール誘導体と同等の血中半減期を生体関連物質に付与することができる。さらに、当該分解性ポリエチレングリコール誘導体は、細胞内に取り込まれた場合、オリゴペプチド部位が速やかに分解されるため、これまで課題とされていた細胞の空胞の発生を抑制することができる。また、分解性ポリエチレングリコール誘導体を構成するオリゴペプチドは、グルタミン酸を中心とした対称構造を有しており、すべてのポリエチレングリコール鎖の末端に同一の分解性オリゴペプチドZが結合することになる。そのため細胞内での分解時に生じるポリエチレングリコール分解物は同一分子量、同一構造のものとなり、組織や細胞からの排出が均一になる特徴を有する。
 ポリエチレングリコールによる細胞の空胞化は、ポリエチレングリコールの分子量が大きいほど発生する可能性が高くなるため、分解性ポリエチレングリコールは、細胞内でより小さい分子量に分解される分子設計が望ましい。しかし、分子量の小さいポリエチレングリコールを分解性オリゴペプチドで逐次的に繋ぎ合わせて高分子量の分解性ポリエチレングリコールを製造する場合、工程数が多くなる。また、2種類の異なる官能基を有したポリエチレングリコールを原料にする必要があり、副生する不純物も複雑になるため工業的な生産には不向きである。一方で、本発明の分岐型分解性ポリエチレングリコールは、安価で容易に入手可能なメトキシポリエチレングリコール誘導体を原料とし、それに分解性オリゴペプチドを結合させ、その後、グルタミン酸誘導体との反応で一度に2本のポリエチレングリコール鎖を構造に導入できることから、その製造において大きく工程数を削減することが可能である。また、オリゴペプチドのC末端のアミノ酸としてグリシンを用いることで、製造工程中で発生する不純物を低減させることができ、それにより、本発明の分岐型分解性ポリエチレングリコール誘導体を工業的に製造することが可能となる。
実施例1の化合物(p3)(NH ―E(FG-200ME) )のGPC分析結果を示す。 実施例8の細胞を用いた分解性試験において、細胞内から回収した化合物(p3)(NH ―E(FG-200ME) )のGPC分析結果を示す。 実施例5の化合物(p13)(NH ―E{E(FG-100ME) )のGPC分析結果を示す。 実施例8の細胞を用いた分解性試験において、細胞内から回収した化合物(p13)(NH ―E{E(FG-100ME) )のGPC分析結果を示す。 実施例9のメトキシPEGアミン40kDaを長期投与したマウスの脳脈絡叢の切片の画像(矢印は空胞を示す)を示す。 実施例9の化合物(p3)(NH ―E(FG-200ME) )を長期投与したマウスの脳脈絡叢の切片の画像を示す。 実施例10のPBS、メトキシPEGアミン40kDa、メトキシPEGアミン20kDa、化合物(p3)(NH ―E(FG-200ME) )を長期投与したマウスの脳脈絡叢の切片の画像(染色された部分がPEGの蓄積を示す)を示す。 実施例11の放射性同位体をラベル化したNH―E(FG-200ME)、2分岐型PEGアミン40kDa、2分岐型PEGアミン20kDaの体内動態結果(血中濃度)を示す。
 以下、本発明を詳細に説明する。
 本発明に係る分解性ポリエチレングリコール誘導体は、下式(1)で示される。
Figure JPOXMLDOC01-appb-C000009
(式中、nは45~950であり、Wはグルタミン酸を中心とした対称構造の5~47残基のオリゴペプチドであり、aは2~8であり、Xは生体関連物質と反応可能な官能基であり、ならびにLおよびLはそれぞれ独立して、2価のスペーサーである。)
 本発明の式(1)のポリエチレングリコール誘導体の総分子量は、通常は4,000~160,000であり、好ましくは10,000~120,000であり、更に好ましくは20,000~80,000である。本発明の1つの好ましい実施形態では、本発明の式(1)のポリエチレングリコール誘導体の総分子量は20,000以上である。ここでいう分子量とは数平均分子量(Mn)である。
 式(1)中のnは、ポリエチレングリコールの繰り返しユニット数であり、通常は45~950であり、好ましくは110~690であり、更に好ましくは220~460である。
 式(1)中のaは、オリゴペプチドと結合しているポリエチレングリコール鎖の本数であり、通常は2~8であり、好ましくは2または4または8であり、更に好ましくは2または4である。
 式(1)中のLおよびLは、それぞれ独立して、2価のスペーサーであり、これらのスペーサーは共有結合を形成し得る基であれば特に制限は無いが、Lは、好ましくはアミド結合、エーテル結合、チオエーテル結合、ウレタン結合、2級アミノ基、カルボニル基、またはウレア結合;またはこれらの結合および/または基を含んでいてもよいアルキレン基である。
 また、Lは、好ましくはアルキレン基;またはアミド結合、エーテル結合、チオエーテル結合、ウレタン結合、2級アミノ基、カルボニル基、およびウレア結合から選択される少なくとも一つの結合および/または基を含むアルキレン基である。Lは、ポリエチレングリコールの繰り返しユニットに炭素原子で結合しているものが好ましい。
 LおよびLの特に好ましい態様は、下記の群(I)に示されるものである。また、群(I)のスペーサーを2つから5つ組み合わせても良い。2価のスペーサーとしてエステル結合とカーボネート結合は生体内の血中で徐々に分解するため適さない。
 群(I):
Figure JPOXMLDOC01-appb-C000010
 (z1)~(z11)において、式中のsは0~10の整数を示し、好ましくは0~6の整数、更に好ましくは0~3の整数を示す。また、(z2)~(z11)において、式中のsは同一でも、異なっていてもよい。Lが、非対称な2価のスペーサーの場合、隣接する他の基との結合位置は特に限定されず、上記群(I)の前記式で表されるスペーサーの右側がWとの結合位置を示し、左側がXとの結合位置を示す場合と、左側がWとの結合位置を示し、右側がXとの結合位置を示す場合の両結合位置を取り得る。同様に、Lが、非対称な2価のスペーサーの場合も、上記群(I)の前記式で表されるスペーサーの右側がOCHCHとの結合位置を示し、左側がWとの結合位置を示す場合と、左側がOCHCHとの結合位置を示し、右側がWとの結合位置を示す場合の両結合位置を取り得る。
 式(1)中のLとしては、群(I)の(z3)、(z4)、(z6)、(z7)、(z8)、(z9)または(z10)で示される基が好ましく、(z3)、(z6)、(z9)または(z10)で示される基がより好ましい。
 式(1)中のLとしては、群(I)の(z1)、(z2)、(z3)、(z4)、(z5)、(z6)、(z7)、(z8)または(z11)で示される基が好ましく、(z3)、(z5)または(z11)で示される基がより好ましい。
 式(1)中のWは、グルタミン酸を中心とした対称構造の5~47残基のオリゴペプチドであり、生体内の血中で安定であり、かつ細胞内の酵素で分解するオリゴペプチドであれば特に制限はないが、オリゴペプチドを構成するアミノ酸としては、中心部分を構成するグルタミン酸以外は、システインを除く中性アミノ酸からなることが好ましい。ここでいうグルタミン酸を中心とした対称構造のオリゴペプチドとは、グルタミン酸のα位のカルボキシル基とγ位のカルボキシル基に同一のペプチドが結合した化合物を意味し、グルタミン酸を中心に対となるペプチドが対称構造をとるオリゴペプチドである。当該オリゴペプチド中の中性アミノ酸とグルタミン酸の数の構成比(中性アミノ酸の数/グルタミン酸の数)としては、通常は2~10であり、好ましくは2~8であり、更に好ましくは2~6である。Wを構成するアミノ酸は基本的にはL型である。
Wの特に好ましい態様は、下記の群(II)に示されるものである。
 群(II):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式中、Gluはグルタミン酸の残基であり、およびZはシステインを除く中性アミノ酸からなる2~5残基の分解性オリゴペプチドである。)
 (w1)~(w3)中のZは、側鎖にアミノ基やカルボキシル基を持つアミノ酸、具体的には、リジン、アスパラギン酸、またはグルタミン酸を含まない中性アミノ酸で構成されるオリゴペプチドであることが好ましい。本発明の式(1)の分岐型分解性ポリエチレングリコール誘導体の合成においては、原料であるポリエチレングリコール誘導体とオリゴペプチドを反応にて結合させる際、オリゴペプチドのC末端のカルボキシル基をポリエチレングリコール誘導体との縮合反応に利用する。しかし、当該オリゴペプチドが側鎖にアミノ基やカルボキシル基を持つアミノ酸を有する場合、縮合反応にてオリゴペプチド同士の副反応や、ポリエチレングリコール誘導体が目的であるC末端のカルボキシル基ではなく、側鎖のカルボキシル基にも導入した不純物が発生する。
 この不純物は通常の抽出や晶析などの精製工程で除去することは難しいため、純度よく目的物を得るためには、側鎖にアミノ基やカルボキシル基を持たないアミノ酸からなるオリゴペプチドを用いることが望ましい。Zを構成するアミノ酸は、α-アミノ酸であり、また基本的にはL型である。
 中性アミノ酸であるシステインはメルカプト基を有しており、他のメルカプト基とジスルフィド結合を形成するため、(w1)~(w3)中のZは、システインを含まない中性アミノ酸からなるオリゴペプチドであることが好ましい。
 加えて、(w1)~(w3)中のZは、C末端のアミノ酸としてグリシンを有するオリゴペプチドであることが好ましい。C末端のカルボキシル基とポリエチレングリコール誘導体を反応させる際は、基本的にC末端のカルボキシル基を縮合剤などで活性化する必要がある。この活性化の工程にて、グリシン以外のアミノ酸ではエピメリ化が起こりやすく、立体異性体が副生することが知られている。オリゴペプチドのC末端のアミノ酸をアキラルなグリシンとすることで、立体異性体の副生の無い、高純度な目的物を得ることができる。
 さらに、(w1)~(w3)中のZは、ハイドロパシー指標が2.5以上である疎水性の中性アミノ酸、具体的には、フェニルアラニン、ロイシン、バリン、イソロイシンを少なくとも1つ有するオリゴペプチドであることが好ましく、フェニルアラニンを有するオリゴペプチドであることが更に好ましい。Kyte と Doolittleにより作成された、アミノ酸の疎水性を定量的に示すハイドロパシー指標(hydropathy index)は、値が大きいほど疎水的なアミノ酸であることを示す(Kyte J & Doolittle RF, 1982, J Mol Biol, 157:105-132.)。
 (w1)~(w3)中のZは、生体内の血中で安定であり、かつ細胞内の酵素で分解する性能を有し、システインを除く中性アミノ酸からなる2~5残基のオリゴペプチドであれば特に制限は無いが、具体的な例としては、グリシン-フェニルアラニン-ロイシン-グリシン、グリシン-グリシン-フェニルアラニン-グリシン、グリシン-フェニルアラニン-グリシン、グリシン-ロイシン-グリシン、バリン-シトルリン-グリシン、バリン-アラニン-グリシン、フェニルアラニン-グリシンなどであり、好ましくはグリシン-フェニルアラニン-ロイシン-グリシン、グリシン-グリシン-フェニルアラニン-グリシン、グリシン-フェニルアラニン-グリシン、バリン-シトルリン-グリシン、バリン-アラニン-グリシン、またはフェニルアラニン-グリシンであり、より好ましくはグリシン-フェニルアラニン-ロイシン-グリシン、グリシン-フェニルアラニン-グリシン、バリン-シトルリン-グリシン、またはフェニルアラニン-グリシンであり、さらにより好ましくはグリシン-フェニルアラニン-ロイシン-グリシン、またはフェニルアラニン-グリシンである。
 式(1)中のXは、化学修飾の対象となる生理活性タンパク質、ペプチド、抗体、核酸などの生体関連物質に存在する官能基と反応して共有結合を形成する官能基であれば特に制限されない。例えば、「Harris, J. M. Poly(Ethylene Glycol) Chemistry; Plenum Press: New York, 1992」、「Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic Press: San Diego, CA, 2008」および「PEGylated Protein Drugs: Basic Science and Clinical Applications; Veronese, F. M., Ed.; Birkhauser: Basel, Switzerland,2009」などに記載されている官能基が挙げられる。
 式(1)中のXで示される「生体関連物質と反応可能な官能基」は、生体関連物質が有するアミノ基、メルカプト基、アルデヒド基、カルボキシル基、不飽和結合またはアジド基などの官能基と化学結合可能な官能基であれば特に制限されない。
 具体的には、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシド基、カルボキシル基、メルカプト基、マレイミド基、置換マレイミド基、ヒドラジド基、ピリジルジチオ基、置換スルホネート基、ビニルスルホニル基、アミノ基、オキシアミノ基(HN-O-基)、ヨードアセトアミド基、アルキルカルボニル基、アルケニル基(例えば、アリル基、ビニル基)、アルキニル基、置換アルキニル基(例えば、後記の炭素数1~5の炭化水素基で置換されたアルキニル基)、アジド基、アクリル基、スルホニルオキシ基(例えば、アルキルスルホニルオキシ基)、α-ハロアセチル基などが挙げられ、好ましくは、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシド基、マレイミド基、置換マレイミド基、ビニルスルホニル基、アクリル基、スルホニルオキシ基(例えば、炭素数1~5のアルキル-スルホニルオキシ基)、置換スルホネート基、カルボキシル基、メルカプト基、ピリジルジチオ基、α-ハロアセチル基、アルキニル基、置換アルキニル基(例えば、後記の炭素数1~5の炭化水素基で置換された炭素数2~5のアルキニル基)、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基であり、より好ましくは活性エステル基、活性カーボネート基、アルデヒド基、マレイミド基、オキシアミノ基およびアミノ基であり、特に好ましくはアルデヒド基、マレイミド基およびオキシアミノ基である。
