WO2020202713A1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
WO2020202713A1
WO2020202713A1 PCT/JP2020/001778 JP2020001778W WO2020202713A1 WO 2020202713 A1 WO2020202713 A1 WO 2020202713A1 JP 2020001778 W JP2020001778 W JP 2020001778W WO 2020202713 A1 WO2020202713 A1 WO 2020202713A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
thermoplastic resin
rubber
examples
Prior art date
Application number
PCT/JP2020/001778
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 石川
宏紀 安藤
Original Assignee
テクノUmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノUmg株式会社 filed Critical テクノUmg株式会社
Publication of WO2020202713A1 publication Critical patent/WO2020202713A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a thermoplastic resin composition, and more particularly to a thermoplastic resin composition that provides a molded product having excellent appearance and rigidity.
  • Patent Document 1 describes a thermoplastic resin composition containing modified or unmodified cellulose nanofibers and an ABS resin or the like.
  • a rubber-reinforced aromatic vinyl resin consisting of a rubber polymer part derived from a rubber polymer and a resin part containing a structural unit derived from a vinyl monomer containing an aromatic vinyl compound is combined with cellulose nanofibers.
  • the thermoplastic resin composition of the present invention contains a rubber-reinforced aromatic vinyl resin and cellulose nanofibers, and the content ratio of the rubber-reinforced aromatic vinyl resin and the cellulose nanofibers is 100% by mass in total. In some cases, the total content of Group 1 metal elements and / or Group 2 metal elements in the periodic table contained in the composition is 0.2 to 95% by mass and 5 to 80% by mass, respectively. It is characterized by being 10% by mass.
  • the fiber diameter of the cellulose nanofibers is preferably 4 to 1000 nm.
  • the thermoplastic resin composition of the present invention can further contain a compound (C1) containing a Group 1 metal element and / or a compound (C2) containing a Group 2 metal element in the periodic table.
  • thermoplastic resin composition of the present invention When the thermoplastic resin composition of the present invention is used, it is possible to obtain a molded product having excellent appearance without uneven color or unevenness on the surface and exhibiting the effect of blending cellulose nanofibers and having excellent rigidity.
  • the thermoplastic resin composition of the present invention is a composition containing a rubber-reinforced aromatic vinyl-based resin and cellulose nanofibers.
  • the thermoplastic resin composition of the present invention is a resin other than a rubber-reinforced aromatic vinyl resin, for example, an aromatic vinyl resin that is not rubber-reinforced, an acrylic resin, a polyester resin, a polycarbonate resin, or a polyamide resin. , Olefin resin and the like may be further contained.
  • the rubber-reinforced aromatic vinyl resin is a resin composed of a rubber polymer part derived from a rubber polymer and a resin part containing a structural unit derived from a vinyl monomer containing an aromatic vinyl compound. ..
  • the rubbery polymer forming the rubbery polymer portion may be a homopolymer or a copolymer as long as it is rubbery at 25 ° C. Further, this rubbery polymer may be a non-crosslinked polymer or a crosslinked polymer. Specific examples of the rubbery polymer are a diene-based polymer (hereinafter referred to as "diene-based rubbery polymer”) and a non-diene-based polymer (hereinafter referred to as "non-diene-based rubbery polymer"). ..
  • diene-based rubber polymer examples include homopolymers such as polybutadiene, polyisoprene, and polychloroprene; and butadiene-based polymers such as styrene / butadiene copolymer, acrylonitrile / butadiene copolymer, and acrylonitrile / styrene / butadiene copolymer.
  • These copolymers may be block copolymers or random copolymers. Further, these copolymers may be hydrogenated (however, the hydrogenation rate is less than 80%).
  • the non-diene rubber polymer is a structural unit derived from an ethylene / ⁇ -olefin copolymer; urethane rubber; acrylic rubber; silicone rubber; silicone / acrylic IPN rubber; and a conjugated diene compound.
  • examples thereof include a hydrogenated polymer obtained by hydrogenating a (co) polymer containing (however, the hydrogenation rate is 80% or more).
  • These copolymers may be block copolymers or random copolymers.
  • the rubbery polymer portion is preferably derived from a diene-based rubbery polymer.
  • the vinyl-based monomer forming the resin portion contains an aromatic vinyl compound, and can further contain another vinyl-based monomer (described later).
  • the aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring.
  • examples thereof include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene and the like.
  • the aromatic vinyl compound styrene and ⁇ -methylstyrene are preferable, and styrene is particularly preferable.
  • the resin portion can contain a structural unit derived from another vinyl-based monomer.
  • vinyl-based monomers include (meth) acrylic acid alkyl ester, functional group (cyano group, carboxy group, acid anhydride group, hydroxy group, imino group, phenylimino group, alkylphenylimino group, alkylimino group. , Cycloalkylimino group, amino group, amide group, epoxy group, oxazoline group, etc.).
  • (meth) acrylic acid means acrylic acid and methacrylic acid.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n-butyl (meth) acrylic acid.
  • examples thereof include n-octyl acid acid, nonyl (meth) acrylate, decyl (meth) acrylate, and dodecyl (meth) acrylate.
  • vinyl-based monomer having a cyano group examples include acrylonitrile, methacrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile and the like.
  • vinyl-based monomer having a carboxy group examples include acrylic acid, methacrylic acid, etacrilic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid.
  • vinyl-based monomer having an acid anhydride group examples include maleic anhydride, itaconic anhydride, citraconic anhydride and the like.
  • Examples of the vinyl-based monomer having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Examples thereof include butyl, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Examples of vinyl-based monomers (maleimide-based compounds) having an imino group, a phenylimino group, an alkylphenylimino group, an alkylimino group, a cycloalkylimino group, etc. include maleimide, N-methylmaleimide, N-isopropylmaleimide, and N-.
  • Butyl maleimide, N-dodecyl maleimide, N-phenyl maleimide, N- (2-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2, 6-diethylphenyl) maleimide, N-benzylmaleimide, N-naphthylmaleimide, N-cyclohexylmaleimide and the like can be mentioned.
  • Examples of the vinyl-based monomer having an epoxy group include glycidyl (meth) acrylate, 3,4-oxycyclohexyl (meth) acrylate, vinyl glycidyl ether, allyl glycidyl ether, and metalyl glycidyl ether.
  • the resin portion is preferably a resin portion containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from a vinyl cyanide compound.
  • the ratio of the total amount of the content of the structural unit derived from the aromatic vinyl compound and the content of the structural unit derived from the vinyl cyanide compound is 100% by mass based on the total amount of the structural unit constituting the resin portion. In this case, it is preferably 55% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more.
  • the content ratios of the structural unit derived from the aromatic vinyl compound and the structural unit derived from the vinyl cyanide compound are preferably 50 to 95% by mass and 5 to 5, respectively, when the total of both is 100% by mass. It is 50% by mass, more preferably 55 to 90% by mass and 10 to 45% by mass, still more preferably 60 to 85% by mass and 15 to 40% by mass.
  • the content ratios of the rubber polymer portion and the resin portion constituting the rubber-reinforced aromatic vinyl-based resin are, respectively, when the total of both is 100% by mass. It is preferably 10 to 70% by mass and 30 to 90% by mass, more preferably 15 to 60% by mass and 40 to 85% by mass, and further preferably 20 to 55% by mass and 45 to 80% by mass.
  • the composition of the present invention may contain only one type of the rubber-reinforced aromatic vinyl resin, or may contain two or more types.
  • it may contain two or more kinds of rubber-reinforced aromatic vinyl-based resins having resin portions having different content ratios of the structural unit derived from the aromatic vinyl compound and the structural unit derived from the vinyl cyanide compound.
  • the rubber-reinforced aromatic vinyl resin is obtained by emulsion polymerization, suspension polymerization, solution polymerization or bulk polymerization of a vinyl monomer containing an aromatic vinyl compound in the presence of a rubber polymer. can do.
  • a graft resin obtained by emulsion polymerization is preferable.
  • a latex in which a rubber-reinforced aromatic vinyl resin is dispersed in an aqueous medium can be obtained. Therefore, in this latex, for example, inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, aluminum chloride; sulfuric acid, hydrochloric acid, etc.
  • a solid rubber-reinforced aromatic vinyl resin is obtained by adding a coagulant composed of organic acids such as acetic acid, lactic acid, and citric acid to solidify the resin, and then subjecting it to washing with water, drying, etc. Obtainable.
  • a rubber-reinforced aromatic vinyl resin produced by emulsion polymerization is used in producing the composition of the present invention, Group 1 metal elements and / or Group 2 metal elements in the periodic table derived from the coagulant can be used. Ingredients may be included.
  • the cellulose nanofibers contained in the composition of the present invention are fine cellulose fibers having a fiber diameter of usually 1000 nm or less, and the fiber diameter is preferably 4 to 1000 nm from the viewpoint of the rigidity of the obtained molded product. It is preferably 4 to 500 nm, more preferably 4 to 250 nm.
  • the fiber length is preferably 50 nm to 50 ⁇ m, more preferably 100 nm to 10 ⁇ m.
  • the cellulose nanofibers may be surface-treated or untreated.
  • the cellulose nanofibers contained in the composition of the present invention are usually obtained by defibrating or refining a raw material containing cellulose fibers (cellulose fiber aggregate) with a refiner, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, or the like. It is a thing.
  • Examples of the raw material containing cellulose fibers include pulp, cotton, paper, regenerated cellulose fibers such as rayon, cupra, polynosic and acetate, bacterially produced cellulose, and animal-derived cellulose such as squirrel.
  • the pulp may be either wood pulp or non-wood pulp.
  • wood pulp include mechanical pulp and chemical pulp, but chemical pulp having a low lignin content is preferable.
  • chemical pulp include sulfide pulp, kraft pulp, and alkaline pulp.
  • Examples of non-wood pulp include straw, bagasse, kenaf, bamboo, reeds, mulberry, and flax.
  • Cotton is a plant mainly used for clothing fibers, and examples thereof include cotton, cotton fibers, and cotton cloth.
  • the paper is made by straining fibers taken out from pulp, and examples thereof include newspaper, used milk carton, and used paper such as used copy paper.
