WO2016148233A1 - Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin - Google Patents

Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin Download PDF

Info

Publication number
WO2016148233A1
WO2016148233A1 PCT/JP2016/058481 JP2016058481W WO2016148233A1 WO 2016148233 A1 WO2016148233 A1 WO 2016148233A1 JP 2016058481 W JP2016058481 W JP 2016058481W WO 2016148233 A1 WO2016148233 A1 WO 2016148233A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemically modified
cnf
fiber
thermoplastic resin
resin composition
Prior art date
Application number
PCT/JP2016/058481
Other languages
French (fr)
Japanese (ja)
Inventor
健 仙波
伊藤 彰浩
貴宏 上坂
和男 北川
文明 中坪
矢野 浩之
Original Assignee
国立大学法人京都大学
地方独立行政法人京都市産業技術研究所
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015240084A external-priority patent/JP6091589B2/en
Application filed by 国立大学法人京都大学, 地方独立行政法人京都市産業技術研究所, 日本製紙株式会社 filed Critical 国立大学法人京都大学
Priority to EP16765062.1A priority Critical patent/EP3272812B2/en
Priority to US15/556,220 priority patent/US10676615B2/en
Priority to KR1020177028689A priority patent/KR102405761B1/en
Priority to CN201680016164.0A priority patent/CN107429071B/en
Publication of WO2016148233A1 publication Critical patent/WO2016148233A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a fiber reinforced resin composition containing chemically modified cellulose nanofibers and a thermoplastic resin.
  • the weight of the plant fiber is as light as 1/5 of steel, the strength of the plant fiber is as strong as about 5 times that of steel, and the thermal expansion of the plant fiber is 1/50 of glass and has a low linear thermal expansion coefficient.
  • MFC microfibrillated plant fibers
  • MFC is a fiber having a fiber diameter of about 100 nm, a fiber length of about 5 ⁇ m or more, and a specific surface area of about 250 m 2 / g. MFC is higher in strength than unfiltrated plant fibers.
  • the cellulose contained in the plant fiber has three hydroxyl groups per repeating unit in the molecule, and the plant fiber as a whole has many hydroxyl groups. As a result, the cohesive force due to hydrogen bonding is strong between cellulose molecules.
  • Patent Document 1 discloses a composition comprising a polymer compound having a primary amino group, a polymer compound modified with maleic anhydride, microfibrillated plant fibers, and polyolefin.
  • Patent Document 2 discloses a resin composition containing a modified microfibrillated plant fiber esterified with an alkyl succinic anhydride and a thermoplastic resin.
  • Patent Document 3 discloses a dispersion containing cellulose nanofiber (CNF), a thermoplastic resin and a nonionic surfactant, and a resin composition obtained from this dispersion.
  • CNF cellulose nanofiber
  • a fiber-reinforced composite resin composition reinforced by fine cellulose fibers has been disclosed in which a fine cellulose fiber is dispersed in the resin.
  • a suitable combination of a fiber having good dispersibility and a resin in which the fiber is easily dispersed is necessary.
  • An object of the present invention is to provide a fiber-reinforced resin composition and a method for producing the same, in which a fiber having good dispersibility and a resin in which the fiber is easily dispersed are suitably combined. More specifically, an object of the present invention is to provide a fiber reinforced resin composition containing chemically modified CNF and a thermoplastic resin whose physical properties are improved by a suitable composite of fiber and resin, and a method for producing the same. .
  • SP value a solubility parameter
  • cellulose nanofiber used in the present invention means nanofabric composed of cellulose (cellulose nanofiber) and / or nanofabric composed of lignocellulose (lignocellulose nanofiber). Also referred to as “CNF”.
  • CNF may be used synonymously with microfibrillated cellulose fibers and / or microfibrillated lignocellulose fibers.
  • “Chemically modified cellulose nanofiber” means chemically modified CNF and / or chemically modified ligno CNF, and is also referred to as “chemically modified CNF”.
  • an alkanoyl group such as an acetyl group is introduced instead of the hydrogen atom of the hydroxyl group of the sugar chain constituting cellulose (that is, the hydroxyl group is chemically modified).
  • the hydroxyl groups of the cellulose molecules are blocked, the hydrogen bonding force of the cellulose molecules is suppressed, and the crystal structure originally possessed by the cellulose fibers is retained at a specific ratio. It is a feature.
  • the present invention is characterized in that such a chemically modified CNF and a resin having a specific SP value are combined (composited).
  • Such a feature of the present invention is that the SP value and the cellulose fiber or lignocellulose are changed by changing the degree of chemical modification of the sugar chain on the surface of the cellulose fiber or lignocellulose fiber (for example, substitution with an acetyl group or the like).
  • the knowledge that the degree of crystallinity originally possessed can be controlled, and the chemically modified CNF in which the SP value and the degree of crystallinity are controlled in this way, cellulose having a specific SP value is compared to the resin This is based on the result of obtaining knowledge such as improved compatibility.
  • the present invention relates to a fiber reinforced resin composition containing the following chemically modified CNF and a thermoplastic resin, and a method for producing the same.
  • the chemically modified cellulose nanofiber and the thermoplastic resin have the following conditions:
  • the ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88.
  • Item 2 The fiber-reinforced resin composition according to item 1, wherein the ratio R (SP cnf / SP pol ) of the condition (a) is in the range of 1.03 to 1.88.
  • Item 3 The fiber-reinforced resin composition according to Item 1 or 2, wherein the crystallinity of the chemically modified cellulose nanofiber (A) in the condition (b) is 55.6% or more.
  • Item 4. The fiber-reinforced resin composition according to any one of Items 1 to 3, wherein (A) the chemically modified cellulose nanofiber is a cellulose nanofiber in which a hydroxyl group of a sugar chain constituting the cellulose nanofiber is modified with an alkanoyl group. .
  • thermoplastic resin is at least one resin selected from the group consisting of polyamide, polyacetal, polypropylene, maleic anhydride-modified polypropylene, polylactic acid, polyethylene, polystyrene, and ABS resin.
  • the fiber reinforced resin composition in any one.
  • thermoplastic resin is at least one resin selected from the group consisting of polyamide, polyacetal, and polylactic acid, the ratio R of the condition (a) is 1.03-1.32, and the chemical modification of (b) Item 5.
  • the fiber-reinforced resin composition according to any one of Items 1 to 4, wherein the crystallinity of the cellulose nanofiber is 55.6% or more.
  • thermoplastic resin (B) is at least one resin selected from the group consisting of polypropylene, maleic anhydride-modified polypropylene, polyethylene and polystyrene, and the ratio R in the condition (a) is 1.21 to 1.88, Item 5.
  • Item 8 The fiber-reinforced resin composition according to any one of Items 1 to 7, wherein the (A) chemically modified cellulose nanofiber is a cellulose nanofiber in which a hydroxyl group of a sugar chain constituting the cellulose nanofiber is modified with an acetyl group. .
  • Item 9 The fiber-reinforced resin composition according to any one of Items 1 to 8, wherein the chemically modified cellulose nanofiber and cellulose of the cellulose nanofiber are lignocellulose.
  • a method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin the following steps: (1) The following conditions: The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88.
  • thermoplastic resin A method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin, the following steps: (1) The following conditions: The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88.
  • thermoplastic resin to be (A) chemically modified cellulose nanofiber after defibration that satisfies the crystallinity of the chemically modified cellulose nanofiber of 42.7% or more Process of selecting, (2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and (3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and at the same time, (A1) chemically modified pulp is defibrated, (A) chemically modified cellulose nanofiber And (B) a method for producing a resin composition containing a thermoplastic resin.
  • a method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin the following steps: (1) (A1) a process of selecting chemically modified pulp and (B) thermoplastic resin, (2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and (3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and at the same time, (A1) chemically modified pulp is defibrated, (A) chemically modified cellulose nanofiber And (B) obtaining a resin composition containing a thermoplastic resin, The (A) chemically modified cellulose nanofiber and the (B) thermoplastic resin are dissolved under the following conditions: (a) (B) the dissolution parameter (SP pol ) of the thermoplastic resin (A) The ratio R (SP cnf / SP pol ) of the parameter (SP cnf ) is in the range of 0.87
  • Item 13 The production method according to any one of Items 10 to 12, wherein the ratio R (SP cnf / SP pol ) of (a) is in the range of 1.03 to 1.82.
  • Item 14 Acetyl having a crystallinity of 42.7% or more, a hydroxyl group of a sugar chain substituted with an acetyl group, a substitution degree of 0.29 to 2.52, and a solubility parameter (SP cnf ) of 9.9 to 15 Cellulose nanofiber.
  • Item 15 A fiber-reinforced resin composition comprising (A2) acetylated cellulose nanofiber according to Item 14 and (B) a thermoplastic resin.
  • Item 16 The fiber-reinforced resin composition according to Item 15, wherein a content of the (A2) acetylated cellulose nanofibers is 0.1 to 30 parts by mass with respect to 100 parts by mass of the (B) thermoplastic resin.
  • thermoplastic resin is at least one resin selected from the group consisting of polyamide resin, polyacetal resin, polypropylene, maleic anhydride-modified polypropylene, polylactic acid, polyethylene, polystyrene, and ABS resin. 16. The fiber reinforced resin composition according to 16.
  • Item 18 The fiber-reinforced resin composition according to Item 15 or 16, wherein the acetylated cellulose nanofiber is an acetylated lignocellulose nanofiber.
  • a method for producing a fiber-reinforced resin composition comprising (A2) acetylated cellulose nanofibers and (B) a thermoplastic resin, the following steps: (1) (A3) Kneaded (A4) fiber assembly containing acetylated cellulose and (B) thermoplastic resin, and (A3) acetylated cellulose at the same time, (A2) acetylated cellulose nanofibers and (B) including a step of obtaining a resin composition containing a thermoplastic resin,
  • the crystallinity of the (A2) acetylated cellulose nanofiber is 42.7% or more, the hydroxyl group of the sugar chain is substituted with an acetyl group, the degree of substitution is 0.29 to 2.52, and the solubility parameter (SP cnf ) is A production method characterized by 9.9-15.
  • the hydroxyl group on the surface of the sugar chain in which the chemically modified CNF in the composition constitutes CNF is modified with, for example, an alkanoyl group such as an acetyl group (that is, chemically modified).
  • an alkanoyl group such as an acetyl group (that is, chemically modified).
  • the fiber-reinforced resin composition of the present invention is composed of a suitable combination of this matrix component (resin) and chemically modified CNF, the affinity between the chemically modified CNF in the resin and the resin is high, Dispersibility of chemically modified CNF is good. As a result, the fiber reinforced resin composition of the present invention exhibits optimum strength.
  • the fiber reinforced resin of the present invention when the fiber reinforced resin composition of the present invention containing 10% by mass of chemically modified CNF is compared with the fiber reinforced resin composition containing the same amount of unmodified CNF in the same resin, the fiber reinforced resin of the present invention is compared.
  • the modulus of elasticity of the composition is not present when the ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of the chemically modified CNF to the solubility parameter (SP pol ) of the thermoplastic resin is in the range of 0.87 to 1.88. It is 1.05 times or more the elastic modulus of the fiber reinforced resin composition containing the modified CNF, and the chemically modified CNF and the resin can be designed so as to exhibit further optimum strength within the range of this ratio R. .
  • the fiber-reinforced resin composition of the present invention can be produced by kneading a chemically modified CNF and a resin.
  • a chemically modified CNF such as pulp
  • the fiber diameter is reduced in the process.
  • a tens to hundreds of ⁇ m chemically modified (for example, acetylated) pulp is easily defibrated to a chemically modified CNF having a fiber diameter of several tens to several hundreds of nm simultaneously with kneading, and the fiber reinforced resin composition of the present invention Things can be easily manufactured.
  • the chemically modified CNF used in the present invention a chemically modified CNF which is chemically modified with an inexpensive chemical modifier such as an acetylating agent can be used. And since the fiber reinforced resin composition of this invention can also be easily manufactured by the combination with optimal resin, it is low-cost and practical use is easy.
  • the fiber-reinforced resin composition of the present invention has good properties because the dispersibility of the chemically modified CNF in the resin is good.
  • an optimum amount for each resin depends on how many of the hydroxyl groups present in cellulose or lignocellulose are chemically modified (for example, replaced with a modifying group such as an acetyl group).
  • a chemically modified CNF such as acetylated CNF having a solubility parameter (SP) value can be easily selected and used for the production of a fiber reinforced resin composition.
  • the dispersibility of the chemically modified CNF in the resin is high by maintaining the crystallinity of the cellulose at about 42% or more and setting the appropriate solubility parameter (SP) value. Since the reinforcing effect on the resin is improved, a fiber-reinforced composite material having excellent mechanical properties can be obtained.
  • SP solubility parameter
  • polyamide 6 PA6
  • polyacetal polyoxymethylene, POM
  • polypropylene PP
  • maleic anhydride modified polypropylene MAPP
  • matrix matrix
  • chemical modification for example, Acetyl etc.
  • the fiber reinforced resin composition of the present invention containing a resin and chemically modified CNF has a higher flexural modulus than the resin-only embodiment.
  • PA6-chemically modified CNF is 2.2 times or more
  • POM-chemically modified CNF is 2.1 times or more
  • PP-chemically modified CNF is 1.2 times or more
  • MAPP-chemically modified CNF is 1.5 times or more It becomes the above bending elastic modulus.
  • the flexural modulus of the fiber reinforced resin composition containing the resin of the present invention and the chemically modified CNF is higher than that of the unmodified CNF-containing fiber reinforced resin composition.
  • the flexural modulus of the fiber reinforced resin composition containing the resin of the present invention and the chemically modified CNF is higher than that of the unmodified CNF-containing fiber reinforced resin composition.
  • it when containing 10% by mass of chemically modified CNF, it is at least 1.1 times or more.
  • PA6-chemically modified CNF is 1.4 times or more
  • POM-chemically modified CNF is 1.5 times or more
  • PP-chemically modified CNF is 1.1 times or more
  • MAPP-chemically modified CNF is 1.1 times or more
  • PS-chemically modified CNF is 1.1 times or more
  • PE-chemically modified CNF is 1.3 times.
  • the magnification value of this bending elastic modulus is a value obtained by rounding off the second decimal place.
  • the fiber reinforced resin composition has a high resin reinforcing effect by chemically modified CNF.
  • the fiber reinforced resin composition of the present invention contains (A) chemically modified cellulose nanofiber (chemically modified CNF) and (B) thermoplastic resin,
  • the chemically modified CNF and the thermoplastic resin satisfy the following conditions: (a) the ratio R (SP cnf / SP pol ) of the (A) chemically modified CNF solubility parameter (SP cnf ) to the thermoplastic resin solubility parameter (SP pol ) is in the range of 0.87 to 1.88; and (b) (A) The degree of crystallinity of the chemically modified CNF is 42.7% or more.
  • the ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, more preferably in the range of about 1.03 to 1.82.
  • a chemically modified CNF having an optimum solubility parameter (SP) value for each resin depending on how many of the hydroxyl groups present in the cellulose molecule are chemically modified (for example, replaced with acetyl groups or the like).
  • SP solubility parameter
  • acetylated CNF Due to the chemical modification treatment, the dispersibility of the chemically modified CNF in the resin of the fiber-reinforced resin composition of the present invention is promoted, the reinforcing effect of the chemically modified CNF on the resin is improved, and the CNF composite material having excellent mechanical properties Can be obtained.
  • the fiber reinforced resin composition of the present invention contains (A) chemically modified CNF.
  • the degree of crystallinity of chemically modified CNF is 42.7% or more.
  • Plant fibers used as raw materials for chemically modified CNF include fibers obtained from natural plant materials such as wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, and cloth containing cellulose or / and lignocellulose. It is done. Examples of wood include Sitka spruce, cedar, cypress, eucalyptus, acacia, and examples of paper include, but are not limited to, deinked waste paper, corrugated waste paper, magazines, copy paper, and the like. . One kind of plant fiber may be used alone, or two or more kinds selected from these may be used.
  • Lignocellulose can also be used as a raw material for chemically modified CNF.
  • Lignocellulose is a complex hydrocarbon polymer that constitutes the cell walls of plants, and is known to be mainly composed of polysaccharide cellulose, hemicellulose, and lignin, which is an aromatic polymer.
  • Reference Example 1 Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process HV Lee, SBA Hamid, and SK Zain, Scientific World Journal Volume 2014, Article ID 631013, 20 pages, http://dx.doi.org/ 10.1155 / 2014/631013
  • Reference example 2 New lignocellulose pretreatments using cellulose solvents: a review, Noppadon Sathitsuksanoh, Anthe George and YH Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
  • lignocellulose means a lignocellulose or / and lignocellulose mixture, artificially modified lignocellulose or / and lignocellulose mixture of chemical structure naturally present in plants.
  • the mixture is, for example, a lignocellulose or / and a lignocellulose mixture having chemical structures contained in various pulps obtained from natural plants and obtained by mechanically and / or chemically treating the wood.
  • Lignocellulose is not limited to lignocellulose having a chemical structure that exists in nature, and the lignin content in lignocellulose is not limited.
  • lignocellulose and lignopulp used in the present invention are interpreted as lignocellulose and lignopulp, respectively, even if the content of the lignin component is very small.
  • a fiber containing lignocellulose or a fiber aggregate containing lignocellulose can be used.
  • the fiber aggregate containing lignocellulose includes fiber aggregates containing lignocellulose of any shape in addition to plant-derived pulp, wood flour, wood chips and the like.
  • Plant-derived materials such as wood, bamboo, hemp, jute and kenaf, and agricultural residue such as bagasse, firewood and beet pomace can be used as plant raw materials.
  • These plant raw materials containing lignocellulose can be used in the form of flakes, powders, fibers, or the like.
  • the plant cell wall is mainly composed of lignocellulose.
  • cellulose microfibrils single CNF
  • cellulose microfibril bundles Cellulose fine fibers (cellulose microfibril bundles) are formed.
  • hemicellulose exists in the space
  • a typical example of a raw material for producing plant fiber or lignocellulose is pulp. Pulp is obtained by processing a plant-derived material such as wood chemically or / and mechanically and removing fibers contained therein. This is because the content of hemicellulose and lignin is lowered depending on the degree of chemical and biochemical treatment of the plant-derived material, and the fiber is mainly composed of cellulose.
  • wood for pulp production for example, Sitka spruce, cedar, cypress, eucalyptus, acacia and the like can be used.
  • waste paper such as deinked waste paper, corrugated waste paper, magazines, and copy paper can be used.
  • a raw material of the chemically modified CNF used in the fiber reinforced resin composition of the present invention one kind of plant fiber or two or more kinds of plant fibers can be used in combination.
  • fibrillated cellulose obtained by fibrillating pulp or pulp and fibrillated lignocellulose can be mentioned as preferable raw materials.
  • Pulp contains lignocellulose and is mainly composed of cellulose, hemicellulose, and lignin. Pulp can be obtained by treating plant raw materials by mechanical pulping, chemical pulping, or a combination of mechanical pulping and chemical pulping.
  • the mechanical pulping method is a method of pulping by mechanical force such as a grinder or refiner while leaving lignin.
  • the chemical pulping method is a method of pulping by adjusting the content of lignin using a chemical.
  • thermomechanical pulp TMP
  • CMP chemithermomechanical pulp
  • BCTMP bleached chemical thermomechanical pulp
  • chemimechanical pulp CMP
  • CGP chemiground pulp
  • SCP semi-chemical pulp
  • pulp produced by a sulfite method a cold soda method, a kraft method, a soda method, or the like can be used.
  • CP chemical pulp
  • SP sulfite pulp
  • AP soda pulp
  • KP kraft pulp
  • DKP dissolving kraft pulp
  • Deinked waste paper pulp, corrugated waste paper pulp, and magazine waste paper pulp mainly composed of mechanical pulp, chemical pulp, etc. can also be used as a raw material for chemically modified CNF.
  • These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the pulp.
  • various kraft pulps derived from conifers with strong fiber strength unbleached kraft pulps of conifers (NUKP), coniferous oxygen unexposed) Bleached kraft pulp (NOKP), conifer bleached kraft pulp (NBKP) is particularly preferred.
  • NUKP unbleached kraft pulps of conifers
  • NOKP coniferous oxygen unexposed
  • NNKP conifer bleached kraft pulp
  • lignin derived from plant raw materials is not completely removed and pulp produced by a pulping method in which lignin is appropriately present in the pulp can be applied without limitation.
  • a mechanical pulping method in which plant raw materials are mechanically pulped is preferable.
  • the pulp used for the production of the chemically modified CNF used in the fiber reinforced resin composition of the present invention include groundwood pulp (GP), refiner GP (RGP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP) and the like. It is preferable to use mechanical pulp (MP).
  • the content of lignin in the lignocellulosic fibers or this fiber aggregate is such that the lignin can be chemically modified in these raw materials.
  • the content of lignin is preferably about 1 to 40% by mass, more preferably about 3 to 35% by mass, and still more preferably about 5 to 35% by mass from the viewpoint of the strength of the chemically modified lignocellulose obtained and the thermal stability. .
  • the lignin content can be measured by the Klason method.
  • Lignocellulose and lignopulp are simpler in production process and have a better yield from the raw material (for example, wood) than cellulose and pulp not containing lignin. Moreover, since it can manufacture with little energy, it is advantageous from the point of cost, and it is useful as a raw material of the fiber reinforced resin composition of this invention.
  • cellulose fiber-containing materials such as pulp are defibrated.
  • a method is mentioned.
  • the defibrating method for example, an aqueous suspension or slurry of a cellulose fiber-containing material is mechanically ground by a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader (preferably a biaxial kneader), a bead mill or the like.
  • a method of defibration by crushing or beating can be used. You may process combining the said defibrating method as needed.
  • a known defibrating method or the like may be used as the defibrating method.
  • Chemically modified cellulose fiber-containing materials are defibrated when the resin is melted and kneaded under heating in a uniaxial or multiaxial kneader (preferably a multiaxial kneader) together with a thermoplastic resin.
  • a uniaxial or multiaxial kneader preferably a multiaxial kneader
  • a thermoplastic resin preferably a multiaxial kneader
  • the fiber-reinforced resin composition of the present invention it can be made into a nanofibrillated and can be chemically modified CNF or / and chemically modified ligno CNF in a thermoplastic resin. It is advantageous to defibrate the material in a molten thermoplastic resin.
  • CNF and MFLC are also referred to as CNF.
  • CNF is a material (for example, wood pulp) containing cellulose fibers obtained by unraveling (defibrating) the fibers to the nano-size level.
  • the average CNF fiber diameter (fiber width) is preferably about 4 to 200 nm, and the average fiber length is preferably about 5 ⁇ m or more.
  • the average value of the CNF fiber diameter is more preferably about 4 to 150 nm, and further preferably about 4 to 100 nm.
  • the preferred range and further preferred range of the average fiber length and average fiber diameter of the chemically modified CNF used in the present invention are the same as those of the CNF.
  • Fiber diameter and fiber length can be measured using a Kajaani fiber length measuring instrument manufactured by Metso.
  • the average fiber diameter (average fiber diameter) and average fiber length (average fiber length) of CNF and chemically modified CNF are measured for at least 50 or more CNF or chemically modified CNF within the field of view of the electron microscope. Obtained as an average value.
  • the object of the present invention is achieved (for example, the bending elastic modulus of the chemically modified CNF / or chemically modified ligno CNF reinforced composition is 1.1 times or more than the bending elastic modulus of the unmodified CNF / or unmodified ligno CNF reinforced composition)
  • the bending elastic modulus of the chemically modified CNF / or chemically modified ligno CNF reinforced composition is 1.1 times or more than the bending elastic modulus of the unmodified CNF / or unmodified ligno CNF reinforced composition
  • the specific surface area of the chemical modification CNF is preferably about 70 ⁇ 300m 2 / g, more preferably about 70 ⁇ 250m 2 / g, more preferably about 100 ⁇ 200m 2 / g.
  • the hydroxyl group present on the surface of the CNF is hydrophobized according to the resin used.
  • Examples of the chemically modified CNF include a hydrophobic CNF in which the hydroxyl group present on the surface of the nanofiber is hydrophobized by modification with an acyl group or an alkyl group; a silane coupling agent having an amino group, glycidyl trialkylammonium halide or the like Modified CNF in which the hydroxyl group present on the surface of the nanofiber is cation-modified by modification of halohydrin type compound; monoesterification with cyclic acid anhydride such as succinic anhydride, alkyl or alkenyl succinic anhydride, carboxyl group Modified CNF or the like in which the hydroxyl group present on the surface of the nanofiber is anion-modified can be used by modification with a silane coupling agent.
  • a silane coupling agent having an amino group, glycidyl trialkylammonium halide or the like
  • Modified CNF in which the hydroxyl group present on the surface of the nanofiber is
  • CNF alkanoyl modified CNF
  • the chemically modified CNF is more preferably CNF (lower alkanoyl modified CNF) in which the hydroxyl group of the sugar chain constituting the CNF is modified with a lower alkanoyl group.
  • the chemically modified CNF used in the present invention includes CNF in which the hydroxyl group of the sugar chain constituting CNF is modified with an acetyl group (also referred to as Ac-CNF). More preferred.
  • the chemically modified CNF can be obtained by chemically modifying the above-mentioned CNF or fibrillating a fiber assembly such as chemically modified pulp or chemically modified cellulose by a known defibrating method. Also, when preparing a composite with a resin (matrix material, described later), the resin and a fiber assembly such as chemically modified pulp or chemically modified cellulose are kneaded and microscopically dispersed in the resin by shearing force during kneading. It can also be fibrillated.
  • Chemically modified CNF is a saturated fatty acid, unsaturated carboxylic acid, monounsaturated fatty acid, diunsaturated fatty acid having a hydroxyl group (that is, a hydroxyl group of a sugar chain) present in at least one of cellulose and hemicellulose (including lignocellulose).
  • the hydroxyl group of the sugar chain of cellulose and lignocellulose is acylated with a residue (acyl group) obtained by removing the hydroxyl group from the carboxy group of the carboxylic acid.
  • saturated fatty acids examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecyl Acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid and arachidic acid are preferred.
  • unsaturated carboxylic acid acrylic acid, methacrylic acid and the like are preferable.
  • monounsaturated fatty acid crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, ricinoleic acid and the like are preferable.
  • diunsaturated fatty acid sorbic acid, linoleic acid, eicosadienoic acid and the like are preferable.
  • triunsaturated fatty acid linolenic acid, pinolenic acid, eleostearic acid and the like are preferable.
  • the tetraunsaturated fatty acid is preferably selected from stearidonic acid and arachidonic acid.
  • boseopentaenoic acid As the pentaunsaturated fatty acid, boseopentaenoic acid, eicosapentaenoic acid and the like are preferable.
  • hexaunsaturated fatty acid docosahexaenoic acid, nisic acid and the like are preferable.
  • Aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid (3,4,5-trihydroxybenzenecarboxylic acid), cinnamic acid (3-phenylprop-2-enoic acid) Etc.) are preferred.
  • dicarboxylic acid oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and the like are preferable.
  • amino acid glycine, ⁇ -alanine, ⁇ -aminocaproic acid (6-aminohexanoic acid) and the like are preferable.
  • the chemically modified CNF used in the present invention includes a CNF in which the sugar chain hydroxyl group constituting the CNF is modified with a lower alkanoyl group (a sugar constituting the CNF).
  • CNF in which the hydroxyl group of the chain is lower alkanoylated and referred to as lower alkanoylated CNF (corresponding to CNF having a chemical structure in which the hydroxyl group of the sugar chain constituting CNF is substituted with a lower alkanoyloxy group) is preferable because it is easy to produce. .
  • Branched alkyl carboxylic acids e.g., pivalic acid, 3,5,5-trimethylhexanoic acid, etc.
  • cyclic alkane carboxylic acids cyclohexane carboxylic acid, t-butyl cyclohexane carboxylic acid, etc.
  • substituted or unsubstituted phenoxyalkyl carboxylic acids Acylated with a residue (acyl group) obtained by removing a hydroxyl group from the carboxy group of an acid (phenoxyacetic acid, 1,1,3,3-tetramethylbutylphenoxyacetic acid, bornanephenoxyacetic acid, bornanephenoxyhexanoic acid, etc.)
  • CNF and ligno-CNF can be advantageously used because they have a strong reinforcing effect even with respect to resins (in particular, resins with low olefinic SP values such as PP and PE).
  • the chemically modified CNF used in the present invention includes CNF in which the hydroxyl group of the sugar chain constituting CNF is modified with an acetyl group (the sugar chain constituting CNF).
  • Chemically modified CNF having a hydroxyl group acetylated, also referred to as Ac-CNF) is more preferred.
  • the chemically modified CNF used in the present invention is a state in which the hydroxyl structure (sugar chain hydroxyl group) of cellulose and hemicellulose in the raw material is retained as much as possible in the crystal structure of the cellulose present in the raw cellulose or / and lignocellulose fiber. And is preferably acylated. That is, the chemically modified CNF used in the present invention is originally a hydroxyl group present on the surface of the raw fiber so as not to break the cellulose crystal structure present in the raw cellulose or / and lignocellulose fiber, such as a hydroxyl group of cellulose, hemicellulose. It is preferable to acylate a hydroxyl group or the like. Through the chemical modification treatment, chemically modified CNF with excellent mechanical properties inherent to CNF can be obtained, and the dispersibility of chemically modified CNF in the resin is promoted, improving the effect of chemically modified CNF on the resin. To do.
  • the raw material is suspended in an anhydrous aprotic polar solvent capable of swelling the raw fiber (CNF or pulp), for example, N-methylpyrrolidone, N, N-dimethylformamide, and the anhydrous carboxylic acid is added.
  • an acid chloride preferably in the presence of a base.
  • a base pyridine, N, N-dimethylaniline, sodium carbonate, sodium hydrogen carbonate, potassium carbonate and the like are preferable.
  • This acylation reaction is preferably performed with stirring at room temperature to 100 ° C., for example.
  • the degree of acylation of the sugar chain hydroxyl group of the chemically modified CNF used in the present invention (also referred to as DS, sometimes referred to as substitution degree or modification degree) will be described.
  • the acylation degree (modification degree, DS) at the sugar chain hydroxyl group of chemically modified CNF obtained by acylation reaction is preferably about 0.05 to 2.5, more preferably about 0.1 to 1.7, and further preferably about 0.15 to 1.5.
  • the maximum value of the degree of substitution (DS) depends on the sugar chain hydroxyl amount of CNF, but is about 2.7.
  • a chemically modified CNF having an appropriate degree of crystallinity and SP value can be obtained.
  • the preferred DS is 0.29 to 2.52, and with a DS in that range, the crystallinity can be kept at about 42.7% or more.
  • the degree of substitution can be analyzed by various analysis methods such as elemental analysis, neutralization titration method, FT-IR, two-dimensional NMR ( 1 H and 13 C-NMR).
  • Crystallinity of chemically modified CNF The crystallinity of chemically modified CNF contained in the fiber reinforced resin composition is about 42.7% or more.
  • the chemically modified CNF has a high crystallinity of about 42.7% or more, and the crystal type thereof preferably has a cellulose type I crystal.
  • the “crystallinity” is an abundance ratio of crystals (mainly cellulose I-type crystals) in the total cellulose.
  • the crystallinity of the chemically modified CNF (preferably cellulose I type crystals) is preferably about 50% or more, more preferably about 55% or more, more preferably about 55.6% or more, more preferably about 60% or more, Still more preferably, about 69.5% or more.
  • the upper limit of crystallinity of chemically modified CNF is generally about 80%. Chemically modified CNF maintains the crystal structure of cellulose type I and exhibits properties such as high strength and low thermal expansion.
  • the cellulose type I crystal structure is, for example, as described in “The Cellulose Dictionary”, the first edition of the first edition, pages 81-86, or pages 93-99, published by Asakura Shoten. Cellulose type I crystal structure.
  • cellulose fibers of, for example, cellulose II, III, and IV type are derived from cellulose having cellulose I type crystal structure.
  • the I-type crystal structure has a higher crystal elastic modulus than other structures.
  • the crystal structure is an I-type crystal
  • a composite material having a low coefficient of linear expansion and a high elastic modulus can be obtained when a composite material of CNF and resin (matrix material) is used.
  • the degree of polymerization of cellulose is about 500 to 10,000 for natural cellulose and about 200 to 800 for regenerated cellulose.
  • Cellulose is a bundle of several celluloses linearly stretched by ⁇ -1,4 bonds, fixed by hydrogen bonds within or between molecules to form crystals that are extended chains. . It has been clarified by X-ray diffraction and solid state NMR analysis that many crystal forms exist in cellulose crystals, but the natural cellulose crystal form is only type I. From the X-ray diffraction and the like, it is estimated that the ratio of the crystalline region in cellulose is about 50 to 60% for wood pulp and about 70% higher for bacterial cellulose. Cellulose has not only a high elastic modulus due to being an extended chain crystal, but also exhibits a strength five times that of steel and a linear thermal expansion coefficient of 1/50 or less that of glass.
  • the fiber reinforced resin composition of the present invention contains (B) a thermoplastic resin in addition to (A) the chemically modified CNF. Using this fiber reinforced resin composition, a molded article having excellent strength can be produced.
  • the fiber-reinforced resin composition of the present invention contains (A) an acylated cellulose nanofiber (acylated CNF) as the chemically modified CNF, and is preferably a lower alkanoyl cellulose nanofiber (lower alkanoyl) from the viewpoint of production method and cost.
  • CNF acylated cellulose nanofiber
  • acetylated cellulose nanofiber acetylated CNF
  • Thermoplastic resins include polyethylene (PE), polypropylene (PP), polyvinyl chloride, polystyrene, polyvinylidene chloride, fluororesin, (meth) acrylic resin, polyamide resin (nylon resin, PA), polyester, polylactic acid resin Polylactic acid and polyester copolymer resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate, polyphenylene oxide, (thermoplastic) polyurethane, polyacetal (POM), vinyl ether resin, polysulfone resin, cellulose resin (for example, A thermoplastic resin such as triacetylated cellulose or diacetylated cellulose can be preferably used.
  • Homopolymers or copolymers such as fluororesin tetrachloroethylene, hexpropylene, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, and perfluoroalkyl vinyl ether can be preferably used.
  • (meth) acrylic resins (meth) acrylic acid, (meth) acrylonitrile, (meth) acrylic acid esters, (meth) acrylamides can be preferably used.
  • (meth) acryl means “acryl and / or methacryl”.
  • (Meth) acrylic acid includes acrylic acid or methacrylic acid.
  • (Meth) acrylonitrile includes acrylonitrile or methacrylonitrile.
  • (meth) acrylic acid esters examples include (meth) acrylic acid alkyl esters, (meth) acrylic acid monomers having a cycloalkyl group, and (meth) acrylic acid alkoxyalkyl esters.
  • Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) Examples include benzyl acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, hydroxyethyl (meth) acrylate, and the like.
  • Examples of the (meth) acrylic acid monomer having a cycloalkyl group include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate.
  • (meth) acrylic acid alkoxyalkyl esters examples include 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, and 2-butoxyethyl (meth) acrylate.
  • (Meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N -N-substituted (meth) acrylamides such as isopropyl (meth) acrylamide and Nt-octyl (meth) acrylamide, and copolymers of these (meth) acrylic resins.
  • Polyester aromatic polyester, aliphatic polyester, unsaturated polyester and the like can be preferably used.
  • aromatic polyester examples include copolymers of diols described later such as ethylene glycol, propylene glycol, and 1,4-butanediol with aromatic dicarboxylic acids such as terephthalic acid.
  • aliphatic polyester examples include copolymers of diols described below and aliphatic dicarboxylic acids such as succinic acid and valeric acid, homopolymers or copolymers of hydroxycarboxylic acids such as glycolic acid and lactic acid, and diols described below. And copolymers of aliphatic dicarboxylic acids and the above hydroxycarboxylic acids.
  • unsaturated polyester examples include diols described later, unsaturated dicarboxylic acids such as maleic anhydride, and copolymers with vinyl monomers such as styrene as necessary.
  • a reaction product of polycarbonate bisphenol A or its derivative bisphenol and phosgene or phenyl dicarbonate can be preferably used.
  • a copolymer such as polysulfone resin 4,4′-dichlorodiphenylsulfone or bisphenol A can be preferably used.
  • Copolymers such as polyphenylene sulfide p-dichlorobenzene and sodium sulfide can be preferably used.
  • a copolymer of polyurethane diisocyanates and diols can be preferably used.
  • Diisocyanates include dicyclohexylmethane diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, 2,4-tolylene diisocyanate, 2,6- Examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 2,2′-diphenylmethane diisocyanate, and the like.
  • Diols include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Relatively low molecular weight diols such as 1,6-hexanediol, neopentyl glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexanedimethanol, polyester diol, poly Examples include ether diol and polycarbonate diol.
  • Amide resin Nylon 66 (polyamide 66, PA66), nylon 6 (polyamide 6, PA6), nylon 11 (polyamide 11, PA11), nylon 12 (polyamide 12, PA12), nylon 46 (polyamide 46, PA46), nylon 610 (polyamide 610) PA610), nylon 612 (polyamide 612, PA612), and other aliphatic amide resins, aromatic diamines such as phenylene diamine, aromatic dicarboxylic acids such as terephthaloyl chloride and isophthaloyl chloride, or derivatives thereof. It can be preferably used.
  • Polymers and copolymers such as polyacetal trioxane, formaldehyde, and ethylene oxide can be preferably used.
  • thermoplastic resins may be used alone or as a mixed resin of two or more.
  • thermoplastic resins in terms of excellent mechanical properties, heat resistance, surface smoothness and appearance, polyamide, polyacetal, polypropylene, maleic anhydride modified polypropylene, polyethylene, polylactic acid, polylactic acid and polyester copolymer resin, At least one resin selected from the group consisting of ABS resin and polystyrene is preferred.
  • Polyamide resin (PA) having a highly polar amide bond in the molecular structure has high affinity with cellulosic materials, so PA6 (a ring-opening polymer of ⁇ -caprolactam), PA66 (polyhexamethylene adipone) Amide), PA11 (polyamide obtained by ring-opening polycondensation of undecane lactam), PA12 (polyamide obtained by ring-opening polycondensation of lauryl lactam), and polyamide copolymer resins are preferably used.
  • PA6 a ring-opening polymer of ⁇ -caprolactam
  • PA66 polyhexamethylene adipone Amide
  • PA11 polyamide obtained by ring-opening polycondensation of undecane lactam
  • PA12 polyamide obtained by ring-opening polycondensation of lauryl lactam
  • polyamide copolymer resins are preferably used.
  • polypropylene PP
  • polyethylene PE, particularly high-density polyethylene: HDPE
  • maleic anhydride-modified polypropylene having high compatibility with these versatile polyolefins are preferable as the structural member.
  • (A) The ratio R (SP cnf / SP pol ) of the chemically modified CNF solubility parameter (SP cnf ) is about 0.87 to 1.88, preferably in the range of 1.03 to 1.88, more preferably about 1.03 to 1.82. It is a range.
  • polyamide (PA), polyacetal (POM), polylactic acid (PLA) or a mixed resin thereof can be suitably used as the (B) thermoplastic resin, and in this case, the ratio R ( SP cnf / SP pol ) is preferably about 1.04 to 1.32, and the crystallinity of the chemically modified CNF is preferably about 69.5% or more.
  • thermoplastic resin having a lower polarity than the thermoplastic resin for example, polypropylene (PP), polyethylene (PE), maleic anhydride modified polypropylene (MAPP) and polystyrene (PS)
  • PP polypropylene
  • PE polyethylene
  • MAPP maleic anhydride modified polypropylene
  • PS polystyrene
  • the ratio R (SP cnf / SP pol ) between the SP cnf of the chemically modified CNF and the SP pol of the thermoplastic resin is preferably about 1.21 to 1.88, more preferably 1.21 to 1.82, and the crystal of the chemically modified CNF
  • the degree of conversion is preferably 42.7% or more.
  • the general-purpose (B) thermoplastic resin includes, for example, olefin resins such as polypropylene (PP) and polyethylene (PE), and modified polyolefins having good compatibility with these olefin resins, for example, It is preferable to use maleic anhydride-modified polypropylene (MAPP).
  • MAPP maleic anhydride-modified polypropylene
  • the ratio R (SP cnf / SP pol ) between SP cnf of the chemically modified CNF and SP pol of the thermoplastic resin is about 1.21 to 1.88, More preferably, it is preferably about 1.21 to 1.82, and the crystallinity of the chemically modified CNF is preferably about 42.7% or more.
  • the SP value of acetylated cellulose obtained by the above linear approximation was considered to be a reasonable value because it was within ⁇ 10% of the calculated value obtained by the Fedors calculation method.
  • lignopulp 150-1 As an example of lignopulp, the composition of lignopulp 150-1 (GP150-1) obtained by digesting groundwood pulp (GP) for 1 hour at 150 ° C. is roughly composed of cellulose (Cel): 66%, hemicellulose (molar ratio) HCel): 12% (mannan (Man): 7% and xylan (Xyl): 5%) and lignin (Lig): 22%) will be described as an example.
  • This lignin is assumed to consist only of ⁇ -O-4 type lignin in the present invention. When this is acetylated, it becomes acetylated lignin, and the maximum DS of lignopulp is 2.73. This lignin contains two hydroxyl groups and the lignin has a maximum DS of 2.
  • lignopulp 150-3 obtained by digesting ground pulp (GP) at 150 ° C. for 3 hours, cellulose containing 3 hydroxyl groups and hemicellulose were 87.4% (mass%), and lignin containing 2 hydroxyl groups were Since it is 12.6% (mass%), the maximum DS of lignopulp is 2.87.
  • lignopulp 150-1: cooking at 150 ° C. for 1 hour
  • LP lignopulp
  • the DS value (0.88) is based on cellulose contained in lignopulp, and the acetyl content (g / mol) is 0.88 mol / 162 g (g / mol of cellulose).
  • SP cel SP value of cellulose
  • Sp celac3 SP value of cellulose triacetate was determined using SP cel (SP value of cellulose, literature value) and SP celac2 (SP value of cellulose diacetate, literature value).
  • SP xy SP value of xylan
  • SP lig SP value of lignin
  • SP xylac SP value of xylan diacetate
  • SP ligac SP value of lignin diacetate
  • lignocellulose having a lignin content of less than 1% by mass has virtually no problem even if lignin is ignored (calculated assuming a lignin content of 0).
  • the SP value of lignocellulose whose total content of cellulose and glucomannan is 92 mass% or more and whose lignin content is 0.5 mass% or less
  • the SP value of acetylated lignocellulose, the components of this lignocellulose are: Assuming that it is composed entirely of cellulose, the SP can be calculated using the above-mentioned cellulose SP literature values and cellulose diacetate SP literature values.
  • the optimum range of the solubility parameter (SP cnf ) of the chemically modified CNF depends on the solubility parameter (SP pol ) of the resin (matrix) combined with the chemically modified CNF, but is preferably about 9.9-15.
  • the optimum range of the solubility parameter (SP cnf ) of the chemically modified CNF is more preferably 11.5 to 15 for a hydrophilic resin having a resin (matrix) solubility parameter (SP pol ) of about 11 to 13.
  • the optimum range of the solubility parameter (SP cnf ) of chemically modified CNF is about 9.9 to 15 for a hydrophobic resin having a solubility parameter (SP pol ) of the resin (matrix) of about 8 to 9.
  • the solubility parameter (SP cnf ) of the chemically modified CNF is preferably determined depending on the solubility parameter SP pol of the resin (matrix), and the solubility parameter (SP cnf ) of the chemically modified CNF with respect to the solubility parameter (SP pol ) of the resin ) Ratio R (SP cnf / SP pol ) is preferably in the range of about 0.87 to 1.88.
  • the ratio R (SP cnf / SP pol ) is more preferably in the range of about 1.03 to 1.88, and further preferably in the range of about 1.03 to 1.82.
  • the ratio R is within this range, the dispersibility of the chemically modified CNF in the resin (matrix) is improved, and the strength of the resin composition containing the chemically modified CNF is improved.
  • thermoplastic resin (SP pol ) Solubility parameter of thermoplastic resin (SP pol ) Regarding the solubility parameter (SP pol ) value of the thermoplastic resin, it is possible to refer to the SP value described by Fumio Ide, “Practical Polymer Alloy Design” (Industry Research Committee First Edition, issued on September 1, 1996). SP values of typical thermoplastic resins are as follows.
  • the average value in this numerical range is used as the SP value of the material in the present invention.
  • the average value 12.2 (rounded to the first decimal place) of 11.6 and 12.7 was used as the SP value for nylon 6 (PA6).
  • thermoplastic resin used for the fiber reinforced resin composite depends on the application of the fiber reinforced composite using the thermoplastic resin.
  • range of the solubility parameter (SP pol ) of the thermoplastic resin is unique to the resin.
  • solubility parameter (SP pol ) of polyamides frequently used in engine covers, automobile parts such as manifolds, and home appliance parts is about 12 to 13
  • the SP pol of nylon 6 (PA6) is 12.2.
  • the SP pol of polyacetal (POM) which is frequently used for the exterior, casing, and mechanical parts of electrical and electronic products that require strength, is about 11.1.
  • the SP pol of maleic anhydride-modified polypropylene (MAPP) used for improving dispersibility is about 8.2.
  • a chemically modified CNF having SP cnf such that the ratio R (SP cnf / SP pol ) is about 1.03 to 1.32 is selected to produce the fiber reinforced resin composition of the present invention.
  • the ratio R (SP cnf / SP pol ) must be 1.03 to 1.32. Is preferred.
  • the ratio R (SP cnf / SP pol ) Is preferably 1.21 to 1.82.
  • MAPP maleic anhydride-modified polypropylene
  • acetylated cellulose having a DS of about 0.32 to 2.52, a SP of about 15.0 to 9.9, and a crystallinity of about 42.7% or more is preferable. More preferred is acetylated cellulose having a DS of about 0.32 to 1.57, a SP of about 15.0 to 12.1, and a crystallinity of about 55.6% or more.
  • acetylated cellulose having a DS of about 0.30 to 2.02, SP of about 15.0 to 11.1, and a crystallinity of about 42.7% or more is preferable. Good bending properties can be obtained.
  • acetylated cellulose having a DS of about 0.30 to 2.02, a SP of about 15.0 to 11.0, and a crystallinity of about 42.7% or more is preferable. Good bending properties can be obtained.
  • polar materials such as polyamide (PA6) and polyacetal (POM)
  • PA6 polyamide
  • POM polyacetal
  • a material having the highest bending characteristics can be obtained by maintaining the strength of the cellulose fiber at about% or higher, that is, by maintaining the strength of the cellulose fiber at a high level.
  • the fiber reinforced resin composition of the present invention contains (A) a chemically modified CNF and (B) a thermoplastic resin.
  • the content of (A) chemically modified CNF in the fiber reinforced resin composition is preferably about 1 to 300 parts by weight, more preferably about 1 to 200 parts by weight, with respect to 100 parts by weight of the thermoplastic resin (B). About 100 parts by mass is more preferable.
  • the content ratio of (A) chemically modified CNF (preferably acetylated CNF) in the fiber reinforced resin composition is preferably about 0.1 to 30 parts by mass.
  • thermoplastic resin A fiber-reinforced resin composition excellent in mechanical properties, heat resistance, surface smoothness and appearance can be obtained by blending (B) thermoplastic resin with (A) chemically modified CNF.
  • (A) Chemically modified CNF like plant fibers, is lightweight, has strength, and has a low linear thermal expansion coefficient. Even if the composition contains (A) chemically modified CNF, the composition has the property (thermoplasticity) that softens when heated and becomes easy to mold, and becomes hard again when cooled (thermoplasticity), as in general-purpose plastics. Can be expressed.
  • the fiber-reinforced resin composition of the present invention includes, for example, a compatibilizing agent; a surfactant; a starch, a polysaccharide such as alginic acid, gelatin, glue, Natural proteins such as casein; inorganic compounds such as tannins, zeolites, ceramics, metal powders; colorants; plasticizers; fragrances; pigments; flow regulators; leveling agents; conductive agents; antistatic agents; An additive such as a deodorant may be blended. As a content ratio of an arbitrary additive, it may be appropriately contained within a range not impairing the effects of the present invention.
  • the fiber reinforced resin composition of the present invention includes (A) chemically modified CNF, (A) the chemically modified CNFs can be prevented from aggregating due to hydrogen bonding. Therefore, in the mixing process of (A) chemically modified CNF and thermoplastic resin (matrix material), aggregation of (A) chemically modified CNF is suppressed, and (A) chemically modified CNF is uniformly dispersed in the thermoplastic resin. Thus, a fiber reinforced resin composition containing (A) chemically modified CNF having excellent mechanical properties, heat resistance, surface smoothness and appearance can be obtained.
  • the fiber reinforced resin composition containing (A) chemically modified CNF of the present invention can improve the mechanical properties in a balanced manner, such as static properties such as bending tests and dynamic properties such as impact tests.
  • the chemically modified CNF contained in the fiber reinforced resin composition is preferably (A2) acetylated cellulose nanofiber (acetylated CNF).
  • Acetylated CNF has a crystallinity of about 42.7% or more, the hydroxyl group of the sugar chain is substituted with an acetyl group, the degree of substitution is about 0.29 to 2.52, and the solubility parameter (SP cnf ) is 9.9 to 15 It is preferable that it is a grade.
  • acetylated CNF has a crystallinity of about 42.7% or higher and a degree of substitution (DS) of 0.29. It is preferable that the solubility parameter (SP cnf ) is about 9.9 to 15.0.
  • acetylated CNF has a crystallinity of about 55.6% or higher, a degree of substitution (DS) of about 0.29 to 1.84, and a solubility parameter (SP cnf ) of 11.5 to It is preferably about 15.0.
  • the acetylated CNF can withstand melt kneading with a high melting point resin of 200 ° C. or higher and repeated melt kneading.
  • the crystallinity is about 65% or more, and the degree of substitution (DS) is about 0.4 to 1.2.
  • chemically modified CNF having a solubility parameter (SP cnf ) of about 12-15 .
  • SP cnf solubility parameter
  • NBKP a raw material pulp from which the chemically modified CNF can be prepared.
  • the degree of crystallinity is about 40% or more
  • the degree of substitution (DS) is about 1.2 or more
  • a chemically modified CNF having a solubility parameter (SP cnf ) of about 8-12 is preferable to use.
  • SP cnf solubility parameter
  • the fiber reinforced resin composition can be produced by mixing (A) a chemically modified CNF and (B) a thermoplastic resin (matrix material). Furthermore, a molded body can be produced by molding the fiber reinforced resin composition.
  • the fiber reinforced resin composition of the present invention can be produced by kneading a chemically modified CNF and a resin, but using a kneader or the like, a chemically modified pulp (a material that becomes a chemically modified CNF) and (B) a thermoplastic resin It can also be produced by kneading and compounding them.
  • the fibrillation of the chemically modified pulp proceeds due to the shear stress during the kneading, and a uniform mixed composition of (A) the chemically modified CNF and (B) the thermoplastic resin can be obtained.
  • thermoplastic resin (B) When chemically modified CNF or chemically modified pulp and (B) thermoplastic resin are mixed, both components are mixed without heating at room temperature, and then mixed with heating. May be.
  • the mixing temperature can be adjusted according to the thermoplastic resin (B) to be used. Heating set temperature is the minimum processing temperature recommended by the thermoplastic resin supplier (225 to 240 ° C for PA6, 170 to 190 ° C for POM, 160 to 180 ° C for PP and MAPP) to 20 ° C from this recommended processing temperature A high temperature range is preferred. By setting the mixing temperature within this temperature range, (A) chemically modified CNF or chemically modified pulp and (B) thermoplastic resin can be uniformly mixed.
  • the mixing is preferably performed by a kneading method such as a bench roll, a Banbury mixer, a kneader, or a planetary mixer, a mixing method using a stirring blade, a mixing method using a revolving / spinning type stirrer, or the like.
  • a kneading method such as a bench roll, a Banbury mixer, a kneader, or a planetary mixer, a mixing method using a stirring blade, a mixing method using a revolving / spinning type stirrer, or the like.
  • chemically modified CNF (acetylated CNF, etc.) having an optimum SP value for each resin depending on how many of the hydroxyl groups present in the cellulose molecule are chemically modified (replaced with acetyl groups, etc.)
  • acetylated CNF etc.
  • the degree of crystallinity of cellulose is maintained at about 42% or more, and by making it an appropriate SP value, the dispersibility of the cellulose in the resin is high, and the reinforcing effect of the cellulose resin is improved.
  • CNF composites with excellent mechanical properties can be obtained.
  • the kneading process and the mixing process are also referred to as “composite”.
  • the fiber reinforced resin composition contains (A) a chemically modified CNF and (B) a thermoplastic resin, and the following steps: (1) The following conditions: (a) the ratio R (SP cnf / SP pol ) of the (A) chemically modified CNF solubility parameter (SP cnf ) to the thermoplastic resin solubility parameter (SP pol ) is in the range of 0.87 to 1.88; and (b) (A) a step of selecting a chemically modified CNF and (B) a thermoplastic resin that satisfy the crystallinity of the chemically modified CNF of 42.7% or more, (2) a step of blending (A) the chemically modified CNF selected in the step (1) and (B) a thermoplastic resin, and (3) The method includes a step of kneading (A) the chemically modified CNF and (B) the thermoplastic resin blended in the step (2) to obtain a resin composition.
  • the ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, and more preferably in the range of about 1.03 to 1.82.
  • CNF in various states is chemically modified to enable compounding with a thermoplastic resin.
  • the fiber reinforced resin composition contains (A) a chemically modified CNF and (B) a thermoplastic resin, and the following steps: (1) The following conditions: (a) the ratio R (SP cnf / SP pol ) of the (A) chemically modified CNF solubility parameter (SP cnf ) to the thermoplastic resin solubility parameter (SP pol ) is in the range of 0.87 to 1.88; and (b) a step of selecting (A) chemically modified pulp and (B) thermoplastic resin to be (A) chemically modified CNF after defibration that satisfies the degree of crystallinity of chemically modified CNF being 42.7% or more, (2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and (3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and simultaneously (A1) chemically modified pulp is defib
  • the ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, and more preferably in the range of about 1.03 to 1.82.
  • the fiber reinforced resin composition contains (A) a chemically modified CNF and (B) a thermoplastic resin, and the following steps: (1) (A1) a process of selecting chemically modified pulp and (B) thermoplastic resin, (2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and (3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and simultaneously (A1) chemically modified pulp is defibrated, (A) chemically modified CNF and ( B) including a step of obtaining a resin composition containing a thermoplastic resin,
  • the (A) chemically modified CNF and (B) thermoplastic resin are subjected to the following conditions: (A) (B) the solubility parameter (SP cnf ) of the chemically modified CNF relative to the solubility parameter (SP pol ) of the thermoplastic resin ) Ratio R (SP cnf /
  • the ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, and more preferably in the range of about 1.03 to 1.82.
  • the fiber reinforced resin composition contains (A2) acetylated CNF and (B) a thermoplastic resin, and the following steps: (1) (A3) Kneaded (A4) fiber assembly containing (A3) acetylated cellulose and (B) thermoplastic resin, and simultaneously (A3) deflated cellulose and (A2) acetylated CNF and (B ) Including a step of obtaining a resin composition containing a thermoplastic resin,
  • the crystallinity of the (A2) acetylated CNF is 42.7% or more, the hydroxyl group of the sugar chain is substituted with an acetyl group, the degree of substitution is 0.29 to 2.52, and the solubility parameter (SP cnf ) is 9.9 to It is characterized by being 15.
  • molding material and molded body using fiber reinforced resin composition
  • a molding material and a molded body (a molding material and a molded body) can be produced.
  • the shape of the molded body include molded bodies having various shapes such as various shapes such as a film shape, a sheet shape, a plate shape, a pellet shape, a powder shape, and a three-dimensional structure.
  • mold molding, injection molding, extrusion molding, hollow molding, foam molding and the like can be used.
  • the molded product can be used not only in the field of fiber reinforced plastics where a matrix molded product (molded product) containing plant fibers is used, but also in fields where thermoplasticity and mechanical strength (such as tensile strength) are required.
  • Interior materials, exterior materials, structural materials, etc. for transportation equipment such as automobiles, trains, ships, airplanes, etc .; casings, structural materials, internal parts, etc. for electrical appliances such as personal computers, televisions, telephones, watches; mobile communications such as mobile phones Housings such as equipment, structural materials, internal parts, etc .; portable music playback equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; construction materials; office equipment such as stationery, etc. It can be used effectively as a container, container, and the like.
  • the component content of pulp, chemically modified pulp, chemically modified CNF, thermoplastic resin, etc. represents mass%.
  • Test Method Test methods used in the following examples and comparative examples are as follows.
  • the DS of esterified cellulose / lignocellulose can also be determined by measuring the infrared (IR) absorption spectrum.
  • IR infrared
  • a calibration curve is created by plotting the DS values obtained by the method on the horizontal axis.
  • the DS value of the sample is obtained by measuring the intensity of the absorption band and obtaining the DS of the sample from this value and a calibration curve. In this way, DS can be measured quickly and easily.
  • NUKP softwood-derived unbleached softwood forest pulp
  • Pulp containing refiner-treated lignocellulose (ligno pulp, LP): Preparation of GP-150-1 ⁇ Conifer grinder-treated pulp (GP, source : Nippon Paper Industries Co., Ltd.), 20 g of chemical solution for 1 g of pulp (0.8M-NaOH, 0.2M-Na 2 S) was reacted in an autoclave at 150 ° C. for 1 hour to obtain a pulp slurry.
  • the obtained slurry (pulp slurry concentration 3 mass% water suspension) is passed through a single disc refiner (manufactured by Aikawa Tekko Co., Ltd.) and repeatedly refined until the Canadian Standard Freeness (CSF) value reaches 50 mL. Defibration was performed.
  • the obtained slurry (pulp slurry concentration 3 mass% water suspension) is passed through a single disc refiner (manufactured by Aikawa Tekko Co., Ltd.) and repeatedly refined until the Canadian Standard Freeness (CSF) value reaches 50 mL. Defibration was performed.
  • lignocellulose-containing pulp (ligno pulp, LP) was used.
  • the composition is shown in Table 2.
  • GP150-1-a, GP150-3 and GP150- obtained by digesting softwood-derived unbleached kraft pulp (NUKP) and groundwood pulp (GP) at 150 ° C for 1 hour or 3 hours and treating with refiner 3-a.
  • GP150-1-a was prepared in the same manner as GP150-1 described in the above-mentioned raw material (pulp) preparation section.
  • GP150-3 and GP150-3-a are digested and refined under the same processing conditions as GP150-3 described in the above section of raw material (pulp) preparation. Appears.
  • Tables 3 and 4 show the synthesis procedure of acetylated pulp and acetylated lignopulp.
  • DS was calculated by adding an alkali to acetylated NBKP and acetylated lignopulp and titrating the amount of acetic acid generated by hydrolyzing the ester bond.
  • Acetylated NBKP / resin and lignopulp / resin composite matrix resins include commercially available polyamide 6 (PA6, NYRON RESIN manufactured by Unitika Ltd.), polyacetal (POM, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) (Iupital)), polypropylene (PP, manufactured by Nippon Polypro Co., Ltd. (Novatec PP)), polypropylene modified with maleic anhydride (MAPP, manufactured by Toyobo Co., Ltd.
  • Table 5 shows the characteristics of each resin (MI: Melt Index).
  • Acetylated NBKP was complexed with PA6, POM, PP, MAPP, PLA, ABS, PS and PE.
  • Acetylated lignopulp was complexed with PA6, POM, PP and MAPP.
  • Acetylated NBKP or acetylated lignopulp and a resin were charged into a twin screw extruder and melt kneaded.
  • the melt kneading temperature was adjusted to 215 ° C for PA6, 170 ° C for POM, PP, MAPP and PLA, 195 ° C for ABS and PS, and 140 ° C for PE.
  • the Izod impact test of the obtained acetylated NBKP / resin composite material and acetylated lignopulp / resin composite material was performed.
  • a V-notch with a depth of 2 mm was inserted into the center of the test piece and struck with a hammer with a capacity of 2.75 J.
  • melt kneading was performed at a high set temperature of 215 ° C. for PA6 and 170 ° C. for POM and PP. It is considered that the temperature is high. Since cellulose is exposed under such conditions, the thermogravimetric properties of acetylated pulp are important.
  • Table 6 shows the crystallinity of some DS acetylated NBKP.
  • Table 7 shows the crystallinity of some DS acetylated lignopulps.
  • NUKP has a crystallinity of 78.3%, and the crystallinity decreased as the DS value of acetylation increased, with DS0.85 reaching 74.4%.
  • GP150-1-a had a crystallinity of 78.7%, and the crystallinity decreased with an increase in the DS value of acetylation, and the DS0.97 was 73.1%.
  • GP150-3-a had a crystallinity of 83.1%, and the crystallinity decreased with an increase in the DS value of acetylation, reaching 75.4% in DS0.95.
  • the fiber amount is described as 10% by mass for both untreated fibers and acetylated fibers for convenience.
  • Tables 8 and 9 show the mechanical properties of the PA6 matrix PA6 resin (polyamide) matrix composite.
  • Table 8 shows the characteristics of the material with NBKP added.
  • Table 9 shows the characteristics of the material to which lignopulp was added.
  • NBKP reinforced PA6 material (Table 8) showed significant improvement in flexural modulus and flexural strength.
  • DS 0.64 acetylated NBKP-added composite material (No.PA6-225) has a flexural modulus of 5430 MPa, 2.5 times that of neat PA6 (No.PA6), untreated NBKP-added PA6 (No.PA6-15) The value was 1.6 times that of.
  • DS 0.46 acetylated NBKP-added composite material (No.PA6-216) has a bending strength of 159 MPa, 1.8 times that of neat PA6 (No.PA6), untreated NBKP-added PA6 (No.PA6-15) The value was 1.4 times.
  • DS 0.41 acetylated NUKP-added composite material (No.PA6-263) has a bending strength of 154 MPa, 1.7 times that of neat PA6 (No.PA6), untreated NUKP-added PA6 (No.PA6-265) The value was 1.2 times.
  • the DS 0.57 acetylated GP (150-3) -added composite material (No.PA6-237) has a flexural modulus of 5380 MPa, and the neat PA6 (No.PA6) The value was 2.4 times that of untreated GP (150-3) added PA6 (No. PA6-266).
  • DS 0.57 acetylated GP (150-3) added composite material (No.PA6-237) has a flexural strength of 161 MPa, 1.8 times that of neat PA6 (No.PA6), untreated GP (150-3) The value was 1.3 times that of added PA6 (No. PA6-266).
  • Table 10 shows the mechanical properties of the POM matrix polyacetal resin (POM) matrix composite.
  • DS 1.17 acetylated NBKP-added composite material (No.POM-134) has a flexural modulus of 5590 MPa, 2.5 times that of neat POM (No.POM), untreated NBKP-added POM (No.POM-148) The value was 1.8 times the value.
  • DS 1.17 acetylated NBKP-added composite material (No.POM-134) has a bending strength of 129 MPa, 1.7 times that of neat POM (No.POM), untreated NBKP-added POM (No.POM-148) It was 1.4 times the value.
  • the Izod impact strength decreased about 1 kJ / m 2 with respect to the neat POM, but the decrease rate was lower than that of the untreated NBKP-added POM (No. POM-148).
  • the elastic modulus was reduced by about 10%.
  • the POM matrix resin NBKP composite material provides an acetylated cellulose composite material excellent in bending elastic modulus, bending strength and impact resistance in the region of about DS 1.17, and also has a high reinforcing effect in lignopulp.
  • Table 11 shows the mechanical properties of the PP matrix polypropylene (PP) matrix composite.
  • the degree of reinforcement by cellulose is low, as can be seen by comparing neat PP (No. PP) and untreated NBKP additive material (PP-116).
  • PP-116 untreated NBKP additive material
  • the DS 0.6 acetylated lignopulp [GP (150-3)]-added composite material (No.PP-450) exhibited a reinforcing effect with a flexural modulus of 2620 MPa and a flexural strength of 66 MPa.
  • MAPP matrix maleic anhydride modified PP (MAPP) matrix composite The mechanical properties of MAPP matrix maleic anhydride modified PP (MAPP) matrix composite are shown in Table 12.
  • DS 0.88 acetylated NBKP-added composite material (No.PP-382) has a flexural modulus of 3070 MPa, 1.8 times that of neat MAPP (No.MAPP), untreated NBKP-added MAPP (No.PP-309) It was 1.3 times the value.
  • DS 0.88 acetylated NBKP-added composite material (No.PP-382) has a bending strength of 76.3 MPa, 1.5 times that of neat MAPP (No.MAPP), untreated NBKP-added MAPP (No.PP-309) ) was 1.3 times the value.
  • the Izod impact strength was equal to or greater than neat MAPP.
  • the DS 0.56 acetylated lignopulp [GP (150-3-a)]-added composite material (No. PP-451) showed a reinforcement effect with a flexural modulus of 2730 MPa and a flexural strength of 70.2 MPa.
  • Table 13 shows the mechanical properties of PLA matrix polylactic acid (PLA) matrix composites.
  • DS 0.88 acetylated NBKP-added composite material (No.PLA-2) has a flexural modulus of 6400 MPa, 1.9 times that of neat PLA (No.PLA-5), untreated NBKP-added PLA (No.PLA- The value was 1.5 times that of 6).
  • DS 0.88 acetylated NBKP-added composite material (No.PLA-2) has a bending strength of 119 MPa, 1.1 times that of neat PLA (No.PLA-5), untreated NBKP-added PLA (No.PLA- The value was 1.2 to 1.3 times that of 6).
  • the Izod impact strength was equal to or greater than that of neat PLA.
  • Table 14 shows the mechanical properties of the ABS matrix acrylonitrile-butadiene-styrene copolymer (ABS) matrix composite.
  • DS 0.87 acetylated NBKP-added composite material (No.ABS-70) has a flexural modulus of 3780 MPa, 1.9 times that of neat ABS (No.ABS), untreated NBKP-added ABS (No.ABS-63) It was 1.4 times the value.
  • DS 0.87 acetylated NBKP-added composite material (No.ABS-70) has a bending strength of 87.3 MPa, 1.4 times that of neat ABS (No.ABS), untreated NBKP-added ABS (No.ABS-63) ) Was 1.2 times the value.
  • Table 15 shows the mechanical properties of PS matrix polystyrene (PS) matrix composites.
  • DS 0.86 acetylated NBKP-added composite material (No.PS-3) has a flexural modulus of 4110 MPa, 1.3 to 1.4 times that of neat PS (No.PS), untreated NBKP-added PS (No.PS- The value was 1.2 times that of 1).
  • Table 16 shows the mechanical properties of PE matrix polyethylene (PE) matrix composites.
  • DS 0.86 acetylated NBKP-added composite material (No.PE-184) has a flexural modulus of 2390 MPa, 2.2 times that of neat PE (No.PE), untreated NBKP-added PE (No.PE-182) The value was 1.5 times greater than that.
  • DS 0.86 acetylated NBKP-added composite material (No. PE-184) has a bending strength of 42.4 MPa, 1.8 times that of neat PE (No. PE), and untreated NBKP-added PE (No. PE-182). ) 1.4 times the value.
  • Table 17 shows the mechanical properties of the PA6 matrix PA6 resin matrix composite.
  • the material (No.PA6-242, -243, -244, -15) to which 1, 3, 5, 10% by weight of untreated NBKP was added was compared with neat PA6 (No.PA6).
  • the improvement was about 120, 310, 410, and 1230 MPa, respectively.
  • the material (No. PA6-234, -235, -236, -226) to which 1, 3, 5, 10 mass% of acetylated NBKP was added significant improvements of 310, 820, 1410, and 3120 MPa were observed, respectively.
  • Table 18 shows the mechanical properties of the POM matrix POM resin matrix composite.
  • the acetylated NBKP-added material showed a higher value than the untreated NBKP.
  • the acetylated NBKP reinforced composite material is superior to the conventional cellulose-based composite material, and can be effectively reinforced with a very small addition amount. It became clear.
  • Table 19 shows the mechanical properties of the PA6 matrix PA6 resin matrix composite.
  • Kneading was performed up to twice at 215 ° C.
  • the bending elastic modulus decreased to 5120 MPa in the first kneading (No.PA6-220-1) and 4780 MPa in the second kneading (No.PA6-220-2).
  • the decrease rate was 6.60%, which was the same as that of Toray's 30 mass% reinforced PA6 glass fiber.
  • the bending strength decreased to 154 MPa by the first kneading (No.PA6-220-1) and 150 MPa by the second kneading (No.PA6-220-2).
  • the decrease rate was 2.60%, which was smaller than the decrease rate of about 5% for Toray's 30 mass% reinforced PA6 glass fiber.
  • Izod impact strength was not significantly changed with 3.60kJ / m 2 at 3.41kJ / m 2 in the first kneading (No.PA6-220-1), 2 th kneading (No.PA6-220-2).
  • the reduction rate of 30% by mass glass fiber reinforced PA6 from Toray Industries, Inc. is about 20%.
  • the impact properties of new materials are very good and cannot be compared.
  • Table 20 shows the mechanical properties of the POM matrix POM resin matrix composite.
  • Kneading was performed up to 3 times at 170 ° C.
  • the flexural modulus improved to 5170 MPa for the first kneading (No. POM129), 5270 MPa for the second kneading (No. POM130), and 5290 MPa for the third kneading (No. POM131).
  • the improvement rate was about 2% for the first time ⁇ second time and the first time ⁇ third time.
  • the bending strength was constant at 122 MPa for the first kneading (No. POM129), 117 MPa for the second kneading (No. POM130), and 120 MPa for the third kneading (No. POM131).
  • the kneading temperature is high, and the heat resistance of acetylated NBKP is higher than that of normal NBKP due to repeated molding (melt kneading, etc.), but deteriorates.
  • the kneading temperature is low, so the acetylated NBKP with improved heat resistance hardly deteriorates.
  • the refining property is improved by repeated molding processing, and the flexural modulus and impact resistance are improved. it is conceivable that.
  • Glass fiber (GF) and carbon fiber (CF) and resin composite materials which are general-purpose reinforcing fibers, are generally cascade-recycled because the fiber breaks during fiber recycling or the fibers become shorter. Can only be used for low-grade applications).
  • this acetylated cellulose fiber is resistant to repeated molding in polypropylene, polyethylene, polystyrene, ABS, thermoplastic elastomer, and other low melting point resin materials that are below the molding temperature range such as POM. It is considered to be a material with excellent recyclability.
  • FIG. 1 shows an SEM photograph of NBKP as a raw material.
  • NBKP fibers with submicron order diameters can be seen, but there are many fibers having a coarse fiber diameter of several tens to several hundreds of micrometers.
  • Acetylated NBKP is more defibrated than NBKP, but there are coarse fibers of several tens of ⁇ m or more.
  • FIG. 3 shows an X-CT image of untreated NBKP-added PA6 (No. PA6-15).
  • FIG. 4 shows an SEM photograph of cellulose obtained by extracting PA6 of the untreated NBKP-added PA6.
  • FIG. 5 shows an X-CT image of acetylated NBKP-added PA6 (NO.PA6-216).
  • FIG. 6 shows an SEM photograph of cellulose obtained by extracting PA6 of the acetylated NBKP-added PA6.
  • untreated NBKP-added PA6 (No. PA6-15) has many fibers with a thickness of several tens of ⁇ m, and there are few sub-micron and tens of nanometer order cellulose.
  • PA6 No. PA6-216
  • cellulose of about 3 ⁇ m was scattered, but most of them were dispersed as acetylated CNF of several tens to several hundreds of nm.
  • the POM matrix POM has a small density difference from cellulose, the contrast difference between the POM matrix and cellulose is small in X-CT imaging, and it is difficult to distinguish cellulose.
  • FIG. 7 shows a SEM photograph of cellulose obtained by extracting the POM of untreated NBKP-added POM (No. POM-148).
  • FIG. 8 shows an SEM photograph of cellulose obtained by extracting POM of acetylated NBKP-added POM (No. POM-134).
  • PP matrix Fig. 11 shows an X-CT image of untreated NBKP-added PP (No. PP-116).
  • FIG. 12 shows an SEM photograph of cellulose obtained by extracting PP of the untreated NBKP-added PP.
  • FIG. 14 shows a SEM photograph of cellulose obtained by extracting PP of the acetylated NBKP-added PP.
  • untreated NBKP-added PP No. PP-116 had coarse fibers of several tens of ⁇ m and fibers that were being defibrated more than several ⁇ m. However, the fiber that is being defibrated has a remarkably reduced fiber length and has been shortened.
  • FIG. 16 shows an SEM photograph of cellulose obtained by extracting PP of the low DS acetylated NBKP-added PP.
  • the SP value of acetylated cellulose was calculated by linear approximation from the SP values of the literature values of cellulose and diacetylated cellulose.
  • the crystallinity was calculated by wide-angle X-ray scattering by pressing each cellulose into tablets.
  • Resin SP quoted Fumio Ide's Practical Polymer Alloy Design published in 1996.
  • resin SP is described in the range of SP value, the average value of the upper limit value and the lower limit value is used as SP of the resin, and the relational expression between DS (x) and SP (y) of AcCNF is obtained. It was.
  • Tables 25 to 28 the physical property values in Tables 21 to 24 are shown as indices based on the unmodified NBKP-resin composition.
  • the SP value of acetylated lignopulp is calculated according to the method of Fedors (Robert F. Fedors, Polymer Engineering and Science, February, 1974, vol.14, No.2 147-154) ( Refer to the above - mentioned “ Method for calculating SP value of acetylated lignopulp (LP)”) .
  • Table 31 the numerical values of the PA6 reinforced materials in Table 29 are shown as indices based on the unmodified lignopulp-resin composition.
  • Table 32 summarizes Table 25 to Table 28.
  • Table 33 summarizes Table 31.
  • the material having the highest bending properties can be obtained by keeping the strength of the cellulose fibers at a high level.
  • PP which is a nonpolar material
  • acetylated cellulose with high crystallinity and high fiber strength up to about DS1.0 has insufficient bending properties because the interfacial strength is too low. It can be said that the acetylated NBKP / PP composite material needs to have a high DS even when the crystallinity is lowered.
  • PP can be said to be difficult to obtain high bending properties unless high DS acetylated lignopulp is used.
  • acylated NUKP-containing polypropylene (PP) composition and its strength test (1) Preparation of acylated NUKP In a four-necked 1L flask equipped with a stirring blade, the above-mentioned “unrefined coniferous pulp derived from refiner-treated conifers” The pulp slurry (NUKP) obtained in “Preparation of” was added (corresponding to 5 g of NUKP solid content). N-methyl-2-pyrrolidone (NMP) 500 mL and toluene 250 mL were added and stirred to disperse NUKP in NMP / toluene.
  • NMP N-methyl-2-pyrrolidone
  • a cooler was attached, and the dispersion was heated to 150 ° C. in a nitrogen atmosphere, and water contained in the dispersion was distilled off together with toluene. Thereafter, the dispersion was cooled to 40 ° C., and 15 mL of pyridine (about 2 equivalents to the NUKP hydroxyl group) and myristoyl chloride (denaturing agent, esterification reagent): 16.2 mL (about 1 equivalent to the NUKP hydroxyl group) were added. .
  • the increase in the number of ester groups formed was measured sequentially by infrared absorption spectrum (Note), the reaction was followed, and the reaction was carried out for 90 minutes in a nitrogen atmosphere.
  • NUKP acylated NUKP modified with various modifying groups as shown in the following table (Table 34) was prepared in the same manner as described above. Reaction conditions and the resulting acylated NUKP are shown in Table 34.
  • the crystallinity of pulp and lignopulp was NBKP: 77.4%
  • NUKP 78.3%
  • GP150-1-a 78.7%
  • GP150-3-a 83.1%
  • the range was approximately 77 to 83% (see Table 6 and Table 7 above).
  • Correction coefficient (SP literature value of cellulose diacetate 11.13) ⁇ (SP value of cellulose diacetate determined by Fedors method 12.41)
  • SP ligac SP value of lignin diacetate
  • the content of Myristoyl NUKP in the resin composition is 10% by mass.
  • the resin composition obtained above was injection molded under the following injection molding conditions to prepare a test piece (myristoyl NUKP-containing PP molded body).
  • Table 36 shows the agglomerated part% of the acylated NUKP-containing PP molded product.
  • Table 36 The numerical values of the elastic moduli of the acylated NUKP-containing molded products in Table 35 are shown in Table 36 as indices based on the elasticity of the PP single molded product or the unmodified NUKP-containing molded product. Furthermore, Table 36 also shows the ratio R of the solubility parameter of each acylated NUKP to the solubility parameter [SP: 8.1 (cal / cm 3 ) 1/2 ] of polypropylene (PP) (SP of acylated NUKP / SP of PP). To do.
  • myristoylated NUKP has the highest defibration properties, followed by bornanphenoxyhexanoyl NUKP, hornanphenoxyacetyl NUKP, 1,1,3,3-tetramethylphtylphenoxyacetyl NUKP, 3, The order was 5,5-trimethylhexanenoyl NUKP. And phenoxyacetyl NUKP has the lowest defibration property. Even in this case, it can be said that about 95% is defibrated to a fiber width of about 700 nm or less.
  • Table 36 shows the modulus of elasticity of any acylated NUKP-containing PP molded product, compared with the modulus of elasticity of a single PP molded product when the ratio R (SP of acylated NUKP / SP of PP) is 1.72-1.76. It is about 1.3 to 1.9 times, showing an increase of about 1.1 to 1.6 times the elastic modulus of the unmodified NUKP-containing PP molding.
  • acetylated NUKP containing HDE composition, PS composition and ABS composition Use acetylated NUKP (AcNUKP, DS: 0.41, crystallinity about 75%) prepared in the same manner as described above.
  • HDPE high density polyethylene
  • GPPS general-purpose polystyrene
  • ABS acrylonitrile / butadiene / styrene resin
  • the ratio of fiber (acetylated NUKP) SP / resin SP is 1.31-1.84
  • the elasticity of the acetylated NUKP-containing composition is higher than the elastic modulus of the NUKP-containing resin composition that is not chemically modified. The rate was over 1.1 times.
  • acylated NBKP-containing high-density polyethylene (HDPE) composition and its strength test (1) Preparation of acylated NBKP-0 Softwood bleached kraft pulp containing no lignin (chemical composition cellulose 80% by mass, glucomannan: 12% by mass) Xylan: 6% by mass, arabinan / galactan: 2% by mass, lignin: 0% by mass, which is referred to as “NBKP-0” to distinguish it from NBKP containing the above lignin (slurry concentration: 2 (Mass%) was passed through a single disk refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.), and refiner treatment was repeated until the Canadian Standard Freeness (CSF) was 100 mL or less.
  • CSF Canadian Standard Freeness
  • NBKP-0 solid content: 150 g
  • aqueous suspension having a pulp slurry concentration of 0.75% by mass.
  • the slurry obtained was mechanically defibrated using a bead mill (NVM-2, manufactured by IMEX Co., Ltd.) (zirconia bead diameter 1 mm, bead filling 70%, rotation speed 2,000 rpm, number of treatments twice)
  • NVM-2 bead mill
  • a slurry of NBKP-0 nanofibrils was obtained. This was concentrated using a centrifuge (manufactured by Kokusan Co., Ltd.) to prepare NBKP-0 nanofibril slurry having a concentration of 20% by mass.
  • NBKP-0 nanofibril slurry (solid content 5 g) was charged into a four-necked 1 L flask equipped with a stirring blade.
  • NMP N-methyl-2-pyrrolidone
  • 500 mL and toluene 250 mL were added and stirred to disperse NBKP-0 nanofibrils in NMP / toluene.
  • a condenser was attached, and the dispersion was heated to 150 ° C. in a nitrogen atmosphere, and water contained in the dispersion was distilled off together with toluene. Thereafter, the dispersion was cooled to 40 ° C., 15 mL of pyridine (2 equivalents relative to the hydroxyl group of NBKP-0), myristoyl chloride (denaturing agent, esterification reagent): 16.2 mL (1 equivalent relative to the hydroxyl group of NBKP-0) ) was added and reacted for 120 minutes in a nitrogen atmosphere to obtain chemically modified NBKP-0 nanofibrils (myristoylated NBKP-0 nanofibrils).
  • the degree of substitution (DS) of the ester group of the product is sequentially measured by infrared absorption spectrum and the reaction is traced.
  • the reaction suspension is diluted with 200 mL of ethanol after 90 minutes.
  • the mixture was centrifuged at 7,000 rpm for 20 minutes, the supernatant was removed, and the precipitate was taken out.
  • the above operation (addition of ethanol, dispersion, centrifugation, and removal of the supernatant) was repeated by changing ethanol to acetone. Further, acetone was changed to NMP and repeated twice to obtain an esterified NBKP-0 nanofibril slurry.
  • NBKP-0 nanofibrils modified with various modifying groups were prepared in the same manner as described above.
  • acylated NBKP-0 As described above, the constituent components of NBKP-0 are 80% by mass of cellulose, 12% by mass of glucomannan, 6% by mass of xylan, and 2% by mass of arabinan / galactan.
  • the chemical formula (-C 6 H 10 O 5- ) of the repeating unit of the glucomannan sugar chain is the same as that of cellulose, and the proportion of this chemical formula is 92% of the whole. And other contained sugar sugar chains also have a repeating unit having a structure similar to that of cellulose.
  • SP of NBKP-0 used the SP value of cellulose (document value).
  • the SP value of acylated NBKP-0 was determined as follows.
  • the content of myristoyl NBKP-0 nanofibrils in the resin composition is 10% by mass.
  • a resin composition and a test piece containing the acylated NBKP-0 nanofibril were similarly prepared, and their elastic modulus and tensile strength were measured.
  • Table 40 shows the measurement results.
  • Table 41 shows the relationship between the increase in elastic modulus of acylated NBKP-0 nanofibril-containing resin (HPDE) and the ratio of resin (HDPE) SP to SP of acylated NBKP-0 nanofibrils.
  • SP value ratio of acylated NBKP-0 to resin (HDPE) (indicated in the table as fiber SP / resin SP)
  • elastic modulus increase rate (each acylated NBKP-0 containing composition relative to HDPE elastic modulus)
  • the elastic modulus increase rate (a) and the elastic modulus increase rate (b) of each acylated NBKP-0-containing composition relative to the elastic modulus of the unmodified NBKP-0-containing HDPE composition are shown.
  • the elastic modulus of the HDPE composition containing the same is the elastic modulus of HDPE alone, unmodified NBKP- Compared with the elastic modulus of the 0-containing HDPE composition, it increased by 2 times or more and 1.15 times or more, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The purpose of the present invention is to provide a fiber-reinforced resin composition in which satisfactorily dispersible fibers and a resin in which the fibers are easily dispersed have been suitably composited; and a process for producing the fiber-reinforced resin composition. Specifically, the purpose is to provide; a fiber-reinforced resin composition which comprises chemically modified cellulose nanofibers (CNFs) and a thermoplastic resin and which has improved physical properties due to the suitable compositing of the fibers with the resin; and a process for producing the fiber-reinforced resin composition. The fiber-reinforced resin composition comprises (A) chemically modified CNFs and (B) a thermoplastic resin, wherein the chemically modified CNFs and the thermoplastic resin satisfy the following requirements: (a) the ratio R of the solubility parameter (SPcnf) of the chemically modified CNFs (A) to the solubility parameter (SPpol) of the thermoplastic resin (B), SPcnf/SPpol, is in the range of 0.87-1.88 and (b) the chemically modified CNFs (A) have a degree of crystallinity of 42.7% or higher.

