WO2020203123A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2020203123A1
WO2020203123A1 PCT/JP2020/010550 JP2020010550W WO2020203123A1 WO 2020203123 A1 WO2020203123 A1 WO 2020203123A1 JP 2020010550 W JP2020010550 W JP 2020010550W WO 2020203123 A1 WO2020203123 A1 WO 2020203123A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
electronic device
heat radiating
heat
lower package
Prior art date
Application number
PCT/JP2020/010550
Other languages
French (fr)
Japanese (ja)
Inventor
大佳 國枝
林 宏樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020203123A1 publication Critical patent/WO2020203123A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • This disclosure relates to electronic devices.
  • PoP Package on Package
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an electronic device having improved reliability by improving heat dissipation.
  • the electronic device dissipates heat to the outside with an upper package including an upper chip, a lower package including a lower chip, a printed circuit board including the upper package and the lower package stacked on top of each other.
  • a heat radiating portion that contacts the metal case that dissipates heat is provided, and the heat radiating portion is in contact with the upper package and the lower package.
  • the heat radiating portion is in contact with not only the upper package but also the lower package. Efficiently propagates to the metal case via. Therefore, heat is efficiently released from the lower package. As a result, the heat dissipation of the entire electronic device can be improved, so that it is possible to provide an electronic device with improved reliability.
  • FIG. 1 is a vertical sectional view showing a schematic configuration of an electronic device according to the first embodiment.
  • FIG. 2 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the second embodiment.
  • FIG. 3 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the third embodiment.
  • FIG. 4 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the fourth embodiment.
  • FIG. 5 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the fifth embodiment.
  • FIG. 6 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the sixth embodiment.
  • FIG. 7 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the seventh embodiment.
  • FIG. 8 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the eighth embodiment.
  • the electronic device according to the embodiment of the present disclosure will be described with reference to the drawings.
  • the same elements as those mentioned above will be given the same reference numerals or the same names, and the description thereof will be omitted, and different parts will be described.
  • the metal case 14 side of the electronic device 1 is upward, and the printed circuit board 16 side is downward.
  • the electronic device 1 As shown in FIG. 1, the electronic device 1 according to the first embodiment is a so-called PoP in which two IC packages are laminated.
  • the electronic device 1 includes an upper package 10, a lower package 12, a printed circuit board 16 (Printed Circuit Board, hereinafter referred to as PCB), a heat radiating section 30, and a metal case 14 that covers them.
  • the electronic device 1 has a substantially rectangular shape as a flat plate.
  • the upper package 10 and the lower package 12 provided in the electronic device 1 also have a substantially rectangular shape as a flat plate.
  • the metal case 14 has a function of dissipating the heat of the electronic device 1 to the outside.
  • the lower package 12 and the upper package 10 are stacked and arranged on the upper part of the PCB 16.
  • a plurality of solder balls 20 are arranged between the upper package 10 and the lower package 12.
  • the upper package 10 and the lower package 12 are connected by a plurality of solder balls 20.
  • a plurality of solder balls 22 are arranged between the lower package 12 and the PCB 16.
  • the lower package 12 and the PCB 16 are connected by a plurality of solder balls 22.
  • a thermal interface material 17 (Thermal Interface Material, hereinafter referred to as TIM) is provided between the upper surface of the heat radiating portion 30 and the inner ceiling surface of the metal case 14. Further, the TIM 18 is also arranged between the upper surface of the upper package 10 and the heat radiating portion 30. Further, the lower end portion 30c of the side portion 30b and the upper surface of the printed circuit board 16 are in contact with each other via the TIM 19. The inner side surface of the side portion 30b and the side surface of the lower package 12 are in contact with each other via the TIM 19.
  • TIMs 17, 18 and 19 are composed of a substance having high thermal conductivity, and are composed of, for example, silicon and graphite. The TIMs 17, 18 and 19 are interposed and connected between the upper package 10, the lower package 12 and the heat radiating unit 30 to function as a heat transfer member for improving heat transfer efficiency.
  • the upper package 10 includes an upper chip 10a, an upper layer 10b, and a lower layer 10c.
  • the upper chip 10a is arranged on the lower layer 10c.
  • the upper surface and side surfaces of the upper chip 10a are covered with the upper layer 10b.
  • the upper chip 10a is an integrated circuit in which a plurality of transistors, wiring, and the like are mounted on a semiconductor substrate (not shown), the upper layer 10b is, for example, a mold resin, and the lower layer 10c is, for example, a printed circuit board.
  • the upper tip 10a has a substantially rectangular shape as a flat plate.
  • the lower package 12 includes a lower chip 12a, an upper layer 12b, an intermediate layer 12c, and a lower layer 12d.
  • the lower chip 12a is arranged on the lower layer 12d, and the upper surface and the side surface are covered with the intermediate layer 12c.
  • the lower tip 12a has a substantially rectangular shape as a flat plate.
  • the laminate obtained by laminating the upper package 10 and the lower package 12 has a quadrangular prism shape as a whole.
  • the upper chip 10a is, for example, a memory such as DRAM or SRAM.
  • the lower chip 12a is, for example, a processor such as a CPU or SOC.
  • the calorific value of the lower chip 12a is larger than the calorific value of the upper chip 10a. This also applies to the second to eighth embodiments described below.
  • the heat radiating portion 30 has a rectangular box shape with a bottomless cover and an open lower portion, includes an upper portion 30a and a side portion 30b, and has an internal space.
  • the heat radiating unit 30 is made of a substance having high thermal conductivity, for example, a metal such as copper or iron.
  • the heat radiating portion 30 is arranged so as to cover the entire laminate of the upper package 10 and the lower package 12 from above.
  • the upper package 10 and the lower package 12 are arranged in the internal space of the heat radiating unit 30.
  • the upper surface of the heat radiating portion 30 and the inner ceiling surface of the metal case 14 are provided close to each other.
  • the upper surface of the heat radiating portion 30 is in contact with the inner ceiling surface of the metal case 14 via the TIM 17.
  • the TIM 17 propagates the heat from the heat radiating portion 30 to the metal case 14 by coming into contact with the heat radiating portion 30 and the metal case 14.
  • the metal case 14 dissipates this heat to the outside.
  • the upper surface of the upper package 10 and the inner ceiling surface of the heat radiating portion 30 are provided close to each other.
  • the upper surface of the upper package 10 is in contact with the inner ceiling surface of the heat radiating portion 30 via the TIM 18.
  • the TIM 18 is in contact with the upper package 10 and the heat radiating unit 30 to propagate the heat from the upper package 10 to the heat radiating unit 30.
  • the heat propagated from the lower package 12 to the heat radiating unit 30 via the TIM 18 includes the heat generated in the upper package 10 and the heat generated in the lower package 12 and propagated to the upper package 10 via the solder balls 20. included.
  • a TIM 18 may be provided between the side surface of the upper package 10 and the side portion 30b of the heat radiating portion 30 to provide a path for heat to be propagated from the side surface of the lower package 12 to the heat radiating portion 30.
  • the inner side surface of the side portion 30b of the heat radiating portion 30 and the side surface of the lower package 12 are arranged close to each other.
  • the inner surface of the side portion 30b of the heat radiating portion 30 is in contact with the side surface of the lower package 12 via the TIM 19.
  • the heat generated in the lower package 12 efficiently propagates from the side surface of the lower package 12 to the heat radiating unit 30 via the TIM 19.
  • FIG. 1 shows the approximate path of heat conduction.
  • the solid arrow indicates the path of heat propagating through the heat radiating section 30.
  • the dashed arrow indicates the heat path that propagates from the lower package 12 to the heat radiating section 30 via the upper package 10. This also applies to FIGS. 2 to 8 described later.
  • the heat generated in the upper package 10 and the lower package 12 propagates to the heat radiating unit 30, the heat propagated to the heat radiating unit 30 propagates to the metal case 14, and is radiated to the outside from the metal case 14.
  • the heat radiating unit 30 is made of a material having high thermal conductivity. Therefore, the heat propagation efficiency and the heat dissipation efficiency can be improved by efficiently propagating the heat generated in the upper package 10 and the lower package 12 to the heat radiating unit 30. Thereby, the cooling efficiency of the upper package 10 and the lower package 12 can be improved.
  • the generated heat is radiated to the outside from the metal case 14 by the above configuration, and the electronic device 1 is cooled.
  • the heat radiating portion 30 is arranged so as to cover the laminated upper package 10 and lower package 12, and the upper surface of the upper package 10 and the side surface of the lower package 12 have high thermal conductivity. It is arranged so as to come into contact with the heat radiating portion 30 via the TIMs 18 and 19. As a result, the heat generated in the upper package 10 and the lower package 12 is efficiently propagated to the heat radiating unit 30. Further, the heat radiating portion 30 and the metal case 14 are in contact with each other on the upper surface of the heat radiating portion 30 having a large area via the TIM 17 having a high thermal conductivity.