 別の好適な実施形態において、かかる官能基Xは、下記の群(III)、群(IV)、群(V)、群(VI)、群(VII)および群(VIII)に分類することができる。
 群(III):生体関連物質が有するアミノ基と反応可能な官能基
 下記の (a)、(b)、(c)、(d)、(e)、(f)、(g)、(j)、または(k)で示される基が挙げられる。
 群(IV):生体関連物質が有するメルカプト基と反応可能な官能基
 下記の(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)、(j)、(k)、または(l)で示される基が挙げられる。
 群(V):生体関連物質が有するアルデヒド基と反応可能な官能基
 下記の(h)、(m)、(n)、または(p)で示される基が挙げられる。
 群(VI):生体関連物質が有するカルボキシル基と反応可能な官能基
 下記の(h)、(m)、(n)、または(p)で示される基が挙げられる。
 群(VII):生体関連物質が有する不飽和結合と反応可能な官能基
 下記の(h)、(m)、または(o)で示される基が挙げられる。
 群(VIII):生体関連物質が有するアジド基と反応可能な官能基
 下記の(l)で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 官能基(j)において、式中のWは塩素原子(Cl)、臭素原子(Br)またはヨウ素原子(I)などのハロゲン原子を示し、好ましくはBr、またはI、より好ましくはIである。
 また、官能基(e)および官能基(l)において、式中のYおよびYは、それぞれ独立して、水素原子または炭素数1~5の炭化水素基を示し、好ましくは炭素数1~5の炭化水素基である。炭素数1~5の炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第三ブチル基などが挙げられ、好ましくはメチル基、またはエチル基である。
 また、官能基(k)において、式中のYはフッ素原子を含んでいてもよい炭素数が1~10の炭化水素基を示し、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第三ブチル基、ヘキシル基、ノニル基、ビニル基、フェニル基、ベンジル基、4-メチルフェニル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、4-(トリフルオロメトキシ)フェニル基などが挙げられ、好ましくはメチル基、ビニル基、4-メチルフェニル基、または2,2,2-トリフルオロエチル基である。
 活性エステル基とは、脱離能の高いアルコキシ基を有したエステル基である。脱離能の高いアルコキシ基としては、ニトロフェノール、N-ヒドロキシスクシンイミド、ペンタフルオロフェノールなどから誘導されるアルコキシ基が挙げられる。活性エステル基は、好ましくはN-ヒドロキシスクシンイミドから誘導されるアルコキシ基を有したエステル基である。
 活性カーボネート基とは、脱離能の高いアルコキシ基を有したカーボネート基である。脱離能の高いアルコキシ基としては、ニトロフェノール、N-ヒドロキシスクシンイミド、ペンタフルオロフェノールなどから誘導されるアルコキシ基が挙げられる。活性カーボネート基は、好ましくはニトロフェノールまたはN-ヒドロキシスクシンイミドから誘導されるアルコキシ基を有したカーボネート基である。
 置換マレイミド基とは、マレイミド基の二重結合の片方の炭素原子に炭化水素基が結合しているマレイミド基である。炭化水素基は、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第三ブチル基などが挙げられ、好ましくはメチル基、またはエチル基である。
 置換スルホネート基とは、スルホネート基の硫黄原子にフッ素原子を含んでいてもよい炭化水素基が結合しているスルホネート基である。フッ素原子を含んでいてもよい炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第三ブチル基、ヘキシル基、ノニル基、ビニル基、フェニル基、ベンジル基、4-メチルフェニル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、4-(トリフルオロメトキシ)フェニル基などが挙げられ、好ましくはメチル基、ビニル基、4-メチルフェニル基、または2,2,2-トリフルオロエチル基である。
 式(1)の好ましい態様の1つは、Wがw1であり、およびa=2の下式(2)で示される2分岐型の分解性ポリエチレングリコール誘導体である。
Figure JPOXMLDOC01-appb-C000015
(式中、Glu、Z、n、X、LおよびLは、前記と同義である。)
 式(1)の好ましい態様の1つは、Wがw2であり、およびa=4の下式(3)で示される4分岐型の分解性ポリエチレングリコール誘導体である。
Figure JPOXMLDOC01-appb-C000016
(式中、Glu、Z、n、X、LおよびLは、前記と同義である。)
 式(1)の好ましい態様の1つは、Wがw3であり、およびa=8の下式(4)で示される8分岐型の分解性ポリエチレングリコール誘導体である。
Figure JPOXMLDOC01-appb-C000017
(式中、Glu、Z、n、X、LおよびLは、前記と同義である。)
 本発明の分岐型分解性ポリエチレングリコール誘導体は、例えば、次のような工程を経て製造することができる。
Figure JPOXMLDOC01-appb-C000018
(工程中のPEGはポリエチレングリコール鎖であり、Peptideはオリゴペプチドであり、Proは保護基であり、およびLは2価のスペーサーである。)
 工程中のPEGは、ポリエチレングリコール鎖であり、分子量は、前記したポリエチレングリコールの繰り返しユニット数であるnで定義したとおりであり、つまりnが45~950であることから、その分子量の範囲は、2000~42000である。
 工程中のPeptideは、前記Zと同義のオリゴペプチドである。本工程ではN末端のアミノ基が保護基で保護されたオリゴペプチドを用いる。
 工程中のProは、保護基であり、ここで保護基とは、ある反応条件下で分子中の特定の化学反応可能な官能基の反応を防止または阻止する成分である。保護基は、保護される化学反応可能な官能基の種類、使用される条件および分子中の他の官能基もしくは保護基の存在により変化する。保護基の具体的な例は多くの一般的な成書に見出すことができるが、例えば「Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic Synthesis, 4th ed.; Wiley-Interscience: New York, 2007」に記載されている。また、保護基で保護された官能基は、それぞれの保護基に適した反応条件を用いて脱保護、すなわち化学反応させることで、元の官能基を再生させることができる。保護基の代表的な脱保護条件は前述の文献に記載されている。
 工程中のLは、前記L、およびLと同義の2価のスペーサーである。
 反応Aは、N末端のアミノ基が保護基で保護されたオリゴペプチドのカルボキシル基と、片末端がメトキシ基であるポリエチレングリコール誘導体のアミノ基を縮合反応にて結合させ、ポリエチレングリコール誘導体(1)を得る工程である。
 オリゴペプチドのN末端のアミノ基の保護基は、特に制限は無いが、例えばアシル系保護基およびカーバメート系保護基が挙げられ、具体的にはトリフルオロアセチル基、9-フルオレニルメチルオキシカルボニル基(Fmoc)、tert-ブチルオキシカルボニル基などが挙げられる。
 縮合反応としては、特に制限は無いが、縮合剤を用いる反応が望ましい。縮合剤としては、ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)などのカルボジイミド系の縮合剤を単独で使用しても良く、N-ヒドロキシスクシンイミド(NHS)、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)などの試薬と併用しても良い。また、より反応性の高いHATUやHBTU、TATU,TBTU、COMU、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドn水和物(DMT-MM)などの縮合剤を使用しても良い。また反応を促進するため、トリエチルアミンやジメチルアミノピリジンなどの塩基を用いても良い。
 反応で副生した不純物、または反応で消費されず残存したオリゴペプチドや縮合剤などは、精製除去を行うのが好ましい。精製は、特に制限されないが、抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出などで精製することができる。
Figure JPOXMLDOC01-appb-C000019
 脱保護Bは、反応Aで得られたポリエチレングリコール誘導体(1)の保護基を脱保護して、ポリエチレングリコール誘導体(2)を得る工程である。脱保護反応としては、従来公知の方法を用いることができるが、オリゴペプチドやLの2価のスペーサーが分解しない条件を用いる必要がある。また、本工程は、反応Aの工程の一環として実施することも可能である。
 脱保護反応で副生した不純物などは、精製除去を行うのが好ましい。精製は、特に制限されないが、抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出などで精製することができる。
Figure JPOXMLDOC01-appb-C000020
 反応Cは、脱保護Bで得られたポリエチレングリコール誘導体(2)のアミノ基と、アミノ基が保護基で保護されたグルタミン酸誘導体の二つのカルボキシル基を縮合反応で結合させ、2本の分解性ポリエチレングリコール鎖がグルタミン酸残基で繋がれた構造である分岐型のポリエチレングリコール誘導体(3)を得る工程である。
 前記反応Aと同様に、縮合剤を用いた反応が望ましく、反応を促進するため、トリエチルアミンやジメチルアミノピリジンなどの塩基を用いても良い。
 グルタミン酸のアミノ基の保護基は、特に制限は無いが、例えばアシル系保護基およびカーバメート系保護基が挙げられ、具体的にはトリフルオロアセチル基、9-フルオレニルメチルオキシカルボニル基(Fmoc)、tert-ブチルオキシカルボニル基などが挙げられる。
 反応で副生した不純物、または反応で消費されず残存したポリエチレングリコール誘導体などは、精製除去を行うのが好ましい。精製は、特に制限されないが、抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出などで精製することができる。
Figure JPOXMLDOC01-appb-C000021
 脱保護Dは、反応Cで得られたポリエチレングリコール誘導体(3)の保護基を脱保護して、ポリエチレングリコール誘導体(4)を得る工程である。脱保護反応としては、従来公知の方法を用いることができるが、オリゴペプチドやLの2価のスペーサーが分解しない条件を用いる必要がある。また、本工程は、反応Cの工程の一環として実施することも可能である。
 脱保護反応で副生した不純物などは、精製除去を行うのが好ましい。精製は、特に制限されないが、抽出、再結晶、吸着処理、再沈殿、カラムクロマトグラフィー、超臨界抽出などで精製することができる。
Figure JPOXMLDOC01-appb-C000022
 反応Eは、脱保護Dで得られたポリエチレングリコール誘導体(4)のアミノ基と、アミノ基が保護基で保護されたグルタミン酸誘導体の二つのカルボキシル基を縮合反応で結合させ、4本の分解性ポリエチレングリコール鎖がグルタミン酸残基で繋がれた構造である分岐型のポリエチレングリコール誘導体(5)を得る工程である。
 前記反応Cと同条件で反応と精製が可能である。
 ポリエチレングリコール誘導体(5)の中から、分子量や官能基の異なるポリエチレングリコール不純物を除去する手法としては、特開2014-208786号公報、または特開2011-79934号公報に記載の精製技術を用いることができる。
Figure JPOXMLDOC01-appb-C000023
 脱保護Fは、反応Eで得られたポリエチレングリコール誘導体(5)の保護基を脱保護して、ポリエチレングリコール誘導体(6)を得る工程である。脱保護反応としては、従来公知の方法を用いることができるが、オリゴペプチドやLの2価のスペーサーが分解しない条件を用いる必要がある。前記脱保護Dと同条件で反応と精製が可能である。また、本工程は、反応Eの工程の一環として実施することも可能である。
Figure JPOXMLDOC01-appb-C000024
 反応Gは、脱保護Fで得られたポリエチレングリコール誘導体(6)のアミノ基と、アミノ基が保護基で保護されたグルタミン酸誘導体の二つのカルボキシル基を縮合反応で結合させ、8本の分解性ポリエチレングリコール鎖がグルタミン酸残基で繋がれた構造である分岐型のポリエチレングリコール誘導体(7)を得る工程である。
 前記反応Cと同条件で反応と精製が可能である。
Figure JPOXMLDOC01-appb-C000025
 脱保護Hは、反応Gで得られたポリエチレングリコール誘導体(7)の保護基を脱保護して、ポリエチレングリコール誘導体(8)を得る工程である。前記脱保護Fと同条件で反応と精製が可能である。また、本工程は、反応Gの工程の一環として実施することも可能である。
 以上の反応A、脱保護B、反応Cおよび脱保護Dを行うことにより、2分岐型の分解性ポリエチレングリコール誘導体(4)が得られる。2分岐型の分解性ポリエチレングリコール誘導体(4)を原料として、続けて反応Eおよび脱保護Fを行うことにより、4分岐型の分解性ポリエチレングリコール誘導体(6)が得られる。さらに続けて反応Gおよび脱保護Hを行うことにより、8分岐型の分解性ポリエチレングリコール誘導体(8)が得られる。
 脱保護D、脱保護Fおよび脱保護Hで得られたポリエチレングリコール誘導体(4)、(6)および(8)は、いずれもアミノ基を1つ有しており、これを利用して様々な官能基に変換が可能である。