Description

化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
 本発明は、化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物に関する。 The present invention relates to a fiber reinforced resin composition containing chemically modified cellulose nanofibers and a thermoplastic resin.
 植物繊維の重量は鋼鉄の1/5程度と軽く、植物繊維の強度は鋼鉄の5倍程度以上と強く、植物繊維の熱膨張はガラスの1/50と低線熱膨張係数を有する。また、植物繊維を機械的又は化学的に解繊処理することによりミクロフィブリル化植物繊維(MFC)を製造する技術がある。MFCは、繊維径100nm程度、繊維長5μm程度以上、比表面積250m2/g程度の繊維である。MFCは、未解繊の植物繊維と比べて、高強度である。 The weight of the plant fiber is as light as 1/5 of steel, the strength of the plant fiber is as strong as about 5 times that of steel, and the thermal expansion of the plant fiber is 1/50 of glass and has a low linear thermal expansion coefficient. There is also a technique for producing microfibrillated plant fibers (MFC) by mechanically or chemically defibrating plant fibers. MFC is a fiber having a fiber diameter of about 100 nm, a fiber length of about 5 μm or more, and a specific surface area of about 250 m 2 / g. MFC is higher in strength than unfiltrated plant fibers.
 しかし、植物繊維に含まれるセルロースは、その分子に繰り返し単位あたり3個の水酸基を有し、植物繊維全体として多くの水酸基を有する。その結果、セルロース分子間で水素結合による凝集力が強くなっている。 However, the cellulose contained in the plant fiber has three hydroxyl groups per repeating unit in the molecule, and the plant fiber as a whole has many hydroxyl groups. As a result, the cohesive force due to hydrogen bonding is strong between cellulose molecules.
 従来、植物繊維やMFCと樹脂とを複合化して植物繊維複合材料を得る際に、樹脂中で植物繊維やMFCを十分に分散させる技術が開示されている。特許文献1には、第1級アミノ基を有する高分子化合物、無水マレイン酸で変性された高分子化合物、ミクロフィブリル化植物繊維及びポリオレフィンを含む組成物が開示されている。特許文献2には、アルキル無水コハク酸でエステル化された変性ミクロフィブリル化植物繊維及び熱可塑性樹脂を含有する樹脂組成物が開示されている。特許文献3には、セルロースナノファイバー(CNF)、熱可塑性樹脂及びノニオン界面活性剤を含む分散液、この分散液から得られる樹脂組成物が開示されている。 Conventionally, there has been disclosed a technique for sufficiently dispersing plant fibers and MFC in a resin when a plant fiber or MFC and a resin are combined to obtain a plant fiber composite material. Patent Document 1 discloses a composition comprising a polymer compound having a primary amino group, a polymer compound modified with maleic anhydride, microfibrillated plant fibers, and polyolefin. Patent Document 2 discloses a resin composition containing a modified microfibrillated plant fiber esterified with an alkyl succinic anhydride and a thermoplastic resin. Patent Document 3 discloses a dispersion containing cellulose nanofiber (CNF), a thermoplastic resin and a nonionic surfactant, and a resin composition obtained from this dispersion.
 この様に樹脂中に微細セルロース繊維を分散させる工夫がされ、微細セルロース繊維で強化された繊維強化複合樹脂組成物が開示されている。改良された繊維強化樹脂組成物を得るには、分散性良好な繊維とその繊維が分散され易い樹脂との好適な組み合わせが必要である。 Thus, a fiber-reinforced composite resin composition reinforced by fine cellulose fibers has been disclosed in which a fine cellulose fiber is dispersed in the resin. In order to obtain an improved fiber reinforced resin composition, a suitable combination of a fiber having good dispersibility and a resin in which the fiber is easily dispersed is necessary.
再公表特許WO2011/049162A1Republished patent WO2011 / 049162A1 公開特許公報特開2012-214563APublished patent publication JP2012-214563A 公開特許公報特開2013-166818APublished patent publication JP2013-166818A
 本発明は、分散性が良好な繊維とその繊維が分散され易い樹脂とが好適に複合化がされた、繊維強化樹脂組成物とその製造方法を提供することを目的とする。より具体的には、繊維と樹脂との好適な複合により物性が改良された、化学修飾CNFと熱可塑性樹脂とを含有する繊維強化樹脂組成物、及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a fiber-reinforced resin composition and a method for producing the same, in which a fiber having good dispersibility and a resin in which the fiber is easily dispersed are suitably combined. More specifically, an object of the present invention is to provide a fiber reinforced resin composition containing chemically modified CNF and a thermoplastic resin whose physical properties are improved by a suitable composite of fiber and resin, and a method for producing the same. .
 本発明者らは、化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物について鋭意研究を重ねた結果、特定の溶解パラメータ(SP)値(以下「SP値」とも記す)と特定の結晶化度を有する化学修飾CNFと特定のSP値を有する樹脂とを好適に組み合わせることにより、樹脂中の化学修飾CNFの分散性が優れ、物性が改善された繊維強化樹脂組成物が得られるとの知見を得て本発明を完成させた。 As a result of intensive research on fiber-reinforced resin compositions containing chemically modified cellulose nanofibers and thermoplastic resins, the present inventors identified a specific solubility parameter (SP) value (hereinafter also referred to as “SP value”). By suitably combining a chemically modified CNF having a degree of crystallinity with a resin having a specific SP value, a fiber-reinforced resin composition having excellent dispersibility of the chemically modified CNF in the resin and improved physical properties can be obtained. The present invention was completed by obtaining the knowledge.
 本発明で使用される用語「セルロースナノファイバー」は、セルロースで構成されるナノファーバー(セルロースナノファイバー)又は/及びリグノセルロースで構成されるナノファーバー(リグノセルロースナノファイバー)を意味し、合わせて「CNF」とも記す。 The term “cellulose nanofiber” used in the present invention means nanofabric composed of cellulose (cellulose nanofiber) and / or nanofabric composed of lignocellulose (lignocellulose nanofiber). Also referred to as “CNF”.
 CNFは、ミクロフィブリル化されたセルロース繊維又は/及びミクロフィブリル化されたリグノセルロース繊維と同義的に使用されることもある。 CNF may be used synonymously with microfibrillated cellulose fibers and / or microfibrillated lignocellulose fibers.
 「化学修飾セルロースナノファイバー」は、化学修飾されたCNF又は/及び化学修飾されたリグノCNFを意味し、合わせて「化学修飾CNF」とも記す。 “Chemically modified cellulose nanofiber” means chemically modified CNF and / or chemically modified ligno CNF, and is also referred to as “chemically modified CNF”.
 本発明の樹脂組成物に分散される化学修飾CNFは、セルロースを構成する糖鎖の水酸基の水素原子の代わりに、例えば、アセチル基等のアルカノイル基が導入されている(即ち水酸基が化学修飾されている)ことにより、セルロース分子の水酸基が封鎖され、セルロース分子の水素結合力が抑制されていることに加え、セルロース繊維が本来有していた結晶構造を特定の割合で保持していることが特徴である。 In the chemically modified CNF dispersed in the resin composition of the present invention, for example, an alkanoyl group such as an acetyl group is introduced instead of the hydrogen atom of the hydroxyl group of the sugar chain constituting cellulose (that is, the hydroxyl group is chemically modified). In other words, the hydroxyl groups of the cellulose molecules are blocked, the hydrogen bonding force of the cellulose molecules is suppressed, and the crystal structure originally possessed by the cellulose fibers is retained at a specific ratio. It is a feature.
 また、この様な化学修飾CNFと特定のSP値を有する樹脂とを組み合わせた(複合化した)点に本発明の特徴がある。 Further, the present invention is characterized in that such a chemically modified CNF and a resin having a specific SP value are combined (composited).
 この様な本発明の特徴は、セルロース繊維又はリグノセルロース繊維表面の糖鎖に存在する水酸基を化学修飾(例えばアセチル基等に置換)する度合いを変えることによって、SP値とセルロース繊維又はリグノセルロースが元来有していた結晶化度を制御できるとの知見と、そして、この様にしてSP値と結晶化度が制御された化学修飾CNFは、特定のSP値を有するセルロースが樹脂に対して相容性が向上すること等の知見を得た結果に基づくものである。 Such a feature of the present invention is that the SP value and the cellulose fiber or lignocellulose are changed by changing the degree of chemical modification of the sugar chain on the surface of the cellulose fiber or lignocellulose fiber (for example, substitution with an acetyl group or the like). The knowledge that the degree of crystallinity originally possessed can be controlled, and the chemically modified CNF in which the SP value and the degree of crystallinity are controlled in this way, cellulose having a specific SP value is compared to the resin This is based on the result of obtaining knowledge such as improved compatibility.
 本発明は下記の化学修飾CNF及び熱可塑性樹脂を含有する繊維強化樹脂組成物及びその製造方法に関する。 The present invention relates to a fiber reinforced resin composition containing the following chemically modified CNF and a thermoplastic resin, and a method for producing the same.
 項1.
(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物であって、
前記化学修飾セルロースナノファイバー及び熱可塑性樹脂が下記の条件:
(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)(A)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
を満たす繊維強化樹脂組成物。
Item 1.
A fiber reinforced resin composition containing (A) chemically modified cellulose nanofibers and (B) a thermoplastic resin,
The chemically modified cellulose nanofiber and the thermoplastic resin have the following conditions:
The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88. And (b) (A) a fiber-reinforced resin composition that satisfies the crystallinity of chemically modified cellulose nanofibers of 42.7% or more.
 項2.
前記条件(a)の比率R (SPcnf/SPpol)が1.03~1.88の範囲である、前記項1に記載の繊維強化樹脂組成物。
Item 2.
2. The fiber-reinforced resin composition according to item 1, wherein the ratio R (SP cnf / SP pol ) of the condition (a) is in the range of 1.03 to 1.88.
 項3.
前記条件(b)の(A)化学修飾セルロースナノファイバーの結晶化度が55.6%以上である、前記項1又は2に記載の繊維強化樹脂組成物。
Item 3.
Item 3. The fiber-reinforced resin composition according to Item 1 or 2, wherein the crystallinity of the chemically modified cellulose nanofiber (A) in the condition (b) is 55.6% or more.
 項4.
前記(A)化学修飾セルロースナノファイバーが、セルロースナノファイバーを構成する糖鎖の水酸基がアルカノイル基で修飾されたセルロースナノファイバーである、前記項1~3のいずれかに記載の繊維強化樹脂組成物。
Item 4.
Item 4. The fiber-reinforced resin composition according to any one of Items 1 to 3, wherein (A) the chemically modified cellulose nanofiber is a cellulose nanofiber in which a hydroxyl group of a sugar chain constituting the cellulose nanofiber is modified with an alkanoyl group. .
 項5.
前記(B)熱可塑性樹脂が、ポリアミド、ポリアセタール、ポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリ乳酸、ポリエチレン、ポリスチレン及びABS樹脂からなる群から選ばれる少なくとも1種の樹脂である、前記項1~4のいずれかに記載の繊維強化樹脂組成物。
Item 5.
The item (1) to (4), wherein the (B) thermoplastic resin is at least one resin selected from the group consisting of polyamide, polyacetal, polypropylene, maleic anhydride-modified polypropylene, polylactic acid, polyethylene, polystyrene, and ABS resin. The fiber reinforced resin composition in any one.
 項6.
前記(B)熱可塑性樹脂がポリアミド、ポリアセタール及びポリ乳酸からなる群から選ばれる少なくとも1種の樹脂であり、前記条件(a)の比率Rが1.03~1.32であり、前記(b)の化学修飾セルロースナノファイバーの結晶化度が55.6%以上である、前記項1~4のいずれかに記載の繊維強化樹脂組成物。
Item 6.
The (B) thermoplastic resin is at least one resin selected from the group consisting of polyamide, polyacetal, and polylactic acid, the ratio R of the condition (a) is 1.03-1.32, and the chemical modification of (b) Item 5. The fiber-reinforced resin composition according to any one of Items 1 to 4, wherein the crystallinity of the cellulose nanofiber is 55.6% or more.
 項7.
前記(B)熱可塑性樹脂がポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリエチレン及びポリスチレンからなる群から選ばれる少なくとも1種の樹脂であり、前記条件(a)の比率Rが1.21~1.88であり、前記(b)の化学修飾セルロースナノファイバーの結晶化度が42.7%以上である、前記項1~4のいずれかに記載の繊維強化樹脂組成物。
Item 7.
The thermoplastic resin (B) is at least one resin selected from the group consisting of polypropylene, maleic anhydride-modified polypropylene, polyethylene and polystyrene, and the ratio R in the condition (a) is 1.21 to 1.88, Item 5. The fiber-reinforced resin composition according to any one of Items 1 to 4, wherein the crystallinity of the chemically modified cellulose nanofiber of b) is 42.7% or more.
 項8.
前記(A)化学修飾セルロースナノファイバーが、セルロースナノファイバーを構成する糖鎖の水酸基がアセチル基で修飾されたセルロースナノファイバーである、前記項1~7のいずれかに記載の繊維強化樹脂組成物。
Item 8.
Item 8. The fiber-reinforced resin composition according to any one of Items 1 to 7, wherein the (A) chemically modified cellulose nanofiber is a cellulose nanofiber in which a hydroxyl group of a sugar chain constituting the cellulose nanofiber is modified with an acetyl group. .
 項9.
前記化学修飾セルロースナノファイバー及びセルロースナノファイバーのセルロースが、リグノセルロースである、前記項1~8のいずれかに記載の繊維強化樹脂組成物。
Item 9.
Item 9. The fiber-reinforced resin composition according to any one of Items 1 to 8, wherein the chemically modified cellulose nanofiber and cellulose of the cellulose nanofiber are lignocellulose.
 項10.
(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、下記の工程:
(1)下記の条件:
(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)(A)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
を満たす(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を選定する工程、
(2)前記工程(1)で選定された(A)化学修飾セルロースナノファイバーと(B)熱可塑性樹脂とを配合する工程、及び
(3)前記工程(2)で配合された(A)化学修飾セルロースナノファイバーと(B)熱可塑性樹脂とを混練し、樹脂組成物を得る工程
を含むことを特徴とする製造方法。
Item 10.
(A) A method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin, the following steps:
(1) The following conditions:
The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88. And (b) (A) satisfying the crystallinity of the chemically modified cellulose nanofiber of 42.7% or more, (A) selecting the chemically modified cellulose nanofiber and (B) a thermoplastic resin,
(2) a step of blending (A) the chemically modified cellulose nanofiber selected in the step (1) and (B) a thermoplastic resin, and
(3) A production method comprising the step of kneading (A) chemically modified cellulose nanofibers blended in the step (2) and (B) a thermoplastic resin to obtain a resin composition.
 項11.
(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、下記の工程:
(1)下記の条件:
(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
を満たす解繊処理後の(A)化学修飾セルロースナノファイバーとなる(A1)化学修飾パルプ及び(B)熱可塑性樹脂を選定する工程、
(2)前記工程(1)で選定された(A1)化学修飾パルプと(B)熱可塑性樹脂とを配合する工程、及び
(3)前記工程(2)で配合された(A1)化学修飾パルプと(B)熱可塑性樹脂とを混練し、同時に(A1)化学修飾パルプを解繊し、(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程
を含むことを特徴とする製造方法。
Item 11.
(A) A method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin, the following steps:
(1) The following conditions:
The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88. And (b) (A) chemically modified cellulose nanofiber and (B) thermoplastic resin to be (A) chemically modified cellulose nanofiber after defibration that satisfies the crystallinity of the chemically modified cellulose nanofiber of 42.7% or more Process of selecting,
(2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and
(3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and at the same time, (A1) chemically modified pulp is defibrated, (A) chemically modified cellulose nanofiber And (B) a method for producing a resin composition containing a thermoplastic resin.
 項12.
(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、下記の工程:
(1)(A1)化学修飾パルプ及び(B)熱可塑性樹脂を選定する工程、
(2)前記工程(1)で選定された(A1)化学修飾パルプと(B)熱可塑性樹脂とを配合する工程、及び
(3)前記工程(2)で配合された(A1)化学修飾パルプと(B)熱可塑性樹脂とを混練し、同時に(A1)化学修飾パルプを解繊し、(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程
を含み、
前記(A)化学修飾セルロースナノファイバーと(B)熱可塑性樹脂とが、下記の条件:(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
を満たすことを特徴とする製造方法。
Item 12.
(A) A method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin, the following steps:
(1) (A1) a process of selecting chemically modified pulp and (B) thermoplastic resin,
(2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and
(3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and at the same time, (A1) chemically modified pulp is defibrated, (A) chemically modified cellulose nanofiber And (B) obtaining a resin composition containing a thermoplastic resin,
The (A) chemically modified cellulose nanofiber and the (B) thermoplastic resin are dissolved under the following conditions: (a) (B) the dissolution parameter (SP pol ) of the thermoplastic resin (A) The ratio R (SP cnf / SP pol ) of the parameter (SP cnf ) is in the range of 0.87 to 1.88, and (b) the crystallinity of the chemically modified cellulose nanofiber is 42.7% or more. Production method.
 項13.
前記(a)の比率R (SPcnf/SPpol)が1.03~1.82の範囲である、前記項10~12のいずれかに記載の製造方法。
Item 13.
Item 13. The production method according to any one of Items 10 to 12, wherein the ratio R (SP cnf / SP pol ) of (a) is in the range of 1.03 to 1.82.
 項14.
結晶化度が42.7%以上であり、糖鎖の水酸基がアセチル基で置換されており、その置換度が0.29~2.52であり、溶解度パラメータ(SPcnf)が9.9~15である、(A2)アセチル化セルロースナノファイバー。
Item 14.
(A2) Acetyl having a crystallinity of 42.7% or more, a hydroxyl group of a sugar chain substituted with an acetyl group, a substitution degree of 0.29 to 2.52, and a solubility parameter (SP cnf ) of 9.9 to 15 Cellulose nanofiber.
 項15.
前記項14に記載の(A2)アセチル化セルロースナノファイバー及び、(B)熱可塑性樹脂を含む繊維強化樹脂組成物。
Item 15.
Item 15. A fiber-reinforced resin composition comprising (A2) acetylated cellulose nanofiber according to Item 14 and (B) a thermoplastic resin.
 項16.
前記(B)熱可塑性樹脂100質量部に対する前記(A2)アセチル化セルロースナノファイバーの含有量が0.1~30質量部である、前記項15に記載の繊維強化樹脂組成物。
Item 16.
Item 16. The fiber-reinforced resin composition according to Item 15, wherein a content of the (A2) acetylated cellulose nanofibers is 0.1 to 30 parts by mass with respect to 100 parts by mass of the (B) thermoplastic resin.
 項17.
前記(B)熱可塑性樹脂が、ポリアミド樹脂、ポリアセタール樹脂、ポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリ乳酸、ポリエチレン、ポリスチレン、ABS樹脂からなる群から選ばれる少なくとも1種の樹脂である、前記項15又は16に記載の繊維強化樹脂組成物。
Item 17.
Item 15 or above, wherein (B) the thermoplastic resin is at least one resin selected from the group consisting of polyamide resin, polyacetal resin, polypropylene, maleic anhydride-modified polypropylene, polylactic acid, polyethylene, polystyrene, and ABS resin. 16. The fiber reinforced resin composition according to 16.
 項18.
前記アセチル化セルロースナノファイバーが、アセチル化リグノセルロースナノファイバーである、前記項15又は16に記載の繊維強化樹脂組成物。
Item 18.
Item 17. The fiber-reinforced resin composition according to Item 15 or 16, wherein the acetylated cellulose nanofiber is an acetylated lignocellulose nanofiber.
 項19.
(A2)アセチル化セルロースナノファイバー及び(B)熱可塑性樹脂を含む繊維強化樹脂組成物の製造方法であって、下記の工程:
(1) (A3)アセチル化セルロースを含む(A4)繊維集合体と(B)熱可塑性樹脂とを混練し、同時に(A3)アセチル化セルロースを解繊し、(A2)アセチル化セルロースナノファイバー及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程を含み、
前記(A2)アセチル化セルロースナノファイバーの結晶化度が42.7%以上であり、糖鎖の水酸基がアセチル基で置換されており、その置換度が0.29~2.52であり、溶解度パラメータ(SPcnf)が9.9~15である、ことを特徴とする製造方法。
Item 19.
A method for producing a fiber-reinforced resin composition comprising (A2) acetylated cellulose nanofibers and (B) a thermoplastic resin, the following steps:
(1) (A3) Kneaded (A4) fiber assembly containing acetylated cellulose and (B) thermoplastic resin, and (A3) acetylated cellulose at the same time, (A2) acetylated cellulose nanofibers and (B) including a step of obtaining a resin composition containing a thermoplastic resin,
The crystallinity of the (A2) acetylated cellulose nanofiber is 42.7% or more, the hydroxyl group of the sugar chain is substituted with an acetyl group, the degree of substitution is 0.29 to 2.52, and the solubility parameter (SP cnf ) is A production method characterized by 9.9-15.
 本発明の繊維強化樹脂組成物では、この組成物中の化学修飾CNFがCNFを構成する糖鎖の表面の水酸基が、例えば、アセチル基等のアルカノイル基等で修飾されている(即ち化学修飾されている)ことにより、セルロースの水素結合による自己凝集が抑制されている。 In the fiber reinforced resin composition of the present invention, the hydroxyl group on the surface of the sugar chain in which the chemically modified CNF in the composition constitutes CNF is modified with, for example, an alkanoyl group such as an acetyl group (that is, chemically modified). Thus, self-aggregation due to hydrogen bonding of cellulose is suppressed.
 しかも本発明の繊維強化樹脂組成物は、このマトリックス成分(樹脂)と化学修飾CNFの好適な組み合わせにより構成されているので、樹脂中の化学修飾CNFと樹脂との親和性は高く、樹脂中の化学修飾CNFの分散性は良好である。その結果、本発明繊維強化樹脂組成物は最適の強度を発揮する。 Moreover, since the fiber-reinforced resin composition of the present invention is composed of a suitable combination of this matrix component (resin) and chemically modified CNF, the affinity between the chemically modified CNF in the resin and the resin is high, Dispersibility of chemically modified CNF is good. As a result, the fiber reinforced resin composition of the present invention exhibits optimum strength.
 例えば、化学修飾CNFを10質量%含有する本発明の繊維強化樹脂組成物と、それと同一の樹脂に無修飾CNFを同量含有する繊維強化樹脂組成物とを比較すると、本発明の繊維強化樹脂組成物の弾性率は、熱可塑性樹脂の溶解パラメータ(SPpol)に対する(化学修飾CNFの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲内にあるとき無修飾CNFを含有する繊維強化樹脂組成物の弾性率の1.05倍以上である。そして、この比率Rの範囲内で更に最適の強度を発揮するように、化学修飾CNF及び樹脂を設計することもできる。 For example, when the fiber reinforced resin composition of the present invention containing 10% by mass of chemically modified CNF is compared with the fiber reinforced resin composition containing the same amount of unmodified CNF in the same resin, the fiber reinforced resin of the present invention is compared. The modulus of elasticity of the composition is not present when the ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of the chemically modified CNF to the solubility parameter (SP pol ) of the thermoplastic resin is in the range of 0.87 to 1.88. It is 1.05 times or more the elastic modulus of the fiber reinforced resin composition containing the modified CNF, and the chemically modified CNF and the resin can be designed so as to exhibit further optimum strength within the range of this ratio R. .
 本発明の繊維強化樹脂組成物は化学修飾CNFと樹脂とを混練して製造できるが、パルプなどのセルロース繊維集合体を化学修飾したのちこれを樹脂と溶融混合すると、その工程において、繊維径が数十から数百μmの化学修飾(例えば、アセチル化等)パルプが、混練と同時に繊維径が数十nm~数百nmの化学修飾CNFに容易に解繊され、本発明の繊維強化樹脂組成物を容易に製造することができる。 The fiber-reinforced resin composition of the present invention can be produced by kneading a chemically modified CNF and a resin. However, when a cellulose fiber aggregate such as pulp is chemically modified and then melt-mixed with the resin, the fiber diameter is reduced in the process. A tens to hundreds of μm chemically modified (for example, acetylated) pulp is easily defibrated to a chemically modified CNF having a fiber diameter of several tens to several hundreds of nm simultaneously with kneading, and the fiber reinforced resin composition of the present invention Things can be easily manufactured.
 本発明に使用される化学修飾CNFは、アセチル化剤等の低廉な化学修飾剤で簡便な操作で化学修飾したものを使用することもできる。そして、本発明の繊維強化樹脂組成物は、最適な樹脂との組合せにより容易に製造することも可能であることから、低コストであり、実用化が容易である。そして、本発明の繊維強化樹脂組成物は樹脂中での化学修飾CNFの分散性が良好なので、良好な特性を有する。 As the chemically modified CNF used in the present invention, a chemically modified CNF which is chemically modified with an inexpensive chemical modifier such as an acetylating agent can be used. And since the fiber reinforced resin composition of this invention can also be easily manufactured by the combination with optimal resin, it is low-cost and practical use is easy. The fiber-reinforced resin composition of the present invention has good properties because the dispersibility of the chemically modified CNF in the resin is good.
 本発明の繊維強化樹脂組成物では、セルロース又はリグノセルロースに存在する水酸基のうちの幾つを化学修飾するか(例えばアセチル基等の修飾基で置き換えるか)に依って、各樹脂に対して最適な溶解度パラメータ(SP)値を有する化学修飾CNF(アセチル化CNF等)を容易に選定してこれを繊維強化樹脂組成物の製造のために使用することができる。 In the fiber reinforced resin composition of the present invention, an optimum amount for each resin depends on how many of the hydroxyl groups present in cellulose or lignocellulose are chemically modified (for example, replaced with a modifying group such as an acetyl group). A chemically modified CNF (such as acetylated CNF) having a solubility parameter (SP) value can be easily selected and used for the production of a fiber reinforced resin composition.
 本発明の繊維強化樹脂組成物では、セルロースの結晶化度を約42%以上に保ち、適切な溶解度パラメータ(SP)値とすることにより、化学修飾CNFの樹脂中での分散性が高く、セルロースの樹脂に対する補強効果が向上しているので、優れた力学的特性を持つ維強化複合材料を得ることができる。 In the fiber reinforced resin composition of the present invention, the dispersibility of the chemically modified CNF in the resin is high by maintaining the crystallinity of the cellulose at about 42% or more and setting the appropriate solubility parameter (SP) value. Since the reinforcing effect on the resin is improved, a fiber-reinforced composite material having excellent mechanical properties can be obtained.
 本発明の繊維強化樹脂組成物では、例えばポリアミド6(PA6)、ポリアセタール(ポリオキシメチレン、POM)、ポリプロピレン(PP)、無水マレイン酸変性ポリプロピレン(MAPP)等の樹脂(マトリックス)と化学修飾(例えばアセチル化等)パルプとを溶融混練して、せん断応力を利用して解繊することができる。その化学修飾パルプはナノファイバー化され、化学修飾CNFは樹脂中に良好に分散される。 In the fiber reinforced resin composition of the present invention, for example, polyamide 6 (PA6), polyacetal (polyoxymethylene, POM), polypropylene (PP), maleic anhydride modified polypropylene (MAPP) and the like (matrix) and chemical modification (for example, Acetyl etc.) can be melt kneaded with pulp and defibrated using shear stress. The chemically modified pulp is converted into nanofibers, and the chemically modified CNF is well dispersed in the resin.
 樹脂及び化学修飾CNFを含む本発明の繊維強化樹脂組成物は、樹脂のみの態様に比べて曲げ弾性率が高い。例えば化学修飾CNFを10質量%含有する場合、PA6-化学修飾CNFでは2.2倍以上、POM-化学修飾CNFでは2.1倍以上、PP-化学修飾CNFでは1.2倍以上、MAPP-化学修飾CNFでは1.5倍以上の曲げ弾性率となる。 The fiber reinforced resin composition of the present invention containing a resin and chemically modified CNF has a higher flexural modulus than the resin-only embodiment. For example, when containing 10% by mass of chemically modified CNF, PA6-chemically modified CNF is 2.2 times or more, POM-chemically modified CNF is 2.1 times or more, PP-chemically modified CNF is 1.2 times or more, and MAPP-chemically modified CNF is 1.5 times or more It becomes the above bending elastic modulus.
 また、本発明の樹脂及び化学修飾CNFを含む繊維強化樹脂組成物の曲げ弾性率は、無修飾CNF含有繊維強化樹脂組成物と比較しても曲げ弾性率が高い。例えば化学修飾CNFを10質量%含有する場合、少なくとも1.1倍以上である。具体的には、PA6-化学修飾CNFでは1.4倍以上、POM-化学修飾CNFでは1.5倍以上、PP-化学修飾CNFでは1.1倍以上、MAPP-化学修飾CNFでは1.1倍以上、PLA-化学修飾CNFでは1.1倍以上、PS-化学修飾CNFでは1.1倍以上、PE-化学修飾CNFでは1.3倍の曲げ弾性率となる。なお、この曲げ弾性率の倍率数値は、小数点第二位を四捨五入した値である。 Also, the flexural modulus of the fiber reinforced resin composition containing the resin of the present invention and the chemically modified CNF is higher than that of the unmodified CNF-containing fiber reinforced resin composition. For example, when containing 10% by mass of chemically modified CNF, it is at least 1.1 times or more. Specifically, PA6-chemically modified CNF is 1.4 times or more, POM-chemically modified CNF is 1.5 times or more, PP-chemically modified CNF is 1.1 times or more, MAPP-chemically modified CNF is 1.1 times or more, PLA-chemically modified CNF Is 1.1 times or more, PS-chemically modified CNF is 1.1 times or more, and PE-chemically modified CNF is 1.3 times. In addition, the magnification value of this bending elastic modulus is a value obtained by rounding off the second decimal place.
 繊維強化樹脂組成物は、化学修飾CNFによる樹脂の補強効果が高い。 The fiber reinforced resin composition has a high resin reinforcing effect by chemically modified CNF.
原材料であるNBKPのSEM写真である。It is a SEM photograph of NBKP which is a raw material. アセチル化NBKP(DS=0.88)のSEM写真である。It is a SEM photograph of acetylated NBKP (DS = 0.88). 未処理NBKP添加PA6(No.PA6-15)のX-CT像である。It is an X-CT image of untreated NBKP-added PA6 (No. PA6-15). 未処理NBKP添加PA6(No.PA6-15)のPA6を抽出し得られたセルロースのSEM写真である。3 is an SEM photograph of cellulose obtained by extracting PA6 of untreated NBKP-added PA6 (No. PA6-15). アセチル化NBKP添加PA6(NO.PA6-216)のX-CT像である。It is an X-CT image of acetylated NBKP-added PA6 (NO.PA6-216). アセチル化NBKP添加PA6(NO.PA6-216)のPA6を抽出し得られたセルロースのSEM写真である。3 is an SEM photograph of cellulose obtained by extracting PA6 of acetylated NBKP-added PA6 (NO.PA6-216). 未処理NBKP添加POM(No.POM-148)のPOMを抽出し得られたセルロースのSEM写真である。It is a SEM photograph of cellulose obtained by extracting POM of untreated NBKP-added POM (No. POM-148). アセチル化NBKP添加POM(No.POM-134)のPOMを抽出し得られたセルロースのSEM写真である。3 is an SEM photograph of cellulose obtained by extracting POM of acetylated NBKP-added POM (No. POM-134). 低DS(DS=0.46)アセチル化NBKP添加POM(No.POM-129)のPOMを抽出し得られたセルロースのSEM写真である。2 is an SEM photograph of cellulose obtained by extracting a POM of a low DS (DS = 0.46) acetylated NBKP-added POM (No. POM-129). 低DS(DS=0.40)アセチル化NBKP添加POM(No.POM-128)複合材料の透過型電子顕微鏡写真である。3 is a transmission electron micrograph of a low DS (DS = 0.40) acetylated NBKP-added POM (No. POM-128) composite material. 未処理NBKP添加PP(No.PP-116)のX-CT像である。It is an X-CT image of untreated NBKP-added PP (No. PP-116). 未処理NBKP添加PP(No.PP-116)のPPを抽出し得られたセルロースのSEM写真である。3 is an SEM photograph of cellulose obtained by extracting PP of untreated NBKP-added PP (No. PP-116). アセチル化NBKP添加PP(No.PP-367)のX-CT像である。It is an X-CT image of acetylated NBKP-added PP (No. PP-367). アセチル化NBKP添加PP(No.PP-367)のPPを抽出し得られたセルロースのSEM写真である。3 is an SEM photograph of cellulose obtained by extracting PP of acetylated NBKP-added PP (No. PP-367). 低DS(DS=0.46)アセチル化NBKP添加PP(No.PP-304)のX-CT像である。It is an X-CT image of low DS (DS = 0.46) acetylated NBKP-added PP (No. PP-304). 低DS(DS=0.46)アセチル化NBKP添加PP(No.PP-304)のPPを抽出し得られたセルロースのSEM写真である。3 is an SEM photograph of cellulose obtained by extracting PP of low DS (DS = 0.46) acetylated NBKP-added PP (No. PP-304).
以下、本発明の繊維強化樹脂組成物を詳しく説明する。 Hereinafter, the fiber reinforced resin composition of the present invention will be described in detail.
 (1)繊維強化樹脂組成物
 本発明の繊維強化樹脂組成物は、(A)化学修飾セルロースナノファイバー(化学修飾CNF)及び(B)熱可塑性樹脂を含有し、
前記化学修飾CNF及び熱可塑性樹脂が下記の条件:
(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾CNFの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)(A)化学修飾CNFの結晶化度が42.7%以上である
を満たす。
(1) Fiber reinforced resin compositionThe fiber reinforced resin composition of the present invention contains (A) chemically modified cellulose nanofiber (chemically modified CNF) and (B) thermoplastic resin,
The chemically modified CNF and the thermoplastic resin satisfy the following conditions:
(a) the ratio R (SP cnf / SP pol ) of the (A) chemically modified CNF solubility parameter (SP cnf ) to the thermoplastic resin solubility parameter (SP pol ) is in the range of 0.87 to 1.88; and (b) (A) The degree of crystallinity of the chemically modified CNF is 42.7% or more.
 前記(a)の比率R (SPcnf/SPpol)は、1.03~1.88程度の範囲が好ましく、1.03~1.82程度の範囲がより好ましい。 The ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, more preferably in the range of about 1.03 to 1.82.
 セルロース分子の繰り返し単位には3つの水酸基が存在する。本発明では、セルロース分子に存在する水酸基のうちの幾つを化学修飾するか(例えばアセチル基等で置き換えるか)に依って、各樹脂に対して最適な溶解度パラメータ(SP)値を有する化学修飾CNF(例えばアセチル化CNF等)を得ることができる。その化学修飾処理により、本発明繊維強化樹脂組成物の樹脂中での化学修飾CNFの分散性が促進され、樹脂に対する化学修飾CNFの補強効果が向上し、優れた力学的特性を持つCNF複合材料を得ることができる。 There are three hydroxyl groups in the repeating unit of cellulose molecules. In the present invention, a chemically modified CNF having an optimum solubility parameter (SP) value for each resin, depending on how many of the hydroxyl groups present in the cellulose molecule are chemically modified (for example, replaced with acetyl groups or the like). (Eg, acetylated CNF) can be obtained. Due to the chemical modification treatment, the dispersibility of the chemically modified CNF in the resin of the fiber-reinforced resin composition of the present invention is promoted, the reinforcing effect of the chemically modified CNF on the resin is improved, and the CNF composite material having excellent mechanical properties Can be obtained.
 (1-1) (A)化学修飾セルロースナノファイバー(化学修飾CNF)
 本発明の繊維強化樹脂組成物は(A)化学修飾CNFを含む。
(1-1) (A) Chemically modified cellulose nanofiber (Chemically modified CNF)
The fiber reinforced resin composition of the present invention contains (A) chemically modified CNF.
 (A)化学修飾CNFの結晶化度は42.7%以上である。 (A) The degree of crystallinity of chemically modified CNF is 42.7% or more.
 植物繊維(セルロース及びリグノセルロース)
 化学修飾CNFの原料として用いられる植物繊維には、セルロース又は/及びリグノセルロースを含む、木材、竹、麻、ジュート、ケナフ、綿、ビート、農産物残廃物、布といった天然植物原料から得られる繊維挙げられる。木材としては、例えば、シトカスプルース、スギ、ヒノキ、ユーカリ、アカシア等が挙げられ、紙としては、脱墨古紙、段ボール古紙、雑誌、コピー用紙等が挙げられるが、これらに限定されるものではない。植物繊維は、1種単独でも用いてもよく、これらから選ばれた2種以上を用いてもよい。
Plant fiber (cellulose and lignocellulose)
Plant fibers used as raw materials for chemically modified CNF include fibers obtained from natural plant materials such as wood, bamboo, hemp, jute, kenaf, cotton, beet, agricultural waste, and cloth containing cellulose or / and lignocellulose. It is done. Examples of wood include Sitka spruce, cedar, cypress, eucalyptus, acacia, and examples of paper include, but are not limited to, deinked waste paper, corrugated waste paper, magazines, copy paper, and the like. . One kind of plant fiber may be used alone, or two or more kinds selected from these may be used.
 化学修飾CNFの原料として、リグノセルロースも用いることができる。 Lignocellulose can also be used as a raw material for chemically modified CNF.
 リグノセルロースは、植物の細胞壁を構成する、複合炭化水素高分子であり、主に多糖類のセルロース、ヘミセルロースと芳香族高分子であるリグニンから構成されていることが知られている。 Lignocellulose is a complex hydrocarbon polymer that constitutes the cell walls of plants, and is known to be mainly composed of polysaccharide cellulose, hemicellulose, and lignin, which is an aromatic polymer.
 参照例1:Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process H. V. Lee, S. B. A. Hamid, and S. K. Zain, Scientific World Journal Volume 2014、Article ID 631013, 20 pages, http://dx.doi.org/10.1155/2014/631013
 参照例2:New lignocellulose pretreatments using cellulose solvents: a review, Noppadon Sathitsuksanoh, Anthe George and Y-H Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
 本明細書で使用される「リグノセルロース」の用語は、植物中に天然に存在する化学構造のリグノセルロース又は/及びリグノセルロース混合物、人工的に改変されたリグノセルロース又は/及びリグノセルロース混合物を意味する。前記混合物は、例えば、天然の植物から得られる、木材、これを機械的又は/及び化学的に処理して得られる種々のパルプ中に含まれる化学構造のリグノセルロース又は/及びリグノセルロース混合物である。リグノセルロースは、天然に存在する化学構造のリグノセルロースに限定されるものではなく、また、リグノセルロース中のリグニン含有量も限定されるものではない。
Reference Example 1: Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process HV Lee, SBA Hamid, and SK Zain, Scientific World Journal Volume 2014, Article ID 631013, 20 pages, http://dx.doi.org/ 10.1155 / 2014/631013
Reference example 2: New lignocellulose pretreatments using cellulose solvents: a review, Noppadon Sathitsuksanoh, Anthe George and YH Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
As used herein, the term “lignocellulose” means a lignocellulose or / and lignocellulose mixture, artificially modified lignocellulose or / and lignocellulose mixture of chemical structure naturally present in plants. To do. The mixture is, for example, a lignocellulose or / and a lignocellulose mixture having chemical structures contained in various pulps obtained from natural plants and obtained by mechanically and / or chemically treating the wood. . Lignocellulose is not limited to lignocellulose having a chemical structure that exists in nature, and the lignin content in lignocellulose is not limited.
 即ち、本発明で使用されるリグノセルロースやリグノパルプの用語は、リグニン成分の含量が微量であっても、それぞれ、リグノセルロース、リグノパルプとして解釈される。 That is, the terms lignocellulose and lignopulp used in the present invention are interpreted as lignocellulose and lignopulp, respectively, even if the content of the lignin component is very small.
 リグノセルロースの原料には、リグノセルロースを含有する繊維又はリグノセルロースを含有する繊維集合体を使用することができる。リグノセルロースを含有する繊維集合体には、植物由来パルプ、木粉、木片等の他、あらゆる形状のリグノセルロースを含有する繊維集合体が含まれる。植物性原料として、木材、竹、麻、ジュート、ケナフ等の植物由来素材、バガス、藁、ビート絞りかす等の農産物残廃物等を用いることができる。それらリグノセルロースが含まれている植物性原料を、片状、紛状、繊維状等の形状にして使用することができる。 For the raw material of lignocellulose, a fiber containing lignocellulose or a fiber aggregate containing lignocellulose can be used. The fiber aggregate containing lignocellulose includes fiber aggregates containing lignocellulose of any shape in addition to plant-derived pulp, wood flour, wood chips and the like. Plant-derived materials such as wood, bamboo, hemp, jute and kenaf, and agricultural residue such as bagasse, firewood and beet pomace can be used as plant raw materials. These plant raw materials containing lignocellulose can be used in the form of flakes, powders, fibers, or the like.
 植物の細胞壁は、主としてリグノセルロースから構成されている。植物細胞壁の微細構造では、通常、約40本のセルロース分子が、水素結合で結合し、通常、幅4~5nm程度のセルロースミクロフィブリル(シングルCNF)を形成し、セルロースミクロフィブリルが数個集まってセルロース微繊維(セルロースミクロフィブリル束)を形成している。そして、ヘミセルロースはセルロースミクロフィブリル同士の間隙やセルロースミクロフィブリルの周囲に存在し、リグニンはセルロースミクロフィブリル同士の間隙に充填された状態で存在していることが知られている。 The plant cell wall is mainly composed of lignocellulose. In the fine structure of the plant cell wall, about 40 cellulose molecules are usually bonded by hydrogen bonding to form cellulose microfibrils (single CNF), usually about 4-5 nm wide, and several cellulose microfibrils are gathered together. Cellulose fine fibers (cellulose microfibril bundles) are formed. And it is known that hemicellulose exists in the space | interval between cellulose microfibrils, and the circumference | surroundings of a cellulose microfibril, and lignin exists in the state with which it filled with the space | interval between cellulose microfibrils.
 植物繊維やリグノセルロースの製造原料の代表的な例はパルプである。パルプは、木材等の植物由来素材を化学的又は/及び機械的に処理してそこに含まれる繊維を取り出したものである。これは、植物由来素材の化学的、生化学的処理の程度によりヘミセルロース及びリグニンの含有量は低くなり、セルロースを主成分とする繊維となる。 A typical example of a raw material for producing plant fiber or lignocellulose is pulp. Pulp is obtained by processing a plant-derived material such as wood chemically or / and mechanically and removing fibers contained therein. This is because the content of hemicellulose and lignin is lowered depending on the degree of chemical and biochemical treatment of the plant-derived material, and the fiber is mainly composed of cellulose.
 パルプ製造用の木材としては、例えば、シトカスプルース、スギ、ヒノキ、ユーカリ、アカシア等を用いることができる。本発明の繊維強化樹脂組成物に使用する化学修飾CNFの原料には、例えば、脱墨古紙、段ボール古紙、雑誌、コピー用紙等の古紙を用いることもできる。本発明の繊維強化樹脂組成物に使用する化学修飾CNFの原料として、一種の植物繊維又は二種以上の植物繊維を組み合わせて用いることもできる。 As wood for pulp production, for example, Sitka spruce, cedar, cypress, eucalyptus, acacia and the like can be used. As the raw material of the chemically modified CNF used in the fiber reinforced resin composition of the present invention, for example, waste paper such as deinked waste paper, corrugated waste paper, magazines, and copy paper can be used. As a raw material of the chemically modified CNF used in the fiber reinforced resin composition of the present invention, one kind of plant fiber or two or more kinds of plant fibers can be used in combination.
 本発明の繊維強化樹脂組成物に使用する化学修飾CNFの原料として、パルプやパルプをフィブリル化したフィブリル化セルロース及びフィブリル化リグノセルロースが好ましい原材料として挙げられる。パルプはリグノセルロースを含み、主にセルロース、ヘミセルロース、リグニンから構成される。パルプは、植物性原料を機械パルプ化法、化学パルプ化法又は機械パルプ化法と化学パルプ化法との組み合わせにより処理して、得ることができる。機械パルプ化法は、リグニンを残したまま、グラインダーやリファイナー等の機械力によりパルプ化する方法である。化学パルプ化法は、薬品を使用して、リグニンの含有量を調整することによりによりパルプ化する方法である。 As raw materials for chemically modified CNF used in the fiber reinforced resin composition of the present invention, fibrillated cellulose obtained by fibrillating pulp or pulp and fibrillated lignocellulose can be mentioned as preferable raw materials. Pulp contains lignocellulose and is mainly composed of cellulose, hemicellulose, and lignin. Pulp can be obtained by treating plant raw materials by mechanical pulping, chemical pulping, or a combination of mechanical pulping and chemical pulping. The mechanical pulping method is a method of pulping by mechanical force such as a grinder or refiner while leaving lignin. The chemical pulping method is a method of pulping by adjusting the content of lignin using a chemical.
 機械パルプ(MP)としては、砕木パルプ(GP)、リファイナーGP(RGP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、晒化学サーモメカニカルパルプ(BCTMP)等を用いることができる。 As mechanical pulp (MP), groundwood pulp (GP), refiner GP (RGP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), bleached chemical thermomechanical pulp (BCTMP), and the like can be used.
 機械パルプ化法と化学パルプ化法との組み合わせで製造されたパルプとしては、ケミメカニカルパルプ(CMP)、ケミグランドパルプ(CGP)、セミケミカルパルプ(SCP)等を用いることができる。セミケミカルパルプ(SCP)としては、亜硫酸塩法、冷ソーダ法、クラフト法、ソーダ法等で製造されたパルプを用いることができる。 As the pulp produced by a combination of the mechanical pulping method and the chemical pulping method, chemimechanical pulp (CMP), chemiground pulp (CGP), semi-chemical pulp (SCP) and the like can be used. As the semi-chemical pulp (SCP), pulp produced by a sulfite method, a cold soda method, a kraft method, a soda method, or the like can be used.
 化学パルプ(CP)としては、亜硫酸パルプ(SP)、ソーダパルプ(AP)、クラフトパルプ(KP)、溶解用クラフトパルプ(DKP)等を用いることができる。 As the chemical pulp (CP), sulfite pulp (SP), soda pulp (AP), kraft pulp (KP), dissolving kraft pulp (DKP) and the like can be used.
 機械パルプ、化学パルプ等のパルプを主成分とする、脱墨古紙パルプ、段ボール古紙パルプ、雑誌古紙パルプも化学修飾CNFの原料として用いることができる。 Deinked waste paper pulp, corrugated waste paper pulp, and magazine waste paper pulp mainly composed of mechanical pulp, chemical pulp, etc. can also be used as a raw material for chemically modified CNF.
 これらの原材料は、必要に応じ、脱リグニン、又は漂白を行い、当該パルプ中のリグニン量を調整することができる。 These raw materials can be delignified or bleached as necessary to adjust the amount of lignin in the pulp.
 本発明の繊維強化樹脂組成物に使用される化学修飾CNFの原料として、これらのパルプの中でも、繊維の強度が強い針葉樹由来の各種クラフトパルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹酸素晒し未漂白クラフトパルプ(NOKP)、針葉樹漂白クラフトパルプ(NBKP))が特に好ましい。 As raw materials for chemically modified CNF used in the fiber reinforced resin composition of the present invention, among these pulps, various kraft pulps derived from conifers with strong fiber strength (unbleached kraft pulps of conifers (NUKP), coniferous oxygen unexposed) Bleached kraft pulp (NOKP), conifer bleached kraft pulp (NBKP)) is particularly preferred.
 パルプを用いる場合、植物原料由来のリグニンが完全には除去されずにパルプ中でリグニンが適度に存在するパルプ化法で製造されたパルプでも制限なく適用できる。例えば、植物原料を機械的にパルプ化する機械パルプ化法が好ましい。本発明の繊維強化樹脂組成物に使用される化学修飾CNFの製造に用いるパルプとしては、砕木パルプ(GP)、リファイナーGP (RGP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ(MP)を用いることが好ましい。 When using pulp, lignin derived from plant raw materials is not completely removed and pulp produced by a pulping method in which lignin is appropriately present in the pulp can be applied without limitation. For example, a mechanical pulping method in which plant raw materials are mechanically pulped is preferable. Examples of the pulp used for the production of the chemically modified CNF used in the fiber reinforced resin composition of the present invention include groundwood pulp (GP), refiner GP (RGP), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP) and the like. It is preferable to use mechanical pulp (MP).
 リグノセルロース繊維を本発明の繊維強化樹脂組成物の原料として用いる場合、リグノセルロース繊維又はこの繊維集合体(例えば、リグノパルプ)におけるリグニンの含有率は、これら原料中に化学修飾が可能な程度のリグニンを含んでいればよく、その含有量には限定がない。リグニンの含有率は、得られる化学修飾リグノセルロース強度、熱安定性等の点から、1~40質量%程度が好ましく、3~35質量%程度がより好ましく、5~35質量%程度が更に好ましい。リグニン含有量の測定は、Klason法により測定することができる。 When using lignocellulosic fibers as a raw material for the fiber-reinforced resin composition of the present invention, the content of lignin in the lignocellulosic fibers or this fiber aggregate (for example, lignopulp) is such that the lignin can be chemically modified in these raw materials. There is no limitation on the content thereof. The content of lignin is preferably about 1 to 40% by mass, more preferably about 3 to 35% by mass, and still more preferably about 5 to 35% by mass from the viewpoint of the strength of the chemically modified lignocellulose obtained and the thermal stability. . The lignin content can be measured by the Klason method.