  • the raw material containing cellulose fibers may be cellulose powder having a predetermined particle size distribution by crushing.
  • powdered cellulose "KC Flock” (trade name) manufactured by Nippon Paper Chemical Co., Ltd. )
  • Crystallose cellulose (trade name) manufactured by Asahi Kasei Chemicals Co., Ltd.
  • Microcrystalline cellulose "Abyssel” (trade name) manufactured by FMC, and the like.
  • the cellulose nanofibers contained in the composition of the present invention are "Cerish” (trade name) manufactured by Daicel Fine Chem Ltd., "BiNFi-s” (trade name) manufactured by Sugino Machine Limited, and "Leocrysta” (trade name) manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. It may be obtained by using a commercially available product such as (name).
  • composition of the present invention may contain other components in addition to the rubber-reinforced aromatic vinyl resin, the cellulose nanofibers, and the other thermoplastic resins described above.
  • Other components include antioxidants, antioxidants, UV absorbers, lubricants, plasticizers, fillers, heat stabilizers, flame retardants, antistatic agents, which are conventionally blended in known thermoplastic resin compositions. Examples include additives such as colorants.
  • antiaging agent examples include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds, and thio.
  • examples thereof include bisphenol-based compounds, hindered phenol-based compounds, phosphite ester-based compounds, imidazole-based compounds, dithiocarbamate nickel salt-based compounds, and phosphoric acid-based compounds.
  • antioxidant examples include hindered amine compounds, hydroquinone compounds, hindered phenol compounds, sulfur-containing compounds, and phosphorus-containing compounds.
  • ultraviolet absorber examples include benzophenone compounds, benzotriazole compounds, and the like. Examples thereof include triazine compounds.
  • lubricant examples include wax, silicone, lipid and the like.
  • plasticizer examples include phthalates, trimellitic acid esters, pyromellitic acid esters, aliphatic monobasic acid esters, aliphatic dibasic acid esters, phosphoric acid esters, polyhydric alcohol esters, epoxy plasticizers, and high-grade plasticizers. Examples thereof include molecular plasticizers and chlorinated paraffins.
  • the filler examples include calcium carbonate, magnesium carbonate, zinc carbonate, aluminum hydroxide, magnesium hydroxide, carbon black, clay, talc, silica, kaolin, silica soil, zeolite, titanium oxide, quicklime, iron oxide, and zinc oxide. , Barium oxide, aluminum oxide, magnesium oxide, aluminum sulfate, glass fiber, carbon fiber, glass balloon, silas balloon, saran balloon, phenol balloon and the like.
  • the thermoplastic resin composition of the present invention includes a compound containing a Group 1 metal element in the periodic table (hereinafter referred to as "Compound (C1)”) and / or a compound containing a Group 2 metal element (hereinafter, "Compound (C2)"). ) ”) Is preferably contained, for example, these compounds can be contained as a filler.
  • the average particle size of the compound (C1) or (C2) is preferably 10 ⁇ m or less.
  • heat stabilizer examples include phosphite-based heat stabilizers, lactone-based heat stabilizers, hindered phenol-based heat stabilizers, sulfur-based heat stabilizers, amine-based heat stabilizers, and the like.
  • Examples of the flame retardant include organic flame retardants, inorganic flame retardants, and reactive flame retardants.
  • organic flame retardant examples include brominated epoxy compounds, brominated alkyltriazine compounds, brominated bisphenol epoxy resins, brominated bisphenol phenoxy resins, brominated bisphenol polycarbonate resins, brominated polystyrene resins, and brominated crosslinked polystyrenes.
  • Halogen-based flame retardants such as resins, brominated bisphenol cyanurate resins, brominated polyphenylene ethers, decabromodiphenyl oxides, tetrabromobisphenol A and its oligomers; trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, Trihexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresil diphenyl phosphate, dicredyl phenyl phosphate, dimethyl ethyl phosphate, methyl dibutyl phosphate, ethyl dipropyl phosphate, hydroxyphenyl diphenyl phosphate, etc.
  • resins brominated bisphenol cyanurate resins, brominated polyphenylene ethers, decabro
  • Phosphosyl ester modified compounds thereof, condensed type phosphoric acid ester compound, phosphorus flame retardant such as phosphazene derivative containing phosphorus element and nitrogen element; guanidine salt, silicone compound, phosphazene compound and the like.
  • Examples of the inorganic flame retardant include aluminum hydroxide, antimony oxide, magnesium hydroxide, zinc borate, zirconium compound, molybdenum compound, zinc stannate and the like.
  • Examples of the reaction flame retardant include tetrabromobisphenol A, dibromophenol glycidyl ether, brominated aromatic triazine, tribromophenol, tetrabromophthalate, tetrachlorophthalic anhydride, dibromoneopentyl glycol, and poly (pentabromobenzyl). Polyacrylate), chlorendic acid (hetic acid), phthalic anhydride (phthalic anhydride), brominated phenol glycidyl ether, dibromocredyl glycidyl ether and the like.
  • the composition of the present invention specifies Group 1 metal elements (Li, Na, K, Rb, Cs, etc.) and / or Group 2 metal elements (Be, Mg, Ca, Sr, Ba, etc.) in the periodic table. Since it is contained in the above ratio, there is no color unevenness or unevenness on the surface of the obtained molded product, and the appearance is good.
  • the total content of Group 1 metal elements and / or Group 2 metal elements is 0.2 to 10% by mass, preferably 0.3 to 5% by mass, and more preferably 0.4 to 3% by mass. ..
  • the present inventors have the above-mentioned effect that the rubber-reinforced aromatic vinyl resin and the cellulose nanofibers are appropriately decomposed by the melt-kneading of the composition before manufacturing the molded product, and the fluidity is higher than that in the initial molten state. It is presumed that this is due to the improvement in the dispersibility of the cellulose nanofibers in the matrix mainly composed of the rubber-reinforced aromatic vinyl resin.
  • the content of the Group 1 metal element and / or the Group 2 metal element may be derived from the raw material for producing the rubber-reinforced aromatic vinyl resin, or may be derived from the additive. It may be derived from cellulose nanofibers. Therefore, when the manufacturing raw material of the composition contains a filler composed of a group 1 metal element and / or a compound containing a group 2 metal element, or when a part of the manufacturing raw material contains a group 1 metal element and / or Alternatively, even if a compound containing a Group 2 metal element is attached, the total content of the Group 1 metal element and / or the Group 2 metal element is 0.2 to 10% by mass. The appearance of the molded product is improved.
  • composition of the present invention has excellent molding processability and has a fluidity that allows a molded product to be efficiently obtained by the molding method described later.
  • the composition of the present invention can be produced by putting the production raw materials into an extruder, a Banbury mixer, a kneader, a roll, a feeder ruder, etc. and kneading them at a temperature at which the thermoplastic resin melts.
  • the method of using the production raw material is not particularly limited, and each component may be mixed and kneaded all at once, or may be mixed in multiple stages and kneaded.
  • injection molding extrusion molding, deformed extrusion molding, hollow molding, compression molding, vacuum molding, foam molding, blow molding, injection compression molding, gas assist molding.
  • Water assist molding heat insulation mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, ultra-high speed injection molding and the like can be applied.
  • thermoplastic resin composition 1-1 Rubber-reinforced aromatic vinyl resin ABS resin obtained by the following method was used. In 30 parts of latex containing 50% of polybutadiene rubber particles having an average particle diameter of 300 nm, 63 parts of styrene and 22 parts of acrylonitrile were graft-polymerized to obtain a latex of ABS resin (hereinafter referred to as “ABS-1”). Next, this latex was coagulated with an aqueous sulfuric acid solution, magnesium sulfate or calcium chloride, washed with water, filtered and dried to obtain a powder of ABS resin. These are referred to as "ABS-2", “ABS-3” and “ABS-4", respectively.
  • Cellulose nanofiber "Cerish KY100G” (trade name) manufactured by Daicel Fine Chem Ltd. was used. This product is made from cotton linter, etc., and is highly cracked and refined by applying high shearing force and high impact force, with a fiber diameter of 10 nm to 10 ⁇ m and an average fiber length of 0.4 to 0.5 mm.
  • a slurry containing cellulose nanofibers (hereinafter referred to as "CNF-1”) with a solid content of 10%. This slurry was diluted with water so that CNF-1 was 1%, and freeze-dried to obtain a dry powder. This is called "CNF-2". This CNF-2 was photographed using a scanning electron microscope, 20 samples were randomly selected from the obtained images, and the fiber diameter was measured. The average fiber diameter based on the medium diameter was 85 nm. ..
  • Thermoplastic Resin Composition Example 1 The latex of ABS-1 and the slurry composed of CNF-1 and water have a mass ratio of ABS-1 and CNF-1 of 80:20, and the total of CNF-1 and ABS-1 is 5%. After weighing and adding water so as to be such, these were dispersed for 15 minutes at 12,000 rpm using "Ultraslurry T25 Homogenizer" (trade name) manufactured by IKA. Next, while stirring the obtained mixed dispersion, magnesium sulfate was added so as to have a mass ratio of 5 parts to a total of 100 parts of ABS-1 and CNF-1, and after 5 minutes, the precipitate was contained. A slurry was obtained.
  • thermoplastic resin composition composed of a dry powder.
  • this dry powder is subjected to hot press molding (180 ° C.) to prepare a test piece having a shape according to the following evaluation items, elemental analysis, measurement of the average fiber diameter of cellulose nanofibers, measurement of flexural modulus. And, the molding appearance was evaluated. The results are shown in Table 1.
  • the tetrahydrofuran insoluble component containing the cellulose nanofibers was recovered. After drying the insoluble matter, the insoluble matter was photographed using a scanning electron microscope, 20 samples were randomly selected from the obtained images, the fiber diameter was measured, and the medium diameter thereof was taken as the average fiber diameter.
  • Bending elastic modulus According to ISO 178, a three-point bending test was performed on a test piece (width 10 mm, thickness 4 mm, length 80 mm) at a distance between fulcrums of 64 mm and a bending speed of 2 mm / min. Was measured.
  • Molded Appearance The surface of the test piece (40 mm ⁇ 80 mm) was visually observed, and the appearance was judged according to the following criteria.