 ポリエチレングリコール誘導体の末端のアミノ基を他の官能基に変換する工程については、特に制限は無いが、基本的には、アミノ基と反応可能な活性エステル基を有した化合物、または酸無水物、酸クロライドなどの一般的な反応試薬を用いることで、様々な官能基に容易に変換することが出来る。
 例えば、ポリエチレングリコール誘導体の末端のアミノ基をマレイミド基に変換したい場合は、以下のような試薬と反応させることで、目的物を得ることができる。
Figure JPOXMLDOC01-appb-C000026
 例えば、ポリエチレングリコール誘導体の末端のアミノ基をカルボキシル基に変換したい場合は、無水コハク酸や無水グルタル酸と反応させることで、目的物を得ることができる。
 例えば、ポリエチレングリコール誘導体の末端のアミノ基を水酸基に変換したい場合は、カプロラクトンなどの環状エステルの開環物と縮合反応させることで、目的物を得ることができる。
 これら反応試薬は、低分子量の試薬であり、高分子量のポリマーであるポリエチレングリコール誘導体とは大きく溶解性が異なるため、抽出や晶析などの一般的な精製方法にて容易に除去が可能である。
 以上のような工程を経て、得られた分解性ポリエチレングリコールは、血中で安定であり、細胞内でのみ分解する性能を有することが求められる。その性能を適切に評価するため、例えば、以下に示すような試験を実施し、分解性ポリエチレングリコールの血中での安定性、そして細胞内での分解性を評価することができる。
 なお、これらの評価においてポリエチレングリコール誘導体が有する官能基の種類による影響を考慮し、評価試料はすべて、アミノ基を1つ有したポリエチレングリコール誘導体に統一して試験を実施した。
 分解性ポリエチレングリコール誘導体の血中での安定性を評価するための試験方法については、特に制限は無いが、例えば、マウス、ラット、ヒトなどの血清を用いた試験などが挙げられる。具体的には、ポリエチレングリコール誘導体を1~10mg/mLの濃度になるように血清に溶解し、37℃で96時間インキュベート後、血清中に含まれるポリエチレングリコール誘導体を回収し、GPCを測定することで分解率を評価することができる。分解率は、安定性試験前のポリエチレングリコール誘導体のGPCメインフラクションのピーク面積%と、安定性試験後のポリエチレングリコール誘導体のGPCメインフラクションのピーク面積%から算出する。具体的には以下の式を用いる。
分解率 = (試験前のピーク面積% - 試験後のピーク面積%) ÷ 試験前のピーク面積% × 100
 例えば、安定性試験前の分解性ポリエチレングリコール誘導体のGPCメインフラクションのピーク面積%が95%であり、試験後のGPCメインフラクションのピーク面積%が90%だったとすると、分解率は以下のように算出される。
分解率 = (95-90)÷95×100 = 5.26(%)
 分解性ポリエチレングリコール誘導体は、血中で分解してしまうと、目的とする血中半減期を得ることができないため、安定性試験において、96時間後の分解率は、10%以下が好ましく、5%以下がさらに好ましい。
 分解性ポリエチレングリコール誘導体の細胞内での分解性を評価するための試験方法については、特に制限は無いが、例えば、分解性ポリエチレングリコール誘導体を含有した培地を用いて、細胞を培養させる試験などが挙げられる。ここで使用する細胞や培地については、特に制限は無いが、具体的には、ポリエチレングリコール誘導体を1~20mg/mLの濃度になるように培地であるRPMI-1640に溶解し、この培地を用いて、マクロファージ細胞RAW264.7を37℃で96時間培養後、細胞中のポリエチレングリコール誘導体を回収し、GPCを測定することで分解率を評価することができる。分解率は、安定性試験と同様に、試験前後のポリエチレングリコール誘導体のGPCメインフラクションのピーク面積%を用いて算出する。
 例えば、細胞を用いた分解性試験前の分解性ポリエチレングリコール誘導体のGPCメインフラクションのピーク面積%が95%であり、試験後のGPCメインフラクションのピーク面積%が5%だったとすると、分解率は以下のように算出される。
分解率 = (95-5)÷95×100 = 94.7(%)
 分解性ポリエチレングリコール誘導体は、細胞内で効率よく分解されないと、目的とする細胞の空胞を抑制できないため、分解性試験において、96時間後の分解率は、90%以上が好ましく、95%以上がさらに好ましい。
 分解性ポリエチレングリコール誘導体の血中半減期や体内分布を評価するための試験方法については、特に制限は無いが、例えば、放射性同位体や蛍光物質をラベル化し、マウスやラットに投与して、モニタリングする試験などが挙げられる。
 ポリエチレングリコール誘導体に導入した分解性ペプチドは、ポリエチレングリコールに細胞内での分解性を付与するが、そのペプチド構造によってポリエチレングリコールの体内動態を変化させる可能性が考えられる。そこで、導入したペプチド構造の体内動態への影響を確認するため、血中半減期および、その体内分布について、分解性を持たない同分子量のポリエチレングリコール誘導体と比較する必要がある。具体的には、放射性同位体でラベル化した分解性を持たないポリエチレングリコール誘導体と、分解性ポリエチレングリコール誘導体を、マウスに投与し、複数のタイムポイントで、血液、各臓器の放射線量を測定し、定量測定を行うことができる。
 分解性ポリエチレングリコール誘導体の細胞の空胞抑制を評価するための試験方法については、特に制限は無いが、例えば、非特許文献2に記載があるように、長期間、高頻度、および高投与量でマウスやラットに投与を続け、空胞が発生しやすいといわれている臓器や器官の切片画像を確認する試験などが挙げられる。
 具体的には、ポリエチレングリコール誘導体を10~250mg/mLの濃度になるように生理食塩水に溶解し、マウス尾静脈より週3回、4週間以上、20~100μL投与を続け、空胞が発生しやすいといわれている器官である脳脈絡叢や脾臓などのパラフィン切片を作製して染色後、切片画像を病理学的手法により確認し、空胞抑制の評価を行うことができる。
 なお、本評価においてポリエチレングリコールの投与量は、当該技術分野における一般的なポリエチレングリコールの投与量と比べ、大過剰のポリエチレングリコールを投与する必要がある。
 非特許文献2では、高分子量のポリエチレングリコールによる細胞の空胞化は、ポリエチレングリコールの組織への蓄積と関係があるとの記載がある。分解性ポリエチレングリコール誘導体の細胞への蓄積性を評価するための試験方法については、特に制限は無いが、上記の空胞の評価と同じ方法で作成した切片画像より評価することができる。ポリエチレングリコールが蓄積しやすいといわれている器官である脳脈絡叢や脾臓などの染色した切片画像を病理学的手法により確認し、ポリエチレングリコールの蓄積性の評価を行うことができる。
 なお、本評価においてポリエチレングリコールの投与量は、当該技術分野における一般的なポリエチレングリコールの投与量と比べ、大過剰のポリエチレングリコールを投与する必要がある。
 下記実施例で得られたH-NMRは、日本電子デ-タム(株)製JNM-ECP400またはJNM-ECA600から得た。測定にはφ5mmチュ-ブを用い、重水素化溶媒には、DOまたは内部標準物質としてテトラメチルシラン(TMS)を含有するCDClおよびd-DMSOを用いた。得られたポリエチレングリコール誘導体の分子量およびアミン純度は、液体クロマトグラフィー(GPCおよびHPLC)を用いて算出した。液体クロマトグラフィーのシステムは、GPCには東ソー(株)製「HLC-8320GPC EcoSEC」を用い、HPLCにはWATERS製「ALLIANCE」を用いた。以下、GPCおよびHPLCの分析条件を示す。
GPC分析(分子量測定)
 標準ポリマー:分子量が、8,000、20,000、50,000および100,000のポリエチレングリコールを標準ポリマーとして使用してGPC分析による分子量測定を行った。
 検出器:示差屈折計
 カラム:ultrahydrogel500およびultrahydrogel250(WATERS製)
 移動相:100mM Acetate buffer+0.02%NaN(pH5.2)
 流速:0.5mL/min
 サンプル量:5mg/mL、20μL
 カラム温度:30℃
HPLC分析(アミン純度測定)
 検出器:示差屈折計
 カラム:TSKgel SP-5PW(東ソー(株)製)
 移動相:1mM Sodium phosphate buffer(pH6.5)
 流速:0.5mL/min
 注入量:5mg/mL、20μL
 カラム温度:40℃
[実施例1]
化合物(p3)(NH ―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000027
[実施例1-1]
Figure JPOXMLDOC01-appb-C000028
 N末端を9-フルオレニルメチルオキシカルボニル基(Fmoc基)で保護したL-フェニルアラニル-グリシン(Fmoc-Phe-Gly)(0.267g、6.0×10-4モル、渡辺化学工業(株)製)と末端にプロピルアミノ基を有するメトキシPEG(6.0g、2.8×10-4モル、数平均分子量=21,120、日油株式会社製「SUNBRIGHT MEPA-20T」)に脱水N,N’-ジメチルホルムアミド(60g)を添加し、30℃で加温溶解した。その後、ジイソプロピルエチルアミン(192μL、1.2×10-3モル、関東化学(株)製)と(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩(COMU)(0.321g、7.5×10-4モル、シグマアルドリッチ社製)を添加し、室温にて窒素雰囲気下で1時間反応させた。反応終了後、クロロホルム(600g)で希釈し、飽和炭酸水素ナトリウム水溶液(240g)を添加し、室温にて15分攪拌して洗浄を行った。水層と有機層を分離後、再度、有機層に飽和炭酸水素ナトリウム水溶液(240g)を添加し、室温にて15分攪拌して洗浄を行い、有機層を回収した。得られた有機層(クロロホルム溶液)に硫酸マグネシウム(2.4g)を添加し、30分攪拌して脱水した後、5Aろ紙の上にオプライトを敷いた桐山ロートを用いて吸引ろ過を行った。得られたろ液を40℃にて濃縮し、濃縮物に酢酸エチル(240g)を添加して均一になるように攪拌した後、ヘキサン(120g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、再度酢酸エチル(240g)に溶解し、ヘキサン(120g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、ヘキサン(120g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p1)(ME-200GF-Fmoc)を得た。収量5.1g。
H-NMR(d-DMSO):1.62ppm(m、2H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、2.80ppm(m、1H、-NH-CO-CH-CH -C)、3.04ppm(m、1H、-NH-CO-CH-CH -C)、3.10ppm(m、2H、-CO-NH-CH -CH-CH-O-(CH-CH-O)n-CH)、3.24ppm(s、3H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.48ppm(m、約1,900H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.20ppm(m、4H)、7.33ppm(m、9H)、7.66ppm(m、4H、Ar)、7.88ppm(d、2H、Ar)、8.27ppm(t、1H)
[実施例1-2]
Figure JPOXMLDOC01-appb-C000029
 実施例1-1で得られたME-200GF-Fmoc(4.9g、2.3×10-4モル)にN,N’-ジメチルホルムアミド(29.4g)を添加し、30℃で加温溶解した。ピペリジン(1.55g、1.8×10-2モル、和光純薬工業(株)製)を添加し、室温にて窒素雰囲気下で2時間反応させた。反応終了後、酢酸エチル(300g)を加えて均一になるまで攪拌し、ヘキサン(150g)を添加して、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、再度酢酸エチル(300g)に溶解し、ヘキサン(150g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、ヘキサン(150g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p2)(ME-200GF-NH )を得た。収量3.9g。
H-NMR(d-DMSO):1.62ppm(m、2H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、1.64ppm(broad、1H)、2.59ppm(dd、1H、-NH-CO-CH-CH -C)、2.98ppm(dd、1H、-NH-CO-CH-CH -C)、3.10ppm(q、2H、-CO-NH-CH -CH-CH-O-(CH-CH-O)n-CH)、3.24ppm(s、3H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.48ppm(m、約1,900H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、7.24ppm(m、6H、-NH-CO-CH-CH 、-NH-)、7.73ppm(t、1H)、8.12ppm(broad、1H)
[実施例1-3]
Figure JPOXMLDOC01-appb-C000030