 リグノセルロース及びリグノパルプは、リグニンを含まないセルロースやパルプに比べて、その製造工程が簡単、その原料(例えば木材)からの収率が良好である。また、少ないエネルギーで製造できることからコストの点から有利であり、本発明の繊維強化樹脂組成物の原料として有用である。 Lignocellulose and lignopulp are simpler in production process and have a better yield from the raw material (for example, wood) than cellulose and pulp not containing lignin. Moreover, since it can manufacture with little energy, it is advantageous from the point of cost, and it is useful as a raw material of the fiber reinforced resin composition of this invention.
 植物繊維を解繊し、CNFやミクロフィブリル化リグノセルロース(MFLC、本明細書ではリグノセルロースナノファイバー(リグノCNF)ともいう)を調製する方法としては、パルプ等のセルロース繊維含有材料を解繊する方法が挙げられる。解繊方法としては、例えば、セルロース繊維含有材料の水懸濁液又はスラリーを、リファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは二軸混練機)、ビーズミル等による機械的な摩砕又は叩解することにより解繊する方法が使用できる。必要に応じて、上記の解繊方法を組み合わせて処理してもよい。これらの解繊処理の方法としては、公知の解繊方法等を用いれば良い。 As a method of defibrating plant fibers and preparing CNF or microfibrillated lignocellulose (MFLC, also referred to herein as lignocellulose nanofibers (ligno CNF)), cellulose fiber-containing materials such as pulp are defibrated. A method is mentioned. As the defibrating method, for example, an aqueous suspension or slurry of a cellulose fiber-containing material is mechanically ground by a refiner, a high-pressure homogenizer, a grinder, a uniaxial or multiaxial kneader (preferably a biaxial kneader), a bead mill or the like. A method of defibration by crushing or beating can be used. You may process combining the said defibrating method as needed. A known defibrating method or the like may be used as the defibrating method.
 化学修飾セルロース繊維含有材料(化学修飾パルプ又は化学修飾リグノパルプ等)は、熱可塑性樹脂と共に一軸又は多軸混練機(好ましくは多軸混練機)で、加熱下に樹脂を溶融し混練すると解繊されてナノフィブリル化し、熱可塑性樹脂中で化学修飾CNF又は/及び化学修飾リグノCNFとすることができるので、本発明の繊維強化樹脂組成物を製造するには、このようにして化学修飾セルロース繊維含有材料を溶融熱可塑樹脂中で解繊するのが有利である。 Chemically modified cellulose fiber-containing materials (such as chemically modified pulp or chemically modified lignopulp) are defibrated when the resin is melted and kneaded under heating in a uniaxial or multiaxial kneader (preferably a multiaxial kneader) together with a thermoplastic resin. In order to produce the fiber-reinforced resin composition of the present invention, it can be made into a nanofibrillated and can be chemically modified CNF or / and chemically modified ligno CNF in a thermoplastic resin. It is advantageous to defibrate the material in a molten thermoplastic resin.
 以下、CNF及びMFLCを、合わせてCNFとも記す。 Hereafter, CNF and MFLC are also referred to as CNF.
 CNFは、セルロース繊維を含む材料(例えば、木材パルプ等)を、その繊維をナノサイズレベルまで解きほぐした(解繊処理した)ものである。CNFの繊維径の平均値(繊維幅)は4~200nm程度が好ましく、繊維長の平均値は5μm程度以上が好ましい。CNFの繊維径の平均値は、4~150nm程度がより好ましく、4~100nm程度が更に好ましい。 CNF is a material (for example, wood pulp) containing cellulose fibers obtained by unraveling (defibrating) the fibers to the nano-size level. The average CNF fiber diameter (fiber width) is preferably about 4 to 200 nm, and the average fiber length is preferably about 5 μm or more. The average value of the CNF fiber diameter is more preferably about 4 to 150 nm, and further preferably about 4 to 100 nm.
 本発明に使用される化学修飾CNFの平均繊維長及び平均繊維径の夫々の好ましい範囲、更に好ましい範囲についても、上記CNFのそれらと同様である。 The preferred range and further preferred range of the average fiber length and average fiber diameter of the chemically modified CNF used in the present invention are the same as those of the CNF.
 繊維径、繊維長はメッツォ社製のカヤーニ繊維長測定器を用いて測定することができる。CNF及び化学修飾CNFの繊維径の平均値(平均繊維径)及び繊維長の平均値(平均繊維長)は、電子顕微鏡の視野内のCNF又は化学修飾CNFの少なくとも50本以上について測定した時の平均値として求める。 Fiber diameter and fiber length can be measured using a Kajaani fiber length measuring instrument manufactured by Metso. The average fiber diameter (average fiber diameter) and average fiber length (average fiber length) of CNF and chemically modified CNF are measured for at least 50 or more CNF or chemically modified CNF within the field of view of the electron microscope. Obtained as an average value.
 走査型電子顕微鏡(SEM)で繊維を観察することにより、繊維の解繊改善状態を観察することもできる。 By observing the fiber with a scanning electron microscope (SEM), it is also possible to observe the improved defibration state of the fiber.
 なお、本発明の目的を達成(例えば、化学修飾CNF/又は化学修飾リグノCNF強化組成物の曲げ弾性率が、未修飾CNF/又は未修飾リグノCNF強化組成物の曲げ弾性率に対し1.1倍以上の弾性率を示す)する限り、解繊が不十分で、上記の化学修飾CNFよりも繊維径の大きな化学修飾セルロースファイバー/又は化学修飾リグノセルロースファイバーを含んでいたとしても、そのような繊維強化組成物は本発明に包含される。 In addition, the object of the present invention is achieved (for example, the bending elastic modulus of the chemically modified CNF / or chemically modified ligno CNF reinforced composition is 1.1 times or more than the bending elastic modulus of the unmodified CNF / or unmodified ligno CNF reinforced composition) As long as it contains a chemically modified cellulose fiber / or a chemically modified lignocellulose fiber having a fiber diameter larger than that of the above chemically modified CNF, as long as it has an elastic modulus of Compositions are encompassed by the present invention.
 化学修飾CNFの比表面積は、70~300m2/g程度が好ましく、70~250m2/g程度がより好ましく、100~200m2/g程度が更に好ましい。化学修飾CNFの比表面積を高くすることで、樹脂(マトリックス)と組み合わせて組成物とした場合に、接触面積を大きくすることができ、樹脂成形材料の強度を向上させることができる。また、化学修飾CNFは樹脂組成物の樹脂中で凝集せず、樹脂成形材料の強度を向上させることができる。 The specific surface area of the chemical modification CNF is preferably about 70 ~ 300m 2 / g, more preferably about 70 ~ 250m 2 / g, more preferably about 100 ~ 200m 2 / g. By increasing the specific surface area of the chemically modified CNF, when the composition is combined with a resin (matrix), the contact area can be increased and the strength of the resin molding material can be improved. Further, the chemically modified CNF does not aggregate in the resin of the resin composition, and the strength of the resin molding material can be improved.
 化学修飾
 繊維強化樹脂組成物に含まれる化学修飾CNF(化学修飾MFLCを含む)は、使用する樹脂に応じてCNFの表面に存在する水酸基が疎水化されている。
In the chemically modified CNF (including chemically modified MFLC) contained in the chemically modified fiber reinforced resin composition, the hydroxyl group present on the surface of the CNF is hydrophobized according to the resin used.
 化学修飾CNFとしては、例えば、アシル基、アルキル基での修飾によってナノファイバーの表面に存在する水酸基が疎水化された疎水化CNF;アミノ基を有するシランカップリング剤、グリシジルトリアルキルアンモニウムハライド若しくはそのハロヒドリン型化合物等の修飾によりにより、ナノファイバーの表面に存在する水酸基がカチオン変性された変性CNF;無水コハク酸、アルキル又はアルケニル無水コハク酸のような環状酸無水物によるモノエステル化、カルボキシル基を有するシランカップリング剤による修飾等により、ナノファイバーの表面に存在する水酸基がアニオン変性された変性CNF等を使用することができる。 Examples of the chemically modified CNF include a hydrophobic CNF in which the hydroxyl group present on the surface of the nanofiber is hydrophobized by modification with an acyl group or an alkyl group; a silane coupling agent having an amino group, glycidyl trialkylammonium halide or the like Modified CNF in which the hydroxyl group present on the surface of the nanofiber is cation-modified by modification of halohydrin type compound; monoesterification with cyclic acid anhydride such as succinic anhydride, alkyl or alkenyl succinic anhydride, carboxyl group Modified CNF or the like in which the hydroxyl group present on the surface of the nanofiber is anion-modified can be used by modification with a silane coupling agent.
 このうち、本発明に使用する化学修飾CNFには、CNFを構成する糖鎖の水酸基がアルカノイル基で修飾されているCNF(アルカノイル修飾CNF)が、製造が容易であるので、好ましい。化学修飾CNFは、CNFを構成する糖鎖の水酸基が低級アルカノイル基で修飾されているCNF(低級アルカノイル修飾CNF)が、より好ましい。 Among these, as the chemically modified CNF used in the present invention, CNF (alkanoyl modified CNF) in which the hydroxyl group of the sugar chain constituting CNF is modified with an alkanoyl group is preferable because it can be easily produced. The chemically modified CNF is more preferably CNF (lower alkanoyl modified CNF) in which the hydroxyl group of the sugar chain constituting the CNF is modified with a lower alkanoyl group.
 さらには、製造の容易さ及び製造コストの点から、本発明で使用する化学修飾CNFには、CNFを構成する糖鎖の水酸基がアセチル基で修飾されているCNF(Ac-CNFとも記す)がより好ましい。 Furthermore, from the viewpoint of ease of production and production cost, the chemically modified CNF used in the present invention includes CNF in which the hydroxyl group of the sugar chain constituting CNF is modified with an acetyl group (also referred to as Ac-CNF). More preferred.
 本発明において化学修飾CNFは、前記のCNFを化学修飾するか、又は化学修飾パルプ又は化学修飾セルロース等の繊維集合体を、公知の解繊方法で解繊して得ることができる。また樹脂(マトリックス材料、後述)との複合体を作製するときは、樹脂と化学修飾パルプ又は化学修飾セルロース等の繊維集合体とを混練して、混練中のせん断力により樹脂内でこれをミクロフィブリル化することもできる。 In the present invention, the chemically modified CNF can be obtained by chemically modifying the above-mentioned CNF or fibrillating a fiber assembly such as chemically modified pulp or chemically modified cellulose by a known defibrating method. Also, when preparing a composite with a resin (matrix material, described later), the resin and a fiber assembly such as chemically modified pulp or chemically modified cellulose are kneaded and microscopically dispersed in the resin by shearing force during kneading. It can also be fibrillated.
 化学修飾CNFは、セルロース及びヘミセルロースの少なくとも一種(リグノセルロースが含まれる)中に存在する水酸基(即ち、糖鎖の水酸基)が、飽和脂肪酸、不飽和カルボン酸、モノ不飽和脂肪酸、ジ不飽和脂肪酸、トリ不飽和脂肪酸、テトラ不飽和脂肪酸、ペンタ不飽和脂肪酸、ヘキサ不飽和脂肪酸、芳香族カルボン酸、ジカルボン酸、アミノ酸、マレイミド化合物:   Chemically modified CNF is a saturated fatty acid, unsaturated carboxylic acid, monounsaturated fatty acid, diunsaturated fatty acid having a hydroxyl group (that is, a hydroxyl group of a sugar chain) present in at least one of cellulose and hemicellulose (including lignocellulose). , Triunsaturated fatty acids, tetraunsaturated fatty acids, pentaunsaturated fatty acids, hexaunsaturated fatty acids, aromatic carboxylic acids, dicarboxylic acids, amino acids, maleimide compounds:
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
フタルイミド化合物:      Phthalimide compound:
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
からなる群から選ばれる少なくとも一種の化合物のカルボキシ基から水素原子を除去した残基によって置換されていることが好ましい。 It is preferably substituted by a residue obtained by removing a hydrogen atom from a carboxy group of at least one compound selected from the group consisting of
 即ち、化学修飾CNFは、セルロース及びリグノセルロースの糖鎖の水酸基が、上記カルボン酸のカルボキシ基から水酸基を除いた残基(アシル基)でアシル化されていることが好ましい。 That is, in the chemically modified CNF, it is preferable that the hydroxyl group of the sugar chain of cellulose and lignocellulose is acylated with a residue (acyl group) obtained by removing the hydroxyl group from the carboxy group of the carboxylic acid.
 上記の飽和脂肪酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸及びアラキジン酸等が好ましい。 Examples of the saturated fatty acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecyl Acid, palmitic acid, margaric acid, stearic acid, nonadecylic acid and arachidic acid are preferred.
 上記の不飽和カルボン酸としては、アクリル酸、メタクリル酸等が好ましい。 As the unsaturated carboxylic acid, acrylic acid, methacrylic acid and the like are preferable.
 モノ不飽和脂肪酸としては、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、リシノール酸等が好ましい。 As the monounsaturated fatty acid, crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, ricinoleic acid and the like are preferable.
 上記のジ不飽和脂肪酸としては、ソルビン酸、リノール酸、エイコサジエン酸等が好ましい。 As the diunsaturated fatty acid, sorbic acid, linoleic acid, eicosadienoic acid and the like are preferable.
 上記のトリ不飽和脂肪酸としては、リノレン酸、ピノレン酸、エレオステアリン酸等が好ましい。 As the above-mentioned triunsaturated fatty acid, linolenic acid, pinolenic acid, eleostearic acid and the like are preferable.
 上記のテトラ不飽和脂肪酸としては、ステアリドン酸及びアラキドン酸から選ばれる等が好ましい。 The tetraunsaturated fatty acid is preferably selected from stearidonic acid and arachidonic acid.
 ペンタ不飽和脂肪酸としては、ボセオペンタエン酸、エイコサペンタエン酸等が好ましい。 As the pentaunsaturated fatty acid, boseopentaenoic acid, eicosapentaenoic acid and the like are preferable.
 上記のヘキサ不飽和脂肪酸としては、ドコサヘキサエン酸、ニシン酸等が好ましい。 As the above-mentioned hexaunsaturated fatty acid, docosahexaenoic acid, nisic acid and the like are preferable.
 芳香族カルボン酸としては、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸(3,4,5-トリヒドロキシベンゼンカルボン酸)、ケイ皮酸(3-フェニルプロパ-2-エン酸)等が好ましい。 Aromatic carboxylic acids include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, gallic acid (3,4,5-trihydroxybenzenecarboxylic acid), cinnamic acid (3-phenylprop-2-enoic acid) Etc.) are preferred.
 上記のジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸等が好ましい。 As the dicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and the like are preferable.
 上記のアミノ酸としては、グリシン、β-アラニン、ε-アミノカプロン酸(6-アミノヘキサン酸)等が好ましい。 As the amino acid, glycine, β-alanine, ε-aminocaproic acid (6-aminohexanoic acid) and the like are preferable.
 上記の各種カルボン酸で修飾された化学修飾CNFのうち、本発明に使用する化学修飾CNFには、CNFを構成する糖鎖の水酸基が低級アルカノイル基で修飾されているCNF(CNFを構成する糖鎖の水酸基が低級アルカノイル化されたCNF、低級アルカノイル化CNFと呼ぶ、CNFを構成する糖鎖の水酸基が低級アルカノイルオキシ基で置換された化学構造のCNFに相当する)が、製造が容易で好ましい。 Among the chemically modified CNFs modified with the various carboxylic acids described above, the chemically modified CNF used in the present invention includes a CNF in which the sugar chain hydroxyl group constituting the CNF is modified with a lower alkanoyl group (a sugar constituting the CNF). CNF in which the hydroxyl group of the chain is lower alkanoylated, and referred to as lower alkanoylated CNF (corresponding to CNF having a chemical structure in which the hydroxyl group of the sugar chain constituting CNF is substituted with a lower alkanoyloxy group) is preferable because it is easy to produce. .
 分岐鎖アルキルカルボン酸(例えば、ピバル酸、3,5,5-トリメチルヘキサン酸等)、環式アルカンカルボン酸(シクロヘキサンカルボン酸、t-ブチルシクロヘキサンカルボン酸等)及び、置換若しくは非置換フェノキシアルキルカルボン酸(フェノキシ酢酸、1,1,3,3-テトラメチルブチルフェノキシ酢酸、ボルナンフェノキシ酢酸、ボルナンフェノキシヘキサン酸等)のカルボキシ基から水酸基を除いた残基(アシル基)でアシル化されたCNF及びリグノCNFは、樹脂(特に、PP、PE等オレフィン系のSP値が低い樹脂)に対しても補強効果が大きく有利に使用できる。 Branched alkyl carboxylic acids (e.g., pivalic acid, 3,5,5-trimethylhexanoic acid, etc.), cyclic alkane carboxylic acids (cyclohexane carboxylic acid, t-butyl cyclohexane carboxylic acid, etc.) and substituted or unsubstituted phenoxyalkyl carboxylic acids Acylated with a residue (acyl group) obtained by removing a hydroxyl group from the carboxy group of an acid (phenoxyacetic acid, 1,1,3,3-tetramethylbutylphenoxyacetic acid, bornanephenoxyacetic acid, bornanephenoxyhexanoic acid, etc.) CNF and ligno-CNF can be advantageously used because they have a strong reinforcing effect even with respect to resins (in particular, resins with low olefinic SP values such as PP and PE).
 更には、製造の容易さ及び製造コストの点から、本発明で使用する化学修飾CNFには、CNFを構成する糖鎖の水酸基がアセチル基で修飾されているCNF(CNFを構成する糖鎖の水酸基がアセチル化された化学修飾CNF、Ac-CNFとも記す。)がより好ましい。 Furthermore, from the viewpoint of ease of production and production cost, the chemically modified CNF used in the present invention includes CNF in which the hydroxyl group of the sugar chain constituting CNF is modified with an acetyl group (the sugar chain constituting CNF). Chemically modified CNF having a hydroxyl group acetylated, also referred to as Ac-CNF) is more preferred.
 本発明に使用する化学修飾CNFは、原料中のセルロース及びヘミセルロースの水酸基(糖鎖水酸基)が、原料セルロース又は/及びリグノセルロース繊維中に存在していたセルロースの結晶構造が出来る限り保持された状態で、アシル化されていることが好ましい。即ち、本発明に使用する化学修飾CNFは、元来、原料セルロース又は/及びリグノセルロース繊維中に存在するセルロース結晶構造を壊さないように原料繊維の表面に存在する水酸基、例えばセルロースの水酸基、ヘミセルロースの水酸基等をアシル化することが好ましい。その化学修飾処理により、CNF本来の優れた力学的特性を持つ化学修飾CNFを得ることができるとともに、樹脂中での化学修飾CNFの分散性が促進され、樹脂に対する化学修飾CNFの補強効果が向上する。 The chemically modified CNF used in the present invention is a state in which the hydroxyl structure (sugar chain hydroxyl group) of cellulose and hemicellulose in the raw material is retained as much as possible in the crystal structure of the cellulose present in the raw cellulose or / and lignocellulose fiber. And is preferably acylated. That is, the chemically modified CNF used in the present invention is originally a hydroxyl group present on the surface of the raw fiber so as not to break the cellulose crystal structure present in the raw cellulose or / and lignocellulose fiber, such as a hydroxyl group of cellulose, hemicellulose. It is preferable to acylate a hydroxyl group or the like. Through the chemical modification treatment, chemically modified CNF with excellent mechanical properties inherent to CNF can be obtained, and the dispersibility of chemically modified CNF in the resin is promoted, improving the effect of chemically modified CNF on the resin. To do.
 前記アシル化反応は、原料繊維(CNF又はパルプ)を膨潤させることのできる無水非プロトン性極性溶媒、例えばN-メチルピロリドン、N,N-ジメチルホルムアミド中に原料を懸濁し、前記カルボン酸の無水物又は酸塩化物で、塩基の存在下で行うのが好ましい。このアシル化反応で用いる塩基としては、ピリジン、N,N-ジメチルアニリン、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等が好ましい。 In the acylation reaction, the raw material is suspended in an anhydrous aprotic polar solvent capable of swelling the raw fiber (CNF or pulp), for example, N-methylpyrrolidone, N, N-dimethylformamide, and the anhydrous carboxylic acid is added. Or an acid chloride, preferably in the presence of a base. As the base used in this acylation reaction, pyridine, N, N-dimethylaniline, sodium carbonate, sodium hydrogen carbonate, potassium carbonate and the like are preferable.
 このアシル化反応は、例えば、室温~100℃で撹拌しながら行うことが好ましい。 This acylation reaction is preferably performed with stirring at room temperature to 100 ° C., for example.
 本発明に使用する化学修飾CNFの糖鎖水酸基のアシル化度(DSとも表記する。置換度又は修飾度ということもある)を説明する。 The degree of acylation of the sugar chain hydroxyl group of the chemically modified CNF used in the present invention (also referred to as DS, sometimes referred to as substitution degree or modification degree) will be described.
 アシル化反応によって得られる化学修飾CNFの糖鎖水酸基におけるアシル化度(修飾度、DS)は、0.05~2.5程度が好ましく、0.1~1.7程度がより好ましく、0.15~1.5程度が更に好ましい。置換度(DS)の最大値は、CNFの糖鎖水酸基量に依存するが、2.7程度である。置換度(DS)を0.05~2.5程度に設定することによって、適度の結晶化度とSP値を有する化学修飾CNFが得られる。例えば、アセチル化CNFでは、好ましいDSは0.29~2.52であり、その範囲のDSでは結晶化度は42.7%程度以上に保つことが可能である。 The acylation degree (modification degree, DS) at the sugar chain hydroxyl group of chemically modified CNF obtained by acylation reaction is preferably about 0.05 to 2.5, more preferably about 0.1 to 1.7, and further preferably about 0.15 to 1.5. The maximum value of the degree of substitution (DS) depends on the sugar chain hydroxyl amount of CNF, but is about 2.7. By setting the degree of substitution (DS) to about 0.05 to 2.5, a chemically modified CNF having an appropriate degree of crystallinity and SP value can be obtained. For example, with acetylated CNF, the preferred DS is 0.29 to 2.52, and with a DS in that range, the crystallinity can be kept at about 42.7% or more.
 置換度(DS)は、元素分析、中和滴定法、FT-IR、二次元NMR(1H及び13C-NMR)等の各種分析方法により分析することができる。 The degree of substitution (DS) can be analyzed by various analysis methods such as elemental analysis, neutralization titration method, FT-IR, two-dimensional NMR ( 1 H and 13 C-NMR).
 化学修飾CNFの結晶化度
 繊維強化樹脂組成物に含まれる化学修飾CNFの結晶化度が42.7%程度以上である。
Crystallinity of chemically modified CNF The crystallinity of chemically modified CNF contained in the fiber reinforced resin composition is about 42.7% or more.
 化学修飾CNFは、結晶化度が42.7%程度以上と高い結晶化度を有するもので、その結晶型はセルロースI型結晶を有することが好ましい。前記「結晶化度」とは、全セルロース中の結晶(主にセルロースI型結晶)の存在比である。化学修飾CNFの結晶化度(好ましくはセルロースI型の結晶)は、順に50%程度以上が好ましく、55%程度以上がより好ましく、55.6%程度以上がより好ましく、60%程度以上が更に好ましく、69.5%程度以上がなお更に好ましい。 The chemically modified CNF has a high crystallinity of about 42.7% or more, and the crystal type thereof preferably has a cellulose type I crystal. The “crystallinity” is an abundance ratio of crystals (mainly cellulose I-type crystals) in the total cellulose. The crystallinity of the chemically modified CNF (preferably cellulose I type crystals) is preferably about 50% or more, more preferably about 55% or more, more preferably about 55.6% or more, more preferably about 60% or more, Still more preferably, about 69.5% or more.
 化学修飾CNFの結晶化度の上限は、一般的に80%程度である。化学修飾CNFは、セルロースI型の結晶構造を維持し、高強度、低熱膨張といった性能を発現する。 The upper limit of crystallinity of chemically modified CNF is generally about 80%. Chemically modified CNF maintains the crystal structure of cellulose type I and exhibits properties such as high strength and low thermal expansion.
 結晶の中でもセルロースI型結晶構造とは、例えば朝倉書店発行の「セルロースの辞典」新装版第一刷81~86頁、或いは93~99頁に記載の通りのものであり、ほとんどの天然セルロースはセルロースI型結晶構造である。これに対して、セルロースI型結晶構造ではなく、例えばセルロースII、III、IV型構造のセルロース繊維はセルロースI型結晶構造を有するセルロースから誘導されるものである。中でもI型結晶構造は他の構造に比べて結晶弾性率が高い。 Among the crystals, the cellulose type I crystal structure is, for example, as described in “The Cellulose Dictionary”, the first edition of the first edition, pages 81-86, or pages 93-99, published by Asakura Shoten. Cellulose type I crystal structure. On the other hand, not cellulose I type crystal structure but cellulose fibers of, for example, cellulose II, III, and IV type are derived from cellulose having cellulose I type crystal structure. Above all, the I-type crystal structure has a higher crystal elastic modulus than other structures.
 結晶構造がI型結晶であると、CNFと樹脂(マトリックス材料)との複合材料とした際に、低線膨張係数、且つ高弾性率な複合材料を得ることができる。 When the crystal structure is an I-type crystal, a composite material having a low coefficient of linear expansion and a high elastic modulus can be obtained when a composite material of CNF and resin (matrix material) is used.
 化学修飾CNFのCNFがI型結晶構造であることは、その広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の二つの位置に典型的なピークを持つことから同定することができる。 The CNF of chemically modified CNF is of type I crystal structure, which is typical at two positions around 2θ = 14-17 ° and 2θ = 22-23 ° in the diffraction profile obtained by wide-angle X-ray diffraction image measurement. It can be identified from having a typical peak.
 セルロースの重合度は天然セルロースで500~10,000程度、再生セルロースで200~800程度である。セルロースは、β-1,4結合により直線的に伸びたセルロースが何本かの束になって、分子内或いは分子間の水素結合で固定され、伸びきり鎖となった結晶を形成している。セルロースの結晶には、多くの結晶形が存在していることはX線回折や固体NMRによる解析で明らかになっているが、天然セルロースの結晶形はI型のみである。X線回折等から、セルロースにおける結晶領域の比率は、木材パルプで約50~60%、バクテリアセルロースはこれより高く約70%程度と推測されている。セルロースは、伸びきり鎖結晶であることに起因して、弾性率が高いだけでなく、鋼鉄の5倍の強度、ガラスの1/50以下の線熱膨張係数を示す。 The degree of polymerization of cellulose is about 500 to 10,000 for natural cellulose and about 200 to 800 for regenerated cellulose. Cellulose is a bundle of several celluloses linearly stretched by β-1,4 bonds, fixed by hydrogen bonds within or between molecules to form crystals that are extended chains. . It has been clarified by X-ray diffraction and solid state NMR analysis that many crystal forms exist in cellulose crystals, but the natural cellulose crystal form is only type I. From the X-ray diffraction and the like, it is estimated that the ratio of the crystalline region in cellulose is about 50 to 60% for wood pulp and about 70% higher for bacterial cellulose. Cellulose has not only a high elastic modulus due to being an extended chain crystal, but also exhibits a strength five times that of steel and a linear thermal expansion coefficient of 1/50 or less that of glass.
 (1-2) (B)熱可塑性樹脂
 本発明の繊維強化樹脂組成物は、(A)化学修飾CNFに加えて、(B)熱可塑性樹脂を含む。この繊維強化樹脂組成物を用いて、強度に優れる成形体を作製することができる。
(1-2) (B) Thermoplastic Resin The fiber reinforced resin composition of the present invention contains (B) a thermoplastic resin in addition to (A) the chemically modified CNF. Using this fiber reinforced resin composition, a molded article having excellent strength can be produced.
 本発明の繊維強化樹脂組成物は、(A)化学修飾CNFとして、アシル化セルロースナノファイバー(アシル化CNF)を含有し、製造法とコストの観点から、好ましくは低級アルカノイルセルロースナノファイバー(低級アルカノイルCNF)を含有することが好ましく、アセチル化セルロースナノファイバー(アセチル化CNF)を含むことがより好ましい。 The fiber-reinforced resin composition of the present invention contains (A) an acylated cellulose nanofiber (acylated CNF) as the chemically modified CNF, and is preferably a lower alkanoyl cellulose nanofiber (lower alkanoyl) from the viewpoint of production method and cost. CNF) is preferable, and acetylated cellulose nanofiber (acetylated CNF) is more preferable.
 熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル、ポリスチレン、ポリ塩化ビニリデン、フッ素樹脂、(メタ)アクリル系樹脂、ポリアミド樹脂(ナイロン樹脂、PA)、ポリエステル、ポリ乳酸樹脂、ポリ乳酸とポリエステル共重合樹脂、アクリロニトリル‐ブタジエン‐スチレン共重合体(ABS樹脂)、ポリカーボネート、ポリフェニレンオキシド、(熱可塑性)ポリウレタン、ポリアセタール(POM)、ビニルエーテル樹脂、ポリスルホン系樹脂、セルロース系樹脂(例えばトリアセチル化セルロース、ジアセチル化セルロース)等の熱可塑性樹脂を好ましく使用することができる。 Thermoplastic resins include polyethylene (PE), polypropylene (PP), polyvinyl chloride, polystyrene, polyvinylidene chloride, fluororesin, (meth) acrylic resin, polyamide resin (nylon resin, PA), polyester, polylactic acid resin Polylactic acid and polyester copolymer resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate, polyphenylene oxide, (thermoplastic) polyurethane, polyacetal (POM), vinyl ether resin, polysulfone resin, cellulose resin (for example, A thermoplastic resin such as triacetylated cellulose or diacetylated cellulose can be preferably used.
 フッ素樹脂
 テトラクロロエチレン、ヘキフロロプロピレン、クロロトリフロロエチレン、フッ化ビリニデン、フッ化ビニル、ペルフルオロアルキルビニルエーテル等の単独重合体又は共重合体を好ましく使用することができる。
Homopolymers or copolymers such as fluororesin tetrachloroethylene, hexpropylene, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, and perfluoroalkyl vinyl ether can be preferably used.
 (メタ)アクリル系樹脂
 (メタ)アクリル酸、(メタ)アクリロニトリル、(メタ)アクリル酸エステル、(メタ)アクリルアミド類等の単独重合体又は共重合体を好ましく使用することができる。なお、この明細書において、「(メタ)アクリル」とは、「アクリル及び/又はメタクリル」を意味する。(メタ)アクリル酸としては、アクリル酸又はメタクリル酸が挙げられる。
Homopolymers or copolymers such as (meth) acrylic resins (meth) acrylic acid, (meth) acrylonitrile, (meth) acrylic acid esters, (meth) acrylamides can be preferably used. In this specification, “(meth) acryl” means “acryl and / or methacryl”. (Meth) acrylic acid includes acrylic acid or methacrylic acid.
 (メタ)アクリロニトリルとしては、アクリロニトリル又はメタクリロニトリルが挙げられる。 (Meth) acrylonitrile includes acrylonitrile or methacrylonitrile.
 (メタ)アクリル酸エステルとしては、(メタ)アクリル酸アルキルエステル、シクロアルキル基を有する(メタ)アクリル酸系単量体、(メタ)アクリル酸アルコキシアルキルエステル等が挙げられる。 Examples of (meth) acrylic acid esters include (meth) acrylic acid alkyl esters, (meth) acrylic acid monomers having a cycloalkyl group, and (meth) acrylic acid alkoxyalkyl esters.
 (メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ヒドロキシエチル等が挙げられる。 Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) Examples include benzyl acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, hydroxyethyl (meth) acrylate, and the like.
 シクロアルキル基を有する(メタ)アクリル酸系単量体としては、(メタ)アクリル酸シクロヘキシル、イソボルニル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid monomer having a cycloalkyl group include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate.
 (メタ)アクリル酸アルコキシアルキルエステルとしては、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-ブトキシエチル等が挙げられる。 Examples of (meth) acrylic acid alkoxyalkyl esters include 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, and 2-butoxyethyl (meth) acrylate.
 (メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-t-オクチル(メタ)アクリルアミド等のN置換(メタ)アクリルアミド等、及びこれら(メタ)アクリル系樹脂の共重合物が挙げられる。 (Meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N -N-substituted (meth) acrylamides such as isopropyl (meth) acrylamide and Nt-octyl (meth) acrylamide, and copolymers of these (meth) acrylic resins.
 ポリエステル
 芳香族ポリエステル、脂肪族ポリエステル、不飽和ポリエステル等を好ましく使用することができる。
Polyester aromatic polyester, aliphatic polyester, unsaturated polyester and the like can be preferably used.
 芳香族ポリエステルとしては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等の後述するジオール類とテレフタル酸等の芳香族ジカルボン酸との共重合体が挙げられる。 Examples of the aromatic polyester include copolymers of diols described later such as ethylene glycol, propylene glycol, and 1,4-butanediol with aromatic dicarboxylic acids such as terephthalic acid.
 脂肪族ポリエステルとしては、後述するジオール類とコハク酸、吉草酸等の脂肪族ジカルボン酸との共重合体や、グリコール酸や乳酸等のヒドロキシカルボン酸の単独重合体又は共重合体、後述するジオール類、脂肪族ジカルボン酸及び上記ヒドロキシカルボン酸の共重合体等が挙げられる。 Examples of the aliphatic polyester include copolymers of diols described below and aliphatic dicarboxylic acids such as succinic acid and valeric acid, homopolymers or copolymers of hydroxycarboxylic acids such as glycolic acid and lactic acid, and diols described below. And copolymers of aliphatic dicarboxylic acids and the above hydroxycarboxylic acids.
 不飽和ポリエステルとしては、後述するジオール類、無水マレイン酸等の不飽和ジカルボン酸、及び必要に応じてスチレン等のビニル単量体との共重合体が挙げられる。 Examples of the unsaturated polyester include diols described later, unsaturated dicarboxylic acids such as maleic anhydride, and copolymers with vinyl monomers such as styrene as necessary.
 ポリカーボネート
 ビスフェノールAやその誘導体であるビスフェノール類と、ホスゲン又はフェニルジカーボネートとの反応物を好ましく使用することができる。
A reaction product of polycarbonate bisphenol A or its derivative bisphenol and phosgene or phenyl dicarbonate can be preferably used.
 ポリスルホン樹脂
 4,4’-ジクロロジフェニルスルホンやビスフェノールA等の共重合体を好ましく使用することができる。
A copolymer such as polysulfone resin 4,4′-dichlorodiphenylsulfone or bisphenol A can be preferably used.
 ポリフェニレンスルフィド
 p-ジクロロベンゼンや硫化ナトリウム等の共重合体を好ましく使用することができる。
Copolymers such as polyphenylene sulfide p-dichlorobenzene and sodium sulfide can be preferably used.
 ポリウレタン
 ジイソシアネート類とジオール類との共重合体を好ましく使用することができる。
A copolymer of polyurethane diisocyanates and diols can be preferably used.
 ジイソシアネート類としては、ジシクロへキシルメタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート等が挙げられる。 Diisocyanates include dicyclohexylmethane diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, 2,4-tolylene diisocyanate, 2,6- Examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 2,2′-diphenylmethane diisocyanate, and the like.
 ジオール類としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリメチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサンジメタノール等の比較的低分子量のジオールや、ポリエステルジオール、ポリエーテルジオール、ポリカーボネートジオール等が挙げられる。 Diols include ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Relatively low molecular weight diols such as 1,6-hexanediol, neopentyl glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexanedimethanol, polyester diol, poly Examples include ether diol and polycarbonate diol.
 アミド系樹脂(ポリアミド樹脂)
 ナイロン66(ポリアミド66、PA66)、ナイロン6(ポリアミド6、PA6)、ナイロン11(ポリアミド11、PA11)、ナイロン12(ポリアミド12、PA12)、ナイロン46(ポリアミド46、PA46)、ナイロン610(ポリアミド610、PA610)、ナイロン612(ポリアミド612、PA612)等の脂肪族アミド系樹脂や、フェニレンジアミン等の芳香族ジアミンと塩化テレフタロイルや塩化イソフタロイル等の芳香族ジカルボン酸又はその誘導体からなる芳香族ポリアミド等を好ましく使用することができる。
Amide resin (polyamide resin)
Nylon 66 (polyamide 66, PA66), nylon 6 (polyamide 6, PA6), nylon 11 (polyamide 11, PA11), nylon 12 (polyamide 12, PA12), nylon 46 (polyamide 46, PA46), nylon 610 (polyamide 610) PA610), nylon 612 (polyamide 612, PA612), and other aliphatic amide resins, aromatic diamines such as phenylene diamine, aromatic dicarboxylic acids such as terephthaloyl chloride and isophthaloyl chloride, or derivatives thereof. It can be preferably used.
 ポリアセタール
 トリオキサン、ホルムアルデヒド、エチレンオキシド等の重合体及び共重合体を好ましく使用することができる。
Polymers and copolymers such as polyacetal trioxane, formaldehyde, and ethylene oxide can be preferably used.
 これらの熱可塑性樹脂は、単独で使用してもよく、2種以上の混合樹脂として用いてもよい。 These thermoplastic resins may be used alone or as a mixed resin of two or more.
 前記熱可塑性樹脂の中でも、力学的特性、耐熱性、表面平滑性及び外観に優れるという点から、ポリアミド、ポリアセタール、ポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ乳酸とポリエステル共重合樹脂、ABS樹脂及びポリスチレンからなる群から選ばれる少なくとも1種の樹脂が好ましい。 Among the thermoplastic resins, in terms of excellent mechanical properties, heat resistance, surface smoothness and appearance, polyamide, polyacetal, polypropylene, maleic anhydride modified polypropylene, polyethylene, polylactic acid, polylactic acid and polyester copolymer resin, At least one resin selected from the group consisting of ABS resin and polystyrene is preferred.
 分子構造内に極性の高いアミド結合を有するポリアミド樹脂(PA)は、セルロース系材料との親和性が高いという理由から、PA6(ε-カプロラクタムの開環重合体)、PA66(ポリヘキサメチレンアジポアミド)、PA11(ウンデカンラクタムを開環重縮合したポリアミド)、PA12(ラウリルラクタムを開環重縮合したポリアミド)等、及びポリアミド共重合樹脂等を用いることが好ましい。 Polyamide resin (PA) having a highly polar amide bond in the molecular structure has high affinity with cellulosic materials, so PA6 (a ring-opening polymer of ε-caprolactam), PA66 (polyhexamethylene adipone) Amide), PA11 (polyamide obtained by ring-opening polycondensation of undecane lactam), PA12 (polyamide obtained by ring-opening polycondensation of lauryl lactam), and polyamide copolymer resins are preferably used.
 更に、構造部材として汎用性を有するポリプロピレン(PP)、ポリエチレン(PE、特に高密度ポリエチレン:HDPE)及びこれら汎用性ポリオレフィンと相溶性の高い無水マレイン酸変性ポリプロピレンが好ましい。 Furthermore, polypropylene (PP), polyethylene (PE, particularly high-density polyethylene: HDPE) having versatility, and maleic anhydride-modified polypropylene having high compatibility with these versatile polyolefins are preferable as the structural member.
 (1-3) (A)化学修飾CNFのSP cnf と(B)熱可塑性樹脂のSP pol との関係 本発明の繊維強化樹脂組成物では、(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾CNFの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88程度であり、好ましくは1.03~1.88の範囲が好ましく、より好ましくは1.03~1.82程度の範囲である。 (1-3) Relationship between (A) SP cnf of chemically modified CNF and (B) SP pol of thermoplastic resin In the fiber reinforced resin composition of the present invention, (B) solubility parameter of thermoplastic resin (SP pol ) (A) The ratio R (SP cnf / SP pol ) of the chemically modified CNF solubility parameter (SP cnf ) is about 0.87 to 1.88, preferably in the range of 1.03 to 1.88, more preferably about 1.03 to 1.82. It is a range.
 本発明の繊維強化樹脂組成物では、(B)熱可塑性樹脂としてポリアミド(PA)、ポリアセタール(POM)、ポリ乳酸(PLA)又はこの混合樹脂を好適に使用することができ、この場合比率R (SPcnf/SPpol)が1.04~1.32程度であることが好ましく、化学修飾CNFの結晶化度が69.5%程度以上であることが好ましい。 In the fiber reinforced resin composition of the present invention, polyamide (PA), polyacetal (POM), polylactic acid (PLA) or a mixed resin thereof can be suitably used as the (B) thermoplastic resin, and in this case, the ratio R ( SP cnf / SP pol ) is preferably about 1.04 to 1.32, and the crystallinity of the chemically modified CNF is preferably about 69.5% or more.
 一方、本発明の繊維強化樹脂組成物では、上記の熱可塑性樹脂よりも極性の低い熱可塑性樹脂(即ちSPpolが小さい)、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、無水マレイン酸変性ポリプロピレン(MAPP)、ポリスチレン(PS)も使用することができる。この場合、化学修飾CNFのSPcnfと熱可塑性樹脂のSPpolとの比率R (SPcnf/SPpol)は1.21~1.88程度、より好ましくは1.21~1.82であることが好ましく、化学修飾CNFの結晶化度が42.7%以上であることが好ましい。 On the other hand, in the fiber reinforced resin composition of the present invention, a thermoplastic resin having a lower polarity than the thermoplastic resin (that is, SP pol is small), for example, polypropylene (PP), polyethylene (PE), maleic anhydride modified polypropylene (MAPP) and polystyrene (PS) can also be used. In this case, the ratio R (SP cnf / SP pol ) between the SP cnf of the chemically modified CNF and the SP pol of the thermoplastic resin is preferably about 1.21 to 1.88, more preferably 1.21 to 1.82, and the crystal of the chemically modified CNF The degree of conversion is preferably 42.7% or more.
 本発明繊維強化樹脂組成物において、汎用性の(B)熱可塑性樹脂としては例えば、ポリプロピレン(PP)、ポリエチレン(PE)等のオレフィン系樹脂及びこれらオレフィン系樹脂と相溶性の良い変性ポリオレフィン、例えば、無水マレイン酸変性ポリプロピレン(MAPP)を用いることが好ましく、この場合、化学修飾CNFのSPcnfと熱可塑性樹脂のSPpolとの比率R (SPcnf/SPpol)が1.21~1.88程度であり、より好ましくは1.21~1.82程度であることが好ましく、化学修飾CNFの結晶化度が42.7%程度以上であることが好ましい。 In the fiber reinforced resin composition of the present invention, the general-purpose (B) thermoplastic resin includes, for example, olefin resins such as polypropylene (PP) and polyethylene (PE), and modified polyolefins having good compatibility with these olefin resins, for example, It is preferable to use maleic anhydride-modified polypropylene (MAPP). In this case, the ratio R (SP cnf / SP pol ) between SP cnf of the chemically modified CNF and SP pol of the thermoplastic resin is about 1.21 to 1.88, More preferably, it is preferably about 1.21 to 1.82, and the crystallinity of the chemically modified CNF is preferably about 42.7% or more.
 この様に、(A)化学修飾CNFのSPcnfと(B)熱可塑性樹脂のSPpolとの関係を選定することによって、繊維強化組成物の好適な組み合わせとその力学的特性が最適に改善された繊維強化組成物が得られる。 Thus, by selecting the relationship between (A) SP cnf of chemically modified CNF and (B) SP pol of thermoplastic resin, the preferred combination of fiber reinforced composition and its mechanical properties are optimally improved. A fiber reinforced composition is obtained.
 尚、(A)化学修飾CNFのSPcnfと(B)熱可塑性樹脂のSPpolとの関係の実例を、主に、実施例のAc化CNFのSPcnfと6種の熱可塑性樹脂(PA6、POM、PP、MAPP、PLA、PS)の各SPpol との関係で示したが、これと異なる他の修飾基で修飾されたCNF、例えば、プロピオニル化CNF、ミリストイル化CNF化など各種アルカノイル基)を用いる場合も、上記に定める比率R (SPcnf/SPpol)に合致するプロピオニル化CNF等各種アルカノイル化CNFと熱可塑性樹脂との組合せを選定することによって、好適な化学修飾CNFと好適な樹脂の組み合わせを選定し、化学修飾CNFと熱可塑樹脂が最適に組み合わされた繊維強化樹脂を製造することができる。 In addition, the actual example of the relationship between (A) SP cnf of chemically modified CNF and (B) SP pol of thermoplastic resin, mainly, SP cnf of Ac-modified CNF of Example and 6 types of thermoplastic resins (PA6, POM, PP, MAPP, PLA, has been shown in relation to the SP pol of PS), and different other modifying groups in modified CNF, for example, propionyl of CNF, various alkanoyl group such as myristoylation CNF reduction) Can be selected by combining a combination of various alkanoylated CNF such as propionylated CNF and thermoplastic resin that matches the ratio R (SP cnf / SP pol ) defined above, and a suitable resin. A combination of the above can be selected to produce a fiber reinforced resin in which a chemically modified CNF and a thermoplastic resin are optimally combined.
 (A)化学修飾CNFの溶解パラメータ(SP cnf )
 <溶解度パラメータ(SP、単位(cal/cm3)1/2)( Fedors計算法による)> アセチル化NBKP(Ac-NBKP)のSP値算出方法
 アセチル化NBKPについては、文献記載のセルロース及びセルロースジアセテートのSP値を用い、セルロースはDS=0、セルロースジアセテートはDS=2として直線近似することにより、各DSのアセチル化セルロースのSP値を算出した。算出、使用したSP値の妥当性をFedorsのSP値算出方法により検証した。
(A) Solubility parameter of chemically modified CNF (SP cnf )
<Solubility parameter (SP, unit (cal / cm 3 ) 1/2 ) (by Fedors calculation method)> SP value calculation method of acetylated NBKP (Ac-NBKP) For acetylated NBKP, cellulose and cellulose The SP value of acetylated cellulose of each DS was calculated by linearly approximating DS = 0 for cellulose and DS = 2 for cellulose and DS = 2 for cellulose diacetate. The validity of the calculated and used SP values was verified by the Fedors SP value calculation method.
 その結果、上記直線近似により得られたアセチル化セルロースのSP値は,Fedorsの計算方法により得られた計算値と±10%以内であったことから妥当な値であると考えられる。 As a result, the SP value of acetylated cellulose obtained by the above linear approximation was considered to be a reasonable value because it was within ± 10% of the calculated value obtained by the Fedors calculation method.
 アセチル化リグノパルプ(LP)のSP値算出方法 SP value calculation method for acetylated lignopulp (LP)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 以下リグノパルプについて説明を行う。リグノパルプの一例として,150℃にて砕木パルプ(GP)を1時間蒸解処理を行ったリグノパルプ150-1(GP150-1)の組成は、モル比で大よそセルロース(Cel):66%、ヘミセルロース(HCel):12%(マンナン(Man):7%及びキシラン(Xyl):5%)、及びリグニン(Lig):22%で構成)を例に挙げて説明する。 The following describes ligno pulp. As an example of lignopulp, the composition of lignopulp 150-1 (GP150-1) obtained by digesting groundwood pulp (GP) for 1 hour at 150 ° C. is roughly composed of cellulose (Cel): 66%, hemicellulose (molar ratio) HCel): 12% (mannan (Man): 7% and xylan (Xyl): 5%) and lignin (Lig): 22%) will be described as an example.
 このリグニンは,本発明では,β-O-4型リグニンのみからなると仮定する。これがアセチル化されるとアセチル化リグニンとなり、リグノパルプの最大DSは2.73となる。このリグニンには水酸基が2個含まれており、リグニンのDSは最大で2となる。 This lignin is assumed to consist only of β-O-4 type lignin in the present invention. When this is acetylated, it becomes acetylated lignin, and the maximum DS of lignopulp is 2.73. This lignin contains two hydroxyl groups and the lignin has a maximum DS of 2.
 同様に150℃にて砕木パルプ(GP)を、3時間蒸解処理を行ったリグノパルプ150-3の場合、水酸基を3個含むセルロース及びヘミセルロースが87.4%(質量%)、水酸基を2個含むリグニンが12.6%(質量%)であることから、リグノパルプの最大DSは2.87となる。 Similarly, in the case of lignopulp 150-3 obtained by digesting ground pulp (GP) at 150 ° C. for 3 hours, cellulose containing 3 hydroxyl groups and hemicellulose were 87.4% (mass%), and lignin containing 2 hydroxyl groups were Since it is 12.6% (mass%), the maximum DS of lignopulp is 2.87.
 リグノパルプ(150-3)に含まれるセルロース、へミセルロース及びリグニンの各成分の質量分率をモル分率に換算し、各々に含有される各原子及び各原子団のモル数を見積った。そして、1モルあたりの蒸発エネルギー及び1モルあたりの体積を用いて、FedorsのSP値算出方法より、リグノパルプのSP値を算出することができる。 The mass fraction of each component of cellulose, hemicellulose, and lignin contained in lignopulp (150-3) was converted to a mole fraction, and the number of moles of each atom and each atomic group contained in each component was estimated. Then, the SP value of lignopulp can be calculated by the Fedors SP value calculation method using the evaporation energy per mole and the volume per mole.
 仮に、リグノパルプ(LP)(150-1:150℃で1時間蒸解処理)をアセチル化処理する場合を説明する。 A case will be described where lignopulp (LP) (150-1: cooking at 150 ° C. for 1 hour) is acetylated.
 そして、リグノパルプ(アセチル化度(修飾度)が0.88(DS=0.88))の場合のSPの計算方法を説明する。 And the calculation method of SP in case of lignopulp (acetylation degree (degree of modification) is 0.88 (DS = 0.88)) will be described.
 このDS値(0.88)は、リグノパルプに含まれるセルロースをベースとしており、アセチル含量(g/mol)は0.88mol/162g(セルロースのg/mol)である。 The DS value (0.88) is based on cellulose contained in lignopulp, and the acetyl content (g / mol) is 0.88 mol / 162 g (g / mol of cellulose).
 リグノパルプの平均分子量(g/mol)は、セルロース、ヘミセルロース及びリグニンの存在比(モル比)を考慮すると、
 162x0.66(Cel)+HCel[162x0.07(Man)+147x0.05(Xyl)]+196x0.22(Lig)=168.2である。
The average molecular weight (g / mol) of lignopulp takes into account the abundance ratio (molar ratio) of cellulose, hemicellulose and lignin.
162 × 0.66 (Cel) + HCel [162 × 0.07 (Man) + 147 × 0.05 (Xyl)] + 196 × 0.22 (Lig) = 168.2.
 従って、LP(150-1)のDSは、0.88x168.73/162=0.92である。 Therefore, the DS of LP (150-1) is 0.88x168.73 / 162 = 0.92.
 SP(LP150-1-OH)は、
 17.6x0.73(Cel+Man)+16.5x0.05(Xyl)+13.6x0.22(Lig)=16.62、ca.16.6である。
SP (LP150-1-OH) is
17.6 × 0.73 (Cel + Man) + 16.5 × 0.05 (Xyl) + 13.6 × 0.22 (Lig) = 16.62, ca.16.6.
 SP(LP150-1-OAC)は
 11.1x0.73(Cel+Man)+11.1x0.05(Xyl)+10.6x0.22(Lig)=10.99、ca.11.0である。
SP (LP150-1-OAC) is 11.1 × 0.73 (Cel + Man) + 11.1 × 0.05 (Xyl) + 10.6 × 0.22 (Lig) = 10.99, ca.11.0.
 SP(LP150-1-OAC)のDSは、
 3x0.73(Cel+Man)+2x0.05(Xyl)+2x0.22(Lig)=2.73である。
SP (LP150-1-OAC) DS is
It is 3x0.73 (Cel + Man) + 2x0.05 (Xyl) + 2x0.22 (Lig) = 2.73.
 SP(LP150-1-OAC、DS=0.88)のSPは、
 -((16.6-11.0)/2.73)x0.92+16.6=14.713、ca.14.7である。
SP of LP (LP150-1-OAC, DS = 0.88) is
-((16.6-11.0) /2.73) x0.92 + 16.6 = 14.713, ca.14.7.
