WO2020202834A1 - 小型ギアおよびギアユニット - Google Patents
小型ギアおよびギアユニット Download PDFInfo
- Publication number
- WO2020202834A1 WO2020202834A1 PCT/JP2020/005923 JP2020005923W WO2020202834A1 WO 2020202834 A1 WO2020202834 A1 WO 2020202834A1 JP 2020005923 W JP2020005923 W JP 2020005923W WO 2020202834 A1 WO2020202834 A1 WO 2020202834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- planetary
- central axis
- resin composition
- small gear
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
Definitions
- the present invention relates to small gears and gear units.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a small gear having excellent wear resistance and a gear unit including such a small gear.
- An exemplary invention of the present application is a small gear having a module of 0.2 mm or less, which is composed of a resin composition containing a crystalline resin and inorganic spherical particles having a Mohs hardness of 5 or more. It is a small gear in which the amount of the inorganic spherical particles contained in an object is 1 to 10% by mass. Further, another exemplary invention of the present application is a gear unit characterized by having the small gear.
- FIG. 1 is a side view showing a state in which a combiner is projected from a case body in a head-up display having a built-in gear unit of the present invention.
- FIG. 2 is a perspective view of a main part of FIG.
- FIG. 3 is a perspective view in which the frame and the unit case of FIG. 2 are omitted.
- FIG. 4 is a perspective view of a main part showing a state in which the combiner of FIG. 1 is housed in the case body.
- FIG. 5 is a side view of FIG.
- FIG. 6 is a vertical sectional view showing an embodiment of the gear unit of the present invention.
- 7 is a sectional view taken along line AA and a sectional view taken along line BB in FIG. 6 (reference numerals are shown in parentheses).
- FIG. 1 is a side view showing a state in which the combiner is projected from the case body in a head-up display
- FIG. 2 is a perspective view of a main part of FIG. 1
- FIG. 3 omits the frame and unit case of FIG.
- FIG. 4 is a perspective view of a main part showing a state in which the combiner of FIG. 1 is housed in a case main body
- FIG. 5 is a side view of FIG.
- a pop-up storage type small head-up display (hereinafter, referred to as “HUD”) 10 includes a case body 11a, a frame 12 fixed inside the case body 11a, and a frame 12. It is provided with two guide shafts 13 fixed to.
- the case body 11a has a top plate 11b having an opening through which the combiner 113 of the unit case 14, which will be described later, can pass through.
- the combiner 113 can project to the outside of the case body 11a by passing through this opening.
- the frame 12 has a wall plate 12a arranged along the vertical direction, and an upper flange 12b and a lower flange 12c formed at the upper and lower ends of the wall plate 12a and bent in the horizontal direction. It is composed of plate-shaped members. Two guide shafts 13 are provided between the upper flange 12b and the lower flange 12c at a horizontal interval.
- the HUD 10 includes a unit case 14 provided so as to be able to move up and down along each guide shaft 13, and a lead screw 15 disposed between the two guide shafts 13 and penetrating the unit case 14.
- the unit case 14 has a box shape with an open upper surface.
- the upper and lower ends of the lead screw 15 are rotatably supported by bearings 20 and 21 on the upper and lower flanges 12b and 12c, respectively.
- the HUD 10 includes a gear unit 1 and a motor 80 fixed to the lower surface side of the lower flange 12c, a gear (gear) 17 fixed to the output shaft 9 of the gear unit 1, and a lead.
- a gear (gear) 18 fixed to the lower end of the screw 15 and a nut 19 screwed into the lead screw 15 are provided.
- a bearing 22 for supporting the output shaft 9 of the gear unit 1 is arranged on the lower flange 12c.
- the gear 17 and the gear 18 are both spur gears, the gear 17 is a small gear, and the gear 18 is a large gear.
- the gear 17 and the gear 18 are in mesh with each other.
- the nut 19 is fixed to the unit case 14.
- the HUD 10 includes a rotating shaft 110 rotatably supported in the unit case 14, a base portion 111 fixed to the central portion of the rotating shaft 110 in the longitudinal direction, and a base.
- the combiner holder 112 provided in the portion 111 and the combiner 113 attached to the combiner holder 112 are provided.
- the rotation shaft 110 is arranged in the horizontal direction and can rotate around the axis.
- the base portion 111 has a diameter larger than that of the rotating shaft 110, and a screw 111a is formed on the lower half circumference thereof.
- a flat plate-shaped combiner holder 112 is provided on the outer periphery of the base portion 111 on the upper side in parallel with the rotation shaft 110.
- the upper part of the combiner holder 112 protrudes from the upper opening of the unit case 14.
- the lower end of the combiner 113 is attached to this protruding portion.
- the combiner 113 has a plate shape and is arranged along the vertical direction.
- a projection unit (not shown) for projecting an image toward the combiner 113 is arranged adjacent to the elevating region of the frame 12 and the unit case 14.
- the HUD 10 includes a pinion gear 114 rotatably provided in the unit case 14, a helical gear 115 integrally formed in the pinion gear 114, and a tilt motor 116 mounted in the unit case 14. And a worm gear 117 fixed to the output shaft of the motor 116.
- a rotation mechanism for rotating the rotation shaft 110 is configured by a screw 111a of the base portion 111, a pinion gear 114, a helical gear 115, and a worm gear 117.
- the axis of the pinion gear 114 is provided parallel to the rotating shaft 110, and is screwed (meshed) with the screw 111a.
- a helical gear 115 having a diameter larger than that of the pinion gear 114 is arranged on one end side of the pinion gear 114.
- the pinion gear 114 and the helical gear 115 are arranged coaxially and can rotate in synchronization with each other.
- the output shaft of the motor 116 is arranged along the vertical direction.
- the worm gear 117 is fixed to the output shaft of the motor 116, and can be rotated around the output shaft by the operation of the motor 116.
- the worm gear 117 meshes with (tooths) the helical gear 115.
- the unit case 14 together with the nut 19 screwed into the lead screw 15 can be raised along the guide shaft 13. it can.
- the combiner 113 provided in the upper part of the unit case 14 can pass through the opening of the case body 11a and project to the outside of the case body 11a.
- the motor 116 is operated in this protruding state, the worm gear 117 rotates, and the rotational force is transmitted to the helical gear 115.
- the helical gear 115 can be rotated together with the pinion gear 114.
- the rotational force of the pinion gear 114 is transmitted to the rotating shaft 110 via the screw 111a.
- the rotation shaft 110 can be rotated together with the combiner 113, and thus the inclination angle of the combiner 113 with respect to the projection unit can be adjusted.
- An image (image) from the projection unit is accurately projected onto the combiner 113 whose inclination angle is adjusted.
- the motor 116 After using the combiner 113, the motor 116 operates to bring the combiner 113 upright, that is, to restore the tilt angle. Then, the motor 80 is operated to rotate the lead screw 15 in the direction opposite to the above, so that the unit case 14 is lowered along the guide shaft 13. As a result, as shown in FIGS. 4 and 5, the combiner 113 can be stored in the case body 11a. A hole penetrating in the axial direction is formed in the gear 18, and the gear 18 is fixed to the lead screw 15 with the end of the lead screw 15 inserted into the hole.
- FIG. 6 is a vertical sectional view showing an embodiment of the gear unit of the present invention.
- FIG. 7 is a sectional view taken along line AA and a sectional view taken along line BB in FIG. 6 (reference numerals are shown in parentheses).
- FIG. 6 shows a cross section of the gear unit 1 with a surface including the central axis J1.
- the upper side in FIG. 6 is referred to as “upper” or “upper”
- the lower side is referred to as “lower” or “lower”.
- the vertical direction which is the direction in which the central axis J1 faces, is also referred to as "axial direction”.
- circumferential direction centered on the central axis J1 is simply referred to as “circumferential direction”
- radial direction centered on the central axis J1 is simply referred to as “diameter direction”.
- the gear unit 1 includes a casing 2, an input unit 3, a first rotary assembly 4, a second rotary assembly 6, a first internal gear 5, and a second internal gear 7. ,
- the input shaft 8 and the output shaft 9 are provided.
- a motor 80 is directly connected to the input shaft 8.
- the gear unit 1 has a planetary gear mechanism having a two-stage configuration of a first rotating assembly 4 and a second rotating assembly 6, and is formed, for example, having an external dimension of 5 mm in width, 5 mm in depth, and 20 mm in height or less. ing.
- the motor 80 serves as a drive source, that is, a power source for a structure (not shown) on which the gear unit 1 is mounted.
- the structure may be, for example, a small camera or the like.
- the motor 80 and the motor 116 for example, a stepping motor, a servo motor, or the like is appropriately selected depending on the intended use of the structure.
- the input shaft 8 may be the motor shaft of the motor 80 that is rotationally driven with the central shaft J1 as the center of rotation.
- a casing 2 is arranged and fixed on the upper side of the motor 80.
- the casing 2 has a substantially cylindrical shape centered on the central axis J1.
- the input unit 3, the first rotary assembly 4, a part of the second rotary assembly 6, the first internal gear 5, and the second internal gear 7 are housed inside the casing 2.
- the second rotating assembly 6 side is on the upper side and the first rotating assembly 4 side is on the lower side along the central axis J1, but the direction of the central axis J1 must always match the direction of gravity. There is no.
- the gear ratio between the first rotary assembly 4 and the second rotary assembly 6 is appropriately set depending on the intended use of the structure. As a result, the power from the motor 15 can be decelerated and output from the output shaft 9.
- the input unit 3 includes a second input shaft 31 and an input gear 33.
- the second input shaft 31 is connected to the upper part of the input shaft 8 and can rotate around the central axis J1 together with the input shaft 8.
- the second input shaft 31 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is smaller than the outer diameter of the input shaft 8.
- the input gear 33 is concentrically fixed to the outer peripheral portion of the second input shaft 31. As a result, the input gear 33 can rotate around the central axis J1 together with the second input shaft 31.
- the method of fixing the input gear 33 to the second input shaft 31 is not particularly limited, and for example, a fixing method using a key and a keyway can be used.
- the second input shaft 31 and the input gear 33 are separately formed from each other in the illustrated configuration, but the present invention is not limited to this, and for example, the second input shaft 31 and the input gear 33 may be integrally formed of one gear member. .. As shown in FIG. 7, the input gear 33 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 331 protruding from the outer peripheral portion thereof.
- the first rotary assembly 4 includes a first rotary shaft member 41, a first planetary carrier 42, a plurality of first planetary shaft members 43, a plurality of first planetary gears 44, and a sun gear 45.
- the first rotary shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are supports that support the first planetary gear 44 and the sun gear 45, respectively.
- This support may include yet another member in addition to the first rotating shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43.