  • the heat radiating portion 30 is arranged close to the side surface of the lower package 12 so as to be in contact with the lower package 12 via the TIM 19, the heat propagation efficiency from the lower package 12 to the heat radiating portion 30 can be improved. it can. Therefore, when the lower chip 12a is an electronic component that generates a large amount of heat, such as a CPU or SOC, the heat generated here can be efficiently propagated to the heat dissipation unit 30 and the metal case 14. As a result, the heat dissipation efficiency of the entire electronic device 1 can be significantly improved, so that it is possible to provide an electronic device with improved reliability.
  • the second embodiment will be described with reference to FIG.
  • the size of the upper package 11 arranged on the lower package 12 is smaller than that of the lower package 12, and the width in the lateral direction is smaller. There is. As a result, a region P in which the upper package 11 is not placed is generated on the upper surface of the lower package 12.
  • the upper package 11 includes an upper chip 11a, an upper layer 11b, and a lower layer 11c as in the first embodiment.
  • the heat radiating portion 31 has a rectangular box shape with a bottomless cover and an open lower portion, and includes an upper portion 31a and a side portion 31b.
  • the side portion 31b is configured to be wider than that of the first embodiment, and the lateral width W1 of the side portion 31b is configured to be larger than the width of the side portion 30b of the first embodiment.
  • the heat radiating portion 31 is arranged so as to cover the upper surface and the side surface of the upper package 11. Further, the lower end portion 31c of the heat radiating portion 31 is provided so as to be located on the upper surface of the lower package 12 and in the region P where the upper package 11 is not placed.
  • the ceiling surface inside the upper portion 31a of the heat radiating portion 31 and the upper surface of the upper package 11 are arranged close to each other, and the ceiling surface inside the upper portion 31a is arranged in contact with the upper surface of the upper package 11 via TIM18.
  • the lower surface of the lower end 31c of the heat radiating portion 31 and the upper surface of the lower package 12 are arranged close to each other, and the lower surface of the lower end 31c is arranged in contact with the upper surface of the lower package 12 via TIM19.
  • Other configurations are the same as those of the electronic device 1 according to the first embodiment. As a result, the lower end portion 31c and the lower package 12 come into contact with each other via the TIM 19, and the contact area between the lower end portion 31c and the lower package 12 can be set large.
  • the thickness of the heat radiating portion 31 is increased in order to increase the width W1 of the side portion 31b is shown, but there is no intention of limiting this.
  • the purpose of the electronic device 1 according to the second embodiment is to increase the contact area with the heat radiating portion 31 on the upper surface of the lower package 12. Therefore, the heat radiating portion 31 is formed to be thinner than the heat radiating portion 31 shown in FIG. 2, and the thin heat radiating portion 31 is formed in the region P so as to follow the shapes of the upper surfaces of the upper package 11 and the lower package 12. It may be arranged in the whole area including.
  • the same effect as that of the electronic device 1 according to the first embodiment is obtained. Further, since the contact area between the heat radiating unit 31 and the lower package 12 can be set large, the heat generated in the lower package 12 can be efficiently propagated to the heat radiating unit 31. Therefore, the heat dissipation efficiency of the entire electronic device 1 can be further improved. Therefore, it is possible to provide an electronic device with further improved reliability.
  • the third embodiment will be described with reference to FIG.
  • the lateral dimension of the upper package 11 is smaller than that of the lower package 13 as in the electronic device 1 according to the second embodiment.
  • the lower package 13 has a multilayer structure including a lower chip 13a, an upper layer 13b, an intermediate layer 13c, and a lower layer 13d.
  • the third embodiment differs from the electronic device 1 according to the second embodiment in the following points.
  • the thickness L1 of the upper portion 32a of the heat radiating portion 32 is larger than the thickness L2 in which the upper package 11 and the lower package 13 are laminated and the solder balls 20 are arranged between them.
  • the interlayer connecting portion 24 is arranged in a region located directly below the lower end portion 30c of the side portion 32b of the heat radiating portion 32.
  • the interlayer connection portion 24 is an intermediate layer 13c of the lower package 13 and is located in the lateral direction of the lower chip 13a, and its upper portion and bottom portion are in contact with the upper layer 13b and the lower layer 13d. In this way, the interlayer connection portion 24 is arranged close to the lower end portion 32c.
  • the interlayer connection portion 24 is, for example, a solder ball made of solder.
  • the interlayer connection portion 24 one containing lead and tin as main components may be used, one to which copper is added, or one containing lead-free lead-free solder may be used.
  • a through hole may be provided in the intermediate layer 12c, and a metal such as copper may be embedded in the through hole to form an embedded metal.
  • the interlayer connection portion 24 is located directly below the side portion 32b, that is, in the heat propagation path when the heat generated in the lower package 13 propagates to the heat radiating portion 32. Since the interlayer connection portion 24 has a high thermal conductivity, the heat generated in the lower package 13 can be efficiently propagated to the heat dissipation portion 32.
  • the thickness L1 of the heat radiating portion 32 is set to be larger than the thickness L2 in which the upper package 11 and the lower package 13 are laminated, so that the electronic device 1
  • the overall strength is increased, the warp of the electronic device 1 can be reduced, and the heat absorption effect of the heat radiating unit 32 can be improved.
  • the interlayer connection portion 24 is located in the heat propagation path from the lower package 13 to the heat dissipation portion 32, the heat propagation efficiency can be further improved. Therefore, it is possible to provide an electronic device with improved reliability.
  • the heat radiating portion 33 does not have one end, that is, the left side portion in the figure.
  • the right side portion 33b exists, and on the right side of the figure, the heat radiating portion 33 covers the laminate of the upper package 10 and the lower package 12, as in the electronic device 1 according to the first embodiment.
  • the side surface of the lower package 12 is in contact with the inner surface of the side portion 33b of the heat radiating portion 33 via the TIM 19.
  • the same effect as that of the electronic device 1 according to the first to third embodiments is obtained. Further, since the heat radiating portion 33 does not have the left side portion in the drawing, the size of the electronic device 1 can be reduced.
  • the fifth embodiment will be described with reference to FIG. As shown in FIG. 5, most of the configurations of the electronic device 1 according to the fifth embodiment are the same as those of the electronic device 1 according to the fourth embodiment.
  • the electronic device 1 according to the fifth embodiment is different from the electronic device 1 according to the fourth embodiment in the following points.
  • the position of the lower chip 40a of the lower package 40 is laterally moved toward the side portion 33b of the heat radiating portion 33, and is arranged close to the side portion 33b.
  • the lower package 40 includes a lower chip 40a, an upper layer 40b, an intermediate layer 40c, and a lower layer 40d.
  • the same effect as that of the electronic device 1 according to the fourth embodiment is obtained. Further, since the heat transfer efficiency to the heat radiating unit 33 can be improved, it is possible to provide an electronic device having further improved reliability.
  • the upper package 41 includes an upper chip 41a, an upper layer 41b, and a lower layer 41c.
  • the upper package 41 may be further provided with an intermediate layer.
  • the heat radiating portion 34 includes an upper portion 34a, a side portion 34b, and a lower end portion 34c.
  • the upper package 41 has a smaller lateral width than the lower package 13.
  • the upper package 41 and the lower package 13 are arranged so that the left end positions match in the figure. Therefore, there is an area P on the lower package 13 on which the upper package 41 is not placed.
  • the heat radiating portion 34 does not have one side portion, that is, the left side portion in the figure. In the figure, the right side portion 34b is present.
  • the heat radiating portion 34 is in contact with the lower package 41 so as to cover the upper portion and the right side portion, and the lower end portion 34c of the heat radiating portion 34 is the upper surface of the lower package 13.
  • the lower package 41 is arranged so as to be in contact with the region P on which the lower package 41 is not placed via the TIM 19.
  • the lateral width W2 of the side portion 34b of the heat radiating portion 34 is larger than the width W1 of the side portion 31b in the second embodiment.
  • the contact area between the lower end portion 34c of the heat radiating portion 34 and the upper surface of the lower package 13 can be set large, so that the heat transfer efficiency from the lower package 13 to the heat radiating portion 34 can be improved.
  • the lateral width W2 of the side portion 34b is set large, the lower end portion 34c of the heat radiating portion 34 comes close to the lower chip 13a of the lower package 13.
  • an interlayer connection portion 24 is arranged directly below the lower end portion 34c. According to this, since the interlayer connection portion 24 exists in the heat propagation path generated by the lower chip 13a, the heat propagation efficiency from the lower chip 13a, that is, the lower package 13 to the heat radiating portion 34 can be improved.