 上記計算方法に従い、DS=dのアセチル化リグノパルプのSP値(Y)の計算式を一般式で示すと以下の通りである。 According to the above calculation method, the calculation formula of the SP value (Y) of DS = d acetylated lignopulp is expressed as a general formula as follows.
 Y=〔-(a-b)/c〕*d+a
 (式中*は乗算(掛け算)の演算記号を示す。
Y = [-(ab) / c] * d + a
(In the formula, * indicates an operation symbol of multiplication (multiplication).
 a、b、c、dは夫々以下の意味である)
 a:無修飾リグノパルプ(LP-OH)のSP値
  =SPcel(セルロースのSP値) *(Cel+Man)
   +SPxyl(キシランのSP値) *(Xyl)
   +SPlig(リグニンのSP値) *(Lig)
 b:全部の水酸基がアセチル化されたりグノパルプ(LP-OAC)のSP値
  =SPcelac3(セルローストリアセテートのSP値) *(Cel+Man)   +SPxylac(キシランジアセテートのSP値) *(Xyl)
   +SPligac(リグニンジアセテートのSP値) *(Lig)
 c:(全部の水酸基がアセチル化されたグノパルプのDS)
  =3*(Cel)+3*(Man)+2*(Xyl)+2*(Lig)
 ここで、(Cel)、(Man)、(Xyl)、(Lig)は、夫々リグノパルプ中の、セルロース、マンナン、キシラン、リグニンのモル分率を示す。
a, b, c, and d have the following meanings)
a: SP value of unmodified ligno pulp (LP-OH) = SP cel (SP value of cellulose) * (Cel + Man)
+ SP xyl (SP value of xylan) * (Xyl)
+ SP lig (SP value of lignin) * (Lig)
b: SP value of all hydroxyl groups acetylated or gnopulp (LP-OAC) = SP celac3 (SP value of cellulose triacetate) * (Cel + Man) + SP xylac (SP value of xylan diacetate) * (Xyl)
+ SP ligac (SP value of lignin diacetate) * (Lig)
c: (DS of gnopulp with all hydroxyl groups acetylated)
= 3 * (Cel) + 3 * (Man) + 2 * (Xyl) + 2 * (Lig)
Here, (Cel), (Man), (Xyl), and (Lig) indicate the mole fractions of cellulose, mannan, xylan, and lignin in lignopulp, respectively.
 d:(アセチル化度(滴定法で求めたDS値、dsと表記)の場合のリグノセルロースのDS)  =ds*(リグノパルプ繰り返し単位の平均式量)
   /(セルロース繰り返し単位の式量)
 上記において、SPcel(セルロースのSP値)は、文献値(実用ポリマーアロイ設計、井出文雄著、工業調査会 初版、1996年9月1日発行第19頁)を使用した。
d: (DS of lignocellulose in the case of acetylation degree (DS value obtained by titration method, expressed as ds)) = ds * (average formula weight of lignopulp repeat unit)
/ (Formula weight of cellulose repeating unit)
In the above, SP cel (SP value of cellulose) was used as the literature value (Practical polymer alloy design, Fumio Ide, Industrial Research Committee, first edition, page 19 issued on September 1, 1996).
 Spcelac3(セルローストリアセテートのSP値)は、SPcel(セルロースのSP値、文献値)と、SPcelac2(セルロースジアセテートのSP値、文献値)とを用いて求めた。 Sp celac3 (SP value of cellulose triacetate) was determined using SP cel (SP value of cellulose, literature value) and SP celac2 (SP value of cellulose diacetate, literature value).
 即ち、SPcel値(DS=0)、SPcelac2(DS=2)の関係は、これらSP値を縦軸に、このときのDSを横軸にプロットした一次関数上にあるとして、一次関数を求め、DS=3のときの値をSPcelac3(セルローストリアセテートのSP値)として求めた。 That is, the relationship between SP cel value (DS = 0) and SP celac2 (DS = 2) is on a linear function in which these SP values are plotted on the vertical axis and DS at this time is plotted on the horizontal axis. The value when DS = 3 was determined as SP celac3 (SP value of cellulose triacetate).
 SPxy(キシランのSP値)、SPlig(リグニンのSP値)、SPxylac(キシランジアセテートのSP値)及びSPligac(リグニンジアセテートのSP値)は、Fedorsの方法(Robert F. Fedors、Polymer Engineering and Science, February,1974、vol.14, No.2, 147-154)に準じて計算した。 SP xy (SP value of xylan), SP lig (SP value of lignin), SP xylac (SP value of xylan diacetate) and SP ligac (SP value of lignin diacetate) are the Fedors method (Robert F. Fedors, Polymer Engineering and Science, February, 1974, vol.14, No.2, 147-154).
 なお、Fwdorsの計算でセルロース、マンナン、キシラン及びリグニンの水酸基のΔei(蒸発エネルギー)、Δvi(モル体積)はすべて2級水酸基の値を使用した。 In addition, the values of secondary hydroxyl groups were used for Δ ei (evaporation energy) and Δvi (molar volume) of the hydroxyl groups of cellulose, mannan, xylan, and lignin in the calculation of Fwdors.
 ヘミセルロース中に含まれるマンナン(Man)とキシラン(Xyl)は等モルと仮定しても実用上問題ないのでないのでそのようにして計算できる。 Since mannan (Man) and xylan (Xyl) contained in hemicellulose are assumed to be equimolar, there is no practical problem, so that calculation is possible.
 また、リグニン含有率が1質量%未満のリグノセルロースはリグニンを無視しても(リグニン含有量を0として計算しても)実質上、特に、問題はない。 In addition, lignocellulose having a lignin content of less than 1% by mass has virtually no problem even if lignin is ignored (calculated assuming a lignin content of 0).
 そして、セルロースとグルコマンナンの合計含有量が92質量%以上であり、リグニン含有量が0.5質量%以下のリグノセルロースのSP値、アセチル化リグノセルロースのSP値については、このリグノセルロースの成分は、全てセルロースのみから構成されていると仮定して、上記のセルロースのSP文献値、セルロースジアセテートのSP文献値を使用してSP計算することができる。 And about the SP value of lignocellulose whose total content of cellulose and glucomannan is 92 mass% or more and whose lignin content is 0.5 mass% or less, the SP value of acetylated lignocellulose, the components of this lignocellulose are: Assuming that it is composed entirely of cellulose, the SP can be calculated using the above-mentioned cellulose SP literature values and cellulose diacetate SP literature values.
 化学修飾CNFの溶解パラメータ(SPcnf)の最適範囲は、化学修飾CNFと複合される樹脂(マトリックス)の溶解パラメータ(SPpol)に依存するが、好ましくは9.9~15程度である。化学修飾CNFの溶解パラメータ(SPcnf)の最適範囲は、より好ましくは樹脂(マトリックス)の溶解パラメータ(SPpol)が11~13程度の親水性樹脂に対しては11.5~15である。 The optimum range of the solubility parameter (SP cnf ) of the chemically modified CNF depends on the solubility parameter (SP pol ) of the resin (matrix) combined with the chemically modified CNF, but is preferably about 9.9-15. The optimum range of the solubility parameter (SP cnf ) of the chemically modified CNF is more preferably 11.5 to 15 for a hydrophilic resin having a resin (matrix) solubility parameter (SP pol ) of about 11 to 13.
 化学修飾CNFの溶解パラメータ(SPcnf)の最適範囲は、樹脂(マトリックス)の溶解パラメータ(SPpol)が8~9程度の疎水性の樹脂に対しては9.9~15程度である。 The optimum range of the solubility parameter (SP cnf ) of chemically modified CNF is about 9.9 to 15 for a hydrophobic resin having a solubility parameter (SP pol ) of the resin (matrix) of about 8 to 9.
 要するに化学修飾CNFの溶解パラメータ(SPcnf)は、樹脂(マトリックス)の溶解パラメータSPpolに依存して決定することが好ましく、樹脂の溶解パラメータ(SPpol)に対する化学修飾CNFの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)を0.87~1.88程度の範囲にすることが好ましい。 In short, the solubility parameter (SP cnf ) of the chemically modified CNF is preferably determined depending on the solubility parameter SP pol of the resin (matrix), and the solubility parameter (SP cnf ) of the chemically modified CNF with respect to the solubility parameter (SP pol ) of the resin ) Ratio R (SP cnf / SP pol ) is preferably in the range of about 0.87 to 1.88.
 比率R (SPcnf/SPpol)は、1.03~1.88程度の範囲がより好ましく、1.03~1.82程度の範囲が更に好ましい。 The ratio R (SP cnf / SP pol ) is more preferably in the range of about 1.03 to 1.88, and further preferably in the range of about 1.03 to 1.82.
 比率Rがこ範囲では、化学修飾CNFの樹脂(マトリックス)への分散性が向上し、化学修飾CNFを含む樹脂組成物の強度が向上するという効果が有る。 When the ratio R is within this range, the dispersibility of the chemically modified CNF in the resin (matrix) is improved, and the strength of the resin composition containing the chemically modified CNF is improved.
 (B)熱可塑性樹脂の溶解パラメータ(SP pol )
 熱可塑性樹脂の溶解パラメータ(SPpol)値については、井出文雄著「実用ポリマーアロイ設計」(工業調査会 初版、1996年9月1日発行)記載のSP値を参考にすることができる。代表的な熱可塑性樹脂にSP値については下記の通りである。
(B) Solubility parameter of thermoplastic resin (SP pol )
Regarding the solubility parameter (SP pol ) value of the thermoplastic resin, it is possible to refer to the SP value described by Fumio Ide, “Practical Polymer Alloy Design” (Industry Research Committee First Edition, issued on September 1, 1996). SP values of typical thermoplastic resins are as follows.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 この文献において、数値の範囲でSP値が示されている材料のSP値については、この数値範囲の平均値をその材料のSP値として本願発明では使用した。例えば、ナイロン6(PA6)の文献SP値11.6~12.7については、11.6と12.7の平均値12.2(小数点以下2桁で四捨五入)をナイロン6(PA6)のSP値として使用した。 In this document, regarding the SP value of a material whose SP value is indicated in a numerical range, the average value in this numerical range is used as the SP value of the material in the present invention. For example, for the literature SP values 11.6 to 12.7 for nylon 6 (PA6), the average value 12.2 (rounded to the first decimal place) of 11.6 and 12.7 was used as the SP value for nylon 6 (PA6).
 繊維強化樹脂複合体に使用する熱可塑性樹脂の選定は、それを使用した繊維強化複合体の用途によってきまる。そして、熱可塑性樹脂の溶解パラメータ(SPpol)の範囲は樹脂固有のものである。 The selection of the thermoplastic resin used for the fiber reinforced resin composite depends on the application of the fiber reinforced composite using the thermoplastic resin. The range of the solubility parameter (SP pol ) of the thermoplastic resin is unique to the resin.
 例えば、エンジンカバーや、マニホールド等の自動車部品、家電部品等に多用されるポリアミド類の溶解パラメータ(SPpol)は12~13程度であり、ナイロン6(PA6)のSPpolは12.2である。強度が要求される電気電子製品の外装・筐体・機構部品類に多用されるポリアセタール(POM)のSPpolは11.1程度である。一方、比重小さく疎水性で自動車部品、家電部品、包装フィルム、食品容器などに汎用されるポリプロピレン(PP)のSPpolは8.1程度で、PPやポリエチレン(PE)等の疎水性ポリオレフィンの接着性、分散性向上のために使用される無水マレイン酸変性ポリプロピレン(MAPP)のSPpolは、8.2程度である。この様なSPpolに対応して、比率R (SPcnf/SPpol)が1.03~1.32程度となる様なSPcnfを有する化学修飾CNFが選定されて本発明の繊維強化樹脂組成物が製造される。 For example, the solubility parameter (SP pol ) of polyamides frequently used in engine covers, automobile parts such as manifolds, and home appliance parts is about 12 to 13, and the SP pol of nylon 6 (PA6) is 12.2. The SP pol of polyacetal (POM), which is frequently used for the exterior, casing, and mechanical parts of electrical and electronic products that require strength, is about 11.1. On the other hand, SP pol of polypropylene (PP), which is small in specific gravity and hydrophobic and widely used in automobile parts, home appliance parts, packaging films, food containers, etc., is about 8.1, and adhesion of hydrophobic polyolefins such as PP and polyethylene (PE), The SP pol of maleic anhydride-modified polypropylene (MAPP) used for improving dispersibility is about 8.2. Corresponding to such SP pol , a chemically modified CNF having SP cnf such that the ratio R (SP cnf / SP pol ) is about 1.03 to 1.32 is selected to produce the fiber reinforced resin composition of the present invention. The
 (B)SP pol に対する(A)SP cnf の比率R (SP cnf /SP pol ) 本発明の繊維強化樹脂組成物ではSPpolに対する(A)SPcnfの比率R (SPcnf/SPpol)は0.87~1.88程度の範囲であり、1.03~1.88の範囲が好ましく、1.03~1.82程度の範囲がより好ましい。この数値(1.03~1.82)の範囲内で、熱可塑性樹脂のSPpolが大きいときにはR (SPcnf/SPpol)は小さく、SPpolが小さいときにはR (SPcnf/SPpol)は大きいことがより好ましい。 (B) the ratio of (A) SP cnf for SP pol R (SP cnf / SP pol) ratio of (A) SP cnf for SP pol in fiber-reinforced resin composition of the present invention R (SP cnf / SP pol) 0.87 Is in the range of about ~ 1.88, preferably in the range of 1.03 to 1.88, and more preferably in the range of about 1.03 to 1.82. Within the scope of this number (1.03 to 1.82), when SP pol thermoplastic resin is large R (SP cnf / SP pol) is small, when SP pol is small R (SP cnf / SP pol) more that is larger preferable.
 例えば、ポリアミド(PA6、SPpol=12.2)、ポリアセタール(POM、SPpol=11.1)、ポリ乳酸又はこの混合樹脂を使用する場合は、比率R (SPcnf/SPpol)が1.03~1.32であることが好ましい。 For example, when using polyamide (PA6, SP pol = 12.2), polyacetal (POM, SP pol = 11.1), polylactic acid or a mixed resin, the ratio R (SP cnf / SP pol ) must be 1.03 to 1.32. Is preferred.
 一方、SPpolが小さい、例えばポリプロピレン(PP、SPpol=8.1)、無水マレイン酸変性ポリプロピレン(MAPP、SPpol=8.2)又はこの混合樹脂を使用する場合は、比率R (SPcnf/SPpol)は1.21~1.82であることが好ましい。こうすることによって、化学修飾CNFの樹脂(マトリックス)への分散性が向上し、化学修飾CNFを含む樹脂組成物の強度が向上するという効果が有る。 On the other hand, when SP pol is small, such as polypropylene (PP, SP pol = 8.1), maleic anhydride-modified polypropylene (MAPP, SP pol = 8.2) or this mixed resin, the ratio R (SP cnf / SP pol ) Is preferably 1.21 to 1.82. By doing so, there is an effect that the dispersibility of the chemically modified CNF in the resin (matrix) is improved and the strength of the resin composition containing the chemically modified CNF is improved.
 具体的には、熱可塑性樹脂として、ポリアミド(PA6、SP=12.2)を使用するときは、DS=0.29~1.17程度、SP=14.2~13.0程度、結晶化度69.5%程度以上のアセチル化セルロースが好ましく、より好ましくはDS=0.46~0.88程度、SP=14.6~13.7程度、結晶化度72.1%程度以上のアセチル化セルロースを添加することで、良好な曲げ特性を得ることができる。 Specifically, when polyamide (PA6, SP = 12.2) is used as the thermoplastic resin, acetylated cellulose having DS = 0.29 to 1.17, SP = 14.2 to 13.0, and crystallinity of about 69.5% or more is used. More preferably, by adding acetylated cellulose having a DS of about 0.46 to 0.88, a SP of about 14.6 to 13.7, and a crystallinity of about 72.1% or more, good bending characteristics can be obtained.
 熱可塑性樹脂として、ポリアセタール(POM、SP=11.1)を使用するときは、DS=0.46~1.84程度、SP=14.6~11.5程度、結晶化度55.6%程度以上のアセチル化セルロースが好ましく、より好ましくはDS=0.64~1.17程度、SP=14.2~13.0程度、結晶化度69.5%程度以上のアセチル化セルロースを添加することで、良好な曲げ特性を得ることができる。 When polyacetal (POM, SP = 11.1) is used as the thermoplastic resin, acetylated cellulose having DS = 0.46 to 1.84, SP = 14.6 to 11.5, crystallinity of about 55.6% or more is preferable, and more preferably By adding acetylated cellulose having DS = 0.64 to 1.17, SP = 14.2 to 13.0, and crystallinity of about 69.5% or more, good bending characteristics can be obtained.
 熱可塑性樹脂として、ポリプロピレン(PP、SP=8.1)を使用するときは、DS=0.46程度以上が好ましく、より好ましくはDS=1.84程度以上が好ましく、DS=2.52程度以上にピークがあると考えられ、結晶化度は影響していない。 When polypropylene (PP, SP = 8.1) is used as the thermoplastic resin, DS is preferably about 0.46 or more, more preferably about DS = 1.84 or more, and it is considered that there is a peak at about DS = 2.52 or more. The crystallinity is not affected.
 熱可塑性樹脂として、無水マレイン酸変性ポリプロピレン(MAPP、SPpol=8.2)を使用するときは、DS=0.32~2.52程度、SP=15.0~9.90程度、結晶化度42.7%程度以上のアセチル化セルロースが好ましく、より好ましくはDS=0.88~1.57程度、SP=13.7~12.1程度、結晶化度55.6%程度以上のアセチル化セルロースを添加することで、良好な曲げ特性を得ることができる。 When maleic anhydride-modified polypropylene (MAPP, SP pol = 8.2) is used as the thermoplastic resin, acetylated cellulose with DS = 0.32 to 2.52, SP = 15.0 to 9.90, crystallinity of about 42.7% or more More preferably, by adding acetylated cellulose having a DS of about 0.88 to 1.57, a SP of about 13.7 to 12.1, and a crystallinity of about 55.6% or more, good bending characteristics can be obtained.
 熱可塑性樹脂として、ポリ乳酸(PLA、SPpol=11.4)を使用するときは、DS=0.32~2.52程度、SP=15.0~9.9程度、結晶化度42.7%程度以上のアセチル化セルロースが好ましい。より好ましくはDS=0.32~1.57程度、SP=15.0~12.1程度、結晶化度55.6%程度以上のアセチル化セルロースである。これらのアセチル化セルロースを添加することで、良好な曲げ特性を得ることができる。 When polylactic acid (PLA, SP pol = 11.4) is used as the thermoplastic resin, acetylated cellulose having a DS of about 0.32 to 2.52, a SP of about 15.0 to 9.9, and a crystallinity of about 42.7% or more is preferable. More preferred is acetylated cellulose having a DS of about 0.32 to 1.57, a SP of about 15.0 to 12.1, and a crystallinity of about 55.6% or more. By adding these acetylated celluloses, good bending characteristics can be obtained.
 ポリエチレン(PE、SP=8.0)を使用するときは、DS=0.30~2.02程度、SP=15.0~11.1程度、結晶化度42.7%程度以上のアセチル化セルロースが好ましい。良好な曲げ特性を得ることができる。 When polyethylene (PE, SP = 8.0) is used, acetylated cellulose having a DS of about 0.30 to 2.02, SP of about 15.0 to 11.1, and a crystallinity of about 42.7% or more is preferable. Good bending properties can be obtained.
 ポリスチレン(PS、SP=8.85)を使用するときは、DS=0.30~2.02程度、SP=15.0~11.0程度、結晶化度42.7%程度以上のアセチル化セルロースが好ましい。良好な曲げ特性を得ることができる。 When polystyrene (PS, SP = 8.85) is used, acetylated cellulose having a DS of about 0.30 to 2.02, a SP of about 15.0 to 11.0, and a crystallinity of about 42.7% or more is preferable. Good bending properties can be obtained.
 アクリロニトリル‐ブタジエン‐スチレン共重合体(ABS樹脂)を使用するときは、アクリロニトリル‐ブタジエン‐スチレン共重合体の共重合比によりSP値が変動するので一概に言えないが、DS=0.30~1.57程度、SP=15.0~12.1程度、結晶化度55.6%程度以上のアセチル化セルロースが好ましい。良好な曲げ特性を得ることができる。 When using an acrylonitrile-butadiene-styrene copolymer (ABS resin), the SP value varies depending on the copolymerization ratio of the acrylonitrile-butadiene-styrene copolymer, but it cannot be generally stated, but DS = 0.30 to 1.57, Acetylated cellulose having an SP of about 15.0 to 12.1 and a crystallinity of about 55.6% or more is preferable. Good bending properties can be obtained.
 ポリアミド(PA6)、ポリアセタール(POM)等の極性材料においては、そのSPが高いため、DS=1.2程度までのアセチル化処理で十分セルロースとの相容性が向上し、セルロースの結晶化度を70%程度以上に保つ、つまりセルロース繊維の強度を高い状態に保つことにより最も高曲げ特性の材料を得ることができる。 In polar materials such as polyamide (PA6) and polyacetal (POM), the SP is high, so acetylation up to about DS = 1.2 improves the compatibility with cellulose sufficiently, and the crystallinity of cellulose is increased to 70. A material having the highest bending characteristics can be obtained by maintaining the strength of the cellulose fiber at about% or higher, that is, by maintaining the strength of the cellulose fiber at a high level.
 ポリプロピレン(PP)等の非極性材料においては、そのSPが低いため、結晶化度の高く繊維強度の高いDS=1.0程度までのアセチル化セルロースでは界面強度が低すぎて不十分な曲げ特性となる。アセチル化NBKP/PP複合材料では,結晶化度が低下しても高DSにする必要があると言える。即ち高アセチル化セルロースを使用することが好ましい。 In non-polar materials such as polypropylene (PP), because of its low SP, acetylated cellulose with high crystallinity and high fiber strength up to DS = 1.0 is too low in interfacial strength, resulting in insufficient bending properties. . It can be said that the acetylated NBKP / PP composite material needs to have a high DS even when the crystallinity is lowered. That is, it is preferable to use highly acetylated cellulose.
 (1-4)繊維強化樹脂組成物の配合組成
 本発明の繊維強化樹脂組成物は(A)化学修飾CNF及び(B)熱可塑性樹脂を含む。
(1-4) Composition of Fiber Reinforced Resin Composition The fiber reinforced resin composition of the present invention contains (A) a chemically modified CNF and (B) a thermoplastic resin.
 繊維強化樹脂組成物中の(A)化学修飾CNFの含有割合は、熱可塑性樹脂(B)100質量部に対し、1~300質量部程度が好ましく、1~200質量部程度がより好ましく、1~100質量部程度が更に好ましい。繊維強化樹脂組成物中の(A)化学修飾CNF(好ましくはアセチル化CNF)の含有割合は、0.1~30質量部程度であることが好ましい。 The content of (A) chemically modified CNF in the fiber reinforced resin composition is preferably about 1 to 300 parts by weight, more preferably about 1 to 200 parts by weight, with respect to 100 parts by weight of the thermoplastic resin (B). About 100 parts by mass is more preferable. The content ratio of (A) chemically modified CNF (preferably acetylated CNF) in the fiber reinforced resin composition is preferably about 0.1 to 30 parts by mass.
 (B)熱可塑性樹脂に(A)化学修飾CNFを配合することにより、力学的特性、耐熱性、表面平滑性及び外観に優れる繊維強化樹脂組成物を得ることができる。 (B) A fiber-reinforced resin composition excellent in mechanical properties, heat resistance, surface smoothness and appearance can be obtained by blending (B) thermoplastic resin with (A) chemically modified CNF.
 (A)化学修飾CNFは、植物繊維と同様に、軽量であり、強度を有し、低線熱膨張係数を有する。組成物が(A)化学修飾CNFを含んでも、組成物は汎用のプラスチックと同様に、加熱すると軟化して成形し易くなり、冷やすと再び固くなる性質(熱可塑性)を持ち、良好な加工性を発現できる。 (A) Chemically modified CNF, like plant fibers, is lightweight, has strength, and has a low linear thermal expansion coefficient. Even if the composition contains (A) chemically modified CNF, the composition has the property (thermoplasticity) that softens when heated and becomes easy to mold, and becomes hard again when cooled (thermoplasticity), as in general-purpose plastics. Can be expressed.
 本発明の繊維強化樹脂組成物は、前記(A)化学修飾CNF及び(B)熱可塑性樹脂に加え、例えば、相溶化剤;界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤等の添加剤を配合してもよい。任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されてもよい。 The fiber-reinforced resin composition of the present invention includes, for example, a compatibilizing agent; a surfactant; a starch, a polysaccharide such as alginic acid, gelatin, glue, Natural proteins such as casein; inorganic compounds such as tannins, zeolites, ceramics, metal powders; colorants; plasticizers; fragrances; pigments; flow regulators; leveling agents; conductive agents; antistatic agents; An additive such as a deodorant may be blended. As a content ratio of an arbitrary additive, it may be appropriately contained within a range not impairing the effects of the present invention.
 本発明の繊維強化樹脂組成物は、(A)化学修飾CNFを含むので、(A)化学修飾CNF同士が、水素結合によって凝集することを抑制できる。よって、(A)化学修飾CNFと熱可塑性樹脂(マトリックス材料)との混合工程において、(A)化学修飾CNF同士の凝集が抑制され、(A)化学修飾CNFが熱可塑性樹脂中で均一に分散され、力学的特性、耐熱性、表面平滑性及び外観に優れた(A)化学修飾CNFを含む繊維強化樹脂組成物を得ることができる。 Since the fiber reinforced resin composition of the present invention includes (A) chemically modified CNF, (A) the chemically modified CNFs can be prevented from aggregating due to hydrogen bonding. Therefore, in the mixing process of (A) chemically modified CNF and thermoplastic resin (matrix material), aggregation of (A) chemically modified CNF is suppressed, and (A) chemically modified CNF is uniformly dispersed in the thermoplastic resin. Thus, a fiber reinforced resin composition containing (A) chemically modified CNF having excellent mechanical properties, heat resistance, surface smoothness and appearance can be obtained.
 本発明の(A)化学修飾CNFを含む繊維強化樹脂組成物は、力学的特性において、曲げ試験等の静的特性、及び衝撃試験等の動的特性をバランス良く向上できる。 The fiber reinforced resin composition containing (A) chemically modified CNF of the present invention can improve the mechanical properties in a balanced manner, such as static properties such as bending tests and dynamic properties such as impact tests.
 (1-5)化学修飾CNFの結晶化度の好ましい態様
 繊維強化樹脂組成物に含まれる化学修飾CNFは(A2)アセチル化セルロースナノファイバー(アセチル化CNF)であることが好ましい。
(1-5) Preferred Mode of Crystallinity of Chemically Modified CNF The chemically modified CNF contained in the fiber reinforced resin composition is preferably (A2) acetylated cellulose nanofiber (acetylated CNF).
 アセチル化CNFは、結晶化度が42.7%程度以上であり、糖鎖の水酸基がアセチル基で置換されており、その置換度が0.29~2.52程度であり、溶解度パラメータ(SPcnf)が9.9~15程度であることが好ましい。 Acetylated CNF has a crystallinity of about 42.7% or more, the hydroxyl group of the sugar chain is substituted with an acetyl group, the degree of substitution is about 0.29 to 2.52, and the solubility parameter (SP cnf ) is 9.9 to 15 It is preferable that it is a grade.
 ポリプロピレンや無水マレイン酸変性ポリプロピレンのような極性の低いマトリックス及びポリアミドやポリアセタールのような極性マトリックスに対しては、アセチル化CNFは、結晶化度42.7%程度以上であり、置換度(DS)が0.29~2.52程度であり、溶解度パラメータ(SPcnf)が9.9~15.0程度であることが好ましい。 For low-polarity matrices such as polypropylene and maleic anhydride-modified polypropylene and for polar matrices such as polyamide and polyacetal, acetylated CNF has a crystallinity of about 42.7% or higher and a degree of substitution (DS) of 0.29. It is preferable that the solubility parameter (SP cnf ) is about 9.9 to 15.0.
 中でも極性ポリマーであるポリアミドやポリアセタールに対しては、アセチル化CNFは、結晶化度55.6%程度以上であり、置換度(DS)が0.29~1.84程度であり、溶解度パラメータ(SPcnf)が11.5~15.0程度であることが好ましい。 In particular, for polyamides and polyacetals that are polar polymers, acetylated CNF has a crystallinity of about 55.6% or higher, a degree of substitution (DS) of about 0.29 to 1.84, and a solubility parameter (SP cnf ) of 11.5 to It is preferably about 15.0.
 また、前記アセチル化CNFは、200℃以上の高融点樹脂との溶融混練、及び繰り返しの溶融混練に耐えることができる。 Further, the acetylated CNF can withstand melt kneading with a high melting point resin of 200 ° C. or higher and repeated melt kneading.
 繊維強化樹脂組成物では、(B)熱可塑性樹脂として極性樹脂(ポリアミド樹脂、ポリアセタール樹脂)を用いる場合は、結晶化度65%程度以上であり、置換度(DS)が0.4~1.2程度であり、溶解度パラメータ(SPcnf)が12~15程度である化学修飾CNFを用いることが好ましい。その化学修飾CNFを調製することができる原料パルプとしてNBKPを使用することが好ましい。 In the fiber reinforced resin composition, when (B) a polar resin (polyamide resin, polyacetal resin) is used as the thermoplastic resin, the crystallinity is about 65% or more, and the degree of substitution (DS) is about 0.4 to 1.2. It is preferable to use chemically modified CNF having a solubility parameter (SP cnf ) of about 12-15 . It is preferable to use NBKP as a raw material pulp from which the chemically modified CNF can be prepared.
 繊維強化樹脂組成物では、(B)熱可塑性樹脂として非極性樹脂(ポリプロピレン、PP)を用いる場合は、結晶化
度が40%程度以上であり、置換度(DS)が1.2程度以上であり、溶解度パラメータ(SPcnf)が8~12程度であるである化学修飾CNFを用いることが好ましい。その化学修飾CNFを調製することができる原料パルプとしてNBKPを使用することが好ましい。
In the fiber reinforced resin composition, when a nonpolar resin (polypropylene, PP) is used as the thermoplastic resin (B), the degree of crystallinity is about 40% or more, the degree of substitution (DS) is about 1.2 or more, It is preferable to use a chemically modified CNF having a solubility parameter (SP cnf ) of about 8-12 . It is preferable to use NBKP as a raw material pulp from which the chemically modified CNF can be prepared.
 (2)繊維強化樹脂組成物の製造方法
 繊維強化樹脂組成物は、(A)化学修飾CNFと(B)熱可塑性樹脂(マトリックス材料)とを混合することにより作製することができる。更に、その繊維強化樹脂組成物を成形することにより成形体を作製することができる。
(2) Method for producing fiber reinforced resin composition The fiber reinforced resin composition can be produced by mixing (A) a chemically modified CNF and (B) a thermoplastic resin (matrix material). Furthermore, a molded body can be produced by molding the fiber reinforced resin composition.
 本発明の繊維強化樹脂組成物は、化学修飾CNFと樹脂とを混練して製造できるが、混練機等を用いて、化学修飾パルプ(化学修飾CNFになる物)と(B)熱可塑性樹脂とを混練し、それらを複合化することにより製造することもできる。その混練中のせん断応力により化学修飾パルプのフィブリル化が進行し、(A)化学修飾CNFと(B)熱可塑性樹脂との均一な混合組成物を得ることができる。 The fiber reinforced resin composition of the present invention can be produced by kneading a chemically modified CNF and a resin, but using a kneader or the like, a chemically modified pulp (a material that becomes a chemically modified CNF) and (B) a thermoplastic resin It can also be produced by kneading and compounding them. The fibrillation of the chemically modified pulp proceeds due to the shear stress during the kneading, and a uniform mixed composition of (A) the chemically modified CNF and (B) the thermoplastic resin can be obtained.
 繊維強化樹脂組成物中の(A)化学修飾CNF及び(B)熱可塑性樹脂の含有量は前記の通りである。 The contents of (A) chemically modified CNF and (B) thermoplastic resin in the fiber reinforced resin composition are as described above.
 (A)化学修飾CNF又は化学修飾パルプと(B)熱可塑性樹脂とを混合する場合、両成分を室温下で加熱せずに混合してからしてから加熱しても、加熱しながら混合しても良い。加熱する場合、混合する温度は、使用する(B)熱可塑性樹脂に合わせて調整することができる。
加熱設定温度は、熱可塑性樹脂供給業者が推奨する、最低加工温度(PA6は225~240℃、POMは170℃~190℃、PP及びMAPPは160~180℃)~この推奨加工温度より20℃高い温度の範囲が好ましい。混合温度をこの温度範囲に設定することにより、(A)化学修飾CNF又は化学修飾パルプと(B)熱可塑性樹脂とを均一に混合することができる。
(A) When chemically modified CNF or chemically modified pulp and (B) thermoplastic resin are mixed, both components are mixed without heating at room temperature, and then mixed with heating. May be. In the case of heating, the mixing temperature can be adjusted according to the thermoplastic resin (B) to be used.
Heating set temperature is the minimum processing temperature recommended by the thermoplastic resin supplier (225 to 240 ° C for PA6, 170 to 190 ° C for POM, 160 to 180 ° C for PP and MAPP) to 20 ° C from this recommended processing temperature A high temperature range is preferred. By setting the mixing temperature within this temperature range, (A) chemically modified CNF or chemically modified pulp and (B) thermoplastic resin can be uniformly mixed.
 混合方法として、ベンチロール、バンバリーミキサー、ニーダー、プラネタリーミキサー等の混練機により混練する方法、攪拌羽により混合する方法、公転・自転方式の攪拌機により混合する方法等により、混合することが好ましい。 The mixing is preferably performed by a kneading method such as a bench roll, a Banbury mixer, a kneader, or a planetary mixer, a mixing method using a stirring blade, a mixing method using a revolving / spinning type stirrer, or the like.
 繊維強化樹脂組成物の製造方法では、CNFを構成する糖鎖の水酸基に、例えばアセチル基等の低級アルカノイル基を導入する(化学修飾する)ことにより、セルロースの水素結合が抑制される。これにより、化学修飾(アセチル化等)セルロースと樹脂の溶融混合工程において、繊維径が数十から数百μmの化学修飾(アセチル化等)パルプが、繊維径が数十nm~数百nmの化学修飾CNFに解繊することができる。そのアセチル化等の化学修飾処理は、低コストであり、処理の簡便性に優れていることから実用化が容易である。つまり、その化学修飾処理により、樹脂中での化学修飾セルロース繊維の分散性が促進され、解繊(ナノファイバー化)も促進される。 In the method for producing a fiber reinforced resin composition, hydrogen bonding of cellulose is suppressed by introducing (chemically modifying) a lower alkanoyl group such as an acetyl group into a hydroxyl group of a sugar chain constituting CNF. Thus, in the melt mixing step of chemically modified (acetylated, etc.) cellulose and resin, chemically modified (acetylated, etc.) pulp having a fiber diameter of several tens to several hundreds of μm has a fiber diameter of several tens to several hundreds of nanometers. Can be defibrated to chemically modified CNF. The chemical modification treatment such as acetylation is easy to put into practical use because of its low cost and excellent ease of treatment. That is, the chemical modification treatment promotes dispersibility of the chemically modified cellulose fiber in the resin, and also promotes defibration (nanofiberization).
 本発明では、セルロース分子に存在する水酸基のうちの幾つを化学修飾するか(アセチル基等で置き換えるか)に依って各樹脂に対して最適なSP値を有する化学修飾CNF(アセチル化CNF等)を使用して繊維強化樹脂組成物を得ることができる。繊維強化樹脂組成物では、セルロースの結晶化度を42%程度以上に保ち、適切なSP値とすることにより、セルロースの樹脂中での分散性が高く、セルロースの樹脂に対する補強効果が向上し、優れた力学的特性を持つCNF複合材料を得ることができる。 In the present invention, chemically modified CNF (acetylated CNF, etc.) having an optimum SP value for each resin depending on how many of the hydroxyl groups present in the cellulose molecule are chemically modified (replaced with acetyl groups, etc.) Can be used to obtain a fiber reinforced resin composition. In the fiber reinforced resin composition, the degree of crystallinity of cellulose is maintained at about 42% or more, and by making it an appropriate SP value, the dispersibility of the cellulose in the resin is high, and the reinforcing effect of the cellulose resin is improved. CNF composites with excellent mechanical properties can be obtained.
 製造方法では、混練処理や混合処理を「複合化」ともいう。 In the manufacturing method, the kneading process and the mixing process are also referred to as “composite”.
 本発明の繊維強化樹脂組成物の製造方法は、前記繊維強化樹脂組成物が(A)化学修飾CNF及び(B)熱可塑性樹脂を含有し、下記の工程:
(1)下記の条件:
(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾CNFの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)(A)化学修飾CNFの結晶化度が42.7%以上である
を満たす(A)化学修飾CNF及び(B)熱可塑性樹脂を選定する工程、
(2)前記工程(1)で選定された(A)化学修飾CNFと(B)熱可塑性樹脂とを配合する工程、及び
(3)前記工程(2)で配合された(A)化学修飾CNFと(B)熱可塑性樹脂とを混練し、樹脂組成物を得る工程
を含むことを特徴とする。
In the method for producing a fiber reinforced resin composition of the present invention, the fiber reinforced resin composition contains (A) a chemically modified CNF and (B) a thermoplastic resin, and the following steps:
(1) The following conditions:
(a) the ratio R (SP cnf / SP pol ) of the (A) chemically modified CNF solubility parameter (SP cnf ) to the thermoplastic resin solubility parameter (SP pol ) is in the range of 0.87 to 1.88; and (b) (A) a step of selecting a chemically modified CNF and (B) a thermoplastic resin that satisfy the crystallinity of the chemically modified CNF of 42.7% or more,
(2) a step of blending (A) the chemically modified CNF selected in the step (1) and (B) a thermoplastic resin, and
(3) The method includes a step of kneading (A) the chemically modified CNF and (B) the thermoplastic resin blended in the step (2) to obtain a resin composition.
 前記(a)の比率R (SPcnf/SPpol)は、1.03~1.88程度の範囲が好ましく、1.03~1.82程度の範囲であることがより好ましい。 The ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, and more preferably in the range of about 1.03 to 1.82.
 本製造工程においては、本発明の繊維強化樹脂組成物のために調製及び作製したCNF、並びに市販されている未変性CNFを直接化学変性して使用することが可能となる。つまり様々な状態のCNFを化学修飾し熱可塑性樹脂との複合化を可能とするものである。 In this production process, it is possible to directly chemically modify and use CNF prepared and produced for the fiber-reinforced resin composition of the present invention and commercially available unmodified CNF. In other words, CNF in various states is chemically modified to enable compounding with a thermoplastic resin.
 また比率R (SPcnf/SPpol)を考慮することにより高性能なCNF強化熱可塑性樹脂組成物の作製が可能となる。 In addition, by considering the ratio R (SP cnf / SP pol ), it becomes possible to produce a high-performance CNF-reinforced thermoplastic resin composition.
 本発明の繊維強化樹脂組成物の製造方法は、前記繊維強化樹脂組成物が(A)化学修飾CNF及び(B)熱可塑性樹脂を含有し、下記の工程:
(1)下記の条件:
(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾CNFの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)化学修飾CNFの結晶化度が42.7%以上である
を満たす解繊処理後の(A)化学修飾CNFとなる(A1)化学修飾パルプ及び(B)熱可塑性樹脂を選定する工程、
(2)前記工程(1)で選定された(A1)化学修飾パルプと(B)熱可塑性樹脂とを配合する工程、及び
(3)前記工程(2)で配合された(A1)化学修飾パルプと(B)熱可塑性樹脂とを混練し、同時に(A1)化学修飾パルプを解繊し、(A)化学修飾CNF及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程
を含むことを特徴とする。
In the method for producing a fiber reinforced resin composition of the present invention, the fiber reinforced resin composition contains (A) a chemically modified CNF and (B) a thermoplastic resin, and the following steps:
(1) The following conditions:
(a) the ratio R (SP cnf / SP pol ) of the (A) chemically modified CNF solubility parameter (SP cnf ) to the thermoplastic resin solubility parameter (SP pol ) is in the range of 0.87 to 1.88; and (b) a step of selecting (A) chemically modified pulp and (B) thermoplastic resin to be (A) chemically modified CNF after defibration that satisfies the degree of crystallinity of chemically modified CNF being 42.7% or more,
(2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and
(3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and simultaneously (A1) chemically modified pulp is defibrated, (A) chemically modified CNF and ( B) It includes a step of obtaining a resin composition containing a thermoplastic resin.
 前記(a)の比率R (SPcnf/SPpol)は、1.03~1.88程度の範囲が好ましく、1.03~1.82程度の範囲であることがより好ましい。 The ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, and more preferably in the range of about 1.03 to 1.82.
 本発明の繊維強化樹脂組成物の製造方法は、前記繊維強化樹脂組成物が(A)化学修飾CNF及び(B)熱可塑性樹脂を含有し、下記の工程:
(1)(A1)化学修飾パルプ及び(B)熱可塑性樹脂を選定する工程、
(2)前記工程(1)で選定された(A1)化学修飾パルプと(B)熱可塑性樹脂とを配合する工程、及び
(3)前記工程(2)で配合された(A1)化学修飾パルプと(B)熱可塑性樹脂とを混練し、同時に(A1)化学修飾パルプを解繊し、(A)化学修飾CNF及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程
を含み、
前記(A)化学修飾CNFと(B)熱可塑性樹脂とが、下記の条件:(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾CNFの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)化学修飾CNFの結晶化度が42.7%以上であるを満たすことを特徴とする。
In the method for producing a fiber reinforced resin composition of the present invention, the fiber reinforced resin composition contains (A) a chemically modified CNF and (B) a thermoplastic resin, and the following steps:
(1) (A1) a process of selecting chemically modified pulp and (B) thermoplastic resin,
(2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and
(3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and simultaneously (A1) chemically modified pulp is defibrated, (A) chemically modified CNF and ( B) including a step of obtaining a resin composition containing a thermoplastic resin,
The (A) chemically modified CNF and (B) thermoplastic resin are subjected to the following conditions: (A) (B) the solubility parameter (SP cnf ) of the chemically modified CNF relative to the solubility parameter (SP pol ) of the thermoplastic resin ) Ratio R (SP cnf / SP pol ) is in the range of 0.87 to 1.88, and (b) the crystallinity of the chemically modified CNF is 42.7% or more.
 前記(a)の比率R (SPcnf/SPpol)は、1.03~1.88程度の範囲が好ましく、1.03~1.82程度の範囲であることがより好ましい。 The ratio R (SP cnf / SP pol ) of (a) is preferably in the range of about 1.03 to 1.88, and more preferably in the range of about 1.03 to 1.82.
 一般にCNFの製造は、高圧ホモジナイザー等により機械的にパルプ等を解繊していく。しかし、パルプの低濃度のスラリーを使用すること、設備が高価で大型であること等から、これにより製造されたCNFは高価である。 Generally, in the manufacture of CNF, pulp is defibrated mechanically with a high-pressure homogenizer. However, the CNF produced by this is expensive due to the use of a low-concentration slurry of pulp and the fact that the equipment is expensive and large.
 本製造工程においては、未解繊のパルプを化学修飾し、樹脂との複合化の際の加熱溶融混合機のせん断応力により、樹脂と複合化しながら解繊を行うため、製造費用の低コスト化が図れ、更にダメージの少ないCNFが分散した高性能な繊維強化樹脂組成物を得ることが可能となる。 In this manufacturing process, undefibrated pulp is chemically modified, and defibration is performed while compounding with the resin due to the shearing stress of the heat-melt mixer during compounding with the resin, thus reducing manufacturing costs. Therefore, it is possible to obtain a high-performance fiber-reinforced resin composition in which CNF with less damage is dispersed.
 また比率R(SPcnf/SPpol)を考慮することにより高性能なCNF強化熱可塑性樹脂組成物の作製が可能となる。 In addition, by considering the ratio R (SP cnf / SP pol ), it becomes possible to produce a high-performance CNF-reinforced thermoplastic resin composition.
 本発明の繊維強化樹脂組成物の製造方法は、前記繊維強化樹脂組成物が(A2)アセチル化CNF及び(B)熱可塑性樹脂を含有し、下記の工程:
(1)(A3)アセチル化セルロースを含む(A4)繊維集合体と(B)熱可塑性樹脂とを混練し、同時に(A3)アセチル化セルロースを解繊し、(A2)アセチル化CNF及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程を含み、
前記(A2)アセチル化CNFの結晶化度が42.7%以上であり、糖鎖の水酸基がアセチル基で置換されており、その置換度が0.29~2.52であり、溶解度パラメータ(SPcnf)が9.9~15である、ことを特徴とする。
In the method for producing a fiber reinforced resin composition of the present invention, the fiber reinforced resin composition contains (A2) acetylated CNF and (B) a thermoplastic resin, and the following steps:
(1) (A3) Kneaded (A4) fiber assembly containing (A3) acetylated cellulose and (B) thermoplastic resin, and simultaneously (A3) deflated cellulose and (A2) acetylated CNF and (B ) Including a step of obtaining a resin composition containing a thermoplastic resin,
The crystallinity of the (A2) acetylated CNF is 42.7% or more, the hydroxyl group of the sugar chain is substituted with an acetyl group, the degree of substitution is 0.29 to 2.52, and the solubility parameter (SP cnf ) is 9.9 to It is characterized by being 15.
 一般にCNFの製造は、高圧ホモジナイザー等により機械的にパルプ等を解繊していく。しかし、パルプの低濃度のスラリーを使用すること,設備が高価で大型であること等から、これにより製造されたCNFは高価である。 Generally, in the manufacture of CNF, pulp is defibrated mechanically with a high-pressure homogenizer. However, the CNF produced by this method is expensive due to the use of a low concentration slurry of pulp and the expensive and large equipment.
 本製造工程においては、未解繊のパルプを化学修飾し、樹脂との複合化の際の加熱溶融混合機のせん断応力により、樹脂と複合化しながら解繊を行うため、製造費用の低コスト化が図れ、更にダメージの少ないCNFが分散した高性能な繊維強化樹脂組成物を得ることが可能となる。 In this manufacturing process, undefibrated pulp is chemically modified, and defibration is performed while compounding with the resin due to the shearing stress of the heat-melt mixer during compounding with the resin, thus reducing manufacturing costs. Therefore, it is possible to obtain a high-performance fiber-reinforced resin composition in which CNF with less damage is dispersed.
 またアセチル基による置換度及び溶解度パラメータを制御することにより、非極性から極性マトリックスまでの対応が可能となる。 Also, by controlling the substitution degree and solubility parameter with acetyl groups, it is possible to deal with non-polar to polar matrices.
 (3)繊維強化樹脂組成物を用いた成形材料及び成形体(成型材料及び成型体)
 本発明の繊維強化樹脂組成物を用いて、成形材料及び成形体(成型材料及び成型体)を製造することができる。成形体の形状としては、フィルム状、シート状、板状、ペレット状、粉末状、立体構造など各種形状等の各種形状の成形体が挙げられる。成形方法として、金型成形、射出成形、押出成形、中空成形、発泡成形等を用いることができる。
(3) Molding material and molded body (molding material and molded body) using fiber reinforced resin composition
Using the fiber-reinforced resin composition of the present invention, a molding material and a molded body (a molding material and a molded body) can be produced. Examples of the shape of the molded body include molded bodies having various shapes such as various shapes such as a film shape, a sheet shape, a plate shape, a pellet shape, a powder shape, and a three-dimensional structure. As the molding method, mold molding, injection molding, extrusion molding, hollow molding, foam molding and the like can be used.
 成形体(成型体)は、植物繊維を含むマトリックス成形物(成形物)が使用される繊維強化プラスチック分野に加え、熱可塑性及び機械強度(引張り強度等)が要求される分野にも使用できる。 The molded product (molded product) can be used not only in the field of fiber reinforced plastics where a matrix molded product (molded product) containing plant fibers is used, but also in fields where thermoplasticity and mechanical strength (such as tensile strength) are required.
 自動車、電車、船舶、飛行機等の輸送機器の内装材、外装材、構造材等;パソコン、テレビ、電話、時計等の電化製品等の筺体、構造材、内部部品等;携帯電話等の移動通信機器等の筺体、構造材、内部部品等;携帯音楽再生機器、映像再生機器、印刷機器、複写機器、スポーツ用品等の筺体、構造材、内部部品等;建築材;文具等の事務機器等、容器、コンテナー等として有効に使用することができる。 Interior materials, exterior materials, structural materials, etc. for transportation equipment such as automobiles, trains, ships, airplanes, etc .; casings, structural materials, internal parts, etc. for electrical appliances such as personal computers, televisions, telephones, watches; mobile communications such as mobile phones Housings such as equipment, structural materials, internal parts, etc .; portable music playback equipment, video playback equipment, printing equipment, copying equipment, sports equipment, etc .; construction materials; office equipment such as stationery, etc. It can be used effectively as a container, container, and the like.
 化学修飾CNFと樹脂との混合工程において、化学修飾CNF同士の凝集が起こらず、化学修飾CNFが樹脂中で均一に分散されるので、力学的特性、耐熱性、表面平滑性、外観等に優れた化学修飾CNFを含む樹脂組成物及び成形体を得ることができる。更に、樹脂組成物では、力学的特性において、曲げ試験等の静的特性、及び衝撃試験等の動的特性をバランス良く向上できる。また、樹脂組成物では、耐熱性において、荷重たわみ温度では数十℃の向上を達成できる。また、樹脂組成物から得られる最終成形品では、化学修飾CNFの凝集塊が発生せず、表面平滑性及び外観に優れる。 Aggregation of chemically modified CNFs does not occur in the mixing process of chemically modified CNF and resin, and chemically modified CNF is uniformly dispersed in the resin, so it has excellent mechanical properties, heat resistance, surface smoothness, appearance, etc. In addition, a resin composition and a molded body containing chemically modified CNF can be obtained. Furthermore, in the resin composition, in the mechanical characteristics, static characteristics such as a bending test and dynamic characteristics such as an impact test can be improved in a well-balanced manner. Further, in the resin composition, an improvement of several tens of degrees Celsius can be achieved at the deflection temperature under load in heat resistance. Further, in the final molded product obtained from the resin composition, no agglomerates of chemically modified CNF are generated, and the surface smoothness and appearance are excellent.
 以下、実施例及び比較例を挙げて本発明を更に詳細に説明する。本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited to these examples.
 実施例において、パルプ、化学修飾パルプ、化学修飾CNF、熱可塑性樹脂等の成分含量は質量%を示す。 In the examples, the component content of pulp, chemically modified pulp, chemically modified CNF, thermoplastic resin, etc. represents mass%.
 I.試験方法
 下記に示す実施例及び比較例等で使用した試験方法は以下の通りである。
I. Test Method Test methods used in the following examples and comparative examples are as follows.
 (1)リグニンの定量方法(クラーソン法)
 ガラスファイバーろ紙(GA55)を110℃オーブンで恒量になるまで乾燥させ、デシケータ内で放冷後、計量した。110℃で絶乾させた試料(約0.2g)を精秤し、50mL容チューブに入れた。72%濃硫酸3mL加え、内容物が均一になるようにガラス棒で適宜押しつぶしながら、30℃の温水にチューブを入れて1時間保温した。次いで、チューブ内容物と蒸留水84gとを三角フラスコに注ぎ込み混合した後、オートクレーブ中で、120℃で1時間反応させた。放冷後、内容物をガラスファイバーろ紙で濾過し不溶物をろ取し、200mLの蒸留水で洗浄した。110℃オーブンで恒量になるまで乾燥させ計量した。
(1) Quantification method of lignin (Klarson method)