- the first rotating shaft member 41, the first planetary carrier 42, and the plurality of first planetary shaft members 43 are integrally formed of one gear member in the present embodiment, but the present invention is not limited to this, and for example, each other. It may be composed of separate bodies, and may be composed of a connected body in which these separate bodies are connected to each other.
- the first rotating shaft member 41 has a substantially cylindrical shape or a substantially cylindrical shape, and its central axis coincides with the central axis J1. Further, the first rotary shaft member 41 is arranged above the second input shaft 31 of the input unit 3. A disk-shaped first planet carrier 42 is arranged concentrically with the first rotating shaft member 41 below the first rotating shaft member 41. That is, the first rotation shaft member 41 is arranged so as to project upward at the center of the disk-shaped first planet carrier 42.
- a plurality of first planetary shaft members 43 are arranged below the first planetary carrier 42 on the outer peripheral side of the first planetary carrier 42, that is, at positions eccentric from the central axis J1 (first rotating shaft member 41). ..
- the plurality of first planetary shaft members 43 have the same substantially cylindrical shape, and their longitudinal directions are oriented along the central axis J1 (hereinafter, also referred to as "along the central axis J1"). There is.
- the number of arrangements of the first planetary shaft members 43 is not limited to three in the configuration shown in FIG. 2, but may be two or four or more. Further, these first planetary shaft members 43 are arranged at equal angular intervals around the central axis J1. For example, as shown in FIG.
- first planetary shaft members 43 when the number of arrangements of the first planetary shaft members 43 is three, these first planetary shaft members 43 are arranged at intervals of 120 ° around the central axis J1.
- the central axis of each first planetary axis member 43 will be referred to as "first planetary axis J2".
- a first planetary gear 44 is rotatably supported (rotatably) on each first planetary shaft member 43.
- each of the first planetary gears 44 can rotate around the first planetary axis J2, that is, rotate on its axis.
- each of the first planetary gears 44 can rotate around the central axis J1 as the center of rotation, that is, revolve.
- each of the first planetary gears 44 is a planetary gear (also referred to as "P gear") that rotates around the first planetary axis J2 and revolves around the central axis J1.
- Each first planetary gear 44 is a spur gear having a plurality of teeth (hereinafter, referred to as "outer peripheral teeth") 441 protruding from the outer peripheral portion thereof.
- Each of the first planetary gears 44 is arranged on the outer side in the radial direction of the input gear 33 along the circumferential direction thereof, and the outer peripheral teeth 441 are engaged (engaged) with the outer peripheral teeth 331 of the input gear 33.
- the sun gear 45 is concentrically fixed to the outer peripheral portion of the first rotary shaft member 41. As a result, the sun gear 45 can rotate around the central axis J1 together with the first rotating shaft member 41.
- the method of fixing the sun gear 45 to the first rotary shaft member 41 is not particularly limited, and for example, a fixing method using a key and a key groove can be used.
- the sun gear 45 is a spur gear having a plurality of teeth (hereinafter, referred to as “outer peripheral teeth”) 451 protruding from the outer peripheral portion thereof.
- first rotary shaft member 41 and the sun gear 45 are separately formed from each other in the illustrated configuration, but the present invention is not limited to this, and for example, even if the first rotary shaft member 41 and the sun gear 45 are integrally formed of one gear member. Good. Therefore, the first rotating shaft member 41, the first planetary carrier 42, the plurality of first planetary shaft members 43, and the sun gear 45 may be integrally formed of one gear member, and the gear member is referred to as "C. Also called "gear".
- the first internal gear 5 forms an annular shape with the central axis J1 as the central axis.
- the first internal gear 5 is arranged and fixed concentrically with the casing 2 inside the casing 2.
- the fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferable.
- the first internal gear 5 is an internal gear having a plurality of teeth (hereinafter, referred to as “inner peripheral teeth”) 51 protruding from the inner peripheral portion thereof.
- the inner peripheral teeth 51 mesh with the outer peripheral teeth 441 of each of the first planetary gears 44 at different positions in the circumferential direction.
- the second rotary assembly 6 is arranged above the first rotary assembly.
- the second rotary assembly 6 includes a second rotary shaft member 61, a second planet carrier 62, a plurality of second planet shaft members 63, and a plurality of second planet gears 64.
- the second rotary shaft member 61, the second planet carrier 62, and the plurality of second planet shaft members 63 are supports that support each of the second planet shaft members 63.
- the support may include yet another member in addition to the second rotating shaft member 61, the second planet carrier 62, and the plurality of second planetary shaft members 63.
- the second rotating shaft member 61, the second planet carrier 62, and the plurality of second planet shaft members 63 are integrally formed of one gear member, but the present invention is not limited to this, and for example, each other. It may be composed of separate bodies, and may be composed of a connected body in which these separate bodies are connected to each other.
- the second rotating shaft member 61 has a substantially cylindrical shape or a substantially cylindrical shape, and its central axis coincides with the central axis J1 like the first rotating shaft member 41. Further, the second rotary shaft member 61 projects upward from the upper surface of the casing 2 to the outside of the casing 2.
- a disk-shaped second planet carrier 62 is arranged concentrically with the second rotating shaft member 61 below the second rotating shaft member 61. That is, the second rotating shaft member 61 is arranged so as to project upward at the center of the disk-shaped second planet carrier 62.
- a plurality of second planetary shaft members 63 are arranged below the second planetary carrier 62 on the outer peripheral side of the second planetary carrier 62, that is, at a position eccentric from the central axis J1 (second rotating shaft member 61). ..
- the plurality of second planetary shaft members 63 have the same substantially cylindrical shape, and are arranged so that their longitudinal directions are directed along the central axis J1 (along the central axis J1).
- the number of arrangements of the second planetary shaft member 63 is not limited to three in the configuration shown in FIG. 7, but may be two or four or more, and in particular, the first planetary shaft member 43. It is preferable that the number is the same as the number of arrangements of.
- these second planetary shaft members 63 are arranged around the central axis J1 at equal angular intervals. For example, as shown in FIG. 7, when the number of arrangements of the second planetary shaft members 63 is three, these second planetary shaft members 63 are arranged around the central axis J1 at intervals of 120 °. In the following description, the central axis of each second planetary axis member 63 will be referred to as "second planetary axis J3".
- a second planetary gear 64 is rotatably supported (rotatably) on each of the second planetary shaft members 63.
- each of the second planetary gears 64 can rotate around the second planetary axis J3, that is, rotate on its axis.
- each of the second planetary gears 64 can rotate around the central axis J1 as the center of rotation, that is, revolve.
- each of the second planetary gears 64 is a planetary gear (also referred to as “P gear”) that rotates around the second planetary axis J3 and revolves around the central axis J1.
- Each second planetary gear 64 is a spur gear having a plurality of teeth (hereinafter, referred to as "outer peripheral teeth") 641 protruding from the outer peripheral portion thereof.
- Each of the second planetary gears 64 is arranged on the outer side in the radial direction of the sun gear 45 along the circumferential direction thereof, and the outer peripheral teeth 641 are engaged (engaged) with the outer peripheral teeth 451 of the sun gear 45.
- the second internal gear 7 forms an annular shape with the central axis J1 as the central axis.
- the second internal gear 7 is arranged inside the casing 2 above the first internal gear 5 and apart from the first internal gear 5 in the axial direction. Further, the second internal gear 7 is arranged and fixed concentrically with the casing 2.
- the fixing method is not particularly limited, and for example, a fixing method by fitting can be used. In this case, intermediate fitting is preferable.
- the second internal gear 7 is an internal gear having a plurality of teeth (hereinafter referred to as “inner peripheral teeth”) 71 protruding from the inner peripheral portion thereof.
- the inner peripheral teeth 71 mesh with the outer peripheral teeth 641 of each of the second planetary gears 64 at different positions in the circumferential direction.
- the output shaft 9 is connected (connected) to the upper part of the second rotary shaft member 61 on the outside of the casing 2, and can rotate around the central shaft J1 together with the second rotary shaft member 61.
- the output shaft 9 has a substantially cylindrical shape or a substantially cylindrical shape, and its outer diameter is the same as the outer diameter of the second rotating shaft member 61.
- the gear ratio between the first rotary assembly 4 and the second rotary assembly 6 is set within a predetermined range.
- the motor 15 when the motor 15 operates, its power is transmitted to the input gear 33 via the input shaft 8 and the second input shaft 31 in order.
- the input gear 33 rotates around the central axis J1 in the direction of the arrow ⁇ 1.
- the rotational force of the input gear 33 is transmitted to each of the first planetary gears 44 that mesh with the input gear 33.
- each first planetary gear 44 can rotate around the first planetary axis J2 in the direction of arrow ⁇ 2, that is, rotate on its axis.
- each of the first planetary gears 44 also meshes with the first internal gear 5 fixed to the casing 2.
- the rotational force thereof can be transmitted to the first internal gear 5, and thus the arrow around the central axis J1. It can also rotate in the ⁇ 3 direction, that is, it can revolve.
- the sun gear 45 can be rotated around the central axis J1 in the direction of arrow ⁇ 1.
- each second planetary gear 64 meshes with the sun gear 45.
- the sun gear 45 rotates in the direction of arrow ⁇ 1
- the rotational force is transmitted to each second planetary gear 64.
- each of the two planetary gears 64 can rotate around the second planetary axis J3 in the arrow ⁇ 2 direction, that is, rotate.
- each of the second planetary gears 64 also meshes with the second internal gear 7 fixed to the casing 2.
- the rotational force thereof can be transmitted to the second internal gear 7, and thus the arrow around the central axis J1. It can rotate in the ⁇ 3 direction, that is, revolve. Then, by this revolution, the output shaft 9 can be rotated around the central axis J1 in the same direction as the arrow ⁇ 1 direction.
- the direction along the central axis J1 means a direction substantially parallel to the central axis J1 (axial direction), and does not have to be strictly parallel to the axial direction. That is, the first planetary axis J2 and the second planetary axis J3 may be parallel to the central axis J1 or may be inclined by a small angle with respect to the central axis J1.
- the small gear of the present invention is preferably used as a gear that rotates (rotates and / or revolves) itself.
- the gear unit 1 shown in FIG. 6 and the like at least one of an input gear 33, a C gear (gear member), and a plurality of P gears (first planetary gear 44 and second planetary gear 64).
- the small gear of the present invention (hereinafter, also simply referred to as a gear) has a module of 0.2 mm or less, and is composed of a resin composition containing a crystalline resin and inorganic spherical particles.
- the crystalline resin refers to a thermoplastic resin having a melting peak when differential scanning calorimetry (DSC) is performed in accordance with JIS K 7121: 2012 (plastic transition temperature measuring method).
- the crystalline resin include polyamide, polyolefin, polyester, polyether, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polyacetal (POM), polyimide, fluoropolymer and the like.
- PPS polyphenylene sulfide
- LCP liquid crystal polymer
- POM polyacetal
- polyimide fluoropolymer and the like.