  • The color tone is uneven and the surface is smooth with no unevenness.
  • The color tone is not uneven, but the surface is slightly uneven.
  • The color tone is uneven and the presence of agglomerates is recognized on the surface. No, but there is clear unevenness
  • The color tone is uneven, the presence of agglomerates is recognized on the surface, and there is clear unevenness.
  • Example 2 The mixed dispersion obtained in Example 1 was mixed with 5 parts of calcium laurate, and water was evaporated and removed from the obtained mixed solution to obtain a thermoplastic resin composition composed of a dry powder. After that, various evaluations were performed (see Table 1).
  • Example 3 A thermoplastic resin composition was produced in the same manner as in Example 2 except that CNF-2 was used instead of CNF-1 and 2.5 parts of talc was used instead of 5 parts of calcium laurate. After that, various evaluations were performed (see Table 1).
  • Example 4 The mass ratio of ABS-2 and CNF-1 to the powder of ABS-2 and the slurry composed of CNF-1 and water is 80:20, and the total of ABS-2 and CNF-1 is 5%. After weighing and adding water so as to be obtained, a mixed dispersion was obtained in the same manner as in Example 1. Next, this mixed dispersion was mixed with 1.5 parts of calcium carbonate, and water was evaporated and removed from the obtained mixed solution to obtain a thermoplastic resin composition composed of dry powder. After that, various evaluations were performed (see Table 1).
  • Example 5 The ABS-3 powder and CNF-2 were used so that their mass ratio was 80:20, mixed for 3 minutes using a Waring blender, and then the obtained mixture was prepared by Toyo Seiki Co., Ltd. A thermoplastic resin composition was produced by melt-kneading at 170 ° C. for 10 minutes using a “laboplast mill”. After that, various evaluations were performed (see Table 1).
  • thermoplastic resin composition was produced by melt-kneading in the same manner as in Example 5 except that the raw materials shown in Table 1 were used in a predetermined mass ratio. After that, various evaluations were performed (see Table 1).
  • thermoplastic resin composition was produced by melt-kneading in the same manner as in Example 5 except that the raw materials shown in Table 2 were used in a predetermined mass ratio. After that, various evaluations were performed (see Table 2).
  • Comparative Example 7 The ABS-3 powder, CNF-2, and talc were used so that their mass ratio was 15:85: 1, and melt-kneaded in the same manner as in Example 5 to obtain a thermoplastic resin composition. Manufactured. When the composition was subjected to hot press molding, it was difficult to maintain the shape of the test piece because it was very liable to collapse, and a test piece for evaluation could not be obtained.
  • Examples 1 to 12 are examples of the thermoplastic resin composition of the present invention, and it can be seen that a molded product having excellent appearance and rigidity can be obtained.
  • Comparative Examples 1 and 8 sufficient rigidity could not be obtained because the content ratios of the thermoplastic resin and the cellulose nanofibers were outside the range of the present invention.
  • Comparative Examples 2 to 7 the total content of the Group 1 metal elements and / or the Group 2 metal elements was out of the range of 0.2 to 10% by mass, and the appearance was insufficient.
  • thermoplastic resin composition of the present invention is used for transportation parts such as automobiles, trains, ships, and aircraft; electronic parts such as electrical products and precision machinery, housings, frames, handles and holders; containers and lids for cosmetics, etc. Building materials; housings and structural materials for sports equipment, etc .; housings, structures, frames for OA equipment; housings for furniture, storage items, etc., frames, handles, knobs, etc. As molding materials for resin molded products in a wide range of fields. Suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The thermoplastic resin composition of the present invention comprises a rubber-reinforced aromatic-vinyl-based resin and cellulose nanofibers, wherein the contents of the rubber-reinforced aromatic-vinyl-based resin and the cellulose nanofibers are 20-95 mass% and 5-80 mass%, respectively, with respect to the sum of both, which is taken as 100 mass%, the total content of Group-1 metal elements and/or Group-2 metal elements of the periodic table in the composition being 0.2-10 mass%.

Description

熱可塑性樹脂組成物Thermoplastic resin composition
 本発明は、熱可塑性樹脂組成物に関し、更に詳しくは、外観性及び剛性に優れた成形品を与える熱可塑性樹脂組成物に関する。 The present invention relates to a thermoplastic resin composition, and more particularly to a thermoplastic resin composition that provides a molded product having excellent appearance and rigidity.
 近年、セルロース繊維をナノサイズに解繊したセルロースナノファイバーが注目されている。セルロース繊維は、木材等からなるパルプを原料とするバイオマスであって、これを有効利用することによって、環境負荷低減効果が期待されている。そして、セルロースナノファイバーと、樹脂とを組み合わせた組成物が提案されている。
 例えば、特許文献1には、変性又は未変性のセルロースナノファイバーと、ABS樹脂等とを含有する熱可塑性樹脂組成物が記載されている。
In recent years, attention has been paid to cellulose nanofibers obtained by defibrating cellulose fibers into nano-sized fibers. Cellulose fiber is a biomass made from pulp made of wood or the like, and is expected to have an effect of reducing environmental load by effectively using it. Then, a composition combining cellulose nanofibers and a resin has been proposed.
For example, Patent Document 1 describes a thermoplastic resin composition containing modified or unmodified cellulose nanofibers and an ABS resin or the like.
特開2013-185068号公報Japanese Unexamined Patent Publication No. 2013-1805068
 ゴム質重合体に由来するゴム質重合体部と、芳香族ビニル化合物を含むビニル系単量体に由来する構造単位を含む樹脂部とからなるゴム強化芳香族ビニル系樹脂をセルロースナノファイバーと組み合わせた組成物を用いると、高い衝撃特性を有する成形品を得ることができる。しかしながら、このような組成物において、製造原料によらず、周期表の第1族金属元素及び/又は第2族金属元素の合計含有量が低すぎるか高すぎると、得られる成形品の表面に色むらや凹凸が発生し、外観性が十分ではないことが分かった。
 本発明は、外観性及び剛性に優れた成形品を与える熱可塑性樹脂組成物を提供することを目的とする。
A rubber-reinforced aromatic vinyl resin consisting of a rubber polymer part derived from a rubber polymer and a resin part containing a structural unit derived from a vinyl monomer containing an aromatic vinyl compound is combined with cellulose nanofibers. By using the above composition, a molded product having high impact characteristics can be obtained. However, in such a composition, regardless of the raw material produced, if the total content of the Group 1 metal elements and / or the Group 2 metal elements in the periodic table is too low or too high, the surface of the obtained molded product will be affected. It was found that the appearance was not sufficient due to uneven color and unevenness.
An object of the present invention is to provide a thermoplastic resin composition that gives a molded product having excellent appearance and rigidity.
 本発明の熱可塑性樹脂組成物は、ゴム強化芳香族ビニル系樹脂及びセルロースナノファイバーを含有し、ゴム強化芳香族ビニル系樹脂及びセルロースナノファイバーの含有割合は、これらの合計を100質量%とした場合に、それぞれ、20~95質量%及び5~80質量%であり、組成物に含まれる、周期表の第1族金属元素及び/又は第2族金属元素の合計含有量が0.2~10質量%であることを特徴とする。
 セルロースナノファイバーの繊維径は4~1000nmであることが好ましい。
 本発明の熱可塑性樹脂組成物は、更に、周期表の第1族金属元素を含む化合物(C1)及び/又は第2族金属元素を含む化合物(C2)を含有することができる。
The thermoplastic resin composition of the present invention contains a rubber-reinforced aromatic vinyl resin and cellulose nanofibers, and the content ratio of the rubber-reinforced aromatic vinyl resin and the cellulose nanofibers is 100% by mass in total. In some cases, the total content of Group 1 metal elements and / or Group 2 metal elements in the periodic table contained in the composition is 0.2 to 95% by mass and 5 to 80% by mass, respectively. It is characterized by being 10% by mass.
The fiber diameter of the cellulose nanofibers is preferably 4 to 1000 nm.
The thermoplastic resin composition of the present invention can further contain a compound (C1) containing a Group 1 metal element and / or a compound (C2) containing a Group 2 metal element in the periodic table.
 本発明の熱可塑性樹脂組成物を用いると、表面に色むらや凹凸がなく外観性に優れ、また、セルロースナノファイバーの配合効果が発揮されて剛性に優れた成形品を得ることができる。 When the thermoplastic resin composition of the present invention is used, it is possible to obtain a molded product having excellent appearance without uneven color or unevenness on the surface and exhibiting the effect of blending cellulose nanofibers and having excellent rigidity.
 本発明の熱可塑性樹脂組成物は、ゴム強化芳香族ビニル系樹脂と、セルロースナノファイバーとを含有する組成物である。
 本発明の熱可塑性樹脂組成物は、熱可塑性樹脂として、ゴム強化芳香族ビニル系樹脂以外の樹脂、例えば、ゴム強化されていない芳香族ビニル系樹脂、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、オレフィン系樹脂等を、更に含んでもよい。
The thermoplastic resin composition of the present invention is a composition containing a rubber-reinforced aromatic vinyl-based resin and cellulose nanofibers.
As the thermoplastic resin, the thermoplastic resin composition of the present invention is a resin other than a rubber-reinforced aromatic vinyl resin, for example, an aromatic vinyl resin that is not rubber-reinforced, an acrylic resin, a polyester resin, a polycarbonate resin, or a polyamide resin. , Olefin resin and the like may be further contained.
 上記ゴム強化芳香族ビニル系樹脂は、ゴム質重合体に由来するゴム質重合体部と、芳香族ビニル化合物を含むビニル系単量体に由来する構造単位を含む樹脂部とからなる樹脂である。 The rubber-reinforced aromatic vinyl resin is a resin composed of a rubber polymer part derived from a rubber polymer and a resin part containing a structural unit derived from a vinyl monomer containing an aromatic vinyl compound. ..