 N末端をFmoc基で保護したL-グルタミン酸(Fmoc-Glu-OH)(16.0mg、4.3×10-5モル、渡辺化学工業(株)製)と実施例1-2で得られたME-200GF-NH(2.0g、1.0×10-4モル)に脱水N,N’-ジメチルホルムアミド(10g)を添加し、30℃で加温溶解した。その後、ジイソプロピルエチルアミン(19.2μL、1.1×10-4モル、関東化学(株)製)と4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドn水和物(DMT-MM)(39.0mg、1.1×10-4モル、和光純薬工業(株)製)を添加し、室温にて窒素雰囲気下で1時間反応した。その後、ピペリジン(0.5g、5.9×10-3モル、和光純薬工業(株)製)を添加し、室温にて窒素雰囲気下で2時間反応した。反応終了後、反応液をトルエン(80g)で希釈した後、ヘキサン(40g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、再度トルエン(80g)に溶解し、ヘキサン(40g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、ヘキサン(40g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p3)(NH ―E(FG-200ME) )を得た。収量1.6g。分子量を表1に示す。HPLC:アミン純度92%。
H-NMR(d-DMSO):1.54ppm(m、2H、-NH-CO-CH(NH)-CH -CH-)、1.62ppm(m、4H、-CO-NH-CHCH -CH-)、1.97ppm(m、2H、-NH-CO-CH(NH)-CHCH -)、2.74ppm(dd、1H、-CO-NH-CH-CH -C)、2.81ppm(dd、1H、-CO-NH-CH-CH -C)、3.11ppm(m、11H)、3.24ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.49ppm(m、1H、-CO-NH-CH-CH-C)、4.57ppm(m、1H、-CO-NH-CH-CH-C)、7.25ppm(m、10H、-CO-NH-CH-CH )、7.74ppm(m、2H)、8.44ppm(m、2H)、8.61ppm(m、2H)
[実施例2]
化合物(p4)(MA―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000031
 実施例1で得られた化合物(p3)(200mg、5.0×10-6モル)をアセトニトリル(160mg)およびトルエン(1.0g)に溶解した。その後、N-メチルモルホリン(10mg、1.0×10-5モル、関東化学(株)製)と3-マレイミドプロピオン酸 N-スクシンイミジル(8.0mg、3.0×10-5モル、大阪合成有機化学研究所(株)製)を添加し、室温にて窒素雰囲気下および遮光下で6時間反応した。反応終了後、反応液を2,6-ジ-tert-ブチル-p-クレゾ-ル(BHT)(10mg)含有の酢酸エチル(50g)で希釈した後、ヘキサン(25g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、BHT(5mg)含有のヘキサン(25g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p4)(MA―E(FG-200ME) )を得た。収量137mg。分子量を表1に示す。マレイミド純度は90%(H-NMR)であった。
H-NMR(d-DMSO): 1.62ppm(m、6H)、1.99ppm(m、2H、-NH-CO-CH(NH)-CHCH -)、2.34ppm(m、2H、-NH-CO-CH -CH-Maleimide)、2.75ppm(dd、1H、-CO-NH-CH-CH -C)、2.82ppm(dd、1H、-CO-NH-CH-CH -C)、3.11ppm(m、11H)、3.24ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.04ppm(m、2H、-NH-CO-CHCH -Maleimide)、4.49ppm(m、2H、-CO-NH-CH-CH-C)、6.98ppm(s、2H、-CO-CH-CH-CO-)、7.25ppm(m、10H、-CO-NH-CH-CH )、7.69ppm(dt、2H)、8.04ppm(d、1H)、8.29ppm(dd、2H)、8.41ppm(dt、2H)
[実施例3]
化合物(p8)(AL―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000032
[実施例3-1]
化合物(p5)(HO―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000033
 ε-カプロラクトン(114mg、1.0×10-3モル、東京化成工業(株)製)を1N NaOH(0.8mL、8.0×10-4モル、関東化学(株)製)に溶解し2時間反応させ、6-ヒドロキシカプロン酸水溶液(0.88M)を調製した。また、実施例1で得られた化合物(p3)(2.0g、5.0×10-5モル)をアセトニトリル(8.0g)に溶解した。その後、上記6-ヒドロキシカプロン酸水溶液(114μL、1.0×10-4モル)とジイソプロピルエチルアミン(20μL、1.2×10-4モル、関東化学(株)製)とDMT-MM(21mg、6.0×10-5モル、和光純薬工業(株)製)を上記(p3)のアセトニトリル溶液に添加し、室温にて窒素雰囲気下で1時間反応した。反応終了後、反応液を40℃にて濃縮し、得られた濃縮物にクロロホルム(24g)を添加して溶解した。飽和炭酸水素ナトリウム水溶液(10g)を添加し、室温にて15分攪拌して洗浄を行った。水層と有機層を分離後、再度、有機層に飽和炭酸水素ナトリウム水溶液(10g)を添加し、室温にて15分攪拌して洗浄を行い、有機層を回収した。得られた有機層(クロロホルム溶液)に硫酸マグネシウム(1.2g)を添加し、30分攪拌して脱水した後、5Aろ紙の上にオプライトを敷いた桐山ロ-トを用いて吸引ろ過を行った。得られたろ液を40℃にて濃縮し、濃縮物にトルエン(50g)を添加して均一になるように攪拌した後、ヘキサン(25g)を加えて、室温にて15分攪拌し、生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、再度トルエン(50g)に溶解し、ヘキサン(25g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、BHT(2mg)含有のヘキサン(10g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p5)(HO―E(FG-200ME) )を得た。収量1.5g。
H-NMR(CDCl):1.37ppm(m、2H、HO-CH-CHCH -CH-CH-CO-NH-)、1.55ppm(m、4H、HO-CHCH -CHCH -CH-CO-NH-)、1.77ppm(m、4H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、1.85ppm(m、1H)、2.01ppm(m、2H、HO-CH-CH-CH-CHCH -CO-NH-)、3.01ppm(m、1H)、3.24ppm(m、8H)、3.38ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.03ppm(m、4H)、4.14ppm(m、1H)、4.48ppm(m、2H、-CO-NH-CH-CH-C)、6.95ppm(broad、1H)、7.00ppm(broad、1H)、7.26ppm(m、10H、-CO-NH-CH-CH )、7.66ppm(broad、1H)、8.29ppm(broad、1H)
[実施例3-2]
化合物(p6)(SC―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000034
 実施例3-1で得られた化合物(p5)(500mg、1.3×10-5モル)をジクロロメタン(3.5g)に溶解した。その後、炭酸ジ(N-スクシンイミジル)(51mg、2.0×10-4モル、東京化成工業(株)製)とピリジン(24μL、3.0×10-4モル、関東化学(株)製)を添加し、室温にて窒素雰囲気下で8時間反応した。反応終了後、5%食塩水で反応液を洗浄し硫酸マグネシウム(0.1g)を加えて、25℃で30分撹拌した後、5Aろ紙の上にオプライトを敷いた桐山ロ-トを用いて吸引ろ過を行った。得られたろ液を濃縮後、濃縮物にトルエン(50g)を添加して溶解した後、ヘキサン(25g)を加えて室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、再度トルエン(50g)に溶解し、ヘキサン(25g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、BHT(5mg)含有のヘキサン(25g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p6)(SC―E(FG-200ME) )を得た。収量286mg。活性カーボネート純度は92%(H-NMR)。
H-NMR(CDCl):1.38ppm(m、2H、Succinimide-OCO-CH-CHCH -CH-CH-CO-NH-)、1.59ppm(m、2H、Succinimide-OCO-CH-CH-CHCH -CH-CO-NH-)、1.75ppm(m、6H)、1.85ppm(m、1H)、2.13ppm(m、2H、Succinimide-OCO-CH-CH-CH-CHCH -CO-NH-)、2.83ppm(s、4H、-CO-CH -CH -CO-)、3.01ppm(m、1H)、3.19ppm(m、6H)、3.38ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.03ppm(m、3H)、4.18ppm(m、1H)、4.31ppm(t、2H、Succinimide-OCO-CH -CH-CH-CH-CH-CO-NH-)、4.50ppm(m、2H、-CO-NH-CH-CH-C)、6.98ppm(broad、1H)、7.15ppm(broad、1H)、7.26ppm(m、10H、-CO-NH-CH-CH )、7.81ppm(broad、1H)、8.37ppm(broad、1H)
[実施例3-3]
化合物(p7)(DE―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000035
 実施例3-2で得られた化合物(p6)(250mg、6.3×10-6モル)をクロロホルム(2g)に溶解した。その後、1-アミノ-3,3-ジエトキシプロパン(10μL、6.3×10-5モル、ACROS ORGANICS製)を添加し、室温にて窒素雰囲気下で3時間反応した。反応終了後、反応液をトルエン(25g)で希釈し、ヘキサン(12.5g)を加えて室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、BHT(2.5mg)含有のヘキサン(12.5g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p47)(DE―E(FG-200ME) )を得た。収量185mg。
H-NMR(CDCl):1.20ppm(t、6H、(CH -CH-O)-CH-)、1.32ppm(m、2H、(CH-CH-O)-CH-CH-CH-NH-COO-CH-CHCH -CH-CH-CO-NH-)、1.58ppm(m、2H、(CH-CH-O)-CH-CH-CH-NH-COO-CH-CH-CHCH -CH-CO-NH-)、1.76ppm(m、4H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、1.82ppm(m、2H、(CH-CH-O)-CH-CH -CH-NH-COO-CH-CH-CH-CH-CH-CO-NH-)、2.11ppm(m、2H、(CH-CH-O)-CH-CH-CH-NH-COO-CHCH -CH-CH-CH-CO-NH-)、2.16ppm(m、1H)、2.70ppm(m、1H)、3.06ppm(m、2H)、3.25ppm(m、11H)、3.38ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.02ppm(m、8H)、4.17ppm(m、1H)、4.51ppm(m、2H、-CO-NH-CH-CH-C)、4.55ppm(t、1H、(CH-CH-O)CH-)、5.36ppm(broad、1H)、6.47ppm(broad、1H)、6.98ppm(broad、2H)、7.26ppm(m、10H、-CO-NH-CH-CH )、7.81ppm(broad、1H)、8.36ppm(broad、1H)
[実施例3-4]
化合物(p8)(AL―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000036
 実施例3-3で得られた化合物(p7)(150mg、3.8×10-6モル)をpH1.90に調整したりん酸緩衝液(2.25g)に溶解し、室温にて窒素雰囲気下で3時間反応した。反応後、0.1N水酸化ナトリウム水溶液(0.89g)を添加し、pHを6.40に調整した後、塩化ナトリウム(0.56g)を添加し溶解した。得られた溶液に0.1N水酸化ナトリウム水溶液(0.60g)を滴下し、pHを7.06に調整した後、BHT(0.6mg)含有のクロロホルム(3g)を添加して、室温で20分攪拌し、有機層に生成物を抽出した。有機層と水層を分離し、有機層を回収した後、水層に再度BHT(0.6mg)含有のクロロホルム(3g)を添加して、室温で20分攪拌し、有機層に生成物を抽出した。抽出1回目と2回目で得られた有機層を合わせて40℃で濃縮し、得られた濃縮物をトルエン(30g)に希釈し、ヘキサン(15g)を加えて室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、BHT(3.0mg)含有のヘキサン(15g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p8)(AL―E(FG-200ME) )を得た。収量84mg。分子量を表1に示す。アルデヒド純度は92%(H-NMR)であった。