  • the same effect as that of the electronic device 1 according to the fourth embodiment is obtained. Further, since the heat transfer efficiency from the lower package 13 to the heat radiating unit 34 can be improved, it is possible to provide an electronic device with further improved reliability, and the size of the electronic device 1 can be reduced. It plays the effect.
  • the seventh embodiment will be described with reference to FIG. 7.
  • the position of the lower chip 42a of the lower package 42 is set to the right side in the figure, that is, more heat dissipation than the electronic device 1 according to the sixth embodiment. It is moved in the lateral direction close to the lower end portion 34c of the portion 34.
  • the lower package 42 has a multilayer structure including a lower chip 42a, an upper layer 42b, an intermediate layer 42c, and a lower layer 42d. By doing so, at least a part of the lower tip 42a is positioned directly below the lower end 34c. Further, the heat diffusion portion 26 is provided in the upper layer 42b of the lower package 42, located directly below the lower end portion 34c and directly above the lower chip 42a.
  • the heat diffusion portion 26 is configured as a through electrode formed by providing a through hole in the upper layer 42b and embedding a metal such as copper in the through hole. Since the heat diffusion unit 26 is configured to have a higher thermal conductivity than the material around the heat diffusion unit 26, for example, a mold resin, the heat diffusion unit 26 is set to have a high heat transfer efficiency. Therefore, the heat generated in the lower chip 42a, which is the heat generation source of the lower package 42, propagates to the heat radiating unit 34 efficiently by propagating through the heat diffusion unit 26 located directly above the lower chip 42a.
  • the heat diffusion unit 26 may be provided in the intermediate layer 42c.
  • the same effect as that of the electronic device 1 according to the fourth embodiment is obtained. Further, since the heat diffusion portion 26, the TIM19, and the lower end portion 34c are arranged immediately above the lower chip 42a, which is a heat generation source, the heat transfer efficiency from the lower package 42 to the heat dissipation portion 34 is further improved. Can be made to.
  • the heat radiating portion 35 is arranged on the lower package 13, and the upper package 11 is arranged on the heat radiating portion 35.
  • the heat radiating portion 35 has a rectangular box shape with an open bottom and an open top, and includes a side portion 35a and a bottom portion 35b.
  • the bottom portion 35b is provided with a through hole through which the solder ball 20 penetrates, whereby the solder ball 20 connects the upper package 11 and the lower package 13.
  • the heat radiating portion 35 is arranged between the upper package 11 and the lower package 13, when the lower package 13 generates a large amount of heat and the upper package 11 is weak against heat, the lower package 13 is generated. It is suppressed that the heat generated in the above package 11 is propagated to the upper package 11. Further, since the interlayer connection portion 24 of the lower package 13 is arranged directly below the side portion 35a, the efficiency of propagating the heat generated in the lower package 13 to the metal case 14 via the heat radiating portion 35 is improved.
  • the same effect as that of the electronic device 1 according to the first embodiment is obtained. Further, since the heat radiating unit 35 suppresses the heat generated in the lower package 13 from propagating to the upper package 11, an electronic device having further improved reliability is provided, especially when the upper package 11 is weak against heat. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This electronic device is provided with: upper packages (10, 41) provided with upper chips (10a, 41a); lower packages (12, 13, 40, 42) provided with lower chips (12a, 13a, 40a, 42a); a printed board (16) on which the upper packages and the lower packages are stacked; and heat dissipation parts (30, 31, 32, 33, 34, 35) in contact with a metal case (14) that dissipates heat to the outside, wherein the heat dissipation part is in contact with the upper packages and the lower packages.

Description

電子装置Electronic device 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年4月3日に出願された日本出願番号2019-071258号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-071258, which was filed on April 3, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、電子装置に関する。 This disclosure relates to electronic devices.
 2つのICパッケージを積層して形成されたPoP(Package on Package)を、プリント基板に実装した電子装置が知られている。 There is known an electronic device in which PoP (Package on Package) formed by laminating two IC packages is mounted on a printed circuit board.
米国特許第9746889号明細書U.S. Pat. No. 9,746,889 米国特許出願公開第2017/0294422号明細書U.S. Patent Application Publication No. 2017/0294422
 上記電子装置の場合、下側のICパッケージで発生した熱の放熱が十分にできないという問題が有る。特に下側のICパッケージの発熱が、上側のICパッケージの発熱より大きい場合にこの課題が顕著となる。
 本開示は、上記課題に鑑みてなされたものであり、その目的は、放熱性を向上させることにより、信頼性が向上した電子装置を提供することである。
In the case of the above electronic device, there is a problem that the heat generated in the lower IC package cannot be sufficiently dissipated. This problem becomes particularly remarkable when the heat generated by the lower IC package is larger than the heat generated by the upper IC package.
The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an electronic device having improved reliability by improving heat dissipation.
 本開示の一態様において、電子装置は、上チップを備える上パッケージと、下チップを備える下パッケージと、前記上パッケージ、及び前記下パッケージを上部に積層して備えるプリント基板と、熱を外部に放熱する金属ケースに接する放熱部と、を備え、前記放熱部は、前記上パッケージ及び前記下パッケージに接する。 In one aspect of the present disclosure, the electronic device dissipates heat to the outside with an upper package including an upper chip, a lower package including a lower chip, a printed circuit board including the upper package and the lower package stacked on top of each other. A heat radiating portion that contacts the metal case that dissipates heat is provided, and the heat radiating portion is in contact with the upper package and the lower package.
 本開示の一態様に係る電子装置によれば、下パッケージにおける熱の発生が大きい場合でも、上パッケージだけでなく下パッケージにも放熱部が接しているため、下パッケージで発生した熱も放熱部を介して金属ケースに効率的に伝播する。このため、下パッケージからの熱の放出が効率的に実施される。これにより、電子装置全体の放熱性を向上させることができるため、信頼性が向上した電子装置を提供することができる。 According to the electronic device according to one aspect of the present disclosure, even when the heat generated in the lower package is large, the heat radiating portion is in contact with not only the upper package but also the lower package. Efficiently propagates to the metal case via. Therefore, heat is efficiently released from the lower package. As a result, the heat dissipation of the entire electronic device can be improved, so that it is possible to provide an electronic device with improved reliability.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る電子装置の概略構成を示す縦断面図であり、 図2は、第2実施形態に係る電子装置の概略構成を示す縦断面図であり、 図3は、第3実施形態に係る電子装置の概略構成を示す縦断面図であり、 図4は、第4実施形態に係る電子装置の概略構成を示す縦断面図であり、 図5は、第5実施形態に係る電子装置の概略構成を示す縦断面図であり、 図6は、第6実施形態に係る電子装置の概略構成を示す縦断面図であり、 図7は、第7実施形態に係る電子装置の概略構成を示す縦断面図であり、 図8は、第8実施形態に係る電子装置の概略構成を示す縦断面図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a vertical sectional view showing a schematic configuration of an electronic device according to the first embodiment. FIG. 2 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the second embodiment. FIG. 3 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the third embodiment. FIG. 4 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the fourth embodiment. FIG. 5 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the fifth embodiment. FIG. 6 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the sixth embodiment. FIG. 7 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the seventh embodiment. FIG. 8 is a vertical cross-sectional view showing a schematic configuration of the electronic device according to the eighth embodiment.
 以下、本開示の実施形態に係る電子装置について図面を参照して説明する。以下の説明において前出と同様の要素については同様の符号又は同様の名称を付して、その説明については省略することとし、異なる部分について説明する。また、以下の説明において、電子装置1の金属ケース14側を上方向、プリント基板16側を下方向とする。 Hereinafter, the electronic device according to the embodiment of the present disclosure will be described with reference to the drawings. In the following description, the same elements as those mentioned above will be given the same reference numerals or the same names, and the description thereof will be omitted, and different parts will be described. Further, in the following description, the metal case 14 side of the electronic device 1 is upward, and the printed circuit board 16 side is downward.
 (第1実施形態)
 図1に示すように、第1実施形態に係る電子装置1は、2つのICパッケージを積層した所謂PoPである。電子装置1は、上パッケージ10、下パッケージ12、プリント基板16(Printed Circuit Board、以下、PCBと称する)、放熱部30、及びこれらを覆う金属ケース14を備えている。電子装置1は平板略矩形状をなしている。電子装置1に備えられる上パッケージ10及び下パッケージ12も平板略矩形状をなしている。金属ケース14は電子装置1の熱を外部に放熱する機能を備えている。
(First Embodiment)
As shown in FIG. 1, the electronic device 1 according to the first embodiment is a so-called PoP in which two IC packages are laminated. The electronic device 1 includes an upper package 10, a lower package 12, a printed circuit board 16 (Printed Circuit Board, hereinafter referred to as PCB), a heat radiating section 30, and a metal case 14 that covers them. The electronic device 1 has a substantially rectangular shape as a flat plate. The upper package 10 and the lower package 12 provided in the electronic device 1 also have a substantially rectangular shape as a flat plate. The metal case 14 has a function of dissipating the heat of the electronic device 1 to the outside.