Glass fiber filter paper (GA55) was dried in a 110 ° C. oven to a constant weight, allowed to cool in a desiccator, and then weighed. A sample (about 0.2 g) that had been completely dried at 110 ° C. was precisely weighed and placed in a 50 mL tube. 3 mL of 72% concentrated sulfuric acid was added, and the tube was placed in warm water at 30 ° C. for 1 hour while being appropriately crushed with a glass rod so that the contents were uniform. Next, the tube contents and 84 g of distilled water were poured into an Erlenmeyer flask and mixed, and then reacted in an autoclave at 120 ° C. for 1 hour. After allowing to cool, the contents were filtered with a glass fiber filter paper, the insoluble matter was collected by filtration, and washed with 200 mL of distilled water. Dry and weigh until constant weight in 110 ° C oven.
 (2)セルロース及びへミセルロースの定量方法(糖分析)
 ガラスファイバーろ紙(GA55)を110℃オーブンで恒量になるまで乾燥させ、デシケータ内で放冷後、計量した。110℃で絶乾させた試料(約0.2g)を精秤し、50mL容チューブに入れた。72%濃硫酸3mL加え、内容物が均一になるようにガラス棒で適宜押しつぶしながら、30℃の温水にチューブを入れて1時間保温した。次いで、チューブ内容物と蒸留水84gとを加え定量的に三角フラスコに注ぎ込み混合した後、混合物1.0mLを耐圧試験管に入れ、内部標準として0.2%イノシトール溶液100μL加えた。メスピペットを用いて72%濃硫酸(7.5μL)を加え、オートクレーブ中で120℃で1時間反応させた。放冷後、反応液100μLを超純水で希釈し、サーモフィッシャーサイエンティフィック社製イオンクロマトグラフ分析に供し、試料に含まれていた糖成分を分析した。
(2) Determination method of cellulose and hemicellulose (sugar analysis)
Glass fiber filter paper (GA55) was dried in a 110 ° C. oven to a constant weight, allowed to cool in a desiccator, and then weighed. A sample (about 0.2 g) that had been completely dried at 110 ° C. was precisely weighed and placed in a 50 mL tube. 3 mL of 72% concentrated sulfuric acid was added, and the tube was placed in warm water at 30 ° C. for 1 hour while being appropriately crushed with a glass rod so that the contents were uniform. Next, the tube contents and 84 g of distilled water were added and quantitatively poured into an Erlenmeyer flask and mixed. Then, 1.0 mL of the mixture was placed in a pressure test tube, and 100 μL of 0.2% inositol solution was added as an internal standard. Using a pipette, 72% concentrated sulfuric acid (7.5 μL) was added, and the mixture was reacted at 120 ° C. for 1 hour in an autoclave. After allowing to cool, 100 μL of the reaction solution was diluted with ultrapure water and subjected to ion chromatographic analysis manufactured by Thermo Fisher Scientific Co. to analyze the sugar component contained in the sample.
 (3)セルロース、ヘミセルロース水酸基の化学修飾度(DS)の測定方法
 (3-1)逆滴定方法
 セルロース、ヘミセルロース及びリグノセルロースの水酸基がアシル化(エステル化)された試料のDS測定方法を、アセチル化された試料を例にとり以下に説明する。他のアシル化の場合も同様である。
(3) Method for measuring degree of chemical modification (DS) of cellulose and hemicellulose hydroxyl group (3-1) Back titration method DS measurement method for samples in which hydroxyl groups of cellulose, hemicellulose and lignocellulose are acylated (esterified) This will be described below by taking the sample obtained as an example. The same applies to other acylation cases.
 準備、秤量及び加水分解
 試料を乾燥し,0.5g(A)を正確に秤量した。そこにエタノール75mL、0.5NのNaOH 50mL(0.025mol)(B)を加え、3~4時間撹拌した。これをろ過、水洗、乾燥し、ろ紙上の試料のFTIR測定を行い、エステル結合のカルボニルに基づく吸収ピークが消失していること、つまりエステル結合が加水分解されていることを確認した。ろ液を下記の逆滴定に用いた。
Preparation, weighing and hydrolysis samples were dried and 0.5 g (A) was accurately weighed. Ethanol 75 mL and 0.5 N NaOH 50 mL (0.025 mol) (B) were added thereto, and the mixture was stirred for 3 to 4 hours. This was filtered, washed with water, dried, and subjected to FTIR measurement of the sample on the filter paper, and it was confirmed that the absorption peak based on the carbonyl of the ester bond disappeared, that is, the ester bond was hydrolyzed. The filtrate was used for the following back titration.
 逆滴定
 ろ液には加水分解の結果生じた酢酸ナトリウム塩及び過剰に加えられたNaOHが存在する。このNaOHの中和滴定を1NのHCl及びフェノールフタレインを用いて行った。
In the back titration filtrate there is sodium acetate resulting from hydrolysis and NaOH added in excess. The neutralization titration of NaOH was performed using 1N HCl and phenolphthalein.
 ・0.025mol(B)‐(中和に使用したHClのモル数)=セルロースなどの水酸基にエステル結合していたアセチル基のモル数(C)
 ・(セルロース繰り返しユニット分子量162×セルロース繰り返しユニットのモル数(未知(D)))+(アセチル基の分子量43×(C))=秤量した試料0.5g(A) によりセルロースの繰り返しユニットのモル数(D)が算出される。
・ 0.025 mol (B)-(Mole number of HCl used for neutralization) = Number of moles of acetyl group ester-bonded to hydroxyl groups such as cellulose (C)
・ (Cellulose repeat unit molecular weight 162 × number of moles of cellulose repeat unit (unknown (D))) + (molecular weight of acetyl group 43 × (C)) = number of moles of cellulose repeat unit based on 0.5 g (A) of sample weighed (D) is calculated.
 DSは、
 ・DS=(C)/(D) 
 により算出される。
DS
・ DS = (C) / (D)
Is calculated by
 (3-2)赤外線(IR)吸収スペクトルによるDSの測定方法
 エステル化セルロース/リグノセルロースのDSは、赤外線(IR)吸収スペクトルを測定することにより求めることもできる。セルロース/リグノセルロースがエステル化されると1733cm-1付近にエステルカルボニル(C=O)に由来する強い吸収帯が現れるので、この吸収帯の強度(面積)を横軸に、上記のが逆滴定法で求めたDSの値を横軸にプロットした検量線をまず作成する。そして、試料のDS値は、吸収帯の強度を測定し、この値と検量線から、試料のDSを求める。このようにしてDSを迅速かつ簡便に測定することができる。
(3-2) Method of measuring DS by infrared (IR) absorption spectrum The DS of esterified cellulose / lignocellulose can also be determined by measuring the infrared (IR) absorption spectrum. When cellulose / lignocellulose is esterified, a strong absorption band derived from ester carbonyl (C = O) appears in the vicinity of 1733 cm -1 , and the above is the reverse titration with the intensity (area) of this absorption band as the horizontal axis. First, a calibration curve is created by plotting the DS values obtained by the method on the horizontal axis. The DS value of the sample is obtained by measuring the intensity of the absorption band and obtaining the DS of the sample from this value and a calibration curve. In this way, DS can be measured quickly and easily.
 (4)セルロース等の結晶化度の測定
 機種Rigaku ultraX18HF((株)リガク製)を使用し、木質科学実験マニュアル 4.微細構造(1)X線による構造解析(P198-202)に記載された方法に準じて、試料(リファイナー処理済みパルプ及びこの化学修飾物)の広角X線回折を測定し、試料の結晶化度を求める。X線はCuKα線、30kV/200mAの出力にて、2θ=5~40°を測定した。
(4) Using a Rigaku ultraX18HF (manufactured by Rigaku Co., Ltd.) model for measuring the degree of crystallinity of cellulose, etc., described in the Wood Science Experiment Manual 4. Fine Structure (1) Structural Analysis by X-ray (P198-202) According to the method, the wide-angle X-ray diffraction of the sample (refiner-treated pulp and this chemically modified product) is measured to determine the crystallinity of the sample. X-rays were CuKα rays, 30kV / 200mA output, and 2θ = 5-40 ° was measured.
 II.原料(パルプ)の調製
 (1)リファイナー処理済み針葉樹由来漂白クラフトパルプ(NBKP)の調製
 針葉樹漂白クラフトパルプ(NBKP、入手先:王子ホールディングス(株))のスラリー(パルプスラリー濃度3質量%の水懸濁液)をシングルディスクリファイナー(相川鉄工(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)値が50mLになるまで、繰返しリファイナー処理により解繊処理を行った。
II. Preparation of raw material (pulp) (1) Preparation of refiner-treated bleached kraft pulp (NBKP) slurry of softwood bleached kraft pulp (NBKP, source : Oji Holdings) (pulp slurry concentration 3 mass%) The aqueous suspension was passed through a single disc refiner (manufactured by Aikawa Tekko Co., Ltd.), and defibrated by repeated refiner treatment until the Canadian Standard Freeness (CSF) value reached 50 mL.
 走査型電子顕微鏡(SEM)で繊維を観察したところ、直径がサブミクロンオーダーの繊維も見られるが、直径数10から数100μmの粗大な繊維径を有している繊維が散見された。 When the fibers were observed with a scanning electron microscope (SEM), fibers with submicron order diameters were observed, but fibers having coarse fiber diameters of several tens to several hundreds of micrometers were found.
 (2)リファイナー処理済み針葉樹由来未晒針葉樹林パルプ(NUKP)の調製
 針葉樹未漂白クラフトパルプ(NUKP、入手先:日本製紙(株))のスラリー(パルプスラリー濃度3質量%の水懸濁液)をシングルディスクリファイナー(相川鉄工(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)値が50mLになるまで、繰返しリファイナー処理により解繊を行った。
(2) Refiner-treated softwood-derived unbleached softwood forest pulp (NUKP) slurry of softwood unbleached kraft pulp (NUKP, source: Nippon Paper Industries Co., Ltd.) Was passed through a single disc refiner (manufactured by Aikawa Tekko Co., Ltd.) and defibrated by repeated refiner treatment until the Canadian Standard Freeness (CSF) value reached 50 mL.
 走査型電子顕微鏡(SEM)で繊維を観察したところ、直径がサブミクロンオーダーの繊維も見られるが、直径数十から数百μmの粗大な繊維径を有している繊維が多数観察された。 When the fibers were observed with a scanning electron microscope (SEM), fibers with submicron order diameters were observed, but many fibers with a coarse fiber diameter of several tens to several hundreds of micrometers were observed.
 (3)リファイナー処理済みリグノセルロースを含むパルプ(リグノパルプ、LP):GP-150-1の調製
 「針葉樹グラインダー処理パルプ(GP、入手先:日本製紙(株))を、パルプ1gに対して薬液20g(0.8M-NaOH、0.2M-Na2S)で、オートクレーブ中、150℃、1時間反応させてパルプスラリーを得た。
(3) Pulp containing refiner-treated lignocellulose (ligno pulp, LP): Preparation of GP-150-1 `` Conifer grinder-treated pulp (GP, source : Nippon Paper Industries Co., Ltd.), 20 g of chemical solution for 1 g of pulp (0.8M-NaOH, 0.2M-Na 2 S) was reacted in an autoclave at 150 ° C. for 1 hour to obtain a pulp slurry.
 得られたスラリー(パルプスラリー濃度3質量%の水懸濁液)をシングルディスクリファイナー(相川鉄工(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)値が50mLになるまで、繰返しリファイナー処理により解繊を行った。 The obtained slurry (pulp slurry concentration 3 mass% water suspension) is passed through a single disc refiner (manufactured by Aikawa Tekko Co., Ltd.) and repeatedly refined until the Canadian Standard Freeness (CSF) value reaches 50 mL. Defibration was performed.
 走査型電子顕微鏡(SEM)で繊維を観察したところ、直径がサブミクロンオーダーの繊維も見られるが、直径数10から100μm程度の粗大な繊維径の繊維が多数観察された。 When the fibers were observed with a scanning electron microscope (SEM), fibers with submicron order diameters were observed, but many fibers with a coarse fiber diameter of about 10 to 100 μm in diameter were observed.
 (4)リファイナー処理済みリグノセルロースを含むパルプ(リグノパルプ(LP)GP(150-3)の調製
 針葉樹グラインダー処理パルプ(GP、入手先:日本製紙(株))を、パルプ1gに対して薬液20g(0.8M-NaOH、0.2M-Na2S)で、オートクレーブ中、150℃、3時間反応させてパルプスラリーを得た。
(4) Preparation of refiner-treated lignocellulose (ligno pulp (LP) GP (150-3) preparation) Softwood grinder-treated pulp (GP, source : Nippon Paper Industries Co., Ltd.) 0.8M-NaOH, 0.2M-Na 2 S) was reacted in an autoclave at 150 ° C. for 3 hours to obtain a pulp slurry.
 得られたスラリー(パルプスラリー濃度3質量%の水懸濁液)をシングルディスクリファイナー(相川鉄工(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)値が50mLになるまで、繰返しリファイナー処理により解繊を行った。 The obtained slurry (pulp slurry concentration 3 mass% water suspension) is passed through a single disc refiner (manufactured by Aikawa Tekko Co., Ltd.) and repeatedly refined until the Canadian Standard Freeness (CSF) value reaches 50 mL. Defibration was performed.
 走査型電子顕微鏡(SEM)で繊維を観察したところ、直径がサブミクロンオーダーの繊維も見られるが、直径数10から100μm程度の粗大な繊維径の繊維が多数観察された。 When the fibers were observed with a scanning electron microscope (SEM), fibers with submicron order diameters were observed, but many fibers with a coarse fiber diameter of about 10 to 100 μm in diameter were observed.
 III.パルプ/リグノパルプのアセチル化、それを用いた各種樹脂との複合化
 (1)セルロースのアセチル化及び樹脂との複合化
 (1-1)材料の組成及びアセチル化処理
 表1に示す組成を有する針葉樹由来漂白クラフトパルプ(NBKP)を使用した(具体的な調製方法は上記の通り)。主成分がセルロース(84.3質量%)であり、残りがヘミセルロース、ペクチン性多糖及び極僅かのリグニンより構成されている。
III. Acetylation of pulp / lignopulp and compounding with various resins using it (1) Cellulose acetylation and compounding with resin (1-1) Material composition and acetylation treatment Coniferous bleached kraft pulp (NBKP) was used (the specific preparation method is as described above). The main component is cellulose (84.3% by mass), and the remainder is composed of hemicellulose, pectin polysaccharide and very little lignin.
 また、リグノセルロースを含むパルプ(リグノパルプ、LP)を使用した。その組成を表2に示す。用いたのは針葉樹由来未漂白クラフトパルプ(NUKP)、砕木パルプ(GP)を温度150℃で1時間若しくは3時間蒸解しリファイナー処理することにより得たGP150-1-a、GP150-3及びGP150-3-aである。GP150-1-aは上記の原料(パルプ)の調製の項で記載したGP150-1と同様の操作で調製したものである。 Also, lignocellulose-containing pulp (ligno pulp, LP) was used. The composition is shown in Table 2. GP150-1-a, GP150-3 and GP150- obtained by digesting softwood-derived unbleached kraft pulp (NUKP) and groundwood pulp (GP) at 150 ° C for 1 hour or 3 hours and treating with refiner 3-a. GP150-1-a was prepared in the same manner as GP150-1 described in the above-mentioned raw material (pulp) preparation section.
 GP150-3及びGP150-3-aは上記の原料(パルプ)の調製の項で記載したGP150-3と同様の処理条件にて蒸解処理とリファイナー処理を行っているが、バッチによる成分の変化が表れている。 GP150-3 and GP150-3-a are digested and refined under the same processing conditions as GP150-3 described in the above section of raw material (pulp) preparation. Appears.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3及び表4にアセチル化パルプ及びアセチル化リグノパルプの合成手順を示す。 Tables 3 and 4 show the synthesis procedure of acetylated pulp and acetylated lignopulp.
 無水酢酸、炭酸カリウムの添加量、反応温度及び反応時間を変化させることにより異なるDS(セルロース繰り返し単位に3個、或いはβ-O-4型リグニンに2個含まれる水酸基の置換度合)=0.29~2.64のアセチル化NBKP及びアセチル化リグノパルプを得た。 Different DS by changing the addition amount of acetic anhydride and potassium carbonate, reaction temperature and reaction time (the substitution degree of hydroxyl group contained in 3 cellulose repeating units or 2 in β-O-4 type lignin) = 0.29 ~ 2.64 acetylated NBKP and acetylated lignopulp were obtained.
 DSは、アセチル化NBKP及びアセチル化リグノパルプにアルカリを添加し、エステル結合を加水分解することにより発生した酢酸量を滴定することにより算出した。 DS was calculated by adding an alkali to acetylated NBKP and acetylated lignopulp and titrating the amount of acetic acid generated by hydrolyzing the ester bond.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (1-2)アセチル化NBKP/樹脂及びリグノパルプ/樹脂の複合化
 マトリックス樹脂には,市販のポリアミド6(PA6、ユニチカ株式会社製のNYRON RESIN))、ポリアセタール(POM、三菱エンジニアリングプラスチックス株式会社製(ユピタール))、ポリプロピレン(PP、日本ポリプロ株式会社製(ノバテックPP))、無水マレイン酸で変性したポリプロピレン(MAPP、東洋紡株式会社社製(トーヨータックH1000))、ポリ乳酸(PLA、三井化学株式会社製(レイシア))、アクリロニトリル‐ブタジエン‐スチレン共重合体(ABS、日本エイアンドエル株式会社製(クララスチック))及びポリスチレン(PS、PSジャパン株式会社製(PSJポリスチレン))及びポリエチレン(PE、旭化成ケミカルズ(株)社製(サンテック))を用いた。
(1-2) Acetylated NBKP / resin and lignopulp / resin composite matrix resins include commercially available polyamide 6 (PA6, NYRON RESIN manufactured by Unitika Ltd.), polyacetal (POM, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) (Iupital)), polypropylene (PP, manufactured by Nippon Polypro Co., Ltd. (Novatec PP)), polypropylene modified with maleic anhydride (MAPP, manufactured by Toyobo Co., Ltd. (Toyotac H1000)), polylactic acid (PLA, Mitsui Chemicals, Inc.) (Lacia)), acrylonitrile-butadiene-styrene copolymer (ABS, Nippon A & L Co., Ltd. (Clarastic)), polystyrene (PS, PS Japan Co., Ltd. (PSJ polystyrene)) and polyethylene (PE, Asahi Kasei Chemicals) (Suntech Co., Ltd.) was used.
 表5に各樹脂の特性を示す(MI:メルトインデックス)。 Table 5 shows the characteristics of each resin (MI: Melt Index).
 アセチル化NBKPはPA6、POM、PP、MAPP、PLA、ABS、PS及びPEと複合化した。アセチル化リグノパルプはPA6、POM、PP及びMAPPと複合化した。アセチル化NBKP又はアセチル化リグノパルプと樹脂とを二軸押出機に投入し溶融混練した。 Acetylated NBKP was complexed with PA6, POM, PP, MAPP, PLA, ABS, PS and PE. Acetylated lignopulp was complexed with PA6, POM, PP and MAPP. Acetylated NBKP or acetylated lignopulp and a resin were charged into a twin screw extruder and melt kneaded.
 溶融混練温度は、PA6では215℃、POM、PP、MAPP及びPLAでは170℃、ABS及びPSは195℃、PEは140℃に調整した。 The melt kneading temperature was adjusted to 215 ° C for PA6, 170 ° C for POM, PP, MAPP and PLA, 195 ° C for ABS and PS, and 140 ° C for PE.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (2)評価
 (2-1)アセチル化NBKPの熱重量分析測定
 得られた幾つかのアセチル化NBKPの熱分解特性を熱重量測定により評価した。測定は、窒素雰囲気下、温度範囲は110~600℃、昇温速度10℃/minにて行った。
(2) Evaluation (2-1) Thermogravimetric analysis of acetylated NBKP The thermal decomposition characteristics of several acetylated NBKPs obtained were evaluated by thermogravimetry. The measurement was performed under a nitrogen atmosphere at a temperature range of 110 to 600 ° C. and a heating rate of 10 ° C./min.
 (2-2)アセチル化NBKPの結晶化度測定
 得られた幾つかのアセチル化NBKP及びアセチル化リグノパルプの結晶化度を広角X線回折測定により算出した。
(2-2) Measurement of crystallinity of acetylated NBKP The crystallinity of several acetylated NBKP and acetylated lignopulp obtained was calculated by wide-angle X-ray diffraction measurement.
 X線はCuKα線、30kV/200mAの出力にて、2θ=5~40°を測定した。 X-ray was CuKα ray, 30kV / 200mA output, 2θ = 5-40 ° was measured.
 (2-3)アセチル化NBKP/樹脂複合材料の曲げ試験及びIzod衝撃試験
 得られたアセチル化NBKP/樹脂複合材料及びアセチル化リグノパルプ/樹脂複合材料の3点曲げ試験を行った。試験条件は、曲げ速度10mm/min、支点間距離64mmにて行った。
(2-3) Bending test and Izod impact test of acetylated NBKP / resin composite material A three-point bending test of the obtained acetylated NBKP / resin composite material and acetylated lignopulp / resin composite material was performed. The test conditions were a bending speed of 10 mm / min and a fulcrum distance of 64 mm.
 得られたアセチル化NBKP/樹脂複合材料及びアセチル化リグノパルプ/樹脂複合材料のIzod衝撃試験を行った。試験片中央部に深さ2mmのVノッチを挿入し、容量2.75Jのハンマーにより打撃した。 The Izod impact test of the obtained acetylated NBKP / resin composite material and acetylated lignopulp / resin composite material was performed. A V-notch with a depth of 2 mm was inserted into the center of the test piece and struck with a hammer with a capacity of 2.75 J.
 (2-4)アセチル化NBKP/樹脂複合材料内のアセチル化セルロースの分散状態の観察  得られた幾つかのアセチル化NBKP/樹脂複合材料に分散しているアセチル化セルロースの分散状態観察を行った。観察は、X線コンピューティッドトモグラフィ(X-CT:分解能1.3μm、一辺1mmの立方体で表示)及びマトリックス樹脂を溶媒抽出し得られた繊維の電子顕微鏡(SEM)観察により行った。 (2-4) Observation of dispersion state of acetylated cellulose in acetylated NBKP / resin composite material Dispersion state of acetylated cellulose dispersed in several acetylated NBKP / resin composite materials obtained was observed. . The observation was performed by X-ray computed tomography (X-CT: displayed as a cube having a resolution of 1.3 μm and a side of 1 mm) and electron microscope (SEM) observation of the fiber obtained by solvent extraction of the matrix resin.
 (3)結果及び考察
 (3-1)アセチル化NBKPの耐熱性
 表6に得られた幾つかのアセチル化NBKPの熱重量測定により得られた1%質量減少温度を示す。
(3) Results and Discussion (3-1) Heat resistance of acetylated NBKP Table 6 shows the 1% mass loss temperature obtained by thermogravimetry of several acetylated NBKPs obtained.
 複合材料化においては、例えばPA6では215℃、POM及びPPでは170℃の高設定温度下での溶融混練を行ったが、スクリューの混練ゾーンにおいては、せん断発熱により設定温度よりも数十℃以上高温となっていると考えられる。そのような条件下にセルロースが曝されることから、アセチル化パルプの熱重量減少特性は重要である。 In the composite materialization, for example, melt kneading was performed at a high set temperature of 215 ° C. for PA6 and 170 ° C. for POM and PP. It is considered that the temperature is high. Since cellulose is exposed under such conditions, the thermogravimetric properties of acetylated pulp are important.
 特に微量の分解物が異物として樹脂中に存在すると着色し、大きく特性が損なわれると考えられることから、微量重量減少領域の観測が重要となる。そこでここでは1%質量減少温度を計測した。 Especially, if a minute amount of decomposition product is present in the resin as a foreign substance, it is colored and the characteristics are considered to be greatly impaired. Therefore, it is important to observe a small amount of weight reduction region. Therefore, 1% mass reduction temperature was measured here.
 DSが大きくなるほどアセチル化NBKPの耐熱性が向上していることがわかり、溶融混練における耐熱性が付与されている。 It can be seen that as DS increases, the heat resistance of acetylated NBKP is improved, and heat resistance in melt-kneading is imparted.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (3-2)アセチル化NBKP及びアセチル化リグノパルプの結晶化度
 セルロースは結晶性材料であり、結晶化度により大きく樹脂への補強性が異なると考えられる。
(3-2) Crystallinity of acetylated NBKP and acetylated lignopulp Cellulose is a crystalline material, and it is considered that the reinforcement to the resin differs greatly depending on the crystallinity.
 表6に幾つかのDSのアセチル化NBKPの結晶化度を示す。 Table 6 shows the crystallinity of some DS acetylated NBKP.
 表7に幾つかのDSのアセチル化リグノパルプの結晶化度を示す。 Table 7 shows the crystallinity of some DS acetylated lignopulps.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表6では,出発原料である未処理NBKP(DS=0)では、結晶化度が77.4%であった。これに対してアセチル化NBKPでは、DS=1.17では69.5%まで緩やかに低下したが、更にDSを高めたDS=1.84においては55.6%まで急激に低下した。 In Table 6, the untreated NBKP (DS = 0) as the starting material had a crystallinity of 77.4%. On the other hand, with acetylated NBKP, it gradually decreased to 69.5% at DS = 1.17, but rapidly decreased to 55.6% at DS = 1.84 where DS was further increased.
 このようにDSを高めるほど結晶化度が低下し、DS=1.17~1.84の領域以上ではそれが特に顕著になることが確認された。 As described above, it was confirmed that the crystallinity decreases as the DS is increased, and that it becomes particularly prominent in the region of DS = 1.17 to 1.84.
 表7では,NUKPは結晶化度78.3%であり、アセチル化のDS値の増加に伴い結晶化度が低下し、DS0.85では74.4%となった。 In Table 7, NUKP has a crystallinity of 78.3%, and the crystallinity decreased as the DS value of acetylation increased, with DS0.85 reaching 74.4%.
 GP150-1-aは結晶化度が78.7%であり、アセチル化のDS値の増加に伴い結晶化度が低下し、DS0.97では73.1%となった。GP150-3-aは結晶化度が83.1%であり、アセチル化のDS値の増加に伴い結晶化度が低下し、DS0.95では75.4%となった。 GP150-1-a had a crystallinity of 78.7%, and the crystallinity decreased with an increase in the DS value of acetylation, and the DS0.97 was 73.1%. GP150-3-a had a crystallinity of 83.1%, and the crystallinity decreased with an increase in the DS value of acetylation, reaching 75.4% in DS0.95.
 リグノパルプについてもDS1.0程度までは、NBKPとほぼ同様の結晶化度及びアセチル化のDS増加に伴う結晶化度の低下が見られた。 As for lignopulp, up to about DS1.0, the crystallinity was almost the same as NBKP and the crystallinity decreased with the increase in DS of acetylation.
 (3-3)アセチル化NBKP/樹脂複合材料の曲げ試験及びIzod衝撃試験
 (3-3-1)アセチル化NBKP及びアセチル化リグノパルプのDSが
    力学的特性に及ぼす影響
 各マトリックス樹脂複合材料のDSと力学的特性の関係をまとめた。何れもセルロース成分とへミセルロース成分の合計添加量を10質量%とした。
(3-3) Bending test and Izod impact test of acetylated NBKP / resin composite (3-3-1) Effect of DS of acetylated NBKP and acetylated lignopulp on mechanical properties DS and DS of each matrix resin composite The relationship of mechanical properties was summarized. In any case, the total addition amount of the cellulose component and the hemicellulose component was 10% by mass.
 以下の表中では、便宜上、未処理繊維、アセチル化繊維とも、繊維量を10質量%と記載する。 In the following table, the fiber amount is described as 10% by mass for both untreated fibers and acetylated fibers for convenience.
 PA6マトリックス
 PA6樹脂(ポリアミド)マトリックス複合材料の力学的特性を表8及び表9に示す。
Tables 8 and 9 show the mechanical properties of the PA6 matrix PA6 resin (polyamide) matrix composite.
 表8はNBKPを添加した材料の特性である。 Table 8 shows the characteristics of the material with NBKP added.
 表9はリグノパルプを添加した材料の特性である。 Table 9 shows the characteristics of the material to which lignopulp was added.
 NBKP強化PA6材料(表8)においては,曲げ弾性率及び曲げ強度において大きな向上が見られた。DS=0.64のアセチル化NBKP添加複合材料(No.PA6-225)は、曲げ弾性率が5430MPaであり、ニートPA6(No.PA6)の2.5倍、未処理NBKP添加PA6(No.PA6-15)の1.6倍の値を示した。 NBKP reinforced PA6 material (Table 8) showed significant improvement in flexural modulus and flexural strength. DS = 0.64 acetylated NBKP-added composite material (No.PA6-225) has a flexural modulus of 5430 MPa, 2.5 times that of neat PA6 (No.PA6), untreated NBKP-added PA6 (No.PA6-15) The value was 1.6 times that of.
 DS=0.46のアセチル化NBKP添加複合材料(No.PA6-216)は、曲げ強度が159MPaであり、ニートPA6(No.PA6)の1.8倍、未処理NBKP添加PA6(No.PA6-15)の1.4倍の値を示した。 DS = 0.46 acetylated NBKP-added composite material (No.PA6-216) has a bending strength of 159 MPa, 1.8 times that of neat PA6 (No.PA6), untreated NBKP-added PA6 (No.PA6-15) The value was 1.4 times.
 Izod衝撃強度については、DS=0.46(No.216)~DS=0.88(No.PA6-205)のDS領域において,ニートPA6(No.PA6)と同等の耐衝撃性が得られた。 As for Izod impact strength, impact resistance equivalent to that of neat PA6 (No.PA6) was obtained in the DS range of DS = 0.46 (No.216) to DS = 0.88 (No.PA6-205).
 このようにPA6/NBKP複合材料では、DS=0.46~0.88の低DS領域において、曲げ弾性率、曲げ強度及び耐衝撃性に優れたアセチル化セルロース複合材料が得られることがわかった。 Thus, it was found that the PA6 / NBKP composite material can provide an acetylated cellulose composite material excellent in bending elastic modulus, bending strength and impact resistance in the low DS region of DS = 0.46 to 0.88.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 リグノパルプ強化PA6材料(表9)においても、曲げ弾性率及び曲げ強度において大きな向上が見られた。NUKP強化材料では、DS0.41のアセチル化NUKP添加複合材料(No.PA6-263)において、曲げ弾性率が5110MPaであり、ニートPA6(No.PA6)の2.3倍、未処理NUKP添加PA6(No.PA6-265)の1.3倍の値を示した。 Also in the lignopulp reinforced PA6 material (Table 9), a great improvement in bending elastic modulus and bending strength was observed. In NUKP reinforced materials, DS0.41 acetylated NUKP added composite material (No.PA6-263) has a flexural modulus of 5110 MPa, 2.3 times that of neat PA6 (No.PA6), untreated NUKP added PA6 (No. The value was 1.3 times that of (PA6-265).
 DS=0.41のアセチル化NUKP添加複合材料(No.PA6-263)は、曲げ強度が154MPaであり、ニートPA6(No.PA6)の1.7倍、未処理NUKP添加PA6(No.PA6-265)の1.2倍の値を示した。Izod衝撃強度については、DS=0.41(No.263)において、ニートPA6(No.PA6)と同等以上の耐衝撃性が得られた。 DS = 0.41 acetylated NUKP-added composite material (No.PA6-263) has a bending strength of 154 MPa, 1.7 times that of neat PA6 (No.PA6), untreated NUKP-added PA6 (No.PA6-265) The value was 1.2 times. As for Izod impact strength, impact resistance equal to or better than that of neat PA6 (No. PA6) was obtained at DS = 0.41 (No. 263).
 GP(150-1)強化材料では、DS=0.42のアセチル化GP(150-1)添加複合材料(No.PA6-270)において、曲げ弾性率が5000MPaであり、ニートPA6(No.PA6)の2.3倍、未処理GP(150-1)添加PA6(No.PA6-269)の1.3倍の値を示した。 In the GP (150-1) reinforced material, in the DS = 0.42 acetylated GP (150-1) -added composite material (No.PA6-270), the flexural modulus is 5000 MPa, neat PA6 (No.PA6) The value was 2.3 times that of untreated GP (150-1) added PA6 (No. PA6-269).
 DS=0.42のアセチル化GP(150-1)添加複合材料(No.PA6-270)は、曲げ強度が150MPaであり、ニートPA6(No.PA6)の1.7倍、未処理GP(150-1)添加PA6(No.PA6-269)の1.1~1.2倍の値を示した。Izod衝撃強度については、DS=0.56(No.240)において、ニートPA6(No.PA6)と同等の耐衝撃性が得られた。 DS = 0.42 acetylated GP (150-1) added composite material (No.PA6-270) has a bending strength of 150 MPa, 1.7 times that of neat PA6 (No.PA6), untreated GP (150-1) The value was 1.1 to 1.2 times that of added PA6 (No. PA6-269). As for Izod impact strength, impact resistance equivalent to neat PA6 (No. PA6) was obtained at DS = 0.56 (No. 240).
 GP(150-3)強化材料では、DS=0.57のアセチル化GP(150-3)添加複合材料(No.PA6-237)において、曲げ弾性率が5380MPaであり、ニートPA6(No.PA6)の2.4倍、未処理GP(150-3)添加PA6(No.PA6-266)の1.4倍の値を示した。 In the GP (150-3) reinforced material, the DS = 0.57 acetylated GP (150-3) -added composite material (No.PA6-237) has a flexural modulus of 5380 MPa, and the neat PA6 (No.PA6) The value was 2.4 times that of untreated GP (150-3) added PA6 (No. PA6-266).
 DS=0.57のアセチル化GP(150-3)添加複合材料(No.PA6-237)は、曲げ強度が161MPaであり、ニートPA6(No.PA6)の1.8倍、未処理GP(150-3)添加PA6(No.PA6-266)の1.3倍の値を示した。Izod衝撃強度については、DS=0.62(No.268)において,ニートPA6(No.PA6)と同等以上の耐衝撃性が得られた。 DS = 0.57 acetylated GP (150-3) added composite material (No.PA6-237) has a flexural strength of 161 MPa, 1.8 times that of neat PA6 (No.PA6), untreated GP (150-3) The value was 1.3 times that of added PA6 (No. PA6-266). As for Izod impact strength, impact resistance equal to or better than neat PA6 (No. PA6) was obtained at DS = 0.62 (No. 268).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 POMマトリックス
 ポリアセタール樹脂(POM)マトリックス複合材料の力学的特性を表10に示す。
Table 10 shows the mechanical properties of the POM matrix polyacetal resin (POM) matrix composite.
 曲げ弾性率及び曲げ強度において大きな向上が見られた。DS=1.17のアセチル化NBKP添加複合材料(No.POM-134)は、曲げ弾性率が5590MPaであり、ニートPOM(No.POM)の2.5倍、未処理NBKP添加POM(No.POM-148)の1.8倍の値を示した。 Great improvement in bending elastic modulus and bending strength was observed. DS = 1.17 acetylated NBKP-added composite material (No.POM-134) has a flexural modulus of 5590 MPa, 2.5 times that of neat POM (No.POM), untreated NBKP-added POM (No.POM-148) The value was 1.8 times the value.
 同じくDS=1.17のアセチル化NBKP添加複合材料(No.POM-134)は,曲げ強度が129MPaであり、ニートPOM(No.POM)の1.7倍、未処理NBKP添加POM(No.POM-148)の1.4倍の値を示した。 Similarly, DS = 1.17 acetylated NBKP-added composite material (No.POM-134) has a bending strength of 129 MPa, 1.7 times that of neat POM (No.POM), untreated NBKP-added POM (No.POM-148) It was 1.4 times the value.
 Izod衝撃強度については,ニートPOMに対して,概ね1kJ/m2程度の低下が見られたが,未処理NBKP添加POM(No.POM-148)よりも低下率は抑えられた。 The Izod impact strength decreased about 1 kJ / m 2 with respect to the neat POM, but the decrease rate was lower than that of the untreated NBKP-added POM (No. POM-148).
 DS=0.75のアセチル化リグノパルプ(GP150-3)添加複合材料(No.POM-138)では,曲げ弾性率が5100MPa、曲げ強度が128MPaであり、高い補強効果を示した。DS=1.17のアセチル化NBKPを添加したNo.POM134と比較すると弾性率が10%程度低くなった。 The composite material (No.POM-138) added with acetylated lignopulp (GP150-3) with DS = 0.75 showed a high reinforcing effect with a flexural modulus of 5100 MPa and a bending strength of 128 MPa. Compared with No.POM134 to which acetylated NBKP with DS = 1.17 was added, the elastic modulus was reduced by about 10%.
 このようにPOMマトリックス樹脂NBKP複合材料では、DS1.17程度の領域において曲げ弾性率、曲げ強度及び耐衝撃性に優れたアセチル化セルロース複合材料が得られること,またリグノパルプにおいても高い補強効果が得られることがわかった。 In this way, the POM matrix resin NBKP composite material provides an acetylated cellulose composite material excellent in bending elastic modulus, bending strength and impact resistance in the region of about DS 1.17, and also has a high reinforcing effect in lignopulp. I found out that
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 PPマトリックス
 ポリプロピレン(PP)マトリックス複合材料の力学的特性を表11に示す。
Table 11 shows the mechanical properties of the PP matrix polypropylene (PP) matrix composite.
 曲げ弾性率及び曲げ強度において一定の向上が見られた。 A certain improvement in bending elastic modulus and bending strength was observed.
 PPマトリックスでは、ニートPP(No.PP)と未処理NBKP添加材料(PP-116)を比較するとわかるように、セルロースによる補強度合が低い。しかしながら、より高いDSのアセチル化NBKPを補強材料とすることにより、曲げ弾性率及び曲げ強度を向上させることが可能であることがわかった。 In the PP matrix, the degree of reinforcement by cellulose is low, as can be seen by comparing neat PP (No. PP) and untreated NBKP additive material (PP-116). However, it has been found that by using higher DS acetylated NBKP as a reinforcing material, it is possible to improve the bending elastic modulus and bending strength.
 また耐衝撃性は、DS=0.46のアセチル化処理NBKP添加複合材料(No.PP-304)によりニートPP(No.PP)の2倍となった。 Also, the impact resistance was double that of neat PP (No. PP) by the acetylated NBKP-added composite material (No. PP-304) with DS = 0.46.
 DS=0.6のアセチル化リグノパルプ[GP(150-3)]添加複合材料(No.PP-450)では、曲げ弾性率が2620MPa、曲げ強度が66MPaであり補強効果を示した。 The DS = 0.6 acetylated lignopulp [GP (150-3)]-added composite material (No.PP-450) exhibited a reinforcing effect with a flexural modulus of 2620 MPa and a flexural strength of 66 MPa.
 このように疎水性の高いPPをマトリックスとした場合は、DSを高くすることにより曲げ特性が向上し、DS=0.46程度の低DSでは耐衝撃性が向上すること、またリグノパルプにおいても補強効果が得られることがわかった。 In this way, when PP with high hydrophobicity is used as a matrix, bending properties are improved by increasing DS, impact resistance is improved at low DS of about DS = 0.46, and reinforcement effect is also obtained in lignopulp. It turns out that it is obtained.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 MAPPマトリックス
 無水マレイン酸変性PP(MAPP)マトリックス複合材料の力学的特性を表12に示す。
The mechanical properties of MAPP matrix maleic anhydride modified PP (MAPP) matrix composite are shown in Table 12.
 曲げ弾性率及び曲げ強度において大きな向上が見られた。DS=0.88のアセチル化NBKP添加複合材料(No.PP-382)は、曲げ弾性率が3070MPaであり、ニートMAPP(No.MAPP)の1.8倍、未処理NBKP添加MAPP(No.PP-309)の1.3倍の値を示した。 Great improvement in bending elastic modulus and bending strength was observed. DS = 0.88 acetylated NBKP-added composite material (No.PP-382) has a flexural modulus of 3070 MPa, 1.8 times that of neat MAPP (No.MAPP), untreated NBKP-added MAPP (No.PP-309) It was 1.3 times the value.
 同じくDS=0.88のアセチル化NBKP添加複合材料(No.PP-382)は,曲げ強度が76.3MPaであり、ニートMAPP(No.MAPP)の1.5倍、未処理NBKP添加MAPP(No.PP-309)の1.3倍の値を示した。 Similarly, DS = 0.88 acetylated NBKP-added composite material (No.PP-382) has a bending strength of 76.3 MPa, 1.5 times that of neat MAPP (No.MAPP), untreated NBKP-added MAPP (No.PP-309) ) Was 1.3 times the value.
 Izod衝撃強度については,ニートMAPPに対して同等以上の値であった。 The Izod impact strength was equal to or greater than neat MAPP.
 DS=0.56のアセチル化リグノパルプ[GP(150-3-a)]添加複合材料(No.PP-451)では,曲げ弾性率が2730MPa、曲げ強度が70.2MPaであり補強効果を示した。 The DS = 0.56 acetylated lignopulp [GP (150-3-a)]-added composite material (No. PP-451) showed a reinforcement effect with a flexural modulus of 2730 MPa and a flexural strength of 70.2 MPa.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 PLAマトリックス
 ポリ乳酸(PLA)マトリックス複合材料の力学的特性を表13に示す。
Table 13 shows the mechanical properties of PLA matrix polylactic acid (PLA) matrix composites.
 曲げ弾性率及び曲げ強度において大きな向上が見られた。DS=0.88のアセチル化NBKP添加複合材料(No.PLA-2)は、曲げ弾性率が6400MPaであり、ニートPLA(No.PLA-5)の1.9倍、未処理NBKP添加PLA(No.PLA-6)の1.5倍の値を示した。 Great improvement in bending elastic modulus and bending strength was observed. DS = 0.88 acetylated NBKP-added composite material (No.PLA-2) has a flexural modulus of 6400 MPa, 1.9 times that of neat PLA (No.PLA-5), untreated NBKP-added PLA (No.PLA- The value was 1.5 times that of 6).
 同じくDS=0.88のアセチル化NBKP添加複合材料(No.PLA-2)は,曲げ強度が119MPaであり、ニートPLA(No.PLA-5)の1.1倍、未処理NBKP添加PLA(No.PLA-6)の1.2~1.3倍の値を示した。 Similarly, DS = 0.88 acetylated NBKP-added composite material (No.PLA-2) has a bending strength of 119 MPa, 1.1 times that of neat PLA (No.PLA-5), untreated NBKP-added PLA (No.PLA- The value was 1.2 to 1.3 times that of 6).
 Izod衝撃強度については、ニートPLAに対して同等以上の値であった。 The Izod impact strength was equal to or greater than that of neat PLA.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 ABSマトリックス
 アクリロニトリル-ブタジエン-スチレン共重合体(ABS)マトリックス複合材料の力学的特性を表14に示す。
Table 14 shows the mechanical properties of the ABS matrix acrylonitrile-butadiene-styrene copolymer (ABS) matrix composite.
 曲げ弾性率及び曲げ強度において大きな向上が見られた。DS=0.87のアセチル化NBKP添加複合材料(No.ABS-70)は、曲げ弾性率が3780MPaであり、ニートABS(No.ABS)の1.9倍、未処理NBKP添加ABS(No.ABS-63)の1.4倍の値を示した。 Great improvement in bending elastic modulus and bending strength was observed. DS = 0.87 acetylated NBKP-added composite material (No.ABS-70) has a flexural modulus of 3780 MPa, 1.9 times that of neat ABS (No.ABS), untreated NBKP-added ABS (No.ABS-63) It was 1.4 times the value.
 同じくDS=0.87のアセチル化NBKP添加複合材料(No.ABS-70)は、曲げ強度が87.3MPaであり、ニートABS(No.ABS)の1.4倍、未処理NBKP添加ABS(No.ABS-63)の1.2倍の値を示した。 Similarly, DS = 0.87 acetylated NBKP-added composite material (No.ABS-70) has a bending strength of 87.3 MPa, 1.4 times that of neat ABS (No.ABS), untreated NBKP-added ABS (No.ABS-63) ) Was 1.2 times the value.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 PSマトリックス ポリスチレン(PS)マトリックス複合材料の力学的特性を表15に示す。 Table 15 shows the mechanical properties of PS matrix polystyrene (PS) matrix composites.
 曲げ弾性率において大きな向上が見られた。DS=0.86のアセチル化NBKP添加複合材料(No.PS-3)は、曲げ弾性率が4110MPaであり、ニートPS(No.PS)の1.3~1.4倍、未処理NBKP添加PS(No.PS-1)の1.2倍の値を示した。 A great improvement in bending elastic modulus was observed. DS = 0.86 acetylated NBKP-added composite material (No.PS-3) has a flexural modulus of 4110 MPa, 1.3 to 1.4 times that of neat PS (No.PS), untreated NBKP-added PS (No.PS- The value was 1.2 times that of 1).
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 PEマトリックス
 ポリエチレン(PE)マトリックス複合材料の力学的特性を表16に示す。
Table 16 shows the mechanical properties of PE matrix polyethylene (PE) matrix composites.
 曲げ弾性率及び曲げ強度において大きな向上が見られた。DS=0.86のアセチル化NBKP添加複合材料(No.PE-184)は、曲げ弾性率が2390MPaであり、ニートPE(No.PE)の2.2倍、未処理NBKP添加PE(No.PE-182)の1.5倍の値を示した。 Great improvement in bending elastic modulus and bending strength was observed. DS = 0.86 acetylated NBKP-added composite material (No.PE-184) has a flexural modulus of 2390 MPa, 2.2 times that of neat PE (No.PE), untreated NBKP-added PE (No.PE-182) The value was 1.5 times greater than that.
 同じくDS=0.86のアセチル化NBKP添加複合材料(No.PE-184)は,曲げ強度が42.4MPaであり、ニートPE(No.PE)の1.8倍、未処理NBKP添加PE(No.PE-182)の1.4倍の値を示した。 Similarly, DS = 0.86 acetylated NBKP-added composite material (No. PE-184) has a bending strength of 42.4 MPa, 1.8 times that of neat PE (No. PE), and untreated NBKP-added PE (No. PE-182). ) 1.4 times the value.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 (3-3-2)アセチル化NBKPの添加量が複合材料の力学的特性に及ぼす影響
 アセチル化NBKPの添加量を1~10質量%に変化させ、その力学的特性を評価した。ここでは補強効果が特に高いPA6及びPOMマトリックスについて検討を行った。
(3-3-2) Effect of added amount of acetylated NBKP on mechanical properties of composite materials The amount of acetylated NBKP added was varied from 1 to 10% by mass, and the mechanical properties were evaluated. Here, PA6 and POM matrices with particularly high reinforcement effects were examined.
 PA6マトリックス
 PA6樹脂マトリックス複合材料の力学的特性を表17に示す。
Table 17 shows the mechanical properties of the PA6 matrix PA6 resin matrix composite.
 曲げ弾性率においては、未処理NBKPを1,3,5,10質量%添加した材料(No.PA6-242,-243,-244,-15)では、ニートPA6(No.PA6)と比較して各々120,310,410,1230MPa程度の向上であった。アセチル化NBKPを1,3,5,10質量%添加した材料(No.PA6-234,-235,-236,-226)では、各々310,820,1410,3120MPaの大きな向上が見られた。 In terms of flexural modulus, the material (No.PA6-242, -243, -244, -15) to which 1, 3, 5, 10% by weight of untreated NBKP was added was compared with neat PA6 (No.PA6). The improvement was about 120, 310, 410, and 1230 MPa, respectively. In the material (No. PA6-234, -235, -236, -226) to which 1, 3, 5, 10 mass% of acetylated NBKP was added, significant improvements of 310, 820, 1410, and 3120 MPa were observed, respectively.
 曲げ強度においては、未処理NBKPを1,3,5,10質量%添加した材料(No.PA6-242,-243,-244,-15)では、ニートPA6(No.PA6)と比較して各々4.6,8.3,9.8,25.8MPa程度の向上であった。アセチル化NBKPを1,3,5,10質量%添加した材料(No.PA6-234,-235,-236,-226)では、各々9.8,20.8,33.8,65.8MPaの大きな向上が見られた。 In bending strength, materials with 1, 3, 5, 10% by weight of untreated NBKP added (No. PA6-242, -243, -244, -15) compared to neat PA6 (No. PA6) The improvements were about 4.6, 8.3, 9.8, and 25.8 MPa, respectively. In the material (No.PA6-234, -235, -236, -226) to which 1,3,5,10 mass% of acetylated NBKP was added, significant improvements of 9.8, 20.8, 33.8, 65.8 MPa were observed, respectively. .
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 POMマトリックス
 POM樹脂マトリックス複合材料の力学的特性を表18に示す。
Table 18 shows the mechanical properties of the POM matrix POM resin matrix composite.
 曲げ弾性率においては、未処理NBKPを1,3,5,10質量%添加した材料(No.POM-149,-150,-151,-148)では、ニートPOM(No.POM)と比較して各々80,310,450,930MPa程度の向上であった。アセチル化NBKPを1,3,5,10質量%添加した材料(No.POM-128-1,-128-2,-128-3,-129)では、各々410,1060,1760,2880MPaの大きな向上が見られた。 In terms of flexural modulus, materials with 1, 3, 5, 10% by weight of untreated NBKP added (No. POM-149, -150, -151, -148) compared to neat POM (No. POM). The improvements were about 80, 310, 450, and 930 MPa, respectively. In the material (No. POM-128-1, -128-2, -128-3, -129) to which 1, 3, 5, 10% by mass of acetylated NBKP was added, 410, 1060, 1760, 2880 MPa respectively An improvement was seen.
 曲げ強度においては、未処理NBKPを1,3,5,10質量%添加した材料(No.POM-149,-150,-151,-148)では、ニートPOM(No.POM)と比較して各々2.3,6.1,8.7,15.3MPa程度の向上であった。アセチル化NBKPを1,3,5,10質量%添加した材料(No.POM-128-1,-128-2,-128-3,-129)では、各々12.5,28.3,39.3,44.3MPaの大きな向上が見られた。 In terms of bending strength, materials with 1, 3, 5, 10% by weight of untreated NBKP added (No. POM-149, -150, -151, -148) compared to neat POM (No. POM) The improvements were about 2.3, 6.1, 8.7, and 15.3 MPa, respectively. In the material (No. POM-128-1, -128-2, -128-3, -129) to which 1, 3, 5, 10% by mass of acetylated NBKP was added, 12.5, 28.3, 39.3, 44.3 MPa, respectively. A big improvement was seen.
 耐衝撃性においても、アセチル化NBKP添加材料は,未処理NBKPよりも高い値を示した。 Also in impact resistance, the acetylated NBKP-added material showed a higher value than the untreated NBKP.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 以上のPA6及びPOMの結果より、従来のセルロース系複合材料よりも、本アセチル化NBKP強化複合材料が優れた材料であり、極少量の添加量により効果的に補強することが可能であることが明らかとなった。 From the results of the above PA6 and POM, the acetylated NBKP reinforced composite material is superior to the conventional cellulose-based composite material, and can be effectively reinforced with a very small addition amount. It became clear.
 (3-3-3)アセチル化NBKP/樹脂複合材料の混練回数が力学的特性に及ぼす影響 アセチル化セルロース材料のリサイクル特性の評価を行った。ここでは補強効果が特に高いPA6及びPOMマトリックスについて、繰り返し成形加工(混練回数)による物性変化を測定した。 (3-3-3) Effect of kneading frequency of acetylated NBKP / resin composite material on mechanical properties Recycling properties of acetylated cellulose materials were evaluated. Here, changes in physical properties due to repeated molding (number of kneadings) were measured for PA6 and POM matrices with particularly high reinforcing effects.
 PA6マトリックス
 PA6樹脂マトリックス複合材料の力学的特性を表19に示す。
Table 19 shows the mechanical properties of the PA6 matrix PA6 resin matrix composite.
 混練は215℃にて2回まで行った。 Kneading was performed up to twice at 215 ° C.
 曲げ弾性率は、1回目混練(No.PA6-220-1)で5120MPa、2回目混練(No.PA6-220-2)で4780MPaと低下した。低下率は6.60%であり,これは東レ(株)のガラス繊維30質量%強化PA6と同等の低下率であった。 The bending elastic modulus decreased to 5120 MPa in the first kneading (No.PA6-220-1) and 4780 MPa in the second kneading (No.PA6-220-2). The decrease rate was 6.60%, which was the same as that of Toray's 30 mass% reinforced PA6 glass fiber.
 曲げ強度は、1回目混練(No.PA6-220-1)で154MPa、2回目混練(No.PA6-220-2)で150MPaと低下した。低下率は2.60%であり,これは東レ(株)のガラス繊維30質量%強化PA6の低下率約5%よりも小さくなった。 The bending strength decreased to 154 MPa by the first kneading (No.PA6-220-1) and 150 MPa by the second kneading (No.PA6-220-2). The decrease rate was 2.60%, which was smaller than the decrease rate of about 5% for Toray's 30 mass% reinforced PA6 glass fiber.
 Izod衝撃強度は、1回目混練(No.PA6-220-1)で3.41kJ/m2、2回目混練(No.PA6-220-2)で3.60kJ/m2と大きく変化しなかった。東レ(株)のガラス繊維30質量%強化PA6の低下率は約20%である。しかし、新品原料の衝撃特性が非常に良いため比較することはできない。 Izod impact strength was not significantly changed with 3.60kJ / m 2 at 3.41kJ / m 2 in the first kneading (No.PA6-220-1), 2 th kneading (No.PA6-220-2). The reduction rate of 30% by mass glass fiber reinforced PA6 from Toray Industries, Inc. is about 20%. However, the impact properties of new materials are very good and cannot be compared.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 POMマトリックス
 POM樹脂マトリックス複合材料の力学的特性を表20に示す。
Table 20 shows the mechanical properties of the POM matrix POM resin matrix composite.
 混練は170℃にて3回まで行った。 Kneading was performed up to 3 times at 170 ° C.
 曲げ弾性率は、1回目混練(No.POM129)で5170MPa、2回目混練(No.POM130)で5270MPa、3回目混練(No.POM131)で5290MPaと向上した。向上率は1回目→2回目、1回目→3回目とも約2%であった。 The flexural modulus improved to 5170 MPa for the first kneading (No. POM129), 5270 MPa for the second kneading (No. POM130), and 5290 MPa for the third kneading (No. POM131). The improvement rate was about 2% for the first time → second time and the first time → third time.
 曲げ強度は、1回目混練(No.POM129)で122MPa、2回目混練(No.POM130)で117MPa、3回目混練(No.POM131)で120MPaと一定であった。 The bending strength was constant at 122 MPa for the first kneading (No. POM129), 117 MPa for the second kneading (No. POM130), and 120 MPa for the third kneading (No. POM131).