H-NMR(CDCl):1.32ppm(m、2H、CHO-CH-CH-NH-COO-CH-CHCH -CH-CH-CO-NH-)、1.57ppm(m、2H、CHO-CH-CH-NH-COO-CH-CH-CHCH -CH-CO-NH-)、1.76ppm(m、4H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、1.82ppm(m、1H)、2.10ppm(m、2H、CHO-CH-CH-NH-COO-CHCH -CH-CH-CH-CO-NH-)、2.16ppm(m、1H)、2.71ppm(m、2H、CHO-CH -CH-NH-COO-CH-CH-CH-CH-CH-CO-NH-)、3.02ppm(m、1H)、3.26ppm(m、8H)、3.38ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.01ppm(m、4H)、4.16ppm(m、1H)、4.49ppm(m、2H、-CO-NH-CH-CH-C)、5.59ppm(broad、1H)、6.36ppm(broad、1H)、6.93ppm(broad、2H)、7.08ppm(broad、1H)、7.26ppm(m、10H、-CO-NH-CH-CH )、7.80ppm(broad、1H)、8.37ppm(broad、1H)、9.79ppm(s、1H、CHO-CH-CH-NH-COO-)
[実施例4]
化合物(p9)(NH O―E(FG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000037
 実施例3-1で得られた化合物(p5)(300mg、7.5×10-6モル)をトルエン(2.4g)に30℃で加温溶解し、減圧にて共沸脱水した。その後、濃縮物をクロロホルム(2.4g)に溶解し、N-ヒドロキシフタルイミド(7.3mg、4.5×10-5モル、和光純薬工業(株)製)とトリフェニルホスフィン(35mg、1.4×10-4モル、関東化学(株)製)とアゾジカルボン酸ジイソプロピル(22μL、1.1×10-4モル、ACROS ORGANICS製)を添加し、室温にて窒素雰囲気下で4時間反応した。反応終了後、反応液にメタノール(9.1μL)を添加し25℃で30分攪拌し、40℃で濃縮した。濃縮液をトルエン(3.0g)に希釈し共沸後、濃縮物をトルエン(1.5g)に溶解し、エチレンジアミン一水和物(24μL、3.0×10-4モル、関東化学(株)製)を添加し、室温にて窒素雰囲気下で1時間反応した。反応終了後、反応液をトルエン(50g)で希釈した後、ヘキサン(25g)を加えて室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、ヘキサン(20g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p9)(NH O―E(FG-200ME) )を得た。収量156mg。分子量を表1に示す。HPLC:オキシアミン純度91%。
H-NMR(CDCl):1.32ppm(m、2H、HN-O-CH-CHCH -CH-CH-CO-NH-)、1.56ppm(m、4H、HN-O-CHCH -CHCH -CH-CO-NH-)、1.76ppm(m、4H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、1.85ppm(m、1H)、2.10ppm(m、2H、HN-O-CH-CH-CH-CHCH -CO-NH-)、2.17ppm(m、1H)、3.01ppm(m、1H)、3.24ppm(m、8H)、3.38ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.03ppm(m、2H)、4.17ppm(m、1H)、4.49ppm(m、2H、-CO-NH-CH-CH-C)、5.37ppm(broad、2H)、6.40ppm(broad、1H)、6.95ppm(broad、2H)、7.12ppm(broad、1H)、7.26ppm(m、10H、-CO-NH-CH-CH )、7.74ppm(broad、1H)、8.31ppm(broad、1H)
[実施例5]
化合物(p13)(NH ―E{E(FG-100ME) )の合成
Figure JPOXMLDOC01-appb-C000038
[実施例5-1]
化合物(p10)(ME-100GF-Fmoc)の合成
Figure JPOXMLDOC01-appb-C000039
 実施例1-1と同製法にて、N末端をFmoc基で保護したL-フェニルアラニル-グリシン(Fmoc-Phe-Gly)(533mg、1.2×10-3モル、渡辺化学工業(株)製)と末端にプロピルアミノ基を有するメトキシPEG(9.9g、1.0×10-3モル、数平均分子量=9,896、日油株式会社製「SUNBRIGHT MEPA-10T」)を原料として用いて、上記化合物(p10)(ME-100GF-Fmoc)を得た。収量9.2g。
H-NMR(d-DMSO):1.62ppm(m、2H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、2.80ppm(m、1H、-NH-CO-CH-CH -C)、3.04ppm(m、1H、-NH-CO-CH-CH -C)、3.10ppm(m、2H、-CO-NH-CH -CH-CH-O-(CH-CH-O)n-CH)、3.24ppm(s、3H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.48ppm(m、約900H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.20ppm(m、4H)、7.33ppm(m、9H)、7.66ppm(m、4H、Ar)、7.88ppm(d、2H、Ar)、8.27ppm(t、1H)
[実施例5-2]
化合物(p11)(ME-100GF-NH )の合成
Figure JPOXMLDOC01-appb-C000040
 実施例1-2と同製法にて、実施例5-1で得られた化合物(p10)(9.2g、4.6×10-4モル)用いて脱保護反応を行い、上記化合物(p11)(ME-100GF-NH )を得た。収量8.7g。
H-NMR(d-DMSO):1.62ppm(m、2H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、1.64ppm(broad、1H)、2.59ppm(dd、1H、-NH-CO-CH-CH -C)、2.98ppm(dd、1H、-NH-CO-CH-CH -C)、3.10ppm(q、2H、-CO-NH-CH -CH-CH-O-(CH-CH-O)n-CH)、3.24ppm(s、3H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.48ppm(m、約900H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、7.24ppm(m、6H、-NH-CO-CH-CH 、-NH-)、7.73ppm(t、1H)、8.12ppm(broad、1H)
[実施例5-3]
化合物(p12)(NH ―E(FG-100ME) )の合成
Figure JPOXMLDOC01-appb-C000041
 実施例1-3と同製法にて、N末端をFmoc基で保護したL-グルタミン酸(Fmoc-Glu-OH)(135mg、3.7×10-4モル、渡辺化学工業(株)製)と実施例5-2で得られた化合物(p11)(8.5g、8.5×10-4モル)を原料として用いて、反応と脱保護を連続して行い、上記化合物(p12)(NH ―E(FG-100ME) )を得た。収量6.6g。HPLC:アミン純度95%。
H-NMR(d-DMSO):1.54ppm(m、2H、-NH-CO-CH(NH)-CH -CH-)、1.62ppm(m、4H、-CO-NH-CHCH -CH-)、1.97ppm(m、2H、-NH-CO-CH(NH)-CHCH -)、2.74ppm(dd、1H、-CO-NH-CH-CH -C)、2.81ppm(dd、1H、-CO-NH-CH-CH -C)、3.11ppm(m、11H)、3.24ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約1,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.49ppm(m、1H、-CO-NH-CH-CH-C)、4.57ppm(m、1H、-CO-NH-CH-CH-C)、7.25ppm(m、10H、-CO-NH-CH-CH )、7.74ppm(m、2H)、8.44ppm(m、2H)、8.61ppm(m、2H)
[実施例5-4]
化合物(p13)(NH ―E{E(FG-100ME) )の合成
Figure JPOXMLDOC01-appb-C000042
 実施例1-3と同製法にて、N末端をFmoc基で保護したL-グルタミン酸(Fmoc-Glu-OH)(15.2mg、4.1×10-5モル、渡辺化学工業(株)製)と実施例5-3で得られた化合物(p12)(2.0g、1.0×10-4モル)を原料として用いて、反応と脱保護を連続して行い、上記化合物(p13)(NH ―E{E(FG-100ME) )を得た。収量1.2g。分子量を表1に示す。HPLC:アミン純度94%。
H-NMR(d-DMSO):1.62ppm(m、14H)、2.00ppm(m、6H、-NH-CO-CH(NH)-CHCH -)、2.78ppm(m、4H)、3.11ppm(m、14H)、3.24ppm(s、16H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,600H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.19ppm(m、2H)、4.51ppm(m、4H)、7.25ppm(m、20H、-CO-NH-CH-CH )、7.71ppm(m、4H)、7.89ppm(m、1H)、8.45ppm(m、9H)
[実施例6]
化合物(p16)(NH ―E(GFLG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000043
[実施例6-1]
化合物(p14)(ME-200GLFG-Fmoc)の合成
Figure JPOXMLDOC01-appb-C000044
 実施例1-1と同製法にて、N末端をFmoc基で保護したL-グリシル-フェニルアラニル-ロイシル-グリシン(Fmoc-Gly-Phe-Leu-Gly)(66mg、1.1×10-4モル、渡辺化学工業(株)製)と末端にプロピルアミノ基を有するメトキシPEG(1.5g、7.1×10-5モル、数平均分子量=21,120、日油株式会社製「SUNBRIGHT MEPA-20T」)を原料として用いて、上記化合物(p14)(ME-200GLFG-Fmoc)を得た。収量1.2g。
H-NMR(CDCl):0.89ppm(d、3H、-NH-CO-CH-CH-CH(CH )、0.91ppm(d、3H、-NH-CO-CH-CH-CH(CH )、1.53ppm(m、2H、-NH-CO-CH-CH -CH(CH)、1,70ppm(m、1H、-NH-CO-CH-CHCH(CH)、1.80ppm(m、2H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、3.10ppm(dd、1H、-NH-CO-CH-CH -C)、3.18ppm(dd、1H、-NH-CO-CH-CH -C)、3.33ppm(m、7H)、3.74ppm(m、約1,900H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.31ppm(broad、1H)、4.55ppm(t、1H、-NH-CO-CH-CH-C)、6.91ppm(broad、1H)、7.00ppm(broad、1H)、7.28ppm(m、5H、-NH-CO-CH-CH )、7.33ppm(t、2H、Ar)、7.41ppm(m、3H、Ar)、7.73ppm(m、3H、Ar)、7.89ppm(d、2H、Ar)、7.98ppm(broad、1H)
[実施例6-2]
化合物(p15)(ME-200GLFG-NH )の合成
Figure JPOXMLDOC01-appb-C000045
 実施例1-2と同製法にて、実施例6-1で得られた化合物(p14)(1.2g、5.7×10-5モル)用いて脱保護反応を行い、上記化合物(p15)(ME-200GLFG-NH )を得た。収量1.0g。
H-NMR(CDCl):0.89ppm(d、3H、-NH-CO-CH-CH-CH(CH )、0.91ppm(d、3H、-NH-CO-CH-CH-CH(CH )、1.53ppm(m、2H、-NH-CO-CH-CH -CH(CH)、1,70ppm(m、1H、-NH-CO-CH-CHCH(CH)、1.80ppm(m、2H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、3.10ppm(dd、1H、-NH-CO-CH-CH -C)、3.18ppm(dd、1H、-NH-CO-CH-CH -C)、3.33ppm(m、7H)、3.74ppm(m、約1,900H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.31ppm(broad、1H)、4.55ppm(t、1H、-NH-CO-CH-CH-C)、6.91ppm(broad、1H)、7.00ppm(broad、1H)、7.28ppm(m、5H、-NH-CO-CH-CH )、7.98ppm(broad、1H)
[実施例6-3]
化合物(p16)(NH ―E(GFLG-200ME) )の合成
Figure JPOXMLDOC01-appb-C000046
 実施例1-3と同製法にて、N末端をFmoc基で保護したL-グルタミン酸(Fmoc-Glu-OH)(8.3mg、2.3×10-5モル、渡辺化学工業(株)製)と実施例6-2で得られた化合物(p15)(1.0g、4.8×10-5モル)を原料に用いて、反応と脱保護を連続して行い、上記化合物(p16)(NH ―E(GFLG-200ME) )を得た。収量0.5g。分子量を表1に示す。HPLC:アミン純度90%。