 PCB16の上部には下パッケージ12及び上パッケージ10が積層されて配置される。上パッケージ10と下パッケージ12との間には複数のはんだボール20が配置されている。上パッケージ10と下パッケージ12とは複数のはんだボール20により接続されている。下パッケージ12とPCB16との間には複数のはんだボール22が配置されている。下パッケージ12とPCB16とは、複数のはんだボール22により接続されている。 The lower package 12 and the upper package 10 are stacked and arranged on the upper part of the PCB 16. A plurality of solder balls 20 are arranged between the upper package 10 and the lower package 12. The upper package 10 and the lower package 12 are connected by a plurality of solder balls 20. A plurality of solder balls 22 are arranged between the lower package 12 and the PCB 16. The lower package 12 and the PCB 16 are connected by a plurality of solder balls 22.
 放熱部30の上面と金属ケース14の内側天井面との間にはサーマルインターフェースマテリアル17(Thermal Interface Material、以下TIMと称する)が設けられている。また、上パッケージ10の上面と放熱部30との間にもTIM18が配置されている。また、側部30bの下端部30cとプリント基板16の上面はTIM19を介して接している。側部30bの内側面と下パッケージ12の側面はTIM19を介して接している。TIM17、18、19は熱伝導率が高い物質で構成されており、例えばシリコン、グラファイトを含んで構成されている。TIM17、18、19は上パッケージ10、下パッケージ12、及び放熱部30の間に介在して接続し、熱の伝播効率を向上させる熱伝達部材として機能する。 A thermal interface material 17 (Thermal Interface Material, hereinafter referred to as TIM) is provided between the upper surface of the heat radiating portion 30 and the inner ceiling surface of the metal case 14. Further, the TIM 18 is also arranged between the upper surface of the upper package 10 and the heat radiating portion 30. Further, the lower end portion 30c of the side portion 30b and the upper surface of the printed circuit board 16 are in contact with each other via the TIM 19. The inner side surface of the side portion 30b and the side surface of the lower package 12 are in contact with each other via the TIM 19. TIMs 17, 18 and 19 are composed of a substance having high thermal conductivity, and are composed of, for example, silicon and graphite. The TIMs 17, 18 and 19 are interposed and connected between the upper package 10, the lower package 12 and the heat radiating unit 30 to function as a heat transfer member for improving heat transfer efficiency.
 上パッケージ10は、上チップ10a、上層10b、下層10cを備えている。上チップ10aは下層10c上に配置されている。上チップ10aは上層10bにより上面及び側面を覆われている。上チップ10aは図示しない半導体基板に複数のトランジスタ及び配線等を搭載した集積回路であり、上層10bは例えばモールド樹脂、下層10cは例えばプリント基板である。上チップ10aは平板略矩形状をなしている。 The upper package 10 includes an upper chip 10a, an upper layer 10b, and a lower layer 10c. The upper chip 10a is arranged on the lower layer 10c. The upper surface and side surfaces of the upper chip 10a are covered with the upper layer 10b. The upper chip 10a is an integrated circuit in which a plurality of transistors, wiring, and the like are mounted on a semiconductor substrate (not shown), the upper layer 10b is, for example, a mold resin, and the lower layer 10c is, for example, a printed circuit board. The upper tip 10a has a substantially rectangular shape as a flat plate.
 下パッケージ12は、下チップ12a、上層12b、中間層12c、下層12dを備えている。下チップ12aは下層12d上に配置されており、上面及び側面を中間層12cにより覆われている。下チップ12aは平板略矩形状をなしている。上パッケージ10及び下パッケージ12を積層した積層物は、全体として四角柱形状を呈している。 The lower package 12 includes a lower chip 12a, an upper layer 12b, an intermediate layer 12c, and a lower layer 12d. The lower chip 12a is arranged on the lower layer 12d, and the upper surface and the side surface are covered with the intermediate layer 12c. The lower tip 12a has a substantially rectangular shape as a flat plate. The laminate obtained by laminating the upper package 10 and the lower package 12 has a quadrangular prism shape as a whole.
 上チップ10aは例えばDRAM、SRAM等のメモリである。下チップ12aは例えばCPU、SOC等のプロセッサである。第1実施形態において、下チップ12aの発熱量は、上チップ10aの発熱量よりも大きい。このことは、下記に説明する第2実施形態から第8実施形態においても同様である。 The upper chip 10a is, for example, a memory such as DRAM or SRAM. The lower chip 12a is, for example, a processor such as a CPU or SOC. In the first embodiment, the calorific value of the lower chip 12a is larger than the calorific value of the upper chip 10a. This also applies to the second to eighth embodiments described below.
 放熱部30は、無底有蓋で下方が開放された矩形箱型形状を呈しており、上部30a及び側部30bを備え、内部空間を備えている。放熱部30は熱伝導性が高い物質、例えば銅、鉄のような金属により構成されている。放熱部30は、上パッケージ10と下パッケージ12の積層物の全体を上から覆うようにして配置される。上パッケージ10及び下パッケージ12は放熱部30の内部空間内に配置される。 The heat radiating portion 30 has a rectangular box shape with a bottomless cover and an open lower portion, includes an upper portion 30a and a side portion 30b, and has an internal space. The heat radiating unit 30 is made of a substance having high thermal conductivity, for example, a metal such as copper or iron. The heat radiating portion 30 is arranged so as to cover the entire laminate of the upper package 10 and the lower package 12 from above. The upper package 10 and the lower package 12 are arranged in the internal space of the heat radiating unit 30.
 放熱部30の上面と金属ケース14の内側天井面は近接して設けられている。放熱部30の上面はTIM17を介して金属ケース14の内側天井面に接している。TIM17は、放熱部30及び金属ケース14に接することにより放熱部30からの熱を金属ケース14に伝播させている。金属ケース14はこの熱を外部に放熱する。 The upper surface of the heat radiating portion 30 and the inner ceiling surface of the metal case 14 are provided close to each other. The upper surface of the heat radiating portion 30 is in contact with the inner ceiling surface of the metal case 14 via the TIM 17. The TIM 17 propagates the heat from the heat radiating portion 30 to the metal case 14 by coming into contact with the heat radiating portion 30 and the metal case 14. The metal case 14 dissipates this heat to the outside.
 上パッケージ10の上面と放熱部30の内側天井面は近接して設けられている。上パッケージ10の上面はTIM18を介して放熱部30の内側天井面に接している。TIM18は、上パッケージ10と放熱部30に接することにより上パッケージ10からの熱を放熱部30に伝播させている。なお、TIM18を介して下パッケージ12から放熱部30に伝播する熱には、上パッケージ10で発生した熱と、下パッケージ12で発生し、はんだボール20を介して上パッケージ10に伝播した熱も含まれる。上パッケージ10の側面と放熱部30の側部30bとの間にTIM18を設けて、下パッケージ12側面から放熱部30に熱を伝播させる経路を備えるようにしてもよい。 The upper surface of the upper package 10 and the inner ceiling surface of the heat radiating portion 30 are provided close to each other. The upper surface of the upper package 10 is in contact with the inner ceiling surface of the heat radiating portion 30 via the TIM 18. The TIM 18 is in contact with the upper package 10 and the heat radiating unit 30 to propagate the heat from the upper package 10 to the heat radiating unit 30. The heat propagated from the lower package 12 to the heat radiating unit 30 via the TIM 18 includes the heat generated in the upper package 10 and the heat generated in the lower package 12 and propagated to the upper package 10 via the solder balls 20. included. A TIM 18 may be provided between the side surface of the upper package 10 and the side portion 30b of the heat radiating portion 30 to provide a path for heat to be propagated from the side surface of the lower package 12 to the heat radiating portion 30.
 放熱部30の側部30bの内側面と下パッケージ12の側面は近接して配置されている。放熱部30の側部30bの内側面はTIM19を介して下パッケージ12の側面に接している。下パッケージ12で発生した熱は下パッケージ12の側面からTIM19を介して放熱部30に効率的に伝播する。 The inner side surface of the side portion 30b of the heat radiating portion 30 and the side surface of the lower package 12 are arranged close to each other. The inner surface of the side portion 30b of the heat radiating portion 30 is in contact with the side surface of the lower package 12 via the TIM 19. The heat generated in the lower package 12 efficiently propagates from the side surface of the lower package 12 to the heat radiating unit 30 via the TIM 19.
 図1に示された矢印は熱伝播の概略経路を示している。実線の矢印は放熱部30を介して伝播する熱の経路を示している。破線の矢印は下パッケージ12から上パッケージ10を介して放熱部30に伝播する熱の経路を示している。これは、後述する図2から図8においても同様である。 The arrow shown in FIG. 1 shows the approximate path of heat conduction. The solid arrow indicates the path of heat propagating through the heat radiating section 30. The dashed arrow indicates the heat path that propagates from the lower package 12 to the heat radiating section 30 via the upper package 10. This also applies to FIGS. 2 to 8 described later.