- FPC plastic transition temperature measuring method
- These resins may be used alone or in combination of two or more.
- polyamide is preferable as the crystalline resin.
- Polyamide can be used to improve the mechanical strength, rigidity and wear resistance of gears.
- Polyamides are generally classified into aliphatic polyamides (non-aromatic polyamides), semi-aromatic polyamides, and total aromatic polyamides, but semi-aromatic polyamides are preferable.
- Semi-aromatic polyamides are preferable because they are easy to melt and crystallize.
- the semi-aromatic polyamide is a copolymer of a dicarboxylic acid and a diamine, one of which has an aromatic group and the other of which has an aliphatic group.
- aliphatic dicarboxylic acid examples include HOOC- (CH 2 ) n- COOH (n is 0 to 12), dimethylmalonic acid, 3,3-diethylsuccinic acid, 2,2-dimethylglutaric acid, and 2-methyladipine.
- Acids chain aliphatic dicarboxylic acids such as trimethylazipic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid , Alicyclic dicarboxylic acid such as cyclodecanedicarboxylic acid and the like.
- examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylic acid and 4,4'-biphenyl.
- examples thereof include dicarboxylic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid and the like.
- aliphatic diamine examples include linear aliphatic diamines such as NH 2- (CH 2 ) m- NH 2 (m is 0 to 12), 1-butyl-1,2-ethanediamine, and the like. 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentanediamine, 3- Methyl-1,5-pentanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1,6-hexanediamine, 2,2-dimethyl-1,6-hexanediamine, 1, Branches such as 3-dimethyl-1,8-octanediamine, 2,4-dimethyl-1,8-octanediamine, 2,2-dimethyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine Examples thereof include alicyclic diamines such as alipha
- examples of the aromatic diamine include p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, and 4 , 4'-diaminodiphenyl ether and the like.
- the semi-aromatic polyamide include polyamide MXD6 (PAMXD6), polyamide 9T (PA9T), polyamide 4T (PA4T), polyamide 6T (PA6T), and polyamide 10T (PA10T).
- Specific examples of other polyamides include, for example, polyamide 6 (PA6), polyamide 11 (PA11), polyamide 12 (PA12) polyamide 66 (PA66), polyamide 610 (PA610), polyamide 612 (PA612), and polyamide 410. (PA410) and the like.
- polystyrene resin examples include polyethylene (PE) and polypropylene (PP).
- polyester examples include polyethylene terephthalate (PET), polybutadiene terephthalate (PBT), polylactic acid (PLA) and the like.
- polyether examples include polyetheretherketone (PEEK), polyetherketone (PEK), polyetherketone ketone (PEKK), polyaryletherketone (PAEK), and the like.
- the melting point of the crystalline resin depends on the type, but is preferably about 165 to 390 ° C, more preferably about 175 to 375 ° C, and even more preferably about 185 to 360 ° C. ..
- the inorganic spherical particles are particles (powder) -like inorganic fillers, and are components mixed with a crystalline resin for the purpose of improving the load bearing capacity of the obtained gear. Since the resin composition contains inorganic spherical particles, it is preferably prevented that the surface of the gear is dented even when a high load is applied to the gear. In addition, some of the inorganic spherical particles having a higher hardness than the crystalline resin are exposed on the surface of the gear. As a result, the slidability of the gear is improved, and as a result, the wear resistance is also improved. Examples of the inorganic spherical particles include silica spherical particles, alumina spherical particles, quartz particles, glass beads and the like.
- inorganic spherical particles having a Mohs hardness of 5 or more are preferable, and at least of silica spherical particles (Mohs hardness: about 7) and alumina spherical particles (Mohs hardness: about 8 to 9).
- Inorganic spherical particles containing one of them are more preferable, and silica spherical particles are further preferable.
- the volume average particle diameter of the inorganic spherical particles is preferably about 2 to 10 ⁇ m, and more preferably about 4 to 8 ⁇ m.
- the inorganic spherical particles having such a volume average particle diameter can be generated when the gear slides with another gear while suppressing deterioration of the surface condition (reduction of smoothness) of the gear. It is possible to preferably prevent the gear from falling off from the surface of the gear.
- the volume average particle size is, for example, the particle size at a point where the cumulative volume is 50% in the particle size distribution measured by using a laser diffraction particle size distribution measuring device.
- the amount of the inorganic spherical particles contained in the resin composition is about 1 to 10% by mass.
- the amount of the inorganic spherical particles contained in the resin composition is preferably about 3 to 8% by mass. As a result, the effect is more pronounced.
- the resin composition may contain an inorganic filler other than the inorganic spherical particles.
- an inorganic filler include a fibrous inorganic filler (inorganic fiber) and a non-fibrous inorganic filler such as a scaly inorganic filler.
- the inorganic fiber include glass fiber, carbon fiber, asbestos fiber, and inorganic whisker (potassium titanate fiber, zinc oxide fiber, magnesium oxide fiber, aluminum oxide fiber, calcium sulfate fiber, silicon carbide fiber, silicon nitride fiber, silicon nitride). Fibers, mulite fibers, magnesium borate fibers, titanium borate fibers, etc.) and the like.
- examples of the scaly inorganic filler include various metal pieces and the like.
- the amount thereof is preferably less than 1% by mass. In this case, wear of the gear starting from the inorganic fiber can be prevented.
- the resin composition constituting the gear of the present invention may contain components other than the crystalline resin and the inorganic spherical particles (inorganic filler). Examples of such components include clay minerals, organic fillers, lubricants and the like.
- the resin composition contains clay minerals
- the moldability of the resin composition, the slidability of the obtained gear, the rigidity (particularly the bending rigidity), and the like are further improved. Further, by improving the slidability and flexural rigidity, the obtained gear exhibits excellent durability.
- Clay minerals have an extremely fine shape as compared with fibrous fillers such as glass fiber and carbon fiber. Therefore, when a small gear having a module of 0.2 mm or less is manufactured, the filling property of the resin composition in the molding die is improved, and thus the obtained gear is also excellent in shape stability.
- clay minerals examples include flat (scaly) clay minerals such as talc and mica, and particulate clay minerals such as clay (bentonite), kaolin, diatomaceous earth, and wollastonite.
- the clay mineral is preferably a flat clay mineral.
- the Mohs hardness of the clay mineral is preferably 4 or less, more preferably 3 or less, and further preferably about 1 to 2.
- the clay mineral is particularly preferably talc (Mohs hardness: about 1).
- talc Mohs hardness: about 1
- the smoothness and bending rigidity of the surface of the gear are increased, and the deformation of the gear can be prevented or suppressed during use.
- wear debris and damage to the gear are unlikely to occur.
- talc also has an action of promoting crystallization of the crystalline resin, it is preferable from the viewpoint that the mechanical strength of the obtained gear can be further increased.
- talc is an inexpensive material as compared with other reinforcing materials (for example, inorganic whiskers), it also contributes to reduction of gear manufacturing cost.
- the amount of clay mineral contained in the resin composition is preferably about 5 to 20% by mass, preferably about 7.5 to 17.5% by mass, and preferably about 10 to 15% by mass. Is more preferable.
- the organic filler is not particularly limited, and examples thereof include fillers composed of aramid, liquid crystal polymer, polyester, polyolefin, and the like. Above all, the organic filler preferably contains at least one of an aramid filler and a liquid crystal polymer filler.
- the organic filler may be in the form of fibers or particles, but is preferably in the form of fibers.
- the fibrous organic filler organic fiber
- the smoothness of the surface of the gear is further improved, and thus the slidability (wear resistance) of the gear is further improved.
- the average fiber length of the organic fibers is preferably about 100 to 500 ⁇ m, more preferably about 150 to 400 ⁇ m.
- the average fiber length refers to the average value of the lengths of the fillers in the longitudinal direction.
- the amount of the organic filler contained in the resin composition is preferably about 1 to 10% by mass, and more preferably about 2 to 8% by mass.
- the lubricant examples include an olefin resin-based lubricant, a fluororesin-based lubricant, an ester resin-based lubricant, an acrylic resin-based lubricant, a polyamide-based lubricant, and the like, but at least one of the olefin resin-based lubricant and the fluororesin-based lubricant. Is preferable. By using such a lubricant, the slidability of the gear can be further improved. Above all, when the olefin resin-based lubricant is used, the above effect is more remarkablely exhibited by coating the surface of the gear with the lubricant melted by the frictional heat.
- the amount of the lubricant contained in the resin composition is preferably about 1 to 10% by mass, and more preferably about 2 to 8% by mass.
- the gear module to be manufactured is 0.2 mm or less, but more preferably about 0.1 to 0.2 mm. Even such a minute gear can be stably manufactured (with a high yield) with accurate dimensions by using the above-mentioned resin composition.
- the fine gear preferably has a reference circular pitch diameter of about 1.2 to 1.7 mm, a number of teeth of about 8 to 18, and a tooth thickness of about 0.15 to 0.32 mm.
- the input gear 33 arranged close to the motor 80 is easily affected by the heat generated by the motor 80, it may be composed of a gear manufactured by using a resin composition containing a semi-aromatic polyimide. preferable.
- the gear having the above configuration is manufactured by, for example, the gear manufacturing method described below.
- the gear manufacturing method of the present embodiment includes [1] a first step of preparing the resin composition described above, [2] a second step of melting the resin composition, and [3] a resin composition in a molten state. It has a step of supplying a product to a molding die to obtain a molded body having a shape corresponding to a gear to be manufactured, and a step of [4] heat-treating the molded body to obtain a gear.
- First step First the components (crystalline resin, inorganic spherical particles, clay mineral, organic filler, lubricant) constituting the resin composition are prepared. By mixing these components, a resin composition is obtained. Various mixers such as blenders, kneaders, rolls and extruders can be used for this mixing. [2] Second step Next, the obtained resin composition is melted by heating it to a temperature higher than the melting point of the crystalline resin. The heating temperature is preferably about 5 to 20 ° C. higher than the melting point of the crystalline resin, and more preferably about 5 to 15 ° C. higher.
- a molten resin composition is supplied to a molding die to obtain a molded body having a shape corresponding to a gear to be manufactured.
- the temperature of the molding die is not particularly limited, but is preferably set to a temperature about 5 to 25 ° C. lower than the glass transition temperature (Tg) of the crystalline resin, and more preferably about 10 to 20 ° C. lower.
- Tg glass transition temperature
- the resin composition is supplied to the molding die by setting the temperature of the molding die to a temperature about 5 to 25 ° C. lower than the glass transition temperature (Tg) of the crystalline resin, the resin composition rapidly solidifies and is molded. Become a body.