H-NMR(CDCl):0.89ppm(d、6H、-NH-CO-CH-CH-CH(CH )、0.91ppm(d、6H、-NH-CO-CH-CH-CH(CH )、1.53ppm(m、4H、-NH-CO-CH-CH -CH(CH)、1,70ppm(m、2H、-NH-CO-CH-CHCH(CH)、1.77ppm(m、4H、-CO-NH-CHCH -CH-O-(CH-CH-O)n-CH)、1.85ppm(m、1H)、3.01ppm(m、1H)、3.24ppm(m、8H)、3.38ppm(s、6H、-CO-NH-CH-CH-CH-O-(CH-CH-O)n-CH )、3.64ppm(m、約3,800H、-CO-NH-CH-CH-CH-O-(CH -CH -O)n-CH)、4.03ppm(m、4H)、4.14ppm(m、1H)、4.48ppm(m、2H、-CO-NH-CH-CH-C)、6.95ppm(broad、1H)、7.00ppm(broad、1H)、7.26ppm(m、10H、-CO-NH-CH-CH )、7.66ppm(broad、2H)、8.29ppm(broad、2H)
[比較例1]
化合物(p18)(LY-400NH )の合成
Figure JPOXMLDOC01-appb-C000047
[比較例1-1]
化合物(p17)(LY―400BO)の合成
Figure JPOXMLDOC01-appb-C000048
 上市されているポリエチレングリコール修飾薬剤に用いられているリジン骨格の2分岐型ポリエチレングリコール活性化エステル(3.0g、7.5×10-5モル、数平均分子量=39,700、日油株式会社製「SUNBRIGHT LY-400NS」)をトルエン(15g)に40℃で加温溶解し、N-(tert-ブトキシカルボニル)-1,2-ジアミノエタン(48μL、3.0×10-4モル、東京化成工業(株)製)を添加し、40℃にて窒素雰囲気下で1時間反応した。反応終了後、反応液を酢酸エチル(12g)で希釈した後、ヘキサン(14g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、再度酢酸エチル(27g)に溶解し、ヘキサン(14g)を加えて、室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、ヘキサン(30g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p17)(LY―400BO)を得た。収量2.7g。
H-NMR(CDCl):1.37ppm(m、2H)、1.43ppm(s、9H、-CH-NH-CO-(CH )、1.51ppm(m、2H)、3.15ppm(m、2H)、3.38ppm(s、6H、-O-(CH-CH-O)n-CH )、3.65ppm(m、約3,650H、-O-(CH -CH -O)n-CH)、4.21ppm(m、4H)
[比較例1-2]
化合物(p18)(LY-400NH )の合成
Figure JPOXMLDOC01-appb-C000049
 比較例1-1で得られた化合物(p17)(1.0g、2.5×10-6モル)をイオン交換水(4.0g)に溶解し、メタンスルホン酸(57μL、8.8×10-4モル、関東化学(株)製)を添加し、40℃にて窒素雰囲気下で6時間反応した。反応後、イオン交換水(6.0g)で希釈し、1N水酸化ナトリウム水溶液(0.9g)を添加し、pHを12に調整した後、塩化ナトリウム(2.5g)を添加し溶解した。得られた溶液にBHT(1.0mg)含有のクロロホルム(10g)を添加して、室温で20分攪拌し、有機層に生成物を抽出した。有機層と水層を分離し、有機層を回収した後、40℃で濃縮し、得られた濃縮物をトルエン(30g)で希釈し、ヘキサン(15g)を加えて室温にて15分攪拌し生成物を析出させた。5Aろ紙を用いて吸引ろ過し、析出物を回収した後、BHT(3.0mg)含有のヘキサン(15g)で洗浄し、5Aろ紙を用いて吸引ろ過し、真空乾燥して上記化合物(p18)(LY-400NH )を得た。収量0.7g。分子量を表1に示す。HPLC:アミン純度97%。
H-NMR(CDCl):1.37ppm(m、2H)、1.51ppm(m、2H)、3.15ppm(m、2H)、3.38ppm(s、6H、-O-(CH-CH-O)n-CH )、3.65ppm(m、約3,650H、-O-(CH -CH -O)n-CH)、4.21ppm(m、4H)
Figure JPOXMLDOC01-appb-T000050
[実施例7]
血清中での安定性試験
 1.5mLのエッペンドルフチューブに、マウスまたはヒト血清1mLを加え、各種ポリエチレングリコール誘導体を5.0mg/mLの濃度になるように添加した。37℃で96時間インキュベ-ション後、200μLをサンプリングし、そこにアセトニトリルを添加し、ボルテックスにて1分間撹拌し、血清中のたんぱく質を析出させ、遠心分離後、上清を回収した。次に脂肪酸などの疎水性物質を除去するため、回収液にヘキサンを添加し、ボルテックスにて1分間撹拌し、遠心分離後、下層を回収した。この溶液を真空条件にて濃縮し、血清中からポリエチレングリコール誘導体の回収を行った。その後、GPC分析を行い、分解性ポリエチレングリコール誘導体の分解率を算出した。
 分解率は以下の式にて算出した。
分解率 = (試験前の40kDaのピーク面積% - 試験後の40kDaのピーク面積%) ÷ (試験前の40kDaのピーク面積%) × 100
 結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000051
 表2によれば、分解性ポリエチレングリコール誘導体である化合物(p3)、(p13)、(p16)は、非分解性のポリエチレングリコール誘導体である化合物(p18)、メトキシPEGアミン40kDaと同様に、血清中において分解はみられなかった。つまり、当該分解性ポリエチレングリコール誘導体が血中では安定であることが示された。
[実施例8]
細胞を用いた分解性試験
 培地RPMI-1640(10%FBS Pn/St)10mLを用いて、100mmディッシュにRAW264.7を10×10cell播種し、37℃で24時間培養後、各種ポリエチレングリコール誘導体を10mg/mLの濃度になるよう溶解した培地に交換し、37℃で96時間培養した。培養後、細胞を1%SDS溶液にて溶解し、リン酸緩衝生理食塩水(PBS)にて希釈し、そこにアセトニトリルを添加し、ボルテックスにて1分間撹拌し、細胞溶解液中のたんぱく質を析出させ、遠心分離後、上清を回収した。次に脂肪酸などの疎水性物質を除去するため、回収液にヘキサンを添加し、ボルテックスにて1分間撹拌し、遠心分離後、下層を回収した。この溶液を真空条件にて濃縮し、細胞内からポリエチレングリコール誘導体の回収を行った。
 また、細胞培養に使用した培地中での分解を確認するため、各種ポリエチレングリコール誘導体を10mg/mLの濃度になるよう溶解した培地のみで37℃で96時間培養し、上記と同操作にてポリエチレングリコール誘導体の回収を行った。
 その後、回収した各種ポリエチレングリコール誘導体のGPC分析を行い、実施例7と同じ計算式にて分解性ポリエチレングリコール誘導体の分解率を算出した。
 結果を以下の表3に示す。また、化合物(p3)、(p13)の細胞実験の前後のGPCチャートをそれぞれ図1と図2、および図3と図4に示す。
Figure JPOXMLDOC01-appb-T000052
 表3によれば、分解性ポリエチレングリコール誘導体である化合物(p3)および(p16)は、細胞内にて効果的に分解し(分解率99%)、分子量4万から2万に分解することが確認できた。また、化合物(p13)においては、分解率99%にて、分子量4万から1万に分解されることが確認できた。これら分解性ポリエチレングリコール誘導体は、細胞培養で用いた培地では分解しないことから、細胞内で特異的に分解されたことが確認できた。一方で、非分解性のポリエチレングリコール誘導体である化合物(p18)およびメトキシPEGアミン40kDaにおいては、いずれも細胞内での分解はみられなかった。
[実施例9]
動物実験による空胞形成評価試験
 末端にアミノ基を有する分子量4万である分解性ポリエチレングリコール誘導体である化合物(p3)NH―E(FG-200ME)と、非分解性であるメトキシPEGアミン40kDaを用いて、動物実験による空砲形成評価を行った。マウス種はBalb/c(8週齢、雄)、ポリエチレングリコール溶液は、生理食塩水を用いてポリエチレングリコール誘導体を100mg/mLの濃度になるように調製し、マウス尾静脈より20μL投与した。週3回、4週間連続投与を続け、投与終了後、マウスを4%パラホルムアルデヒド水溶液で灌流固定し、パラフィン切片を作製した。HE染色、および抗PEG抗体による免疫染色を行い、脳の脈絡叢上皮細胞における空胞形成を評価した。免疫染色としては、免疫染色キット(BOND Refine Polymer Detection Kit、ライカ社製)と抗PEG抗体(B-47抗体、アブカム社製)を用いて実施した。抗PEG抗体による免疫染色を行った脳の脈絡叢切片の画像を図5(メトキシPEGアミン40kDa)と図6(NH―E(FG-200ME))に示す。
 その結果、分解性ポリエチレングリコールであるNH―E(FG-200ME)は、メトキシPEGアミン40kDaに比べ、有意に空胞の形成を抑制した。
 なお、本実施例において投与したポリエチレングリコールの量は、あくまで空胞化を評価するために最適化した量であり、当該技術分野における一般的なポリエチレングリコールの投与量と比べ、極めて多量である。
[実施例10]
動物実験によるポリエチレングリコールの蓄積性評価試験
 末端にアミノ基を有した分子量4万である分解性ポリエチレングリコール誘導体である化合物(p3)NH―E(FG-200ME)と、非分解性であるメトキシPEGアミン20kDa、メトキシPEGアミン40kDa、およびコントロールであるPBSを用いて、動物実験によるポリエチレングリコールの蓄積性評価を行った。マウス種はBalb/c(8週齢、雄)、ポリエチレングリコール溶液は、生理食塩水を用いてポリエチレングリコール誘導体を62.5mg/mLの濃度になるように調製し、マウス尾静脈より100μL投与した。週3回、4週間連続投与を続け、投与終了後、マウスを4%パラホルムアルデヒド水溶液で灌流固定し、パラフィン切片を作製した。抗PEG抗体による免疫染色を行い、脳の脈絡叢上皮細胞における蓄積性を評価した。免疫染色を行ったそれぞれの脳の脈絡叢切片の画像を図7に示す。
 図7によれば、ポリエチレングリコールが含まれないPBSを投与したマウスの脈絡叢切片では染色されないのに対し、非分解性であるメトキシPEGアミン40kDaでは、切片の広範囲で茶色に染色されることが確認された。この染色部分はPEGが蓄積していることを示す。一方、分解性ポリエチレングリコールであるNH―E(FG-200ME)の切片においては、茶色に染色された部分が少なく、分子量が半分のメトキシPEGアミン20kDaと同等の蓄積を示した。結果として、分解性ポリエチレングリコールは、その分解性により、同分子量の非分解性であるメトキシPEGアミン40kDaに比べ、有意に組織へのポリエチレングリコールの蓄積を抑制した。
 なお、本実施例において投与したポリエチレングリコールの量は、あくまで蓄積性を評価するために最適化した量であり、当該技術分野における一般的なポリエチレングリコールの投与量と比べ、極めて多量である。
[実施例11]
 動物実験による体内動態試験(放射性同位体)
 末端にアミノ基を有した分子量4万である分解性ポリエチレングリコール誘導体であるNH―E(FG-200ME)と、非分解性である2分岐型PEGアミン40kDa(平均分子量=約42,000、日油株式会社製「SUNBRIGHT GL2-400PA」)と、非分解性である2分岐型PEGアミン20kDa(平均分子量=約20,000、日油株式会社製「SUNBRIGHT GL2-200PA」)を、それぞれ10mg/mLの濃度になるように50mM炭酸水素ナトリウム水溶液に溶解し、そこにBolton-Hunter試薬(0.4625MBq)を添加し、ボルテックスにて撹拌後、室温で一晩反応させた。反応溶液をPD-10カラムにて分画し、各フラクションをポリエチレングリコール呈色試薬(チオシアン酸アンモニウムと硝酸コバルト)とガンマカウンターを用いて、125Iの含まれるフラクションを確認し、回収した。
 得られた放射性同位体をラベル化したポリエチレングリコール誘導体を用いて、体内動態を動物実験にて評価した。マウス種はBalb/c(8週齢、雄)、ポリエチレングリコール溶液は、生理食塩水を用いてラベル化していないポリエチレングリコール誘導体を10mg/mLの濃度になるように調製し、放射性同位体をラベル化したポリエチレングリコール誘導体を微量添加し、マウス尾静脈より100μL投与した。その後、1、3、6、24、48、72時間でマウスから血液、各臓器を取り出し、ガンマカウンターを用いてラベル化したポリエチレングリコール誘導体の滞留量を測定した。
 放射性同位体をラベル化した分解性ポリエチレングリコール誘導体であるNH―E(FG-200ME)と非分解性のポリエチレングリコール誘導体である2分岐型PEGアミン40kDa及び2分岐型PEGアミン20kDaの体内動態試験の結果として、図8に血中濃度を示す。
 図8によれば、NH―E(FG-200ME)は、同分子量である非分解性の2分岐型PEGアミン40kDaと比較して、同程度の血中半減期を示した。一方で、NH―E(FG-200ME)は、分子量20kDaの非分解性の2分岐型PEGアミン20kDaと比較して、有意に長い血中半減期を示した。
 本発明の分解性ポリエチレングリコール誘導体は、細胞の空胞を引き起こさない高分子量のポリエチレングリコール誘導体であり、生体関連物質を修飾する用途に効果的に用いることができ、生体内の血中で安定であり、且つ細胞内で分解される。
 本出願は、日本で出願された特願2019-069449(出願日:2019年3月29日)を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (8)