 このようにして、上パッケージ10及び下パッケージ12で発生した熱は放熱部30に伝播し、放熱部30に伝播した熱は金属ケース14に伝播し、金属ケース14から外部に放熱される。放熱部30は、熱伝導性が高い材料を用いて構成されている。このため、上パッケージ10、下パッケージ12で発生した熱を効率的に放熱部30に伝播させることにより熱の伝播効率、放熱効率を向上させることができる。これにより、上パッケージ10及び下パッケージ12の冷却効率を向上させることができる。発生した熱が上記構成により金属ケース14から外部に放熱されて、電子装置1が冷却される。 In this way, the heat generated in the upper package 10 and the lower package 12 propagates to the heat radiating unit 30, the heat propagated to the heat radiating unit 30 propagates to the metal case 14, and is radiated to the outside from the metal case 14. The heat radiating unit 30 is made of a material having high thermal conductivity. Therefore, the heat propagation efficiency and the heat dissipation efficiency can be improved by efficiently propagating the heat generated in the upper package 10 and the lower package 12 to the heat radiating unit 30. Thereby, the cooling efficiency of the upper package 10 and the lower package 12 can be improved. The generated heat is radiated to the outside from the metal case 14 by the above configuration, and the electronic device 1 is cooled.
 上記に説明した第1実施形態に係る電子装置1によれば以下の効果を奏する。
 第1実施形態に係る電子装置1では、積層された上パッケージ10及び下パッケージ12を覆うようにして放熱部30が配置され、上パッケージ10の上面、下パッケージ12の側面は熱伝導率が高いTIM18、19を介して放熱部30に接触するように配置されている。これにより、上パッケージ10及び下パッケージ12で発生した熱が効率的に放熱部30に伝播する。更に、放熱部30と金属ケース14は熱伝導率が高いTIM17を介して面積が広い放熱部30の上面において接触している。この構成により、上パッケージ10及び下パッケージ12で発生した熱は効率的に放熱部30に伝播し、更に金属ケース14に伝播して外部に放熱される。これにより、電子装置1全体の放熱効率を向上させることができる。
According to the electronic device 1 according to the first embodiment described above, the following effects are obtained.
In the electronic device 1 according to the first embodiment, the heat radiating portion 30 is arranged so as to cover the laminated upper package 10 and lower package 12, and the upper surface of the upper package 10 and the side surface of the lower package 12 have high thermal conductivity. It is arranged so as to come into contact with the heat radiating portion 30 via the TIMs 18 and 19. As a result, the heat generated in the upper package 10 and the lower package 12 is efficiently propagated to the heat radiating unit 30. Further, the heat radiating portion 30 and the metal case 14 are in contact with each other on the upper surface of the heat radiating portion 30 having a large area via the TIM 17 having a high thermal conductivity. With this configuration, the heat generated in the upper package 10 and the lower package 12 is efficiently propagated to the heat radiating unit 30, and further propagated to the metal case 14 to be radiated to the outside. As a result, the heat dissipation efficiency of the entire electronic device 1 can be improved.
 更に、第1実施形態では、下パッケージ12の側面に近接して、TIM19を介して接するように放熱部30を配置したため、下パッケージ12から放熱部30への熱の伝播効率を向上させることができる。このため、下チップ12aが例えばCPUやSOCのような発熱が大きい電子部品である場合に、ここで発生した熱を効率的に放熱部30及び金属ケース14に伝播させることができる。これにより電子装置1全体の放熱効率を大幅に向上させることができるため、信頼性が向上した電子装置を提供することができる。 Further, in the first embodiment, since the heat radiating portion 30 is arranged close to the side surface of the lower package 12 so as to be in contact with the lower package 12 via the TIM 19, the heat propagation efficiency from the lower package 12 to the heat radiating portion 30 can be improved. it can. Therefore, when the lower chip 12a is an electronic component that generates a large amount of heat, such as a CPU or SOC, the heat generated here can be efficiently propagated to the heat dissipation unit 30 and the metal case 14. As a result, the heat dissipation efficiency of the entire electronic device 1 can be significantly improved, so that it is possible to provide an electronic device with improved reliability.
 (第2実施形態)
 次に、第2実施形態について図2を参照して説明する。図2に示すように、第2実施形態に係る電子装置1においては、下パッケージ12上に配置される上パッケージ11の大きさが下パッケージ12よりも小さく、横方向の幅が小さく構成されている。これにより、下パッケージ12の上面に上パッケージ11が載置されていない領域Pが発生する。なお、上パッケージ11は第1実施形態と同様に上チップ11a、上層11b、下層11cを備えている。
(Second Embodiment)
Next, the second embodiment will be described with reference to FIG. As shown in FIG. 2, in the electronic device 1 according to the second embodiment, the size of the upper package 11 arranged on the lower package 12 is smaller than that of the lower package 12, and the width in the lateral direction is smaller. There is. As a result, a region P in which the upper package 11 is not placed is generated on the upper surface of the lower package 12. The upper package 11 includes an upper chip 11a, an upper layer 11b, and a lower layer 11c as in the first embodiment.
 第2実施形態に係る電子装置1では、放熱部31は無底有蓋で下部が開放された矩形箱型形状を呈しており、上部31a及び側部31bを備える。側部31bは第1実施形態に比較して幅広に構成されており、側部31bの横方向の幅W1は、第1実施形態の側部30bの幅よりも大きく構成されている。 In the electronic device 1 according to the second embodiment, the heat radiating portion 31 has a rectangular box shape with a bottomless cover and an open lower portion, and includes an upper portion 31a and a side portion 31b. The side portion 31b is configured to be wider than that of the first embodiment, and the lateral width W1 of the side portion 31b is configured to be larger than the width of the side portion 30b of the first embodiment.
 第2実施形態において、放熱部31は、上パッケージ11の上面及び側面を覆うようにして配置されている。更に、放熱部31の下端部31cは下パッケージ12上面であって上パッケージ11が載置されていない領域Pに位置するように設けられている。 In the second embodiment, the heat radiating portion 31 is arranged so as to cover the upper surface and the side surface of the upper package 11. Further, the lower end portion 31c of the heat radiating portion 31 is provided so as to be located on the upper surface of the lower package 12 and in the region P where the upper package 11 is not placed.
 放熱部31の上部31aの内側の天井面と上パッケージ11上面は近接して配置され、上部31a内側の天井面はTIM18を介して上パッケージ11上面に接して配置されている。 The ceiling surface inside the upper portion 31a of the heat radiating portion 31 and the upper surface of the upper package 11 are arranged close to each other, and the ceiling surface inside the upper portion 31a is arranged in contact with the upper surface of the upper package 11 via TIM18.
 下パッケージ12の領域Pにおいて、放熱部31の下端部31cの下面と下パッケージ12の上面は近接して配置され、下端部31cの下面はTIM19を介して下パッケージ12上面に接して配置されている。その他の構成は第1実施形態に係る電子装置1と同様である。これにより、下端部31cと下パッケージ12はTIM19を介して接触し、下端部31cと下パッケージ12との接触面積を大きく設定することができる。 In the region P of the lower package 12, the lower surface of the lower end 31c of the heat radiating portion 31 and the upper surface of the lower package 12 are arranged close to each other, and the lower surface of the lower end 31c is arranged in contact with the upper surface of the lower package 12 via TIM19. There is. Other configurations are the same as those of the electronic device 1 according to the first embodiment. As a result, the lower end portion 31c and the lower package 12 come into contact with each other via the TIM 19, and the contact area between the lower end portion 31c and the lower package 12 can be set large.
 なお、第2実施形態に係る電子装置1において、側部31bの幅W1を大きくするため放熱部31の厚さを大きく構成した例を示したがこれに限定する意図はない。第2実施形態に係る電子装置1においては、下パッケージ12の上面において、放熱部31との接触面積を大きく採ることが目的である。従って、放熱部31を図2に示した放熱部31よりも更に厚さを薄く構成して、上パッケージ11と下パッケージ12の上面の形状に沿うようにして、薄い放熱部31を、領域Pを含む全域に配置させるようにしてもよい。 In the electronic device 1 according to the second embodiment, an example in which the thickness of the heat radiating portion 31 is increased in order to increase the width W1 of the side portion 31b is shown, but there is no intention of limiting this. The purpose of the electronic device 1 according to the second embodiment is to increase the contact area with the heat radiating portion 31 on the upper surface of the lower package 12. Therefore, the heat radiating portion 31 is formed to be thinner than the heat radiating portion 31 shown in FIG. 2, and the thin heat radiating portion 31 is formed in the region P so as to follow the shapes of the upper surfaces of the upper package 11 and the lower package 12. It may be arranged in the whole area including.