 上記ゴム質重合体部を形成するゴム質重合体は、25℃でゴム質であれば、単独重合体であってよいし、共重合体であってもよい。また、このゴム質重合体は、非架橋重合体であってよいし、架橋重合体であってもよい。ゴム質重合体の具体例は、ジエン系重合体(以下、「ジエン系ゴム質重合体」という。)及び非ジエン系重合体(以下、「非ジエン系ゴム質重合体」という。)である。 The rubbery polymer forming the rubbery polymer portion may be a homopolymer or a copolymer as long as it is rubbery at 25 ° C. Further, this rubbery polymer may be a non-crosslinked polymer or a crosslinked polymer. Specific examples of the rubbery polymer are a diene-based polymer (hereinafter referred to as "diene-based rubbery polymer") and a non-diene-based polymer (hereinafter referred to as "non-diene-based rubbery polymer"). ..
 上記ジエン系ゴム質重合体としては、ポリブタジエン、ポリイソプレン、ポリクロロプレン等の単独重合体;スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・スチレン・ブタジエン共重合体等のブタジエン系共重合体;スチレン・イソプレン共重合体、アクリロニトリル・イソプレン共重合体、アクリロニトリル・スチレン・イソプレン共重合体等のイソプレン系共重合体等が挙げられる。これらの共重合体は、ブロック共重合体でもよいし、ランダム共重合体でもよい。また、これらの共重合体は、水素添加(但し、水素添加率は80%未満。)されたものであってもよい。 Examples of the diene-based rubber polymer include homopolymers such as polybutadiene, polyisoprene, and polychloroprene; and butadiene-based polymers such as styrene / butadiene copolymer, acrylonitrile / butadiene copolymer, and acrylonitrile / styrene / butadiene copolymer. Polymers: Isoprene-based copolymers such as styrene / isoprene copolymers, acrylonitrile / isoprene copolymers, and acrylonitrile / styrene / isoprene copolymers can be mentioned. These copolymers may be block copolymers or random copolymers. Further, these copolymers may be hydrogenated (however, the hydrogenation rate is less than 80%).
 また、上記非ジエン系ゴム質重合体としては、エチレン・α-オレフィン系共重合体;ウレタン系ゴム;アクリル系ゴム;シリコーンゴム;シリコーン・アクリル系IPNゴム;共役ジエン系化合物に由来する構造単位を含む(共)重合体を水素添加(但し、水素添加率は80%以上。)させてなる水素添加重合体等が挙げられる。これらの共重合体は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。 The non-diene rubber polymer is a structural unit derived from an ethylene / α-olefin copolymer; urethane rubber; acrylic rubber; silicone rubber; silicone / acrylic IPN rubber; and a conjugated diene compound. Examples thereof include a hydrogenated polymer obtained by hydrogenating a (co) polymer containing (however, the hydrogenation rate is 80% or more). These copolymers may be block copolymers or random copolymers.
 本発明において、上記ゴム質重合体部は、ジエン系ゴム質重合体に由来するものであることが好ましい。 In the present invention, the rubbery polymer portion is preferably derived from a diene-based rubbery polymer.
 上記樹脂部を形成するビニル系単量体は、芳香族ビニル化合物を含み、更に他のビニル系単量体(後述)を含むことができる。 The vinyl-based monomer forming the resin portion contains an aromatic vinyl compound, and can further contain another vinyl-based monomer (described later).
 上記芳香族ビニル化合物は、少なくとも一つのビニル結合と、少なくとも一つの芳香族環とを有する化合物であれば、特に限定されない。その例としては、スチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、p-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等が挙げられる。また、上記芳香族ビニル化合物としては、スチレン及びα-メチルスチレンが好ましく、スチレンが特に好ましい。 The aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring. Examples thereof include styrene, α-methylstyrene, β-methylstyrene, o-methylstyrene, p-methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene and the like. Further, as the aromatic vinyl compound, styrene and α-methylstyrene are preferable, and styrene is particularly preferable.
 上記のように、樹脂部は、他のビニル系単量体に由来する構造単位を含むことができる。他のビニル系単量体としては、(メタ)アクリル酸アルキルエステル、官能基(シアノ基、カルボキシ基、酸無水物基、ヒドロキシ基、イミノ基、フェニルイミノ基、アルキルフェニルイミノ基、アルキルイミノ基、シクロアルキルイミノ基、アミノ基、アミド基、エポキシ基、オキサゾリン基等)を有するビニル系単量体等が挙げられる。尚、本明細書において、「(メタ)アクリル酸」の表記は、アクリル酸及びメタクリル酸を意味する。 As described above, the resin portion can contain a structural unit derived from another vinyl-based monomer. Other vinyl-based monomers include (meth) acrylic acid alkyl ester, functional group (cyano group, carboxy group, acid anhydride group, hydroxy group, imino group, phenylimino group, alkylphenylimino group, alkylimino group. , Cycloalkylimino group, amino group, amide group, epoxy group, oxazoline group, etc.). In addition, in this specification, the notation of "(meth) acrylic acid" means acrylic acid and methacrylic acid.
 上記(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル等が挙げられる。
 シアノ基を有するビニル系単量体(以下、「シアン化ビニル化合物」という)としては、アクリロニトリル、メタクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル等が挙げられる。
 カルボキシ基を有するビニル系単量体としては、アクリル酸、メタクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸等が挙げられる。
 酸無水物基を有するビニル系単量体としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。
 ヒドロキシ基を有するビニル系単量体としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
 イミノ基、フェニルイミノ基、アルキルフェニルイミノ基、アルキルイミノ基、シクロアルキルイミノ基等を有するビニル系単量体(マレイミド系化合物)としては、マレイミド、N-メチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ドデシルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(2、6-ジメチルフェニル)マレイミド、N-(2、6-ジエチルフェニル)マレイミド、N-ベンジルマレイミド、N-ナフチルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
 エポキシ基を有するビニル系単量体としては、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-オキシシクロヘキシル、ビニルグリシジルエーテル、アリルグリシジルエーテル、メタリルグリシジルエーテル等が挙げられる。
Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n-butyl (meth) acrylic acid. Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic Examples thereof include n-octyl acid acid, nonyl (meth) acrylate, decyl (meth) acrylate, and dodecyl (meth) acrylate.
Examples of the vinyl-based monomer having a cyano group (hereinafter referred to as “vinyl cyanide compound”) include acrylonitrile, methacrylonitrile, α-ethylacrylonitrile, α-isopropylacrylonitrile and the like.
Examples of the vinyl-based monomer having a carboxy group include acrylic acid, methacrylic acid, etacrilic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and cinnamic acid.
Examples of the vinyl-based monomer having an acid anhydride group include maleic anhydride, itaconic anhydride, citraconic anhydride and the like.
Examples of the vinyl-based monomer having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Examples thereof include butyl, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
Examples of vinyl-based monomers (maleimide-based compounds) having an imino group, a phenylimino group, an alkylphenylimino group, an alkylimino group, a cycloalkylimino group, etc. include maleimide, N-methylmaleimide, N-isopropylmaleimide, and N-. Butyl maleimide, N-dodecyl maleimide, N-phenyl maleimide, N- (2-methylphenyl) maleimide, N- (4-methylphenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2, 6-diethylphenyl) maleimide, N-benzylmaleimide, N-naphthylmaleimide, N-cyclohexylmaleimide and the like can be mentioned.
Examples of the vinyl-based monomer having an epoxy group include glycidyl (meth) acrylate, 3,4-oxycyclohexyl (meth) acrylate, vinyl glycidyl ether, allyl glycidyl ether, and metalyl glycidyl ether.
 上記樹脂部は、好ましくは、芳香族ビニル化合物に由来する構造単位及びシアン化ビニル化合物に由来する構造単位を含む樹脂部である。この場合、芳香族ビニル化合物に由来する構造単位の含有量及びシアン化ビニル化合物に由来する構造単位の含有量の合計量の割合は、上記樹脂部を構成する構造単位の全量を100質量%とした場合に、好ましくは55質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上である。また、芳香族ビニル化合物に由来する構造単位及びシアン化ビニル化合物に由来する構造単位の含有割合は、両者の合計を100質量%とした場合に、それぞれ、好ましくは50~95質量%及び5~50質量%、より好ましくは55~90質量%及び10~45質量%、更に好ましくは60~85質量%及び15~40質量%である。 The resin portion is preferably a resin portion containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from a vinyl cyanide compound. In this case, the ratio of the total amount of the content of the structural unit derived from the aromatic vinyl compound and the content of the structural unit derived from the vinyl cyanide compound is 100% by mass based on the total amount of the structural unit constituting the resin portion. In this case, it is preferably 55% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. The content ratios of the structural unit derived from the aromatic vinyl compound and the structural unit derived from the vinyl cyanide compound are preferably 50 to 95% by mass and 5 to 5, respectively, when the total of both is 100% by mass. It is 50% by mass, more preferably 55 to 90% by mass and 10 to 45% by mass, still more preferably 60 to 85% by mass and 15 to 40% by mass.
 上記ゴム強化芳香族ビニル系樹脂を構成するゴム質重合体部及び樹脂部の含有割合は、本発明の効果が十分に得られることから、両者の合計を100質量%とした場合に、それぞれ、好ましくは10~70質量%及び30~90質量%、より好ましくは15~60質量%及び40~85質量%、更に好ましくは20~55質量%及び45~80質量%である。 Since the effects of the present invention can be sufficiently obtained, the content ratios of the rubber polymer portion and the resin portion constituting the rubber-reinforced aromatic vinyl-based resin are, respectively, when the total of both is 100% by mass. It is preferably 10 to 70% by mass and 30 to 90% by mass, more preferably 15 to 60% by mass and 40 to 85% by mass, and further preferably 20 to 55% by mass and 45 to 80% by mass.
 本発明の組成物は、上記ゴム強化芳香族ビニル系樹脂を1種のみ含んでよいし、2種以上を含んでもよい。例えば、芳香族ビニル化合物に由来する構造単位及びシアン化ビニル化合物に由来する構造単位の含有割合が互いに異なる樹脂部を有するゴム強化芳香族ビニル系樹脂の2種以上を含んでもよい。 The composition of the present invention may contain only one type of the rubber-reinforced aromatic vinyl resin, or may contain two or more types. For example, it may contain two or more kinds of rubber-reinforced aromatic vinyl-based resins having resin portions having different content ratios of the structural unit derived from the aromatic vinyl compound and the structural unit derived from the vinyl cyanide compound.