 Izod衝撃強度は、1回目混練(POM129)で4.18kJ/m2、2回目混練(No.POM130)で4.70kJ/m2、3回目混練(No.POM131)で4.95kJ/m2と向上した。3回目は、ニートPOM(No.POM)と同等の衝撃強度まで向上した。 Izod impact strength, and improved 4.95kJ / m 2 at 4.70kJ / m 2 at 4.18kJ / m 2 in the first kneading (POM129), 2 th kneading (No.POM130), 3 th kneading (No.POM131) . The third time, the impact strength was improved to the same level as neat POM (No. POM).
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 以上のPA6及びPOMの結果より、アセチル化NBKPのリサイクル性に関する知見が得られた。 From the above PA6 and POM results, knowledge about the recyclability of acetylated NBKP was obtained.
 PA6マトリックスでは、混練温度が高く繰り返しの成形加工(溶融混練等)により、アセチル化NBKPは耐熱性が通常のNBKPよりも向上しているが劣化する。 In PA6 matrix, the kneading temperature is high, and the heat resistance of acetylated NBKP is higher than that of normal NBKP due to repeated molding (melt kneading, etc.), but deteriorates.
 それに対してPOMマトリックスでは、混練温度が低いため、耐熱性が向上したアセチル化NBKPはほとんど劣化せず、逆に繰り返し成形加工により解繊性が向上し、曲げ弾性率及び耐衝撃性が向上したと考えられる。 On the other hand, in the POM matrix, the kneading temperature is low, so the acetylated NBKP with improved heat resistance hardly deteriorates. On the contrary, the refining property is improved by repeated molding processing, and the flexural modulus and impact resistance are improved. it is conceivable that.
 汎用な補強繊維であるガラス繊維(GF)及び炭素繊維(CF)と樹脂の複合材料は、リサイクル加工時に繊維が破断したり、繊維の短繊維化が起こったりするため、一般的にカスケードリサイクル(低品位用途への利用)しかできない。 Glass fiber (GF) and carbon fiber (CF) and resin composite materials, which are general-purpose reinforcing fibers, are generally cascade-recycled because the fiber breaks during fiber recycling or the fibers become shorter. Can only be used for low-grade applications).
 それに対して本アセチル化セルロースファイバーは、POM等の成形温度領域以下であるポリプロピレン、ポリエチレン、ポリスチレン、ABS、熱可塑性エラストマー、その他低融点樹脂材料においては、本アセチル化NBKPは繰り返しの成形加工に耐えるリサイクル性に優れた素材となると考えられる。 In contrast, this acetylated cellulose fiber is resistant to repeated molding in polypropylene, polyethylene, polystyrene, ABS, thermoplastic elastomer, and other low melting point resin materials that are below the molding temperature range such as POM. It is considered to be a material with excellent recyclability.
 (3-4) アセチル化セルロースの分散状態の観察
 図1に原材料であるNBKPのSEM写真を示す。
(3-4) Observation of dispersion state of acetylated cellulose FIG. 1 shows an SEM photograph of NBKP as a raw material.
 図2に原材料であるNBKPをアセチル化したアセチル化NBKP(DS=0.88)のSEM写真を示す。 Fig. 2 shows an SEM photograph of acetylated NBKP (DS = 0.88) obtained by acetylating NBKP as a raw material.
 NBKPでは直径がサブミクロンオーダーの繊維も見られるが、直径数十から数百μmの粗大な繊維径を有している繊維が多く存在する。 In NBKP, fibers with submicron order diameters can be seen, but there are many fibers having a coarse fiber diameter of several tens to several hundreds of micrometers.
 アセチル化NBKPは、NBKPよりは解繊が進行しているが、数十μm以上の粗大な繊維が存在している。 Acetylated NBKP is more defibrated than NBKP, but there are coarse fibers of several tens of μm or more.
 PA6マトリックス
 図3に未処理NBKP添加PA6(No.PA6-15)のX-CT像を示す。図4にその未処理NBKP添加PA6のPA6を抽出し得られたセルロースのSEM写真を示す。
PA6 matrix FIG. 3 shows an X-CT image of untreated NBKP-added PA6 (No. PA6-15). FIG. 4 shows an SEM photograph of cellulose obtained by extracting PA6 of the untreated NBKP-added PA6.
 図5にアセチル化NBKP添加PA6(NO.PA6-216)のX-CT像を示す。図6にそのアセチル化NBKP添加PA6のPA6を抽出し得られたセルロースのSEM写真を示す。 Fig. 5 shows an X-CT image of acetylated NBKP-added PA6 (NO.PA6-216). FIG. 6 shows an SEM photograph of cellulose obtained by extracting PA6 of the acetylated NBKP-added PA6.
 X-CT像では,未処理NBKPよりもアセチル化セルロースの方がμm単位で存在する繊維の輪郭が不明瞭になり、分解能(1.3μm)と同等の白いモヤ状の分散が多く観察された。1.3μm以下のセルロースは、X-CTでは確認することはできない。 In the X-CT image, the outline of the fiber in which acetylated cellulose is present in units of μm became unclear compared to untreated NBKP, and a lot of white haze-like dispersion equivalent to the resolution (1.3 μm) was observed. Cellulose of 1.3 μm or less cannot be confirmed by X-CT.
 SEM写真では,未処理NBKP添加PA6(No.PA6-15)では,数十μmの太さの繊維が多く見られ、サブミクロンや数十nmオーダーのセルロースは少ない。 In the SEM photograph, untreated NBKP-added PA6 (No. PA6-15) has many fibers with a thickness of several tens of μm, and there are few sub-micron and tens of nanometer order cellulose.
 それに対してアセチル化NBKP添加PA6(No.PA6-216)では、3μm程度のセルロースが散見されるが、その多くは数十から数百nmのアセチル化CNFとして分散していた。 On the other hand, in PA6 (No. PA6-216) containing acetylated NBKP, cellulose of about 3 μm was scattered, but most of them were dispersed as acetylated CNF of several tens to several hundreds of nm.
 POMマトリックス
 POMは、セルロースと密度差が小さいためX-CT撮影において、POMマトリックスとセルロースのコントラスト差が小さく、セルロースの判別が困難である。
Since the POM matrix POM has a small density difference from cellulose, the contrast difference between the POM matrix and cellulose is small in X-CT imaging, and it is difficult to distinguish cellulose.
 そこでSEM観察のみ実施した。 Therefore, only SEM observation was conducted.
 図7に未処理NBKP添加POM(No.POM-148)のPOMを抽出し得られたセルロースのSEM写真を示す。 FIG. 7 shows a SEM photograph of cellulose obtained by extracting the POM of untreated NBKP-added POM (No. POM-148).
 図8にアセチル化NBKP添加POM(No.POM-134)のPOMを抽出し得られたセルロースのSEM写真を示す。 FIG. 8 shows an SEM photograph of cellulose obtained by extracting POM of acetylated NBKP-added POM (No. POM-134).
 未処理NBKP添加POM(No.POM-148)では、数十μm以上の粗大な繊維塊が多数観察された。 In untreated NBKP-added POM (No. POM-148), a large number of coarse fiber masses of several tens of μm or more were observed.
 一方アセチル化NBKP添加POM(No.POM-134, DS=1.17)では、繊維状ではなくゲル状で樹脂が膨潤したような抽出物が得られた。その観察写真は、やはり樹脂状でありPOMが完全に抽出されていなかった。 On the other hand, in the case of acetylated NBKP-added POM (No. POM-134, DS = 1.17), an extract was obtained in which the resin swelled in a gel rather than a fibrous form. The observed photograph was still resinous and POM was not completely extracted.
 これはアセチル化が進みセルロース表面に存在する多数のアセチル基がPOMと相互作用することによりPOMが繊維上から抽出されにくくなったためであると考えられる。抽出物の亀裂部分を拡大観察すると、前記アセチル化NBKP添加PA6(No.PA6-216)と同等以下の微細な繊維が存在していた。 This is thought to be because POM became difficult to be extracted from the fiber due to the progress of acetylation and the interaction of a large number of acetyl groups present on the cellulose surface with POM. When the crack portion of the extract was observed under magnification, fine fibers equal to or less than the acetylated NBKP-added PA6 (No. PA6-216) were present.
 図9に低DS(DS=0.46)アセチル化NBKP添加POM(No.POM-129)のPOMを抽出し得られたセルロースのSEM写真を示す。 FIG. 9 shows an SEM photograph of cellulose obtained by extracting the POM of the low DS (DS = 0.46) acetylated NBKP-added POM (No. POM-129).
 この場合は、ほぼ完全にPOMが抽出されており、アセチル化NBKPとPOMの相容性がそれほど高くないと判断することができる。 In this case, POM is almost completely extracted, and it can be determined that the compatibility of acetylated NBKP and POM is not so high.
 図10に低DS(DS=0.40)アセチル化NBKP添加POM(No.POM-128)複合材料の透過型電子顕微鏡写真を示す。DS1.17のアセチル化セルロースほどはPOMと相容性は高くないと考えられるが、低DS=0.40においても、セルロース繊維束内にPOMが含浸されている様子が観察され、その繊維径は数nmとなっている。 FIG. 10 shows a transmission electron micrograph of a low DS (DS = 0.40) acetylated NBKP-added POM (No. POM-128) composite material. DS1.17 acetylated cellulose is not as compatible with POM, but even at low DS = 0.40, it was observed that POM was impregnated in the cellulose fiber bundle, and the fiber diameter was several nm.
 PPマトリックス
 図11に未処理NBKP添加PP(No.PP-116)のX-CT像を示す。
PP matrix Fig. 11 shows an X-CT image of untreated NBKP-added PP (No. PP-116).
 図12にその未処理NBKP添加PPのPPを抽出し得られたセルロースのSEM写真を示す。 FIG. 12 shows an SEM photograph of cellulose obtained by extracting PP of the untreated NBKP-added PP.
 図13に高DS(DS=1.84)アセチル化NBKP添加PP(No.PP-367)のX-CT像を示す。 FIG. 13 shows an X-CT image of PP (No. PP-367) containing high DS (DS = 1.84) acetylated NBKP.
 図14にそのアセチル化NBKP添加PPのPPを抽出し得られたセルロースのSEM写真を示す。 FIG. 14 shows a SEM photograph of cellulose obtained by extracting PP of the acetylated NBKP-added PP.
 X-CT像では、未処理NBKPよりもアセチル化セルロースの方がμm単位で存在する繊維の輪郭が不明瞭になり、より微細なセルロースが分散していた。 In the X-CT image, the outline of the fiber in which acetylated cellulose is present in units of μm was unclear compared to untreated NBKP, and finer cellulose was dispersed.
 SEM写真については、未処理NBKP添加PP(No.PP-116)では、数十μmの粗大な繊維と数μm以上の解繊が進みつつある繊維が存在した。しかし解繊が進みつつある繊維は繊維長が著しく低下し、短繊維化していた。 Regarding SEM photographs, untreated NBKP-added PP (No. PP-116) had coarse fibers of several tens of μm and fibers that were being defibrated more than several μm. However, the fiber that is being defibrated has a remarkably reduced fiber length and has been shortened.
 図15に低DS(DS=0.46)アセチル化NBKP添加PP(No.PP-304)のX-CT像を示す。図16にその低DSアセチル化NBKP添加PPのPPを抽出し得られたセルロースのSEM写真を示す。 Fig. 15 shows an X-CT image of low DS (DS = 0.46) acetylated NBKP-added PP (No. PP-304). FIG. 16 shows an SEM photograph of cellulose obtained by extracting PP of the low DS acetylated NBKP-added PP.
 高DS(DS=1.84)アセチル化NBKP添加PP(No.PP-367)では、数百nmから1μm程度までの繊維が多くを占め、その繊維長は未処理NBKP添加PP(No.PP-116)や、図15及び図16に示す低DS(DS=0.46)アセチル化NBKP添加PP(No.PP-304)よりも著しく長く観察された。 In high-DS (DS = 1.84) acetylated NBKP-added PP (No.PP-367), fibers from several hundred nm to about 1 μm account for the majority, and the fiber length is untreated NBKP-added PP (No.PP-116). ) And low DS (DS = 0.46) acetylated NBKP-added PP (No. PP-304) shown in FIG. 15 and FIG.
 以上の結果よりアセチル化NBKPは、未処理NBKPと比較して、二軸押出機による溶融混練時のせん断により容易に解れ、樹脂中でナノ分散化していると言え、その分散サイズは部分的には分子複合材料の領域に達していると結論付けられる。 From the above results, it can be said that acetylated NBKP is easily unraveled by shear during melt-kneading by a twin screw extruder and nano-dispersed in the resin, compared with untreated NBKP, and the dispersion size is partially It can be concluded that the domain of molecular composites has been reached.
 また疎水性の高いPPとの複合化においては、よりアセチル化度(DS)を高くし、疎水性を上げることにより物性が向上することが分かり、相容性が高い方が溶融混練工程での解繊性が向上し繊維破断が防げることが示唆された。 In addition, in complexing with highly hydrophobic PP, it can be seen that the physical properties are improved by increasing the degree of acetylation (DS) and increasing the hydrophobicity. It was suggested that defibration was improved and fiber breakage was prevented.
 (3-5)アセチル化セルロースと樹脂材料の相容化
 表21~表33にアセチル化セルロース添加樹脂複合材料の総括表を示す。
(3-5) Compatibilization of acetylated cellulose and resin material Tables 21 to 33 show a summary table of resin composite materials containing acetylated cellulose.
 アセチル化セルロースのDS、溶解度パラメータ(SP)結晶化度と各樹脂の曲げ特性のピーク領域を示している。また各樹脂のSPも記載した。 This shows the peak area of DS of acetylated cellulose, solubility parameter (SP) crystallinity and bending properties of each resin. The SP of each resin is also described.
 表21~表28では、アセチル化NBKPのDS(x)とSP(y)との関係式はy=-2.3x+15.7である。 In Table 21 to Table 28, the relational expression between DS (x) and SP (y) of acetylated NBKP is y = −2.3x + 15.7.
 アセチル化セルロースのSP値は、文献値のセルロース及びジアセチル化セルロースのSP値より直線近似で算出した。結晶化度は、各セルロースを加圧しタブレット化し、広角X線散乱法により算出した。樹脂SPは、井出文雄著 実用ポリマーアロイ設計(発行所:(株)工業調査会、1996年発行)を引用した。樹脂SPがSP値の範囲で記載されている場合は、上限値と下限値の平均値をその樹脂のSPとして用い、上記のAcCNFのDS(x)とSP(y)との関係式を求めた。 The SP value of acetylated cellulose was calculated by linear approximation from the SP values of the literature values of cellulose and diacetylated cellulose. The crystallinity was calculated by wide-angle X-ray scattering by pressing each cellulose into tablets. Resin SP quoted Fumio Ide's Practical Polymer Alloy Design (Publisher: Kogyo Kenkyukai, published in 1996). When resin SP is described in the range of SP value, the average value of the upper limit value and the lower limit value is used as SP of the resin, and the relational expression between DS (x) and SP (y) of AcCNF is obtained. It was.
 上記文献(井出文雄著)に記載されていない樹脂のSP(MAPPのSP)については、Fedorsの方法(Robert F. Fedors、Polymer Engineering and Science, February,1974、vol.14, No.2 147-154)に従って計算し、求めた。 またPLAのSP値は,特開2011-231285記載の値を用いた。 For the resin SP (MAPP SP) not described in the above document (written by Fumio Ide), the method of Fedors (Robert F. Fedors, Polymer Engineering and Science, February, 1974, vol.14, No.2 147- 154) and calculated. Also, the value described in JP-A-2011-231285 was used for the SP value of PLA.
 表25~表28では、表21~表24の物性値を、未修飾NBKP-樹脂組成物を基準として、指数表示した。 In Tables 25 to 28, the physical property values in Tables 21 to 24 are shown as indices based on the unmodified NBKP-resin composition.
 表29~表31では,アセチル化リグノパルプのSP値は,Fedorsの方法(Robert F. Fedors、Polymer Engineering and Science, February,1974、vol.14, No.2 147-154)に準じて計算し、求めた(前記「アセチル化リグノパルプ(LP)のSP値算出方法」参照)In Table 29 to Table 31, the SP value of acetylated lignopulp is calculated according to the method of Fedors (Robert F. Fedors, Polymer Engineering and Science, February, 1974, vol.14, No.2 147-154) ( Refer to the above - mentioned “ Method for calculating SP value of acetylated lignopulp (LP)”) .
 表31では、表29のPA6強化材料の数値を、未修飾リグノパルプ-樹脂組成物を基準として、指数表示した。 In Table 31, the numerical values of the PA6 reinforced materials in Table 29 are shown as indices based on the unmodified lignopulp-resin composition.
 表32は表25~表28をまとめたものである。 Table 32 summarizes Table 25 to Table 28.
 表33は表31をまとめたものである。 Table 33 summarizes Table 31.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 NBKPにおいては、最もSPの高いPA6(SP=12.2)は、DS=0.46~0.88程度、SP=14.6~13.7程度、結晶化度72.1%程度以上のアセチル化NBKPを添加することで最も高い曲げ特性が得られる。 In NBKP, PA6 with the highest SP (SP = 12.2) has the highest bending characteristics by adding acetylated NBKP with DS = 0.46 to 0.88, SP = 14.6 to 13.7, and crystallinity of about 72.1% or more. Is obtained.
 次にSPの高いPLA(SP=11.4)は、DS=0.32~1.57程度、SP=15.7~0.32程度、結晶化度55.6%程度以上のアセチル化NBKPを添加することで高い曲げ特性が得られる。 Next, PLA with high SP (SP = 11.4) can obtain high bending properties by adding acetylated NBKP with DS = 0.32 to 1.57, SP = 15.7 to 0.32, and crystallinity of about 55.6% or more.
 次にSPの高いPOM(SP=11.1)は、DS=0.64~1.17程度、SP=14.2~13.0程度、結晶化度69.5%程度以上のアセチル化セルロースを添加することで最も高い曲げ特性が得られる。 Next, POM with the highest SP (SP = 11.1) can obtain the highest bending characteristics by adding acetylated cellulose with DS = 0.64 to 1.17, SP = 14.2 to 13.0, and crystallinity of about 69.5% or more. .
 そして最もSPの低いPP(SP=8.1)は、DS=2.52程度以上にピークがあると考えられ、結晶化度は影響していない。 And PP with the lowest SP (SP = 8.1) is considered to have a peak at about DS = 2.52 or more, and the crystallinity is not affected.
 また、MAPP(SP=8.2)は、DS=0.64~1.17程度、SP=14.2~13.0程度、結晶化度55.6%程度以上のアセチル化セルロースを添加することで最も高い曲げ特性が得られる。 MAPP (SP = 8.2) can obtain the highest bending characteristics by adding acetylated cellulose having DS = 0.64 to 1.17, SP = 14.2 to 13.0, and crystallinity of about 55.6% or more.
 以上をまとめると、PA6,POMやPLAのような極性材料においては、DS=1.2程度までのアセチル化処理で十分セルロースとの相容性が向上し、セルロースの結晶化度を約70%程度以上に保つ、つまりセルロース繊維の強度を高い状態に保つことにより最も高曲げ特性の材料を得ることができる。 In summary, in polar materials such as PA6, POM and PLA, compatibility with cellulose is sufficiently improved by acetylation treatment up to about DS = 1.2, and the crystallinity of cellulose is about 70% or more. The material having the highest bending properties can be obtained by keeping the strength of the cellulose fibers at a high level.
 非極性材料であるPPはSPが低いため,結晶化度の高く繊維強度の高いDS1.0程度までのアセチル化セルロースでは界面強度が低すぎて不十分な曲げ特性となる。アセチル化NBKP/PP複合材料では,結晶化度が低下しても高DSにする必要があると言える。 Pp Since PP, which is a nonpolar material, has low SP, acetylated cellulose with high crystallinity and high fiber strength up to about DS1.0 has insufficient bending properties because the interfacial strength is too low. It can be said that the acetylated NBKP / PP composite material needs to have a high DS even when the crystallinity is lowered.
 他の非極性材料であるPS及びPEについては、明確な曲げ特性のDSのピーク値は見いだされなかった。 ∙ With respect to PS and PE, which are other nonpolar materials, no DS peak value with clear bending characteristics was found.
 一方リグノパルプ(NUKP, GP150-1, GP150-3a)を添加したPA6においても傾向は同様であり、DS=0.41-0.75程度、SP=13.8 ~14.7程度,結晶化度75.0%程度以上のアセチル化リグノパルプを添加することで最も高い曲げ特性が得られる。 POMも同様の傾向であり,DS=0.75、SP=13.8のアセチル化NUKPにおいて、高い曲げ特性が得られた。 On the other hand, the trend is similar in PA6 with lignopulp (NUKP, GP150-1, GP150-3a) added, DS = 0.41-0.75, SP = 13.8 -14.7, crystallinity of about 75.0% or more. The highest bending characteristics can be obtained by adding. The same tendency was observed for POM, and high bending properties were obtained with acetylated NUKP with DS = 0.75 and SP = 13.8.
 PPは,やはり高DSのアセチル化リグノパルプを用いなければ,高い曲げ特性を得ることは難しいと言える。 PP can be said to be difficult to obtain high bending properties unless high DS acetylated lignopulp is used.
 IV.アシル化NUKP含有ポリプロピレン(PP)組成物の調製とその強度試験
 (1)アシル化NUKPの調製
 攪拌羽根を備えた四つ口1Lフラスコに、前記「リファイナー処理済み針葉樹由来未晒し針葉樹林パルプの調製」で得たパルプスラリー(NUKP)を投入した(NUKP固形分5g相当量)。N-メチル-2-ピロリドン(NMP)500mL、トルエン250mLを加え、攪拌しNUKPをNMP/トルエン中に分散させた。
IV. Preparation of acylated NUKP-containing polypropylene (PP) composition and its strength test (1) Preparation of acylated NUKP In a four-necked 1L flask equipped with a stirring blade, the above-mentioned “unrefined coniferous pulp derived from refiner-treated conifers” The pulp slurry (NUKP) obtained in “Preparation of” was added (corresponding to 5 g of NUKP solid content). N-methyl-2-pyrrolidone (NMP) 500 mL and toluene 250 mL were added and stirred to disperse NUKP in NMP / toluene.
 冷却器を取り付け、窒素雰囲気下、分散液を150℃に加熱し、分散液中に含まれる水分をトルエンとともに留去した。その後分散液を40℃まで冷却し、ピリジン15mL(NUKP水酸基に対して約2当量)、ミリストイルクロリド(変性化剤、エステル化試薬):16.2mL(NUKP水酸基に対して約1当量)を添加した。生成するエステル基の増加を赤外線吸収スペクトルにより逐次測定し(注)反応を追跡し、窒素雰囲気下90分反応させた。 A cooler was attached, and the dispersion was heated to 150 ° C. in a nitrogen atmosphere, and water contained in the dispersion was distilled off together with toluene. Thereafter, the dispersion was cooled to 40 ° C., and 15 mL of pyridine (about 2 equivalents to the NUKP hydroxyl group) and myristoyl chloride (denaturing agent, esterification reagent): 16.2 mL (about 1 equivalent to the NUKP hydroxyl group) were added. . The increase in the number of ester groups formed was measured sequentially by infrared absorption spectrum (Note), the reaction was followed, and the reaction was carried out for 90 minutes in a nitrogen atmosphere.
 (注):逐次的に、反応懸濁液混合物の少量を抜き取り、エタノールを加え、遠心分離して沈殿物を得た。これをエタノールで洗浄乾燥し粉砕して、赤外線(IR)吸収スペク卜ルを測定することにより生成物のエステル基の置換度(DS)の変化を追跡することができる。エステル基のDSは下記の式にて算出した。 (Note): Sequentially, a small amount of the reaction suspension mixture was extracted, ethanol was added, and the mixture was centrifuged to obtain a precipitate. The change in the degree of substitution (DS) of the ester group of the product can be traced by measuring the infrared (IR) absorption spectrum after washing and drying with ethanol. The DS of the ester group was calculated by the following formula.
  DS=0.0113X-0.0122
  (Xは1733cm-1付近のエステルカルボニルの吸収ピーク面積である。スペクトルは1315cm-1の値を1で規格化)
 反応懸濁液を200mLのエタノールで希釈し、7,000rpmで20分間遠心分離を行い、上澄み液を除去し、沈殿物を取り出した。上記の操作(エタノールの添加、分散、遠心分離、上澄み液の除去)で、溶媒エタノールをアセトンに変えて同様の操作を行い、更に溶媒のアセトンをNMPに変えて同様の操作を二回繰り返し、ミリストイル化NUKPのスラリーを得た。
DS = 0.0113X-0.0122
(X is the absorption peak area of ester carbonyl in the vicinity of 1733 cm −1 . The spectrum is normalized to a value of 1315 cm −1 by 1.)
The reaction suspension was diluted with 200 mL of ethanol, centrifuged at 7,000 rpm for 20 minutes, the supernatant was removed, and the precipitate was taken out. In the above operations (addition of ethanol, dispersion, centrifugation, removal of supernatant), the solvent ethanol is changed to acetone, the same operation is performed, the solvent acetone is changed to NMP, and the same operation is repeated twice. A slurry of myristoylated NUKP was obtained.
 上記と同様の操作で、下表(表34)に示したような各種の修飾基で修飾されたNUKP(アシル化NUKP)を調製した。
反応条件および、得られたアシル化NUKPを表34に示す。
NUKP (acylated NUKP) modified with various modifying groups as shown in the following table (Table 34) was prepared in the same manner as described above.
Reaction conditions and the resulting acylated NUKP are shown in Table 34.
 表34のアシル化NUKPの結晶化度の説明
 これらアシル化NUKPの結晶化度は未測定であるが、70%付近の値であると考えられる。その理由は以下の通りである。
Description of crystallinity of acylated NUKP in Table 34 The crystallinity of these acylated NUKPs has not been measured, but is considered to be around 70%. The reason is as follows.
 アセチル化しない(即ち、DS=0の)、パルプ及びリグノパルプの結晶化度は、夫々、NBKP:77.4%、NUKP:78.3%、GP150-1-a:78.7%、GP150-3-a:83.1%であり、おおよそ77~83%の範囲であった(前記表6及び表7参照)。 Non-acetylated (i.e., DS = 0), the crystallinity of pulp and lignopulp was NBKP: 77.4%, NUKP: 78.3%, GP150-1-a: 78.7%, GP150-3-a: 83.1%, respectively. The range was approximately 77 to 83% (see Table 6 and Table 7 above).
 一方、DSが0.4~0.6のアセチル化パルプとアセチル化リグノパルプの結晶化度は、それぞれ、アセチル化NBKP(DS=0.46):73.3%、アセチル化NUKP(DS=0.61):76,7%、アセチル化GP150-1-a(DS=0.42):75.5%、アセチル化GP150-3-a(DS=0.62):78%で、結晶化度はおおよそ73~78%の範囲であった(前記表6、表7参照)。 On the other hand, the crystallization degree of acetylated pulp having an DS of 0.4 to 0.6 and acetylated lignopulp is acetylated NBKP (DS = 0.46): 73.3%, acetylated NUKP (DS = 0.61): 76,7%, acetyl, respectively. GP150-1-a (DS = 0.42): 75.5%, acetylated GP150-3-a (DS = 0.62): 78%, and the crystallinity ranged from approximately 73 to 78% (see Table 6 above). , See Table 7).
 このように、本発明で使用したアシル化方法でアセチル化するとパルプ及びリグノパルプの結晶化度は若干低下するものの、DS=0.4~0.6付近ではその低下は小さいことから、パルプのリグニン含量の多少にかかわらずパルプ繊維表面のセルロース及びリグノセルロースが修飾されているものと考えられる。 As described above, when the acetylation is performed by the acylation method used in the present invention, the crystallinity of the pulp and lignopulp is slightly decreased, but the decrease is small in the vicinity of DS = 0.4 to 0.6. Regardless, the cellulose and lignocellulose on the pulp fiber surface are considered to be modified.
 ミリストイル化NBKP(DS=0.42)の結晶化度は68%であった。 The crystallinity of myristoylated NBKP (DS = 0.42) was 68%.
 セルロース繊維表面をアシル化した場合はアシル基の種類(アセチル、ブチリル、バレリル)にかかわらず、その結晶化度は大きく変化しないことが知られている(M.Balardo等、Surface Chemical Modification of Natural Cellulose Fibers, J. Appl Polym Sci, 83, 38-45(2002))。 It is known that when the cellulose fiber surface is acylated, its crystallinity does not change greatly regardless of the type of acyl group (acetyl, butyryl, valeryl) (M. Ballardo et al., Surface Chemical Modification of Natural Cellulose Fibers, J. Appl Polym Sci, 83, 38-45 (2002)).
 以上のことから、表34のNUKPの結晶化度も、アシル基の種類関わらず、70%付近の値であると考えられる。 From the above, it can be considered that the crystallinity of NUKP in Table 34 is around 70% regardless of the type of acyl group.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 各種アシル化NUKPのSP計算
 (i)先ず、アシル化セルロースのSP値は以下の通り求めた。
SP calculation of various acylated NUKPs (i) First, the SP value of acylated cellulose was determined as follows.
 DS=Xのアシル化セルロースのSP(Y)=-(a-b)X/2+a  
  a:セルロースのSP値(文献値15.65 cal/cm31/2)
  b:DS=2のアシル化セルロースのSP
     =(Fedors法により求めたセルロースジアシレートのSP値)×(補正係数)  補正係数=(セルロースジアセテートの SP文献値11.13)
     ÷(Fedors法により求めたセルロースジアセテートの SP値12.41)
 (ii)SPxyl(キシランのSP値)、SPlig(リグニンのSP値)、SPxylアシル(キシランジアシレートのSP値)及びSPligac(リグニンジアセテートのSP値)は、夫々Fedorsの方法(Robert F. Fedors、Polymer Engineering and Science, February,1974、vol.14, No.2, 147-154)に準じて計算した。
SP (Y) =-(ab) X / 2 + a of DS = X acylated cellulose
a: SP value of cellulose (literature value 15.65 cal / cm 3 ) 1/2 )
b: SP of acylated cellulose with DS = 2
= (SP value of cellulose diacylate determined by Fedors method) x (correction coefficient) Correction coefficient = (SP literature value of cellulose diacetate 11.13)
÷ (SP value of cellulose diacetate determined by Fedors method 12.41)
(ii) SP xyl (SP value of xylan), SP lig (SP value of lignin), SP xyl acyl (SP value of xylan diacylate ) and SP ligac (SP value of lignin diacetate) are the methods of Fedors, respectively. (Robert F. Fedors, Polymer Engineering and Science, February, 1974, vol. 14, No. 2, 147-154).
 (iii)上記のデーターを使用し、前記の「アセチル化リグノパルプ(LP)のSP値算出方法」の項に記載した方法で、各種アシル化NUKPのSP値を計算した。 (Iii) Using the above data, the SP values of various acylated NUKPs were calculated by the method described in the above section “Calculation method of SP value of acetylated lignopulp (LP)”.
 (2)化学修飾NUKP含有樹脂(ポリプロピレン)組成物の製造
 前記ミリストイルNUKPスラリー(固形分15g含有)をトリミックス((株)井上製作所製)にて減圧下、攪拌し、乾燥した。ポリプロピレン(PP)樹脂(日本ポリプロ(株)製のノバテックMA-04A)135gを加え、全固形量が150gになるようにして、下記の条件で混練、造粒して樹脂組成物を得た。
(2) Production of chemically modified NUKP-containing resin (polypropylene) composition The myristoyl NUKP slurry (containing 15 g of solid content) was stirred and dried with Trimix (manufactured by Inoue Seisakusho Co., Ltd.) under reduced pressure. A resin composition was obtained by adding 135 g of a polypropylene (PP) resin (Novatech MA-04A manufactured by Nippon Polypro Co., Ltd.) and kneading and granulating under the following conditions so that the total solid amount was 150 g.
 樹脂組成物中のミリストイルNUKPの含有率は10質量%である。 The content of Myristoyl NUKP in the resin composition is 10% by mass.
 ・混練装置:テクノベル社製「TWX-15型」
 ・混練条件:温度=180℃
       吐出=600g/H
       スクリュ-回転数=200rpm
・ Kneading equipment: "TWX-15 type" manufactured by Technobel
・ Kneading conditions: Temperature = 180 ° C
Discharge = 600g / H
Screw rotation speed = 200rpm
 樹脂成形体の製造
 上記得られた樹脂組成物を下記の射出成型条件で、射出成型し、試験片(ミリストイルNUKP含有PP成形体)を作成した。
Production of Resin Molded Body The resin composition obtained above was injection molded under the following injection molding conditions to prepare a test piece (myristoyl NUKP-containing PP molded body).
 ・射出成型機:日精樹脂社製「NP7型」
 ・成形条件:成型温度=190℃
       金型温度=40℃
       射出率=50cm/秒
・ Injection molding machine: Nissei Plastic "NP7"
・ Molding conditions: Molding temperature = 190 ℃
Mold temperature = 40 ℃
Ejection rate = 50cm 3 / sec
 強度試験
 得られた試験片について、電気機械式万能試験機(インストロン社製)を用い、試験速度を1.5mm/分として弾性率及び引張強度を測定した(ロードセル5kN)。その際、支点間距離を4.5cmとした。
Strength Test Using the electromechanical universal testing machine (Instron), the elastic modulus and tensile strength of the test piece obtained were measured at a test speed of 1.5 mm / min (load cell 5 kN). At that time, the distance between fulcrums was 4.5 cm.
 前記の他のアシル化NUKPについても同様に、これを含有するポリプロピレン組成物及び試験片を調製し、その弾性率及び引張強度を測定した。測定結果を表35に示す。 For the other acylated NUKPs, a polypropylene composition and a test piece containing the same were prepared in the same manner, and their elastic modulus and tensile strength were measured. The measurement results are shown in Table 35.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 (3)アシル化NUKPの樹脂中での解繊性
 NUKP含有PP成形体をX線CTスキャナ(SKYSCAN製、SKYSCAN1172)を用いて観察した。
(3) The defibrated NUKP-containing PP molded body in the acylated NUKP resin was observed using an X-ray CT scanner (SKYSCAN, SKYSCAN1172).
 アシル化NUKP含有PP成型体のX-CT像は,弾性率の大きいものほどμm単位で存在する繊維の輪郭が不明瞭になり白いモヤ状の像が観察された。即ち、PP樹脂との混練でアシル化NUKPの解繊が進みミクロフィブリル化しているといえる。 In the X-CT image of the acylated NUKP-containing PP molded product, the higher the modulus of elasticity, the more unclear the outline of the fiber existing in μm units, and a white haze-like image was observed. That is, it can be said that fibrillation of acylated NUKP has progressed by kneading with PP resin, and microfibrillation has been achieved.
 より定量的に解繊性を考察するために、X線CTスキャナの画像の断面において、明るさが40以上で、その大きさが50ピクセル(1ピクセル:0.72ミクロン)以上の部分の%を求めその平均(N=300)を繊維凝集部%とし解繊性の指標とした(この値が小さいほど解繊は進み、ミクロフィブリル化されている)。 To consider defibration more quantitatively, find the percentage of the X-ray CT scanner image where the brightness is 40 or more and the size is 50 pixels (1 pixel: 0.72 microns) or more. The average (N = 300) was used as an index of fibrillation by setting the fiber agglomerated portion% (the smaller this value, the more fibrillation and microfibrillation).
 アシル化NUKP含有PP成型体の凝集部%を表36に示す。 Table 36 shows the agglomerated part% of the acylated NUKP-containing PP molded product.
 また、表35のアシル化NUKP含有成型体の弾性率の数値を、PP単独成型体又は未修飾NUKP含有PP成型体の弾性を基準として、指数表示して表36に示す。さらにポリプロピレン(PP)の溶解パラメータ〔SP:8.1(cal/cm31/2〕に対する夫々のアシル化NUKPの溶解パラメータの比率R(アシル化NUKPのSP/PPのSP)も表36に併記する。 The numerical values of the elastic moduli of the acylated NUKP-containing molded products in Table 35 are shown in Table 36 as indices based on the elasticity of the PP single molded product or the unmodified NUKP-containing molded product. Furthermore, Table 36 also shows the ratio R of the solubility parameter of each acylated NUKP to the solubility parameter [SP: 8.1 (cal / cm 3 ) 1/2 ] of polypropylene (PP) (SP of acylated NUKP / SP of PP). To do.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 評価したサンプルのなかでミリストイル化NUKPの解繊性が最も高く、次いでボルナンフェノキシヘキサノイルNUKP、ホルナンフェノキアセチルNUKP、1,1,3,3-テ トラメチルフチルフェノキシアセチルNUKP、3,5,5-トリメチルヘキサンノイルNUKPの順であった。そしてフェノキシアセチルNUKPの解繊性が最も低いといえる。この場合でも約95%は、繊維幅約700nm以下に解繊されているといえる。 Among the samples evaluated, myristoylated NUKP has the highest defibration properties, followed by bornanphenoxyhexanoyl NUKP, hornanphenoxyacetyl NUKP, 1,1,3,3-tetramethylphtylphenoxyacetyl NUKP, 3, The order was 5,5-trimethylhexanenoyl NUKP. And phenoxyacetyl NUKP has the lowest defibration property. Even in this case, it can be said that about 95% is defibrated to a fiber width of about 700 nm or less.
 表36は、いずれのアシル化NUKP含有PP成型体の弾性率も、比率R(アシル化NUKPのSP/PPのSP)が、1.72~1.76のときに、PP単独成型体の弾性率に比べて約1.3~1.9倍、未修飾NUKP含有PP成型体の弾性率に比べて約1.1~1.6倍に増大していることを示している。 Table 36 shows the modulus of elasticity of any acylated NUKP-containing PP molded product, compared with the modulus of elasticity of a single PP molded product when the ratio R (SP of acylated NUKP / SP of PP) is 1.72-1.76. It is about 1.3 to 1.9 times, showing an increase of about 1.1 to 1.6 times the elastic modulus of the unmodified NUKP-containing PP molding.
 (4)アセチル化NUKP含有、HDE組成物、PS組成物及びABS組成物の調製とその強度前記と同様にして調製したアセチル化NUKP(AcNUKP、DS:0.41、結晶化度約75%)を使用し、前記と同様の方法でこれを含む、高密度ポリエチレン(HDPE)樹脂(旭化成(株)製、商品名サンテックHD)、汎用ポリスチレン(GPPS、東洋エンジニアリング(株)製、商品名PSJポリスチレン)又はアクリロニトリル・ブタジエン・スチレン樹脂(ABS, 旭化成(株)製、商品名スタイラックABS)組成物を調製し、試験片を調製した。 (4) Preparation and strength of acetylated NUKP containing HDE composition, PS composition and ABS composition Use acetylated NUKP (AcNUKP, DS: 0.41, crystallinity about 75%) prepared in the same manner as described above. In addition, high density polyethylene (HDPE) resin (manufactured by Asahi Kasei Co., Ltd., trade name Suntech HD), general-purpose polystyrene (GPPS, manufactured by Toyo Engineering Co., Ltd., trade name PSJ polystyrene) An acrylonitrile / butadiene / styrene resin (ABS, Asahi Kasei Co., Ltd., trade name Stylac ABS) composition was prepared, and a test piece was prepared.
 この試験片について、電気機械式万能試験機(インストロン社製)を用いて前記と同様の方法で引張り弾性率及び引張り強度を測定した。結果を表37に示す。 The tensile modulus and tensile strength of this test piece were measured by the same method as described above using an electromechanical universal testing machine (Instron). The results are shown in Table 37.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 (5)アセチル化NUKP含有樹脂の弾性率の増加とアセチル化NUKPのSPに対する樹脂SPの比との関係
 表38に、NUKPとアセチル化NUKP(Ds:0.41)のSP値、それに対する樹脂(HDPE、PS及びABS)夫々のSP値の比、アセチル化NUKP含有各樹脂の弾性率の増加率を示す。樹脂単独の弾性率に対する各種繊維含有組成物の弾性率の増加率(a)、未修飾NUKP含有樹脂組成物の弾性率に対するアセチル化NUKP含有組成物の弾性率の増加率(b)である。
(5) Relationship between increase in elastic modulus of acetylated NUKP-containing resin and ratio of resin SP to SP of acetylated NUKP Table 38 shows SP value of NUKP and acetylated NUKP (Ds: 0.41), and resin (HDPE) , PS and ABS) The ratio of each SP value, and the rate of increase in the elastic modulus of each acetylated NUKP-containing resin. These are the increase rate (a) of the elastic modulus of various fiber-containing compositions relative to the elastic modulus of the resin alone, and the increase rate (b) of the elastic modulus of the acetylated NUKP-containing composition relative to the elastic modulus of the unmodified NUKP-containing resin composition.
 いずれの樹脂組成物についても繊維(アセチル化NUKP)SP/樹脂SPの比が、1.31~1.84のときに、化学修飾しないNUKP含有樹脂組成物の弾性率に対し、アセチル化NUKP含有組成物の弾性率は1.1倍以上であった。 For any resin composition, when the ratio of fiber (acetylated NUKP) SP / resin SP is 1.31-1.84, the elasticity of the acetylated NUKP-containing composition is higher than the elastic modulus of the NUKP-containing resin composition that is not chemically modified. The rate was over 1.1 times.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 V.参考例1
 アシル化NBKP含有高密度ポリエチレン(HDPE)組成物の調製とその強度試験 (1)アシル化NBKP-0の調製
 リグニンを含まない針葉樹漂白クラフトパルプ(化学組成セルロース80質量%、グルコマンナン:12質量%、キシラン:6質量%、アラビナン/ガラクタン:2質量%、リグニン:0質量%、これは、前記のリグニンを含むNBKPと区別するために「NBKP-0」と呼ぶ)のスラリー(スラリー濃度:2質量%)をシングルディスクリファイナー(熊谷理機工業(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)が100mL以下となるまで繰り返しリファイナー処理を行った。
V. Reference example 1
Preparation of acylated NBKP-containing high-density polyethylene (HDPE) composition and its strength test (1) Preparation of acylated NBKP-0 Softwood bleached kraft pulp containing no lignin (chemical composition cellulose 80% by mass, glucomannan: 12% by mass) Xylan: 6% by mass, arabinan / galactan: 2% by mass, lignin: 0% by mass, which is referred to as “NBKP-0” to distinguish it from NBKP containing the above lignin (slurry concentration: 2 (Mass%) was passed through a single disk refiner (manufactured by Kumagai Riki Kogyo Co., Ltd.), and refiner treatment was repeated until the Canadian Standard Freeness (CSF) was 100 mL or less.
 上記リファイナー後のNBKP-0(固形分150g)に水を添加し、パルプスラリー濃度0.75質量%の水懸濁液を調製した。得られたスラリーをビーズミル(NVM-2、アイメックス(株)製)を用いて機械的解繊処理(ジルコニアビーズ直径1mm、ビーズ充填量70%、回転数2,000rpm、処理回数2回)を行い、NBKP-0ナノフィブリルのスラリーを得た。これを遠心分離機((株)コクサン製)を用いて濃縮し、濃度20質量%のNBKP-0ナノフィブリルスラリーを調製した。 Water was added to NBKP-0 (solid content: 150 g) after the refiner to prepare an aqueous suspension having a pulp slurry concentration of 0.75% by mass. The slurry obtained was mechanically defibrated using a bead mill (NVM-2, manufactured by IMEX Co., Ltd.) (zirconia bead diameter 1 mm, bead filling 70%, rotation speed 2,000 rpm, number of treatments twice) A slurry of NBKP-0 nanofibrils was obtained. This was concentrated using a centrifuge (manufactured by Kokusan Co., Ltd.) to prepare NBKP-0 nanofibril slurry having a concentration of 20% by mass.
 攪拌羽根を備えた四つ口1Lフラスコに、NBKP-0ナノフィブリルスラリー(固形分5g)を投入した。N-メチル-2-ピロリドン(NMP)500mL及びトルエン250mLを加え、攪拌し、NBKP-0ナノフィブリルをNMP/トルエン中に分散させた。 NBKP-0 nanofibril slurry (solid content 5 g) was charged into a four-necked 1 L flask equipped with a stirring blade. N-methyl-2-pyrrolidone (NMP) 500 mL and toluene 250 mL were added and stirred to disperse NBKP-0 nanofibrils in NMP / toluene.
 冷却器を取り付け、窒素雰囲気下、分散液を150℃に加熱し、分散液中に含まれる水分をトルエンと共に留去した。その後分散液を40℃まで冷却し、ピリジン15mL(NBKP-0の水酸基に対して2当量)、ミリストイルクロリド(変性化剤、エステル化試薬):16.2mL (NBKP-0の水酸基に対して1当量)を添加して窒素雰囲気下120分反応させ、化学修飾NBKP-0ナノフィブリル(ミリストイル化NBKP-0ナノフィブリル)を得た。 A condenser was attached, and the dispersion was heated to 150 ° C. in a nitrogen atmosphere, and water contained in the dispersion was distilled off together with toluene. Thereafter, the dispersion was cooled to 40 ° C., 15 mL of pyridine (2 equivalents relative to the hydroxyl group of NBKP-0), myristoyl chloride (denaturing agent, esterification reagent): 16.2 mL (1 equivalent relative to the hydroxyl group of NBKP-0) ) Was added and reacted for 120 minutes in a nitrogen atmosphere to obtain chemically modified NBKP-0 nanofibrils (myristoylated NBKP-0 nanofibrils).
 生成物のエステル基の置換度(DS)を赤外線吸収スペクトルにより逐次測定し反応を追跡し、DSが0.4程度に達した時点、この場合は、90分後に反応懸濁液を200mLのエタノールで希釈し、7,000rpmで20分間遠心分離を行い、上澄み液を除去し、沈殿物を取り出した。上記の操作(エタノールの添加、分散、遠心分離、及び上澄み液の除去)のエタノールをアセトンに変えて繰り返した。更にアセトンをNMPに変えて二回繰り返し、エステル化NBKP-0ナノフィブリルスラリーを得た。 The degree of substitution (DS) of the ester group of the product is sequentially measured by infrared absorption spectrum and the reaction is traced. When the DS reaches about 0.4, in this case, the reaction suspension is diluted with 200 mL of ethanol after 90 minutes. The mixture was centrifuged at 7,000 rpm for 20 minutes, the supernatant was removed, and the precipitate was taken out. The above operation (addition of ethanol, dispersion, centrifugation, and removal of the supernatant) was repeated by changing ethanol to acetone. Further, acetone was changed to NMP and repeated twice to obtain an esterified NBKP-0 nanofibril slurry.
 上記と、同様の操作で各種の修飾基で修飾されたNBKP-0ナノフィブリル(アシル化NBKP-0ナノフィブリル)を調製した。 NBKP-0 nanofibrils modified with various modifying groups (acylated NBKP-0 nanofibrils) were prepared in the same manner as described above.
 反応条件及び、得られたアシル化NBKP-0ナノフィブリルを表39に示す。 Reaction conditions and the obtained acylated NBKP-0 nanofibrils are shown in Table 39.
 ミリストイル化NBKP-0(DS=0.42)の結晶化度は68%であった。その他のアシル化NBKP-0の結晶化度は測定していないが、前記アシル化NUKPで述べたと同様の理由で、これらの結晶化度は、70%前後の値であると考えられる。 The crystallinity of myristoylated NBKP-0 (DS = 0.42) was 68%. Although the crystallinity of other acylated NBKP-0 was not measured, for the same reason as described in the above acylated NUKP, these crystallinities are considered to be around 70%.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 (2)アシル化NBKP-0のSP計算
 NBKP-0の構成成分は前記の通り、セルロース80質量%とグルコマンナン12質量%、キシラン6質量%、アラビナン/ガラクタン2質量%である。
(2) SP calculation of acylated NBKP-0 As described above, the constituent components of NBKP-0 are 80% by mass of cellulose, 12% by mass of glucomannan, 6% by mass of xylan, and 2% by mass of arabinan / galactan.
 グルコマンナン糖鎖の繰り返し単位の化学式(-C6H10O5-)は、セルロースのそれと同一であって、この化学式の割合は全体の92%である。そして、その他の含有糖糖鎖についてもセルロースと類似構造の繰り返し単位を有している。 The chemical formula (-C 6 H 10 O 5- ) of the repeating unit of the glucomannan sugar chain is the same as that of cellulose, and the proportion of this chemical formula is 92% of the whole. And other contained sugar sugar chains also have a repeating unit having a structure similar to that of cellulose.
 このことから、NBKP-0のSPはセルロースのSP値(文献値)を使用した。 From this, SP of NBKP-0 used the SP value of cellulose (document value).
 アシル化NBKP-0 のSP値は以下の通り、求めた。 The SP value of acylated NBKP-0 was determined as follows.
 DS=Xのアシル化セルロースのSP(Y)=-(a-b)X/2+a  
  a:セルロースのSP値(文献値15.65cal/cm31/2)
  b:DS=2のアシル化セルロースのSP
     =(Fedors法により求めたセルロースジアシレートの SP値)×(補正係数) 補正係数=(セルロースジアセテートの SP文献値11.13)
       ÷(Fedors法により求めたセルロースジアセテートの SP値12.41)
SP (Y) =-(ab) X / 2 + a of DS = X acylated cellulose
a: SP value of cellulose (reference value 15.65cal / cm 3 ) 1/2 )
b: SP of acylated cellulose with DS = 2
= (SP value of cellulose diacylate determined by the Fedors method) x (correction coefficient) Correction coefficient = (SP literature value of cellulose diacetate 11.13)
÷ (SP value of cellulose diacetate determined by Fedors method 12.41)
 (3)アシル化NBKP-0ナノフィブリル含有樹脂(高密度ポリエチレン)組成物の製造 前記ミリストイル化NBKP-0ナノフィブリルのスラリー(固形分15g含有)をトリミックス((株)井上製作所製)にて減圧下、攪拌し、乾燥した。高密度ポリエチレン(HDPE)樹脂(旭化成(株)製サンテックHD)135gを加え(全固形量が150g)、下記の条件で混練し、造粒して樹脂組成物を得た。 (3) Acylation NBKP-0 nanofibrils containing resin (high density polyethylene) manufacturing the myristoylated NBKP-0 nanofibrils slurry composition (solids 15g containing) a trimix (Co. Inoue Manufacturing) The mixture was stirred and dried under reduced pressure. 135 g of high density polyethylene (HDPE) resin (Suntech HD manufactured by Asahi Kasei Co., Ltd.) was added (total solid amount was 150 g), kneaded under the following conditions, and granulated to obtain a resin composition.
 樹脂組成物中のミリストイルNBKP-0ナノフィブリルの含有率は、10質量%である。 The content of myristoyl NBKP-0 nanofibrils in the resin composition is 10% by mass.
 ・混練装置:テクノベル社製「TWX-15型」
 ・混練条件:温度=140℃
       吐出=600g/H
       スクリュ-回転数=200rpm
・ Kneading equipment: "TWX-15 type" manufactured by Technobel
・ Kneading conditions: Temperature = 140 ° C
Discharge = 600g / H
Screw rotation speed = 200rpm
 樹脂組成物成形体の製造
 上記で得られた樹脂組成物を下記の射出成型条件で、射出成型しダンベル型の樹脂成型体(強度試験用試験片、厚さ1mm)を得た。
Production of Resin Composition Molded Body The resin composition obtained above was injection molded under the following injection molding conditions to obtain a dumbbell-shaped resin molded body (strength test specimen, thickness 1 mm).
 ・射出成型機:日精樹脂社製「NP7型」
 ・成形条件:成型温度=160℃
       金型温度=40℃
       射出率=50cm3/秒
・ Injection molding machine: Nissei Plastic "NP7"
・ Molding conditions: Molding temperature = 160 ℃
Mold temperature = 40 ℃
Ejection rate = 50cm 3 / sec
 強度試験
 得られた試験片について、電気機械式万能試験機(インストロン社製)を用い、試験速度を1.5mm/分として弾性率及び引張強度を測定した(ロードセル5kN)。
Strength Test Using the electromechanical universal testing machine (Instron), the elastic modulus and tensile strength of the test piece obtained were measured at a test speed of 1.5 mm / min (load cell 5 kN).
 その際、支点間距離を4.5cmとした。 At that time, the distance between fulcrums was 4.5 cm.
 前記の他のアシル化NBKP-0ナノフィブリルについても同様に、これを含有する樹脂組成物及び試験片を調製し、その弾性率及び引張強度を測定した。 For the other acylated NBKP-0 nanofibrils, a resin composition and a test piece containing the acylated NBKP-0 nanofibril were similarly prepared, and their elastic modulus and tensile strength were measured.
 測定結果を表40に示す。 Table 40 shows the measurement results.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
アシル化NBKP-0ナノフィブリル含有樹脂(HPDE)の弾性率の増加とアシル化NBKP-0ナノフィブリルのSPに対する樹脂(HDPE)SPの比との関係
 表41に、各種アシル化NBKP-0のSP値、樹脂(HDPE)に対するアシル化NBKP-0のSP値比(表中では、繊維SP/樹脂SPと表示)、弾性率の増加率(HDPEの弾性率に対する各アシル化NBKP-0含有組成物の弾性率の増加率(a)、未修飾NBKP-0含有HDPE組成物の弾性率に対する各アシル化NBKP-0含有組成物の弾性率の増加率(b)を示す。
Table 41 shows the relationship between the increase in elastic modulus of acylated NBKP-0 nanofibril-containing resin (HPDE) and the ratio of resin (HDPE) SP to SP of acylated NBKP-0 nanofibrils. Value, SP value ratio of acylated NBKP-0 to resin (HDPE) (indicated in the table as fiber SP / resin SP), elastic modulus increase rate (each acylated NBKP-0 containing composition relative to HDPE elastic modulus) The elastic modulus increase rate (a) and the elastic modulus increase rate (b) of each acylated NBKP-0-containing composition relative to the elastic modulus of the unmodified NBKP-0-containing HDPE composition are shown.
 表41の通り、繊維SP/樹脂(HDPE)SPの比が1.76~1.84のアシル化NBKP-0を使用すると、これを含むHDPE組成物の弾性率は、HDPE単独の弾性率、未修飾NBKP-0含有HDPE組成物の弾性率に比べ、それぞれ2倍以上、1.15倍以上上昇した。 As shown in Table 41, when an acylated NBKP-0 having a fiber SP / resin (HDPE) SP ratio of 1.76 to 1.84 is used, the elastic modulus of the HDPE composition containing the same is the elastic modulus of HDPE alone, unmodified NBKP- Compared with the elastic modulus of the 0-containing HDPE composition, it increased by 2 times or more and 1.15 times or more, respectively.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045