 上記に説明した第2実施形態に係る電子装置1によれば第1実施形態に係る電子装置1と同様の効果を奏する。更に、放熱部31と下パッケージ12との接触面積を大きく設定できるため、下パッケージ12で発生した熱を効率的に放熱部31に伝播させることができる。このため、電子装置1全体の放熱効率を更に向上させることができる。従って、更に信頼性が向上した電子装置を提供することができる。 According to the electronic device 1 according to the second embodiment described above, the same effect as that of the electronic device 1 according to the first embodiment is obtained. Further, since the contact area between the heat radiating unit 31 and the lower package 12 can be set large, the heat generated in the lower package 12 can be efficiently propagated to the heat radiating unit 31. Therefore, the heat dissipation efficiency of the entire electronic device 1 can be further improved. Therefore, it is possible to provide an electronic device with further improved reliability.
 (第3実施形態)
 次に、第3実施形態について図3を参照して説明する。図3に示すように、第3実施形態に係る電子装置1においては、第2実施形態に係る電子装置1と同様、上パッケージ11の横方向の寸法は、下パッケージ13よりも小さく構成されており、下パッケージ13の上面には上パッケージ11が載置されていない領域Pが存在する。下パッケージ13は、下チップ13a、及び上層13bと中間層13cと下層13dとを備える多層構造を備えている。
(Third Embodiment)
Next, the third embodiment will be described with reference to FIG. As shown in FIG. 3, in the electronic device 1 according to the third embodiment, the lateral dimension of the upper package 11 is smaller than that of the lower package 13 as in the electronic device 1 according to the second embodiment. There is a region P on the upper surface of the lower package 13 on which the upper package 11 is not placed. The lower package 13 has a multilayer structure including a lower chip 13a, an upper layer 13b, an intermediate layer 13c, and a lower layer 13d.
 第3実施形態では、第2実施形態に係る電子装置1に比較して、以下の点において異なる。放熱部32の上部32aの厚さL1は、上パッケージ11と下パッケージ13を積層し、その間にはんだボール20を配置した厚さL2よりも大きい。また、下パッケージ13において、放熱部32の側部32bの下端部30cの直下に位置する領域に、層間接続部24が配置されている。 The third embodiment differs from the electronic device 1 according to the second embodiment in the following points. The thickness L1 of the upper portion 32a of the heat radiating portion 32 is larger than the thickness L2 in which the upper package 11 and the lower package 13 are laminated and the solder balls 20 are arranged between them. Further, in the lower package 13, the interlayer connecting portion 24 is arranged in a region located directly below the lower end portion 30c of the side portion 32b of the heat radiating portion 32.
 層間接続部24は、下パッケージ13の中間層13cであって下チップ13aの横方向に位置し、その上部と底部が上層13bと下層13dに接触している。このように、層間接続部24は下端部32cに近接して配置されている。層間接続部24は例えばはんだで構成されたはんだボールである。層間接続部24として、鉛とスズを主成分とするものを用いてもよいし、さらに銅が添加されたもの、あるいは、鉛を含まない鉛フリーはんだを用いてもよい。あるいは、中間層12cに貫通孔を設け、貫通孔内に例えば銅などの金属を埋め込んで形成した埋め込み金属として構成してもよい。 The interlayer connection portion 24 is an intermediate layer 13c of the lower package 13 and is located in the lateral direction of the lower chip 13a, and its upper portion and bottom portion are in contact with the upper layer 13b and the lower layer 13d. In this way, the interlayer connection portion 24 is arranged close to the lower end portion 32c. The interlayer connection portion 24 is, for example, a solder ball made of solder. As the interlayer connection portion 24, one containing lead and tin as main components may be used, one to which copper is added, or one containing lead-free lead-free solder may be used. Alternatively, a through hole may be provided in the intermediate layer 12c, and a metal such as copper may be embedded in the through hole to form an embedded metal.
 層間接続部24は、側部32bの直下、すなわち、下パッケージ13で発生した熱が放熱部32に伝播する際の熱の伝播経路に位置している。層間接続部24は熱伝導率が大きいため、下パッケージ13で発生した熱を放熱部32に効率的に伝播させることができる。 The interlayer connection portion 24 is located directly below the side portion 32b, that is, in the heat propagation path when the heat generated in the lower package 13 propagates to the heat radiating portion 32. Since the interlayer connection portion 24 has a high thermal conductivity, the heat generated in the lower package 13 can be efficiently propagated to the heat dissipation portion 32.
 上記に説明した第3実施形態に係る電子装置1によれば第1実施形態及び第2実施形態に係る電子装置1と同様の効果を奏する。更に、第3実施形態に係る電子装置1によれば、放熱部32の厚さL1は、上パッケージ11と下パッケージ13を積層させた厚さL2よりも大きく設定されているため、電子装置1全体の強度が高くなり、電子装置1の反りを低減することができるとともに、放熱部32の吸熱効果を向上させることができる。更に、層間接続部24が下パッケージ13から放熱部32への熱の伝播経路に位置しているため、熱伝播効率を更に向上させることができる。従って、これにより信頼性が向上した電子装置を提供することができる。 According to the electronic device 1 according to the third embodiment described above, the same effect as that of the electronic device 1 according to the first embodiment and the second embodiment is obtained. Further, according to the electronic device 1 according to the third embodiment, the thickness L1 of the heat radiating portion 32 is set to be larger than the thickness L2 in which the upper package 11 and the lower package 13 are laminated, so that the electronic device 1 The overall strength is increased, the warp of the electronic device 1 can be reduced, and the heat absorption effect of the heat radiating unit 32 can be improved. Further, since the interlayer connection portion 24 is located in the heat propagation path from the lower package 13 to the heat dissipation portion 32, the heat propagation efficiency can be further improved. Therefore, it is possible to provide an electronic device with improved reliability.
 (第4実施形態)
 次に、第4実施形態について図4を参照して説明する。図4に示すように、第4実施形態に係る電子装置1においては、第1実施形態に係る電子装置1に比較して、放熱部33の形状が異なっている。
(Fourth Embodiment)
Next, the fourth embodiment will be described with reference to FIG. As shown in FIG. 4, in the electronic device 1 according to the fourth embodiment, the shape of the heat radiating unit 33 is different from that of the electronic device 1 according to the first embodiment.
 第4実施形態において放熱部33は、一方の端部、図において左側の側部が存在していない。図において右側の側部33bは存在しており、図の右側においては、第1実施形態に係る電子装置1と同様に、放熱部33は上パッケージ10と下パッケージ12との積層物を覆い、下パッケージ12の側面はTIM19を介して放熱部33の側部33bの内面に接している。第4実施形態に係る電子装置1によれば、第1から第3実施形態に係る電子装置1と同様の効果を奏する。更に、放熱部33において図における左側の側部が無いため電子装置1のサイズを小さく構成することができる。 In the fourth embodiment, the heat radiating portion 33 does not have one end, that is, the left side portion in the figure. In the figure, the right side portion 33b exists, and on the right side of the figure, the heat radiating portion 33 covers the laminate of the upper package 10 and the lower package 12, as in the electronic device 1 according to the first embodiment. The side surface of the lower package 12 is in contact with the inner surface of the side portion 33b of the heat radiating portion 33 via the TIM 19. According to the electronic device 1 according to the fourth embodiment, the same effect as that of the electronic device 1 according to the first to third embodiments is obtained. Further, since the heat radiating portion 33 does not have the left side portion in the drawing, the size of the electronic device 1 can be reduced.
 (第5実施形態)
 次に、第5実施形態について図5を参照して説明する。図5に示すように、第5実施形態に係る電子装置1の構成のほとんどは第4実施形態に係る電子装置1と同様である。第5実施形態に係る電子装置1は以下の点で第4実施形態に係る電子装置1と異なっている。第5実施形態に係る電子装置1では、下パッケージ40の下チップ40aの位置が放熱部33の側部33b側に横方向に移動し、側部33bに近接して配置されている。このように、下パッケージ40の下チップ40aすなわち発熱源の位置を放熱部33に更に近接させることにより、下パッケージ40で発生した熱を効率的に放熱部33に伝播させることができる。なお、下パッケージ40は、下チップ40a、上層40b、中間層40c、下層40dを備えている。
(Fifth Embodiment)
Next, the fifth embodiment will be described with reference to FIG. As shown in FIG. 5, most of the configurations of the electronic device 1 according to the fifth embodiment are the same as those of the electronic device 1 according to the fourth embodiment. The electronic device 1 according to the fifth embodiment is different from the electronic device 1 according to the fourth embodiment in the following points. In the electronic device 1 according to the fifth embodiment, the position of the lower chip 40a of the lower package 40 is laterally moved toward the side portion 33b of the heat radiating portion 33, and is arranged close to the side portion 33b. By moving the position of the lower chip 40a of the lower package 40, that is, the heat generating source, closer to the heat radiating unit 33 in this way, the heat generated in the lower package 40 can be efficiently propagated to the heat radiating unit 33. The lower package 40 includes a lower chip 40a, an upper layer 40b, an intermediate layer 40c, and a lower layer 40d.