 上記ゴム強化芳香族ビニル系樹脂は、ゴム質重合体の存在下、芳香族ビニル化合物を含むビニル系単量体を、乳化重合、懸濁重合、溶液重合又は塊状重合して得られたものとすることができる。本発明では、乳化重合により得られたグラフト樹脂であることが好ましい。この乳化重合では、ゴム強化芳香族ビニル系樹脂が水系媒体に分散したラテックスが得られるので、このラテックスに、例えば、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化アルミニウム等の無機塩;硫酸、塩酸等の無機酸;酢酸、乳酸、クエン酸等の有機酸等からなる凝固剤を添加して、樹脂を固化させ、その後、水洗、乾燥等に供することで、固体のゴム強化芳香族ビニル系樹脂を得ることができる。本発明の組成物を製造するに際して、乳化重合により製造したゴム強化芳香族ビニル系樹脂を用いた場合、凝固剤に由来する、周期表の第1族金属元素及び/又は第2族金属元素を含む成分が含まれることがある。 The rubber-reinforced aromatic vinyl resin is obtained by emulsion polymerization, suspension polymerization, solution polymerization or bulk polymerization of a vinyl monomer containing an aromatic vinyl compound in the presence of a rubber polymer. can do. In the present invention, a graft resin obtained by emulsion polymerization is preferable. In this emulsion polymerization, a latex in which a rubber-reinforced aromatic vinyl resin is dispersed in an aqueous medium can be obtained. Therefore, in this latex, for example, inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, aluminum chloride; sulfuric acid, hydrochloric acid, etc. Inorganic acid: A solid rubber-reinforced aromatic vinyl resin is obtained by adding a coagulant composed of organic acids such as acetic acid, lactic acid, and citric acid to solidify the resin, and then subjecting it to washing with water, drying, etc. Obtainable. When a rubber-reinforced aromatic vinyl resin produced by emulsion polymerization is used in producing the composition of the present invention, Group 1 metal elements and / or Group 2 metal elements in the periodic table derived from the coagulant can be used. Ingredients may be included.
 本発明の組成物に含まれるセルロースナノファイバーは、繊維径が、通常、1000nm以下の細いセルロース繊維であり、その繊維径は、得られる成形品の剛性の観点から、好ましくは4~1000nm、より好ましくは4~500nm、更に好ましくは4~250nmである。また、繊維長は、好ましくは50nm~50μm、より好ましくは100nm~10μmである。
 上記セルロースナノファイバーは、表面処理がなされたものであってよいし、処理されていないものであってもよい。
The cellulose nanofibers contained in the composition of the present invention are fine cellulose fibers having a fiber diameter of usually 1000 nm or less, and the fiber diameter is preferably 4 to 1000 nm from the viewpoint of the rigidity of the obtained molded product. It is preferably 4 to 500 nm, more preferably 4 to 250 nm. The fiber length is preferably 50 nm to 50 μm, more preferably 100 nm to 10 μm.
The cellulose nanofibers may be surface-treated or untreated.
 本発明の組成物に含まれるセルロースナノファイバーは、通常、セルロース繊維を含む原料(セルロース繊維集合体)を、リファイナー、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー等により解繊又は微細化して得られたものである。 The cellulose nanofibers contained in the composition of the present invention are usually obtained by defibrating or refining a raw material containing cellulose fibers (cellulose fiber aggregate) with a refiner, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, or the like. It is a thing.
 セルロース繊維を含む原料(セルロース繊維集合体)としては、パルプ、綿、紙、レーヨン・キュプラ・ポリノジック・アセテート等の再生セルロース繊維、バクテリア産生セルロース、ホヤ等の動物由来セルロース等が挙げられる。
 パルプとしては、木材パルプ及び非木材パルプのいずれでもよい。木材パルプとしては機械パルプ及び化学パルプが挙げられるが、リグニン含有量の少ない化学パルプが好ましい。化学パルプとしては、サルファイドパルプ、クラフトパルプ、アルカリパルプ等が挙げられる。非木材パルプとしては、藁、バガス、ケナフ、竹、葦、楮、亜麻等が挙げられる。
 綿は、主に衣料用繊維に用いられる植物であり、綿花、綿繊維、綿布等が挙げられる。
 紙は、パルプから取り出した繊維を漉いたものであり、新聞紙、使用済み牛乳パック、使用済みコピー用紙等の古紙等が挙げられる。
Examples of the raw material containing cellulose fibers (cellulose fiber aggregate) include pulp, cotton, paper, regenerated cellulose fibers such as rayon, cupra, polynosic and acetate, bacterially produced cellulose, and animal-derived cellulose such as squirrel.
The pulp may be either wood pulp or non-wood pulp. Examples of wood pulp include mechanical pulp and chemical pulp, but chemical pulp having a low lignin content is preferable. Examples of chemical pulp include sulfide pulp, kraft pulp, and alkaline pulp. Examples of non-wood pulp include straw, bagasse, kenaf, bamboo, reeds, mulberry, and flax.
Cotton is a plant mainly used for clothing fibers, and examples thereof include cotton, cotton fibers, and cotton cloth.
The paper is made by straining fibers taken out from pulp, and examples thereof include newspaper, used milk carton, and used paper such as used copy paper.
 セルロース繊維を含む原料(セルロース繊維集合体)は、破砕によって、所定の粒径分布を有するようにしたセルロース粉末であってもよく、例えば、日本製紙ケミカル社製粉末セルロース「KCフロック」(商品名)、旭化成ケミカルズ社製結晶セルロース「セオラス」(商品名)、FMC社製微結晶セルロース「アビセル」(商品名)等が挙げられる。 The raw material containing cellulose fibers (cellulose fiber aggregate) may be cellulose powder having a predetermined particle size distribution by crushing. For example, powdered cellulose "KC Flock" (trade name) manufactured by Nippon Paper Chemical Co., Ltd. ), Crystallose cellulose "Theoras" (trade name) manufactured by Asahi Kasei Chemicals Co., Ltd., Microcrystalline cellulose "Abyssel" (trade name) manufactured by FMC, and the like.
 本発明の組成物に含まれるセルロースナノファイバーは、ダイセルファインケム社製「セリッシュ」(商品名)、スギノマシン社製「BiNFi-s」(商品名)、第一工業製薬社製「レオクリスタ」(商品名)等の市販品を用いて得られたものであってもよい。 The cellulose nanofibers contained in the composition of the present invention are "Cerish" (trade name) manufactured by Daicel Fine Chem Ltd., "BiNFi-s" (trade name) manufactured by Sugino Machine Limited, and "Leocrysta" (trade name) manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd. It may be obtained by using a commercially available product such as (name).
 本発明の組成物は、ゴム強化芳香族ビニル系樹脂、セルロースナノファイバー、及び、上記の他の熱可塑性樹脂以外に、他の成分を含有することができる。他の成分としては、従来、公知の熱可塑性樹脂組成物に配合される老化防止剤、酸化防止剤、紫外線吸収剤、滑剤、可塑剤、充填剤、熱安定剤、難燃剤、帯電防止剤、着色剤等の添加剤が挙げられる。 The composition of the present invention may contain other components in addition to the rubber-reinforced aromatic vinyl resin, the cellulose nanofibers, and the other thermoplastic resins described above. Other components include antioxidants, antioxidants, UV absorbers, lubricants, plasticizers, fillers, heat stabilizers, flame retardants, antistatic agents, which are conventionally blended in known thermoplastic resin compositions. Examples include additives such as colorants.
 上記老化防止剤としては、ナフチルアミン系化合物、ジフェニルアミン系化合物、p-フェニレンジアミン系化合物、キノリン系化合物、ヒドロキノン誘導体系化合物、モノフェノール系化合物、ビスフェノール系化合物、トリスフェノール系化合物、ポリフェノール系化合物、チオビスフェノール系化合物、ヒンダードフェノール系化合物、亜リン酸エステル系化合物、イミダゾール系化合物、ジチオカルバミン酸ニッケル塩系化合物、リン酸系化合物等が挙げられる。 Examples of the antiaging agent include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds, and thio. Examples thereof include bisphenol-based compounds, hindered phenol-based compounds, phosphite ester-based compounds, imidazole-based compounds, dithiocarbamate nickel salt-based compounds, and phosphoric acid-based compounds.
 上記酸化防止剤としては、ヒンダードアミン系化合物、ハイドロキノン系化合物、ヒンダードフェノール系化合物、含硫黄化合物、含リン化合物等が挙げられる。
 上記紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、
トリアジン系化合物等が挙げられる。
 上記滑剤としては、ワックス、シリコーン、脂質等が挙げられる。
Examples of the antioxidant include hindered amine compounds, hydroquinone compounds, hindered phenol compounds, sulfur-containing compounds, and phosphorus-containing compounds.
Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, and the like.
Examples thereof include triazine compounds.
Examples of the lubricant include wax, silicone, lipid and the like.
 上記可塑剤としては、フタル酸エステル、トリメリット酸エステル、ピロメリット酸エステル、脂肪族一塩基酸エステル、脂肪族二塩基酸エステル、リン酸エステル、多価アルコールのエステル、エポキシ系可塑剤、高分子型可塑剤、塩素化パラフィン等が挙げられる。 Examples of the plasticizer include phthalates, trimellitic acid esters, pyromellitic acid esters, aliphatic monobasic acid esters, aliphatic dibasic acid esters, phosphoric acid esters, polyhydric alcohol esters, epoxy plasticizers, and high-grade plasticizers. Examples thereof include molecular plasticizers and chlorinated paraffins.