- the gate is cut well, and the shape (contour shape) of the edge portion of the molded body is also stabilized. Further, the mold releasability of the molded product from the molding mold is enhanced. Therefore, the time required for forming the molded product can be sufficiently shortened (about 10 to 15 seconds). Therefore, the yield in the production of the molded product can be improved, and the number of installation equipment for manufacturing the molded product can be significantly reduced. At this point, the crystallization of the crystallization resin has not substantially progressed.
- the molded product is taken out from the molding mold and heat-treated (annealed) at a temperature higher than the crystallization temperature of the crystalline resin to obtain a gear.
- the crystallinity of the molded body is increased.
- the crystallinity temperature refers to the exothermic peak temperature associated with the promotion of crystallization of the crystallinity resin when the differential scanning calorimetry is performed on the crystallinity resin under a temperature rising condition of 10 ° C./min.
- the temperature of the heat treatment may be higher than the crystallization temperature of the crystalline resin, but is 5 to 25 ° C higher than the maximum temperature when the gear is actually used (hereinafter, also referred to as “actual operating temperature”).
- the temperature is preferable, and the temperature is more preferably about 10 to 20 ° C. higher than the actual operating temperature.
- the actual operating temperature thereof is preferably about 110 to 140 ° C, more preferably about 120 to 130 ° C.
- Examples of the method of this heat treatment include a method of heating with a heater, a method of irradiating infrared rays, a method of blowing hot air, and the like in a heating furnace.
- the heating furnace may be either a batch furnace or a continuous furnace.
- the pressure in the heat treatment atmosphere may be reduced pressure, normal pressure or pressurized.
- the heat treatment time is not particularly limited, but is preferably about 30 to 120 minutes, and more preferably about 45 to 100 minutes.
- the gear is manufactured through the above steps.
- the small gear and the gear unit of the present invention have been described above based on preferred embodiments, but the present invention is not limited thereto.
- the small gear of the present invention includes parts for industrial machines such as a small camera and a robot hand, as well as, for example, automobile parts, bicycle parts, railroad vehicle parts, marine parts, aircraft parts, and space transport machines.
- parts for industrial machines such as a small camera and a robot hand
- parts for electronic equipment such as parts for mobile terminals
- parts for electrical equipment such as refrigerators, washing machines, and air conditioners
- this resin composition was supplied to a molding die set at about 80 ° C. to obtain a molded body having a shape corresponding to the gear to be manufactured. After confirming that the molded product had solidified, 11 seconds after the resin composition was supplied to the mold, the molded product was taken out from the mold. Then, the obtained molded product was heat-treated at 150 ° C. for 60 minutes in a heating furnace to obtain gears.
- the target gear had a reference circular pitch diameter of 1.3 mm, a module of 0.2 mm, a number of teeth of 14, and a tooth thickness of 0.4 mm.
- Example 2 Gears were obtained in the same manner as in Example 1 except that the amount of silica spherical particles in the resin composition was 5% by mass.
- Example 3 Gears were obtained in the same manner as in Example 1 except that silica spherical particles having a volume average particle diameter of 2 ⁇ m were used.
- Example 4 Gears were obtained in the same manner as in Example 1 except that silica spherical particles having a volume average particle diameter of 10 ⁇ m were used.
- Example 5 Gears were obtained in the same manner as in Example 1 except that the lubricant was omitted.
- Example 6 Gears were obtained in the same manner as in Example 1 except that the amount of silica spherical particles in the resin composition was 10% by mass.
- Gears were obtained in the same manner as in Example 1 except that the resin composition was prepared as follows.
- a semi-aromatic polyamide (PA9T) as a crystalline resin, potassium titanate fiber as an inorganic whisker, and an olefin resin-based lubricant as a lubricant were mixed with a blender to obtain a resin composition.
- the amount of potassium titanate fibers in the resin composition was 30% by mass, and the amount of the olefin resin-based lubricant was 5% by mass.
- 100 gears were manufactured.
- the gears obtained in each example were excellent in wear resistance. Such an effect could be further improved by adjusting the amount of silica spherical particles or the volume average particle size. On the other hand, the gear obtained in the comparative example was inferior in wear resistance.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Gears, Cams (AREA)
Abstract
本発明の小型ギアは、モジュールが0.2mm以下である小型ギアであって、結晶性樹脂と、モース硬度が5以上の無機球状粒子とを含有する樹脂組成物で構成され、前記樹脂組成物中に含まれる前記無機球状粒子の量が1~10質量%である。前記無機球状粒子の体積平均粒子径は、2~10μmであることが好ましい。前記樹脂組成物は、さらにオレフィン樹脂系滑剤およびフッ素樹脂系滑剤の少なくとも一方の滑剤を含有することが好ましい。
Description
本発明は、小型ギアおよびギアユニットに関する。
従来より、遊星歯車機構を用いた減速装置(ギアユニット)が知られている(例えば、特許文献1参照)。この減速装置では、遊星ギアを金属射出成形(MIM)法で製造し、出力ギアおよび固定ギアを添加剤を含有する樹脂組成物を用いて製造している。近年、このような減速装置を小型カメラ等に適用する試みがなされており、減速装置の小型化に伴い、より小型のギアが要求されている。
しかしながら、MIM法で小型のギアを製造する場合、得られるギアの寸法精度が低いため、歩留まりを高めることが困難である。一方、樹脂組成物を用いて小型のギアを製造する場合、摩耗し易いという問題がある。