 第5実施形態によれば、第4実施形態に係る電子装置1と同様の効果を得る。また、放熱部33への熱伝播効率を向上させることができるため、更に信頼性が向上した電子装置を提供することができるという効果を奏する。 According to the fifth embodiment, the same effect as that of the electronic device 1 according to the fourth embodiment is obtained. Further, since the heat transfer efficiency to the heat radiating unit 33 can be improved, it is possible to provide an electronic device having further improved reliability.
 (第6実施形態)
 次に、第6実施形態について図6を参照して説明する。図6に示すように、第6実施形態に係る電子装置1においては、第2実施形態に係る電子装置1に比較して、上パッケージ41の位置、及び放熱部34の形状が異なっている。上パッケージ41は、上チップ41a、上層41b、及び下層41cを備えている。なお、上パッケージ41は、さらに中間層を備える構成としてもよい。放熱部34は、上部34a、側部34b、下端部34cを備えている。
(Sixth Embodiment)
Next, the sixth embodiment will be described with reference to FIG. As shown in FIG. 6, in the electronic device 1 according to the sixth embodiment, the position of the upper package 41 and the shape of the heat radiating portion 34 are different from those of the electronic device 1 according to the second embodiment. The upper package 41 includes an upper chip 41a, an upper layer 41b, and a lower layer 41c. The upper package 41 may be further provided with an intermediate layer. The heat radiating portion 34 includes an upper portion 34a, a side portion 34b, and a lower end portion 34c.
 第6実施形態において、上パッケージ41は下パッケージ13よりも横方向の幅が小さい。上パッケージ41と下パッケージ13は、図において左端位置が一致するように配置されている。このため、下パッケージ13上には上パッケージ41が載置されていない領域Pが存在する。 In the sixth embodiment, the upper package 41 has a smaller lateral width than the lower package 13. The upper package 41 and the lower package 13 are arranged so that the left end positions match in the figure. Therefore, there is an area P on the lower package 13 on which the upper package 41 is not placed.
 また、放熱部34は、一方の側部すなわち図において左側の側部が存在してしない。図において右側の側部34bは存在している。図6においては、第2実施形態に係る電子装置1と同様に、放熱部34は下パッケージ41の上部及び右側側部を覆うようにして接し、放熱部34の下端部34cは下パッケージ13上面であって下パッケージ41が載置されていない領域P上にTIM19を介して接するようにして配置されている。 Further, the heat radiating portion 34 does not have one side portion, that is, the left side portion in the figure. In the figure, the right side portion 34b is present. In FIG. 6, similarly to the electronic device 1 according to the second embodiment, the heat radiating portion 34 is in contact with the lower package 41 so as to cover the upper portion and the right side portion, and the lower end portion 34c of the heat radiating portion 34 is the upper surface of the lower package 13. The lower package 41 is arranged so as to be in contact with the region P on which the lower package 41 is not placed via the TIM 19.
 更に、放熱部34の側部34bの横幅W2は、第2実施形態における側部31bの幅W1よりも大きい。これにより、放熱部34の下端部34cと下パッケージ13上面との接触面積を大きく設定できるため、下パッケージ13から放熱部34への熱伝播効率を向上させることができる。また、側部34bの横幅W2を大きく設定しているため、放熱部34の下端部34cが下パッケージ13の下チップ13aに近接することになる。また、下端部34cの直下には層間接続部24が配置されている。これによれば、層間接続部24は、下チップ13aで発生した熱の伝播経路に存在するため、下チップ13aすなわち下パッケージ13から放熱部34への熱の伝播効率を向上させることができる。 Further, the lateral width W2 of the side portion 34b of the heat radiating portion 34 is larger than the width W1 of the side portion 31b in the second embodiment. As a result, the contact area between the lower end portion 34c of the heat radiating portion 34 and the upper surface of the lower package 13 can be set large, so that the heat transfer efficiency from the lower package 13 to the heat radiating portion 34 can be improved. Further, since the lateral width W2 of the side portion 34b is set large, the lower end portion 34c of the heat radiating portion 34 comes close to the lower chip 13a of the lower package 13. Further, an interlayer connection portion 24 is arranged directly below the lower end portion 34c. According to this, since the interlayer connection portion 24 exists in the heat propagation path generated by the lower chip 13a, the heat propagation efficiency from the lower chip 13a, that is, the lower package 13 to the heat radiating portion 34 can be improved.
 以上に説明したように、第6実施形態に係る電子装置1によれば、第4実施形態に係る電子装置1と同様の効果を得る。また、下パッケージ13から放熱部34への熱伝播効率を向上させることができるため、更に信頼性が向上した電子装置を提供することができるとともに、電子装置1のサイズを小さく構成することができるという効果を奏する。 As described above, according to the electronic device 1 according to the sixth embodiment, the same effect as that of the electronic device 1 according to the fourth embodiment is obtained. Further, since the heat transfer efficiency from the lower package 13 to the heat radiating unit 34 can be improved, it is possible to provide an electronic device with further improved reliability, and the size of the electronic device 1 can be reduced. It plays the effect.
 (第7実施形態)
 次に、第7実施形態について図7を参照して説明する。図7に示すように、第7実施形態に係る電子装置1においては、第6実施形態に係る電子装置1に比較して、下パッケージ42の下チップ42aの位置を、図において右側すなわちより放熱部34の下端部34cに近接する横方向に移動させている。下パッケージ42は、下チップ42a、及び、上層42b、中間層42c及び下層42dを備える多層構造を備えている。こうすることで、下チップ42aの少なくとも一部を、下端部34cの直下に位置させる。また、下パッケージ42の上層42bであって下端部34cの直下、かつ、下チップ42aの直上に位置して、熱拡散部26が設けられている。
(7th Embodiment)
Next, the seventh embodiment will be described with reference to FIG. 7. As shown in FIG. 7, in the electronic device 1 according to the seventh embodiment, the position of the lower chip 42a of the lower package 42 is set to the right side in the figure, that is, more heat dissipation than the electronic device 1 according to the sixth embodiment. It is moved in the lateral direction close to the lower end portion 34c of the portion 34. The lower package 42 has a multilayer structure including a lower chip 42a, an upper layer 42b, an intermediate layer 42c, and a lower layer 42d. By doing so, at least a part of the lower tip 42a is positioned directly below the lower end 34c. Further, the heat diffusion portion 26 is provided in the upper layer 42b of the lower package 42, located directly below the lower end portion 34c and directly above the lower chip 42a.
 熱拡散部26は、上層42bに貫通孔を設け、貫通孔内に例えば銅などの金属を埋め込んで形成した貫通電極として構成される。熱拡散部26は、熱拡散部26の周囲の材料、例えばモールド樹脂よりも熱伝導率が大きくなるように構成されるため、熱拡散部26は熱伝播効率が高く設定されている。従って、下パッケージ42の発熱源である下チップ42aにおいて発生した熱は、下チップ42aの直上に位置する熱拡散部26を介して伝播することにより効率的に放熱部34に伝播する。なお、熱拡散部26は、中間層42cに設けてもよい。 The heat diffusion portion 26 is configured as a through electrode formed by providing a through hole in the upper layer 42b and embedding a metal such as copper in the through hole. Since the heat diffusion unit 26 is configured to have a higher thermal conductivity than the material around the heat diffusion unit 26, for example, a mold resin, the heat diffusion unit 26 is set to have a high heat transfer efficiency. Therefore, the heat generated in the lower chip 42a, which is the heat generation source of the lower package 42, propagates to the heat radiating unit 34 efficiently by propagating through the heat diffusion unit 26 located directly above the lower chip 42a. The heat diffusion unit 26 may be provided in the intermediate layer 42c.
 第7実施形態に係る電子装置1によれば、第4実施形態に係る電子装置1と同様の効果を得る。また、熱の発生源である下チップ42aの直上に近接して、熱拡散部26、TIM19、及び下端部34cが配置されるため、下パッケージ42から放熱部34への熱伝播効率を更に向上させることができる。 According to the electronic device 1 according to the seventh embodiment, the same effect as that of the electronic device 1 according to the fourth embodiment is obtained. Further, since the heat diffusion portion 26, the TIM19, and the lower end portion 34c are arranged immediately above the lower chip 42a, which is a heat generation source, the heat transfer efficiency from the lower package 42 to the heat dissipation portion 34 is further improved. Can be made to.