 上記充填剤としては、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、水酸化アルミニウム、水酸化マグネシウム、カーボンブラック、クレー、タルク、シリカ、カオリン、硅藻土、ゼオライト、酸化チタン、生石灰、酸化鉄、酸化亜鉛、酸化バリウム、酸化アルミニウム、酸化マグネシウム、硫酸アルミニウム、ガラス繊維、炭素繊維、ガラスバルーン、シラスバルーン、サランバルーン、フェノールバルーン等が挙げられる。
 本発明の熱可塑性樹脂組成物は、周期表の第1族金属元素を含む化合物(以下、「化合物(C1)」という)及び/又は第2族金属元素を含む化合物(以下、「化合物(C2)」という)を含有することが好ましく、例えば、これらの化合物を充填剤として含有させることができる。
 上記化合物(C1)又は(C2)の平均粒子径は、好ましくは10μm以下である。
Examples of the filler include calcium carbonate, magnesium carbonate, zinc carbonate, aluminum hydroxide, magnesium hydroxide, carbon black, clay, talc, silica, kaolin, silica soil, zeolite, titanium oxide, quicklime, iron oxide, and zinc oxide. , Barium oxide, aluminum oxide, magnesium oxide, aluminum sulfate, glass fiber, carbon fiber, glass balloon, silas balloon, saran balloon, phenol balloon and the like.
The thermoplastic resin composition of the present invention includes a compound containing a Group 1 metal element in the periodic table (hereinafter referred to as "Compound (C1)") and / or a compound containing a Group 2 metal element (hereinafter, "Compound (C2)"). ) ”) Is preferably contained, for example, these compounds can be contained as a filler.
The average particle size of the compound (C1) or (C2) is preferably 10 μm or less.
 上記熱安定剤としては、ホスファイト系熱安定剤、ラクトン系熱安定剤、ヒンダードフェノール系熱安定剤、硫黄系熱安定剤、アミン系熱安定剤等が挙げられる。 Examples of the heat stabilizer include phosphite-based heat stabilizers, lactone-based heat stabilizers, hindered phenol-based heat stabilizers, sulfur-based heat stabilizers, amine-based heat stabilizers, and the like.
 上記難燃剤としては、有機系難燃剤、無機系難燃剤、反応系難燃剤等が挙げられる。 Examples of the flame retardant include organic flame retardants, inorganic flame retardants, and reactive flame retardants.
 上記有機系難燃剤としては、臭素化エポキシ系化合物、臭素化アルキルトリアジン化合物、臭素化ビスフェノール系エポキシ樹脂、臭素化ビスフェノール系フェノキシ樹脂、臭素化ビスフェノール系ポリカーボネート樹脂、臭素化ポリスチレン樹脂、臭素化架橋ポリスチレン樹脂、臭素化ビスフェノールシアヌレート樹脂、臭素化ポリフェニレンエーテル、デカブロモジフェニルオキサイド、テトラブロモビスフェノールA及びそのオリゴマー等のハロゲン系難燃剤;トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、ジメチルエチルホスフェート、メチルジブチルホスフェート、エチルジプロピルホスフェート、ヒドロキシフェニルジフェニルホスフェート等のリン酸エステルや、これらの変性化合物、縮合型のリン酸エステル化合物、リン元素及び窒素元素を含むホスファゼン誘導体等のリン系難燃剤;グアニジン塩、シリコーン系化合物、ホスファゼン系化合物等が挙げられる。 Examples of the organic flame retardant include brominated epoxy compounds, brominated alkyltriazine compounds, brominated bisphenol epoxy resins, brominated bisphenol phenoxy resins, brominated bisphenol polycarbonate resins, brominated polystyrene resins, and brominated crosslinked polystyrenes. Halogen-based flame retardants such as resins, brominated bisphenol cyanurate resins, brominated polyphenylene ethers, decabromodiphenyl oxides, tetrabromobisphenol A and its oligomers; trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, Trihexyl phosphate, tricyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresil diphenyl phosphate, dicredyl phenyl phosphate, dimethyl ethyl phosphate, methyl dibutyl phosphate, ethyl dipropyl phosphate, hydroxyphenyl diphenyl phosphate, etc. Phosphosyl ester, modified compounds thereof, condensed type phosphoric acid ester compound, phosphorus flame retardant such as phosphazene derivative containing phosphorus element and nitrogen element; guanidine salt, silicone compound, phosphazene compound and the like.
 上記無機系難燃剤としては、水酸化アルミニウム、酸化アンチモン、水酸化マグネシウム、ホウ酸亜鉛、ジルコニウム系化合物、モリブデン系化合物、スズ酸亜鉛等が挙げられる。
 また、上記反応系難燃剤としては、テトラブロモビスフェノールA、ジブロモフェノールグリシジルエーテル、臭素化芳香族トリアジン、トリブロモフェノール、テトラブロモフタレート、テトラクロロ無水フタル酸、ジブロモネオペンチルグリコール、ポリ(ペンタブロモベンジルポリアクリレート)、クロレンド酸(ヘット酸)、無水クロレンド酸(無水ヘット酸)、臭素化フェノールグリシジルエーテル、ジブロモクレジルグリシジルエーテル等が挙げられる。
Examples of the inorganic flame retardant include aluminum hydroxide, antimony oxide, magnesium hydroxide, zinc borate, zirconium compound, molybdenum compound, zinc stannate and the like.
Examples of the reaction flame retardant include tetrabromobisphenol A, dibromophenol glycidyl ether, brominated aromatic triazine, tribromophenol, tetrabromophthalate, tetrachlorophthalic anhydride, dibromoneopentyl glycol, and poly (pentabromobenzyl). Polyacrylate), chlorendic acid (hetic acid), phthalic anhydride (phthalic anhydride), brominated phenol glycidyl ether, dibromocredyl glycidyl ether and the like.
 本発明の組成物は、周期表の第1族金属元素(Li、Na、K、Rb、Cs等)及び/又は第2族金属元素(Be、Mg、Ca、Sr、Ba等)を、特定の割合で含有することから、得られる成形品の表面に色むらや凹凸がなく、外観性が良好である。第1族金属元素及び/又は第2族金属元素の合計含有量は0.2~10質量%であり、好ましくは0.3~5質量%、更に好ましくは0.4~3質量%である。
 本発明者らは、上記効果は、成形品を製造する前の組成物の溶融混練により、ゴム強化芳香族ビニル系樹脂及びセルロースナノファイバーが適度に分解して、初期の溶融状態よりも流動性が高まり、ゴム強化芳香族ビニル系樹脂を主とするマトリックスの中でセルロースナノファイバーの分散性が向上することによるものと推定している。
The composition of the present invention specifies Group 1 metal elements (Li, Na, K, Rb, Cs, etc.) and / or Group 2 metal elements (Be, Mg, Ca, Sr, Ba, etc.) in the periodic table. Since it is contained in the above ratio, there is no color unevenness or unevenness on the surface of the obtained molded product, and the appearance is good. The total content of Group 1 metal elements and / or Group 2 metal elements is 0.2 to 10% by mass, preferably 0.3 to 5% by mass, and more preferably 0.4 to 3% by mass. ..
The present inventors have the above-mentioned effect that the rubber-reinforced aromatic vinyl resin and the cellulose nanofibers are appropriately decomposed by the melt-kneading of the composition before manufacturing the molded product, and the fluidity is higher than that in the initial molten state. It is presumed that this is due to the improvement in the dispersibility of the cellulose nanofibers in the matrix mainly composed of the rubber-reinforced aromatic vinyl resin.
 第1族金属元素及び/又は第2族金属元素の含有は、上記のように、ゴム強化芳香族ビニル系樹脂の製造原料に由来するものであってよいし、添加剤に由来するものであってよいし、セルロースナノファイバーに由来するものであってもよい。従って、組成物の製造原料が、第1族金属元素及び/又は第2族金属元素を含む化合物からなる充填剤等を含有する場合や、製造原料の一部に、第1族金属元素及び/又は第2族金属元素を含む化合物が付着していた場合であっても、第1族金属元素及び/又は第2族金属元素の合計含有量が0.2~10質量%であれば、得られる成形品の外観性が良好となる。 As described above, the content of the Group 1 metal element and / or the Group 2 metal element may be derived from the raw material for producing the rubber-reinforced aromatic vinyl resin, or may be derived from the additive. It may be derived from cellulose nanofibers. Therefore, when the manufacturing raw material of the composition contains a filler composed of a group 1 metal element and / or a compound containing a group 2 metal element, or when a part of the manufacturing raw material contains a group 1 metal element and / or Alternatively, even if a compound containing a Group 2 metal element is attached, the total content of the Group 1 metal element and / or the Group 2 metal element is 0.2 to 10% by mass. The appearance of the molded product is improved.
 本発明の組成物は、成形加工性に優れ、後述の成形方法により、効率よく成形品が得られる流動性を有する。 The composition of the present invention has excellent molding processability and has a fluidity that allows a molded product to be efficiently obtained by the molding method described later.
 本発明の組成物は、製造原料を、押出機、バンバリーミキサー、ニーダー、ロール、フィーダールーダー等に投入し、熱可塑性樹脂が溶融する温度で混練することにより、製造することができる。製造原料の使用方法は、特に限定されず、各々の成分を一括配合して混練してもよく、多段、分割配合して混練してもよい。 The composition of the present invention can be produced by putting the production raw materials into an extruder, a Banbury mixer, a kneader, a roll, a feeder ruder, etc. and kneading them at a temperature at which the thermoplastic resin melts. The method of using the production raw material is not particularly limited, and each component may be mixed and kneaded all at once, or may be mixed in multiple stages and kneaded.
 本発明の組成物を用いて、成形品を製造する場合には、射出成形、押出成形、異形押出成形、中空成形、圧縮成形、真空成形、発泡成形、ブロー成形、射出圧縮成形、ガスアシスト成形、ウォーターアシスト成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、超高速射出成形等を適用することができる。 When a molded product is produced using the composition of the present invention, injection molding, extrusion molding, deformed extrusion molding, hollow molding, compression molding, vacuum molding, foam molding, blow molding, injection compression molding, gas assist molding. , Water assist molding, heat insulation mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, ultra-high speed injection molding and the like can be applied.
 以下に例を挙げ、本発明を更に詳細に説明する。尚、「部」及び「%」は、特に断らない限り質量基準である。 The present invention will be described in more detail with reference to the following examples. In addition, "part" and "%" are based on mass unless otherwise specified.