  1.  下式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは45~950であり、Wはグルタミン酸を中心とした対称構造の5~47残基のオリゴペプチドであり、aは2~8であり、Xは生体関連物質と反応可能な官能基であり、ならびにLおよびLはそれぞれ独立して、2価のスペーサーである。)で示される分解性ポリエチレングリコール誘導体。
  2.  Wのグルタミン酸を中心とした対称構造のオリゴペプチドが、以下のw1、w2またはw3の構造を有するオリゴペプチドである請求項1に記載の分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式中、Gluはグルタミン酸の残基であり、およびZはシステインを除く中性アミノ酸からなる2~5残基の分解性オリゴペプチドである。)
  3.  Zの分解性オリゴペプチドが、C末端のアミノ酸としてグリシンを有するオリゴペプチドである請求項2に記載の分解性ポリエチレングリコール誘導体。
  4.  Zの分解性オリゴペプチドが、ハイドロパシー指標が2.5以上である疎水性の中性アミノ酸を少なくとも1つ有するオリゴペプチドである請求項2または3に記載の分解性ポリエチレングリコール誘導体。
  5.  総分子量が20,000以上である請求項1~4のいずれか1項に記載の分解性ポリエチレングリコール誘導体。
  6.  Lがカルボニル基、ウレタン結合、アミド結合、エーテル結合、チオエーテル結合、2級アミノ基、またはウレア結合;またはこれらの結合および/または基を含んでいてもよいアルキレン基である請求項1~5のいずれか1項に記載の分解性ポリエチレングリコール誘導体。
  7.  Lがアルキレン基;またはカルボニル基、ウレタン結合、アミド結合、エーテル結合、チオエーテル結合、2級アミノ基、およびウレア結合から選択される少なくとも一つの結合および/または基を含むアルキレン基である請求項1~6のいずれか1項に記載の分解性ポリエチレングリコール誘導体。
  8.  Xが活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシド基、マレイミド基、置換マレイミド基、ビニルスルホニル基、アクリル基、置換スルホネート基、スルホニルオキシ基、カルボキシル基、メルカプト基、ピリジルジチオ基、α-ハロアセチル基、アルキルカルボニル基、ヨードアセトアミド基、アルケニル基、アルキニル基、置換アルキニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基からなる群より選択される請求項1~7のいずれか1項に記載の分解性ポリエチレングリコール誘導体。
PCT/JP2020/013598 2019-03-29 2020-03-26 分岐型分解性ポリエチレングリコール誘導体 WO2020203625A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3135346A CA3135346A1 (en) 2019-03-29 2020-03-26 Branched and degradable polyethylene glycol derivative
KR1020217035219A KR20210148245A (ko) 2019-03-29 2020-03-26 분기형 분해성 폴리에틸렌 글리콜 유도체
US17/599,163 US20220153992A1 (en) 2019-03-29 2020-03-26 Branched and degradable polyethylene glycol derivative
CN202080026503.XA CN113677736B (zh) 2019-03-29 2020-03-26 分支型分解性聚乙二醇衍生物
EP20781870.9A EP3950776A4 (en) 2019-03-29 2020-03-26 BRANCHED AND DEGRADABLE POLYETHYLENE GLYCOL DERIVATIVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069449 2019-03-29
JP2019069449 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203625A1 true WO2020203625A1 (ja) 2020-10-08