Claims (19)

  1. (A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物であって、
    前記化学修飾セルロースナノファイバー及び熱可塑性樹脂が下記の条件:
    (a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)(A)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
    を満たす繊維強化樹脂組成物。
    A fiber reinforced resin composition containing (A) chemically modified cellulose nanofibers and (B) a thermoplastic resin,
    The chemically modified cellulose nanofiber and the thermoplastic resin have the following conditions:
    The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88. And (b) (A) a fiber-reinforced resin composition that satisfies the crystallinity of chemically modified cellulose nanofibers of 42.7% or more.
  2. 前記条件(a)の比率R (SPcnf/SPpol)が1.03~1.88の範囲である、請求項1に記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to claim 1, wherein the ratio R (SP cnf / SP pol ) of the condition (a) is in the range of 1.03 to 1.88.
  3. 前記条件(b)の(A)化学修飾セルロースナノファイバーの結晶化度が55.6%以上である、請求項1又は2に記載の繊維強化樹脂組成物。 The fiber reinforced resin composition according to claim 1 or 2, wherein the crystallinity of the (A) chemically modified cellulose nanofiber under the condition (b) is 55.6% or more.
  4. 前記(A)化学修飾セルロースナノファイバーが、セルロースナノファイバーを構成する糖鎖の水酸基がアルカノイル基で修飾されたセルロースナノファイバーである、請求項1~3のいずれかに記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to any one of claims 1 to 3, wherein the (A) chemically modified cellulose nanofiber is a cellulose nanofiber in which a hydroxyl group of a sugar chain constituting the cellulose nanofiber is modified with an alkanoyl group. .
  5. 前記(B)熱可塑性樹脂が、ポリアミド、ポリアセタール、ポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリ乳酸、ポリエチレン、ポリスチレン及びABS樹脂からなる群から選ばれる少なくとも1種の樹脂である、請求項1~4のいずれかに記載の繊維強化樹脂組成物。 The thermoplastic resin (B) is at least one resin selected from the group consisting of polyamide, polyacetal, polypropylene, maleic anhydride-modified polypropylene, polylactic acid, polyethylene, polystyrene, and ABS resin. The fiber reinforced resin composition in any one.
  6. 前記(B)熱可塑性樹脂がポリアミド、ポリアセタール及びポリ乳酸からなる群から選ばれる少なくとも1種の樹脂であり、前記条件(a)の比率Rが1.03~1.32であり、前記(b)の化学修飾セルロースナノファイバーの結晶化度が55.6%以上である、請求項1~4のいずれかに記載の繊維強化樹脂組成物。 The (B) thermoplastic resin is at least one resin selected from the group consisting of polyamide, polyacetal, and polylactic acid, the ratio R of the condition (a) is 1.03-1.32, and the chemical modification of (b) The fiber-reinforced resin composition according to any one of claims 1 to 4, wherein the crystallinity of the cellulose nanofiber is 55.6% or more.
  7. 前記(B)熱可塑性樹脂がポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリエチレン及びポリスチレンからなる群から選ばれる少なくとも1種の樹脂であり、前記条件(a)の比率Rが1.21~1.88であり、前記(b)の化学修飾セルロースナノファイバーの結晶化度が42.7%以上である、請求項1~4のいずれかに記載の繊維強化樹脂組成物。 The thermoplastic resin (B) is at least one resin selected from the group consisting of polypropylene, maleic anhydride-modified polypropylene, polyethylene and polystyrene, and the ratio R in the condition (a) is 1.21 to 1.88, The fiber-reinforced resin composition according to any one of claims 1 to 4, wherein the crystallinity of the chemically modified cellulose nanofiber of b) is 42.7% or more.
  8. 前記(A)化学修飾セルロースナノファイバーが、セルロースナノファイバーを構成する糖鎖の水酸基がアセチル基で修飾されたセルロースナノファイバーである、請求項1~7のいずれかに記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to any one of claims 1 to 7, wherein the chemically modified cellulose nanofiber (A) is a cellulose nanofiber in which a hydroxyl group of a sugar chain constituting the cellulose nanofiber is modified with an acetyl group. .
  9. 前記化学修飾セルロースナノファイバー及びセルロースナノファイバーのセルロースが、リグノセルロースである、請求項1~8のいずれかに記載の繊維強化樹脂組成物 The fiber-reinforced resin composition according to any one of claims 1 to 8, wherein the chemically modified cellulose nanofiber and cellulose of the cellulose nanofiber are lignocellulose.
  10. (A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、下記の工程:
    (1)下記の条件:
    (a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)(A)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
    を満たす(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を選定する工程、
    (2)前記工程(1)で選定された(A)化学修飾セルロースナノファイバーと(B)熱可塑性樹脂とを配合する工程、及び
    (3)前記工程(2)で配合された(A)化学修飾セルロースナノファイバーと(B)熱可塑性樹脂とを混練し、樹脂組成物を得る工程
    を含むことを特徴とする製造方法。
    (A) A method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin, the following steps:
    (1) The following conditions:
    The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88. And (b) (A) satisfying the crystallinity of the chemically modified cellulose nanofiber of 42.7% or more, (A) selecting the chemically modified cellulose nanofiber and (B) a thermoplastic resin,
    (2) a step of blending (A) the chemically modified cellulose nanofiber selected in the step (1) and (B) a thermoplastic resin, and
    (3) A production method comprising the step of kneading (A) chemically modified cellulose nanofibers blended in the step (2) and (B) a thermoplastic resin to obtain a resin composition.
  11. (A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、下記の工程:
    (1)下記の条件:
    (a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
    を満たす解繊処理後の(A)化学修飾セルロースナノファイバーとなる(A1)化学修飾パルプ及び(B)熱可塑性樹脂を選定する工程、
    (2)前記工程(1)で選定された(A1)化学修飾パルプと(B)熱可塑性樹脂とを配合する工程、及び
    (3)前記工程(2)で配合された(A1)化学修飾パルプと(B)熱可塑性樹脂とを混練し、同時に(A1)化学修飾パルプを解繊し、(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程
    を含むことを特徴とする製造方法。
    (A) A method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin, the following steps:
    (1) The following conditions:
    The ratio R (SP cnf / SP pol ) of the solubility parameter (SP cnf ) of (A) chemically modified cellulose nanofiber to the solubility parameter (SP pol ) of (a) (B) thermoplastic resin is in the range of 0.87 to 1.88. And (b) (A) chemically modified cellulose nanofiber and (B) thermoplastic resin to be (A) chemically modified cellulose nanofiber after defibration that satisfies the crystallinity of the chemically modified cellulose nanofiber of 42.7% or more Process of selecting,
    (2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and
    (3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and at the same time, (A1) chemically modified pulp is defibrated, (A) chemically modified cellulose nanofiber And (B) a method for producing a resin composition containing a thermoplastic resin.
  12. (A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、下記の工程:
    (1)(A1)化学修飾パルプ及び(B)熱可塑性樹脂を選定する工程、
    (2)前記工程(1)で選定された(A1)化学修飾パルプと(B)熱可塑性樹脂とを配合する工程、及び
    (3)前記工程(2)で配合された(A1)化学修飾パルプと(B)熱可塑性樹脂とを混練し、同時に(A1)化学修飾パルプを解繊し、(A)化学修飾セルロースナノファイバー及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程
    を含み、
    前記(A)化学修飾セルロースナノファイバーと(B)熱可塑性樹脂とが、下記の条件:(a)(B)熱可塑性樹脂の溶解パラメータ(SPpol)に対する(A)化学修飾セルロースナノファイバーの溶解パラメータ(SPcnf)の比率R (SPcnf/SPpol)が0.87~1.88の範囲である、及び(b)化学修飾セルロースナノファイバーの結晶化度が42.7%以上である
    を満たすことを特徴とする製造方法。
    (A) A method for producing a fiber-reinforced resin composition containing chemically modified cellulose nanofibers and (B) a thermoplastic resin, the following steps:
    (1) (A1) a process of selecting chemically modified pulp and (B) thermoplastic resin,
    (2) a step of blending (A1) chemically modified pulp selected in step (1) and (B) a thermoplastic resin; and
    (3) (A1) chemically modified pulp and (B) thermoplastic resin blended in the above step (2) are kneaded, and at the same time, (A1) chemically modified pulp is defibrated, (A) chemically modified cellulose nanofiber And (B) obtaining a resin composition containing a thermoplastic resin,
    The (A) chemically modified cellulose nanofiber and the (B) thermoplastic resin are dissolved under the following conditions: (a) (B) the dissolution parameter (SP pol ) of the thermoplastic resin (A) The ratio R (SP cnf / SP pol ) of the parameter (SP cnf ) is in the range of 0.87 to 1.88, and (b) the crystallinity of the chemically modified cellulose nanofiber is 42.7% or more. Production method.
  13. 前記(a)の比率R (SPcnf/SPpol)が1.03~1.82の範囲である、請求項10~12のいずれかに記載の製造方法。 The production method according to any one of claims 10 to 12, wherein the ratio R (SP cnf / SP pol ) of (a) is in the range of 1.03 to 1.82.
  14. 結晶化度が42.7%以上であり、糖鎖の水酸基がアセチル基で置換されており、その置換度が0.29~2.52であり、溶解度パラメータ(SPcnf)が9.9~15である、(A2)アセチル化セルロースナノファイバー。 (A2) Acetyl having a crystallinity of 42.7% or more, a hydroxyl group of a sugar chain substituted with an acetyl group, a substitution degree of 0.29 to 2.52, and a solubility parameter (SP cnf ) of 9.9 to 15 Cellulose nanofiber.
  15. 請求項14に記載の(A2)アセチル化セルロースナノファイバー及び、(B)熱可塑性樹脂を含む繊維強化樹脂組成物。 A fiber-reinforced resin composition comprising (A2) acetylated cellulose nanofibers according to claim 14 and (B) a thermoplastic resin.
  16. 前記(B)熱可塑性樹脂100質量部に対する前記(A2)アセチル化セルロースナノファイバーの含有量が0.1~30質量部である、請求項15に記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to claim 15, wherein the content of the (A2) acetylated cellulose nanofiber with respect to 100 parts by mass of the (B) thermoplastic resin is 0.1 to 30 parts by mass.
  17. 前記(B)熱可塑性樹脂が、ポリアミド樹脂、ポリアセタール樹脂、ポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリ乳酸、ポリエチレン、ポリスチレン、ABS樹脂からなる群から選ばれる少なくとも1種の樹脂である、請求項15又は16に記載の繊維強化樹脂組成物。 The thermoplastic resin (B) is at least one resin selected from the group consisting of polyamide resin, polyacetal resin, polypropylene, maleic anhydride-modified polypropylene, polylactic acid, polyethylene, polystyrene, and ABS resin. 16. The fiber reinforced resin composition according to 16.
  18. 前記アセチル化セルロースナノファイバーが、アセチル化リグノセルロースナノファイバーである、請求項15又は16に記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to claim 15 or 16, wherein the acetylated cellulose nanofiber is an acetylated lignocellulose nanofiber.
  19. (A2)アセチル化セルロースナノファイバー及び(B)熱可塑性樹脂を含む繊維強化樹脂組成物の製造方法であって、下記の工程:
    (1) (A3)アセチル化セルロースを含む(A4)繊維集合体と(B)熱可塑性樹脂とを混練し、同時に(A3)アセチル化セルロースを解繊し、(A2)アセチル化セルロースナノファイバー及び(B)熱可塑性樹脂を含有する樹脂組成物を得る工程を含み、
    前記(A2)アセチル化セルロースナノファイバーの結晶化度が42.7%以上であり、糖鎖の水酸基がアセチル基で置換されており、その置換度が0.29~2.52であり、溶解度パラメータ(SPcnf)が9.9~15である、ことを特徴とする製造方法。
    A method for producing a fiber-reinforced resin composition comprising (A2) acetylated cellulose nanofibers and (B) a thermoplastic resin, the following steps:
    (1) (A3) Kneaded (A4) fiber assembly containing acetylated cellulose and (B) thermoplastic resin, and (A3) acetylated cellulose at the same time, (A2) acetylated cellulose nanofibers and (B) including a step of obtaining a resin composition containing a thermoplastic resin,
    The crystallinity of the (A2) acetylated cellulose nanofiber is 42.7% or more, the hydroxyl group of the sugar chain is substituted with an acetyl group, the degree of substitution is 0.29 to 2.52, and the solubility parameter (SP cnf ) is A production method characterized by 9.9-15.
PCT/JP2016/058481 2015-03-19 2016-03-17 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin WO2016148233A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16765062.1A EP3272812B2 (en) 2015-03-19 2016-03-17 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
US15/556,220 US10676615B2 (en) 2015-03-19 2016-03-17 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
KR1020177028689A KR102405761B1 (en) 2015-03-19 2016-03-17 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and a thermoplastic resin
CN201680016164.0A CN107429071B (en) 2015-03-19 2016-03-17 Fiber-reinforced resin composition containing chemically modified cellulose nanofibers and thermoplastic resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015056278 2015-03-19
JP2015-056278 2015-03-19
JP2015240084A JP6091589B2 (en) 2015-03-19 2015-12-09 Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
JP2015-240084 2015-12-09