1.熱可塑性樹脂組成物の原料
1-1.ゴム強化芳香族ビニル系樹脂
 下記の方法で得られたABS樹脂を用いた。
 平均粒子径300nmのポリブタジエンゴム粒子を50%含むラテックス30部において、スチレン63部及びアクリロニトリル22部をグラフト重合させ、ABS樹脂(以下、「ABS-1」という)のラテックスを得た。
 次いで、このラテックスを、硫酸水溶液、硫酸マグネシウム又は塩化カルシウムを用いて凝固させ、水洗、ろ過及び乾燥させて、ABS樹脂の粉末を得た。これらを、それぞれ、「ABS-2」、「ABS-3」及び「ABS-4」という。
1. 1. Raw material of thermoplastic resin composition 1-1. Rubber-reinforced aromatic vinyl resin ABS resin obtained by the following method was used.
In 30 parts of latex containing 50% of polybutadiene rubber particles having an average particle diameter of 300 nm, 63 parts of styrene and 22 parts of acrylonitrile were graft-polymerized to obtain a latex of ABS resin (hereinafter referred to as “ABS-1”).
Next, this latex was coagulated with an aqueous sulfuric acid solution, magnesium sulfate or calcium chloride, washed with water, filtered and dried to obtain a powder of ABS resin. These are referred to as "ABS-2", "ABS-3" and "ABS-4", respectively.
1-2.セルロースナノファイバー
 ダイセルファインケム社製「セリッシュKY100G」(商品名)を用いた。この商品は、コットンリンター等を由来原料として、高剪断力、高衝撃力を作用させることによって、高度に裂解・微細化した、繊維径10nm~10μm、平均繊維長0.4~0.5mmのセルロースナノファイバー(以下、「CNF-1」という)を固形分10%で含むスラリーである。
 このスラリーを、CNF-1が1%となるように水で希釈し、凍結乾燥を行って乾燥粉体を得た。これを、「CNF-2」という。このCNF-2を、走査型電子顕微鏡を用いて撮影し、得られた画像から、ランダムに20検体を選択して繊維径を測定し、その中位径に基づく平均繊維径は85nmであった。
1-2. Cellulose nanofiber "Cerish KY100G" (trade name) manufactured by Daicel Fine Chem Ltd. was used. This product is made from cotton linter, etc., and is highly cracked and refined by applying high shearing force and high impact force, with a fiber diameter of 10 nm to 10 μm and an average fiber length of 0.4 to 0.5 mm. A slurry containing cellulose nanofibers (hereinafter referred to as "CNF-1") with a solid content of 10%.
This slurry was diluted with water so that CNF-1 was 1%, and freeze-dried to obtain a dry powder. This is called "CNF-2". This CNF-2 was photographed using a scanning electron microscope, 20 samples were randomly selected from the obtained images, and the fiber diameter was measured. The average fiber diameter based on the medium diameter was 85 nm. ..
1-3.添加剤
 赤穂化成社製「硫酸マグネシウム(7水和物)」(商品名)、日東化成社製ラウリン酸カルシウム「CS-3」(商品名)、平均粒子径が3.3μmの日本タルク社製タルク「ミクロエースP-8」(商品名)、又は、一次粒子径が0.05μmの白石工業社製炭酸カルシウム「白艶華O」(商品名)を用いた。
1-3. Additives "Magnesium Sulfate (7hydrate)" (trade name) manufactured by Akaho Kasei Co., Ltd., Calcium Laurate "CS-3" (trade name) manufactured by Nitto Kasei Co., Ltd. "Micro Ace P-8" (trade name) or calcium carbonate "Shiratsuka O" (trade name) manufactured by Shiraishi Kogyo Co., Ltd. having a primary particle diameter of 0.05 μm was used.
2.熱可塑性樹脂組成物の製造及び評価
  実施例1
 ABS-1のラテックスと、CNF-1及び水からなるスラリーとを、ABS-1及びCNF-1の質量比が80:20であり、且つ、CNF-1及びABS-1の合計が5%となるように、秤量及び水の添加を行った後、これらを、IKA社製「ウルトラタラックスT25ホモジナイザー」(商品名)を用いて、12,000rpmにて15分間、分散処理を行った。次いで、得られた混合分散液を撹拌しながら、ABS-1及びCNF-1の合計100部に対して5部の質量比となるように硫酸マグネシウムを添加し、5分後、析出物を含むスラリーを得た。その後、このスラリーから析出物を濾別し、水洗及び乾燥を行って、乾燥粉体からなる熱可塑性樹脂組成物を得た。その後、この乾燥粉体を熱プレス成形(180℃)に供し、下記評価項目に応じた形状の試験片を作製し、元素分析、セルロースナノファイバーの平均繊維径の測定、曲げ弾性率の測定、及び、成形外観性の評価を行った。その結果を表1に示す。
2. Production and Evaluation of Thermoplastic Resin Composition Example 1
The latex of ABS-1 and the slurry composed of CNF-1 and water have a mass ratio of ABS-1 and CNF-1 of 80:20, and the total of CNF-1 and ABS-1 is 5%. After weighing and adding water so as to be such, these were dispersed for 15 minutes at 12,000 rpm using "Ultraslurry T25 Homogenizer" (trade name) manufactured by IKA. Next, while stirring the obtained mixed dispersion, magnesium sulfate was added so as to have a mass ratio of 5 parts to a total of 100 parts of ABS-1 and CNF-1, and after 5 minutes, the precipitate was contained. A slurry was obtained. Then, the precipitate was separated from this slurry by filtration, washed with water and dried to obtain a thermoplastic resin composition composed of a dry powder. After that, this dry powder is subjected to hot press molding (180 ° C.) to prepare a test piece having a shape according to the following evaluation items, elemental analysis, measurement of the average fiber diameter of cellulose nanofibers, measurement of flexural modulus. And, the molding appearance was evaluated. The results are shown in Table 1.
(1)組成物に含まれる第1族金属元素及び/又は第2族金属元素の分析
 試験片を乾式灰化した後、灰化物を硝酸に溶解して、試験溶液を調製した。次いで、この試験溶液をICP-AES法に供し、第1族金属元素及び/又は第2族金属元素の定性分析及び定量分析を行った。尚、定量分析に際しては、予め、濃度が既知の元素標準液により作成した検量線を用いた。
(2)組成物に含まれるセルロースナノファイバーの平均繊維径
 組成物の樹脂をテトラヒドロフランに溶解し、室温にて24時間静置してゾルゲル分離を行った後、上澄み液を除去した。次いで、セルロースナノファイバーを含むテトラヒドロフラン不溶分を回収した。その不溶分を乾燥後、走査型電子顕微鏡を用いて撮影し、得られた画像から、ランダムに20検体を選択して繊維径を測定し、その中位径を平均繊維径とした。
(3)曲げ弾性率
 ISO 178に準じて、試験片(幅10mm、厚さ4mm、長さ80mm)を支点間距離64mm、曲げ速度2mm/分にて、3点曲げ試験を行い、曲げ弾性率を測定した。
(4)成形外観性
 試験片(40mm×80mm)の表面を目視観察し、以下の基準に従って、外観性を判定した。
◎:色調にむらがなく、表面に凹凸がなく平滑である
〇:色調にむらがないが、表面にはわずかに凹凸がある
△:色調にむらがあり、表面に凝集物の存在が認められないが、明確な凹凸がある
×:色調にむらがあり、表面に凝集物の存在が認められ、明確な凹凸がある
(1) Analysis of Group 1 Metal Element and / or Group 2 Metal Element Contained in Composition After dry ashing the test piece, the ashed product was dissolved in nitric acid to prepare a test solution. Next, this test solution was subjected to the ICP-AES method, and qualitative analysis and quantitative analysis of Group 1 metal elements and / or Group 2 metal elements were performed. In the quantitative analysis, a calibration curve prepared in advance with an elemental standard solution having a known concentration was used.
(2) Average Fiber Diameter of Cellulose Nanofibers Contained in Composition The resin of the composition was dissolved in tetrahydrofuran and allowed to stand at room temperature for 24 hours for sol-gel separation, and then the supernatant was removed. Then, the tetrahydrofuran insoluble component containing the cellulose nanofibers was recovered. After drying the insoluble matter, the insoluble matter was photographed using a scanning electron microscope, 20 samples were randomly selected from the obtained images, the fiber diameter was measured, and the medium diameter thereof was taken as the average fiber diameter.
(3) Bending elastic modulus According to ISO 178, a three-point bending test was performed on a test piece (width 10 mm, thickness 4 mm, length 80 mm) at a distance between fulcrums of 64 mm and a bending speed of 2 mm / min. Was measured.
(4) Molded Appearance The surface of the test piece (40 mm × 80 mm) was visually observed, and the appearance was judged according to the following criteria.
⊚: The color tone is uneven and the surface is smooth with no unevenness. 〇: The color tone is not uneven, but the surface is slightly uneven. Δ: The color tone is uneven and the presence of agglomerates is recognized on the surface. No, but there is clear unevenness ×: The color tone is uneven, the presence of agglomerates is recognized on the surface, and there is clear unevenness.
  実施例2
 実施例1で得られた混合分散液と、ラウリン酸カルシウム5部とを混合し、得られた混合液から水分を蒸発除去することで、乾燥粉体からなる熱可塑性樹脂組成物を得た。その後、各種評価を行った(表1参照)。
Example 2
The mixed dispersion obtained in Example 1 was mixed with 5 parts of calcium laurate, and water was evaporated and removed from the obtained mixed solution to obtain a thermoplastic resin composition composed of a dry powder. After that, various evaluations were performed (see Table 1).
  実施例3
 CNF-1に代えてCNF-2を用い、ラウリン酸カルシウム5部に代えてタルク2.5部を用いた以外は、実施例2と同様にして、熱可塑性樹脂組成物を製造した。その後、各種評価を行った(表1参照)。
Example 3
A thermoplastic resin composition was produced in the same manner as in Example 2 except that CNF-2 was used instead of CNF-1 and 2.5 parts of talc was used instead of 5 parts of calcium laurate. After that, various evaluations were performed (see Table 1).