Family

ID=72667738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013598 WO2020203625A1 (ja) 2019-03-29 2020-03-26 分岐型分解性ポリエチレングリコール誘導体

Country Status (7)

Country Link
US (1) US20220153992A1 (ja)
EP (1) EP3950776A4 (ja)
JP (1) JP7411188B2 (ja)
KR (1) KR20210148245A (ja)
CN (1) CN113677736B (ja)
CA (1) CA3135346A1 (ja)
WO (1) WO2020203625A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036150A4 (en) * 2019-09-26 2023-12-27 NOF Corporation ASYMMETRICALLY BRANCHED DEGRADABLE POLYETHYLENE GLYCOL DERIVATIVE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108463A2 (en) 2004-05-03 2005-11-17 Nektar Therapeutics Al, Corporation Branched polyethylen glycol derivates comprising an acetal or ketal branching point
WO2006088248A1 (ja) 2005-02-18 2006-08-24 Nof Corporation ポリオキシアルキレン誘導体
JP2011079934A (ja) 2009-10-06 2011-04-21 Nof Corp カルボキシル基含有ポリオキシエチレン誘導体の精製方法
JP2013533217A (ja) * 2010-05-17 2013-08-22 セビックス・インコーポレイテッド Peg化c−ペプチド
JP2014208786A (ja) 2013-03-27 2014-11-06 日油株式会社 アミノ基を一つ有するポリエチレングリコールの精製方法
CN106421806A (zh) * 2016-11-14 2017-02-22 四川大学 一种逐级响应纳米自组装树枝状前药及制备方法和应用
JP2019069449A (ja) 2019-02-15 2019-05-09 株式会社日立製作所 汚泥掻寄機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI376234B (en) 2005-02-01 2012-11-11 Msd Oss Bv Conjugates of a polypeptide and an oligosaccharide
CN101420984B (zh) 2006-02-21 2013-01-02 尼克塔治疗公司 嵌段可降解聚合物及由其制备的轭合物
CN104448295B (zh) * 2013-12-02 2018-01-23 北京键凯科技股份有限公司 聚乙二醇‑多爪寡肽键合的雷帕霉素衍生物
US9469726B2 (en) 2014-10-06 2016-10-18 International Business Machines Corporation Water soluble polycarbonates for medical applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108463A2 (en) 2004-05-03 2005-11-17 Nektar Therapeutics Al, Corporation Branched polyethylen glycol derivates comprising an acetal or ketal branching point
WO2006088248A1 (ja) 2005-02-18 2006-08-24 Nof Corporation ポリオキシアルキレン誘導体
JP2011079934A (ja) 2009-10-06 2011-04-21 Nof Corp カルボキシル基含有ポリオキシエチレン誘導体の精製方法
JP2013533217A (ja) * 2010-05-17 2013-08-22 セビックス・インコーポレイテッド Peg化c−ペプチド
JP2014208786A (ja) 2013-03-27 2014-11-06 日油株式会社 アミノ基を一つ有するポリエチレングリコールの精製方法
CN106421806A (zh) * 2016-11-14 2017-02-22 四川大学 一种逐级响应纳米自组装树枝状前药及制备方法和应用
JP2019069449A (ja) 2019-02-15 2019-05-09 株式会社日立製作所 汚泥掻寄機

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"PEGylated Protein Drugs: Basic Science and Clinical Applications", 2009, BIRKHAUSER
BIOCONJUGATE CHEM., vol. 16, 2005, pages 775 - 784
DANIEL G. RUDMANN ET AL., TOXICOL. PATHOL., vol. 41, 2013, pages 970 - 983
HARRIS, J. M. POLY: "Ethylene Glycol) Chemistry", 1992, PLENUM PRESS
HERMANSON, G. T.: "Bioconjugate Techniques", 2008, ACADEMIC PRESS
JIYUAN YANG ET AL., MARCOMOL. BIOSCI., vol. 10, no. 4, 2010, pages 445 - 454
KYTE JDOOLITTLE RF, J MOL BIOL, vol. 157, 1982, pages 105 - 132
See also references of EP3950776A4
VAN DER POLL, DEREK G.: "Design, Synthesis, and Biological Evaluation of a Robust, Biodegradable Dendrimer", BIOCONJUGATE CHEMISTRY, vol. 21, no. 4, 2010, pages 764 - 773, XP055358812, DOI: 10.1021/bc900553n *
WENCHUAN SHE: "The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy", BIOMATERIALS, vol. 34, no. 5, 2013, pages 1613 - 1623, XP028960621, DOI: 10.1016/j.biomaterials.2012.11.007 *
WUTS, P. G. M.GREENE, T. W.: "Protective Groups in Organic Synthesis", 2007, WILEY-INTERSCIENCE
YACHAO LI ET AL.: "Tumor-Specific Multiple Stimuli-Activated Dendrimeric Nanoassemblies with Metabolic Blockade Surmount Chemotherapy Resistance", ACS NANO, vol. 11, 2017, pages 416 - 429, XP055745932, DOI: 10.1021/acsnano.6b06161 *
YULIA VUGMEYSTERANG ET AL., BIOCONJUGATE CHEM., vol. 23, 2012, pages 1452 - 1462

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036150A4 (en) * 2019-09-26 2023-12-27 NOF Corporation ASYMMETRICALLY BRANCHED DEGRADABLE POLYETHYLENE GLYCOL DERIVATIVE

Also Published As

Publication number Publication date
US20220153992A1 (en) 2022-05-19
JP2020164855A (ja) 2020-10-08
EP3950776A4 (en) 2023-01-04
KR20210148245A (ko) 2021-12-07
CA3135346A1 (en) 2020-10-08
EP3950776A1 (en) 2022-02-09
JP7411188B2 (ja) 2024-01-11
CN113677736A (zh) 2021-11-19
CN113677736B (zh) 2024-08-02

Similar Documents

Publication Publication Date Title
WO2020203626A1 (ja) 分岐型分解性ポリエチレングリコール結合体
JP7249591B2 (ja) 分解性ポリエチレングリコール結合体
JP7205827B2 (ja) 分解性ポリエチレングリコール誘導体
WO2020203625A1 (ja) 分岐型分解性ポリエチレングリコール誘導体
WO2021060443A1 (ja) 非対称分岐型分解性ポリエチレングリコール誘導体
WO2021060441A1 (ja) マルチアーム型分解性ポリエチレングリコール誘導体
EP4035678B1 (en) Degradable multi-arm polyethylene glycol derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3135346

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217035219

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020781870

Country of ref document: EP

Effective date: 20211029