本発明は、上記課題に鑑みなされたものであり、その目的は、耐摩耗性に優れた小型ギア、およびかかる小型ギアを備えるギアユニットを提供することにある。
本願の例示的な発明は、モジュールが0.2mm以下である小型ギアであって、結晶性樹脂と、モース硬度が5以上の無機球状粒子とを含有する樹脂組成物で構成され、前記樹脂組成物中に含まれる前記無機球状粒子の量が1~10質量%である小型ギアである。
また、本願の他の例示的な発明は、前記小型ギアを有することを特徴とするギアユニットである。
本願の例示的な発明によれば、耐摩耗性に優れた小型ギア、およびかかる小型ギアを有するギアユニットを提供することができる。
以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。
まず、本発明の小型ギアおよびギアユニットの説明に先立って、本発明のギアユニットが適用されるヘッドアップディスプレイについて説明する。
(ヘッドアップディスプレイ)
図1は、ヘッドアップディスプレイにおいて、コンバイナをケース本体から突出させた状態を示す側面図、図2は、図1の要部の斜視図、図3は、図2のフレームおよびユニットケースを省略した斜視図、図4は、図1のコンバイナをケース本体内に収納した状態を示す要部の斜視図、図5は、図4の側面図である。
図1に示すように、ポップアップ格納タイプの小型のヘッドアップディスプレイ(以下、「HUD」と記載する。)10は、ケース本体11aと、ケース本体11aの内部に固定されたフレーム12と、フレーム12に固定された2本のガイド軸13とを備えている。
ケース本体11aは、後述するユニットケース14のコンバイナ113が通過可能な開口部が形成された天板11bを有している。コンバイナ113は、この開口部を通過することにより、ケース本体11aの外部に突出することができる。
図2に示すように、フレーム12は、鉛直方向に沿って配置された壁板12aと、壁板12aの上下端部に形成され、水平方向に屈曲した上部フランジ12bおよび下部フランジ12cとを有する板状の部材で構成されている。上部フランジ12bと下部フランジ12cと間には、2本のガイド軸13が水平方向に間隔をおいて設けられている。
また、HUD10は、各ガイド軸13に沿って昇降自在に設けられたユニットケース14と、2本のガイド軸13同士の間に配設され、ユニットケース14を貫通するリードスクリュー15とを備えている。
ユニットケース14は、上面が開口する箱状をなす。
リードスクリュー15は、その上下端部がそれぞれ上下部フランジ12b、12cに軸受20、21により回転自在に支持されている。
図2および図3に示すように、HUD10は、下部フランジ12cの下面側に固定されたギアユニット1およびモータ80と、ギアユニット1の出力軸9に固定されたギア(歯車)17と、リードスクリュー15の下端部に固定されたギア(歯車)18と、リードスクリュー15に螺合したナット19とを備えている。また、下部フランジ12cには、ギアユニット1の出力軸9を支持する軸受22が配置されている。
ギア17およびギア18は、いずれも平歯車であり、ギア17が小歯車、ギア18が大歯車となっている。ギア17とギア18とは、互いに噛み合っている。
また、ナット19は、ユニットケース14に固定されている。
そして、モータ80が作動することにより、ギア17が回転する。この回転力は、ギア18に伝達されて、ギア18をリードスクリュー15ごと回転させることができる。これにより、ナット19は、リードスクリュー15に螺合しつつ、リードスクリュー15に沿って移動することができる。
ナット19の上方向への移動により、このナット19に固定されたユニットケース14は、図2および図3に示すように、ケース本体11a内で上昇することができる。また、モータ80の作動により、ギア17が前記と反対方向に回転した場合には、ナット19の下方向への移動により、ユニットケース14は、図4および図5に示すように、ケース本体11a内で下降することができる。
すなわち、少なくともギア18が固定されたリードスクリュー15と、ギア19に噛み合うように配置されたギア(駆動ギア)17と、ギア17を駆動させるモータ(駆動部)80とにより、HUD10の駆動装置が構成される。
図3に示すように、HUD10は、ユニットケース14内に回動自在に支持された回動軸110と、回動軸110の長手方向の中央部に固定された基台部111と、基台部111に設けられたコンバイナホルダ112と、コンバイナホルダ112に取り付けられたコンバイナ113とを備えている。
回動軸110は、水平方向に配置されており、その軸線廻りに回動することができる。
基台部111は、回動軸110よりも大径の部分となっており、その下部側の半周にネジ111aが形成されている。
また、基台部111の上部側の外周には、平板状のコンバイナホルダ112が回動軸110と平行に設けられている。コンバイナホルダ112は、その上部がユニットケース14の上部開口から突出している。
そして、この突出した部分には、コンバイナ113の下端部が取り付けられている。コンバイナ113は、板状をなし、鉛直方向に沿って配置されている。
なお、ケース本体11a内には、フレーム12およびユニットケース14の昇降領域に隣接して、コンバイナ113へ向けて映像を投射するための投影ユニット(図示を略す)が配置されている。
図3に示すように、HUD10は、ユニットケース14内に回転自在に設けられたピニオンギヤ114と、ピニオンギヤ114に一体に形成されたヘリカルギヤ115と、ユニットケース14内に取り付けられたチルト用のモータ116と、モータ116の出力軸に固定されたウオームギヤ117とを備えている。
HUD10では、基台部111のネジ111a、ピニオンギヤ114、ヘリカルギヤ115およびウオームギヤ117によって、回動軸110を回動させるための回動機構が構成されている。
ピニオンギヤ114は、その軸線が回動軸110と平行に設けられており、ネジ111aと螺合する(噛み合っている)。
ピニオンギヤ114の一端側には、ピニオンギヤ114よりも大径のヘリカルギヤ115が配置されている。ピニオンギヤ114とヘリカルギヤ115とは、同軸上に配置され、同期して回転することができる。
モータ116は、その出力軸が鉛直方向に沿って配置されている。
また、ウオームギヤ117は、モータ116の出力軸に固定されており、モータ116の作動により、出力軸回りに回転することができる。ウオームギヤ117は、ヘリカルギヤ115と噛み合って(歯合されて)いる。
以上の構成のHUD10では、前述したように、モータ80の作動によってリードスクリュー15を回転させると、このリードスクリュー15に螺合するナット19ごとユニットケース14をガイド軸13に沿って上昇させることができる。これにより、図1~図3に示すように、ユニットケース14の上部に設けられているコンバイナ113は、ケース本体11aの開口部を通過してケース本体11aの外部に突出することができる。
そして、この突出状態で、モータ116を作動させると、ウオームギヤ117が回転して、その回転力がヘリカルギヤ115に伝達される。これにより、ヘリカルギヤ115をピニオンギヤ114ごと回動させることができる。また、ピニオンギヤ114の回転力は、ネジ111aを介して、回動軸110に伝達される。これにより、回動軸110をコンバイナ113ごと回動させることができ、よって、上記投影ユニットに対するコンバイナ113の傾斜角度を調整することができる。傾斜角度が調整されたコンバイナ113には、投影ユニットからの映像(画像)が正確に投射される。
また、コンバイナ113の使用後は、モータ116の作動によってコンバイナ113を起立状態、すなわち、傾斜角度を元に戻す。そして、モータ80を作動させて、リードスクリュー15を前記とは反対方向に回転させることにより、ユニットケース14をガイド軸13に沿って降下させる。これにより、図4および図5に示すように、コンバイナ113をケース本体11a内に格納することができる。
ギア18には、軸方向に貫通する孔が形成され、この孔にリードスクリュー15の端部が挿入された状態で、リードスクリュー15にギア18が固定されている。
(ギアユニット)
図6は、本発明のギアユニットの一実施形態を示す縦断面図である。図7は、図6中のA-A線断面図およびB-B線断面図(符号についてはかっこ書きで記載)である。
なお、図6では、ギアユニット1の中心軸J1を含む面による断面を示す。また、以下では、説明の都合上、図6中の上側を「上」または「上方」と言い、下側を「下」または「下方」と言う。
また、以下の説明では、中心軸J1が向く方向である上下方向を「軸方向」とも呼ぶ。また、以下の説明では、中心軸J1を中心とする周方向を単に「周方向」といい、中心軸J1を中心とする径方向を単に「径方向」という。
図6に示すように、ギアユニット1は、ケーシング2と、入力部3と、第1回転組立体4と、第2回転組立体6と、第1インターナルギア5と、第2インターナルギア7と、入力軸8と、出力軸9とを備えている。また、入力軸8には、モータ80が直結されている。
ギアユニット1は、第1回転組立体4と第2回転組立体6との2段構成の遊星ギア機構を有し、例えば外形寸法が幅5mm、奥行き5mm、高さ20mmの容積以下に形成されている。
<モータ>
モータ80は、ギアユニット1が搭載される構造体(図示せず)の駆動源、すなわち、動力源となる。なお、構造体としては、図1に示す小型のHUD10の他、例えば小型カメラ等であってもよい。また、モータ80および上記モータ116には、例えば、構造体の使用用途に応じて、ステッピングモータ、サーボモータ等が適宜選択される。
また、入力軸8は、中心軸J1を回転中心として回転駆動するモータ80のモータ軸でもあってもよい。
<ケーシング>
モータ80の上側には、ケーシング2が配置、固定されている。ケーシング2は、中心軸J1を中心とする略円筒状をなす。ケーシング2の内部には、入力部3、第1回転組立体4、第2回転組立体6の一部、第1インターナルギア5、および第2インターナルギア7が収容される。なお、図6中では、中心軸J1に沿って第2回転組立体6側を上側、第1回転組立体4側を下側としているが、中心軸J1の向きは必ずしも重力方向と一致させる必要はない。また、第1回転組立体4と第2回転組立体6とのギア比は、構造体の使用用途により適宜設定される。これにより、モータ15からの動力を減速して、出力軸9から出力することができる。
<入力部>
入力部3は、第2入力軸31と、入力ギア33とを含む。
第2入力軸31は、入力軸8の上部に連結され、入力軸8とともに中心軸J1回りに回転することができる。第2入力軸31は、略円筒状または略円柱状をなし、その外径が入力軸8の外径よりも小さい。
第2入力軸31の外周部には、入力ギア33が同心的に固定されている。これにより、入力ギア33は、第2入力軸31とともに中心軸J1回りに回転することができる。第2入力軸31に対する入力ギア33の固定方法としては、特に限定されず、例えば、キーとキー溝とを用いた固定方法を用いることができる。また、第2入力軸31と入力ギア33とは、図示の構成では互いに別体で構成されているが、これに限定されず、例えば、一体成形による1つのギア部材で構成されていてもよい。
図7に示すように、入力ギア33は、その外周部に突出した複数の歯(以下、「外周歯」という)331を有する平歯車である。
<第1回転組立体>
第1回転組立体4は、第1回転軸部材41と、第1遊星キャリア42と、複数の第1遊星軸部材43と、複数の第1遊星ギア44と、太陽ギア45とを含む。
第1回転組立体4では、第1回転軸部材41、第1遊星キャリア42および複数の第1遊星軸部材43は、各第1遊星ギア44および太陽ギア45を支持する支持体である。この支持体は、第1回転軸部材41、第1遊星キャリア42および複数の第1遊星軸部材43の他に、さらに別の部材を含んでもよい。
第1回転軸部材41、第1遊星キャリア42および複数の第1遊星軸部材43は、本実施形態では一体成形により1つのギア部材で構成されているが、これに限定されず、例えば、互いに別体で構成し、これら別体同士が連結された連結体で構成されていてもよい。
第1回転軸部材41は、略円筒状または略円柱状をなし、その中心軸が中心軸J1に一致している。また、第1回転軸部材41は、入力部3の第2入力軸31よりも上側に配置されている。
第1回転軸部材41の下部には、円盤状をなす第1遊星キャリア42が第1回転軸部材41と同心的に配置されている。すなわち、円盤状をなす第1遊星キャリア42の中心部には、第1回転軸部材41が上方に向かって突出して配置されている。