 (第8実施形態)
 次に、第8実施形態について図8を参照して説明する。図8に示すように、第8実施形態に係る電子装置1においては、下パッケージ13上に放熱部35が配置され、その上に上パッケージ11が配置される。放熱部35は、無蓋有底で上部が開放された矩形箱型形状を呈しており、側部35aと底部35bを備えている。底部35bにははんだボール20を貫通させる貫通孔が設けられており、これによりはんだボール20は上パッケージ11と下パッケージ13とを接続している。上記に説明した構成によれば、上パッケージ11と下パッケージ13との間に放熱部35が配置されるため、下パッケージ13の発熱が大きく、上パッケージ11が熱に弱い場合に、下パッケージ13で発生した熱が上パッケージ11に伝播することが抑制される。また、側部35aの直下に下パッケージ13の層間接続部24が配置されるため、下パッケージ13で発生した熱が放熱部35を介して金属ケース14に伝播する効率が向上される。
(8th Embodiment)
Next, the eighth embodiment will be described with reference to FIG. As shown in FIG. 8, in the electronic device 1 according to the eighth embodiment, the heat radiating portion 35 is arranged on the lower package 13, and the upper package 11 is arranged on the heat radiating portion 35. The heat radiating portion 35 has a rectangular box shape with an open bottom and an open top, and includes a side portion 35a and a bottom portion 35b. The bottom portion 35b is provided with a through hole through which the solder ball 20 penetrates, whereby the solder ball 20 connects the upper package 11 and the lower package 13. According to the configuration described above, since the heat radiating portion 35 is arranged between the upper package 11 and the lower package 13, when the lower package 13 generates a large amount of heat and the upper package 11 is weak against heat, the lower package 13 is generated. It is suppressed that the heat generated in the above package 11 is propagated to the upper package 11. Further, since the interlayer connection portion 24 of the lower package 13 is arranged directly below the side portion 35a, the efficiency of propagating the heat generated in the lower package 13 to the metal case 14 via the heat radiating portion 35 is improved.
 第8実施形態に係る電子装置1によれば、第1実施形態に係る電子装置1と同様の効果を得る。また、放熱部35により下パッケージ13で発生した熱が上パッケージ11に伝播することが抑制されるため、特に上パッケージ11が熱に対して弱い場合に、更に信頼性が向上した電子装置を提供することができる。 According to the electronic device 1 according to the eighth embodiment, the same effect as that of the electronic device 1 according to the first embodiment is obtained. Further, since the heat radiating unit 35 suppresses the heat generated in the lower package 13 from propagating to the upper package 11, an electronic device having further improved reliability is provided, especially when the upper package 11 is weak against heat. can do.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (6)

  1.  上チップ(10a、41a)を備える上パッケージ(10、11、41)と、
     下チップ(12a、13a、40a、42a)を備える下パッケージ(12、13、40、42)と、
     前記上パッケージ、及び前記下パッケージを上部に積層して備えるプリント基板(16)と、
     熱を外部に放熱する金属ケース(14)に接する放熱部(30、31、32、33、34、35)と、を備え、
     前記放熱部は、前記上パッケージ及び前記下パッケージに接する電子装置。
    An upper package (10, 11, 41) with an upper tip (10a, 41a) and
    A lower package (12, 13, 40, 42) with a lower tip (12a, 13a, 40a, 42a) and
    A printed circuit board (16) provided with the upper package and the lower package laminated on the upper surface.
    It is provided with a heat radiating portion (30, 31, 32, 33, 34, 35) in contact with a metal case (14) that radiates heat to the outside.
    The heat radiating portion is an electronic device in contact with the upper package and the lower package.
  2.  前記放熱部(31、32、34、35)は、前記下パッケージ(12)の上面で接続される請求項1に記載の電子装置。 The electronic device according to claim 1, wherein the heat radiating unit (31, 32, 34, 35) is connected to the upper surface of the lower package (12).
  3.  前記下チップ(40a、42a)の位置を横方向に移動させて配置することで、前記下チップを前記放熱部(33、34)に近接させる請求項1または2に記載の電子装置。 The electronic device according to claim 1 or 2, wherein the lower chip (40a, 42a) is arranged by moving the position in the lateral direction so that the lower chip is brought close to the heat radiating portion (33, 34).
  4.  前記下パッケージ(13、42)は、複数の層を有する多層構造であってこの複数の層間を接続する層間接続部(24)を備えており、
     前記放熱部(32、34、35)は、前記下パッケージと、前記下パッケージに設けられた前記層間接続部の直上の位置で接続されている請求項1から3の何れか一項に記載の電子装置。
    The lower package (13, 42) has a multi-layer structure having a plurality of layers and includes an interlayer connection portion (24) for connecting the plurality of layers.
    The method according to any one of claims 1 to 3, wherein the heat radiating portion (32, 34, 35) is connected to the lower package at a position directly above the interlayer connection portion provided in the lower package. Electronic device.
  5.  放熱部(32)の厚さは、前記上パッケージ(11)と下パッケージ(13)とが積層された厚さよりも大きい、請求項1から4の何れか一項に記載の電子装置。 The electronic device according to any one of claims 1 to 4, wherein the thickness of the heat radiating portion (32) is larger than the thickness of the upper package (11) and the lower package (13) laminated.
  6.  下チップの発熱量は、上チップの発熱量よりも大きい、請求項1から5の何れか一項に記載の電子装置。
     
    The electronic device according to any one of claims 1 to 5, wherein the calorific value of the lower chip is larger than the calorific value of the upper chip.
PCT/JP2020/010550 2019-04-03 2020-03-11 Electronic device WO2020203123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019071258A JP7063302B2 (en) 2019-04-03 2019-04-03 Electronic device
JP2019-071258 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020203123A1 true WO2020203123A1 (en) 2020-10-08

Family

ID=72668369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010550 WO2020203123A1 (en) 2019-04-03 2020-03-11 Electronic device

Country Status (2)

Country Link
JP (1) JP7063302B2 (en)
WO (1) WO2020203123A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188342A (en) * 2001-12-19 2003-07-04 Sony Corp Semiconductor device
JP2004031650A (en) * 2002-06-26 2004-01-29 Sony Corp Leadless package and semiconductor device
JP2006210892A (en) * 2004-12-27 2006-08-10 Nec Corp Semiconductor device
JP2010252210A (en) * 2009-04-20 2010-11-04 Seiko Epson Corp Temperature compensation type piezoelectric oscillator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102184989B1 (en) * 2013-09-11 2020-12-01 삼성전자주식회사 Semiconductor package And Method Of Fabricating The Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188342A (en) * 2001-12-19 2003-07-04 Sony Corp Semiconductor device
JP2004031650A (en) * 2002-06-26 2004-01-29 Sony Corp Leadless package and semiconductor device
JP2006210892A (en) * 2004-12-27 2006-08-10 Nec Corp Semiconductor device
JP2010252210A (en) * 2009-04-20 2010-11-04 Seiko Epson Corp Temperature compensation type piezoelectric oscillator

Also Published As

Publication number Publication date
JP2020170786A (en) 2020-10-15
JP7063302B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
JP4086068B2 (en) Semiconductor device
US10290620B2 (en) Package with SoC and integrated memory
US9484282B2 (en) Resin-sealed semiconductor device
US20100246140A1 (en) Circuit Board and Method for Manufacturing Semiconductor Modules and Circuit Boards
US20070045804A1 (en) Printed circuit board for thermal dissipation and electronic device using the same
US8619428B2 (en) Electronic package structure
US8716830B2 (en) Thermally efficient integrated circuit package
KR102228461B1 (en) Semiconductor Package Device
WO2011121779A1 (en) Multichip module, printed wiring board unit, method for manufacturing multichip module, and method for manufacturing printed wiring board unit
JP2004006791A (en) Electronic controller and its production method
US20070013045A1 (en) Printed circuit board for thermal dissipation and electronic device using the same
JP5222838B2 (en) Control device
US7723843B2 (en) Multi-package module and electronic device using the same
KR20060105403A (en) Package structure having circuit and composite substrate
TW201709461A (en) Package substrate
WO2020203123A1 (en) Electronic device
US20220013428A1 (en) Electronic device
JP2007281043A (en) Semiconductor device
JP2016127256A (en) Circuit board
JP6686467B2 (en) Electronic component heat dissipation structure
JP6200693B2 (en) Electronic control unit
JP2009117489A (en) Semiconductor device package and mounting substrate
JP2006135202A (en) Heat radiating structure for electronic appliance
US20240114614A1 (en) Thermal Conduction - Electrical Conduction Isolated Circuit Board with Ceramic Substrate and Power Transistor Embedded
JP2021158309A (en) Wiring board, wiring board module, and base material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785197

Country of ref document: EP

Kind code of ref document: A1