  実施例4
 ABS-2の粉末と、CNF-1及び水からなるスラリーとを、ABS-2及びCNF-1の質量比が80:20であり、且つ、ABS-2及びCNF-1の合計が5%となるように、秤量及び水の添加を行った後、実施例1と同様にして、混合分散液を得た。次いで、この混合分散液と、炭酸カルシウム1.5部とを混合し、得られた混合液から水分を蒸発除去することで、乾燥粉体からなる熱可塑性樹脂組成物を得た。その後、各種評価を行った(表1参照)。
Example 4
The mass ratio of ABS-2 and CNF-1 to the powder of ABS-2 and the slurry composed of CNF-1 and water is 80:20, and the total of ABS-2 and CNF-1 is 5%. After weighing and adding water so as to be obtained, a mixed dispersion was obtained in the same manner as in Example 1. Next, this mixed dispersion was mixed with 1.5 parts of calcium carbonate, and water was evaporated and removed from the obtained mixed solution to obtain a thermoplastic resin composition composed of dry powder. After that, various evaluations were performed (see Table 1).
  実施例5
 ABS-3の粉末と、CNF-2とを、これらの質量比が80:20となるように用い、ワーリング社製ブレンダーを用いて3分間混合した後、得られた混合物を、東洋精機社製「ラボプラストミル」を用いて170℃で10分間溶融混練して、熱可塑性樹脂組成物を製造した。その後、各種評価を行った(表1参照)。
Example 5
The ABS-3 powder and CNF-2 were used so that their mass ratio was 80:20, mixed for 3 minutes using a Waring blender, and then the obtained mixture was prepared by Toyo Seiki Co., Ltd. A thermoplastic resin composition was produced by melt-kneading at 170 ° C. for 10 minutes using a “laboplast mill”. After that, various evaluations were performed (see Table 1).
  実施例6~12
 表1に示す原料を、所定の質量比で用いた以外は、実施例5と同様にして溶融混練して、熱可塑性樹脂組成物を製造した。その後、各種評価を行った(表1参照)。
Examples 6-12
A thermoplastic resin composition was produced by melt-kneading in the same manner as in Example 5 except that the raw materials shown in Table 1 were used in a predetermined mass ratio. After that, various evaluations were performed (see Table 1).
  比較例1~6
 表2に示す原料を、所定の質量比で用いた以外は、実施例5と同様にして溶融混練して、熱可塑性樹脂組成物を製造した。その後、各種評価を行った(表2参照)。
Comparative Examples 1 to 6
A thermoplastic resin composition was produced by melt-kneading in the same manner as in Example 5 except that the raw materials shown in Table 2 were used in a predetermined mass ratio. After that, various evaluations were performed (see Table 2).
  比較例7
 ABS-3の粉末と、CNF-2と、タルクとを、これらの質量比が15:85:1となるように用い、実施例5と同様にして溶融混練して、熱可塑性樹脂組成物を製造した。組成物を熱プレス成形に供したところ、非常に崩れやすいために試験片の形状を保持することが困難で、評価用の試験片を得ることができなかった。
Comparative Example 7
The ABS-3 powder, CNF-2, and talc were used so that their mass ratio was 15:85: 1, and melt-kneaded in the same manner as in Example 5 to obtain a thermoplastic resin composition. Manufactured. When the composition was subjected to hot press molding, it was difficult to maintain the shape of the test piece because it was very liable to collapse, and a test piece for evaluation could not be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、以下のことが明らかである。
 実施例1~12は、本発明の熱可塑性樹脂組成物の例であり、外観性及び剛性に優れた成形品が得られることが分かる。
 一方、比較例1及び8は、熱可塑性樹脂及びセルロースナノファイバーの含有割合が本発明の範囲外であったため、十分な剛性が得られなかった。また、比較例2~7は、第1族金属元素及び/又は第2族金属元素の合計含有量が0.2~10質量%の範囲外であり、外観性が不十分であった。
From Table 1 and Table 2, the following is clear.
Examples 1 to 12 are examples of the thermoplastic resin composition of the present invention, and it can be seen that a molded product having excellent appearance and rigidity can be obtained.
On the other hand, in Comparative Examples 1 and 8, sufficient rigidity could not be obtained because the content ratios of the thermoplastic resin and the cellulose nanofibers were outside the range of the present invention. Further, in Comparative Examples 2 to 7, the total content of the Group 1 metal elements and / or the Group 2 metal elements was out of the range of 0.2 to 10% by mass, and the appearance was insufficient.
 本発明の熱可塑性樹脂組成物は、自動車、電車、船舶、航空機等の輸送用部品;電気製品、精密機械等の電子部品、筐体、枠、取っ手及び保持体;化粧品等の容器、蓋;建築材料;スポーツ用品等の筐体、構造材;OA機器の筐体、構造体、枠;家具、収納品等の筐体、枠、取っ手、ノブ等広い分野における樹脂成形品用の成形材料として好適である。 The thermoplastic resin composition of the present invention is used for transportation parts such as automobiles, trains, ships, and aircraft; electronic parts such as electrical products and precision machinery, housings, frames, handles and holders; containers and lids for cosmetics, etc. Building materials; housings and structural materials for sports equipment, etc .; housings, structures, frames for OA equipment; housings for furniture, storage items, etc., frames, handles, knobs, etc. As molding materials for resin molded products in a wide range of fields. Suitable.

Claims (3)

  1.  ゴム強化芳香族ビニル系樹脂及びセルロースナノファイバーを含有する熱可塑性樹脂組成物において、
     前記ゴム強化芳香族ビニル系樹脂及び前記セルロースナノファイバーの含有割合は、これらの合計を100質量%とした場合に、それぞれ、20~95質量%及び5~80質量%であり、
     組成物に含まれる、周期表の第1族金属元素及び/又は第2族金属元素の合計含有量が0.2~10質量%であることを特徴とする熱可塑性樹脂組成物。
    In a thermoplastic resin composition containing a rubber-reinforced aromatic vinyl resin and cellulose nanofibers,
    The content ratios of the rubber-reinforced aromatic vinyl resin and the cellulose nanofibers are 20 to 95% by mass and 5 to 80% by mass, respectively, when the total of these is 100% by mass.
    A thermoplastic resin composition contained in the composition, wherein the total content of the Group 1 metal elements and / or the Group 2 metal elements in the periodic table is 0.2 to 10% by mass.
  2.  前記セルロースナノファイバーの繊維径が4~1000nmである請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the cellulose nanofibers have a fiber diameter of 4 to 1000 nm.
  3.  更に、周期表の第1族金属元素を含む化合物(C1)及び/又は第2族金属元素を含む化合物(C2)を含有する請求項1又は2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, further containing a compound (C1) containing a Group 1 metal element and / or a compound (C2) containing a Group 2 metal element in the periodic table.
PCT/JP2020/001778 2019-04-05 2020-01-20 Thermoplastic resin composition WO2020202713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-073148 2019-04-05
JP2019073148A JP7296238B2 (en) 2019-04-05 2019-04-05 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
WO2020202713A1 true WO2020202713A1 (en) 2020-10-08

Family

ID=72668005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001778 WO2020202713A1 (en) 2019-04-05 2020-01-20 Thermoplastic resin composition

Country Status (2)

Country Link
JP (1) JP7296238B2 (en)
WO (1) WO2020202713A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150301A (en) * 2008-12-24 2010-07-08 Techno Polymer Co Ltd Aromatic vinyl graft copolymer for resin blend and thermoplastic resin composition using the same
WO2013133385A1 (en) * 2012-03-08 2013-09-12 国立大学法人京都大学 Modified cellulose nanofiber and resin composition including modified cellulose nanofiber
WO2016148233A1 (en) * 2015-03-19 2016-09-22 国立大学法人京都大学 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150301A (en) * 2008-12-24 2010-07-08 Techno Polymer Co Ltd Aromatic vinyl graft copolymer for resin blend and thermoplastic resin composition using the same
WO2013133385A1 (en) * 2012-03-08 2013-09-12 国立大学法人京都大学 Modified cellulose nanofiber and resin composition including modified cellulose nanofiber
WO2016148233A1 (en) * 2015-03-19 2016-09-22 国立大学法人京都大学 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin

Also Published As

Publication number Publication date
JP7296238B2 (en) 2023-06-22
JP2020169308A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US7445835B2 (en) Kenaf-fiber-reinforced resin composition
JP5365421B2 (en) Thermoplastic resin composition and molded article comprising them
US20100197842A1 (en) Resin composition and molded body obtained by molding the same
JP5673931B2 (en) Mixture and cellulose fiber dispersion composition and method for producing them
WO2011093147A1 (en) Process for production of composition that comprises both cellulose and polylactic acid
JP5509517B2 (en) Resin composition and molded article comprising the same
DE112006003404T5 (en) Polycarbonate resin composition, molding thereof, film and sheet
KR20190082074A (en) Thermoplastic resin composition and molded article using the same
TW530078B (en) Flame retardant resin composition
WO2015060029A1 (en) Polylactic acid-containing thermoplastic resin composition and molded product thereof
CN103467958A (en) Inorganic filler reinforced halogen-free flame retardant PC (polycarbonate)/ABS (acrylonitrile-butadiene-styrene) alloy and preparation method thereof
JP2006176569A (en) Aromatic polycarbonate resin composition and molding thereof
JP2001220486A (en) Thermoplastic resin composition having excellent recyclability and regenerated molding material
JP7296238B2 (en) Thermoplastic resin composition
KR102457383B1 (en) Thermoplastic resin composition, method for preparing the same and article prepared therefrom
US8383720B2 (en) Thermoplastic composition
WO2020202712A1 (en) Thermoplastic resin composition
JP6623494B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
JP2018119082A (en) Aromatic polycarbonate resin composition and molded article of the same
JP2006169356A (en) Flame-retardant thermoplastic resin composition and molded product therefrom
JPH097208A (en) Pickup chassis for optical disk
JP2001234052A (en) Flame-retardant thermoplastic resin composition and its reprocessed molding compound
JP3352568B2 (en) Optical writing unit fixed chassis
JP5954507B1 (en) Polylactic acid-based thermoplastic resin composition and molded article thereof
JP3880167B2 (en) Method for producing flame-retardant resin molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784832

Country of ref document: EP

Kind code of ref document: A1