第1遊星キャリア42の下部には、第1遊星キャリア42の外周側、すなわち、中心軸J1(第1回転軸部材41)から偏心した位置に複数の第1遊星軸部材43が配置されている。複数の第1遊星軸部材43は、同様の略円柱状をなし、その長手方向が中心軸J1に沿う方向を向いて(以下、「中心軸J1に沿って」とも記載する。)配置されている。
なお、第1遊星軸部材43の配置数は、図2に示す構成では3つであるが、これに限定されず、2つまたは4つ以上であってもよい。また、これらの第1遊星軸部材43は、中心軸J1周りに等角度間隔に配置されている。例えば、図2に示すように、第1遊星軸部材43の配置数が3つの場合、これらの第1遊星軸部材43は、中心軸J1周りに120°間隔に配置されている。以下の説明では、各第1遊星軸部材43の中心軸を「第1遊星軸J2」と呼ぶ。
各第1遊星軸部材43には、第1遊星ギア44が回転可能(回転自在)に支持されている。これにより、各第1遊星ギア44は、第1遊星軸J2を回転中心として回転すること、すなわち、自転することができる。また、各第1遊星ギア44は、中心軸J1を回転中心として回転すること、すなわち、公転することができる。このように、各第1遊星ギア44は、第1遊星軸J2回りに自転し、中心軸J1回りに公転する遊星ギア(「Pギア」とも呼ぶ。)となっている。
各第1遊星ギア44は、その外周部に突出した複数の歯(以下、「外周歯」という)441を有する平歯車である。そして、各第1遊星ギア44は、入力ギア33の径方向外側に、その周方向に沿って配置され、外周歯441が入力ギア33の外周歯331に噛み合って(係合して)いる。
第1回転軸部材41の外周部には、太陽ギア45が同心的に固定されている。これにより、太陽ギア45は、第1回転軸部材41とともに中心軸J1回りに回転することができる。なお、第1回転軸部材41に対する太陽ギア45の固定方法としては、特に限定されず、例えば、キーとキー溝とを用いた固定方法を用いることができる。太陽ギア45は、その外周部に突出した複数の歯(以下、「外周歯」という)451を有する平歯車である。
また、第1回転軸部材41と太陽ギア45とは、図示の構成では互いに別体で構成されているが、これに限定されず、例えば、一体成形による1つのギア部材で構成されていてもよい。したがって、第1回転軸部材41、第1遊星キャリア42、複数の第1遊星軸部材43および太陽ギア45は、一体成形による1つのギア部材で構成されていてもよく、かかるギア部材を「Cギア」とも呼ぶ。
<第1インターナルギア>
第1インターナルギア5は、中心軸J1を中心軸とする環状をなす。第1インターナルギア5は、ケーシング2の内側にケーシング2と同心的に配置、固定されている。この固定方法としては、特に限定されず、例えば、嵌め合いによる固定方法を用いることができる。この場合、中間嵌めが好ましい。
図7に示すように、第1インターナルギア5は、その内周部に突出した複数の歯(以下、「内周歯」という)51を有する内歯車である。内周歯51は、その周方向の異なる位置で、各第1遊星ギア44の外周歯441と噛み合っている。
<第2回転組立体>
第2回転組立体6は、第1回転組立体の上側に配置されている。第2回転組立体6は、第2回転軸部材61と、第2遊星キャリア62と、複数の第2遊星軸部材63と、複数の第2遊星ギア64とを含む。
第2回転組立体6では、第2回転軸部材61と、第2遊星キャリア62および複数の第2遊星軸部材63は、各第2遊星軸部材63を支持する支持体である。この支持体は、第2回転軸部材61と、第2遊星キャリア62および複数の第2遊星軸部材63の他に、さらに別の部材を含んでもよい。
第2回転軸部材61、第2遊星キャリア62および複数の第2遊星軸部材63は、本実施形態では一体成形により1つのギア部材で構成されているが、これに限定されず、例えば、互いに別体で構成し、これら別体同士が連結された連結体で構成されていてもよい。
第2回転軸部材61は、略円筒状または略円柱状をなし、第1回転軸部材41と同様にその中心軸が中心軸J1に一致している。また、第2回転軸部材61は、ケーシング2の上面から上方に向かってケーシング2の外側へと突出する。
第2回転軸部材61の下部には、円盤状をなす第2遊星キャリア62が第2回転軸部材61と同心的に配置されている。すなわち、円盤状をなす第2遊星キャリア62の中心部には、第2回転軸部材61が上方に向かって突出して配置されている。
第2遊星キャリア62の下部には、第2遊星キャリア62の外周側、すなわち、中心軸J1(第2回転軸部材61)から偏心した位置に複数の第2遊星軸部材63が配置されている。複数の第2遊星軸部材63は、同様の略円柱状をなし、その長手方向が中心軸J1に沿う方向を向いて(中心軸J1に沿って)配置されている。
なお、第2遊星軸部材63の配置数は、図7に示す構成では3つであるが、これに限定されず、2つまたは4つ以上であってもよく、特に第1遊星軸部材43の配置数と同数であるのが好ましい。
また、これらの第2遊星軸部材63は、中心軸J1周りに等角度間隔で配置されている。例えば、図7に示すように、第2遊星軸部材63の配置数が3つの場合、これらの第2遊星軸部材63は、中心軸J1周りに120°間隔で配置される。以下の説明では、各第2遊星軸部材63の中心軸を「第2遊星軸J3」と呼ぶ。
各第2遊星軸部材63には、第2遊星ギア64が回転可能(回転自在)に支持されている。これにより、各第2遊星ギア64は、第2遊星軸J3を回転中心として回転すること、すなわち、自転することができる。また、各第2遊星ギア64は、中心軸J1を回転中心として回転すること、すなわち、公転することができる。このように、各第2遊星ギア64は、第2遊星軸J3回りに自転し、中心軸J1回りに公転する遊星ギア(「Pギア」とも呼ぶ。)となっている。
各第2遊星ギア64は、その外周部に突出した複数の歯(以下、「外周歯」という)641を有する平歯車である。そして、各第2遊星ギア64は、太陽ギア45の径方向外側に、その周方向に沿って配置され、外周歯641が太陽ギア45の外周歯451に噛み合って(係合して)いる。
<第2インターナルギア>
第2インターナルギア7は、中心軸J1を中心軸とする環状をなす。第2インターナルギア7は、ケーシング2の内側に、第1インターナルギア5よりも上側であって、軸方向に第1インターナルギア5と離れて配置されている。
また、第2インターナルギア7は、ケーシング2と同心的に配置、固定されている。この固定方法としては、特に限定されず、例えば、嵌め合いによる固定方法を用いることができる。この場合、中間嵌めが好ましい。
第2インターナルギア7は、その内周部に突出した複数の歯(以下「内周歯」という)71を有する内歯車である。内周歯71は、その周方向の異なる位置で、各第2遊星ギア64の外周歯641と噛み合っている。
<出力軸>
出力軸9は、ケーシング2の外側で第2回転軸部材61の上部に連結され(接続され)、第2回転軸部材61とともに中心軸J1回りに回転することができる。出力軸9は、略円筒状または略円柱状をなし、その外径が第2回転軸部材61の外径と同じである。
<ギアユニットの動作>
前述したように、ギアユニット1は、第1回転組立体4と第2回転組立体6とのギア比が所定の範囲に設定されている。
まず、モータ15が作動することにより、その動力が入力軸8および第2入力軸31を順に介して、入力ギア33に伝達される。これにより、図7に示すように、入力ギア33は、中心軸J1回りに矢印α1方向に回転する。
そして、入力ギア33に噛み合う各第1遊星ギア44には、入力ギア33の回転力が伝達される。これにより、図7に示すように、各第1遊星ギア44は、第1遊星軸J2回りに矢印α2方向に回転すること、すなわち、自転することができる。
また、各第1遊星ギア44は、ケーシング2に固定された第1インターナルギア5にも噛み合っている。これにより、図7に示すように、各第1遊星ギア44は、矢印α2方向に自転した際、その回転力を第1インターナルギア5に伝達することができ、よって、中心軸J1回りに矢印α3方向にも回転すること、すなわち、公転することができる。この公転により、太陽ギア45を中心軸J1回りに矢印β1方向に回転させることができる。
また、太陽ギア45には、各第2遊星ギア64が噛み合っている。これにより、太陽ギア45が矢印β1方向に回転した際、その回転力が各第2遊星ギア64に伝達される。そして、この伝達により、図7に示すように、各2遊星ギア64は、第2遊星軸J3回りに矢印β2方向に回転すること、すなわち、自転することができる。
また、各第2遊星ギア64は、ケーシング2に固定された第2インターナルギア7にも噛み合っている。これにより、図7に示すように、各第2遊星ギア64は、矢印β2方向に自転した際、その回転力を第2インターナルギア7に伝達することができ、よって、中心軸J1回りに矢印β3方向に回転する、すなわち、公転することができる。そして、この公転により、出力軸9を中心軸J1回りに矢印β1方向と同方向に回転させることができる。
以上のような力伝達により、出力軸9からは、減速された動力が出力されることとなる。
以上説明した構成において、中心軸J1に沿う方向とは、中心軸J1(軸方向)にほぼ平行な方向を意味しており、軸方向に厳密に平行である必要はない。すなわち、第1遊星軸J2および第2遊星軸J3は、中心軸J1に平行であってもよく、中心軸J1に対して小さい角度だけ傾斜してもよい。
(ギア)
以上のような構成のHUD10およびギアユニット1において、好ましくは自身が回転(自転および/または公転)するギアとして、本発明の小型ギアが使用される。具体的には、図6等に示すギアユニット1においては、入力ギア33、Cギア(ギア部材)および複数のPギア(第1遊星ギア44および第2遊星ギア64)のうちの少なくとも1つを、本発明の小型ギアで構成することが好ましい。
本発明の小型ギア(以降において単にギアともいう)は、モジュールが0.2mm以下であり、結晶性樹脂と、無機球状粒子とを含有する樹脂組成物で構成されている。
結晶性樹脂とは、JIS K 7121:2012(プラスチック転移温度測定方法)に準拠した示差走査熱量分析(DSC)を行った場合に、融解ピークを有する熱可塑性樹脂のことを言う。
結晶性樹脂としては、例えば、ポリアミド、ポリオレフィン、ポリエステル、ポリエーテル、ポリフェニレンスルフィド(PPS)、液晶ポリマー(LCP)、ポリアセタール(POM)、ポリイミド、フッ素ポリマー等が挙げられる。なお。これらの樹脂は、1種を単独で使用しても、2種以上を併用してもよい。中でも、結晶性樹脂としては、ポリアミドが好ましい。ポリアミドを使用すれば、ギアの機械的強度、剛性や耐摩耗性を向上させることができる。
ポリアミドは、一般に、脂肪族ポリアミド(非芳香族ポリアミド)、半芳香族ポリアミド、全芳香族ポリアミドに分類されるが、半芳香族ポリアミドであることが好ましい。半芳香族ポリアミドは、溶融させ易く、かつ結晶化させ易いことから好ましい。
半芳香族ポリアミドとは、ジカルボン酸とジアミンとの共重合体であって、いずれか一方が芳香族基を有し、他方が脂肪族基を有する共重合体のことを言う。
脂肪族ジカルボン酸としては、例えば、HOOC-(CH2)n-COOH(nは0~12)、ジメチルマロン酸、3,3-ジエチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、トリメチルアジピン酸のような鎖状の脂肪族ジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロデカンジカルボン酸のような脂環式ジカルボン酸等が挙げられる。
一方、芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ジフェン酸、4,4’-ビフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸等が挙げられる。
また、脂肪族ジアミンとしては、例えば、NH2-(CH2)m-NH2(mは0~12)のような直鎖状の脂肪族ジアミン、1-ブチル-1,2-エタンジアミン、1,1-ジメチル-1,4-ブタンジアミン、1-エチル-1,4-ブタンジアミン、1,2-ジメチル-1,4-ブタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,5-ジメチル-1,6-ヘキサンジアミン、2,4-ジメチル-1,6-ヘキサンジアミン、2,2-ジメチル-1,6-ヘキサンジアミン、1,3-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミンのような分岐状の脂肪族ジアミン、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルネンジメチルアミン、トリシクロデカンジメチルジアミンの脂環式ジアミン等が挙げられる。
一方、芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等が挙げられる。