Publications (1)

Publication Number Publication Date
WO2016148233A1 true WO2016148233A1 (en) 2016-09-22

Family

ID=56919020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058481 WO2016148233A1 (en) 2015-03-19 2016-03-17 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin

Country Status (1)

Country Link
WO (1) WO2016148233A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159778A1 (en) * 2016-03-18 2017-09-21 国立大学法人京都大学 Master batch containing acylation-modified microfibrillated plant fibers
WO2018012643A1 (en) * 2016-07-15 2018-01-18 スターライト工業株式会社 Resin composition and method for producing same
JP2018086038A (en) * 2016-11-28 2018-06-07 日立アプライアンス株式会社 Vacuum cleaner
JP2018115292A (en) * 2017-01-20 2018-07-26 国立大学法人京都大学 Acetylated pulp composition containing ethylene glycol derivative, resin composition containing microfibrillated acetylated pulp, and method for producing the same
CN109758970A (en) * 2018-12-12 2019-05-17 衢州学院 A kind of nano-cellulose base fluoro containing polymers surfactant and preparation method thereof
WO2019230970A1 (en) 2018-06-01 2019-12-05 旭化成株式会社 Highly heat-resistant resin composite including chemically modified, fine cellulose fibers
WO2020095845A1 (en) * 2018-11-05 2020-05-14 国立大学法人京都大学 Fiber-reinforced resin composition and production method therefor, and molded article
JP2020152925A (en) * 2020-06-26 2020-09-24 旭化成株式会社 Cellulose-containing resin composition
WO2020202713A1 (en) * 2019-04-05 2020-10-08 テクノUmg株式会社 Thermoplastic resin composition
JP2020196783A (en) * 2019-05-31 2020-12-10 旭化成株式会社 Chemically modified cellulose fine fiber, and high heat resistant resin composite containing chemically modified cellulose fine fiber
WO2022215756A1 (en) 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same
WO2023008497A1 (en) 2021-07-28 2023-02-02 旭化成株式会社 Fine cellulose fibers and production method therefor, nonwoven fabric, and fiber-reinforced resin and production method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108461A1 (en) * 2010-03-05 2011-09-09 オリンパス株式会社 Cellulose nanofibers, method for producing same, composite resin composition and molded body
WO2013031391A1 (en) * 2011-08-26 2013-03-07 オリンパス株式会社 Cellulose nanofibers and method for producing same, composite resin composition, molded body
WO2013031444A1 (en) * 2011-08-26 2013-03-07 オリンパス株式会社 Cellulose nanofibers and method for producing same, composite resin composition, molded body
WO2013133436A1 (en) * 2012-03-09 2013-09-12 国立大学法人京都大学 Modified nano-cellulose and method for producing same, and resin composition containing modified nano-cellulose
WO2014054779A1 (en) * 2012-10-05 2014-04-10 オリンパス株式会社 Cellulose nanofiber and method for producing same, composite resin composition, and molded article
WO2014119745A1 (en) * 2013-02-01 2014-08-07 Dic株式会社 Modified nanocellulose, and resin composition containing modified nanocellulose

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108461A1 (en) * 2010-03-05 2011-09-09 オリンパス株式会社 Cellulose nanofibers, method for producing same, composite resin composition and molded body
WO2013031391A1 (en) * 2011-08-26 2013-03-07 オリンパス株式会社 Cellulose nanofibers and method for producing same, composite resin composition, molded body
WO2013031444A1 (en) * 2011-08-26 2013-03-07 オリンパス株式会社 Cellulose nanofibers and method for producing same, composite resin composition, molded body
WO2013133436A1 (en) * 2012-03-09 2013-09-12 国立大学法人京都大学 Modified nano-cellulose and method for producing same, and resin composition containing modified nano-cellulose
WO2014054779A1 (en) * 2012-10-05 2014-04-10 オリンパス株式会社 Cellulose nanofiber and method for producing same, composite resin composition, and molded article
WO2014119745A1 (en) * 2013-02-01 2014-08-07 Dic株式会社 Modified nanocellulose, and resin composition containing modified nanocellulose

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"New Energy and Industrial Technology Development Organization", GREEN SUSTAINABLE CHEMICAL PROCESS KIBAN GIJUTSU KAIHATSU, HEISEI 22 NENDO TO HEISEI 24 NENDO SEIKA HOKOKU, 2013, pages 1 - 84, XP009506726 *
AKIHIRO SATO ET AL.: "Hensei CNF Kyoka Jushi Zairyo no Kaihatsu", DAI 170 KAI SEIZONKEN SYMPOSIUM. DAI 6 KAI BIO ZAIRYO PROJECT, 2011, pages 1 - 4, XP009506723 *
FUMIAKI NAKATSUBO: "Cellulose Nanofiber no Kagaku Hensei Senryaku", DAI 220 KAI SEIZONKEN SYMPOSIUM. DAI 9 KAI BIO ZAIRYO PROJECT, 2013, pages 1 - 7, XP009506728 *
YUKA KITANO ET AL.: "Kagaku Hensei Cellulose Nanofiber (CNF) ni yoru Polypropylene (PP) Jushi no Hokyo", ABSTRACTS OF THE ANNUAL MEETING OF THE JAPAN WOOD RESEARCH SOCIETY, vol. 64, 2014, pages Z14 - 01-1045, XP009506724 *
YUTA WATANABE ET AL.: "Jumoku Saiboheki Nano Kozo o Riyo shita Netsu Kasosei Nano Composite no Sosei", ABSTRACTS OF THE ANNUAL MEETING OF THE JAPAN WOOD RESEARCH SOCIETY, vol. 64, 2014, pages Z14 - 01-1100, XP009506704 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858485B2 (en) 2016-03-18 2020-12-08 Kyoto University Master batch containing acylation-modified microfibrillated plant fibers
WO2017159778A1 (en) * 2016-03-18 2017-09-21 国立大学法人京都大学 Master batch containing acylation-modified microfibrillated plant fibers
WO2018012643A1 (en) * 2016-07-15 2018-01-18 スターライト工業株式会社 Resin composition and method for producing same
JPWO2018012643A1 (en) * 2016-07-15 2019-04-25 スターライト工業株式会社 Resin composition and method for producing the same
JP7120011B2 (en) 2016-07-15 2022-08-17 スターライト工業株式会社 Resin composition and its manufacturing method
JP2018086038A (en) * 2016-11-28 2018-06-07 日立アプライアンス株式会社 Vacuum cleaner
JP2018115292A (en) * 2017-01-20 2018-07-26 国立大学法人京都大学 Acetylated pulp composition containing ethylene glycol derivative, resin composition containing microfibrillated acetylated pulp, and method for producing the same
WO2019230970A1 (en) 2018-06-01 2019-12-05 旭化成株式会社 Highly heat-resistant resin composite including chemically modified, fine cellulose fibers
WO2020095845A1 (en) * 2018-11-05 2020-05-14 国立大学法人京都大学 Fiber-reinforced resin composition and production method therefor, and molded article
JP2020075950A (en) * 2018-11-05 2020-05-21 国立大学法人京都大学 Fiber-reinforced resin composition, production method thereof and molded body
JP7333510B2 (en) 2018-11-05 2023-08-25 国立大学法人京都大学 Fiber-reinforced resin composition, method for producing the same, and molded article
CN109758970A (en) * 2018-12-12 2019-05-17 衢州学院 A kind of nano-cellulose base fluoro containing polymers surfactant and preparation method thereof
WO2020202713A1 (en) * 2019-04-05 2020-10-08 テクノUmg株式会社 Thermoplastic resin composition
JP2020169308A (en) * 2019-04-05 2020-10-15 テクノUmg株式会社 Thermoplastic resin composition
JP7296238B2 (en) 2019-04-05 2023-06-22 テクノUmg株式会社 Thermoplastic resin composition
JP2020196783A (en) * 2019-05-31 2020-12-10 旭化成株式会社 Chemically modified cellulose fine fiber, and high heat resistant resin composite containing chemically modified cellulose fine fiber
JP7203791B2 (en) 2020-06-26 2023-01-13 旭化成株式会社 Cellulose-containing resin composition
JP2020152925A (en) * 2020-06-26 2020-09-24 旭化成株式会社 Cellulose-containing resin composition
WO2022215756A1 (en) 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same
WO2023008497A1 (en) 2021-07-28 2023-02-02 旭化成株式会社 Fine cellulose fibers and production method therefor, nonwoven fabric, and fiber-reinforced resin and production method therefor

Similar Documents

Publication Publication Date Title
JP6091589B2 (en) Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
WO2016148233A1 (en) Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
JP6640623B2 (en) Masterbatch containing acylated modified microfibrillated plant fibers
JP7185215B2 (en) Fiber-reinforced resin composition, fiber-reinforced molded article, and method for producing the same
JP5496435B2 (en) Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
Robles et al. Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites
JP5757765B2 (en) Resin composition containing modified microfibrillated plant fiber
Tingaut et al. Synthesis and characterization of bionanocomposites with tunable properties from poly (lactic acid) and acetylated microfibrillated cellulose
Igarashi et al. Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites
JP6012206B2 (en) Modified cellulose nanofiber and resin composition containing modified cellulose nanofiber
JP6656960B2 (en) Lignocellulose derivatives in which the phenylpropane unit constituting lignin is chemically modified at the α-position, fibers containing the same, fibers aggregates, compositions containing them, and molded articles
WO2019163873A1 (en) Fibrillation aid for hydrophobized cellulose-based fibers, manufacturing method for resin composition using same, and molded article
CN114585666A (en) Method for producing cellulose composite, method for producing cellulose composite/resin composition, cellulose composite, and cellulose composite/resin composition
WO2021172407A1 (en) Fiber-reinforced resin composition having an improved fibrillation property and method for producing the same, and molded body and fibrillation agent
JP6792265B2 (en) Acetylated pulp composition containing an ethylene glycol derivative, a resin composition containing a microfibrillated acetylated pulp, and a method for producing them.
WO2020095845A1 (en) Fiber-reinforced resin composition and production method therefor, and molded article
Yu et al. Effect of extracted nano-cellulose from paper egg trays on mechanical properties of vinyl ester/kenaf fibers composites
Venkatesh Melt-processing and properties of thermoplastic composites based on ethylene-acrylic acid copolymer reinforced with wood nanocellulose
Palange downloaded from Explore Bristol Research, http://research-information. bristol. ac. uk
JP2019119756A (en) Transparent molten mixed composition and manufacturing method therefor, and molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177028689

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016765062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556220

Country of ref document: US