半芳香族ポリアミドの具体例としては、例えば、ポリアミドMXD6(PAMXD6)、ポリアミド9T(PA9T)、ポリアミド4T(PA4T)、ポリアミド6T(PA6T)、ポリアミド10T(PA10T)等が挙げられる。
また、他のポリアミドの具体例としては、例えば、ポリアミド6(PA6)、ポリアミド11(PA11)、ポリアミド12(PA12)ポリアミド66(PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド410(PA410)等が挙げられる。
なお、ポリオレフィンとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。
ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブタジエンテレフタレート(PBT)、ポリ乳酸(PLA)等が挙げられる。
ポリエーテルとしては、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)、ポリアリールエーテルケトン(PAEK)等が挙げられる。
なお、結晶性樹脂の融点は、その種類にもよるが、165~390℃程度であることが好ましく、175~375℃程度であることがより好ましく、185~360℃程度であることがさらに好ましい。
無機球状粒子は、粒子(粉末)状の無機フィラーであり、得られるギアの耐荷重性等を向上させることを目的として、結晶性樹脂に混合される成分である。樹脂組成物が無機球状粒子を含有することにより、ギアに高荷重がかかっても、その表面が凹むことが好適に防止される。また、結晶性樹脂より高硬度の無機球状粒子の一部がギアの表面に露出するようになる。このようなことから、ギアの摺動性が高まり、結果として耐摩耗性も向上する。
無機球状粒子としては、例えば、シリカ球状粒子、アルミナ球状粒子、石英粒子、ガラスビーズ等が挙げられる。
中でも、モース硬度が5以上(特に、6以上)の無機球状粒子であることが好ましく、シリカ球状粒子(モース硬度:7程度)およびアルミナ球状粒子(モース硬度:8~9程度)のうちの少なくとも一方を含む無機球状粒子であることがより好ましく、シリカ球状粒子がさらに好ましい。かかるシリカ球状粒子を用いることにより、前記効果がより顕著に発揮される。
無機球状粒子の体積平均粒子径は、2~10μm程度であることが好ましく、4~8μm程度であることがより好ましい。かかる体積平均粒子径の無機球状粒子を用いることにより、ギアの表面状態の悪化(平滑性の低減)を抑制しつつ、ギアが他のギアとの間で摺動する際に、無機球状粒子がギアの表面から脱落するのを好適に防止することができる。
ここで、体積平均粒径とは、例えば、レーザー回折粒度分布測定装置を用いて測定された粒度分布において、累積体積が50%となる点での粒子径である。
樹脂組成物中に含まれる無機球状粒子の量は、1~10質量%程度である。かかる量で無機球状粒子を含有する樹脂組成物を用いることにより、得られるギアの表面全体にわたって無機球状粒子の一部が露出するようになり、ギアの耐摩耗性がより向上する。なお、樹脂組成物中に含まれる無機球状粒子の量は、3~8質量%程度であることが好ましい。これにより、前記効果がより顕著に発揮される。
また、樹脂組成物は、無機球状粒子以外の無機フィラーを含んでいてもよい。かかる無機フィラーとしては、繊維状の無機フィラー(無機繊維)や、鱗片状の無機フィラーのような非繊維状の無機フィラーが挙げられる。
無機繊維としては、例えば、ガラス繊維、炭素繊維、アスベスト繊維、無機ウィスカ(チタン酸カリウム繊維、酸化亜鉛繊維、酸化マグネシウム繊維、酸化アルミニウム繊維、硫酸カルシウム繊維、炭化ケイ素繊維、窒化ケイ素繊維、窒化ケイ素繊維、ムライト繊維、ホウ酸マグネシウム繊維、ホウ化チタン繊維等)等が挙げられる。
また、鱗片状の無機フィラーとしては、例えば、各種金属片等が挙げられる。
ただし、樹脂組成物中に無機繊維が含まれる場合であっても、その量は1質量%未満であることが好ましい。この場合、無機繊維を起点としたギアの磨耗を防止することができる。
また、本発明のギアを構成する樹脂組成物は、結晶性樹脂および無機球状粒子(無機フィラー)以外の成分を含んでいてもよい。
かかる成分としては、例えば、粘土鉱物、有機フィラー、滑剤等が挙げられる。
樹脂組成物が粘土鉱物を含有することにより、樹脂組成物の成形性、得られるギアの摺動性、剛性(特に曲げ剛性)等がより向上する。また、摺動性および曲げ剛性が向上することで、得られるギアは、優れた耐久性を発揮する。
粘土鉱物は、ガラス繊維、炭素繊維等の繊維状充填剤と比べて、極めて微細な形状を有する。このため、モジュール0.2mm以下の小型ギアを製造する場合には、成形型への樹脂組成物の充填性も高まり、よって、得られるギアは形状安定性にも優れる。
粘土鉱物としては、例えば、タルク、マイカのような平板状(鱗片状)の粘土鉱物、クレー(ベントナイト)、カオリン、珪藻土、ウォラストナイトのような粒子状の粘土鉱物等が挙げられる。中でも、粘土鉱物は、平板状の粘土鉱物であることが好ましい。平板状の粘土鉱物を用いることにより、ギアの表面の平滑性が高まることで、ギアの摺動性(耐摩耗性)をより向上させることができる。
また、粘土鉱物のモース硬度は、4以下であることが好ましく、3以下であることがより好ましく、1~2程度であることがさらに好ましい。
したがって、粘土鉱物は、タルク(モース硬度:1程度)であることが特に好ましい。タルクを用いることにより、ギアの表面の平滑性および曲げ剛性がより高くなり、使用時にギアの変形を防止または抑制することができる。これにより、高負荷がかかる状況でギアを長時間使用しても、摩耗粉やギア(特に、歯先)の破損が生じ難い。
また、タルクは、結晶性樹脂の結晶化を促進する作用も有するため、得られるギアの機械的強度をより高めることができる点からも好ましい。
加えて、タルクは、他の補強材(例えば、無機ウィスカ等)に比べて安価な材料であるため、ギアの製造コストの削減にも寄与する。
樹脂組成物中に含まれる粘土鉱物の量は、5~20質量%程度であることが好ましく、7.5~17.5質量%程度であることが好ましく、10~15質量%程度であることがより好ましい。樹脂組成物中の粘土鉱物の量を上記範囲とすることにより、得られるギアの特性(特に、摺動性)を向上させる効果と、樹脂組成物の成形性を向上させる効果とがバランスよく発揮される。
有機フィラーとしては、特に限定されないが、例えば、アラミド、液晶ポリマー、ポリエステル、ポリオレフィン等で構成されたフィラーが挙げられる。
中でも、有機フィラーは、アラミドフィラーおよび液晶ポリマーフィラーの少なくとも一方を含むことが好ましい。かかる有機フィラーを用いることにより、ギアの機械的強度がより高まるとともに、ギアに優れた耐衝撃性を付与することもできる。その結果、ギアの耐久性がより向上する。
なお、有機フィラーは、繊維状および粒子状のいずれであってもよいが、繊維状であることが好ましい。繊維状の有機フィラー(有機繊維)を用いることにより、ギアの表面の平滑性がより向上することで、ギアの摺動性(耐摩耗性)がより高まる。
この場合、有機繊維の平均繊維長は、100~500μm程度であることが好ましく、150~400μm程度であることがより好ましい。かかる平均繊維長を有する有機繊維を用いることにより、上記効果がより顕著に発揮される。
ここで、平均繊維長とは、フィラーの長手方向の長さの平均値を指すものとする。
樹脂組成物中に含まれる有機フィラーの量は、1~10質量%程度であることが好ましく、2~8質量%程度であることがより好ましい。かかる量で有機フィラーを含有する樹脂組成物を用いることにより、ギアの機械的強度および耐衝撃性をより向上させることができる。
滑剤としては、例えば、オレフィン樹脂系滑剤、フッ素樹脂系滑剤、エステル樹脂系滑剤、アクリル樹脂系滑剤、ポリアミド系滑剤等が挙げられるが、オレフィン樹脂系滑剤およびフッ素樹脂系滑剤の少なくとも一方であることが好ましい。かかる滑剤を用いることにより、ギアの摺動性をより向上させることができる。
中でも、オレフィン樹脂系滑剤を用いれば、摩擦熱により溶融した滑剤でギアの表面が被覆されることで、上記効果がより顕著に発揮される。
樹脂組成物中に含まれる滑剤の量は、1~10質量%程度であることが好ましく、2~8質量%程度であることがより好ましい。かかる量で滑剤を含有する樹脂組成物を用いることにより、ギアの摺動性をさらに向上させることができる。
製造すべきギアのモジュールは、0.2mm以下であるが、0.1~0.2mm程度であることがより好ましい。このような微小ギアであっても、上述した樹脂組成物を用いることにより、正確な寸法で、安定的に(高い歩留まりで)製造することができる。
また、微小ギアは、その基準円ピッチ直径が1.2~1.7mm程度、歯数が8~18枚程度、歯厚が0.15~0.32mm程度であることが好ましい。
前述したように、図6等に示すギアユニット1において、好ましくは、入力ギア33、Cギア(ギア部材)および複数のPギア(第1遊星ギア44および第2遊星ギア64)のうちの少なくとも1つが本発明の小型ギアで構成される。
特に、モータ80に近接して配置される入力ギア33は、モータ80の発熱による影響を受け易いため、半芳香族ポリイミドを含有する樹脂組成物を使用して製造されたギアで構成することが好ましい。
<ギアの製造方法>
以上のような構成のギアは、例えば、以下に説明するギアの製造方法により製造される。
本実施形態のギアの製造方法は、[1]上述した樹脂組成物を用意する第1の工程と、[2]樹脂組成物を溶融する第2の工程と、[3]溶融状態の樹脂組成物を成形型に供給して、製造すべきギアに対応する形状を有する成形体を得る工程と、[4]成形体を熱処理して、ギアを得る工程とを有する。
[1] 第1の工程
まず、樹脂組成物を構成する成分(結晶性樹脂、無機球状粒子、必要に応じて粘土鉱物、有機フィラー、滑剤)を用意する。
これらの成分を混合することにより、樹脂組成物が得られる。
この混合には、例えば、ブレンダー、ニーダー、ロール、押出機のような各種混合機を使用することができる。
[2] 第2の工程
次に、得られた樹脂組成物を、結晶性樹脂の融点より高い温度となるように加熱することにより、溶融させる。
加熱温度は、結晶性樹脂の融点より5~20℃程度高い温度が好ましく、5~15℃程度高い温度がより好ましい。
[3] 第3の工程
次に、例えば、射出成形法により、溶融状態の樹脂組成物を成形型に供給して、製造すべきギアに対応する形状を有する成形体を得る。
成形型の温度は、特に限定されないが、結晶性樹脂のガラス転移温度(Tg)より5~25℃程度低い温度に設定することが好ましく、10~20℃程度低い温度であることがより好ましい。
成形型の温度を、結晶性樹脂のガラス転移温度(Tg)より5~25℃程度低い温度に設定することにより、樹脂組成物を成形型に供給すると、樹脂組成物は急速に固化して成形体となる。このため、樹脂組成物が伸び難くなるため、ゲート切れが良好であり、また成形体のエッジ部の形状(輪郭形状)も安定化する。さらに、成形体の成形型からの離型性も高まる。
このようなことから、成形体の形成に要する時間を、十分に短縮(10~15秒程度)することができる。よって、成形体の製造における歩留まりが向上するとともに、成形体の製造設備の設置台数を大幅に削減することができる。
なお、この時点で、結晶化樹脂の結晶化は、実質的に進行していない。
[4] 第4の工程
次に、成形体を成形型から取り出し、結晶性樹脂の結晶化温度より高い温度で熱処理(アニール)して、ギアを得る。このとき、成形体内では、結晶性樹脂の結晶化が進行する結果、成形体の結晶化度が高まる。
ここで、結晶化温度とは、結晶性樹脂を10℃/分の昇温条件で示差走査熱量測定を行った際に、結晶化樹脂の結晶化促進にともなう発熱ピーク温度のことを言う。
熱処理の温度は、結晶性樹脂の結晶化温度より高い温度であればよいが、ギアを実際に使用する際の最高温度(以下、「実使用温度」とも記載する。)より5~25℃高い温度であることが好ましく、実使用温度より10~20℃程度高い温度であることがより好ましい。かかる温度で熱処理を行うことにより、ギアの使用時の寸法安定性を確保することができる。
上記ギアユニット1に使用されるギアの場合、その実使用温度は、好ましくは110~140℃程度であり、より好ましくは120~130℃程度である。
この熱処理の方法としては、加熱炉内で、例えば、ヒータで加熱する方法、赤外線を照射する方法、熱風をブローする方法等が挙げられる。なお、加熱炉は、バッチ炉、連続炉のいずれであってもよい。
熱処理の雰囲気の圧力は、減圧、常圧または加圧のいずれであってもよい。
また、熱処理の時間は、特に限定されないが、30~120分程度であることが好ましく、45~100分程度であることがより好ましい。
以上の工程を経て、ギアが製造される。
以上、本発明の小型ギアおよびギアユニットについて、好適な実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
また、本発明の小型ギアは、小型カメラ、ロボットハンドのような産業機械用部品の他、例えば、自動車用部品、自転車用部品、鉄道車両用部品、船舶用部品、航空機用部品、宇宙輸送機用部品のような輸送機器用部品、パソコン用部品、携帯端末用部品のような電子機器用部品、冷蔵庫、洗濯機、冷暖房機のような電気機器用部品、プラント用部品、時計用部品等に用いられる。
次に、本発明の実施例について説明する。
1.ギアの製造
(実施例1)
まず、結晶性樹脂として半芳香族ポリアミド(PA9T)と、無機球状粒子としてシリカ球状粒子と、粘土鉱物としてタルクと、滑剤としてオレフィン樹脂系滑剤とを、ブレンダーで混合して樹脂組成物を得た。
なお、芳香族ポリアミドのTgは約100℃であり、シリカ球状粒子の体積平均粒径は6μmであった。また、樹脂組成物中のシリカ球状粒子の量を1質量%とし、タルクの量を10質量%とし、オレフィン樹脂系滑剤の量を5質量%とした。
次に、この樹脂組成物を約80℃に設定した成形型に供給して、製造すべきギアに対応する形状を有する成形体を得た。成形体が固化したことを確認して、樹脂組成物を成形型に供給した11秒後に、成形体を成型型から取り出した。
その後、得られた成形体を加熱炉内で、150℃で60分間、熱処理することにより、ギアを得た。なお、目的とするギアの形状は、基準円ピッチ直径1.3mm、モジュール0.2mm、歯数14枚、歯厚0.4mmとした。
(実施例2)
樹脂組成物中のシリカ球状粒子の量を5質量%とした以外は、実施例1と同様にしてギアを得た。
(実施例3)
体積平均粒径が2μmのシリカ球状粒子を使用した以外は、実施例1と同様にしてギアを得た。
(実施例4)
体積平均粒径が10μmのシリカ球状粒子を使用した以外は、実施例1と同様にしてギアを得た。
(実施例5)
滑剤を省略した以外は、実施例1と同様にしてギアを得た。
(実施例6)
樹脂組成物中のシリカ球状粒子の量を10質量%とした以外は、実施例1と同様にしてギアを得た。
(比較例)
以下のようにして樹脂組成物を調製した以外は、実施例1と同様にしてギアを得た。
結晶性樹脂として半芳香族ポリアミド(PA9T)と、無機ウィスカとしてチタン酸カリウム繊維と、滑剤としてオレフィン樹脂系滑剤とを、ブレンダーで混合して樹脂組成物を得た。
なお、樹脂組成物中のチタン酸カリウム繊維の量は、30質量%とし、オレフィン樹脂系滑剤の量を5質量%とした。
なお、各実施例および比較例において、それぞれ100個のギアを製造した。
2.評価
各実施例および比較例で得られたギアを入力ギアとして使用して、図6等に示すギアユニットを作製した。そして、ギアユニットの出力軸に、一端に200gの錘を取付けた紐の他端を固定し、出力軸に紐を巻き取る操作を繰り返し行った。
そして、30万回の巻き取り操作を行った際に、破損したギアの個数を確認し、以下の評価基準に従って、耐摩耗性(耐久性)を評価した。
[評価基準]
A:0個
B:1個以上、5個以下
C:6個以上、10個以下
D:11個以上、20個以下
E:21個以上
この結果を表1に示す。
表1に示すように、各実施例で得られたギアは、耐摩耗性に優れていた。かかる効果は、シリカ球状粒子の量または体積平均粒径を調製することでより向上することができた。
一方、比較例で得られたギアは、耐摩耗性に劣っていた。
1 ギアユニット 2 ケーシング 3 入力部 4 第1回転組立体 5 第1インターナルギア 51 歯 6 第2回転組立体 7 第2インターナルギア 71 歯 8 入力軸 80 モータ 9 出力軸 31 第2入力軸 33 入力ギア 331 歯 41 第1回転軸部材 42 第1遊星キャリア 43 第1遊星軸部材 44 第1遊星ギア 441 歯 45 太陽ギア 451 歯 61 第2回転部材 62 第2遊星キャリア 63 第2遊星軸部材 64 第2遊星ギア 641 歯 J1 中心軸 J2 第1遊星軸 J3 第2遊星軸 10 小型のヘッドアップディスプレイ(HUD) 11a ケース本体 11b 天板 12 フレーム 12a 壁板 12b 上部フランジ 12c 下部フランジ 13 ガイド軸 14 ユニットケース 15 リードスクリュー 16 モータ 17 ギア(歯車) 18 ギア(歯車) 19 ナット 20、21、22 軸受 110 回動軸 111 基台部 111a ネジ 112 コンバイナホルダ 113 コンバイナ 114 ピニオンギヤ 115 ヘリカルギヤ 116 モータ 117 ウオームギヤ
Claims (14)
-
モジュールが0.2mm以下である小型ギアであって、
結晶性樹脂と、モース硬度が5以上の無機球状粒子とを含有する樹脂組成物で構成され、
前記樹脂組成物中に含まれる前記無機球状粒子の量が1~10質量%であることを特徴とする小型ギア。
-
前記結晶性樹脂は、ポリアミドである請求項1に記載の小型ギア。
-
前記ポリアミドは、半芳香族ポリアミドである請求項2に記載の小型ギア。
-
前記無機球状粒子の体積平均粒子径は、2~10μmである請求項1~3のいずれか1項に記載の小型ギア。
-
前記無機球状粒子は、シリカ球状粒子およびアルミナ球状粒子の少なくとも一方を含む請求項1~4のいずれか1項に記載の小型ギア。
-
前記樹脂組成物は、さらに粘土鉱物を含有する請求項1~5のいずれか1項に記載の小型ギア。
-
前記粘土鉱物は、平板状をなしている請求項6に記載の小型ギア。
-
前記粘土鉱物は、タルクである請求項7に記載の小型ギア。
-
前記樹脂組成物中に含まれる前記粘土鉱物の量は、5~20質量%である請求項6~8のいずれか1項に記載の小型ギア。
-
前記樹脂組成物は、さらにオレフィン樹脂系滑剤およびフッ素樹脂系滑剤の少なくとも一方の滑剤を含有する請求項1~9のいずれか1項に記載の小型ギア。
-
前記樹脂組成物中に含まれる前記滑剤の量は、1~10質量%である請求項10に記載の小型ギア。
-
前記樹脂組成物中に含まれる無機繊維の量は、1質量%未満である請求項1~11のいずれか1項に記載の小型ギア。
-
請求項1~12のいずれか1項に記載の小型ギアを有することを特徴とするギアユニット。
-
当該ギアユニットは、中心軸を有するケーシングと、前記ケーシングの内周面に、互いに前記中心軸に沿う方向に離れて配置された第1インターナルギアおよび第2インターナルギアと、前記ケーシング内に配置され、前記中心軸を中心として回転する入力ギア、前記入力ギアとの間で回転力を伝達する第1回転組立体、および第1回転組立体との間で回転力を弱めて伝達する第2回転組立体とを有し、
前記第1回転組立体は、前記第1インターナルギアと前記入力ギアとの間で前記入力ギアの周方向に配置され、外周歯が前記第1インターナルギアの内周歯と前記入力ギアの外周歯とに噛み合う複数の第1遊星ギアと、前記複数の第1遊星ギアのそれぞれを前記中心軸に沿う方向を向く第1遊星軸を中心として回転可能に支持する第1遊星キャリアと、前記第1遊星キャリアに接続され、前記中心軸が中心に位置する第1回転軸部と、前記中心軸を中心として前記第1回転軸部と共に回転する太陽ギアとを備え、前記第1遊星キャリアと前記第1回転軸部と前記太陽ギアとが単一のギア部材であり、
前記第2回転組立体は、前記第2インターナルギアと前記太陽ギアとの間で前記太陽ギアの周方向に配置され、外周歯が前記第2インターナルギアの内周歯と前記太陽ギアの外周歯とに噛み合う複数の第2遊星ギアと、前記複数の第2遊星ギアのそれぞれを前記中心軸に沿う方向を向く第2遊星軸を中心として回転可能に支持する第2遊星キャリアと、前記第2遊星キャリアに接続され、前記中心軸が中心に位置する第2回転軸部とを備え、
前記ギア部材、前記複数の第1遊星ギア、前記複数の第2遊星ギアおよび前記入力ギアのうちの少なくとも1つが前記小型ギアで構成されている請求項13に記載のギアユニット。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-066659 | 2019-03-29 | ||
JP2019066659 | 2019-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202834A1 true WO2020202834A1 (ja) | 2020-10-08 |
Family
ID=72667985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005923 WO2020202834A1 (ja) | 2019-03-29 | 2020-02-15 | 小型ギアおよびギアユニット |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020202834A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006056983A (ja) * | 2004-08-19 | 2006-03-02 | Asahi Kasei Chemicals Corp | ポリアミド樹脂組成物 |
JP2017155776A (ja) * | 2016-02-29 | 2017-09-07 | 旭化成株式会社 | 歯車及びその製造方法 |
-
2020
- 2020-02-15 WO PCT/JP2020/005923 patent/WO2020202834A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006056983A (ja) * | 2004-08-19 | 2006-03-02 | Asahi Kasei Chemicals Corp | ポリアミド樹脂組成物 |
JP2017155776A (ja) * | 2016-02-29 | 2017-09-07 | 旭化成株式会社 | 歯車及びその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020202835A1 (ja) | 小型部品 | |
JP5666682B2 (ja) | サーボステアリング装置 | |
CN1266225C (zh) | 滑动零件和精密零件及使用它们的钟表和电子设备 | |
WO2020202834A1 (ja) | 小型ギアおよびギアユニット | |
WO2020202833A1 (ja) | 小型ギアおよびギアユニット | |
WO2020202837A1 (ja) | 摺動部材 | |
WO2020202836A1 (ja) | 小型部品 | |
JP2010286544A (ja) | カメラモジュールのバレルまたはホルダ | |
JP2021120578A (ja) | 小型ギアおよびギアユニット | |
JP2021120577A (ja) | 小型ギア | |
WO2020116371A1 (ja) | ギア付シャフトの製造方法および駆動装置 | |
WO2020116370A1 (ja) | ギアの製造方法および減速機 | |
CN106048550A (zh) | 蒸镀装置及包含基于蒸镀装置的成膜工序的制造方法 | |
TW201840396A (zh) | 樹脂成型體之製造方法及樹脂成型體 | |
WO2019189779A1 (ja) | 樹脂製保持器及び転がり軸受 | |
CN106853681A (zh) | 一种高精度的且稳定度高的3d打印机 | |
TWI356739B (ja) | ||
CN110430985A (zh) | 树脂齿轮和齿轮机构 | |
CN105927725A (zh) | 一种经过表面处理工艺的齿轮 | |
JP2014162396A (ja) | 電動パワーステアリング装置及び減速ギア機構、並びに減速ギア機構用ギアの製造方法 | |
US8141608B2 (en) | Apparatus for manufacturing extruded coiled tubes for medical purposes | |
US422356A (en) | Mechanical movement | |
US536804A (en) | Finishing molding | |
WO2020090819A1 (ja) | 小型減速機 | |
WO2020110897A1 (ja) | 小型減速機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20785184 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20785184 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |