WO2020095845A1 - Fiber-reinforced resin composition and production method therefor, and molded article - Google Patents

Fiber-reinforced resin composition and production method therefor, and molded article Download PDF

Info

Publication number
WO2020095845A1
WO2020095845A1 PCT/JP2019/043079 JP2019043079W WO2020095845A1 WO 2020095845 A1 WO2020095845 A1 WO 2020095845A1 JP 2019043079 W JP2019043079 W JP 2019043079W WO 2020095845 A1 WO2020095845 A1 WO 2020095845A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
group
chemically modified
carbon atoms
cellulosic
Prior art date
Application number
PCT/JP2019/043079
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 浩之
文明 中坪
尾村 春夫
健 仙波
和男 北川
伊達 隆
Original Assignee
国立大学法人京都大学
地方独立行政法人京都市産業技術研究所
日本製紙株式会社
王子ホールディングス株式会社
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 地方独立行政法人京都市産業技術研究所, 日本製紙株式会社, 王子ホールディングス株式会社, 星光Pmc株式会社 filed Critical 国立大学法人京都大学
Publication of WO2020095845A1 publication Critical patent/WO2020095845A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a fiber reinforced resin composition, a method for producing the same, and a molded product.
  • the fiber-reinforced resin composition has a smaller energy load during manufacturing than metal and is lightweight, and thus has been used in a wide range of fields such as automobile members, aircraft members, household equipment members, and construction members (for example, Patent Documents 1 to 7).
  • Patent Document 1 discloses a board obtained by heating and compressing a composite material in which a mat of plant bast fibers such as ramie, kenaf, jute and the like is impregnated with a resin and a base material are heated and compressed.
  • Patent Document 2 discloses a method of repeatedly modifying a mechanical property of a plant fiber by repeatedly applying a tensile load to a twisted yarn of a plant bast fiber such as ramie, and a resin of the plant fiber thus modified. It is disclosed that intermediate materials such as wires, pellets, and thin plates can be prepared through processes such as impregnation, mixing, and hot pressing.
  • Patent Documents 3 to 5 disclose composites composed of a mixture of two different kinds of fibers and a resin (resin adhesive). Specifically, Patent Document 3 discloses a board made of a mixture of plant bast fibers and wood-derived fibers and an adhesive. Patent Document 4 discloses a board in which a mixture of a plant fiber having an average fiber diameter of 70 to 400 ⁇ m (main constituent fiber) and a finer plant fiber having an average fiber diameter of 20 to 70 ⁇ m is bonded with a granular adhesive. Document 5 discloses the manufacturing method thereof.
  • Patent Document 6 contains a nonwoven fabric composed of a cellulose fiber having a nano-order fiber width (number average fiber width of 2 nm or more and less than 1000 nm) and a thicker second fiber (number average fiber width of 1000 nm or more and 100000 nm or less) and a resin.
  • a complex is disclosed.
  • Patent Document 7 discloses a fiber-reinforced resin composition having improved strength characteristics (elastic modulus and strength) by combining chemically modified cellulose nanofibers and a thermoplastic resin, and a method for producing the same.
  • the resin composition containing the cellulosic microfibrillated fiber is excellent as a structural material because it has higher strength and elastic modulus than a resin containing no fiber, but when the amount of the contained fiber is increased, the impact resistance becomes higher. Since it tends to decrease, there is room for improvement.
  • Patent Document 1 the test results of impact resistance of a board produced by heating and compressing a plant bast fiber mat impregnated with a resin such as ramie and a base material are described together with other test results. However, it does not describe or suggest the impact resistance of the plant bast fiber kneaded with the thermoplastic resin.
  • Patent Document 2 discloses a resin composition containing ramie
  • Patent Documents 3 to 6 describe a composite composed of a mixture of two kinds of different fibers and a resin (resin adhesive). However, there is no description about impact resistance of these composites.
  • Patent Document 7 discloses a resin composition reinforced with chemically modified cellulose nanofibers derived from wood, but does not contain a plant fiber as used in the present invention.
  • the present inventors prepared a fiber-reinforced resin composition by using a specific cellulosic microfibrillated fiber and a specific plant fiber in combination, and a molded article made of the composition has excellent strength characteristics (high bending Strength and elastic modulus), and further has excellent characteristics that the impact resistance is improved or the impact resistance is less deteriorated (impact resistance can be maintained) as compared with a resin molded product containing no fiber. Based on the findings, they have completed the present invention.
  • the present invention relates to the following fiber-reinforced resin composition, molded article, and method for producing a fiber-reinforced resin composition.
  • the microfibrillated cellulosic fiber has the following formula (1): (Lg) Cell-OR (1) [In the formula (1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer. -OR represents a hydroxyl group in the cellulose and holocellulose and / or lignocellulosic polysaccharides and lignin in the cellulosic polymer, or a hydrogen atom of a part of the hydroxyl group is substituted with a substituent R. R represents a hydrogen atom, an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ] It is a microfibrillated fiber of a fiber composed of a non-chemically modified or chemically modified cellulosic polymer represented by.
  • a part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
  • R in the formula (1) of the requirement (a) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • a carboxy group-containing acyl group represented by Item 2 or a carboxy group-containing acyl group represented by Item 2.
  • Item 3 The fiber-reinforced resin composition according to Item 1 or 2, wherein R in the formula (1) of the requirement (a) is an acetyl group.
  • (B) vegetable fiber is (B-1) one or more vegetable fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton.
  • the fiber reinforced resin composition according to any one of items 1 to 3 above.
  • Item 6. The fiber-reinforced resin composition according to any one of Items 1 to 3, wherein the (B) vegetable fiber of the requirement (b) is a ramie and / or a ramie modified with an acetyl group.
  • thermoplastic resin (C) is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy).
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • PC-ABS alloy polycarbonate-ABS alloy
  • m-PPE modified polyphenylene ether
  • Item 8 A molded article comprising the fiber-reinforced resin composition according to any one of items 1 to 7 above.
  • a method for producing a fiber-reinforced resin composition containing (A-1) a chemically modified microfibrillated cellulosic fiber, (B) a plant fiber, and (C) a thermoplastic resin, (AP) chemically modified cellulosic pulp, (B) vegetable fiber, and (C) thermoplastic resin is melt-kneaded, and the step of microfibrillating the chemically modified cellulosic pulp during the melt-kneading,
  • the (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber have the following requirements (ap), (b), and (a-1), respectively. ), The manufacturing method.
  • Chemically modified cellulosic pulp has the following formula (1-1): (Lg) Cell-OR (1-1) [In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ] It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
  • a part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • the (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
  • a method for producing a fiber-reinforced resin composition containing (A-1) a chemically modified microfibrillated cellulosic fiber, (B) a plant fiber, and (C) a thermoplastic resin Process (1): (AP) a chemically modified cellulosic pulp and (C) a thermoplastic resin are kneaded to microfibrillize the chemically modified cellulosic pulp during the melt-kneading, and step (2): Including the step of compounding the kneaded product obtained in the step (1), and (B) plant fiber, or a resin composition containing a plant fiber and a thermoplastic resin,
  • the (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber have the following requirements (ap), (b), and (a-1), respectively.
  • Chemically modified cellulosic pulp has the following formula (1-1): (Lg) Cell-OR (1-1) [In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ] It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
  • a part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • the (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
  • the fiber-reinforced resin composition of the present invention contains a specific microfibrillated cellulosic fiber, and a specific plant fiber
  • a molded article comprising this fiber-reinforced resin composition is a molded article of a resin containing no fiber.
  • the strength characteristics are significantly improved, the impact resistance is also improved, or the impact resistance of the resin itself is maintained.
  • the molded article composed of the fiber reinforced resin composition by including both the fibrillated cellulosic fiber and the plant fiber in the resin composition, the molded article composed of the fiber reinforced resin composition, the bending elastic modulus and bending strength is improved, the impact resistance is maintained. Alternatively, the effect of improvement can be obtained.
  • the fiber-reinforced resin composition of the present invention can be molded by an injection molding method, the productivity of molded products is high. Therefore, the molded body can be manufactured at a low manufacturing cost.
  • the fiber-reinforced resin composition of the present invention if a step of melt-kneading a chemically modified cellulosic fiber, a plant fiber, and a resin is adopted, melt kneading and microfibrillation of the chemically modified cellulosic fiber are performed. Since they can be performed simultaneously, the resin composition can be produced with high productivity.
  • the fiber reinforced resin composition of the present invention contains (A) microfibrillated cellulosic fibers, (B) plant fibers, and (C) thermoplastic resin.
  • the (A) microfibrillated cellulosic fiber satisfies the following requirement (a).
  • (A) The microfibrillated cellulosic fiber has the following formula (1): (Lg) Cell-OR (1) [In the formula (1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer.
  • R represents a hydrogen atom, an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ] It is a microfibrillated fiber of a fiber composed of a non-chemically modified or chemically modified cellulosic polymer represented by.
  • the (B) vegetable fiber satisfies the following requirement (b).
  • (B) vegetable fiber (B-1) one or more plant fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
  • a part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
  • Microfibrillated cellulosic fibers means microfibrillated cellulosic fibers.
  • MFC microfibrillated cellulosic fiber
  • Cellulosic fiber means a fiber composed of at least one polymer (cellulosic polymer) selected from the group consisting of cellulose, holocellulose, and lignocellulose (polymer group).
  • the cellulosic polymer may be referred to as “(Lg) Cell-OH”. That is, in the present specification, the cellulosic fiber means a fiber composed of a cellulosic polymer “(Lg) Cell-OH”.
  • (Lg) Cell- means a residue obtained by removing a hydroxyl group from a polysaccharide or lignin that constitutes at least one kind of polymer selected from the above-mentioned polymer group.
  • the cellulosic fiber used in the present invention is a fiber composed of a cellulosic polymer [(Lg) Cell-OH], or a polysaccharide constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer. And a fiber composed of a polymer in which hydrogen atoms of some hydroxyl groups in lignin are substituted with a substituent R (the details of the substituent R will be described later).
  • the cellulosic fiber used in the present invention has the following formula (1): (Lg) Cell-OR (1)
  • (Lg) Cell- is a cellulose in the cellulosic polymer, A residue obtained by removing a hydroxyl group from a polysaccharide or lignin that constitutes holocellulose and / or lignocellulose is shown.
  • OR represents a hydroxyl group in the cellulose and holocellulose and / or lignocellulosic polysaccharide and lignin in the cellulosic polymer, or a part of the hydrogen atoms of the hydroxyl group is substituted with a substituent R.
  • a fiber composed of a non-chemically modified cellulose-based polymer hereinafter, also referred to as “non-chemically modified cellulose-based fiber” or a fiber composed of a chemically-modified cellulose-based polymer (hereinafter, “chemically modified cellulose”). It is also defined as "system fiber”).
  • the microfibrillated cellulosic fiber (MFC) used in the present invention is (i) a fiber (i.e., a non-chemically modified MFC) in which non-chemically modified cellulosic fiber [a fiber composed of a polymer in which OR is a hydroxyl group in the above formula (1)] is microfibrillated, and (ii) Chemically modified cellulosic fiber (OR in the above formula (1) is a polysaccharide constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer and hydrogen atoms of some hydroxyl groups in lignin are substituted by a substituent R. Fibers composed of substituted cellulosic polymers] include microfibrillated fibers (ie chemically modified MFCs).
  • the chemically modified MFC is also a fiber in which the hydrogen atoms of some hydroxyl groups of the polysaccharide and lignin in the cellulose, holocellulose and / or lignocellulose constituting the non-chemically modified MFC are replaced by the substituent R.
  • Chemically modified MFC is a method of chemically modifying cellulosic pulp (hereinafter also referred to as “CP”) to form a chemically modified CP, and fibrillating the obtained chemically modified CP to form microfibrils, or It can be obtained by a method of chemically modifying MFC.
  • CP cellulosic pulp
  • cellulosic pulp means a fiber aggregate composed of a cellulosic polymer.
  • Cellulosic pulp includes lignin-free pulp (cellulose-based pulp, holocellulose-based pulp, etc.) and lignin-containing pulp (ligno pulp).
  • the MFC contained in the fiber reinforced resin composition of the present invention is a non-chemically modified MFC or a chemically modified MFC. From the viewpoint of dispersibility in a resin and defibration, the MFC is preferably a chemically modified MFC.
  • the substituent R in the above formula (1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same as above.
  • the substituent R in the above formula (1) is more preferably an acyl group having 2 to 3 carbon atoms (acetyl group and propionyl group).
  • an acetyl group is most preferable from the viewpoint of ease of production and production cost.
  • the salt of the carboxyl group-containing acyl group represented by the above formula (2) means that the carboxy group is in the state of an inorganic salt or an organic salt.
  • alkali metal salts such as sodium salt, lithium salt and potassium salt; divalent metal salts such as calcium salt, barium salt, zinc salt and copper salt; trivalent metal salts such as aluminum salt are preferable. ..
  • organic salt a primary to quaternary ammonium salt and a salt with a polyamine are preferable.
  • the above chemically modified MFC having various substituents is preferable because it has good dispersibility in the fiber reinforced resin composition.
  • the non-chemically modified MFC and the chemically modified MFC may be combined (combined) and contained in the fiber-reinforced resin composition of the present invention. Further, two kinds of chemically modified MFCs different from each other may be combined (used together) and contained in the fiber-reinforced resin composition of the present invention.
  • these chemically modified MFCs can be well dispersed in the fiber reinforced resin composition.
  • Raw material for chemically modified MFC and non-chemically modified MFC As a raw material for the chemically modified MFC and the non-chemically modified MFC, pulp is preferably used.
  • Pulp is obtained by separating fibers contained in plant materials such as wood, bamboo, hemp, jute, kenaf, cotton, beet, rice straw, bagasse, beet marc, cellulose, hemicellulose, holocellulose and And / or contains lignocellulose.
  • wood for example, pine (Todo pine, red pine, ezo nut, etc.), Douglas fir, hemlock spruce, sitka spruce, conifer such as cedar, cypress, or eucalyptus, acacia, poplar, beech, oak, oak, alder, etc.
  • Hardwood-derived wood is preferably used.
  • Agricultural waste products, waste paper, knitted fabrics, etc. may be used as the plant raw materials other than the above.
  • the used paper is preferably deinked used paper, corrugated used paper, magazines and used copy paper.
  • the pulp raw material is not limited to these. One type of pulp may be used alone, or two or more types selected from these may be used.
  • pulp which is a raw material of non-chemically modified MFC and chemically modified MFC
  • CP cellulosic pulp
  • pulp containing lignocellulose pulp containing no lignin and pulp containing lignin
  • pulp containing lignocellulose pulp containing lignocellulose
  • Ligno pulp (LP) is preferably used for the pulp that is the raw material of non-chemically modified MFC and chemically modified MFC. That is, it is preferable that (Lg) Cell- in the formula (1) of the requirement (a) is a residue obtained by removing a hydroxyl group from the polysaccharide and lignin constituting lignocellulose.
  • Lignocellulose is a complex hydrocarbon polymer (natural polymer mixture) that constitutes the cell wall of trees. It is known that lignocellulose is mainly composed of polysaccharide cellulose, hemicellulose, and lignin which is an aromatic polymer (see Reference Example 1 and Reference Example 2 below).
  • Reference Example 1 Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process HV Lee, SBA Hamid, and SK Zain, Scientific World Journal Volume 2014 ,, Article ID 631013, 20 pages, http://dx.doi.org /10.1155/2014/631013
  • Reference Example 2 New lignocellulose pretreatments using cellulose solvents: A review, Noppadon Sathitsuksanoh, Anthe George and YH Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
  • lignocellulose means a lignocellulose having a chemical structure naturally present in plants, artificially modified lignocellulose, or a mixture thereof. This is a lignocellulose having a naturally occurring chemical structure contained in various pulps obtained by mechanically and / or chemically treating plants, for example, wood, chemically or mechanically modified lignocellulose. Cellulose or a mixture thereof.
  • the fiber made of lignocellulose used in the present invention is not limited to the fiber made of lignocellulose having a naturally occurring chemical structure. Moreover, the lignin content in the lignocellulose is not limited. Therefore, "lignocellulose” means a substance in which lignin and cellulose are present in a plant, and / or a mixture of lignin and cellulose, regardless of the lignin content. Therefore, the terms "lignocellulose” and “ligno pulp” are to be construed as lignocellulose and lignopulp, respectively, even if the content of lignin component is very small.
  • Pulp or lignopulp can be obtained by treating the above-mentioned plant-derived raw material by a mechanical pulping method, a chemical pulping method, or a combination of a mechanical pulping method and a chemical pulping method.
  • various kraft pulps softwood unbleached kraft pulp (NUKP), softwood oxygen bleached kraft pulp (NOKP), and softwood bleached kraft pulp (NBKP)
  • NUKP softwood unbleached kraft pulp
  • NOKP softwood oxygen bleached kraft pulp
  • NKP softwood bleached kraft pulp
  • Mechanical pulp (MP) such as groundwood pulp (GP), refiner GP (RGP), thermomechanical pulp (TMP) and chemithermomechanical pulp (CTMP) is also preferable.
  • Some kraft pulp does not contain lignin, but regardless of its content, it can be used as a raw material for non-chemically modified MFC and chemically modified MFC.
  • lignopulp compared to cellulose fiber or pulp that does not contain lignin, that the number of manufacturing steps is small, that the yield from the raw material (for example, wood) is good, there are few chemical agents required for its production. In addition, since it can be manufactured with less energy, it is advantageous in terms of manufacturing cost. Therefore, lignopulp can be advantageously used in the present invention.
  • Ligno pulp obtained from Todo pine, Japanese red pine, or cedar is a fiber having excellent strength characteristics by containing a non-chemically modified MFC and / or a chemically modified MFC produced by using the same. It is preferable because a reinforced resin composition can be obtained.
  • the amount of lignin contained in lignocellulose and lignopulp can be quantified by the Klarson method.
  • the lignin content of the ligno pulp is more preferably about 0.1 to 35% by mass, and particularly preferably about 0.1 to 30% by mass.
  • Non-chemically modified MFC for example, a suspension or slurry of non-chemically modified CP, refiner, high pressure homogenizer, grinder, single-screw or multi-screw kneader (preferably twin-screw kneader), bead mill It can be prepared by defibrating and microfibrillating the non-chemically modified CP using a known means such as mechanical grinding or beating by the above.
  • the chemically modified MFC can be obtained by chemically modifying a cellulosic pulp (CP) to obtain a chemically modified cellulosic pulp (chemically modified CP) and defibrating it.
  • CP cellulosic pulp
  • chemically modified CP chemically modified cellulosic pulp
  • chemically modified MFC can be obtained by defibrating cellulosic pulp (CP) to obtain microfibrillated cellulosic fiber (MFC) and chemically modifying it.
  • CP defibrating cellulosic pulp
  • MFC microfibrillated cellulosic fiber
  • hydroxyl groups such as cellulose, hemicellulose, and lignin hydroxyl groups present on the fiber surface or the amorphous portion of the raw material CP so as not to destroy the cellulose crystal structure originally present in the raw material CP.
  • hydroxyl groups such as cellulose, hemicellulose, and lignin hydroxyl groups present on the fiber surface or the amorphous portion of the raw material CP so as not to destroy the cellulose crystal structure originally present in the raw material CP.
  • the acylation reaction involves suspending the raw material CP in an anhydrous aprotic polar solvent capable of swelling the raw material CP, such as N-methylpyrrolidone, N, N-dimethylformamide, etc., and having a corresponding acyl group. It can be carried out by a conventional method (method described in JP 2016-176052 A) using a carboxylic acid anhydride or an acid chloride in the presence of a base.
  • the method for measuring the degree of substitution by R in formula (1) can be according to the conventional method (method described in JP 2016-176052 A).
  • the degree of substitution can be adjusted by adjusting the amount of the acylating agent in the above-mentioned acylation, the reaction temperature, the reaction time and the like.
  • the carboxy group-containing acylated cellulose pulp represented by (carboxyacylated CP) is a conventional method (method described in Patent No. 5496435 etc.), in which the raw material CP has the following formula (3):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. However, when either one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • succinic anhydride Or its derivative (hereinafter referred to as succinic anhydride). , These are sometimes referred to as “acid anhydrides of the formula (3)”, and some of the hydroxyl groups present in the CP of the raw material are acylated (represented by the formula (2), carboxy It can be produced by half-esterification with a group-containing acyl group.
  • the chemical modification (half-esterification) of the raw material CP with the acid anhydride of the formula (3) is carried out by mixing the raw material CP dispersed in an aprotic polar organic solvent and the acid anhydride of the formula (3) in the presence of a base. It can be carried out by heating and reacting to partially esterify the hydroxyl groups present in the raw material CP.
  • the half ester means that one of the two carbonyl groups present in the acid anhydride of formula (3) forms an ester bond with the hydroxyl group in the raw material CP, and the other carbonyl group is a hydroxycarbonyl group. It means the ester in the finished state.
  • the carboxyl group present in the carboxyacylated CP represented by the above formula (2) may be in the state of an inorganic salt or an organic salt.
  • a salt of carboxyacylated CP is obtained by dispersing the carboxyacylated CP in a liquid such as water or a hydroalcohol, and a hydroxide of an alkali metal such as sodium, lithium or potassium, a hydrogen carbonate, Carbonate; divalent metal salt such as calcium salt, barium salt, zinc salt, copper salt; trivalent metal salt such as aluminum salt; primary to quaternary ammonium salt, and aqueous solution or dispersion of salt with polyamine Can be prepared by adding.
  • alkenylsuccinic anhydride belonging to the acid anhydride of the above formula (3) examples include compounds having a skeleton derived from an olefin having 4 to 20 carbon atoms and a maleic anhydride skeleton.
  • Alkenyl succinic anhydrides such as cenylsuccinic anhydride and octadecenyl succinic anhydride can be preferably used.
  • each compound may be used alone, or two or more kinds may be used in combination.
  • an alkenyl succinic anhydride having an olefin chain having a specific carbon number may be represented by a combination of the abbreviation (ASA) of the alkenyl succinic anhydride and the carbon number of the olefin chain.
  • ASA abbreviation
  • an alkenyl succinic anhydride (hexadecenyl succinic anhydride) having an olefin chain with 16 carbon atoms may be referred to as “ASA-C16”.
  • the ASA used in the present invention may be described by a product name or a product code number.
  • AS1533 manufactured by Seikou PMC Co., Ltd.
  • TNS135 manufactured by Seikou PMC Co., Ltd.
  • RIKACID DDSA tetrapropenyl succinic anhydride, manufactured by Shin Nihon Rikagaku Co., Ltd.
  • alkyl succinic anhydride examples include those obtained by reducing the unsaturated bond of the alkenyl group of the alkenyl succinic anhydride represented by the above formula (3) by hydrogenation (that is, succinic acid in which the alkenyl group is converted to an alkyl group). Acid anhydrides) can be used.
  • alkyl succinic anhydrides such as octyl succinic anhydride, dodecyl succinic anhydride, hexadecyl succinic anhydride and octadecyl succinic anhydride can be preferably used.
  • each compound may be used alone, or two or more kinds may be used in combination. Further, the alkyl succinic anhydride and the alkenyl succinic anhydride can be used together.
  • the reaction between the raw material CP and the acid anhydride of formula (3) is preferably carried out in an anhydrous aprotic polar solvent (organic solvent) in the presence of a base in order to accelerate the reaction.
  • a base amines such as pyridine and dimethylaniline, alkali metal salts of acetic acid such as potassium acetate and sodium acetate, and carbonate salts of alkali metals such as lithium carbonate, potassium carbonate and sodium carbonate can be preferably used.
  • the reaction temperature depends on the boiling point of the solvent used, but is preferably about 20 to 150 ° C, more preferably about 30 to 120 ° C, even more preferably about 40 to 100 ° C.
  • the reaction time is adjusted appropriately according to the type of acid anhydride of formula (3).
  • the degree of half-esterification was determined by collecting a part of the lignocellulosic fiber during the reaction, measuring its infrared (IR) absorption spectrum, and tracing the IR absorption peak based on the carbonyl stretching vibration of the half-ester produced by the reaction. Adjustment can be performed while checking (substitution degree).
  • MFC microfibrillated cellulose
  • CP cellulosic pulp
  • degree of Modification of Chemically Modified CP or Chemically Modified MFC with Substituent R refers to the above formula (1 ) The degree to which the hydrogen atom of the hydroxyl group present in one unit (repeating unit) of the residue [(Lg) Cell-] of the chemically modified cellulosic polymer is substituted with the substituent R.
  • the chemically modified cellulosic polymer is composed entirely of cellulose (in the case of cellulose), this repeating unit is a glucopyranose residue, and the number of hydroxyl groups per unit is 3, so the upper limit of the degree of substitution is Is 3.
  • the cellulosic polymer is lignocellulose
  • the lignocellulose contains hemicellulose and lignin together with cellulose.
  • the xylose residue in xylan contained in hemicellulose or the galactose residue in arabinogalactan has 2 hydroxyl groups, and the standard lignin residue also has 2 hydroxyl groups. Therefore, the number of these hydroxyl groups is smaller than 3.
  • the upper limit of the degree of substitution with the substituent R in lignopulp is less than 3.
  • the upper limit of this substitution degree is about 2.7 to 2.8 depending on the contents of hemicellulose and lignin contained in the lignopulp.
  • the cellulosic polymer is holocellulose
  • helocellulose contains hemicellulose together with cellulose, so the average number of hydroxyl groups in this repeating unit is less than 3. Therefore, the upper limit of the degree of substitution is smaller than 3.
  • the degree (DS) is preferably about 0.3 to 2.55. By setting the substitution degree (DS) to about 0.3 to 2.55, it is possible to obtain a chemically modified MFC having an appropriate crystallinity and SP (solubility parameter).
  • the degree of substitution is more preferably 0.4 to 2.55, further preferably 0.5 to 2.5.
  • DS is preferably 0.4 to 2.5, more preferably 0.5 to 2.5, still more preferably 0.56 to 2.5. If the DS is within that range, the crystallinity can be maintained at about 42.7% or more.
  • the degree of substitution is higher than that of a highly hydrophilic raw material CP fiber that is more hydrophobic than that. From the necessity of being uniformly dispersed in the thermoplastic resin, it is preferably about 0.05 to 2.0, more preferably about 0.1 to 2.0, still more preferably about 0.1 to 0.8.
  • the degree of substitution (DS) can be analyzed by various analysis methods such as elemental analysis, neutralization titration method, FT-IR, and two-dimensional NMR ( 1 H and 13 C-NMR).
  • the chemically modified CP is made into a suspension or slurry, and refiner, high pressure homogenizer, grinder, uniaxial or multi-axis It can be carried out by using a known means such as mechanical milling or beating with a shaft kneader (preferably a multi-axis kneader) or a bead mill.
  • the chemically modified CP is a uniaxial or multiaxial kneading machine (preferably a multiaxial kneading machine) together with a thermoplastic resin, which is melted and kneaded under heating.
  • the chemically modified CP can be fibrillated by the shearing force during kneading to form microfibrils, and can be chemically modified MFC in the thermoplastic resin. Therefore, according to the method of melt-kneading the chemically modified CP together with the thermoplastic resin, the thermoplastic resin composition containing the chemically modified MFC can be advantageously produced by a simple operation.
  • the raw material cellulosic pulp (raw material CP) is made into a suspension or slurry, and refiner, high pressure homogenizer, grinder, uniaxial or multiaxial kneader (preferably a twin
  • a non-chemically modified MFC can be produced by defibration and fibrillation using a known means such as mechanical milling or beating with a shaft kneader) or a bead mill.
  • this can be chemically modified by a method similar to the method for producing the chemically modified CP to produce a chemically modified MFC.
  • Non chemically modified MFC and chemical modification MFC fiber diameter non-chemically modified MFC which has loosened the fibers in the aforementioned cellulosic pulp (e.g. Rigunoparupu) to nanosize level (the defibrated), chemically modified MFC is
  • the fibers in the above-mentioned chemically modified cellulosic pulp for example, chemically modified ligno pulp
  • the average fiber diameter (fiber width) of the non-chemically modified MFC and the chemically modified MFC contained in the fiber reinforced resin composition is usually about 4 to 1000 nm, preferably about 4 to 800 nm, more preferably about 4 to 200 nm.
  • the average fiber length is preferably about 5 ⁇ m or more.
  • the chemically modified CP When a fiber-reinforced resin composition is produced using the chemically modified CP, the chemically modified CP can be melt-kneaded with a thermoplastic resin, and the chemically modified CP can be defibrated into the chemically modified MFC simultaneously with the kneading. ..
  • the defibration of the chemically modified CP is insufficient, and even if the fiber composition after defibration contains a chemically modified MFC larger than the fiber diameter in the resin composition, the object of the present invention is achieved. As long as it is included in the present invention, a resin composition containing such a chemically modified MFC.
  • the chemically modified MFC-containing resin composition shows a flexural modulus of 1.1 times or more with respect to the flexural modulus of a resin containing no cellulosic fibers
  • this is the chemically modified MFC-containing resin of the present invention. It is a composition.
  • the preferable ranges of the average fiber diameter and the average fiber length of the non-chemically modified MFC are the same as those of the above chemically modified MFC.
  • Fiber diameter and fiber length of non-chemically modified MFC and chemically modified MFC can be measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average value of the fiber diameter (average fiber diameter) and the average value of the fiber length (average fiber length) are obtained as an average value when measured for at least 30 MFCs or chemically modified MFCs in the field of view of a scanning electron microscope. be able to.
  • the specific surface area of the non-chemically modified MFC and chemical modification MFC specific surface area non-chemically modified MFC and chemical modification MFC is preferably about 70 ⁇ 300m 2 / g, more preferably about 70 ⁇ 250m 2 / g, 100 ⁇ 200m 2 / About g is more preferable.
  • the contact area can be increased when the composition is combined with a resin (matrix), thereby improving the strength of the resin molded body. be able to.
  • the chemically modified MFC is preferable because it can be easily dispersed in the resin of the resin composition and can improve the strength of the resin molded body.
  • the non-chemically modified MFC and the chemically modified MFC are preferably in a state where the crystal structure of cellulose existing in the raw material pulp is maintained as much as possible.
  • the hydroxyl groups existing on the surface of the raw material fiber such as the hydroxyl group of cellulose and the hydroxyl group of hemicellulose, are chemically modified so that the cellulose crystal structure originally present in the raw material pulp is not broken.
  • the fiber-reinforced resin composition of the present invention preferably has a crystallinity of the non-chemically modified MFC and the chemically modified MFC contained in the composition of about 42.7% or more, and the crystal form thereof has a cellulose type I crystal.
  • the “crystallinity” is an abundance ratio of crystals (mainly cellulose type I crystals) in all cellulose.
  • the crystallinity of the non-chemically modified MFC and the chemically modified MFC (preferably cellulose I type crystals) is preferably about 50% or more, more preferably about 55% or more, further preferably about 55.6% or more, about 60% or more. Is even more preferable, and about 69.5% or more is particularly preferable.
  • the upper limit of crystallinity of non-chemically modified MFC and chemically modified MFC is about 80%.
  • the cellulose type I crystal structure is, for example, as described in “Dictionary of Cellulose”, first edition, new edition, 81-86 pages, or 93-99 pages, published by Asakura Shoten. Most natural celluloses have a cellulose type I crystal structure.
  • a cellulose fiber having, for example, a cellulose II, III, or IV structure rather than a cellulose I crystal structure is derived from cellulose having a cellulose I crystal structure.
  • the I-type crystal structure has a higher crystal elastic modulus than other structures.
  • the ratio of crystalline regions in cellulose is about 50-60% for wood pulp and about 70% for bacterial cellulose, which is higher than this.
  • Cellulose not only has a high elastic modulus due to its extended chain crystal, but also exhibits a strength five times that of steel and a linear thermal expansion coefficient of 1/50 or less that of glass.
  • Plant fiber The plant fiber (B) contained in the fiber-reinforced resin composition of the present invention satisfies the requirement (b) described above.
  • a part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same as above.
  • Lamy is also known as “ramie”
  • hemp is also known as “cannabis”
  • linen is also known as “flax”
  • jute is also known as “burlap”
  • Abaca is also known as “manila hemp”
  • sisal is also known as “sisal”.
  • Kenaf is also referred to as "Hemp”.
  • ramie, hemp, linen, jude, and kenaf are bast fibers
  • abaca and sisal are vein fibers
  • cotton is seed hair fibers.
  • the average fiber diameter of vegetable fibers is preferably about 10-70 ⁇ m.
  • the average fiber length of vegetable fibers is preferably about 2 to 200 mm.
  • the non-chemically modified plant fiber is preferably one or more plant fibers selected from the group consisting of ramie, linen, abaca, and kenaf.
  • one or two kinds of vegetable fibers selected from the group consisting of ramie and linen are more preferable, and ramie is most preferable.
  • the chemically modified plant fiber a part of hydrogen atoms of a hydroxyl group of cellulose, which constitutes a plant fiber selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, has 2 to 4 carbon atoms.
  • the one or more chemically modified plant fibers modified with the acyl group of 1 are preferable because they are easily produced.
  • More than one kind of chemically modified plant fiber is preferable, more preferably a chemically modified plant fiber in which a part of hydrogen atoms of the hydroxyl group of cellulose constituting the ramie is modified with an acyl group having 2 to 4 carbon atoms, and cellulose constituting the ramie
  • ramie or acetylated ramie suitably contributes to improvement or maintenance of impact resistance of the molded article of the fiber-reinforced resin composition of the present invention. Therefore, it is particularly preferable.
  • degree of modification of chemically modified plant fiber (hereinafter also referred to as “degree of substitution” or “DS”) consists of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton.
  • a part of the hydrogen atoms of the hydroxyl group of cellulose constituting the plant fiber selected from the group has an acyl group having 2 to 4 carbon atoms, a carboxy group-containing acyl group represented by the formula (2), or the carboxy group-containing The degree of modification with a salt of an acyl group.
  • the upper limit of the substitution degree is theoretically close to 3, but the preferable substitution degree (DS) is about 0.05 to 1.5, more preferably about 0.1 to 1.2.
  • the substitution degree (DS) is more preferably about 0.2 to 1.2, further preferably 0.3 to 1.0.
  • the preferred DS is 0.3 to 1.2, more preferably 0.3 to 0.7.
  • Chemically modified plant fiber is obtained by using plant fiber instead of cellulose pulp (CP), and acylating or half-esterifying the plant fiber according to the method for producing chemically modified cellulose pulp (chemically modified CP) described above. It can be manufactured.
  • thermoplastic resins among various resins are preferably used because of their excellent productivity and versatility. ..
  • thermoplastic resin polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy), and modified polyphenylene Ether (m-PPE) is mentioned.
  • thermoplastic resin the above resins may be used alone or as a mixed resin of two or more kinds.
  • PA polyamide
  • polyamide 6 polyamide 6
  • polyamide 66 nylon 66, PA66
  • polyamide 610 PA610
  • polyamide 612 PA612
  • polyamide 11 PA11
  • polyamide 12 PA12
  • polyamide 46 Polyamide XD10 (PAXD10), polyamide MXD6 (PAMXD6) and the like can be preferably used.
  • polypropylene PP
  • PP polypropylene
  • PE polyethylene
  • PP polypropylene
  • MAPP maleic anhydride modified polypropylene
  • PE polyethylene
  • HDPE high density polyethylene
  • polypropylene isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), etc.
  • iPP isotactic polypropylene
  • sPP syndiotactic polypropylene
  • a polymer or copolymer of a diol and an aliphatic dicarboxylic acid such as succinic acid or valeric acid (for example, polybutylene succinate (PBS)), or a hydroxycarboxylic acid such as glycolic acid or lactic acid alone.
  • PBS polybutylene succinate
  • a hydroxycarboxylic acid such as glycolic acid or lactic acid alone.
  • Polymers or copolymers for example, polylactic acid, poly ⁇ -caprolactone (PCL), etc.
  • PCL poly ⁇ -caprolactone
  • polymers of diols such as ethylene glycol, propylene glycol and 1,4-butanediol and aromatic dicarboxylic acids such as terephthalic acid can be preferably used.
  • polyethylene terephthalate (PET) polypropylene terephthalate (PPT), polybutylene terephthalate (PBT) and the like can be preferably used.
  • polyacetal also referred to as polyoxymethylene, POM
  • a copolymer of paraformaldehyde and oxyethylene can be preferably used.
  • PC polycarbonate
  • a reaction product of bisphenol A or a bisphenol derivative thereof and phosgene or phenyldicarbonate can be preferably used.
  • PS polystyrene
  • HIPS acrylonitrile-butadiene-styrene copolymer
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • ABS PC-ABS alloy
  • a blended product of PPE and PS is a type of modified polyphenylene ether (PPE) (m-PPE).
  • PPE-PS blended product is a type of modified polyphenylene ether (PPE) (m-PPE).
  • PPE-PS blend product is preferably used because it has high heat resistance and is lightweight.
  • thermoplastic resins PA, POM, PP, MAPP, PE, polylactic acid, lactic acid copolymer resin, PBS, PET, PPT, PBT, from the viewpoint of excellent mechanical properties, heat resistance, surface smoothness and appearance. It is preferable to use at least one resin selected from the group consisting of PS, ABS resin and PC-ABS alloy.
  • resins other than the above for example, polyvinyl chloride, polyvinylidene chloride, fluororesin, (meth) acrylic resin, (thermoplastic) polyurethane, vinyl ether resin, polysulfone resin, cellulose resin (eg triacetylated cellulose, (Diacetylated cellulose, etc.) can also be preferably used.
  • the content ratio of (A) MFC in the fiber-reinforced resin composition of the present invention is (C) thermoplastic resin.
  • the amount is preferably about 2 to 50 parts by mass, more preferably about 2 to 40 parts by mass, still more preferably about 3 to 35 parts by mass, relative to 100 parts by mass.
  • the content ratio of (A) MFC in the fiber reinforced resin composition is most preferably about 5 to 30 parts by mass with respect to 100 parts by mass of the (C) thermoplastic resin.
  • the content ratio of the (B) vegetable fiber in the fiber-reinforced resin composition of the present invention is preferably about 1 to 40 parts by mass, more preferably about 2 to 30 parts by mass, relative to 100 parts by mass of the (C) thermoplastic resin. It is preferably about 2.5 to 25 parts by mass and more preferably about 2.5 to 25 parts by mass.
  • the content ratio of the (B) vegetable fiber (preferably ramie or acetylated ramie) in the fiber reinforced resin composition is most preferably about 3 to 15 parts by mass relative to 100 parts by mass of the (C) thermoplastic resin. preferable.
  • the ratio of (A) MFC to (B) vegetable fiber in the fiber-reinforced resin composition of the present invention is a mass ratio. Is preferably 0.2 to 4, more preferably 0.5 to 3, and even more preferably 0.5 to 2.
  • thermoplastic resin By blending (B) vegetable fibers with (A) MFC in (C) thermoplastic resin, a lightweight fiber-reinforced resin composition with excellent mechanical properties can be obtained. Also, by blending (B) vegetable fiber with (A) MFC in (C) thermoplastic resin, the impact resistance of the composite (molded body) produced is improved or maintained, and the strength and elastic modulus are improved. Can be improved. In particular, by blending the ramie fiber and / or the chemically modified ramie fiber with the chemically modified MFC in the thermoplastic resin, not only the elastic modulus and strength of the composite (molded body) but also impact resistance can be improved.
  • the fiber-reinforced resin composition of the present invention even if containing (A) MFC, and (B) vegetable fiber, as well as general-purpose plastic, because it is softened and easily molded when heated, good moldability Can be expressed.
  • thermoplastic resin for example, a compatibilizer; a surfactant; an antioxidant; a flame retardant; Inorganic compounds such as tannin, zeolite, ceramics, metal powder; colorants; plasticizers; fragrances; pigments; flow control agents; leveling agents; conductive agents; antistatic agents; UV absorbers; UV dispersants; deodorants, etc. You may mix
  • the fiber-reinforced resin composition of the present invention contains (A-1) chemically modified MFC as (A) MFC, self-aggregation of these fibers due to hydrogen bond can be suppressed. Therefore, when (A-1) chemically modified MFC, (B) vegetable fiber, and (C) thermoplastic resin are mixed, (A-1) aggregation of chemically modified MFCs is suppressed, and (A-1) chemical The modified MFC and the (B) vegetable fiber show good dispersibility in the (C) thermoplastic resin. As a result, the fiber-reinforced resin composition of the present invention is excellent in mechanical properties, heat resistance, surface smoothness and appearance.
  • the solubility parameter (SP) of (A-1) chemically modified MFC is closer to that of (C) thermoplastic resin. Is preferred.
  • (C) a highly polar resin is used as the thermoplastic resin
  • (A) MFC when the substituent R is, for example, an acetyl group, its substitution degree (DS) is about 0.4 to 1.2 and its solubility is It is preferred to use acetylated MFCs with parameters around 12-15.
  • the highly polar resin for example, PA, POM, polylactic acid and the like are preferable.
  • (C) When using a resin with a small polarity as the thermoplastic resin, use (A) MFC that is a chemically modified MFC having a substitution degree (DS) of about 1.2 or more and a solubility parameter of about 8 to 12 It is preferable.
  • the resin having a small polarity for example, PP, PE and the like are preferable.
  • the chemically modified MFC an acetylated MFC having a substitution degree (DS) of about 1.2 or more is preferable.
  • the fiber-reinforced resin composition of the present invention comprises (A) MFC, (B) plant fiber, and (C) thermoplastic resin (matrix material) melt-kneaded to obtain (A) MFC and (B) plant fiber ( C) It can be produced by dispersing it in a thermoplastic resin.
  • the fiber-reinforced resin composition of the present invention contains a chemically modified cellulosic pulp (chemically modified CP), (B) plant fiber, and (C) a thermoplastic resin at once. Then, it is preferable to melt-knead and manufacture using a kneader or the like. In this case, it is possible to combine the chemically modified CP with the chemically modified MFC while defibrating it during melt-kneading. Therefore, prepare the chemically modified MFC separately, and use the (B) plant fiber and (C) thermoplastic It can be produced more easily than the method of producing a fiber-reinforced resin composition by kneading with a resin.
  • chemically modified cellulosic pulp chemically modified CP
  • B plant fiber
  • C thermoplastic resin
  • the manufacturing method 2 is a manufacturing method using (AP) chemically modified CP as a raw material when (A) MFC is a chemically modified MFC.
  • This production method is specifically a method for producing a fiber-reinforced resin composition containing (A-1) chemically modified microfibrillated cellulosic fibers, (B) plant fibers, and (C) thermoplastic resin.
  • the method includes a step of melt-kneading (AP) the chemically modified cellulosic pulp, (B) plant fiber, and (C) a thermoplastic resin, and micro-fibrillating the chemically modified cellulosic pulp during the melt-kneading.
  • (AP) chemically modified cellulosic pulp has the following formula (1-1): (Lg) Cell-OR (1-1) [In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ] It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
  • a part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • the (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
  • fibrillation of chemically modified CP proceeds well due to shear stress during kneading.
  • the chemically modified CP is well defibrated in the resin into the (A) chemically modified MFC.
  • the production method 2 it is possible to produce a fiber-reinforced resin composition in which (A) the chemically modified MFC and (B) vegetable fiber are favorably dispersed in the (C) thermoplastic resin.
  • Manufacturing method 3 The fiber-reinforced resin composition of the present invention, when (A) MFC is a chemically modified MFC, (AP) chemically modified CP and (C) a thermoplastic resin are kneaded to chemically modify the chemically modified CP during melt kneading. A kneaded product is obtained by defibration into a modified MFC, and then the obtained kneaded product and (B) a vegetable fiber or a resin composition containing a vegetable fiber and a thermoplastic resin can be produced by a method of melt kneading. it can.
  • the production method 3 is another production method using (AP) chemically modified CP as a raw material when (A) MFC is a chemically modified MFC.
  • This method is a method in which, after melt-kneading the chemically modified CP and the thermoplastic resin together, the kneaded material is melt-kneaded by adding the resin composition containing the plant fiber or the plant fiber and the thermoplastic resin. is there.
  • this method is a method for producing a fiber-reinforced resin composition containing (A-1) chemically modified microfibrillated cellulosic fiber, (B) plant fiber, and (C) thermoplastic resin.
  • Process (1) (AP) a chemically modified cellulosic pulp and (C) a thermoplastic resin are kneaded to microfibrillize the chemically modified cellulosic pulp during the melt-kneading, and step (2): A production method comprising a step of compounding the kneaded product obtained in the step (1) with (B) vegetable fiber or a resin composition containing a vegetable fiber and a thermoplastic resin.
  • (AP) chemically modified cellulosic pulp has the following formula (1-1): (Lg) Cell-OR (1-1) [In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ] It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
  • a part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.
  • the (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
  • thermoplastic resin composition containing plant fibers and a thermoplastic resin used in the production method 3 (I) a melt mixture of (B) plant fibers and (C) thermoplastic resins, and (II) (B) plant fibers Both (C) powder mixtures with thermoplastics can be used.
  • the heating set temperature at the time of melt kneading in each manufacturing method is a temperature (A + 20) higher than the recommended processing temperature (A + 20) from the minimum processing temperature (A ° C) recommended by the supplier that supplies the thermoplastic resin used in the present invention. C.) range is preferred.
  • the heating set temperature during melt kneading is preferably 225 to 240 ° C.
  • the heating set temperature during melt kneading is preferably 170 ° C to 190 ° C.
  • the heating set temperature during melt kneading is preferably 160 to 180 ° C.
  • thermoplastic resin By setting the mixing temperature in this temperature range, (A) chemically modified MFC or chemically modified CP, (B) plant fiber and (C) thermoplastic resin can be uniformly mixed.
  • manufacturing method 2 and manufacturing method 3 since the undefibrated chemically modified CP is mixed with the resin and defibration is performed by the shear stress of the kneading machine, the manufacturing cost can be reduced.
  • the molded product of the present invention comprises a fiber reinforced resin composition.
  • a molded product can be produced using the fiber-reinforced resin composition of the present invention.
  • a molding material having a shape such as a film shape, a sheet shape, a plate shape, a pellet shape, and a powder shape is prepared, and this molding material is used for manufacturing a molded body. be able to.
  • the fiber-reinforced resin composition or molding material of the present invention can be molded by various known molding methods to produce molded products of various shapes such as plate-like, rod-like, and three-dimensional structures.
  • the molding method include a mold molding method, an injection molding method, an extrusion molding method, a hollow molding method, and a foam molding method.
  • the injection molding method is excellent in productivity and manufacturing cost because the molding speed is high and molding of a complicated shape is easy.
  • the molded article of the present invention is molded from a fiber reinforced resin composition containing (A) MFC, (B) plant fiber, and (C) thermoplastic resin, a fiber containing a fiber having a large specific gravity such as glass fiber. It is lighter than a molded product molded from the reinforced resin composition.
  • thermal recycling is easier than that of a molded product molded from a fiber-reinforced resin composition containing an inorganic fiber such as glass fiber or carbon fiber.
  • the molded product of the present invention is advantageous in reducing carbon dioxide emissions in LCCO2 (life cycle CO2).
  • the molded article of the present invention as an interior material, an exterior material, a structural material of a transportation machine such as an automobile, an electric train, a ship, an airplane, etc., it is possible to achieve improvement of energy efficiency of a transportation machine and reduction of exhaust gas. it can.
  • the molded product of the present invention for housings, structural materials, internal parts, etc. of electric appliances such as personal computers, televisions, and telephones, it is possible to reduce their weight. By reducing the weight, it is possible to reduce energy consumption during transportation of the electric appliances, and it is possible to comfortably use the electric appliances.
  • the molded product of the present invention as a building material, it becomes possible to improve the earthquake resistance of the building.
  • the content of various components such as cellulosic pulp, chemically modified cellulosic pulp, unmodified MFC, chemically modified MFC, plant fiber, chemically modified plant fiber, and thermoplastic resin is% by mass unless otherwise specified. indicate.
  • the content ratio of the cellulosic fiber in the composition is represented by the mass ratio of the fiber component (cellulose + hemicellulose) in the total mass of the composition. That is, the content rate of the chemically modified cellulosic fiber in the composition is indicated by the content rate (percentage) of the mass converted into the non-chemically modified fiber.
  • PA6 Polyamide 6
  • a Polyamide 6
  • b Chemically modified Todomatsu fiber
  • b Chemically modified Todomatsu equivalent percentage
  • c Chemically modified ramie
  • test Method The test method used in Examples and Comparative Examples is as follows.
  • reaction solution After allowing to cool, 100 ⁇ L of the reaction solution was diluted with ultrapure water and subjected to ion chromatographic analysis manufactured by Thermo Fisher Scientific Co., Ltd. to analyze the sugar component contained in the sample.
  • the back titration filtrate contains sodium acetate resulting from hydrolysis and NaOH added in excess.
  • the neutralization titration of this NaOH was carried out using 1N HCl and phenolphthalein, and the number of moles of the acetyl group ester-bonded to the hydroxyl group of cellulose and the like from the following formula (C), and the number of moles of repeating units of cellulose Calculate (D).
  • Izod Impact Test An Izod impact test was performed using an Izod impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.). A notch having a depth of 2 mm was inserted in the center of the test piece. In the 2.75JN test, the notch side was hit with a 2.75J hammer to propagate a crack from the notch, and the impact strength was calculated.
  • PA6 nylon 6
  • a test piece of 4x2x1.2 mm was cut out from the injection molded product.
  • the test piece was added to 400 ml of NMP and immersed at 190 ° C for 2 to 4 hours to elute PA6.
  • 2-3) The residue (fiber) after elution of PA6 was put in a glass vial containing ethanol, and ultrasonically stirred to suspend the fiber in ethanol. After that, a sample for microscopic observation was prepared according to 1-2) and 1-3) above.
  • composition (mass%) was cellulose 84.4%, hemicellulose 14.5%, and lignin 1.1%.
  • the degree of acetylation substitution was calculated by measuring the IR spectrum in accordance with the above-mentioned (3-2) DS measurement method by infrared (IR) absorption spectrum. Also, the following Ac-DS of Ac-Todomatsu P-2 and P-3, Ac-ramie, Ac-kenaf, Ac-flax, and Ac-abaca were calculated by the same method.
  • This sheet-shaped Ac Todomatsu P-1 was used to prepare the compositions of Example 1 (Test No. PA6-629) and Comparative Example 1 (Test No. PA6-628) below.
  • This sheet-like Ac Todomatsu P-2 was prepared from the compositions of Example 2 (Test No. PA6-568), Example 3 (Test No. PA6-558), and Comparative Example 2 (Test No. PA6-561) described below. Used for.
  • This sheet-like Ac Todomatsu P-3 was prepared as Example 4 (Test No. PA6-645), Example 5 (Test No. PA6-642), Example 6 (Test No. PA6-646), and Example 7 (Test). No. PA6-644) and Comparative Example 5 (test number PA6-640) were used for the production of the compositions.
  • ramie (trade name: 6T TOP fineness 4.63 dtex) manufactured by Tosco Corp. was cut to a length of 1 to 3 cm and used.
  • Acetylated ramie 400 ml of acetic anhydride (5 times equivalent of cellulose) and 240 ml of acetic acid were added to 120 g of ramie (water content 8.42%) cut to a length of 1 to 3 cm and reacted at 100 ° C. for 20 hours. After ethanol was added to the reaction mixture to stop the reaction, the reaction mixture (solid content) was collected by filtration. This was washed with water (3 times), washed with isopropyl alcohol (IPA) 3 times, and dried to obtain Ac ramie (Ac-modified DS 0.33).
  • IPA isopropyl alcohol
  • kenaf (B-grade fiber bundle from Bangladesh, about 20 to 100 ⁇ m) purchased from OCM GROUP Co., Ltd. was used.
  • Acetylated kenaf (Ac kenaf)
  • the Ac kenaf of Ac-modified DS 0.25 used in Example 9 (Test No. PA6-687) described below was produced as follows. 16 g of acetic anhydride and 288 g of acetic acid were added to 32 g of kenaf fiber, and heated in an oil bath at 100 ° C. for 5 hours. The reaction mixture was collected by filtration, washed with water, washed with IPA, and the fibers were cut to a size of 1 to 2 cm and dried.
  • the Ac kenaf of Ac-modified DS0.64 used in Example 10 (Test No. PA6-688) described below was manufactured as follows. 51 g of acetic anhydride and 243 g of acetic acid were added to 32 g of kenaf fiber, and the mixture was heated in an oil bath at 100 ° C. for 5 hours. The reaction mixture was collected by filtration, washed with water, washed with IPA, and the fibers were cut to a size of 1 to 2 cm and dried.
  • the abaca manufactured by Nippon Paper Papyria Co., Ltd. was used as the abaca.
  • Acetylated abaca (Ac abaca)
  • the Ac abaca of Ac-modified DS 0.5 used in each of Example 6 (Test No. PA6-646), Example 7 (Test No. PA6-644), and Comparative Example 7 (Test No. PA6-643) described below is as follows. As manufactured. NMP was added to abaca pulp and dehydrated under reduced pressure with heating. Acetic anhydride (0.6 molar equivalent) and K 2 CO 3 (0.2 molar equivalent) were added to this NMP suspension of abaca pulp (solid content 15%), and the mixture was heated and stirred at 80 ° C. for 2 hours to cause reaction. After the reaction was completed, the solid matter was washed with acetone and water to obtain a slurry of acetylated abaca pulp, which was dehydrated.
  • Polyamide (powder type, grade: A1020LP) manufactured by Unitika Ltd. was used as the resin (1) powdery polyamide 6 (sometimes referred to as “PA6 powder”).
  • pelletized polyamide 6 (sometimes referred to as “PA6 pellets”), pelletized polyamide 6 (grade: A1020BRL) manufactured by Unitika Ltd. was used.
  • a mixer FM10C: Nippon Coke Industry Co., Ltd.
  • the melt kneading set temperature was 200 to 215 ° C. (upstream to downstream of the kneading machine).
  • Example 2 (Test No. PA6-568): Production of a PA6 composition containing fibrillated Ac Todomatsu (Ac-compound DS 0.7) and Ac ramie (Ac-compound DS 0.33), and a molded article thereof.
  • Example 3 (Test No. PA6-558): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu (Ac Derivative DS 0.7) and Ac Ramie (Ac Derivative DS 0.33), and Molded Article Thereof Without passing through the master batch of Todomatsu / PA6 powder (powdered MB-2), create the master batch of Ac Todomatsu / PA6 powder / Ac ramie (powdered MB-3), melt and knead it with PA6, It is a method for producing a PA6 composition containing fibrillated Ac Todomatsu and Ac ramie having the same composition as in Example 2 above. Ac Todomatsu P-2 and Ac ramie were the same as in Example 2.
  • the sheet-shaped Ac Todomatsu P-2 was immersed overnight in distilled water to swell it, then roughly crushed by the mixer, and the crushed product was put in distilled water and stirred. Next, the water was replaced with IPA, PA6 powder and Ac ramie dipped in IPA were added and mixed, and filtered to obtain a mixture of Ac Todomatsu P / PA6 powder / Ac ramie. This was agitated and dried at about 60 ° C. by the agitator / dryer. The composition ratio of the obtained powdery MB-3 was Ac Todomatsu P / PA6 powder / Ac ramie 11.94 / 32.59 / 5.47.
  • a PA6 composition containing fibrillated Ac Todomatsu and Ac ramie of the same composition as in Example 2 was obtained. Then, this was injection-molded in the same manner as in Example 1 to obtain a molded body.
  • Comparative Example 1 (Test No. PA6-628): Preparation of a PA6 composition containing fibrillated Ac Todomatsu and its moldings This is the control composition of Example 1.
  • the same sheet-like Ac Todomatsu P-1 (Ac-modified DS 0.56) as in Example 1 was used, and was produced by the following method.
  • Comparative Example 2 (Test No. PA6-561): Preparation of a PA6 composition containing fibrillated Ac Todomatsu and its molded body This is a control composition of Examples 2 and 3. The same sheet-like Ac Todomatsu P-2 (Ac-modified DS 0.7) as in Examples 2 and 3 was used, and was produced by the following method.
  • Comparative Example 3 (Test No. PA6-560): Preparation of PA6 Composition Containing Ac Ramie, and Moldings Thereof This is the control composition of Examples 2 and 3. As in Examples 2 and 3, using Ac ramie (Ac-modified DS 0.33) cut to 1 to 1.5 cm, the following method was used.
  • Comparative Example 4 Manufacture of Control Molded Product (PA6 Molded Product)
  • PA6 Molded Product PA6 Molded Product
  • width ⁇ length ⁇ thickness 10
  • a strip-shaped test piece (molded body) of ⁇ 80 ⁇ 4 mm was obtained.
  • composition content ratios in Table 1 the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac ramie) are shown in terms of mass percentages of the corresponding unmodified fibers (Todomatsu and Ramie).
  • a molded body of the PA6 composition of Example 1 containing fibrillated cellulosic fibers modified with acetyl groups (fibrillated Ac Todomatsu) and ramie, and the fiber of Comparative Example 4 were not included.
  • the flexural modulus, bending strength, and flexural modulus of the molded body of Example 1 were 2.4 times, 1.6 times, and 1.1 times that of the PA6 molded body of Comparative Example 4, respectively.
  • the flexural modulus, flexural strength, and flexural modulus of the molded body of Example 2 were 2.6 times, 1.7 times, and 1.7 times that of the PA6 molded body of Comparative Example 4, respectively. It was 1.3 times.
  • FIG. 1 shows an electron micrograph image of acetylated Todomatsu pulp.
  • FIG. 2 shows an electron micrograph image of the acetylated Todomatsu fiber in the sample prepared from the composition of Example 2.
  • the diameter of the fibers was about 20 ⁇ m for thin fibers and about 60 ⁇ m for thick fibers.
  • the fiber length was over 1900 ⁇ m.
  • the sheet-like Ac Todomatsu P-3 was treated in the same manner as in the preparation of the powdery MB-1 of Example 1 to obtain a powdery masterbatch containing Ac Todomatsu P-3 and PA6 powder (powder).
  • Example 5 (Test No. PA6-642): PA6 composition containing fibrillated Ac todomatsu (Ac-compound DS 0.67) and Ac flax (Ac-comprising DS 0.57), and production of a molded article thereof Same composition as in Example 4 A PA6 composition containing a ratio of fibrillated Ac Todomatsu and Ac flax, and a molded article thereof were manufactured in the same manner as in Example 3 as described below.
  • Example 5 In place of Ac todomatsu P-2 (Ac-modified DS 0.7) and Ac ramie (Ac-modified DS 0.33) used in Example 3, the same Ac Todomatsu P-3 and Ac flax as in Example 4 were used in Example 5. used.
  • the sheet-shaped Ac Todomatsu P-3 was treated and coarsely pulverized, powdered PA6 powder and Ac flax were added, mixed and dried.
  • powdered MB-7 was prepared.
  • Comparative Example 5 (Test No. PA6-640): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu, and Molded Articles Thereof This is the control composition of Examples 4 and 5.
  • the same sheet-like Ac Todomatsu P-3 (Ac-modified DS 0.67) used in Examples 4 and 5 and the powdered MB-6 (composition ratio: Ac Todomatsu / PA6 powder 12.11 / 21.23) used in Example 4 were used. Then, the composition and the molded body were prepared by the following procedures.
  • Comparative Example 6 (Test No. PA6-641): Production of PA6 composition containing Ac flax and its molded article This is a control composition of Examples 4 and 5. Using the same Ac flax (Ac-modified DS0.57) as in Examples 4 and 5, PA6 compositions and molded articles containing Ac flax were produced by the following method.
  • composition content ratios in Table 2 the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac flax) are converted into the mass percentages of the corresponding unmodified fibers (Todomatsu and flax).
  • the strength and elastic modulus of the molded products of Examples 4 and 5 are large and superior to those of the molded products of Comparative Examples 4 to 6. And, although the molded products of Examples 4 and 5 have an increased fiber content, their impact resistance is not much lower than that of the molded products of Comparative Examples 4 to 6.
  • Example 6 (Study No. PA6-646): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu (Ac-DS 0.67) and Ac Abaca (Ac-DS 0.5), and Molded Product Thereof A PA6 composition containing Ac abaca and a molded product thereof were manufactured in the same manner as in Example 2 as described below.
  • the sheet-like Ac Todomatsu P-3 (Ac-modified DS0.67) was treated in the same manner as in the preparation of the powdery MB-1 of Example 1 to contain Ac Todomatsu P-3 and PA6 powder.
  • Example 7 (Test No. PA6-644): PA6 composition containing fibrillated Ac Todomatsu (Ac-DS 0.67) and Ac-Abaca (Ac-DS 0.5), and manufacture of its molded article Same composition as in Example 6 A PA composition containing a ratio of fibrillated Ac Todomatsu and Ac abaca, and a molded article thereof were manufactured in the same manner as in Example 3 as described below.
  • This production method was carried out by preparing a master batch of Ac Todomatsu / PA6 powder / Ac Abaca, melting and kneading this with PA6, and PA6 containing the fibrillated Ac Todomatsu and Ac Abaca of the same composition as in Example 6 above. A method of producing a composition.
  • Comparative Example 7 (Test No. PA6-643): Preparation of PA6 Composition Containing Ac Abaca and Molded Articles Thereof This is the control composition of Examples 6 and 7. Using the Ac abaca used in Examples 6 and 7 (Ac-modified DS 0.5), a PA6 composition containing an Ac abaca was prepared by the following method.
  • composition content ratios in Table 3 the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac Abaca) are shown in terms of the mass percentages of the corresponding unmodified fibers (Todomatsu and Abaca).
  • the strength and elastic modulus of the molded bodies of Examples 6 and 7 are large and excellent as compared with those of the molded bodies of Comparative Examples 4, 5, and 7.
  • the impact resistance of the molded products of Examples 6 and 7 is not much lower than that of the molded products of Comparative Examples 4, 5, and 7 even though the fiber content is increased.
  • Example 8 (Test No. PA6-631): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu (Ac Derivative DS 0.56) and Kenaf, and Molded Article Thereof Instead of ramie (no chemical modification), kenaf (no chemical modification) ) was used in the same manner as in Example 1 to prepare a PA6 composition containing fibrillated Ac todomatsu (DS 0.56 Ac) and kenaf, and molding this to prepare a fibrillated Ac todomatsu (Ac) And a kenaf (without chemical modification) was prepared.
  • a PA6 composition Containing Fibrillated Ac Todomatsu (Ac Derivative DS 0.56) and Kenaf, and Molded Article Thereof
  • kenaf no chemical modification
  • Example 9 (Test No. PA6-687): Production of PA6 composition containing fibrillated Ac Todomatsu (Ac-compound DS 0.67) and Ac kenaf (Ac-compound DS 0.25), and molded article thereof Ac-Todomatsu sheet P-2 Example 3 using sheet Ac Ac Todomatsu P-3 (Ac compound DS 0.67) instead of (Ac compound DS 0.7) and Ac kenaf (Ac compound DS 0.25) instead of Ac ramie (Ac compound DS 0.33) A PA6 composition containing fibrillated Ac todomatsu (Ac-modified DS 0.67) and Ac kenaf (Ac-modified DS 0.25) was prepared in the same manner as in 1., and molded to obtain a molded product.
  • Example 10 (Study No. PA6-688): Preparation of a PA6 composition containing fibrillated Ac todomatsu (Ac-compound DS 0.67) and Ac kenaf (Ac-comprising DS 0.64), and moldings thereof Ac kenaf (Ac-comprising DS 0.25) PA6 containing fibrillated Ac todomatsu (Ac-modified DS 0.67) and Ac kenaf (Ac-modified DS 0.64) in the same manner as in Example 9 except that Ac-kenaf (Ac-modified DS 0.64) was used instead of).
  • a composition was prepared and molded to obtain a molded body.
  • Comparative Example 8 (Test No. PA6-682): Production of PA6 composition containing fibrillated Ac todomatsu (Ac-compound DS 0.67) and molded article thereof Instead of sheet-like Ac todomatsu P-2 (Ac-compound DS 0.7)
  • a PA6 composition containing PA6 and fibrillated Ac Todomatsu P (Ac-modified DS 0.66) was prepared in the same manner as in Comparative Example 2 except that sheet-like Ac Todomatsu P-3 (Ac-modified DS 0.67) was used. This was molded to obtain a molded body.
  • composition content ratios in Table 4 the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac Kenaf) are converted into the mass percentages of the corresponding unmodified fibers (Todomatsu and Kenaf).
  • the strength and elastic modulus of the molded bodies of Examples 8 to 10 are large and superior to those of the molded bodies of Comparative Examples 1, 4 and 8.
  • the impact resistances of the molded products of Examples 8 to 10 are not much lower than those of the molded products of Comparative Examples 1, 4 and 8 even though the fiber content is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a fiber-reinforced resin composition having excellent strength and elastic modulus, and excellent impact strength. The present invention pertains to a fiber-reinforced resin composition containing (A) microfibrillated cellulose fibers, (B) plant fibers, and (C) a thermoplastic resin, wherein the microfibrillated cellulose fibers (A) include a non-chemically modified or chemically modified cellulose polymer (requirement (a)), and the plant fibers (B) are non-chemically modified plant fibers or chemically modified plant fibers (requirement (b)).

Description

繊維強化樹脂組成物及びその製造方法、並びに成形体Fiber-reinforced resin composition, method for producing the same, and molded article
 本発明は、繊維強化樹脂組成物及びその製造方法、並びに成形体に関する。 The present invention relates to a fiber reinforced resin composition, a method for producing the same, and a molded product.
 地球環境の維持又は改善のために、力学特性及び機能性に優れ、且つ、製造、使用及び廃棄時に人及び環境に負荷の少ない素材の開発が要望されている。 In order to maintain or improve the global environment, it is required to develop a material that has excellent mechanical properties and functionality and that has less impact on humans and the environment during manufacturing, use and disposal.
 繊維強化樹脂組成物は、金属に比べ製造時のエネルギー負荷が小さく、また軽量であることから、自動車部材、航空機部材、家庭用機器部材、建設部材等の広い分野で使用されてきた(例えば、特許文献1~7)。 The fiber-reinforced resin composition has a smaller energy load during manufacturing than metal and is lightweight, and thus has been used in a wide range of fields such as automobile members, aircraft members, household equipment members, and construction members (for example, Patent Documents 1 to 7).
 特許文献1にはラミー、ケナフ、ジュートなどの植物靭皮繊維のマットに樹脂を含浸した複合体と基材とを加熱圧縮したボードが開示されている。 Patent Document 1 discloses a board obtained by heating and compressing a composite material in which a mat of plant bast fibers such as ramie, kenaf, jute and the like is impregnated with a resin and a base material are heated and compressed.
 特許文献2には、ラミーなどの植物靭皮繊維の撚糸に繰返し引張荷重を負荷することによって植物繊維の機械的性質を改質する方法、及び、このように改質された植物繊維に樹脂の含浸、混合、熱圧加工等の工程を経て、ワイヤー、ペレット、薄板等の中間素材の調製が可能であることが開示されている。 Patent Document 2 discloses a method of repeatedly modifying a mechanical property of a plant fiber by repeatedly applying a tensile load to a twisted yarn of a plant bast fiber such as ramie, and a resin of the plant fiber thus modified. It is disclosed that intermediate materials such as wires, pellets, and thin plates can be prepared through processes such as impregnation, mixing, and hot pressing.
 特許文献3~5には、異なる2種の繊維の混合物と樹脂(樹脂製接着剤)とからなる複合体が開示されている。詳細には、特許文献3には植物靭皮繊維及び木材由来繊維の混合物と接着剤とからなるボードが開示されている。特許文献4には、平均繊維径70~400μmの植物繊維(主構成繊維)とそれより微細な平均繊維径20~70μmの植物繊維との混合物を粒状接着剤で接着したボードが開示され、特許文献5にはその製造方法が開示されている。 Patent Documents 3 to 5 disclose composites composed of a mixture of two different kinds of fibers and a resin (resin adhesive). Specifically, Patent Document 3 discloses a board made of a mixture of plant bast fibers and wood-derived fibers and an adhesive. Patent Document 4 discloses a board in which a mixture of a plant fiber having an average fiber diameter of 70 to 400 μm (main constituent fiber) and a finer plant fiber having an average fiber diameter of 20 to 70 μm is bonded with a granular adhesive. Document 5 discloses the manufacturing method thereof.
 特許文献6には、ナノオーダーの繊維幅(数平均繊維幅2nm以上1000nm未満)のセルロース繊維及びこれより太い第2の繊維(数平均繊維幅1000nm以上100000nm以下)からなる不織布と樹脂とを含有する複合体が開示されている。 Patent Document 6 contains a nonwoven fabric composed of a cellulose fiber having a nano-order fiber width (number average fiber width of 2 nm or more and less than 1000 nm) and a thicker second fiber (number average fiber width of 1000 nm or more and 100000 nm or less) and a resin. A complex is disclosed.
 特許文献7には、化学修飾セルロースナノファイバーと熱可塑性樹脂との複合によって強度特性(弾性率及び強度)が改良された繊維強化樹脂組成物、及びその製造方法が開示されている。 Patent Document 7 discloses a fiber-reinforced resin composition having improved strength characteristics (elastic modulus and strength) by combining chemically modified cellulose nanofibers and a thermoplastic resin, and a method for producing the same.
特開2010-30092号公報JP, 2010-30092, A 特開2007-51405号公報JP, 2007-51405, A 特開2013-256029号公報JP, 2013-256029, A 特開2014-76589号公報JP, 2014-76589, A 特開2014-76588号公報Japanese Patent Laid-Open No. 2014-76588 特開2015-25033号公報JP, 2005-25033, A 特開2016-176052号公報JP, 2016-176052, A
 セルロース系ミクロフィブリル化繊維を含有する樹脂組成物は、繊維を含有しない樹脂に比べて高い強度と弾性率とを有することから、構造材料として優れるが、含有繊維量を増加させると耐衝撃性が低下する傾向にあることから、改良の余地がある。 The resin composition containing the cellulosic microfibrillated fiber is excellent as a structural material because it has higher strength and elastic modulus than a resin containing no fiber, but when the amount of the contained fiber is increased, the impact resistance becomes higher. Since it tends to decrease, there is room for improvement.
 前記特許文献1には、ラミーなどの樹脂を含浸させた植物靭皮繊維マットと基材とを加熱圧縮して作製したボードの耐衝撃性の試験結果が、他の試験結果と共に記載されているが、熱可塑性樹脂に混練された植物靭皮繊維の耐衝撃性を記載又は示唆するものではない。前記特許文献2にはラミーを含む樹脂組成物が開示され、前記特許文献3~6には互いに異なる2種の繊維の混合物と樹脂(樹脂製接着剤)からなる複合体が記載されているが、これら複合体の耐衝撃性に関する記載はない。前記特許文献7には、木材由来の化学修飾セルロースナノファイバーで強化された樹脂組成物が開示されているが、本発明に使用するような植物繊維を含有してはいない。 In Patent Document 1, the test results of impact resistance of a board produced by heating and compressing a plant bast fiber mat impregnated with a resin such as ramie and a base material are described together with other test results. However, it does not describe or suggest the impact resistance of the plant bast fiber kneaded with the thermoplastic resin. Patent Document 2 discloses a resin composition containing ramie, and Patent Documents 3 to 6 describe a composite composed of a mixture of two kinds of different fibers and a resin (resin adhesive). However, there is no description about impact resistance of these composites. Patent Document 7 discloses a resin composition reinforced with chemically modified cellulose nanofibers derived from wood, but does not contain a plant fiber as used in the present invention.
 本発明は、強度及び弾性率に優れ、且つ耐衝撃強度にも優れる繊維強化樹脂組成物を提供することを主な目的とする。本発明はさらに、その製造方法及び成形体を提供することを他の目的とする。 The main object of the present invention is to provide a fiber reinforced resin composition which is excellent in strength and elastic modulus and also excellent in impact strength. Another object of the present invention is to provide a manufacturing method and a molded body thereof.
 本発明者らは、特定のセルロース系ミクロフィブリル化繊維と特定の植物繊維とを併用して繊維強化樹脂組成物を調製したところ、その組成物からなる成形体は、優れた強度特性(高い曲げ強度及び弾性率)を示し、さらに、繊維を含有しない樹脂成形体に比べて耐衝撃性が向上するか、又は耐衝撃性の低下が少ない(耐衝撃性が維持できる)という優れた特性を有することを見出し、その知見をもとに本発明を完成させた。 The present inventors prepared a fiber-reinforced resin composition by using a specific cellulosic microfibrillated fiber and a specific plant fiber in combination, and a molded article made of the composition has excellent strength characteristics (high bending Strength and elastic modulus), and further has excellent characteristics that the impact resistance is improved or the impact resistance is less deteriorated (impact resistance can be maintained) as compared with a resin molded product containing no fiber. Based on the findings, they have completed the present invention.
 本発明は、下記の繊維強化樹脂組成物、成形体、及び繊維強化樹脂組成物の製造方法に関する。 The present invention relates to the following fiber-reinforced resin composition, molded article, and method for producing a fiber-reinforced resin composition.
項1.
 (A)ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物であって、
 前記(A)ミクロフィブリル化セルロース系繊維及び前記(B)植物繊維が、それぞれ下記要件(a)及び(b)を満たす、繊維強化樹脂組成物。
要件(a):
 (A)ミクロフィブリル化セルロース系繊維が、下式(1):
(Lg)Cell-O-R  (1)
〔式(1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の、水酸基を示すか、又は一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、水素原子、炭素数2~4のアシル基、下式(2):
Item 1.
A fiber-reinforced resin composition containing (A) microfibrillated cellulosic fibers, (B) plant fibers, and (C) a thermoplastic resin,
A fiber-reinforced resin composition in which the (A) microfibrillated cellulosic fiber and the (B) plant fiber satisfy the following requirements (a) and (b), respectively.
Requirement (a):
(A) The microfibrillated cellulosic fiber has the following formula (1):
(Lg) Cell-OR (1)
[In the formula (1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer.
-OR represents a hydroxyl group in the cellulose and holocellulose and / or lignocellulosic polysaccharides and lignin in the cellulosic polymer, or a hydrogen atom of a part of the hydroxyl group is substituted with a substituent R. R represents a hydrogen atom, an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
で表される非化学修飾又は化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
要件(b):
 (B)植物繊維が、
(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
It is a microfibrillated fiber of a fiber composed of a non-chemically modified or chemically modified cellulosic polymer represented by.
Requirement (b):
(B) vegetable fiber
(B-1) one or more plant fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
(B-2) A part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。 (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
項2.
 前記要件(a)の式(1)におけるRが、炭素数2~4のアシル基、下式(2):
Item 2.
R in the formula (1) of the requirement (a) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩である、上記項1に記載の繊維強化樹脂組成物。 (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by Item 2. The fiber-reinforced resin composition according to Item 1, which is a salt of a group-containing acyl group.
項3.
 前記要件(a)の式(1)におけるRが、アセチル基である、上記項1又は2に記載の繊維強化樹脂組成物。
Item 3.
Item 3. The fiber-reinforced resin composition according to Item 1 or 2, wherein R in the formula (1) of the requirement (a) is an acetyl group.
項4.
 前記要件(b)の(B)植物繊維が、(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維である、上記項1~3のいずれかに記載の繊維強化樹脂組成物。
Item 4.
The requirement (b) (B) vegetable fiber is (B-1) one or more vegetable fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton. The fiber reinforced resin composition according to any one of items 1 to 3 above.
項5.
 前記要件(b)の(B)植物繊維が、(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基で修飾された1種又は2種以上の化学修飾植物繊維である、上記項1~3のいずれかに記載の繊維強化樹脂組成物。
Item 5.
The requirement (b) (B) vegetable fiber is (B-2) a part of the hydrogen atoms of the hydroxyl groups of the cellulose constituting the (B-1) vegetable fiber is an acyl group having 2 to 4 carbon atoms. Item 4. The fiber-reinforced resin composition according to any one of Items 1 to 3, which is one or more chemically modified plant fibers modified.
項6.
 前記要件(b)の(B)植物繊維が、ラミー及び/又はアセチル基で修飾されたラミーである、上記項1~3のいずれかに記載の繊維強化樹脂組成物。
Item 6.
4. The fiber-reinforced resin composition according to any one of Items 1 to 3, wherein the (B) vegetable fiber of the requirement (b) is a ramie and / or a ramie modified with an acetyl group.
項7.
 前記(C)熱可塑性樹脂が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)、及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも1種の樹脂である、上記項1~6のいずれかに記載の繊維強化樹脂組成物。
Item 7.
The thermoplastic resin (C) is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy). And the modified polyphenylene ether (m-PPE), which is at least one resin selected from the group consisting of the above, and the fiber-reinforced resin composition according to any one of the above items 1 to 6.
項8.
 上記項1~7のいずれかに記載の繊維強化樹脂組成物からなる成形体。
Item 8.
A molded article comprising the fiber-reinforced resin composition according to any one of items 1 to 7 above.
項9.
 (A-1)化学修飾ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、
(AP)化学修飾セルロース系パルプ、(B)植物繊維、及び(C)熱可塑性樹脂を溶融混練し、当該溶融混練中に化学修飾セルロース系パルプをミクロフィブリル化する工程を含み、
前記(AP)化学修飾セルロース系パルプ、前記(B)植物繊維、及び前記(A-1)化学修飾ミクロフィブリル化セルロース系繊維が、それぞれ下記要件(ap)、(b)、及び(a-1)を満たす、製造方法。
要件(ap):
 (AP)化学修飾セルロース系パルプが、下式(1-1):
(Lg)Cell-O-R  (1-1)
〔式(1-1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。-O-Rは、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、炭素数2~4のアシル基、下式(2):
Item 9.
A method for producing a fiber-reinforced resin composition containing (A-1) a chemically modified microfibrillated cellulosic fiber, (B) a plant fiber, and (C) a thermoplastic resin,
(AP) chemically modified cellulosic pulp, (B) vegetable fiber, and (C) thermoplastic resin is melt-kneaded, and the step of microfibrillating the chemically modified cellulosic pulp during the melt-kneading,
The (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber have the following requirements (ap), (b), and (a-1), respectively. ), The manufacturing method.
Requirements (ap):
(AP) Chemically modified cellulosic pulp has the following formula (1-1):
(Lg) Cell-OR (1-1)
[In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer. -OR indicates that some of the hydrogen atoms of the hydroxyl groups in the polysaccharide and lignin constituting the cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer are replaced by the substituent R, and R is , An acyl group having 2 to 4 carbon atoms, the following formula (2):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
で表される化学修飾セルロース系高分子で構成される化学修飾セルロース系パルプである。
要件(b):
 (B)植物繊維が、
(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
Requirement (b):
(B) vegetable fiber
(B-1) one or more plant fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
(B-2) A part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
要件(a-1):
 (A-1)化学修飾ミクロフィブリル化セルロース系繊維が、前記式(1-1)で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
Requirement (a-1):
The (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
項10.
 (A-1)化学修飾ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であって、
工程(1):
 (AP)化学修飾セルロース系パルプ、及び(C)熱可塑性樹脂を混練して当該溶融混練中に化学修飾セルロース系パルプをミクロフィブリル化する工程、及び
工程(2):
 前記工程(1)で得られた混練物と、(B)植物繊維、又は、植物繊維と熱可塑性樹脂とを含む樹脂組成物とを複合化する工程
を含み、
前記(AP)化学修飾セルロース系パルプ、前記(B)植物繊維、及び前記(A-1)化学修飾ミクロフィブリル化セルロース系繊維が、それぞれ下記要件(ap)、(b)、及び(a-1)を満たす、製造方法。
要件(ap):
 (AP)化学修飾セルロース系パルプが、下式(1-1):
(Lg)Cell-O-R  (1-1)
〔式(1-1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。-O-Rは、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、炭素数2~4のアシル基、下式(2):
Item 10.
A method for producing a fiber-reinforced resin composition containing (A-1) a chemically modified microfibrillated cellulosic fiber, (B) a plant fiber, and (C) a thermoplastic resin,
Process (1):
(AP) a chemically modified cellulosic pulp and (C) a thermoplastic resin are kneaded to microfibrillize the chemically modified cellulosic pulp during the melt-kneading, and step (2):
Including the step of compounding the kneaded product obtained in the step (1), and (B) plant fiber, or a resin composition containing a plant fiber and a thermoplastic resin,
The (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber have the following requirements (ap), (b), and (a-1), respectively. ), The manufacturing method.
Requirements (ap):
(AP) Chemically modified cellulosic pulp has the following formula (1-1):
(Lg) Cell-OR (1-1)
[In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer. -OR indicates that some of the hydrogen atoms of the hydroxyl groups in the polysaccharide and lignin constituting the cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer are replaced by the substituent R, and R is , An acyl group having 2 to 4 carbon atoms, the following formula (2):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
で表される化学修飾セルロース系高分子で構成される化学修飾セルロース系パルプである。
要件(b):
 (B)植物繊維が、
(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
Requirement (b):
(B) vegetable fiber
(B-1) one or more plant fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
(B-2) A part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
要件(a-1):
 (A-1)化学修飾ミクロフィブリル化セルロース系繊維が、前記式(1-1)で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
Requirement (a-1):
The (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
 本発明の繊維強化樹脂組成物は、特定のミクロフィブリル化セルロース系繊維、及び特定の植物繊維を含有することから、この繊維強化樹脂組成物からなる成形体は、繊維を含有しない樹脂の成形体に比べて、強度特性(弾性率及び強度)が大幅に改良され、さらに、耐衝撃性も改良されるか又は樹脂自身の耐衝撃性が維持されている。 Since the fiber-reinforced resin composition of the present invention contains a specific microfibrillated cellulosic fiber, and a specific plant fiber, a molded article comprising this fiber-reinforced resin composition is a molded article of a resin containing no fiber. Compared with, the strength characteristics (elastic modulus and strength) are significantly improved, the impact resistance is also improved, or the impact resistance of the resin itself is maintained.
 即ち、樹脂組成物にフィブリル化セルロース系繊維と植物繊維との双方を含有させることによって、繊維強化樹脂組成物からなる成形体は、曲げ弾性率及び曲げ強度が向上するとともに、耐衝撃性が維持又は向上するという効果が得られる。 That is, by including both the fibrillated cellulosic fiber and the plant fiber in the resin composition, the molded article composed of the fiber reinforced resin composition, the bending elastic modulus and bending strength is improved, the impact resistance is maintained. Alternatively, the effect of improvement can be obtained.
 本発明の繊維強化樹脂組成物は、射出成形法により成形できるので、成形体の生産性が高い。よって、成形体を安い製造コストで製造することができる。 Since the fiber-reinforced resin composition of the present invention can be molded by an injection molding method, the productivity of molded products is high. Therefore, the molded body can be manufactured at a low manufacturing cost.
 また、本発明の繊維強化樹脂組成物の製造方法として、化学修飾セルロース系繊維、植物繊維、及び樹脂を溶融混練する工程を採用すれば、溶融混練と化学修飾セルロース系繊維のミクロフィブリル化とを同時に行うことができるので、高い生産性で樹脂組成物を製造するができる。 Further, as a method for producing the fiber-reinforced resin composition of the present invention, if a step of melt-kneading a chemically modified cellulosic fiber, a plant fiber, and a resin is adopted, melt kneading and microfibrillation of the chemically modified cellulosic fiber are performed. Since they can be performed simultaneously, the resin composition can be produced with high productivity.
アセチル化トドマツパルプの電子顕微鏡写真像である。It is an electron micrograph image of acetylated Todo pine pulp. 実施例2の組成物から調製した試料中のアセチル化トドマツ繊維の電子顕微鏡写真像である。2 is an electron micrograph image of acetylated Todomatsu fibers in a sample prepared from the composition of Example 2.
(1)繊維強化樹脂組成物
 本発明の繊維強化樹脂組成物は、(A)ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する。 前記(A)ミクロフィブリル化セルロース系繊維は、下記要件(a)を満たす。
要件(a):
 (A)ミクロフィブリル化セルロース系繊維が、下式(1):
(Lg)Cell-O-R  (1)
〔式(1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
-O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の、水酸基を示すか、又は一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、水素原子、炭素数2~4のアシル基、下式(2):
(1) Fiber Reinforced Resin Composition The fiber reinforced resin composition of the present invention contains (A) microfibrillated cellulosic fibers, (B) plant fibers, and (C) thermoplastic resin. The (A) microfibrillated cellulosic fiber satisfies the following requirement (a).
Requirement (a):
(A) The microfibrillated cellulosic fiber has the following formula (1):
(Lg) Cell-OR (1)
[In the formula (1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer.
-OR represents a hydroxyl group in the cellulose and holocellulose and / or lignocellulosic polysaccharides and lignin in the cellulosic polymer, or a hydrogen atom of a part of the hydroxyl group is substituted with a substituent R. R represents a hydrogen atom, an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
で表される非化学修飾又は化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
It is a microfibrillated fiber of a fiber composed of a non-chemically modified or chemically modified cellulosic polymer represented by.
 前記(B)植物繊維は、下記要件(b)を満たす。
要件(b):
 (B)植物繊維が、
(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
The (B) vegetable fiber satisfies the following requirement (b).
Requirement (b):
(B) vegetable fiber
(B-1) one or more plant fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
(B-2) A part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。 (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
(1-1)(A)ミクロフィブリル化セルロース系繊維
 本明細書で使用される用語は、次の意味を有する。
(1-1) (A) Microfibrillated cellulosic fiber The terms used in the present specification have the following meanings.
 「ミクロフィブリル化セルロース系繊維」は、セルロース系繊維がミクロフィブリル化されたものを意味する。以下、「ミクロフィブリル化セルロース系繊維」を「MFC」と記載することもある。 "Microfibrillated cellulosic fibers" means microfibrillated cellulosic fibers. Hereinafter, the "microfibrillated cellulosic fiber" may be referred to as "MFC".
 「セルロース系繊維」は、セルロース、ホロセルロース、及びリグノセルロースからなる群(高分子群)から選ばれる少なくとも1種類の高分子(セルロース系高分子)で構成される繊維を意味する。以下、セルロース系高分子を、「(Lg)Cell-OH」で表示する場合もある。すなわち、本明細書において、セルロース系繊維とは、セルロース系高分子「(Lg)Cell-OH」からなる繊維を意味する。 “Cellulosic fiber” means a fiber composed of at least one polymer (cellulosic polymer) selected from the group consisting of cellulose, holocellulose, and lignocellulose (polymer group). Hereinafter, the cellulosic polymer may be referred to as “(Lg) Cell-OH”. That is, in the present specification, the cellulosic fiber means a fiber composed of a cellulosic polymer “(Lg) Cell-OH”.
 ここで、「(Lg)Cell-」は、前記高分子群から選ばれる少なくとも1種類の高分子を構成する多糖及びリグニンから水酸基を除いた残基を意味する。 Here, “(Lg) Cell-” means a residue obtained by removing a hydroxyl group from a polysaccharide or lignin that constitutes at least one kind of polymer selected from the above-mentioned polymer group.
 本発明に使用されるセルロース系繊維は、セルロース系高分子〔(Lg)Cell-OH〕で構成される繊維、又は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基R(置換基Rの詳細は後述する)により置換された高分子で構成される繊維である。 The cellulosic fiber used in the present invention is a fiber composed of a cellulosic polymer [(Lg) Cell-OH], or a polysaccharide constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer. And a fiber composed of a polymer in which hydrogen atoms of some hydroxyl groups in lignin are substituted with a substituent R (the details of the substituent R will be described later).
 すなわち、本発明に使用されるセルロース系繊維は、下式(1):(Lg)Cell-O-R (1)〔式(1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の、水酸基を示すか、又は一部の水酸基の水素原子が置換基Rにより置換されていることを示す。〕
で表される、非化学修飾セルロース系高分子で構成される繊維(以下、「非化学修飾セルロース系繊維」ともいう)又は化学修飾セルロース系高分子で構成される繊維(以下、「化学修飾セルロース系繊維」ともいう)と定義される。
That is, the cellulosic fiber used in the present invention has the following formula (1): (Lg) Cell-OR (1) [in the formula (1), (Lg) Cell- is a cellulose in the cellulosic polymer, A residue obtained by removing a hydroxyl group from a polysaccharide or lignin that constitutes holocellulose and / or lignocellulose is shown.
OR represents a hydroxyl group in the cellulose and holocellulose and / or lignocellulosic polysaccharide and lignin in the cellulosic polymer, or a part of the hydrogen atoms of the hydroxyl group is substituted with a substituent R. Indicates. ]
A fiber composed of a non-chemically modified cellulose-based polymer (hereinafter, also referred to as “non-chemically modified cellulose-based fiber”) or a fiber composed of a chemically-modified cellulose-based polymer (hereinafter, “chemically modified cellulose”). It is also defined as "system fiber").
 従って、本発明に使用されるミクロフィブリル化セルロース系繊維(MFC)は、
(i) 非化学修飾セルロース系繊維〔上記式(1)においてO-R が水酸基である高分子で構成される繊維〕がミクロフィブリル化された繊維(すなわち、非化学修飾MFC)、及び、(ii) 化学修飾セルロース系繊維〔上記式(1)においてO-Rが、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されたセルロース系高分子で構成される繊維〕がミクロフィブリル化された繊維(すなわち、化学修飾MFC)を包含する。
Therefore, the microfibrillated cellulosic fiber (MFC) used in the present invention is
(i) a fiber (i.e., a non-chemically modified MFC) in which non-chemically modified cellulosic fiber [a fiber composed of a polymer in which OR is a hydroxyl group in the above formula (1)] is microfibrillated, and (ii) Chemically modified cellulosic fiber (OR in the above formula (1) is a polysaccharide constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer and hydrogen atoms of some hydroxyl groups in lignin are substituted by a substituent R. Fibers composed of substituted cellulosic polymers] include microfibrillated fibers (ie chemically modified MFCs).
 化学修飾MFCは、非化学修飾MFCを構成するセルロース、ホロセルロース及び/又はリグノセルロース中の多糖及びリグニンの一部の水酸基の水素原子が置換基Rにより置換された繊維でもある。 The chemically modified MFC is also a fiber in which the hydrogen atoms of some hydroxyl groups of the polysaccharide and lignin in the cellulose, holocellulose and / or lignocellulose constituting the non-chemically modified MFC are replaced by the substituent R.
 化学修飾MFCは、セルロース系パルプ(以下、「CP」と記載することもある)を化学修飾して化学修飾CPとし、得られた化学修飾CPを解繊しミクロフィブリル化する方法、又は、非化学修飾MFCを化学修飾する方法によって得ることができる。 Chemically modified MFC is a method of chemically modifying cellulosic pulp (hereinafter also referred to as “CP”) to form a chemically modified CP, and fibrillating the obtained chemically modified CP to form microfibrils, or It can be obtained by a method of chemically modifying MFC.
 ここで、「セルロース系パルプ」は、セルロース系高分子からなる繊維集合体を意味する。セルロース系パルプ(CP)には、リグニンを含まないパルプ(セルロースからなるパルプ、ホロセルロースからなるパルプ等)、及びリグニンを含むパルプ(リグノパルプ)が包含される。 Here, “cellulosic pulp” means a fiber aggregate composed of a cellulosic polymer. Cellulosic pulp (CP) includes lignin-free pulp (cellulose-based pulp, holocellulose-based pulp, etc.) and lignin-containing pulp (ligno pulp).
 なお、化学修飾MFCの製造方法は後述する。 Note that the method for producing the chemically modified MFC will be described later.
 置換基(R)
 本発明の繊維強化樹脂組成物に含有されるMFCは、非化学修飾MFC又は化学修飾MFCである。樹脂中での分散性及び解繊性の点から、MFCは、化学修飾MFCであることが好ましい。
Substituent (R)
The MFC contained in the fiber reinforced resin composition of the present invention is a non-chemically modified MFC or a chemically modified MFC. From the viewpoint of dispersibility in a resin and defibration, the MFC is preferably a chemically modified MFC.
 化学修飾MFCの中でも、前記式(1)における置換基Rが、炭素数2~4のアシル基、下式(2): Among the chemically modified MFCs, the substituent R in the above formula (1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式(2)中、R1及びR2は、前記と同じである。)で表されるカルボキシ基含有アシル基、及びカルボキシ基含有アシル基の塩からなる群から選ばれる1種又は2種である化学修飾MFCが好ましい。 (In the formula (2), R 1 and R 2 are the same as above.) One or two kinds selected from the group consisting of a carboxy group-containing acyl group and a salt of the carboxy group-containing acyl group. Chemically modified MFCs are preferred.
 前記式(1)における置換基Rとしては、炭素数2~3のアシル基(アセチル基及びプロピオニル基)が更に好ましい。置換基Rとして、製造の容易さ及び製造コストの点からアセチル基が最も好ましい。 The substituent R in the above formula (1) is more preferably an acyl group having 2 to 3 carbon atoms (acetyl group and propionyl group). As the substituent R, an acetyl group is most preferable from the viewpoint of ease of production and production cost.
 前記式(2)で表されるカルボキシ基含有アシル基の塩とは、当該カルボキシ基が無機塩又は有機塩の状態になっていることを意味する。 The salt of the carboxyl group-containing acyl group represented by the above formula (2) means that the carboxy group is in the state of an inorganic salt or an organic salt.
 前記無機塩として、ナトリウム塩、リチウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、バリウム塩、亜鉛塩、銅塩等の2価の金属塩;アルミニウム塩等の3価の金属塩等が好ましい。前記有機塩として、1~4級のアンモニウム塩、及びポリアミンとの塩が好ましい。 As the inorganic salt, alkali metal salts such as sodium salt, lithium salt and potassium salt; divalent metal salts such as calcium salt, barium salt, zinc salt and copper salt; trivalent metal salts such as aluminum salt are preferable. .. As the organic salt, a primary to quaternary ammonium salt and a salt with a polyamine are preferable.
 上記の各種置換基を有する化学修飾MFCは、繊維強化樹脂組成物中での分散性が良好であることから好ましい。 The above chemically modified MFC having various substituents is preferable because it has good dispersibility in the fiber reinforced resin composition.
 非化学修飾MFCと化学修飾MFCを組み合わせて(併用して)、本発明の繊維強化樹脂組成物に含有させることもできる。また、互いに異なる2種の化学修飾MFCを組み合わせて(併用して)、本発明の繊維強化樹脂組成物に含有させることもできる。 The non-chemically modified MFC and the chemically modified MFC may be combined (combined) and contained in the fiber-reinforced resin composition of the present invention. Further, two kinds of chemically modified MFCs different from each other may be combined (used together) and contained in the fiber-reinforced resin composition of the present invention.
 置換基Rが異なる2種の化学修飾MFCを併用することで、繊維強化樹脂組成物中に、これらの化学修飾MFCを良好に分散させることができる。 By using two chemically modified MFCs with different substituents R in combination, these chemically modified MFCs can be well dispersed in the fiber reinforced resin composition.
 化学修飾MFC及び非化学修飾MFCの原料
 化学修飾MFC及び非化学修飾MFCの原料として、パルプが好ましく用いられる。
Raw material for chemically modified MFC and non-chemically modified MFC As a raw material for the chemically modified MFC and the non-chemically modified MFC, pulp is preferably used.
 パルプは、木材、竹、麻、ジュート、ケナフ、綿、ビート、稲わら、バガス、ビート絞りかす等の植物性原料中に含まれる繊維を分離したものであって、セルロース、ヘミセルロース、ホロセルロース及び/又はリグノセルロースを含む。 Pulp is obtained by separating fibers contained in plant materials such as wood, bamboo, hemp, jute, kenaf, cotton, beet, rice straw, bagasse, beet marc, cellulose, hemicellulose, holocellulose and And / or contains lignocellulose.
 木材として、例えば、マツ(トドマツ、アカマツ、エゾナツなど)、ダグラスファー、ヘムロックスプルース、シトカスプルース、スギ、ヒノキなどの針葉樹、又は、ユーカリ、アカシア、ポプラ、ブナ、ナラ、カバ、オーク、アルダー等の広葉樹由来の木材が好ましく用いられる。上記以外の植物性原料として、農産物残廃物、古紙、編織布等を使用することもできる。古紙として、脱墨古紙、段ボール古紙、雑誌及びコピー用紙の古紙等が好ましい。パルプの原料は、これらに限定されるものではない。パルプは1種単独で用いてもよく、これらから選ばれた2種以上を用いてもよい。 As wood, for example, pine (Todo pine, red pine, ezo nut, etc.), Douglas fir, hemlock spruce, sitka spruce, conifer such as cedar, cypress, or eucalyptus, acacia, poplar, beech, oak, oak, alder, etc. Hardwood-derived wood is preferably used. Agricultural waste products, waste paper, knitted fabrics, etc. may be used as the plant raw materials other than the above. The used paper is preferably deinked used paper, corrugated used paper, magazines and used copy paper. The pulp raw material is not limited to these. One type of pulp may be used alone, or two or more types selected from these may be used.
 非化学修飾MFC及び化学修飾MFCの原料であるパルプには、セルロース系パルプ(CP)、すなわち、リグニンを含まないパルプ、及びリグニンを含むパルプ(リグノセルロースを含むパルプ)のいずれも使用することができる。以下、「リグノセルロースを含むパルプ」を「リグノパルプ」又は「LP」と記載することもある。 As pulp, which is a raw material of non-chemically modified MFC and chemically modified MFC, both cellulosic pulp (CP), that is, pulp containing no lignin and pulp containing lignin (pulp containing lignocellulose) can be used. it can. Hereinafter, "pulp containing lignocellulose" may be referred to as "ligno pulp" or "LP".
 非化学修飾MFC及び化学修飾MFCの原料であるパルプには、リグノパルプ(LP)を使用することが好ましい。つまり、前記要件(a)の式(1)における(Lg)Cell-が、リグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基であることが好ましい。 Ligno pulp (LP) is preferably used for the pulp that is the raw material of non-chemically modified MFC and chemically modified MFC. That is, it is preferable that (Lg) Cell- in the formula (1) of the requirement (a) is a residue obtained by removing a hydroxyl group from the polysaccharide and lignin constituting lignocellulose.
 リグノセルロースは、樹木細胞壁を構成する複合炭化水素高分子(天然高分子混合物)である。リグノセルロースは、主に多糖類のセルロース、ヘミセルロース、及び芳香族高分子であるリグニンから構成されていることが知られている(下記の参照例1及び参照例2参照)。 Lignocellulose is a complex hydrocarbon polymer (natural polymer mixture) that constitutes the cell wall of trees. It is known that lignocellulose is mainly composed of polysaccharide cellulose, hemicellulose, and lignin which is an aromatic polymer (see Reference Example 1 and Reference Example 2 below).
 参照例1:Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process H. V. Lee, S. B. A. Hamid, and S. K. Zain, Scientific World Journal Volume 2014,、Article ID 631013, 20 pages, http://dx.doi.org/10.1155/2014/631013
 参照例2:New lignocellulose pretreatments using cellulose solvents: A review, Noppadon Sathitsuksanoh, Anthe George and Y-H Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
Reference Example 1: Review Article Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process HV Lee, SBA Hamid, and SK Zain, Scientific World Journal Volume 2014 ,, Article ID 631013, 20 pages, http://dx.doi.org /10.1155/2014/631013
Reference Example 2: New lignocellulose pretreatments using cellulose solvents: A review, Noppadon Sathitsuksanoh, Anthe George and YH Percival Zhang, J Chem Technol Biotechnol 2013; 88: 169-180
 本明細書で使用される「リグノセルロース」の用語は、植物中に天然に存在する化学構造のリグノセルロース、人工的に改変されたリグノセルロース、又はこれらの混合物を意味する。これは、植物、例えば木材を機械的及び/又は化学的に処理して得られる種々のパルプ中に含まれる、天然に存在する化学構造のリグノセルロース、化学的若しくは機械的に改変を受けたリグノセルロース、又はこれらの混合物である。 As used herein, the term “lignocellulose” means a lignocellulose having a chemical structure naturally present in plants, artificially modified lignocellulose, or a mixture thereof. This is a lignocellulose having a naturally occurring chemical structure contained in various pulps obtained by mechanically and / or chemically treating plants, for example, wood, chemically or mechanically modified lignocellulose. Cellulose or a mixture thereof.
 本発明で使用されるリグノセルロースからなる繊維は、天然に存在する化学構造のリグノセルロースからなる繊維に限定されるものではない。また、リグノセルロース中のリグニン含有量も限定されるものではない。よって、「リグノセルロース」は、リグニン含有量の多少にかかわらず、植物中に存在するリグニンとセルロースとが結合した物質、及び/又は、リグニンとセルロースとの混合物を意味する。従って、「リグノセルロース」及び「リグノパルプ」の用語は、リグニン成分の含量が微量であっても、それぞれリグノセルロース、及びリグノパルプとして解釈される。 The fiber made of lignocellulose used in the present invention is not limited to the fiber made of lignocellulose having a naturally occurring chemical structure. Moreover, the lignin content in the lignocellulose is not limited. Therefore, "lignocellulose" means a substance in which lignin and cellulose are present in a plant, and / or a mixture of lignin and cellulose, regardless of the lignin content. Therefore, the terms "lignocellulose" and "ligno pulp" are to be construed as lignocellulose and lignopulp, respectively, even if the content of lignin component is very small.
 パルプ又はリグノパルプは、前記の植物性原料由来の原料を、機械パルプ化法、化学パルプ化法、又は機械パルプ化法と化学パルプ化法との組み合わせにより処理して得ることができる。 Pulp or lignopulp can be obtained by treating the above-mentioned plant-derived raw material by a mechanical pulping method, a chemical pulping method, or a combination of a mechanical pulping method and a chemical pulping method.
 このようなパルプとして、各種クラフトパルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹酸素漂白クラフトパルプ(NOKP)、及び針葉樹漂白クラフトパルプ(NBKP))が好ましい。また、砕木パルプ(GP)、リファイナーGP(RGP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ(MP)も好ましい。 As such pulp, various kraft pulps (softwood unbleached kraft pulp (NUKP), softwood oxygen bleached kraft pulp (NOKP), and softwood bleached kraft pulp (NBKP)) are preferable. Mechanical pulp (MP) such as groundwood pulp (GP), refiner GP (RGP), thermomechanical pulp (TMP) and chemithermomechanical pulp (CTMP) is also preferable.
 クラフトパルプの中にはリグニンを含んでいないものもあるが、その含有量に拘わらず非化学修飾MFC及び化学修飾MFCの原料として使用可能である。 Some kraft pulp does not contain lignin, but regardless of its content, it can be used as a raw material for non-chemically modified MFC and chemically modified MFC.
 これらの中でもリグノパルプは、リグニンを含まないセルロース繊維又はパルプに比べて、その製造工程数が少ないこと、その原料(例えば木材)からの収率が良好であること、その製造に要する化学薬剤が少ないこと、並びに少ないエネルギーで製造できることから、製造コストの点で有利である。よって、リグノパルプを、本発明に有利に使用することができる。 Among these, lignopulp, compared to cellulose fiber or pulp that does not contain lignin, that the number of manufacturing steps is small, that the yield from the raw material (for example, wood) is good, there are few chemical agents required for its production. In addition, since it can be manufactured with less energy, it is advantageous in terms of manufacturing cost. Therefore, lignopulp can be advantageously used in the present invention.
 更には、針葉樹のパルプの中でも、トドマツ、アカマツ、又はスギから得られるリグノパルプは、それを使用して作製した非化学修飾MFC及び/又は化学修飾MFCを含有させることで、強度特性に優れた繊維強化樹脂組成物が得られることから好ましい。 Furthermore, among softwood pulps, Ligno pulp obtained from Todo pine, Japanese red pine, or cedar is a fiber having excellent strength characteristics by containing a non-chemically modified MFC and / or a chemically modified MFC produced by using the same. It is preferable because a reinforced resin composition can be obtained.
 リグノセルロース及びリグノパルプに含まれるリグニン量は、クラーソン法で定量することができる。本発明では、リグニンを0.1~40質量%程度含むリグノパルプを使用することが好ましい。リグノパルプのリグニン含有量は、0.1~35質量%程度が更に好ましく、0.1~30質量%程度が特に好ましい。 The amount of lignin contained in lignocellulose and lignopulp can be quantified by the Klarson method. In the present invention, it is preferable to use ligno pulp containing lignin in an amount of 0.1 to 40% by mass. The lignin content of the ligno pulp is more preferably about 0.1 to 35% by mass, and particularly preferably about 0.1 to 30% by mass.
 非化学修飾MFCの製造方法
 非化学修飾MFCは、例えば、非化学修飾CPを懸濁液又はスラリーとし、リファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは二軸混練機)、ビーズミル等による機械的な摩砕又は叩解等の公知手段を使用し、非化学修飾CPを解繊及びミクロフィブリル化することにより調製することができる。
Method for producing non-chemically modified MFC Non-chemically modified MFC, for example, a suspension or slurry of non-chemically modified CP, refiner, high pressure homogenizer, grinder, single-screw or multi-screw kneader (preferably twin-screw kneader), bead mill It can be prepared by defibrating and microfibrillating the non-chemically modified CP using a known means such as mechanical grinding or beating by the above.
 化学修飾MFCの製造方法
 化学修飾MFCは、セルロース系パルプ(CP)を化学修飾して化学修飾セルロース系パルプ(化学修飾CP)を得、これを解繊することにより得ることができる。
Method for producing chemically modified MFC The chemically modified MFC can be obtained by chemically modifying a cellulosic pulp (CP) to obtain a chemically modified cellulosic pulp (chemically modified CP) and defibrating it.
 また、化学修飾MFCは、セルロース系パルプ(CP)を解繊してミクロフィブリル化セルロース系繊維(MFC)を得、これを化学修飾することによっても得ることができる。 Also, chemically modified MFC can be obtained by defibrating cellulosic pulp (CP) to obtain microfibrillated cellulosic fiber (MFC) and chemically modifying it.
 先ず、化学修飾MFCの調製に使用される化学修飾セルロース系パルプ(化学修飾CP)の製造方法を説明する。セルロース系パルプ(CP)又は化学修飾CPの解繊方法は後述する。 First, the manufacturing method of the chemically modified cellulosic pulp (chemically modified CP) used for the preparation of the chemically modified MFC will be explained. A method for defibrating cellulosic pulp (CP) or chemically modified CP will be described later.
 化学修飾セルロース系パルプ(化学修飾CP)の製造方法
 (i)アシル化セルロース系パルプ(炭素数2~4のアシル化CP)の製造
 前記式(1):(Lg)Cell-O-Rで示される化学修飾セルロース系高分子からなる化学修飾パルプのうち、置換基Rが炭素数2~4のアシル基である化学修飾セルロース系高分子からなるパルプ(アシル化CP)は、原料のセルロース系パルプ(CP)の繊維表面又は非晶部分に存在する水酸基をアシル化することによって得られる。
Method for producing chemically modified cellulosic pulp (chemically modified CP) (i) Production of acylated cellulosic pulp (acylated CP with 2 to 4 carbon atoms) Formula (1): Chemistry represented by (Lg) Cell-OR Among chemically modified pulps composed of modified cellulosic polymers, pulps composed of chemically modified cellulosic polymers in which the substituent R is an acyl group having 2 to 4 carbon atoms (acylated CP) is a raw material cellulosic pulp (CP). ) Is obtained by acylating the hydroxyl groups present on the fiber surface or in the amorphous portion.
 このアシル化は、原料のCP中に元々存在するセルロース結晶構造を壊さないように、原料のCPの繊維表面又は非晶部分に存在する水酸基、例えばセルロース、ヘミセルロース、及びリグニンの水酸基等をアシル化することが好ましい。 This acylation acylates hydroxyl groups such as cellulose, hemicellulose, and lignin hydroxyl groups present on the fiber surface or the amorphous portion of the raw material CP so as not to destroy the cellulose crystal structure originally present in the raw material CP. Preferably.
 アシル化反応は、原料のCPを膨潤させることのできる無水非プロトン性極性溶媒、例えばN-メチルピロリドン、N,N-ジメチルホルムアミド等の中に原料のCPを懸濁し、対応するアシル基を有するカルボン酸無水物又は酸塩化物で、塩基の存在下に、従来の方法(特開2016-176052等に記載の方法)により行うことができる。 The acylation reaction involves suspending the raw material CP in an anhydrous aprotic polar solvent capable of swelling the raw material CP, such as N-methylpyrrolidone, N, N-dimethylformamide, etc., and having a corresponding acyl group. It can be carried out by a conventional method (method described in JP 2016-176052 A) using a carboxylic acid anhydride or an acid chloride in the presence of a base.
 前記式(1)におけるRによる置換度(以下に詳しく説明する)の測定方法は、従来の方法(特開2016-176052等に記載の方法)に従うことができる。置換度は、上記アシル化におけるアシル化剤の量、反応温度、反応時間等を調節することにより調整することができる。 The method for measuring the degree of substitution by R in formula (1) (described in detail below) can be according to the conventional method (method described in JP 2016-176052 A). The degree of substitution can be adjusted by adjusting the amount of the acylating agent in the above-mentioned acylation, the reaction temperature, the reaction time and the like.
 (ii)カルボキシ基含有アシル基で修飾されたセルロース系パルプ(カルボキシアシル化CPと略称する)及びその塩の製造
 前記式(1):(Lg)Cell-O-Rにおいて、Rが下式(2):
(ii) Production of Cellulose Pulp Modified with Carboxy Group-Containing Acyl Group (abbreviated as Carboxyacylated CP) and salt thereof Formula (1): (Lg) Cell-OR, R is the following formula (2): :
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式(2)中、R1及びR2は、前記と同じである。)
で表されるカルボキシ基含有アシル化セルロース系パルプ(カルボキシアシル化CP)は、従来の方法(特許第5496435号等に記載の方法)に従い、原料のCPに、下式(3):
(In the formula (2), R 1 and R 2 are the same as above.)
The carboxy group-containing acylated cellulose pulp represented by (carboxyacylated CP) is a conventional method (method described in Patent No. 5496435 etc.), in which the raw material CP has the following formula (3):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式(3)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるコハク酸無水物又はその誘導体(以下、これらを「式(3)の酸無水物」ということもある)を反応させて、原料のCP中に存在する水酸基の一部を、アシル化(前記式(2)で表される、カルボキシ基含有アシル基でハーフエステル化)することにより製造することができる。 (In the formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. However, when either one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.) Or its derivative (hereinafter referred to as succinic anhydride). , These are sometimes referred to as “acid anhydrides of the formula (3)”, and some of the hydroxyl groups present in the CP of the raw material are acylated (represented by the formula (2), carboxy It can be produced by half-esterification with a group-containing acyl group.
 式(3)の酸無水物による原料CPの化学修飾(ハーフエステル化)は、非プロトン性極性有機溶媒に分散させた原料CPと式(3)の酸無水物とを、塩基の存在下に加熱して反応させ、原料CP中に存在する水酸基の一部をハーフエステル化することにより行うことができる。 The chemical modification (half-esterification) of the raw material CP with the acid anhydride of the formula (3) is carried out by mixing the raw material CP dispersed in an aprotic polar organic solvent and the acid anhydride of the formula (3) in the presence of a base. It can be carried out by heating and reacting to partially esterify the hydroxyl groups present in the raw material CP.
 ここで、ハーフエステルとは、式(3)の酸無水物に存在する2つのカルボニル基のうちの1つが原料CP中の水酸基とエステル結合を形成し、もう1つのカルボニル基はヒドロキシカルボニル基となった状態のエステルをいう。 Here, the half ester means that one of the two carbonyl groups present in the acid anhydride of formula (3) forms an ester bond with the hydroxyl group in the raw material CP, and the other carbonyl group is a hydroxycarbonyl group. It means the ester in the finished state.
 前記式(2)で表されるカルボキシアシル化CP中に存在するカルボキシル基は、無機塩又は有機塩の状態になっていてもよい。このようなカルボキシアシル化CPの塩は、当該カルボキシアシル化CPを水又は含水アルコール等の液体に分散させて、これに、ナトリウム、リチウム、カリウム等のアルカリ金属の水酸化物、炭酸水素塩、炭酸塩;カルシウム塩、バリウム塩、亜鉛塩、銅塩等の2価の金属塩;アルミニウム塩等の3価の金属塩;1~4級のアンモニウム塩、及びポリアミンとの塩の水溶液又は分散液を添加することによって調製することができる。 The carboxyl group present in the carboxyacylated CP represented by the above formula (2) may be in the state of an inorganic salt or an organic salt. Such a salt of carboxyacylated CP is obtained by dispersing the carboxyacylated CP in a liquid such as water or a hydroalcohol, and a hydroxide of an alkali metal such as sodium, lithium or potassium, a hydrogen carbonate, Carbonate; divalent metal salt such as calcium salt, barium salt, zinc salt, copper salt; trivalent metal salt such as aluminum salt; primary to quaternary ammonium salt, and aqueous solution or dispersion of salt with polyamine Can be prepared by adding.
 前記式(3)の酸無水物に属するアルケニルコハク酸無水物には、炭素数4~20のオレフィン由来の骨格と無水マレイン酸骨格とを持つ化合物が例示される。 Examples of the alkenylsuccinic anhydride belonging to the acid anhydride of the above formula (3) include compounds having a skeleton derived from an olefin having 4 to 20 carbon atoms and a maleic anhydride skeleton.
 これらの化合物として、ペンテニルコハク酸無水物、ヘキセニルコハク酸無水物、オクテニルコハク酸無水物、デセニルコハク酸無水物、ウンデセニルコハク酸無水物、ドデセニルコハク酸無水物、トリデセニルコハク酸無水物、ヘキサデセニルコハク酸無水物、オクタデセニルコハク酸無水物等のアルケニルコハク酸無水物等を好ましく使用することができる。 As these compounds, pentenyl succinic anhydride, hexenyl succinic anhydride, octenyl succinic anhydride, decenyl succinic anhydride, undecenyl succinic anhydride, dodecenyl succinic anhydride, tridecenyl succinic anhydride, hexadecane Alkenyl succinic anhydrides such as cenylsuccinic anhydride and octadecenyl succinic anhydride can be preferably used.
 アルケニルコハク酸無水物は、各化合物を単独で使用してもよく、2種類以上を併用して用いることもできる。 As the alkenylsuccinic anhydride, each compound may be used alone, or two or more kinds may be used in combination.
 本明細書では、特定の炭素数のオレフィン鎖を有するアルケニルコハク酸無水物を、アルケニルコハク酸無水物の略称(ASA)とそのオレフィン鎖の炭素数とを組み合わせて表記することがある。 In this specification, an alkenyl succinic anhydride having an olefin chain having a specific carbon number may be represented by a combination of the abbreviation (ASA) of the alkenyl succinic anhydride and the carbon number of the olefin chain.
 例えば、炭素数16のオレフィン鎖を有するアルケニルコハク酸無水物(ヘキサデセニルコハク酸無水物)を「ASA-C16」と表記することがある。また、本発明に使用するASAとして商品名又は商品コード番号で記載することもある。例えば、AS1533(星光PMC株式会社製)、TNS135(星光PMC株式会社製)、リカシッドDDSA(テトラプロペニル無水コハク酸、新日本理化学株式会社製)等を好ましく用いることができる。 For example, an alkenyl succinic anhydride (hexadecenyl succinic anhydride) having an olefin chain with 16 carbon atoms may be referred to as “ASA-C16”. Further, the ASA used in the present invention may be described by a product name or a product code number. For example, AS1533 (manufactured by Seikou PMC Co., Ltd.), TNS135 (manufactured by Seikou PMC Co., Ltd.), RIKACID DDSA (tetrapropenyl succinic anhydride, manufactured by Shin Nihon Rikagaku Co., Ltd.) and the like can be preferably used.
 アルキルコハク酸無水物としては、前記式(3)で表されるアルケニルコハク酸無水物のアルケニル基の不飽和結合が水素添加により還元されたもの(即ち、アルケニル基がアルキル基に変換されたコハク酸無水物)を使用することができる。 Examples of the alkyl succinic anhydride include those obtained by reducing the unsaturated bond of the alkenyl group of the alkenyl succinic anhydride represented by the above formula (3) by hydrogenation (that is, succinic acid in which the alkenyl group is converted to an alkyl group). Acid anhydrides) can be used.
 これらの化合物として、オクチルコハク酸無水物、ドデシルコハク酸無水物、ヘキサデシルコハク酸無水物、オクタデシルコハク酸無水物等のアルキルコハク酸無水物を好ましく使用することができる。 As these compounds, alkyl succinic anhydrides such as octyl succinic anhydride, dodecyl succinic anhydride, hexadecyl succinic anhydride and octadecyl succinic anhydride can be preferably used.
 アルキルコハク酸無水物は、各化合物を単独で使用してもよく、2種類以上を併用することもできる。また、アルキルコハク酸無水物とアルケニルコハク酸無水物とを併用することもできる。 As the alkylsuccinic anhydride, each compound may be used alone, or two or more kinds may be used in combination. Further, the alkyl succinic anhydride and the alkenyl succinic anhydride can be used together.
 原料CPと式(3)の酸無水物との反応は、無水非プロトン性極性溶媒(有機溶媒)中で、反応を加速するために、塩基の存在下で反応を行うことが好ましい。塩基として、ピリジン、ジメチルアニリン等のアミン類、酢酸カリウム、酢酸ナトリウム等の酢酸のアルカリ金属塩、炭酸リチウム、炭酸カリウム、炭酸ナトリウム等のアルカリ金属の炭酸塩を好適に使用することができる。 The reaction between the raw material CP and the acid anhydride of formula (3) is preferably carried out in an anhydrous aprotic polar solvent (organic solvent) in the presence of a base in order to accelerate the reaction. As the base, amines such as pyridine and dimethylaniline, alkali metal salts of acetic acid such as potassium acetate and sodium acetate, and carbonate salts of alkali metals such as lithium carbonate, potassium carbonate and sodium carbonate can be preferably used.
 反応温度は、使用する溶媒の沸点にもよるが、20~150℃程度が好ましく、30~120℃程度がより好ましく、40~100℃程度が更に好ましい。 The reaction temperature depends on the boiling point of the solvent used, but is preferably about 20 to 150 ° C, more preferably about 30 to 120 ° C, even more preferably about 40 to 100 ° C.
 反応時間は、式(3)の酸無水物の種類により適宜調整する。反応途中のリグノセルロース繊維の一部を採取し、この赤外線(IR)吸収スペクトルを測定して、反応により生じるハーフエステルのカルボニル伸縮振動に基づくIR吸収ピークを追跡することによって、ハーフエステル化の程度(置換度)を確認しながら調整することができる。 The reaction time is adjusted appropriately according to the type of acid anhydride of formula (3). The degree of half-esterification was determined by collecting a part of the lignocellulosic fiber during the reaction, measuring its infrared (IR) absorption spectrum, and tracing the IR absorption peak based on the carbonyl stretching vibration of the half-ester produced by the reaction. Adjustment can be performed while checking (substitution degree).
 なお、ミクロフィブリル化セルロース(MFC)を化学修飾して、化学修飾MFCを製造する場合は、セルロース系パルプ(CP)の代わりにMFCを使用して、上記(i)及び(ii)と同様の方法で、MFCを化学修飾することにより化学修飾MFCを得ることができる。 In addition, when chemically modifying microfibrillated cellulose (MFC) to produce a chemically modified MFC, MFC is used in place of the cellulosic pulp (CP), and the same as (i) and (ii) above. A chemically modified MFC can be obtained by chemically modifying MFC by the method.
 置換基Rによる化学修飾CP又は化学修飾MFCの修飾程度
 置換基Rによる化学修飾CP又は化学修飾MFCの修飾程度(以下、「置換度」、又は「DS」ともいう)とは、前記式(1)で表される化学修飾セルロース系高分子の残基〔(Lg)Cell-〕の1単位(繰り返し単位)に存在する水酸基の水素原子が置換基Rで置換された程度のことをいう。
Degree of Modification of Chemically Modified CP or Chemically Modified MFC with Substituent R The degree of modification of chemically modified CP or chemically modified MFC with a substituent R (hereinafter, also referred to as “degree of substitution” or “DS”) refers to the above formula (1 ) The degree to which the hydrogen atom of the hydroxyl group present in one unit (repeating unit) of the residue [(Lg) Cell-] of the chemically modified cellulosic polymer is substituted with the substituent R.
 化学修飾セルロース系高分子が全てセルロースで構成されている場合(セルロースの場合)は、この繰り返し単位はグルコピラノース残基であり、この1単位あたりの水酸基数は3であるので、置換度の上限は3である。 When the chemically modified cellulosic polymer is composed entirely of cellulose (in the case of cellulose), this repeating unit is a glucopyranose residue, and the number of hydroxyl groups per unit is 3, so the upper limit of the degree of substitution is Is 3.
 一方、セルロース系高分子がリグノセルロースの場合、リグノセルロースには、セルロースと共にヘミセルロースとリグニンとが含まれる。へミセルロースに含まれるキシランにおけるキシロース残基、又はアラビノガラクタンにおけるガラクトース残基の水酸基数は2であり、また、標準的なリグニン残基の水酸基数も2である。よって、これらの水酸基数は3より小さい。 On the other hand, when the cellulosic polymer is lignocellulose, the lignocellulose contains hemicellulose and lignin together with cellulose. The xylose residue in xylan contained in hemicellulose or the galactose residue in arabinogalactan has 2 hydroxyl groups, and the standard lignin residue also has 2 hydroxyl groups. Therefore, the number of these hydroxyl groups is smaller than 3.
 従って、リグノパルプにおける置換基Rによる置換度の上限は3より小さい。この置換度の上限は、リグノパルプが含有するヘミセルロース及びリグニンの含量に依存して、2.7~2.8程度である。 Therefore, the upper limit of the degree of substitution with the substituent R in lignopulp is less than 3. The upper limit of this substitution degree is about 2.7 to 2.8 depending on the contents of hemicellulose and lignin contained in the lignopulp.
 また、セルロース系高分子がホロセルロースの場合も、ホロセルロースにはセルロースと共にヘミセルロースが含まれるので、この平均的な繰り返し単位中の水酸基数は3よりも小さい。よって、置換度の上限値は3より小さい。 Also, when the cellulosic polymer is holocellulose, helocellulose contains hemicellulose together with cellulose, so the average number of hydroxyl groups in this repeating unit is less than 3. Therefore, the upper limit of the degree of substitution is smaller than 3.
 上記のようにセルロース系繊維中のヘミセルロース又はリグニンの含量に依存するものの、化学修飾セルロース系パルプ(化学修飾CP)、化学修飾ミクロフィブリル化セルロース系繊維(化学修飾MFC)の前記置換基Rによる置換度(DS)は、0.3~2.55程度が好ましい。置換度(DS)を0.3~2.55程度に設定することによって、適度の結晶化度及びSP(溶解度パラメーター)を有する化学修飾MFCを得ることができる。 Although depending on the content of hemicellulose or lignin in the cellulosic fiber as described above, substitution of the chemically modified cellulosic pulp (chemically modified CP) and the chemically modified microfibrillated cellulosic fiber (chemically modified MFC) with the substituent R The degree (DS) is preferably about 0.3 to 2.55. By setting the substitution degree (DS) to about 0.3 to 2.55, it is possible to obtain a chemically modified MFC having an appropriate crystallinity and SP (solubility parameter).
 置換基Rが炭素数2~4のアシル基の場合、置換度(DS)は0.4~2.55程度がより好ましく、0.5~2.5が更に好ましい。置換基Rがアセチル基の場合、DSは0.4~2.5が好ましく、より好ましくは0.5~2.5であり、さらに好ましくは0.56~2.5である。その範囲のDSであれば結晶化度を42.7%程度以上に保つことが可能である。 When the substituent R is an acyl group having 2 to 4 carbon atoms, the degree of substitution (DS) is more preferably 0.4 to 2.55, further preferably 0.5 to 2.5. When the substituent R is an acetyl group, DS is preferably 0.4 to 2.5, more preferably 0.5 to 2.5, still more preferably 0.56 to 2.5. If the DS is within that range, the crystallinity can be maintained at about 42.7% or more.
 置換基Rが、前記式(2)で示されるカルボキシ基含有アシル基の場合、置換度(DS、すなわちハーフエステル化の程度)は、親水性の高い原料CPの繊維をこれよりも疎水性の熱可塑性樹脂中に均一に分散させる必要性から、0.05~2.0程度が好ましく、0.1~2.0程度がより好ましく、0.1~0.8程度が更に好ましい。 When the substituent R is a carboxy group-containing acyl group represented by the above formula (2), the degree of substitution (DS, that is, the degree of half-esterification) is higher than that of a highly hydrophilic raw material CP fiber that is more hydrophobic than that. From the necessity of being uniformly dispersed in the thermoplastic resin, it is preferably about 0.05 to 2.0, more preferably about 0.1 to 2.0, still more preferably about 0.1 to 0.8.
 置換度(DS)は、元素分析、中和滴定法、FT-IR、二次元NMR(1H及び13C-NMR)等の各種分析方法等により分析することができる。 The degree of substitution (DS) can be analyzed by various analysis methods such as elemental analysis, neutralization titration method, FT-IR, and two-dimensional NMR ( 1 H and 13 C-NMR).
 化学修飾CPを解繊して化学修飾MFCを製造する方法
 化学修飾CPの解繊及びミクロフィブリル化は、例えば、化学修飾CPを懸濁液又はスラリーとし、リファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは多軸混練機)、ビーズミル等による機械的な摩砕又は叩解等の公知手段を使用することにより行うことができる。
Method for producing chemically modified MFC by defibrating chemically modified CP For defibration and microfibrillation of chemically modified CP, for example, the chemically modified CP is made into a suspension or slurry, and refiner, high pressure homogenizer, grinder, uniaxial or multi-axis It can be carried out by using a known means such as mechanical milling or beating with a shaft kneader (preferably a multi-axis kneader) or a bead mill.
 化学修飾CPを使用して繊維強化樹脂組成物を作製する時は、化学修飾CPは熱可塑性樹脂と共に一軸又は多軸混練機(好ましくは多軸混練機)で、加熱下に溶融し混練することが好ましい。化学修飾CPは混練中のせん断力により解繊されてミクロフィブリル化し、熱可塑性樹脂中で化学修飾MFCとすることができる。したがって、化学修飾CPを熱可塑性樹脂と共に溶融混練する方法によれば、化学修飾MFC を含有する熱可塑樹脂組成物を単純な操作で有利に製造することができる。 When preparing a fiber-reinforced resin composition using the chemically modified CP, the chemically modified CP is a uniaxial or multiaxial kneading machine (preferably a multiaxial kneading machine) together with a thermoplastic resin, which is melted and kneaded under heating. Is preferred. The chemically modified CP can be fibrillated by the shearing force during kneading to form microfibrils, and can be chemically modified MFC in the thermoplastic resin. Therefore, according to the method of melt-kneading the chemically modified CP together with the thermoplastic resin, the thermoplastic resin composition containing the chemically modified MFC can be advantageously produced by a simple operation.
 非化学修飾MFCから化学修飾MFCを製造する方法
 前記の通り、原料のセルロース系パルプ(原料CP)を懸濁液又はスラリーとし、リファイナー、高圧ホモジナイザー、グラインダー、一軸又は多軸混練機(好ましくは二軸混練機)、ビーズミル等による機械的な摩砕又は叩解等の公知手段を用いて解繊及びフィブリル化することにより、非化学修飾MFCを製造することができる。
Method for producing chemically modified MFC from non-chemically modified MFC As described above, the raw material cellulosic pulp (raw material CP) is made into a suspension or slurry, and refiner, high pressure homogenizer, grinder, uniaxial or multiaxial kneader (preferably a twin A non-chemically modified MFC can be produced by defibration and fibrillation using a known means such as mechanical milling or beating with a shaft kneader) or a bead mill.
 次いで、これを前記の化学修飾CPの製造方法と同様の方法で化学修飾して、化学修飾MFCを製造することができる。 Next, this can be chemically modified by a method similar to the method for producing the chemically modified CP to produce a chemically modified MFC.
 非化学修飾MFC及び化学修飾MFCの繊維径
 非化学修飾MFCは、前述のセルロース系パルプ(例えばリグノパルプ)中の繊維をナノサイズレベルまで解きほぐした(解繊した)ものであり、化学修飾MFCは、前記の化学修飾セルロース系パルプ(例えば、化学修飾リグノパルプ等)中の繊維をナノサイズレベルまで解きほぐした(解繊した)ものである。
Non chemically modified MFC and chemical modification MFC fiber diameter non-chemically modified MFC, which has loosened the fibers in the aforementioned cellulosic pulp (e.g. Rigunoparupu) to nanosize level (the defibrated), chemically modified MFC is The fibers in the above-mentioned chemically modified cellulosic pulp (for example, chemically modified ligno pulp) are disentangled (disentangled) to a nano size level.
 繊維強化樹脂組成物に含有される非化学修飾MFC及び化学修飾MFCの平均繊維径(繊維幅)は、通常4~1000nm程度であり、4~800nm程度が好ましく、4~200nm程度がより好ましい。繊維長の平均値は5μm程度以上であることが好ましい。 The average fiber diameter (fiber width) of the non-chemically modified MFC and the chemically modified MFC contained in the fiber reinforced resin composition is usually about 4 to 1000 nm, preferably about 4 to 800 nm, more preferably about 4 to 200 nm. The average fiber length is preferably about 5 μm or more.
 前記範囲の平均繊維径を有する化学修飾MFCを、樹脂に含有させることにより、強度特性の優れた繊維強化樹脂組成物を製造することができる。 By incorporating a chemically modified MFC having an average fiber diameter in the above range into a resin, a fiber reinforced resin composition having excellent strength properties can be produced.
 なお、化学修飾CPを使用して繊維強化樹脂組成物を作製する時は、化学修飾CPを熱可塑性樹脂と溶融混練して、混練と同時に化学修飾CPを化学修飾MFCに解繊することができる。 When a fiber-reinforced resin composition is produced using the chemically modified CP, the chemically modified CP can be melt-kneaded with a thermoplastic resin, and the chemically modified CP can be defibrated into the chemically modified MFC simultaneously with the kneading. ..
 この際、化学修飾CPの解繊が不十分で、解繊後の繊維径が上記の繊維径よりも大きな化学修飾MFCが樹脂組成物に含まれていたとしても、本発明の目的を達成する限り、そのような化学修飾MFCを含有する樹脂組成物は本発明に包含される。 At this time, the defibration of the chemically modified CP is insufficient, and even if the fiber composition after defibration contains a chemically modified MFC larger than the fiber diameter in the resin composition, the object of the present invention is achieved. As long as it is included in the present invention, a resin composition containing such a chemically modified MFC.
 例えば、化学修飾MFC含有樹脂組成物の曲げ弾性率が、セルロース系繊維を含有しない樹脂の曲げ弾性率に対して1.1倍以上の曲げ弾性率を示す限り、これは本発明の化学修飾MFC含有樹脂組成物である。 For example, as long as the flexural modulus of the chemically modified MFC-containing resin composition shows a flexural modulus of 1.1 times or more with respect to the flexural modulus of a resin containing no cellulosic fibers, this is the chemically modified MFC-containing resin of the present invention. It is a composition.
 非化学修飾MFCを使用して化学修飾MFCを調製する場合、この非化学修飾MFCの平均繊維径及び平均繊維長の好ましい範囲は、上記の化学修飾MFCのそれらと同様である。 When the chemically modified MFC is prepared using the non-chemically modified MFC, the preferable ranges of the average fiber diameter and the average fiber length of the non-chemically modified MFC are the same as those of the above chemically modified MFC.
 非化学修飾MFC及び化学修飾MFCの繊維径及び繊維長は、走査型電子顕微鏡(SEM)を用いて測定することができる。繊維径の平均値(平均繊維径)及び繊維長の平均値(平均繊維長)は、走査型電子顕微鏡の視野内のMFC又は化学修飾MFCの少なくとも30本以上について測定した時の平均値として求めることができる。 Fiber diameter and fiber length of non-chemically modified MFC and chemically modified MFC can be measured using a scanning electron microscope (SEM). The average value of the fiber diameter (average fiber diameter) and the average value of the fiber length (average fiber length) are obtained as an average value when measured for at least 30 MFCs or chemically modified MFCs in the field of view of a scanning electron microscope. be able to.
 非化学修飾MFC及び化学修飾MFCの比表面積
 非化学修飾MFC及び化学修飾MFCの比表面積は、70~300m2/g程度が好ましく、70~250m2/g程度がより好ましく、100~200m2/g程度が更に好ましい。非化学修飾MFC及び化学修飾MFCの比表面積を大きくすることで、樹脂(マトリクス)と組み合わせて組成物とした場合に、接触面積を大きくすることができ、それにより樹脂成形体の強度を向上させることができる。化学修飾MFCは、樹脂組成物の樹脂中で分散しやすいことから、樹脂成形体の強度を向上させることができるので好ましい。
The specific surface area of the non-chemically modified MFC and chemical modification MFC specific surface area non-chemically modified MFC and chemical modification MFC is preferably about 70 ~ 300m 2 / g, more preferably about 70 ~ 250m 2 / g, 100 ~ 200m 2 / About g is more preferable. By increasing the specific surface area of non-chemically modified MFC and chemically modified MFC, the contact area can be increased when the composition is combined with a resin (matrix), thereby improving the strength of the resin molded body. be able to. The chemically modified MFC is preferable because it can be easily dispersed in the resin of the resin composition and can improve the strength of the resin molded body.
 非化学修飾MFC及び化学修飾MFCの結晶化度
 非化学修飾MFC及び化学修飾MFCは、原料パルプ中に存在していたセルロースの結晶構造ができる限り保持された状態であることが好ましい。
Crystallinity of Non-Chemically Modified MFC and Chemically Modified MFC The non-chemically modified MFC and the chemically modified MFC are preferably in a state where the crystal structure of cellulose existing in the raw material pulp is maintained as much as possible.
 化学修飾MFCは、原料パルプに元来存在するセルロース結晶構造が壊れないように、原料繊維の表面に存在する水酸基、例えばセルロースの水酸基、ヘミセルロースの水酸基等が化学修飾されていることが好ましい。 In the chemically modified MFC, it is preferable that the hydroxyl groups existing on the surface of the raw material fiber, such as the hydroxyl group of cellulose and the hydroxyl group of hemicellulose, are chemically modified so that the cellulose crystal structure originally present in the raw material pulp is not broken.
 そのような化学修飾処理により、MFC本来の優れた力学的特性を有する化学修飾MFCを得ることができる。MFCを化学修飾することで樹脂中での化学修飾MFCの分散性が促進され、樹脂に対する化学修飾MFCの補強効果が向上する。 By such a chemical modification treatment, it is possible to obtain a chemically modified MFC having excellent mechanical properties inherent to MFC. By chemically modifying the MFC, the dispersibility of the chemically modified MFC in the resin is promoted, and the reinforcing effect of the chemically modified MFC on the resin is improved.
 本発明の繊維強化樹脂組成物は、組成物中に含まれる非化学修飾MFC及び化学修飾MFCの結晶化度が42.7%程度以上で、その結晶型はセルロースI型結晶を有することが好ましい。前記「結晶化度」とは、全セルロース中の結晶(主にセルロースI型結晶)の存在比である。非化学修飾MFC及び化学修飾MFCの結晶化度(好ましくはセルロースI型の結晶)は、50%程度以上が好ましく、55%程度以上がより好ましく、55.6%程度以上が更に好ましく、60%程度以上がなお更に好ましく、69.5%程度以上が特に好ましい。 The fiber-reinforced resin composition of the present invention preferably has a crystallinity of the non-chemically modified MFC and the chemically modified MFC contained in the composition of about 42.7% or more, and the crystal form thereof has a cellulose type I crystal. The “crystallinity” is an abundance ratio of crystals (mainly cellulose type I crystals) in all cellulose. The crystallinity of the non-chemically modified MFC and the chemically modified MFC (preferably cellulose I type crystals) is preferably about 50% or more, more preferably about 55% or more, further preferably about 55.6% or more, about 60% or more. Is even more preferable, and about 69.5% or more is particularly preferable.
 非化学修飾MFC及び化学修飾MFCの結晶化度の上限は、80%程度である。 The upper limit of crystallinity of non-chemically modified MFC and chemically modified MFC is about 80%.
 セルロースI型結晶構造とは、例えば朝倉書店発行の「セルロースの辞典」新装版第一刷81~86頁、或いは93~99頁に記載の通りのものである。ほとんどの天然セルロースはセルロースI型結晶構造である。これに対して、セルロースI型結晶構造ではなく、例えばセルロースII、III、又はIV型構造のセルロース繊維は、セルロースI型結晶構造を有するセルロースから誘導されるものである。I型結晶構造は他の構造に比べて結晶弾性率が高い。 The cellulose type I crystal structure is, for example, as described in “Dictionary of Cellulose”, first edition, new edition, 81-86 pages, or 93-99 pages, published by Asakura Shoten. Most natural celluloses have a cellulose type I crystal structure. On the other hand, a cellulose fiber having, for example, a cellulose II, III, or IV structure rather than a cellulose I crystal structure is derived from cellulose having a cellulose I crystal structure. The I-type crystal structure has a higher crystal elastic modulus than other structures.
 化学修飾MFCがI型結晶構造であることは、その広角X線回折像測定により得られる回折プロファイルにおいて、2θ=14~17°付近及び2θ=22~23°付近の2つの位置に典型的なピークを有することから判定することができる。 The fact that the chemically modified MFC has a type I crystal structure is typical in two positions near 2θ = 14 to 17 ° and 2θ = 22 to 23 ° in the diffraction profile obtained by the wide-angle X-ray diffraction image measurement. It can be determined from having a peak.
 X線回折等から、セルロースにおける結晶領域の比率は、木材パルプで約50~60%、バクテリアセルロースはこれより高く約70%程度と推測されている。セルロースは、伸びきり鎖結晶であることに起因して、弾性率が高いだけでなく、鋼鉄の5倍の強度、及びガラスの1/50以下の線熱膨張係数を示す。 Based on X-ray diffraction, it is estimated that the ratio of crystalline regions in cellulose is about 50-60% for wood pulp and about 70% for bacterial cellulose, which is higher than this. Cellulose not only has a high elastic modulus due to its extended chain crystal, but also exhibits a strength five times that of steel and a linear thermal expansion coefficient of 1/50 or less that of glass.
(1-2)(B)植物繊維
 本発明の繊維強化樹脂組成物が含有する(B)植物繊維は、上述した要件(b)を満たす。
(1-2) (B) Plant fiber The plant fiber (B) contained in the fiber-reinforced resin composition of the present invention satisfies the requirement (b) described above.
 すなわち、(B)植物繊維は、
(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維(以下、「非化学修飾植物繊維」ともいう)、又は、
(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
That is, (B) vegetable fiber,
(B-1) Lamy, hemp, linen, jute, abaca, sisal, kenaf, and one or more plant fibers selected from the group consisting of cotton (hereinafter, also referred to as "non-chemical modified plant fiber"), Or
(B-2) A part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式(2)中、R1及びR2は、前記と同じである。)
で表されるカルボキシ基含有アシル基、又は、当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
(In the formula (2), R 1 and R 2 are the same as above.)
The one or more chemically modified plant fibers modified with a carboxy group-containing acyl group represented by or a salt of the carboxy group-containing acyl group.
 ここで、ラミーは「苧麻」とも言い、ヘンプは「大麻」とも言い、リネンは「亜麻」とも言い、ジュートは「黄麻」とも言い、アバカは「マニラ麻」とも言い、サイザルは「サイザル麻」とも言い、ケナフは「洋麻」とも言う。 Here, Lamy is also known as “ramie”, hemp is also known as “cannabis”, linen is also known as “flax”, jute is also known as “burlap”, Abaca is also known as “manila hemp”, and sisal is also known as “sisal”. Kenaf is also referred to as "Hemp".
 上記植物繊維のうち、ラミー、ヘンプ、リネン、ジュード、及びケナフは靭皮繊維であり、アバカ及びサイザルは葉脈繊維であり、綿花は種子毛繊維である。  Among the above plant fibers, ramie, hemp, linen, jude, and kenaf are bast fibers, abaca and sisal are vein fibers, and cotton is seed hair fibers.
 植物繊維の平均繊維径は、10~70μm程度が好ましい。植物繊維の平均繊維長は2~200mm程度が好ましい。 The average fiber diameter of vegetable fibers is preferably about 10-70 μm. The average fiber length of vegetable fibers is preferably about 2 to 200 mm.
 非化学修飾植物繊維としては、ラミー、リネン、アバカ、及びケナフからなる群から選ばれる1種又は2種以上の植物繊維が好ましい。 The non-chemically modified plant fiber is preferably one or more plant fibers selected from the group consisting of ramie, linen, abaca, and kenaf.
 これらの中でも、ラミー及びリネンからなる群から選ばれる1種又は2種の植物繊維がより好ましく、ラミーが最も好ましい。 Among these, one or two kinds of vegetable fibers selected from the group consisting of ramie and linen are more preferable, and ramie is most preferable.
 化学修飾植物繊維としては、ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基で修飾された1種又は2種以上の化学修飾植物繊維が、製造が容易であることから好ましい。 As the chemically modified plant fiber, a part of hydrogen atoms of a hydroxyl group of cellulose, which constitutes a plant fiber selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, has 2 to 4 carbon atoms. The one or more chemically modified plant fibers modified with the acyl group of 1 are preferable because they are easily produced.
 これらの中でも、ラミー、リネン、アバカ、及びケナフからなる群から選ばれる植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基で修飾された1種又は2種以上の化学修飾植物繊維が好ましく、ラミーを構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基で修飾された化学修飾植物繊維がより好ましく、ラミーを構成するセルロースの水酸基の一部の水素原子がアセチル基で修飾された化学修飾植物繊維が最も好ましい。 Among these, some hydrogen atoms of the hydroxyl groups of cellulose constituting the plant fiber selected from the group consisting of ramie, linen, abaca, and kenaf, one or two modified with an acyl group having 2 to 4 carbon atoms. More than one kind of chemically modified plant fiber is preferable, more preferably a chemically modified plant fiber in which a part of hydrogen atoms of the hydroxyl group of cellulose constituting the ramie is modified with an acyl group having 2 to 4 carbon atoms, and cellulose constituting the ramie Most preferably is a chemically modified plant fiber in which a part of hydrogen atoms of the hydroxyl groups of is modified with acetyl groups.
 非化学修飾植物繊維又は化学修飾植物繊維を含む植物繊維系繊維のうちでは、ラミー又はアセチル化ラミーが、本発明の繊維強化樹脂組成物の成形体の耐衝撃性の向上又は維持に好適に寄与することから特に好ましい。 Among plant fiber fibers including non-chemically modified plant fibers or chemically modified plant fibers, ramie or acetylated ramie suitably contributes to improvement or maintenance of impact resistance of the molded article of the fiber-reinforced resin composition of the present invention. Therefore, it is particularly preferable.
 化学修飾植物繊維の修飾程度
 化学修飾植物繊維の修飾程度(以下、「置換度」、又は「DS」ともいう)とは、ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、前記式(2)で表されるカルボキシ基含有アシル基、又は、当該カルボキシ基含有アシル基の塩で修飾された程度のことをいう。
Degree of modification of chemically modified plant fiber The degree of modification of chemically modified plant fiber (hereinafter also referred to as “degree of substitution” or “DS”) consists of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton. A part of the hydrogen atoms of the hydroxyl group of cellulose constituting the plant fiber selected from the group has an acyl group having 2 to 4 carbon atoms, a carboxy group-containing acyl group represented by the formula (2), or the carboxy group-containing The degree of modification with a salt of an acyl group.
 前記植物繊維はセルロースの含量が高いので、理論的には置換度の上限は3に近いが、好ましい置換度(DS)は、0.05~1.5程度であり、更に好ましくは0.1~1.2程度である。 Since the plant fiber has a high content of cellulose, the upper limit of the substitution degree is theoretically close to 3, but the preferable substitution degree (DS) is about 0.05 to 1.5, more preferably about 0.1 to 1.2.
 このような置換度に設定することによって、植物繊維中のセルロースの本来の結晶化度を損なうことなく樹脂との親和性の向上を図ることができる。 By setting such a degree of substitution, it is possible to improve the affinity with the resin without impairing the original crystallinity of the cellulose in the plant fiber.
 置換基が炭素数2~4のアシル基の場合、置換度(DS)は0.2~1.2程度がより好ましく、0.3~1.0が更に好ましい。置換基がアセチル基の場合、好ましいDSは0.3~1.2であり、より好ましくは0.3~0.7である。 When the substituent is an acyl group having 2 to 4 carbon atoms, the substitution degree (DS) is more preferably about 0.2 to 1.2, further preferably 0.3 to 1.0. When the substituent is an acetyl group, the preferred DS is 0.3 to 1.2, more preferably 0.3 to 0.7.
 化学修飾植物繊維は、セルロース系パルプ(CP)の代わりに植物繊維を用いて、前記の化学修飾セルロース系パルプ(化学修飾CP)の製造方法に準じて、植物繊維をアシル化又はハーフエステル化することによって製造することができる。 Chemically modified plant fiber is obtained by using plant fiber instead of cellulose pulp (CP), and acylating or half-esterifying the plant fiber according to the method for producing chemically modified cellulose pulp (chemically modified CP) described above. It can be manufactured.
(1-3)(C)熱可塑性樹脂
 本発明の繊維強化樹脂組成物に使用されるマトリクスとして、種々の樹脂の中でも熱可塑性樹脂が、生産性及び汎用性に優れることから好適に使用される。
(1-3) (C) Thermoplastic resin As a matrix used in the fiber-reinforced resin composition of the present invention, thermoplastic resins among various resins are preferably used because of their excellent productivity and versatility. ..
 熱可塑性樹脂として、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)、及び変性ポリフェニレンエーテル(m-PPE)が挙げられる。 As thermoplastic resin, polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy), and modified polyphenylene Ether (m-PPE) is mentioned.
 熱可塑性樹脂は、前記樹脂を単独で使用してもよく、2種以上の混合樹脂として用いてもよい。 As the thermoplastic resin, the above resins may be used alone or as a mixed resin of two or more kinds.
 ポリアミド(PA)として、ポリアミド6(ナイロン6、PA6)、ポリアミド66(ナイロン66、PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド11(PA11)、ポリアミド12(PA12)、ポリアミド46、ポリアミドXD10(PAXD10)、ポリアミドMXD6(PAMXD6)等を好ましく用いることができる。 As polyamide (PA), polyamide 6 (nylon 6, PA6), polyamide 66 (nylon 66, PA66), polyamide 610 (PA610), polyamide 612 (PA612), polyamide 11 (PA11), polyamide 12 (PA12), polyamide 46 Polyamide XD10 (PAXD10), polyamide MXD6 (PAMXD6) and the like can be preferably used.
 ポリオレフィンとしては、ポリプロピレン(PP)、ポリエチレン(PE)とポリプロピレン(PP)との共重合体、無水マレイン酸変性ポリプロピレン(MAPP)、ポリエチレン(PE、特に高密度ポリエチレンHDPE)等を好ましく用いることができる。 As the polyolefin, polypropylene (PP), a copolymer of polyethylene (PE) and polypropylene (PP), maleic anhydride modified polypropylene (MAPP), polyethylene (PE, especially high density polyethylene HDPE), etc. can be preferably used. ..
 前記ポリプロピレン(PP)として、イソタクチックポリプロピレン(iPP)、シンジオタクチックポリプロピレン(sPP)等を好ましく用いることができる。 As the polypropylene (PP), isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), etc. can be preferably used.
 脂肪族ポリエステルとして、ジオール類とコハク酸、吉草酸等の脂肪族ジカルボン酸との重合体又は共重合体(例えば、ポリブチレンサクシネート(PBS))、グリコール酸又は乳酸等のヒドロキシカルボン酸の単独重合体又は共重合体(例えばポリ乳酸、ポリε-カプロラクトン(PCL)等)、並びにジオール類、脂肪族ジカルボン酸及び前記ヒドロキシカルボン酸の共重合体等を好ましく使用することができる。 As an aliphatic polyester, a polymer or copolymer of a diol and an aliphatic dicarboxylic acid such as succinic acid or valeric acid (for example, polybutylene succinate (PBS)), or a hydroxycarboxylic acid such as glycolic acid or lactic acid alone. Polymers or copolymers (for example, polylactic acid, poly ε-caprolactone (PCL), etc.), and copolymers of diols, aliphatic dicarboxylic acids and the above hydroxycarboxylic acids and the like can be preferably used.
 芳香族ポリエステルとして、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等のジオール類とテレフタル酸等の芳香族ジカルボン酸との重合体等を好ましく使用することができる。具体的には、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタラート(PBT)等を好ましく用いることができる。 As the aromatic polyester, polymers of diols such as ethylene glycol, propylene glycol and 1,4-butanediol and aromatic dicarboxylic acids such as terephthalic acid can be preferably used. Specifically, for example, polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT) and the like can be preferably used.
 ポリアセタール(ポリオキシメチレンともいう、POM)としては、パラホルムアルデヒドの均一重合体に加えて、パラホルムアルデヒドとオキシエチレンとの共重合体も好ましく使用することができる。 As the polyacetal (also referred to as polyoxymethylene, POM), in addition to a homopolymer of paraformaldehyde, a copolymer of paraformaldehyde and oxyethylene can be preferably used.
 ポリカーボネート(PC)には、ビスフェノールA又はその誘導体であるビスフェノール類と、ホスゲン又はフェニルジカーボネートとの反応物を好ましく使用することができる。 As the polycarbonate (PC), a reaction product of bisphenol A or a bisphenol derivative thereof and phosgene or phenyldicarbonate can be preferably used.
 ポリスチレン(PS)として、汎用PS(GPPS)に加えて、PSマトリックスにゴム成分を分散させて耐衝撃性を改良したPS(HIPS)を好適に使用することができる。ポリスチレン(PS)に加えて、スチレンの共重合体(アクリロニトリル-ブタジエン-スチレン共重合体、ABS樹脂)は、本発明の繊維強化樹脂組成物のマトリクスとして好ましい樹脂である。 As polystyrene (PS), in addition to general-purpose PS (GPPS), PS (HIPS) with improved impact resistance by dispersing rubber component in PS matrix can be preferably used. In addition to polystyrene (PS), styrene copolymers (acrylonitrile-butadiene-styrene copolymer, ABS resin) are preferred resins as the matrix of the fiber-reinforced resin composition of the present invention.
 ポリカーボネート(PC)とABSとのブレンド品(PC-ABSアロイ)は、耐衝撃性、耐候性及び成形加工性に優れているので、本発明の繊維強化樹脂組成物のマトリクスとして用いることが好ましい。 Since a blended product of polycarbonate (PC) and ABS (PC-ABS alloy) is excellent in impact resistance, weather resistance and molding processability, it is preferable to use it as the matrix of the fiber reinforced resin composition of the present invention.
 PPEとPSとのブレンド品(PPE-PSブレンド品)は、ポリフェニレンエーテル(PPE)の変性品(m-PPE)の一種である。PPE-PSブレンド品は、耐熱性が高く、また軽量であることから、用いることが好ましい。 A blended product of PPE and PS (PPE-PS blended product) is a type of modified polyphenylene ether (PPE) (m-PPE). The PPE-PS blend product is preferably used because it has high heat resistance and is lightweight.
 熱可塑性樹脂の中でも、力学的特性、耐熱性、表面平滑性及び外観に優れるという点から、PA、POM、PP、MAPP、PE、ポリ乳酸、乳酸共重合樹脂、PBS、PET、PPT、PBT、PS、ABS樹脂及びPC-ABSアロイからなる群から選ばれる少なくとも1種の樹脂を用いることが好ましい。 Among thermoplastic resins, PA, POM, PP, MAPP, PE, polylactic acid, lactic acid copolymer resin, PBS, PET, PPT, PBT, from the viewpoint of excellent mechanical properties, heat resistance, surface smoothness and appearance. It is preferable to use at least one resin selected from the group consisting of PS, ABS resin and PC-ABS alloy.
 また、上記以外の樹脂、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、(メタ)アクリル系樹脂、(熱可塑性)ポリウレタン、ビニルエーテル樹脂、ポリスルホン系樹脂、セルロース系樹脂(例えばトリアセチル化セルロース、ジアセチル化セルロース等)等も好ましく使用することができる。 Further, resins other than the above, for example, polyvinyl chloride, polyvinylidene chloride, fluororesin, (meth) acrylic resin, (thermoplastic) polyurethane, vinyl ether resin, polysulfone resin, cellulose resin (eg triacetylated cellulose, (Diacetylated cellulose, etc.) can also be preferably used.
(2)繊維強化樹脂組成物における(A)、(B)、及び(C)成分の含有割合
 本発明の繊維強化樹脂組成物中の(A)MFCの含有割合は、(C)熱可塑性樹脂100質量部に対して、2~50質量部程度が好ましく、2~40質量部程度がより好ましく、3~35質量部程度が更に好ましい。繊維強化樹脂組成物中の(A)MFCの含有割合は、(C)熱可塑性樹脂100質量部に対して、5~30質量部程度であることが最も好ましい。
(2) Content ratio of components (A), (B), and (C) in the fiber-reinforced resin composition The content ratio of (A) MFC in the fiber-reinforced resin composition of the present invention is (C) thermoplastic resin. The amount is preferably about 2 to 50 parts by mass, more preferably about 2 to 40 parts by mass, still more preferably about 3 to 35 parts by mass, relative to 100 parts by mass. The content ratio of (A) MFC in the fiber reinforced resin composition is most preferably about 5 to 30 parts by mass with respect to 100 parts by mass of the (C) thermoplastic resin.
 本発明の繊維強化樹脂組成物中の(B)植物繊維の含有割合は、(C)熱可塑性樹脂100質量部に対して、1~40質量部程度が好ましく、2~30質量部程度がより好ましく、2.5~25質量部程度が更に好ましい。繊維強化樹脂組成物中の(B)植物繊維(好ましくはラミー又はアセチル化ラミー)の含有割合は、(C)熱可塑性樹脂100質量部に対して、3~15質量部程度であることが最も好ましい。 The content ratio of the (B) vegetable fiber in the fiber-reinforced resin composition of the present invention is preferably about 1 to 40 parts by mass, more preferably about 2 to 30 parts by mass, relative to 100 parts by mass of the (C) thermoplastic resin. It is preferably about 2.5 to 25 parts by mass and more preferably about 2.5 to 25 parts by mass. The content ratio of the (B) vegetable fiber (preferably ramie or acetylated ramie) in the fiber reinforced resin composition is most preferably about 3 to 15 parts by mass relative to 100 parts by mass of the (C) thermoplastic resin. preferable.
 本発明の繊維強化樹脂組成物中の(B)植物繊維に対する(A)MFCの割合、すなわち、(A)MFCの配合量/(B)植物繊維の配合量(A/B)は、質量比で0.2~4が好ましく、より好ましくは0.5~3であり、更に好ましくは0.5~2である。 The ratio of (A) MFC to (B) vegetable fiber in the fiber-reinforced resin composition of the present invention, that is, (A) MFC content / (B) vegetable fiber content (A / B) is a mass ratio. Is preferably 0.2 to 4, more preferably 0.5 to 3, and even more preferably 0.5 to 2.
 (A)MFCを(C)熱可塑性樹脂に配合することにより、力学的特性、耐熱性、表面平滑性及び外観に優れる繊維強化樹脂組成物を得ることができる。 By blending (A) MFC with (C) thermoplastic resin, a fiber reinforced resin composition having excellent mechanical properties, heat resistance, surface smoothness and appearance can be obtained.
 (B)植物繊維を(A)MFCと共に(C)熱可塑性樹脂に配合することによって、軽量で力学的特性に優れた繊維強化樹脂組成物を得ることができる。また、(B)植物繊維を(A)MFCと共に(C)熱可塑性樹脂に配合することによって、作製された複合体(成形体)の耐衝撃性を向上又は維持して、強度及び弾性率を向上させることができる。特にラミー繊維又は/及び化学修飾ラミー繊維を化学修飾MFCと共に熱可塑性樹脂に配合することにより、複合体(成形体)の弾性率、及び強度ばかりか耐衝撃性も改善することが可能となる。 By blending (B) vegetable fibers with (A) MFC in (C) thermoplastic resin, a lightweight fiber-reinforced resin composition with excellent mechanical properties can be obtained. Also, by blending (B) vegetable fiber with (A) MFC in (C) thermoplastic resin, the impact resistance of the composite (molded body) produced is improved or maintained, and the strength and elastic modulus are improved. Can be improved. In particular, by blending the ramie fiber and / or the chemically modified ramie fiber with the chemically modified MFC in the thermoplastic resin, not only the elastic modulus and strength of the composite (molded body) but also impact resistance can be improved.
 本発明の繊維強化樹脂組成物は、(A)MFC、及び(B)植物繊維を含んでいても、汎用のプラスチックと同様に、加熱すると軟化して成形し易いことから、良好な成形加工性を発現することができる。 The fiber-reinforced resin composition of the present invention, even if containing (A) MFC, and (B) vegetable fiber, as well as general-purpose plastic, because it is softened and easily molded when heated, good moldability Can be expressed.
 本発明の繊維強化樹脂組成物には、前記(A)MFC、(B)植物繊維、及び(C)熱可塑性樹脂に加え、例えば、相溶化剤;界面活性剤;酸化防止剤;難燃剤;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤等の添加剤を任意に配合してもよい。 In the fiber-reinforced resin composition of the present invention, in addition to (A) MFC, (B) vegetable fiber, and (C) thermoplastic resin, for example, a compatibilizer; a surfactant; an antioxidant; a flame retardant; Inorganic compounds such as tannin, zeolite, ceramics, metal powder; colorants; plasticizers; fragrances; pigments; flow control agents; leveling agents; conductive agents; antistatic agents; UV absorbers; UV dispersants; deodorants, etc. You may mix | blend an additive arbitrarily.
 上記添加剤の含有量は、本発明の効果が損なわれない範囲で適宜調整することができる。 The content of the above additives can be appropriately adjusted within the range where the effects of the present invention are not impaired.
 本発明の繊維強化樹脂組成物が、(A)MFCとして(A-1)化学修飾MFCを含む場合、この繊維同士が水素結合によって自己凝集することを抑制することができる。よって、(A-1)化学修飾MFC、(B)植物繊維、及び(C)熱可塑性樹脂を混合した場合、(A-1)化学修飾MFC同士の凝集が抑制され、(A-1)化学修飾MFCと(B)植物繊維とが(C)熱可塑性樹脂中で良好な分散性を示す。その結果、本発明の繊維強化樹脂組成物は、力学的特性、耐熱性、表面平滑性及び外観に優れる。 When the fiber-reinforced resin composition of the present invention contains (A-1) chemically modified MFC as (A) MFC, self-aggregation of these fibers due to hydrogen bond can be suppressed. Therefore, when (A-1) chemically modified MFC, (B) vegetable fiber, and (C) thermoplastic resin are mixed, (A-1) aggregation of chemically modified MFCs is suppressed, and (A-1) chemical The modified MFC and the (B) vegetable fiber show good dispersibility in the (C) thermoplastic resin. As a result, the fiber-reinforced resin composition of the present invention is excellent in mechanical properties, heat resistance, surface smoothness and appearance.
 (A)MFCとして(A-1)化学修飾MFCを含む繊維強化樹脂組成物において、(A-1)化学修飾MFCは、その溶解パラメータ(SP)が(C)熱可塑性樹脂のSPに近い方が好ましい。 In a fiber-reinforced resin composition containing (A-1) chemically modified MFC as (A) MFC, the solubility parameter (SP) of (A-1) chemically modified MFC is closer to that of (C) thermoplastic resin. Is preferred.
 (C)熱可塑性樹脂として極性の高い樹脂を用いる場合には、(A)MFCとして、置換基Rが例えばアセチル基である時は、その置換度(DS)が0.4~1.2程度で、その溶解度パラメータが12~15程度であるアセチル化MFCを使用することが好ましい。極性の高い樹脂として、例えば、PA、POM、ポリ乳酸等が好ましい。 When (C) a highly polar resin is used as the thermoplastic resin, (A) MFC, when the substituent R is, for example, an acetyl group, its substitution degree (DS) is about 0.4 to 1.2 and its solubility is It is preferred to use acetylated MFCs with parameters around 12-15. As the highly polar resin, for example, PA, POM, polylactic acid and the like are preferable.
 (C)熱可塑性樹脂として極性の小さい樹脂を用いる場合には、(A)MFCとして、置換度(DS)が1.2程度以上であり、溶解度パラメータが8~12程度である化学修飾MFCを使用することが好ましい。極性の小さい樹脂として、例えば、PP、PE等が好ましい。化学修飾MFCとしては、置換度(DS)が1.2程度以上のアセチル化MFCが好ましい。 (C) When using a resin with a small polarity as the thermoplastic resin, use (A) MFC that is a chemically modified MFC having a substitution degree (DS) of about 1.2 or more and a solubility parameter of about 8 to 12 It is preferable. As the resin having a small polarity, for example, PP, PE and the like are preferable. As the chemically modified MFC, an acetylated MFC having a substitution degree (DS) of about 1.2 or more is preferable.
(3)繊維強化樹脂組成物の製造方法
 製法1
 本発明の繊維強化樹脂組成物は、(A)MFC、(B)植物繊維、及び(C)熱可塑性樹脂(マトリクス材料)を溶融混練し、(A)MFCと(B)植物繊維とを(C)熱可塑性樹脂中に分散させるすることにより製造することができる。
(3) Manufacturing method of fiber-reinforced resin composition Manufacturing method 1
The fiber-reinforced resin composition of the present invention comprises (A) MFC, (B) plant fiber, and (C) thermoplastic resin (matrix material) melt-kneaded to obtain (A) MFC and (B) plant fiber ( C) It can be produced by dispersing it in a thermoplastic resin.
 製法2
 本発明の繊維強化樹脂組成物は、(A)MFCが化学修飾MFCである場合には、化学修飾セルロース系パルプ(化学修飾CP)、(B)植物繊維、及び(C)熱可塑性樹脂を一括して混練機等を用いて溶融混練して製造することが好ましい。この場合、溶融混練中に化学修飾CPを化学修飾MFCに解繊しながらそれらを複合化することができるので、化学修飾MFCを別途調製し、これを(B)植物繊維及び(C)熱可塑性樹脂と混練して繊維強化樹脂組成物を製造する方法よりも容易に製造することができる。
Manufacturing method 2
When the (A) MFC is a chemically modified MFC, the fiber-reinforced resin composition of the present invention contains a chemically modified cellulosic pulp (chemically modified CP), (B) plant fiber, and (C) a thermoplastic resin at once. Then, it is preferable to melt-knead and manufacture using a kneader or the like. In this case, it is possible to combine the chemically modified CP with the chemically modified MFC while defibrating it during melt-kneading. Therefore, prepare the chemically modified MFC separately, and use the (B) plant fiber and (C) thermoplastic It can be produced more easily than the method of producing a fiber-reinforced resin composition by kneading with a resin.
 よって、製法2は、(A)MFCが化学修飾MFCである場合に、原料として(AP)化学修飾CPを用いる製造方法である。この製造方法は、具体的には、(A-1)化学修飾ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、
(AP)化学修飾セルロース系パルプ、(B)植物繊維、及び(C)熱可塑性樹脂を溶融混練し、当該溶融混練中に化学修飾セルロース系パルプをミクロフィブリル化する工程を含む方法である。
Therefore, the manufacturing method 2 is a manufacturing method using (AP) chemically modified CP as a raw material when (A) MFC is a chemically modified MFC. This production method is specifically a method for producing a fiber-reinforced resin composition containing (A-1) chemically modified microfibrillated cellulosic fibers, (B) plant fibers, and (C) thermoplastic resin. hand,
The method includes a step of melt-kneading (AP) the chemically modified cellulosic pulp, (B) plant fiber, and (C) a thermoplastic resin, and micro-fibrillating the chemically modified cellulosic pulp during the melt-kneading.
 そして、この製造方法は、前記(AP)化学修飾セルロース系パルプ、前記(B)植物繊維、及び前記(A-1)化学修飾ミクロフィブリル化セルロース系繊維が、それぞれ下記要件(ap)、(b)、及び(a-1)を満たす。
要件(ap):
 (AP)化学修飾セルロース系パルプが、下式(1-1):
(Lg)Cell-O-R (1-1)
〔式(1-1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。-O-Rは、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、炭素数2~4のアシル基、下式(2):
And this manufacturing method, the (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber, the following requirements (ap), (b ) And (a-1) are satisfied.
Requirements (ap):
(AP) Chemically modified cellulosic pulp has the following formula (1-1):
(Lg) Cell-OR (1-1)
[In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer. -OR indicates that some of the hydrogen atoms of the hydroxyl groups in the polysaccharide and lignin constituting the cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer are replaced by the substituent R, and R is , An acyl group having 2 to 4 carbon atoms, the following formula (2):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
で表される化学修飾セルロース系高分子で構成される化学修飾セルロース系パルプである。
要件(b):
 (B)植物繊維が、
(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
Requirement (b):
(B) vegetable fiber
(B-1) one or more plant fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
(B-2) A part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
要件(a-1):
 (A-1)化学修飾ミクロフィブリル化セルロース系繊維が、前記式(1-1)で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
Requirement (a-1):
The (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
 製法2では、混練中のせん断応力により化学修飾CPのフィブリル化が良好に進行する。混練中に、化学修飾CPは樹脂中で(A)化学修飾MFCに良好に解繊される。製法2によれば、(A)化学修飾MFCと(B)植物繊維とが、(C)熱可塑性樹脂中に良好に分散された繊維強化樹脂組成物を製造することができる。 In the manufacturing method 2, fibrillation of chemically modified CP proceeds well due to shear stress during kneading. During the kneading, the chemically modified CP is well defibrated in the resin into the (A) chemically modified MFC. According to the production method 2, it is possible to produce a fiber-reinforced resin composition in which (A) the chemically modified MFC and (B) vegetable fiber are favorably dispersed in the (C) thermoplastic resin.
 製法3
 本発明の繊維強化樹脂組成物は、(A)MFCが化学修飾MFCである場合に、(AP)化学修飾CPと(C)熱可塑性樹脂とを混練して溶融混練中に化学修飾CPを化学修飾MFCに解繊して混練物を得、次いで、得られた混練物と、(B)植物繊維又は植物繊維と熱可塑性樹脂とを含む樹脂組成物とを溶融混練する方法によって製造することができる。
Manufacturing method 3
The fiber-reinforced resin composition of the present invention, when (A) MFC is a chemically modified MFC, (AP) chemically modified CP and (C) a thermoplastic resin are kneaded to chemically modify the chemically modified CP during melt kneading. A kneaded product is obtained by defibration into a modified MFC, and then the obtained kneaded product and (B) a vegetable fiber or a resin composition containing a vegetable fiber and a thermoplastic resin can be produced by a method of melt kneading. it can.
 よって、製法3は、(A)MFCが化学修飾MFCである場合に、原料として(AP)化学修飾CPを用いる別の製造方法である。この方法は、化学修飾CP及び熱可塑性樹脂を一緒に溶融混練した後、この混練物に、植物繊維、又は、植物繊維と熱可塑性樹脂とを含有する樹脂組成物を加えて溶融混練する方法である。 具体的には、この方法は、(A-1)化学修飾ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であって、
工程(1):
 (AP)化学修飾セルロース系パルプ、及び(C)熱可塑性樹脂を混練して当該溶融混練中に化学修飾セルロース系パルプをミクロフィブリル化する工程、及び
工程(2):
 前記工程(1)で得られた混練物と、(B)植物繊維、又は、植物繊維と熱可塑性樹脂とを含む樹脂組成物とを複合化する工程
を含む、製造方法である。
Therefore, the production method 3 is another production method using (AP) chemically modified CP as a raw material when (A) MFC is a chemically modified MFC. This method is a method in which, after melt-kneading the chemically modified CP and the thermoplastic resin together, the kneaded material is melt-kneaded by adding the resin composition containing the plant fiber or the plant fiber and the thermoplastic resin. is there. Specifically, this method is a method for producing a fiber-reinforced resin composition containing (A-1) chemically modified microfibrillated cellulosic fiber, (B) plant fiber, and (C) thermoplastic resin. hand,
Process (1):
(AP) a chemically modified cellulosic pulp and (C) a thermoplastic resin are kneaded to microfibrillize the chemically modified cellulosic pulp during the melt-kneading, and step (2):
A production method comprising a step of compounding the kneaded product obtained in the step (1) with (B) vegetable fiber or a resin composition containing a vegetable fiber and a thermoplastic resin.
 そして、この製造方法は、前記(AP)化学修飾セルロース系パルプ、前記(B)植物繊維、及び前記(A-1)化学修飾ミクロフィブリル化セルロース系繊維が、それぞれ下記要件(ap)、(b)、及び(a-1)を満たす。
要件(ap):
 (AP)化学修飾セルロース系パルプが、下式(1-1):
(Lg)Cell-O-R  (1-1)
〔式(1-1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。-O-Rは、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、炭素数2~4のアシル基、下式(2):
And this manufacturing method, the (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber, the following requirements (ap), (b ) And (a-1) are satisfied.
Requirements (ap):
(AP) Chemically modified cellulosic pulp has the following formula (1-1):
(Lg) Cell-OR (1-1)
[In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer. -OR indicates that some of the hydrogen atoms of the hydroxyl groups in the polysaccharide and lignin constituting the cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer are replaced by the substituent R, and R is , An acyl group having 2 to 4 carbon atoms, the following formula (2):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
で表される化学修飾セルロース系高分子で構成される化学修飾セルロース系パルプである。
要件(b):
 (B)植物繊維が、
(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
Requirement (b):
(B) vegetable fiber
(B-1) one or more plant fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
(B-2) A part of hydrogen atoms of a hydroxyl group of cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
要件(a-1):
 (A-1)化学修飾ミクロフィブリル化セルロース系繊維が、前記式(1-1)で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。 
(In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
Requirement (a-1):
The (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
 製法3では、混練中のせん断応力により化学修飾CPのフィブリル化が良好に進行する。混練中に、化学修飾CPは樹脂中で(A-1)化学修飾MFCに良好に解繊される。製法3によれば、(A-1)化学修飾MFCと(B)植物繊維とが(C)熱可塑性樹脂中に良好に分散された繊維強化樹脂組成物を製造することができる。また製法3によると、製法2を用いるよりも耐衝撃性の良好な繊維強化組成物を製造することができる。 In process 3, shear stress during kneading promotes fibrillation of chemically modified CP satisfactorily. During the kneading, the chemically modified CP is well defibrated in the resin into the (A-1) chemically modified MFC. According to the production method 3, it is possible to produce a fiber-reinforced resin composition in which (A-1) chemically modified MFC and (B) vegetable fiber are favorably dispersed in the (C) thermoplastic resin. Further, according to the production method 3, it is possible to produce a fiber-reinforced composition having better impact resistance than the production method 2.
 製法3に用いられる、植物繊維と熱可塑性樹脂とを含む樹脂組成物として、(I)(B)植物繊維と(C)熱可塑性樹脂との溶融混合物、及び(II)(B)植物繊維と(C)熱可塑性樹脂との粉末混合物のどちらも使用することができる。 As the resin composition containing plant fibers and a thermoplastic resin used in the production method 3, (I) a melt mixture of (B) plant fibers and (C) thermoplastic resins, and (II) (B) plant fibers Both (C) powder mixtures with thermoplastics can be used.
 各製法における溶融混練時の加熱設定温度は、本発明に使用する熱可塑性樹脂を供給する業者が推奨する、最低加工温度(A℃)から、この推奨加工温度より20℃高い温度(A+20℃)の範囲が好ましい。 The heating set temperature at the time of melt kneading in each manufacturing method is a temperature (A + 20) higher than the recommended processing temperature (A + 20) from the minimum processing temperature (A ° C) recommended by the supplier that supplies the thermoplastic resin used in the present invention. C.) range is preferred.
 (C)熱可塑性樹脂としてPA6を使用する場合、溶融混練時の加熱設定温度は225~240℃が好ましい。POMを使用する場合、溶融混練時の加熱設定温度はは170℃~190℃が好ましい。PP及びMAPPを使用する場合、溶融混練時の加熱設定温度は160~180℃が好ましい。 (C) When PA6 is used as the thermoplastic resin, the heating set temperature during melt kneading is preferably 225 to 240 ° C. When POM is used, the heating set temperature during melt kneading is preferably 170 ° C to 190 ° C. When PP and MAPP are used, the heating set temperature during melt kneading is preferably 160 to 180 ° C.
 混合温度をこの温度範囲に設定することにより、(A)化学修飾MFC又は化学修飾CPと(B)植物繊維と(C) 熱可塑性樹脂とを均一に混合することができる。 By setting the mixing temperature in this temperature range, (A) chemically modified MFC or chemically modified CP, (B) plant fiber and (C) thermoplastic resin can be uniformly mixed.
 上記製造法のうち、製法2及び製法3では、未解繊の化学修飾CPを樹脂と混合しながら混練機の剪断応力で解繊を行うため、製造費用の低コスト化を図ることができる。 Among the above manufacturing methods, in manufacturing method 2 and manufacturing method 3, since the undefibrated chemically modified CP is mixed with the resin and defibration is performed by the shear stress of the kneading machine, the manufacturing cost can be reduced.
(4)繊維強化樹脂組成物の成形体
 本発明の成形体は繊維強化樹脂組成物からなる。
(4) Molded product of fiber reinforced resin composition The molded product of the present invention comprises a fiber reinforced resin composition.
 本発明の繊維強化樹脂組成物を用いて、成形体を製造することができる。 A molded product can be produced using the fiber-reinforced resin composition of the present invention.
 本発明の繊維強化樹脂組成物から、必要に応じて、フィルム状、シート状、板状、ペレット状、粉末状等の形状を有する成形材料を調製し、この成形材料を成形体の製造に供することができる。 From the fiber-reinforced resin composition of the present invention, if necessary, a molding material having a shape such as a film shape, a sheet shape, a plate shape, a pellet shape, and a powder shape is prepared, and this molding material is used for manufacturing a molded body. be able to.
 本発明の繊維強化樹脂組成物又は成形材料を、各種公知の成形方法で成形して、板状、棒状、立体構造等の各種形状の成形体を製造することができる。成形方法として、金型成形法、射出成形法、押出成形法、中空成形法、発泡成形法等が挙げられる。これらの中でも、射出成形法が、成形速度が速く、また複雑な形状の成形が容易であることから、生産性及び製造コストの点で優れている。 The fiber-reinforced resin composition or molding material of the present invention can be molded by various known molding methods to produce molded products of various shapes such as plate-like, rod-like, and three-dimensional structures. Examples of the molding method include a mold molding method, an injection molding method, an extrusion molding method, a hollow molding method, and a foam molding method. Among these, the injection molding method is excellent in productivity and manufacturing cost because the molding speed is high and molding of a complicated shape is easy.
 本発明の成形体は、(A)MFC、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物から成形されるので、ガラス繊維などの比重の大きな繊維を含む繊維強化樹脂組成物から成形される成形体と比べて、より軽量である。また、ガラス繊維、炭素繊維等の無機繊維を含む繊維強化樹脂組成物から成形される成形体と比べてサーマルリサイクルが容易である。また、本発明の成形体は、LCCO2(ライフサイクルCO2)において、二酸化炭素排出量の低減に有利である。 Since the molded article of the present invention is molded from a fiber reinforced resin composition containing (A) MFC, (B) plant fiber, and (C) thermoplastic resin, a fiber containing a fiber having a large specific gravity such as glass fiber. It is lighter than a molded product molded from the reinforced resin composition. In addition, thermal recycling is easier than that of a molded product molded from a fiber-reinforced resin composition containing an inorganic fiber such as glass fiber or carbon fiber. Further, the molded product of the present invention is advantageous in reducing carbon dioxide emissions in LCCO2 (life cycle CO2).
 本発明の成形体を、自動車、電車、船舶、飛行機等の輸送機の内装材、外装材、構造材等に使用することにより、輸送機のエネルギー効率の向上及び排ガスの低減を達成することができる。 By using the molded article of the present invention as an interior material, an exterior material, a structural material of a transportation machine such as an automobile, an electric train, a ship, an airplane, etc., it is possible to achieve improvement of energy efficiency of a transportation machine and reduction of exhaust gas. it can.
 本発明の成形体を、パソコン、テレビ、電話等の電化製品等の筺体、構造材、内部部品等に使用することにより、それらの軽量化を図ることができる。軽量化によって、それら電化製品の輸送時のエネルギー消費を低減することができ、また、電化製品を快適に使用することができる。 By using the molded product of the present invention for housings, structural materials, internal parts, etc. of electric appliances such as personal computers, televisions, and telephones, it is possible to reduce their weight. By reducing the weight, it is possible to reduce energy consumption during transportation of the electric appliances, and it is possible to comfortably use the electric appliances.
 本発明の成形体を、建築材に使用することにより、建築物の耐震性を改善することが可能となる。 By using the molded product of the present invention as a building material, it becomes possible to improve the earthquake resistance of the building.
 以下、実施例及び比較例(参照例)を挙げて本発明を更に詳細に説明する。本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples (reference examples). The present invention is not limited to these examples.
 実施例において、セルロース系パルプ、化学修飾セルロース系パルプ、非修飾MFC、化学修飾MFC、植物繊維、化学修飾植物繊維、及び熱可塑性樹脂等の各種成分の含量は、特に断りがない限り質量%で表示する。 In the examples, the content of various components such as cellulosic pulp, chemically modified cellulosic pulp, unmodified MFC, chemically modified MFC, plant fiber, chemically modified plant fiber, and thermoplastic resin is% by mass unless otherwise specified. indicate.
 そして、本明細書において、組成物中のセルロース系繊維の含有割合は、組成物全質量中の繊維成分(セルロース+ヘミセルロース)の質量割合で表示する。すなわち、組成物中の化学修飾セルロース系繊維の含有割合は、非化学修飾繊維に換算した質量の含有割合(百分率)で示される。 In the present specification, the content ratio of the cellulosic fiber in the composition is represented by the mass ratio of the fiber component (cellulose + hemicellulose) in the total mass of the composition. That is, the content rate of the chemically modified cellulosic fiber in the composition is indicated by the content rate (percentage) of the mass converted into the non-chemically modified fiber.
 化学修飾セルロース系繊維及び化学修飾植物繊維を含有する樹脂組成物(又はその成形体)について、(a)樹脂の種類の表示及びその含有量(百分率)、(b)化学修飾繊維の種類(略称)の表示とその未修飾繊維としての含有量(百分率)の表示を組み合わせて表示する方法を以下に例示する。 Regarding a resin composition (or a molded product thereof) containing a chemically modified cellulosic fiber and a chemically modified plant fiber, (a) the indication of the type of resin and its content (percentage), (b) the type of chemically modified fiber (abbreviation) The method of combining and displaying the content of () and the content (percentage) of the unmodified fiber is illustrated below.
 例えば、 (i)ポリアミド6(PA6)とその含有百分率(a)、(ii)化学修飾トドマツ繊維(Acトドマツ)とその未修飾トドマツ換算の含有百分率(b)、(iii)化学修飾ラミー(Acラミー)とその未修飾ラミー換算の含有百分率(c)を使用して、PA6、Acトドマツ、及びAcラミーを含有する組成物について表記すると、「PA6/Acトドマツ/Acラミー= a/b/c」となる(但しa+b+c=100)。 For example, (i) Polyamide 6 (PA6) and its content percentage (a), (ii) Chemically modified Todomatsu fiber (Ac Todomatsu) and its unmodified Todomatsu equivalent percentage (b), (iii) Chemically modified ramie (Ac Todomatsu) Lamy) and its unmodified Lamy equivalent content percentage (c), PA6, Ac Todomatsu, and the composition containing Ac Lamy is described as "PA6 / Ac Todomatsu / Ac Lamy = a / b / c (However, a + b + c = 100).
I.試験方法
 実施例及び比較例等で使用した試験方法は以下の通りである。
I. Test Method The test method used in Examples and Comparative Examples is as follows.
(1)リグニンの定量方法(クラーソン法)
 ガラスファイバーろ紙(GA55)を110℃オーブンで恒量になるまで乾燥させ、デシケータ内で放冷した後、計量した。110℃で絶乾させた試料(約0.2g)を精秤し、50mL容チューブに入れた。
(1) Lignin quantification method (Klarson method)
The glass fiber filter paper (GA55) was dried in a 110 ° C. oven to a constant weight, allowed to cool in a desiccator, and then weighed. A sample (about 0.2 g) absolutely dried at 110 ° C. was precisely weighed and put in a 50 mL tube.
 72%濃硫酸3mL加え、内容物が均一になるようにガラス棒で適宜押しつぶしながら、30℃の温水にチューブを入れて1時間保温した。次いで、チューブ内容物と蒸留水84gとを三角フラスコに注ぎ込み混合した後、オートクレーブ中で、120℃で1時間反応させた。 3mL of 72% concentrated sulfuric acid was added, and the tube was placed in 30 ° C warm water and kept warm for 1 hour while appropriately crushing with a glass rod so that the contents were uniform. Next, the tube contents and 84 g of distilled water were poured into an Erlenmeyer flask and mixed, and then reacted in an autoclave at 120 ° C. for 1 hour.
 放冷した後、内容物をガラスファイバーろ紙で濾過して不溶物をろ取し、200mLの蒸留水で洗浄した。110℃オーブンで恒量になるまで乾燥させ、計量した。 After cooling, the contents were filtered through a glass fiber filter paper to collect insoluble matter, and washed with 200 mL of distilled water. It was dried in a 110 ° C. oven to a constant weight and weighed.
(2)セルロース及びへミセルロースの定量方法(糖分析)
 ガラスファイバーろ紙(GA55)を110℃オーブンで恒量になるまで乾燥させ、デシケータ内で放冷した後、計量した。110℃で絶乾させた試料(約0.2g)を精秤し、50mL容チューブに入れた。
(2) Cellulose and hemicellulose quantification method (sugar analysis)
The glass fiber filter paper (GA55) was dried in an oven at 110 ° C. to a constant weight, allowed to cool in a desiccator, and then weighed. A sample (about 0.2 g) absolutely dried at 110 ° C. was precisely weighed and put in a 50 mL tube.
 72%濃硫酸3mL加え、内容物が均一になるようにガラス棒で適宜押しつぶしながら、30℃の温水にチューブを入れて1時間保温した。次いで、チューブ内容物と蒸留水84gとを加え定量的に三角フラスコに注ぎ込み混合した後、混合物1.0mLを耐圧試験管に入れ、内部標準として0.2%イノシトール溶液100μLを加えた。 3mL of 72% concentrated sulfuric acid was added, and the tube was placed in 30 ° C warm water and kept warm for 1 hour while appropriately crushing with a glass rod so that the contents were uniform. Next, the tube contents and 84 g of distilled water were added and quantitatively poured into an Erlenmeyer flask and mixed, then 1.0 mL of the mixture was put into a pressure resistance test tube, and 100 μL of 0.2% inositol solution was added as an internal standard.
 メスピペットを用いて72%濃硫酸(7.5μL)を加え、オートクレーブ中で120℃で1時間反応させた。 72% concentrated sulfuric acid (7.5 μL) was added using a measuring pipette and reacted in an autoclave at 120 ° C for 1 hour.
 放冷した後、反応液100μLを超純水で希釈し、サーモフィッシャーサイエンティフィック社製イオンクロマトグラフ分析に供し、試料に含まれていた糖成分を分析した。 After allowing to cool, 100 μL of the reaction solution was diluted with ultrapure water and subjected to ion chromatographic analysis manufactured by Thermo Fisher Scientific Co., Ltd. to analyze the sugar component contained in the sample.
(3)セルロース又はヘミセルロース水酸基の化学修飾度(DS)の測定方法
(3-1)逆滴定方法
 セルロース、ヘミセルロース、及びリグノセルロースの水酸基がアシル化(エステル化)された試料のDS測定方法を、アセチル化された試料を例にとり以下に説明する。他のアシル化の場合も同様である。
(3) Measuring method of chemical modification degree (DS) of cellulose or hemicellulose hydroxyl groups
(3-1) Back Titration Method The DS measurement method of a sample in which the hydroxyl groups of cellulose, hemicellulose, and lignocellulose are acylated (esterified) will be described below by taking an acetylated sample as an example. The same applies to other acylations.
 準備、秤量及び加水分解
 試料を乾燥し、0.5g(A)を正確に秤量した。そこにエタノール75mL、及び0.5NのNaOH 50mL(0.025mol)(B)を加え、3~4時間撹拌する。
Preparation, weighing and hydrolyzed samples were dried and 0.5 g (A) was accurately weighed. Ethanol 75mL and 0.5N NaOH 50mL (0.025mol) (B) are added there, and it agitates for 3 to 4 hours.
 これをろ過、水洗、及び乾燥し、ろ紙上の試料のFT-IR測定を行い、エステル結合のカルボニルに基づく吸収ピークが消失していること、つまりエステル結合が加水分解されていることを確認した。このろ液を下記の逆滴定に用いた。 This was filtered, washed with water, and dried, and FT-IR measurement of the sample on the filter paper was performed to confirm that the absorption peak based on the carbonyl of the ester bond disappeared, that is, the ester bond was hydrolyzed. .. This filtrate was used for the back titration described below.
 逆滴定
 ろ液には加水分解の結果生じた酢酸ナトリウム塩及び過剰に加えられたNaOHが存在する。このNaOHの中和滴定を、1NのHCl及びフェノールフタレインを用いて行い、下式よりセルロース等の水酸基にエステル結合していたアセチル基のモル数(C)、及びセルロースの繰り返しユニットのモル数(D)を算出する。
0.025mol(B)‐(中和に使用したHClのモル数) = セルロース等の水酸基にエステル結合していたアセチル基のモル数(C)
(セルロース繰り返しユニット分子量162×セルロース繰り返しユニットのモル数(未知(D)))+(アセチル基の分子量43×(C)) = 秤量した試料0.5g(A) 
 DSは、得られた(C)及び(D)より、下式より算出される。
DS = (C)/(D) 
The back titration filtrate contains sodium acetate resulting from hydrolysis and NaOH added in excess. The neutralization titration of this NaOH was carried out using 1N HCl and phenolphthalein, and the number of moles of the acetyl group ester-bonded to the hydroxyl group of cellulose and the like from the following formula (C), and the number of moles of repeating units of cellulose Calculate (D).
0.025mol (B)-(number of moles of HCl used for neutralization) = number of moles of acetyl groups ester-bonded to the hydroxyl groups of cellulose (C)
(Molecular weight of cellulose repeating unit 162 × number of moles of cellulose repeating unit (unknown (D))) + (molecular weight of acetyl group 43 × (C)) = 0.5 g of sample weighed (A)
The DS is calculated by the following formula from the obtained (C) and (D).
DS = (C) / (D)
(3-2)赤外線(IR)吸収スペクトルによるDSの測定方法
 エステル化セルロース/リグノセルロースのDSは、赤外線(IR)吸収スペクトルを測定することにより求めることもできる。
(3-2) Method of measuring DS by infrared (IR) absorption spectrum DS of esterified cellulose / lignocellulose can also be determined by measuring infrared (IR) absorption spectrum.
 セルロース/リグノセルロースがエステル化されると、1733cm-1付近にエステルカルボニル(C=O)に由来する強い吸収帯が現れるので、この吸収帯の強度(面積)を横軸に、上記の逆滴定法で求めたDSの値を横軸にプロットした検量線をまず作成する。 When cellulose / lignocellulose is esterified, a strong absorption band derived from ester carbonyl (C = O) appears near 1733 cm -1. Therefore, the intensity (area) of this absorption band is plotted on the horizontal axis and the above-mentioned back titration is performed. First, create a calibration curve by plotting the DS value obtained by the method on the horizontal axis.
 そして、試料の吸収帯の強度を測定し、この値及び検量線から試料のDS値を求める。この方法によれば、DSを迅速かつ簡便に測定することができる。 Then, measure the intensity of the absorption band of the sample and obtain the DS value of the sample from this value and the calibration curve. According to this method, DS can be measured quickly and easily.
(4)強度試験方法 
 万能試験機(オートグラフAG5000E型、(株)島津製作所製)を用いて、3点曲げ試験を実施した。試験条件は曲げ速度10mm/min、支点間距離64mmとした。
(4) Strength test method
A three-point bending test was carried out using a universal testing machine (Autograph AG5000E, manufactured by Shimadzu Corporation). The test conditions were a bending speed of 10 mm / min and a fulcrum distance of 64 mm.
(5)アイゾット(Izod)衝撃試験
 アイゾット衝撃試験機((株)東洋精機製作所製)を用いてアイゾット衝撃試験を実施した。試験片中央部に深さ2mmの切り欠き(ノッチ)を挿入した。2.75J-N試験では2.75Jのハンマーを用いてノッチ側を打撃し、ノッチから亀裂を進展させ、その衝撃強度を算出した。
(5) Izod Impact Test An Izod impact test was performed using an Izod impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.). A notch having a depth of 2 mm was inserted in the center of the test piece. In the 2.75JN test, the notch side was hit with a 2.75J hammer to propagate a crack from the notch, and the impact strength was calculated.
(6)繊維の顕微鏡観察(繊維長及び繊維径の観察)
 電界放射型走査型電子顕微鏡(FE-SEM)、日本電子製JSM-7800Fにより繊維試料を観察した。測定条件は、加速電圧1.5kV、倍率200~5000倍とした。
(6) Microscopic observation of fibers (observation of fiber length and fiber diameter)
The fiber sample was observed with a field emission scanning electron microscope (FE-SEM) and JSM-7800F manufactured by JEOL. The measurement conditions were an acceleration voltage of 1.5 kV and a magnification of 200 to 5000 times.
 試料の調製方法は以下の通りである。
1)樹脂と混練する前の繊維試料の調製
1-1)サンプルを、エタノールの入ったガラスの小瓶に入れ、超音波攪拌を行ってエタノール中に繊維を懸濁させた。
1-2)繊維のエタノール懸濁液の少量を銅板上に垂らし、エタノールを室温で蒸発させた。1-3) スパッタリング装置(JEOL SEC-3000FC オートファインコーター)を用いて、サンプルにプラチナコートした。
2)樹脂組成物中に含まれる繊維試料の調製
 セルロースナノファイバー(CNF)を含むナイロン6(PA6)組成物(PA6/CNF=90/10)の成形体中のCNFを例にとり、顕微鏡観察用試料の調製方法を説明する。
2-1)射出成形品から4x2x1.2mmの試験片を切り出した。
2-2)試験片をNMP400mlに加えて190℃で2~4時間浸漬し、PA6を溶出させた。2-3)PA6溶出後の残渣(繊維)を、エタノールの入ったガラスの小瓶に入れ、超音波攪拌を行ってエタノール中に繊維を懸濁させた。その後は、上記1-2)及び1-3)に従って顕微鏡観察用試料を調製した。
The sample preparation method is as follows.
1) Preparation of fiber sample before kneading with resin
1-1) The sample was placed in a glass vial containing ethanol and ultrasonically stirred to suspend the fiber in ethanol.
1-2) A small amount of an ethanol suspension of fibers was dropped on a copper plate, and ethanol was evaporated at room temperature. 1-3) The sample was platinum-coated using a sputtering device (JEOL SEC-3000FC Auto Fine Coater).
2) Preparation of fiber sample contained in resin composition For microscope observation, taking CNF in the molded product of nylon 6 (PA6) composition (PA6 / CNF = 90/10) containing cellulose nanofiber (CNF) as an example A method for preparing a sample will be described.
2-1) A test piece of 4x2x1.2 mm was cut out from the injection molded product.
2-2) The test piece was added to 400 ml of NMP and immersed at 190 ° C for 2 to 4 hours to elute PA6. 2-3) The residue (fiber) after elution of PA6 was put in a glass vial containing ethanol, and ultrasonically stirred to suspend the fiber in ethanol. After that, a sample for microscopic observation was prepared according to 1-2) and 1-3) above.
II.使用材料
A.原料パルプ
(1)トドマツ由来クラフトパルプ(トドマツP)
 日本製紙パピリア(株)製トドマツ由来の未晒クラフトパルプ(以下、トドマツPと呼ぶ)のスラリー(パルプスラリー濃度3質量%の水懸濁液)を、シングルディスクリファイナー(相川鉄工(株)製)に通液させ、カナディアンスタンダードフリーネス(CSF)値が255mLになるまで、繰返しリファイナー処理し、これを抄紙し、乾燥して、厚さ約0.2mmのシート状のトドマツPを得た。ロットの違いにより乾燥状態の異なる(すなわち固形分含量の異なる)シート状のトドマツPが得られた。それぞれ、固形分含量83.2%のものをシート状トドマツP-1、固形分含量80.5%のものをシート状トドマツP-2、固形分含量83.86%のものをシート状トドマツP-3と称する。糖成分の分析の結果、その組成(質量%)は、セルロース84.4%、ヘミセルロース14.5%、リグニン1.1%であった。
II. Material used
A. Raw material pulp
(1) Todomatsu derived kraft pulp (Todomatsu P)
Nippon Paper Papyria Co., Ltd.'s unbleached kraft pulp derived from Todomatsu (hereinafter referred to as Todomatsu P) slurry (water suspension with a pulp slurry concentration of 3% by mass) was applied to a single disc refiner (Aikawa Iron Works Co., Ltd.). The solution was allowed to pass and was repeatedly refined until the Canadian Standard Freeness (CSF) value reached 255 mL, which was then paper-made and dried to obtain sheet-like Todomatsu P with a thickness of about 0.2 mm. Sheet-like Todomatsu P having different dry states (that is, different solid content) was obtained depending on the lot. Those with a solid content of 83.2% are called sheet-like Todomatsu P-1, those with a solid content of 80.5% are called sheet-like Todomatsu P-2, and those with a solid content of 83.86% are called sheet-like Todomatsu P-3. .. As a result of analysis of sugar components, the composition (mass%) was cellulose 84.4%, hemicellulose 14.5%, and lignin 1.1%.
B.化学修飾パルプ
(1)アセチル化トドマツパルプ(AcトドマツP-1、製造番号 TO39、Ac化DS 0.56)の製造 上記シート状トドマツP-1(固形分含量83.2%)2403g(固形分2000g)に無水酢酸6792 g(純度93%)を加えて加熱し、反応混合物の温度が89℃に達してから同温で6時間反応させた。反応混合物を50℃まで冷却し、デカンテーションにより液体を取り除いた後、減圧下約60℃に加熱して無水酢酸及び酢酸を留去した。乾燥して乾燥重量で約2200gのシート状AcトドマツP-1を得た。このAcトドマツP-1のアセチル化の置換度(以下、「Ac化DS」という)は、0.56であった。
B. Chemically modified pulp
(1) Production of acetylated Todomatsu pulp (Ac Todomatsu P-1, serial number TO39, Acized DS 0.56 ) 2403 g (solid content 83.2%) of the above sheet-like Todomatsu P-1 (solid content 2000 g) and acetic anhydride 6792 g (Purity 93%) was added and heated, and after the temperature of the reaction mixture reached 89 ° C., the reaction was carried out at the same temperature for 6 hours. The reaction mixture was cooled to 50 ° C., the liquid was removed by decantation, and the mixture was heated to about 60 ° C. under reduced pressure to distill off acetic anhydride and acetic acid. It was dried to obtain a sheet-like Ac Todomatsu P-1 weighing about 2200 g. The degree of acetylation of Ac todomatsu P-1 (hereinafter referred to as "Ac-modified DS") was 0.56.
 なお、アセチル化の置換度(Ac化DS)は、前述の(3-2) 赤外線(IR)吸収スペクトルによるDSの測定方法に則り、IRスペクトルの測定を行って算出した。また、以下のシート状AcトドマツP-2及びP-3、Acラミー、Acケナフ、Ac亜麻、及びAcアバカのAc化DSについても、同様の方法で算出した。 The degree of acetylation substitution (Ac-modified DS) was calculated by measuring the IR spectrum in accordance with the above-mentioned (3-2) DS measurement method by infrared (IR) absorption spectrum. Also, the following Ac-DS of Ac-Todomatsu P-2 and P-3, Ac-ramie, Ac-kenaf, Ac-flax, and Ac-abaca were calculated by the same method.
 このシート状AcトドマツP-1は、下記の実施例1(試験番号 PA6-629)及び比較例1(試験番号 PA6-628)の組成物の調製に使用した。 This sheet-shaped Ac Todomatsu P-1 was used to prepare the compositions of Example 1 (Test No. PA6-629) and Comparative Example 1 (Test No. PA6-628) below.
(2)アセチル化トドマツパルプ(AcトドマツP-2、製造番号 TO23、Ac化DS 0.7)の製造 上記シート状トドマツP-2(固形分含量80.5%)2485g(固形分含量2000g)に無水酢酸6480g(純度93%)を加えて加熱し、反応混合物の温度が104℃に達してから同温で6時間反応させた。反応混合物を50℃まで冷却し、デカンテーションにより液体を取り除いた後、減圧下約60℃に加熱して無水酢酸及び酢酸を留去し、乾燥して乾燥重量約2200gのシート状AcトドマツP-2(Ac化DS 0.7)を得た。 (2) Production of acetylated Todomatsu Pulp (Ac Todomatsu P-2, serial number TO23, Acated DS 0.7 ) 2485 g (solid content 80.5%) of the above sheet-like Todomatsu P-2 (solid content 2000 g) and acetic anhydride 6480 g (Purity 93%) was added and heated, and after the temperature of the reaction mixture reached 104 ° C., the reaction was carried out at the same temperature for 6 hours. The reaction mixture was cooled to 50 ° C., the liquid was removed by decantation, the acetic anhydride and acetic acid anhydride were distilled off by heating to about 60 ° C. under reduced pressure, and the sheet was dried to a dry weight of about 2200 g Ac Todomatsu P- 2 (Ac-modified DS 0.7) was obtained.
 このシート状AcトドマツP-2は、後記の実施例2(試験番号PA6-568)、実施例3(試験番号PA6-558)、及び比較例2(試験番号PA6-561)の組成物の製造に使用した。 This sheet-like Ac Todomatsu P-2 was prepared from the compositions of Example 2 (Test No. PA6-568), Example 3 (Test No. PA6-558), and Comparative Example 2 (Test No. PA6-561) described below. Used for.
(3)アセチル化トドマツパルプ(AcトドマツP-3、製造番号 TO72、Ac化DS 0.67)の製造 上記シート状トドマツP-3(固形分含量83.86%)2385g(固形分含量2000g)に無水酢酸4378g(純度93%)を加えて加熱し、反応混合物の温度が110℃に達してから同温で6時間反応させた。反応混合物を50℃まで冷却し、デカンテーションにより液体を取り除いた後、減圧下約60℃に加熱して無水酢酸及び酢酸を留去し、乾燥して乾燥重量約2200gのシート状AcトドマツP-3(Ac化DS 0.67)を得た。 (3) Production of acetylated Todomatsu pulp (Ac Todomatsu P-3, production number TO72, Acized DS 0.67) The sheet-like Todomatsu P-3 (solid content 83.86%) 2385 g (solid content 2000 g) and acetic anhydride 4378 g (Purity 93%) was added and heated, and after the temperature of the reaction mixture reached 110 ° C., the reaction was carried out at the same temperature for 6 hours. The reaction mixture was cooled to 50 ° C., the liquid was removed by decantation, the acetic anhydride and acetic acid anhydride were distilled off by heating to about 60 ° C. under reduced pressure, and the sheet was dried to a dry weight of about 2200 g Ac Todomatsu P- 3 (Ac-modified DS 0.67) was obtained.
 このシート状AcトドマツP-3は、後記の実施例4(試験番号 PA6-645)、実施例5(試験番号 PA6-642)、実施例6(試験番号 PA6-646)、実施例7(試験番号 PA6-644)、及び比較例5(試験番号 PA6-640)の組成物の製造に使用した。 This sheet-like Ac Todomatsu P-3 was prepared as Example 4 (Test No. PA6-645), Example 5 (Test No. PA6-642), Example 6 (Test No. PA6-646), and Example 7 (Test). No. PA6-644) and Comparative Example 5 (test number PA6-640) were used for the production of the compositions.
C.植物繊維
(1)ラミーとして、トスコ社製ラミー(商品名6T TOP 繊度4.63dtex)を1~3cmの長さに切断して使用した。
C. As the plant fiber (1) ramie, ramie (trade name: 6T TOP fineness 4.63 dtex) manufactured by Tosco Corp. was cut to a length of 1 to 3 cm and used.
 (2)アセチル化ラミー(Acラミー)
 1~3cmの長さに切断したラミー120g(含水率8.42%)に無水酢酸400ml(セルロース5倍当量)、及び酢酸240mlを加え、100℃で20時間反応させた。反応混合物にエタノールを加えて反応を止めた後、反応混合物(固形分)をろ取した。これを、水洗(3回)し、イソプロピルアルコール(IPA)で3回洗浄し、乾燥して、Acラミーを得た(Ac化DS 0.33)。
(2) Acetylated ramie (Ac ramie)
400 ml of acetic anhydride (5 times equivalent of cellulose) and 240 ml of acetic acid were added to 120 g of ramie (water content 8.42%) cut to a length of 1 to 3 cm and reacted at 100 ° C. for 20 hours. After ethanol was added to the reaction mixture to stop the reaction, the reaction mixture (solid content) was collected by filtration. This was washed with water (3 times), washed with isopropyl alcohol (IPA) 3 times, and dried to obtain Ac ramie (Ac-modified DS 0.33).
(3)ケナフとして、株式会社OCM GROUPから購入したケナフ(バングラデシュ産Bグレード繊維束20~100μm程度)を使用した。 (3) As kenaf, kenaf (B-grade fiber bundle from Bangladesh, about 20 to 100 μm) purchased from OCM GROUP Co., Ltd. was used.
(4)アセチル化ケナフ(Acケナフ)
 後記の実施例9(試験番号 PA6-687)で使用するAc化DS 0.25のAcケナフは、以下のように製造した。ケナフ繊維32gに対して無水酢酸16g、及び酢酸288gを添加し、オイルバスにて100℃で5時間加熱した。反応混合物をろ取し、水洗し、IPAで洗浄し、繊維を1~2cm程度に切断して乾燥した。
(4) Acetylated kenaf (Ac kenaf)
The Ac kenaf of Ac-modified DS 0.25 used in Example 9 (Test No. PA6-687) described below was produced as follows. 16 g of acetic anhydride and 288 g of acetic acid were added to 32 g of kenaf fiber, and heated in an oil bath at 100 ° C. for 5 hours. The reaction mixture was collected by filtration, washed with water, washed with IPA, and the fibers were cut to a size of 1 to 2 cm and dried.
 後記の実施例10(試験番号 PA6-688)で使用するAc化DS 0.64のAcケナフは、以下のように製造した。ケナフ繊維32gに対して無水酢酸51g、及び酢酸243gを添加し、オイルバスにて100℃で5時間加熱した。反応混合物をろ取し、水洗し、IPAで洗浄し、繊維を1~2cm程度に切断して乾燥した。 The Ac kenaf of Ac-modified DS0.64 used in Example 10 (Test No. PA6-688) described below was manufactured as follows. 51 g of acetic anhydride and 243 g of acetic acid were added to 32 g of kenaf fiber, and the mixture was heated in an oil bath at 100 ° C. for 5 hours. The reaction mixture was collected by filtration, washed with water, washed with IPA, and the fibers were cut to a size of 1 to 2 cm and dried.
(5)亜麻(リネン)として、日本製紙パピリア(株)製亜麻を使用した。 (5) As the linen, flax manufactured by Nippon Paper Papyria Co., Ltd. was used.
(6)アセチル化亜麻(Ac亜麻)
 後記の実施例4(試験番号 PA6-645)、実施例5(試験番号 PA6-642)、及び比較例6(試験番号 PA6-641)でそれぞれ使用するAc化DS 0.57のAc亜麻は、以下のように製造した。亜麻パルプにN-メチルピロリドン(NMP)を加え、加熱下で減圧脱水した。この亜麻パルプのNMP懸濁液(固形分15%)に無水酢酸(0.7モル当量)、及びK2CO3(0.2モル当量)を加えて80℃で2時間加熱撹拌して反応させた。反応が終了した後、固形物をアセトン及び水で洗浄し、アセチル化亜麻パルプのスラリーを得、これを脱水した。
(6) Acetylated flax (Ac flax)
Ac flax of Ac-modified DS 0.57 used in each of Example 4 (Test No. PA6-645), Example 5 (Test No. PA6-642), and Comparative Example 6 (Test No. PA6-641) described below was as follows. As manufactured. N-methylpyrrolidone (NMP) was added to flax pulp and dehydrated under reduced pressure with heating. Acetic anhydride (0.7 molar equivalent) and K 2 CO 3 (0.2 molar equivalent) were added to this NMP suspension of flax pulp (solid content 15%), and the mixture was heated and stirred at 80 ° C. for 2 hours to cause reaction. After the reaction was completed, the solid matter was washed with acetone and water to obtain a slurry of acetylated flax pulp, which was dehydrated.
(7)アバカとして、日本製紙パピリア(株)製アバカを使用した。 (7) The abaca manufactured by Nippon Paper Papyria Co., Ltd. was used as the abaca.
(8)アセチル化アバカ(Acアバカ)
 後記の実施例6(試験番号 PA6-646)、実施例7(試験番号 PA6-644)、及び比較例7(試験番号 PA6-643)でそれぞれ使用するAc化DS 0.5のAcアバカは、以下のように製造した。アバカパルプにNMPを加え、加熱下で減圧脱水した。このアバカパルプのNMP懸濁液(固形分15%)に無水酢酸(0.6モル当量)、及びK2CO3(0.2モル当量)を加えて80℃で2時間加熱撹拌して反応させた。反応が終了した後、固形物をアセトン及び水で洗浄し、アセチル化アバカパルプのスラリーを得、これを脱水した。
(8) Acetylated abaca (Ac abaca)
The Ac abaca of Ac-modified DS 0.5 used in each of Example 6 (Test No. PA6-646), Example 7 (Test No. PA6-644), and Comparative Example 7 (Test No. PA6-643) described below is as follows. As manufactured. NMP was added to abaca pulp and dehydrated under reduced pressure with heating. Acetic anhydride (0.6 molar equivalent) and K 2 CO 3 (0.2 molar equivalent) were added to this NMP suspension of abaca pulp (solid content 15%), and the mixture was heated and stirred at 80 ° C. for 2 hours to cause reaction. After the reaction was completed, the solid matter was washed with acetone and water to obtain a slurry of acetylated abaca pulp, which was dehydrated.
 D.樹脂
(1)粉状ポリアミド6(「PA6粉」と記載することもある)として、ユニチカ株式会社製ポリアミド(パウダータイプ、グレード:A1020LP)を使用した。
D. Polyamide (powder type, grade: A1020LP) manufactured by Unitika Ltd. was used as the resin (1) powdery polyamide 6 (sometimes referred to as “PA6 powder”).
(2)ペレット状ポリアミド6(「PA6ペレット」と記載することもある)として、ユニチカ株式会社製のペレット状ポリアミド6(グレード:A1020BRL)を使用した。 (2) As the pelletized polyamide 6 (sometimes referred to as “PA6 pellets”), pelletized polyamide 6 (grade: A1020BRL) manufactured by Unitika Ltd. was used.
III.繊維強化樹脂組成物及びその成形体の製造、並びに評価結果
(1-1)(A)MFCとしてフィブリル化アセチル化トドマツ(フィブリル化Acトドマツ)、(B)植物繊維としてラミー(化学修飾無)又はアセチル化ラミー(Acラミー)、及び(C)熱可塑性樹脂としてPA6を含有する繊維強化樹脂組成物
III. Production of fiber-reinforced resin composition and molded article thereof, and evaluation results (1-1) (A) MFC fibrillated acetylated Todomatsu (fibrillated Ac Todomatsu), (B) plant fiber ramie (no chemical modification) or Fiber-reinforced resin composition containing acetylated ramie (Ac ramie) and (C) PA6 as thermoplastic resin
実施例1(試験番号 PA6-629):フィブリル化Acトドマツ(Ac化DS 0.56)及びラミーを含有するPA6組成物、及びその成形体の製造
 上記シート状AcトドマツP-1〔Ac化DS 0.56、製造番号T039、組成比(Ac/リグニン/セルロース+ヘミセルロース=1.47/0.11/10)〕を一晩蒸留水に浸漬し、膨潤させた後、ミキサー(FM10C:日本コークス工業(株)製)により粗粉砕し、粉砕物を蒸留水に入れて撹拌した。次に水をIPAに置換し、PA6粉を添加して混合し、ろ過して、AcトドマツP-1とPA6粉との混合物を得た。これを撹拌乾燥機(トリミックスTX-5:(株)井上製作所製)にて約60℃で撹拌乾燥した。得られた混合物(マスターバッチ)の組成比は、Acトドマツ/PA6粉=11.58/21.75であった(これを粉状MB-1と呼ぶ)。
Example 1 (Test No. PA6-629): Production of PA6 composition containing fibrillated Ac Todomatsu (Ac-compound DS 0.56) and ramie, and molded body thereof Ac sheet Todomatsu P-1 [Ac-compound DS 0.56, Manufacturing number T039, composition ratio (Ac / lignin / cellulose + hemicellulose = 1.47 / 0.11 / 10)] was soaked in distilled water overnight to allow it to swell, and then roughed with a mixer (FM10C: Nippon Coke Industry Co., Ltd.) After crushing, the crushed product was put into distilled water and stirred. Next, water was replaced with IPA, PA6 powder was added and mixed, and the mixture was filtered to obtain a mixture of Ac Todomatsu P-1 and PA6 powder. This was agitated and dried at about 60 ° C. with an agitating dryer (Trimix TX-5: manufactured by Inoue Seisakusho Co., Ltd.). The composition ratio of the obtained mixture (masterbatch) was Ac Todomatsu / PA6 powder = 11.58 / 21.75 (this is called powdered MB-1).
 粉状MB-1にPA6粉及びラミーを加え、粉状MB-1/PA6粉/ラミー=33.3/61.67/5の混合物とし、ビニール袋内で均一に混合した後、二軸溶融混練機(Φ15mm、L/D=45、(株)テクノベル製)で溶融混錬した。溶融混練設定温度は200~215℃(混練機上流~下流)とした。得られた混練物の組成はPA6/Acトドマツ/ラミー=83.42/11.58/5であった。混練物を水冷し、ペレット化し、フィブリル化Acトドマツ(Ac化DS 0.56)及びラミーを含む、PA組成物のペレット(混練物組成はPA6/Acトドマツ/ラミー=83.42/11.58/5)を得た。 PA6 powder and ramie were added to powdered MB-1 to make a mixture of powdered MB-1 / PA6 powder / ramie = 33.3 / 61.67 / 5, which was uniformly mixed in a plastic bag and then a twin-screw melt kneader (Φ15mm , L / D = 45, manufactured by Technovel Co., Ltd.). The melt kneading set temperature was 200 to 215 ° C. (upstream to downstream of the kneading machine). The composition of the obtained kneaded product was PA6 / Ac Todomatsu / ramie = 83.42 / 11.58 / 5. The kneaded product was water-cooled and pelletized to obtain a PA composition pellet containing fibrillated Ac Todomatsu (Ac-DSDS 0.56) and ramie (kneaded composition PA6 / Ac Todomatsu / ramie = 83.42 / 11.58 / 5) ..
 成形体の製造
 上記ペレットを射出機(射出成形機NPX7、日精樹脂工業(株)製)に入れ、シリンダー設定温度を210~235℃として射出成形し、幅×長さ×厚み=10×80×4mmの短冊型試験片(成形体)を得た。
Manufacture of molded products The above pellets are put into an injection machine (injection molding machine NPX7, manufactured by Nissei Plastic Industry Co., Ltd.) and injection-molded at a cylinder set temperature of 210 to 235 ° C, width x length x thickness = 10 x 80 x A 4 mm strip type test piece (molded body) was obtained.
実施例2(試験番号 PA6-568):フィブリル化Acトドマツ(Ac化DS 0.7)及びAcラミー(Ac化DS 0.33)を含有するPA6組成物、及びその成形体の製造
 上記シート状AcトドマツP-2(Ac化DS 0.7、製造番号T023、組成比(Ac/リグニン/(セルロース+ヘミセルロース)=1.83/0.11/10)〕を一晩蒸留水に浸漬し、膨潤させた後、ミキサー(FM10C:日本コークス工業(株)製)により粗粉砕し、粉砕物を蒸留水に入れ撹拌した。
Example 2 (Test No. PA6-568): Production of a PA6 composition containing fibrillated Ac Todomatsu (Ac-compound DS 0.7) and Ac ramie (Ac-compound DS 0.33), and a molded article thereof. The sheet-like Ac Todomatsu P- 2 (Ac-modified DS 0.7, serial number T023, composition ratio (Ac / lignin / (cellulose + hemicellulose) = 1.83 / 0.11 / 10)] was soaked in distilled water overnight and allowed to swell, and then a mixer (FM10C: Japan It was roughly crushed by Coke Industry Co., Ltd., and the crushed product was put in distilled water and stirred.
 次に水をIPAに置換し、PA6粉を添加して混合し、濾過してAcトドマツP-2とPA6粉との混合物を得た。これを前記撹拌乾燥機にて約60℃で撹拌乾燥した。得られた混合物(マスターバッチ)の組成比は、Acトドマツ/PA6粉=11.94/32.59であった(これを粉状MB-2と呼ぶ)。 Next, water was replaced with IPA, PA6 powder was added and mixed, and filtered to obtain a mixture of Ac Todomatsu P-2 and PA6 powder. This was agitated and dried at about 60 ° C. with the agitator dryer. The composition ratio of the obtained mixture (masterbatch) was Ac Todomatsu / PA6 powder = 11.44 / 32.59 (this is called powdered MB-2).
 粉状MB-2にPA6粉及び1~1.5cmに切断したAcラミー(Ac化DS 0.33、Ac/ラミー組成比=0.94/10)を加え、組成比が粉状MB-2/PA6粉/Acラミー=44.55/50/5.45の混合物とし、これをビニール袋内に入れて均一に混合した後、前記二軸溶融混練機で溶融混錬した。溶融混練設定温度は200~215℃(混練機上流~下流)とした。得られた混練物の組成比は、PA6/Acトドマツ/Acラミー=82.61/11.94/5.45であった。混合物を水冷しペレット化し、乾燥して、実施例1と同様に射出成形した。 To the powdered MB-2, add PA6 powder and Ac ramie cut to 1 to 1.5 cm (DS with 0.33 Ac, Ac / ramie composition ratio = 0.94 / 10) to obtain a powdered MB-2 / PA6 powder / Ac A mixture of ramie = 44.55 / 50 / 5.45 was placed in a plastic bag and uniformly mixed, and then melt-kneaded by the biaxial melt-kneader. The melt kneading set temperature was 200 to 215 ° C. (upstream to downstream of the kneading machine). The composition ratio of the obtained kneaded product was PA6 / Ac Todomatsu / Ac ramie = 82.61 / 11.94 / 5.45. The mixture was water cooled, pelletized, dried and injection molded as in Example 1.
 得られた成形体中の化学修飾繊維の組成比を未修飾繊維の含有量に換算して表示すると、PA6/Acトドマツ/Acラミー=85/10/5であった。 When the composition ratio of the chemically modified fiber in the obtained molded product was converted to the content of the unmodified fiber and displayed, it was PA6 / Ac Todomatsu / Ac ramie = 85/10/5.
実施例3(試験番号 PA6-558):フィブリル化Acトドマツ(Ac化DS 0.7)及びAcラミー(Ac化DS 0.33)を含有するPA6組成物、及びその成形体の製造
 この方法は、上記のAcトドマツ/PA6粉のマスターバッチ(粉状MB-2)を経ずに、Acトドマツ/PA6粉/Acラミーのマスターバッチ(粉状MB-3)を作成し、これをPA6と溶融混練して、上記実施例2と同一組成のフィブリル化Acトドマツ及びAcラミーを含有するPA6組成物を製造する方法である。AcトドマツP-2及びAcラミーは、実施例2と同一のものを使用した。
Example 3 (Test No. PA6-558): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu (Ac Derivative DS 0.7) and Ac Ramie (Ac Derivative DS 0.33), and Molded Article Thereof Without passing through the master batch of Todomatsu / PA6 powder (powdered MB-2), create the master batch of Ac Todomatsu / PA6 powder / Ac ramie (powdered MB-3), melt and knead it with PA6, It is a method for producing a PA6 composition containing fibrillated Ac Todomatsu and Ac ramie having the same composition as in Example 2 above. Ac Todomatsu P-2 and Ac ramie were the same as in Example 2.
 シート状AcトドマツP-2を一晩蒸留水に浸漬し、膨潤させた後、前記ミキサーにより粗粉砕し、粉砕物を蒸留水に入れて撹拌した。次に水をIPAに置換し、PA6粉、及びIPAに浸漬したAcラミーを添加して混合し、ろ過して、AcトドマツP/PA6粉/Acラミーの混合物を得た。これを前記撹拌乾燥機にて約60℃で撹拌乾燥した。得られた粉状MB-3の組成比はAcトドマツP/PA6粉/Acラミー=11.94/32.59/5.47であった。 The sheet-shaped Ac Todomatsu P-2 was immersed overnight in distilled water to swell it, then roughly crushed by the mixer, and the crushed product was put in distilled water and stirred. Next, the water was replaced with IPA, PA6 powder and Ac ramie dipped in IPA were added and mixed, and filtered to obtain a mixture of Ac Todomatsu P / PA6 powder / Ac ramie. This was agitated and dried at about 60 ° C. by the agitator / dryer. The composition ratio of the obtained powdery MB-3 was Ac Todomatsu P / PA6 powder / Ac ramie 11.94 / 32.59 / 5.47.
 粉状MB-3にPA6粉を加え、粉状MB-3/PA6粉=50/50の混合物とし、ビニール袋内で均一に混合した後、実施例2と同様にして溶融混練し、ペレット化し、実施例2と同一組成のフィブリル化Acトドマツ及びAcラミーを含有するPA6組成物を得た。次いで、これを実施例1と同様に射出成形して成形体を得た。 PA6 powder was added to powdered MB-3 to make a mixture of powdered MB-3 / PA6 powder = 50/50, which was uniformly mixed in a plastic bag, then melt-kneaded and pelletized in the same manner as in Example 2. A PA6 composition containing fibrillated Ac Todomatsu and Ac ramie of the same composition as in Example 2 was obtained. Then, this was injection-molded in the same manner as in Example 1 to obtain a molded body.
比較例1(試験番号 PA6-628):フィブリル化Acトドマツを含有するPA6組成物、及びその成形体の製造
 これは、実施例1の対照組成物である。実施例1と同じシート状AcトドマツP-1(Ac化DS 0.56)を使用して、下記の方法で製造した。
Comparative Example 1 (Test No. PA6-628): Preparation of a PA6 composition containing fibrillated Ac Todomatsu and its moldings This is the control composition of Example 1. The same sheet-like Ac Todomatsu P-1 (Ac-modified DS 0.56) as in Example 1 was used, and was produced by the following method.
 シート状AcトドマツP-1を一晩蒸留水に浸漬し、膨潤させた後、前記ミキサーにより粗粉砕し、粉砕物を蒸留水に入れ撹拌した。次に水をIPAに置換し、PA6粉を添加して混合し、混合物をろ取した。これを前記撹拌乾燥機にて約60℃で撹拌乾燥し、粉状組成物(マスターバッチ)を得た(組成比:Acトドマツ/PA6粉=11.58/21.75、これを粉状MB-4と呼ぶ)。 The sheet-shaped Ac Todomatsu P-1 was soaked in distilled water overnight and allowed to swell, then roughly crushed by the mixer, and the crushed product was put in distilled water and stirred. Next, the water was replaced with IPA, PA6 powder was added and mixed, and the mixture was filtered. This was agitated and dried by the agitator and dryer at about 60 ° C. to obtain a powdery composition (masterbatch) (composition ratio: Ac Todomatsu / PA6 powder = 11.58 / 21.75, which is called powdery MB-4). ).
 粉状MB-4とPA6粉とを混合し(混合比:粉状MB-4/PA6粉=33.3/66.7)、均一に混合した後、実施例1と同様にして溶融混練して、PA6とフィブリル化Acトドマツとからなる組成物(組成比:PA6/Acトドマツ=88.42/11.58、未修飾トドマツ含有量組成比に換算して表示するとPA6/Acトドマツ=90/10)を得た。次いで、これを前記と同様に射出成形して成形体を得た。 Powdered MB-4 and PA6 powder were mixed (mixing ratio: powdered MB-4 / PA6 powder = 33.3 / 66.7) and uniformly mixed, and then melt-kneaded in the same manner as in Example 1 to obtain PA6. A composition comprising fibrillated Ac Todomatsu (composition ratio: PA6 / Ac Todomatsu = 88.42 / 11.58, unmodified Todomatsu content PA6 / Ac Todomatsu = 90/10 when converted to the composition ratio) was obtained. Then, this was injection-molded in the same manner as described above to obtain a molded body.
比較例2(試験番号 PA6-561):フィブリル化Acトドマツを含有するPA6組成物、及びその成形体の製造
 これは、実施例2及び3の対照組成物である。実施例2及び3と同じシート状AcトドマツP-2(Ac化DS 0.7)を使用して、下記の方法で製造した。
Comparative Example 2 (Test No. PA6-561): Preparation of a PA6 composition containing fibrillated Ac Todomatsu and its molded body This is a control composition of Examples 2 and 3. The same sheet-like Ac Todomatsu P-2 (Ac-modified DS 0.7) as in Examples 2 and 3 was used, and was produced by the following method.
 シート状AcトドマツP-2を一晩蒸留水に浸漬し、膨潤させた後、前記ミキサーにより粗粉砕し、粉砕物を蒸留水に入れ撹拌した。次に水をIPAに置換し、PA6粉を添加して混合し、混合物をろ取した。これを前記撹拌乾燥機にて約60℃で撹拌乾燥し、粉状組成物(マスターバッチ)を得た(組成比:Acトドマツ/PA6粉=11.94/21.39、粉状MB-5と呼ぶ)。 The sheet-shaped Ac Todomatsu P-2 was soaked in distilled water overnight and allowed to swell, then roughly crushed by the mixer, and the crushed product was put in distilled water and stirred. Next, the water was replaced with IPA, PA6 powder was added and mixed, and the mixture was filtered. This was agitated and dried at about 60 ° C. in the agitator / dryer to obtain a powdery composition (masterbatch) (composition ratio: Ac Todomatsu / PA6 powder = 11.94 / 21.39, referred to as powdery MB-5).
 粉状MB-5にPA6粉を加え、粉状MB-5/PA6粉=33.3/66.7とし、ビニール袋内で均一に混合した後、実施例3と同様にして溶融混練して、PA6とフィブリル化Acトドマツとからなる混練組成物(組成比:PA6/Acトドマツ=88.06/11.94)を得た。次いで、これを前記と同様に射出成形して成形体を得た。 PA6 powder was added to powder MB-5 to make powder MB-5 / PA6 powder = 33.3 / 66.7, and after uniformly mixing in a plastic bag, melt kneading in the same manner as in Example 3 to prepare PA6 and fibrils. To obtain a kneaded composition (composition ratio: PA6 / Ac Todomatsu = 88.06 / 11.94). Then, this was injection-molded in the same manner as described above to obtain a molded body.
比較例3(試験番号 PA6-560):Acラミーを含有するPA6組成物、及びその成形体の製造
 これは、実施例2及び3の対照組成物である。実施例2及び3と同じく、1~1.5cmに切断したAcラミー(Ac化DS 0.33)を使用して、下記の方法で製造した。
Comparative Example 3 (Test No. PA6-560): Preparation of PA6 Composition Containing Ac Ramie, and Moldings Thereof This is the control composition of Examples 2 and 3. As in Examples 2 and 3, using Ac ramie (Ac-modified DS 0.33) cut to 1 to 1.5 cm, the following method was used.
 AcラミーにPA6粉を加え、組成比PA6粉/Acラミー=89.06/10.94の混合物とし、ビニール袋内で均一に混合した後、実施例3と同様にして溶融混練して、PA6とAcラミーとからなる混練組成物(組成比:PA6粉/Acラミー=89.06/10.94)を得た。次いで、これを前記と同様に射出成形して成形体を得た。 PA6 powder was added to Ac ramie to form a mixture having a composition ratio of PA6 powder / Ac ramie = 89.06 / 10.94, which was uniformly mixed in a plastic bag, and then melt-kneaded in the same manner as in Example 3 to obtain PA6 and Ac ramie. To obtain a kneaded composition (composition ratio: PA6 powder / Ac ramie = 89.06 / 10.94). Then, this was injection-molded in the same manner as described above to obtain a molded body.
比較例4(試験番号 PA6):対照成形体(PA6成形体)の製造
 実施例1の成形体の製造と同様にして、PA6粉を前記射出機で成形し、幅×長さ×厚み=10×80×4mmの短冊型試験片(成形体)を得た。
Comparative Example 4 (Test No. PA6): Manufacture of Control Molded Product (PA6 Molded Product) In the same manner as in the manufacture of the molded product of Example 1, PA6 powder was molded by the above injection machine, and width × length × thickness = 10. A strip-shaped test piece (molded body) of × 80 × 4 mm was obtained.
(1-2)成形体の試験結果
 上記の成形体(試験片)について、曲げ弾性率、曲げ強度、及び耐衝撃性を前記の試験方法で測定した。結果を表1に示す。
(1-2) Test Results of Molded Body The flexural modulus, bending strength, and impact resistance of the above-mentioned molded body (test piece) were measured by the above-described test methods. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 なお、表1の組成含有比において、化学修飾繊維(Acトドマツ及びAcラミー)の組成含有比は、それぞれ対応する未修飾繊維(トドマツ及びラミー)の質量百分率に換算したものを表示している。 In addition, in the composition content ratios in Table 1, the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac ramie) are shown in terms of mass percentages of the corresponding unmodified fibers (Todomatsu and Ramie).
 上記表1に示すように、アセチル基で修飾されたフィブリル化セルロース系繊維(フィブリル化Acトドマツ)及びラミーを含有する実施例1のPA6組成物の成形体と、比較例4の繊維を含まないPA6の成形体とを比較したところ、実施例1の成形体の曲げ弾性率、曲げ強度、及び曲げ弾性率は、それぞれ、比較例4のPA6成形体の、2.4倍、1.6倍、及び1.1倍であった。 As shown in Table 1 above, a molded body of the PA6 composition of Example 1 containing fibrillated cellulosic fibers modified with acetyl groups (fibrillated Ac Todomatsu) and ramie, and the fiber of Comparative Example 4 were not included. When compared with the PA6 molded body, the flexural modulus, bending strength, and flexural modulus of the molded body of Example 1 were 2.4 times, 1.6 times, and 1.1 times that of the PA6 molded body of Comparative Example 4, respectively. Met.
 また、アセチル基で修飾されたフィブリル化セルロース系繊維(フィブリル化Acトドマツ)及びアセチル基で修飾されたラミー(Acラミー)を含有する実施例2のPA6組成物の成形体と、比較例4の繊維を含まないPA6成形体とを比較したところ、実施例2の成形体の曲げ弾性率、曲げ強度、及び曲げ弾性率は、それぞれ、比較例4のPA6成形体の2.6倍、1.7倍、及び1.3倍であった。 In addition, a molded article of the PA6 composition of Example 2 containing fibrillated cellulosic fibers modified with acetyl groups (fibrillated Ac todomatsu) and ramie modified with acetyl groups (Ac ramie), and Comparative Example 4. When compared with a PA6 molded body containing no fiber, the flexural modulus, flexural strength, and flexural modulus of the molded body of Example 2 were 2.6 times, 1.7 times, and 1.7 times that of the PA6 molded body of Comparative Example 4, respectively. It was 1.3 times.
(1-3)樹脂と混練する前のアセチル化トドマツパルプ、及び組成物中のアセチル化トドマツ繊維の顕微鏡観察
 前記の方法で試料を調製し、樹脂と混練する前のアセチル化トドマツパルプ、及び実施例2の組成物中のアセチル化トドマツ繊維について走査型電子顕微鏡(SEM)を用いて顕微鏡観察を行った。アセチル化トドマツパルプとして、実施例2で使用されたAcトドマツパルプ(Ac化DS 0.7)と同等のアセチル化の置換度(Ac化DS 0.68)を有するAcトドマツパルプ(製造番号 T081)を使用した。
(1-3) Microscopic observation of acetylated Todomatsu pulp before kneading with the resin, and acetylated Todomatsu fiber in the composition Prepare a sample by the above method, acetylated Todomatsu pulp before kneading with the resin, and implementation The acetylated Todomatsu fiber in the composition of Example 2 was microscopically observed using a scanning electron microscope (SEM). As the acetylated Todomatsu pulp, Ac Todomatsu pulp (Production No. T081) having the same degree of acetylation substitution (Acized DS 0.68) as the Ac Todomatsu pulp (Ac-modified DS 0.7) used in Example 2 was used.
 図1にアセチル化トドマツパルプの電子顕微鏡写真像を示す。図2に実施例2の組成物から調製した試料中のアセチル化トドマツ繊維の電子顕微鏡写真像を示す。 Fig. 1 shows an electron micrograph image of acetylated Todomatsu pulp. FIG. 2 shows an electron micrograph image of the acetylated Todomatsu fiber in the sample prepared from the composition of Example 2.
 図1より、トドマツパルプの形状は維持されていることがわかる。また、繊維の直径は細いもので20μm程度、太いもので60μm程度であった。繊維の長さは1900μm以上であった。 From Fig. 1, it can be seen that the shape of Todomatsu pulp is maintained. The diameter of the fibers was about 20 μm for thin fibers and about 60 μm for thick fibers. The fiber length was over 1900 μm.
 図2の左側の低倍率(X200)のSEM写真には、太いもので直径が10μm以下程度、長さ300μm程度の繊維が観察されたが、これは繊維の存在比率から考えてトドマツの繊維ではなく、ラミー繊維である。右側の高倍率(X5000)のSEM写真で観察される繊維は、太いもので直径が1μm、細いもので数十nmであり、いずれも長さはネットワーク構造により判別困難であるが、少なくとも数十μm以上であった。 In the low-magnification (X200) SEM photograph on the left side of Fig. 2, a thick fiber with a diameter of about 10 µm or less and a length of about 300 µm was observed. This is because of the proportion of the fibers in Todomatsu's fiber. Not ramie fiber. The fibers observed in the high-magnification (X5000) SEM photograph on the right have a thick fiber with a diameter of 1 μm and a thin fiber with a length of tens of nanometers. It was more than μm.
 以上のことから、PA6との複合化(溶融混練)によってパルプの解繊が進行し、直径数十μmのアセチル化トドマツパルプが直径数十nm~1μmの繊維にミクロフィブリル化されたことがわかった。 From the above, it was found that the fibrillation of pulp progressed due to the complexation with PA6 (melt kneading), and the acetylated Todomatsu pulp with a diameter of tens of μm was microfibrillated into fibers with a diameter of tens of nm to 1 μm. It was
(2-1) (A)MFCとしてフィブリル化アセチル化トドマツ(フィブリル化Acトドマツ)、(B)植物繊維としてアセチル化亜麻(Ac亜麻)、及び(C)熱可塑性樹脂としてPA6を含有する繊維強化樹脂組成物 (2-1) (A) Fiber reinforced containing fibrillated acetylated Todomatsu (fibrillated Ac todomatsu) as MFC, (B) acetylated flax (Ac flax) as plant fiber, and (C) PA6 as thermoplastic resin Resin composition
実施例4(試験番号 PA6-645):フィブリル化Acトドマツ(Ac化DS 0.67)及びAc亜麻(Ac化DS 0.57)を含有するPA6組成物、及びその成形体の製造
 標記のフィブリル化Acトドマツ及びAc亜麻を含有するPA6組成物、及びその成形体(組成比:PA6/Acトドマツ/Ac亜麻=82.1/12.1/5.8)を、前記実施例2と同様の操作を行い、下記の通り製造した。
Example 4 (Study No. PA6-645): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu (Ac-DS 0.67) and Ac Flax (Ac-DS 0.57), and Molded Article Thereof A PA6 composition containing Ac flax and a molded product thereof (composition ratio: PA6 / Ac Todomatsu / Ac flax = 82.1 / 12.1 / 5.8) were manufactured in the same manner as in Example 2 as described below.
 実施例2で使用したAcトドマツP-2(Ac化DS 0.7)及びAcラミー(Ac化DS 0.33)の代わりに、この実施例4では、AcトドマツP-3(Ac化DS 0.67)及びAc亜麻(Ac化DS 0.57)を使用した。 In place of Ac todomatsu P-2 (Ac-modified DS 0.7) and Ac ramie (Ac-modified DS 0.33) used in Example 2, in this Example 4, Ac-todomatsu P-3 (Ac-modified DS 0.67) and Ac flax are used. (Acized DS 0.57) was used.
 まず、シート状AcトドマツP-3を、実施例1の粉状MB-1の調製時と同様の操作で処理して、AcトドマツP-3とPA6粉とを含有する粉状マスターバッチ(粉状MB-6、組成比:AcトドマツP-3/PA6粉=12.1/21.23)を得た。 First, the sheet-like Ac Todomatsu P-3 was treated in the same manner as in the preparation of the powdery MB-1 of Example 1 to obtain a powdery masterbatch containing Ac Todomatsu P-3 and PA6 powder (powder). MB-6, composition ratio: Ac Todomatsu P-3 / PA6 powder = 12.1 / 21.23).
 次に、実施例2の場合と同様の操作で、粉状MB-6にPA6粉及びAc亜麻を加え、各成分の均一な混合物(混合比:粉状MB-6/PA6粉/Ac亜麻=33.33/60.87/5.8)を調製し、これを、前記二軸溶融混練機で溶融混錬し、ペレット化して、フィブリル化Acトドマツ(Ac化DS 0.67)とAc亜麻(Ac化DS 0.57)を含む、ペレット状のPA6組成物を得た(組成比:PA6/フィブリル化Acトドマツ/Ac亜麻=82.1/12.1/5.8)。 Next, in the same operation as in Example 2, PA6 powder and Ac flax were added to powdered MB-6, and a uniform mixture of each component (mixing ratio: powdered MB-6 / PA6 powder / Ac flax = 33.33 / 60.87 / 5.8), melt-kneading this with the twin-screw melt-kneader, pelletizing, and containing fibrillated Ac todomatsu (Ac-DS0.67) and Ac flax (Ac-DS0.57). , A pelletized PA6 composition was obtained (composition ratio: PA6 / fibrillated Ac Todomatsu / Ac flax = 82.1 / 12.1 / 5.8).
 成形体の製造
 得られたペレットを、実施例2の場合と同様にして射出成形し、幅×長さ×厚み=10×80×4mmの短冊型試験片(成形体)を得た。
実施例5(試験番号 PA6-642):フィブリル化Acトドマツ(Ac化DS 0.67)及びAc亜麻(Ac化DS 0.57)を含有するPA6組成物、及びその成形体の製造
 実施例4と同じ組成物比のフィブリル化Acトドマツ及びAc亜麻を含有するPA6組成物、及びその成形体を、前記実施例3と同様の操作で、下記の通り製造した。
Manufacture of molded product The obtained pellet was injection-molded in the same manner as in Example 2 to obtain a strip-shaped test piece (molded product) of width x length x thickness = 10 x 80 x 4 mm.
Example 5 (Test No. PA6-642): PA6 composition containing fibrillated Ac todomatsu (Ac-compound DS 0.67) and Ac flax (Ac-comprising DS 0.57), and production of a molded article thereof Same composition as in Example 4 A PA6 composition containing a ratio of fibrillated Ac Todomatsu and Ac flax, and a molded article thereof were manufactured in the same manner as in Example 3 as described below.
 実施例3で使用したAcトドマツP-2(Ac化DS 0.7)及びAcラミー(Ac化DS 0.33)の代わりに、この実施例5では、実施例4と同じAcトドマツP-3及びAc亜麻を使用した。 In place of Ac todomatsu P-2 (Ac-modified DS 0.7) and Ac ramie (Ac-modified DS 0.33) used in Example 3, the same Ac Todomatsu P-3 and Ac flax as in Example 4 were used in Example 5. used.
 この製造方法は、AcトドマツP-3、PA6粉、及びAc亜麻を含む(組成比はAcトドマツP/PA6粉/Ac亜麻=12.1/32.1/5.8)粉状のマスターバッチ(粉状MB-7と称する)を作成し、これにPA6を加えて溶融混練して、上記実施例4と同一組成の、フィブリル化Acトドマツ 及びAc亜麻を含有するPA6組成物を製造する方法である。 This production method includes Ac todomatsu P-3, PA6 powder, and Ac flax (composition ratio is Ac todomatsu P / PA6 powder / Ac flax = 12.1 / 32.1 / 5.8) powdery masterbatch (powdered MB-7 (Hereinafter referred to as)), PA6 is added thereto, and the mixture is melt-kneaded to produce a PA6 composition containing fibrillated Ac Todomatsu and Ac flax having the same composition as in Example 4 above.
 まず、実施例3の粉状MB-3の調製と同様の操作で、シート状AcトドマツP-3を処理して粗粉砕し、粉PA6粉、及びAc亜麻を添加し、混合し、乾燥して、粉状MB-7を調製した。 First, in the same operation as in the preparation of the powdered MB-3 of Example 3, the sheet-shaped Ac Todomatsu P-3 was treated and coarsely pulverized, powdered PA6 powder and Ac flax were added, mixed and dried. Thus, powdered MB-7 was prepared.
 次に、粉状MB-7にPA6粉を加え、実施例4の場合と同様して各成分を均一になるように混合(混合比:粉状MB-7/PA6粉=50/50)した後、実施例4と同様にして溶融混練し、ペレット化し、実施例4と同一の組成のフィブリル化Acトドマツ及びAc亜麻を含有するPA6組成物を得た。これを実施例4の場合と同様に射出成形して、成形体を得た。 Next, PA6 powder was added to powdered MB-7, and each component was mixed so as to be uniform in the same manner as in Example 4 (mixing ratio: powdered MB-7 / PA6 powder = 50/50). Then, the mixture was melt-kneaded and pelletized in the same manner as in Example 4 to obtain a PA6 composition containing fibrillated Ac Todomatsu and Ac flax having the same composition as in Example 4. This was injection-molded in the same manner as in Example 4 to obtain a molded body.
比較例5(試験番号 PA6-640):フィブリル化Acトドマツを含有するPA6組成物、及びその成形体の製造
 これは、実施例4及び5の対照組成物である。実施例4及び5と同一のシート状AcトドマツP-3(Ac化DS 0.67)と、実施例4で使用した粉状MB-6(組成比:Acトドマツ/PA6粉=12.1/21.23)を用いて、以下の手順で組成物及び成形体を調製した。
Comparative Example 5 (Test No. PA6-640): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu, and Molded Articles Thereof This is the control composition of Examples 4 and 5. The same sheet-like Ac Todomatsu P-3 (Ac-modified DS 0.67) used in Examples 4 and 5 and the powdered MB-6 (composition ratio: Ac Todomatsu / PA6 powder = 12.11 / 21.23) used in Example 4 were used. Then, the composition and the molded body were prepared by the following procedures.
 粉状MB-6とPA6粉とを混合し(混合比:粉状MB-6/PA6粉=33.3/66.67)、均一に混合した後、実施例4の場合と同様にして溶融混練して、PA6とフィブリル化Acトドマツとからなる混練組成物(組成比:PA6/Acトドマツ=87.9/12.1、未修飾トドマツ含有量組成比に換算して表示するとPA6/Acトドマツ=90/10)を得た。これを前記と同様に射出成形して、成形体を得た。 Powdered MB-6 and PA6 powder were mixed (mixing ratio: powdered MB-6 / PA6 powder = 33.3 / 66.67), uniformly mixed, and then melt-kneaded in the same manner as in Example 4, A kneaded composition consisting of PA6 and fibrillated Ac Todomatsu (composition ratio: PA6 / Ac Todomatsu = 87.9 / 12.1, PA6 / Ac Todomatsu = 90/10 when converted to the unmodified Todomatsu content composition ratio) was obtained. .. This was injection-molded in the same manner as described above to obtain a molded body.
比較例6(試験番号 PA6-641):Ac亜麻を含有するPA6組成物、及びその成形体の製造 これは、実施例4及び5の対照組成物である。実施例4及び5と同一のAc亜麻(Ac化DS 0.57)を使用し、Ac亜麻を含有するPA6組成物及び成形体を下記の方法で製造した。 Comparative Example 6 (Test No. PA6-641): Production of PA6 composition containing Ac flax and its molded article This is a control composition of Examples 4 and 5. Using the same Ac flax (Ac-modified DS0.57) as in Examples 4 and 5, PA6 compositions and molded articles containing Ac flax were produced by the following method.
 Ac亜麻にPA6粉を加え、組成比PA6粉/Ac亜麻=88.4/11.6の混合物とし、ビニール袋内で均一に混合した後、実施例4と同様にして溶融混練して、PA6とAc亜麻とを含む混練組成物(組成比:PA6粉/Ac亜麻=88.4/11.6、未修飾亜麻含有量組成比に換算して表示するとPA6/Ac亜麻=90/10)を得た。これを前記と同様に射出成形して、成形体を得た。 PA6 powder was added to Ac flax to form a mixture having a composition ratio of PA6 powder / Ac flax = 88.4 / 11.6, which was uniformly mixed in a plastic bag and then melt-kneaded in the same manner as in Example 4 to obtain PA6 and Ac flax. Was obtained (composition ratio: PA6 powder / Ac flax = 88.4 / 11.6, PA6 / Ac flax = 90/10 when expressed in terms of unmodified flax content composition ratio). This was injection-molded in the same manner as described above to obtain a molded body.
(2-2)成形体の試験結果
 上記の成形体(試験片)について、曲げ弾性率、曲げ強度、及び耐衝撃性を前記の試験方法で測定した。結果を表2に示す。
(2-2) Test Results of Molded Body The flexural modulus, bending strength, and impact resistance of the above molded body (test piece) were measured by the above-described test methods. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 なお、表2の組成含有比において、化学修飾繊維(Acトドマツ及びAc亜麻)の組成含有比は、それぞれ対応する未修飾繊維(トドマツ及び亜麻)の質量百分率に換算したものを表示している。 Note that, in the composition content ratios in Table 2, the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac flax) are converted into the mass percentages of the corresponding unmodified fibers (Todomatsu and flax).
 実施例4及び5の成形体の強度及び弾性率は、比較例4~6の成形体のそれらに比べて大きく、優れている。そして、実施例4及び5の成形体は、繊維含有量が増加したにもかかわらず、その耐衝撃性は、比較例4~6の成形体のそれに比べて大きな低下はない。 The strength and elastic modulus of the molded products of Examples 4 and 5 are large and superior to those of the molded products of Comparative Examples 4 to 6. And, although the molded products of Examples 4 and 5 have an increased fiber content, their impact resistance is not much lower than that of the molded products of Comparative Examples 4 to 6.
(3-1) (A)MFCとしてフィブリル化アセチル化トドマツ(フィブリル化Acトドマツ)、(B)植物繊維としてアセチル化アバカ(Acアバカ)、及び(C)熱可塑性樹脂としてPA6を含有する繊維強化樹脂組成物 (3-1) (A) Fiber reinforced containing fibrillated acetylated Todomatsu (fibrillated Ac todomatsu) as MFC, (B) acetylated abaca (Ac abaca) as plant fiber, and (C) PA6 as thermoplastic resin Resin composition
実施例6(試験番号 PA6-646):フィブリル化Acトドマツ(Ac化DS 0.67)及びAcアバカ(Ac化DS 0.5)を含有するPA6組成物、及びその成形体の製造
 標記のフィブリル化Acトドマツ及びAcアバカを含有するPA6組成物及びその成形体を、前記実施例2と同様の操作で、下記の通り製造した。
Example 6 (Study No. PA6-646): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu (Ac-DS 0.67) and Ac Abaca (Ac-DS 0.5), and Molded Product Thereof A PA6 composition containing Ac abaca and a molded product thereof were manufactured in the same manner as in Example 2 as described below.
 実施例2で使用した、AcトドマツP-2(Ac化DS 0.7)及びAcラミー(Ac化DS 0.33)の代わりに、 AcトドマツP-3(Ac化DS 0.67)及びAcアバカ(Ac化DS 0.5)を使用した。 Instead of Ac Todomatsu P-2 (Ac-modified DS 0.7) and Ac Lamy (Ac-modified DS 0.33) used in Example 2, Ac Todomatsu P-3 (Ac-modified DS 0.67) and Ac Abaca (Ac-modified DS 0.53) )It was used.
 まず、上記シート状AcトドマツP-3(Ac化DS 0.67)を、前記実施例1の粉状MB-1の調製と同様の操作で処理して、AcトドマツP-3とPA6粉とを含有する粉状MB-6(組成比:Acトドマツ/PA6粉=12.1/21.23)を得た。 First, the sheet-like Ac Todomatsu P-3 (Ac-modified DS0.67) was treated in the same manner as in the preparation of the powdery MB-1 of Example 1 to contain Ac Todomatsu P-3 and PA6 powder. To obtain powdery MB-6 (composition ratio: Ac Todomatsu / PA6 powder = 12.1 / 21.23).
 次に、実施例2の場合と同様の操作で、粉状MB-6にPA6粉およびAcアバカを加え、各成分の均一な混合物(混合比:粉状MB-6/PA6粉/Acアバカ=33.33/61/5.67)を調製し、これを前記二軸溶融混練機で溶融混練し、ペレット化して、フィブリル化Acトドマツ(Ac化DS 0.67)及びAcアバカ(Ac化DS 0.5)を含む、ペレット状のPA組成物(組成比:PA6/フィブリル化Acトドマツ/Acアバカ=82.23/12.1/5.67、未修飾トドマツ含有量組成比に換算して表示するとPA6/Acトドマツ/Acアバカ=85/10/5)を得た。 Next, in the same operation as in Example 2, PA6 powder and Ac abaca were added to powdered MB-6, and a uniform mixture of each component (mixing ratio: powdered MB-6 / PA6 powder / Ac abaca = 33.33 / 61 / 5.67), melt-kneading this with the above-mentioned twin-screw melt-kneader, pelletizing, and including fibrillated Ac Todomatsu (Ac-DS0.67) and Ac-Abaca (Ac-DS0.5) PA composition (composition ratio: PA6 / fibrillated Ac Todomatsu / Ac abaca = 82.23 / 12.1 / 5.67, unmodified Todomatsu content When expressed in terms of composition ratio, PA6 / Ac Todomatsu / Ac abaca = 85/10 / 5) got.
 成形体の製造
 得られたペレットを、実施例2と同様にして射出成形し、幅×長さ×厚み=10×80×4mmの短冊型試験片(成形体)を得た。
Manufacture of molded product The obtained pellet was injection-molded in the same manner as in Example 2 to obtain a strip-shaped test piece (molded product) of width x length x thickness = 10 x 80 x 4 mm.
実施例7(試験番号 PA6-644):フィブリル化Acトドマツ(Ac化DS 0.67)及びAcアバカ(Ac化DS 0.5)を含有するPA6組成物、及びその成形体の製造
 実施例6と同じ組成物比のフィブリル化Acトドマツ及びAcアバカを含有するPA組成物、及びその成形体を、前記実施例3と同様の操作で、下記の通り製造した。
Example 7 (Test No. PA6-644): PA6 composition containing fibrillated Ac Todomatsu (Ac-DS 0.67) and Ac-Abaca (Ac-DS 0.5), and manufacture of its molded article Same composition as in Example 6 A PA composition containing a ratio of fibrillated Ac Todomatsu and Ac abaca, and a molded article thereof were manufactured in the same manner as in Example 3 as described below.
 実施例3で使用したAcトドマツP-2(Ac化DS 0.7)及びAcラミー(Ac化DS 0.33)の代わりに、実施例6で使用したAcトドマツP-3及びAcアバカと同一のものを使用した。 The same Ac Todomatsu P-3 and Ac Abaca used in Example 6 were used instead of Ac Todomatsu P-2 (Ac-modified DS 0.7) and Ac ramie (Ac-modified DS 0.33) used in Example 3. did.
 この製造方法は、Acトドマツ/PA6粉/Acアバカのマスターバッチを作成し、これをPA6と溶融混練して、上記実施例6と同一組成の、フィブリル化Acトドマツ とAcアバカとを含有するPA6組成物を製造する方法である。 This production method was carried out by preparing a master batch of Ac Todomatsu / PA6 powder / Ac Abaca, melting and kneading this with PA6, and PA6 containing the fibrillated Ac Todomatsu and Ac Abaca of the same composition as in Example 6 above. A method of producing a composition.
 まず、シート状AcトドマツP-3を、実施例3のMB-3の調製と同様の操作で処理して粗粉砕し、粉PA6粉、及びAcアバカを添加し、混合し、乾燥して、粉状混合物(混合物の組成比はAcトドマツP/PA6粉/Acアバカ=12.1/32.23/5.67、これを粉状MB-8と称する)を調製した。 First, a sheet of Ac Todomatsu P-3 was treated by the same operation as in the preparation of MB-3 of Example 3 and coarsely pulverized, and powder PA6 powder and Ac abaca were added, mixed and dried, A powdery mixture (composition ratio of Ac Todomatsu P / PA6 powder / Ac Abaca = 12.1 / 32.23 / 5.67, which is referred to as powdery MB-8) was prepared.
 次に、粉状MB-8にPA6粉を加え、実施例6の場合と同様して各成分を均一になるように混合(混合比:粉状MB-8/PA6粉=50/50)した後、実施例6と同様にして溶融混練し、ペレット化し、実施例6と同一の組成のフィブリル化AcトドマツとAcアバカとを含有するPA6組成物を得た。次いで、これを実施例6と同様に射出成形し、成形体を得た。
比較例7(試験番号 PA6-643):Acアバカを含有するPA6組成物、及びその成形体の製造 これは、実施例6及び7の対照組成物である。実施例6及び7で用いたAcアバカ(Ac化DS 0.5)を使用し、Acアバカを含有するPA6組成物を下記の方法で製造した。
Next, PA6 powder was added to powdered MB-8, and each component was mixed so as to be uniform in the same manner as in Example 6 (mixing ratio: powdered MB-8 / PA6 powder = 50/50). Then, the mixture was melt-kneaded and pelletized in the same manner as in Example 6 to obtain a PA6 composition containing fibrillated Ac Todomatsu and Ac abaca having the same composition as in Example 6. Then, this was injection-molded in the same manner as in Example 6 to obtain a molded body.
Comparative Example 7 (Test No. PA6-643): Preparation of PA6 Composition Containing Ac Abaca and Molded Articles Thereof This is the control composition of Examples 6 and 7. Using the Ac abaca used in Examples 6 and 7 (Ac-modified DS 0.5), a PA6 composition containing an Ac abaca was prepared by the following method.
 AcアバカにPA6粉を加え、組成比PA6粉/Acアバカ=88.66/11.34の混合物とし、均一に混合した後、実施例6と同様にして溶融混練して、PA6とAcアバカとからなる混練組成物(組成比:PA6粉/Acアバカ=88.66/11.34)を得た。次いで、これを前記と同様に射出成形し、成形体を得た。 PA6 powder was added to Ac abaca to form a mixture having a composition ratio of PA6 powder / Ac abaca = 88.66 / 11.34, and after uniform mixing, melt kneading was carried out in the same manner as in Example 6 to obtain a kneading composition consisting of PA6 and Ac abaca. (Composition ratio: PA6 powder / Ac Abaca = 88.66 / 11.34) was obtained. Then, this was injection-molded in the same manner as described above to obtain a molded body.
 (3-2)成形体の試験結果
 上記の成形体(試験片)について、曲げ弾性率、曲げ強度、及び耐衝撃性を前記の試験方法で測定した。結果を表3に示す。
(3-2) Test Result of Molded Body The flexural modulus, bending strength, and impact resistance of the above molded body (test piece) were measured by the above-described test methods. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 なお、表3の組成含有比において、化学修飾繊維(Acトドマツ及びAcアバカ)の組成含有比は、それぞれ対応する未修飾繊維(トドマツ及びアバカ)の質量百分率に換算したものを表示している。 Note that, in the composition content ratios in Table 3, the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac Abaca) are shown in terms of the mass percentages of the corresponding unmodified fibers (Todomatsu and Abaca).
 実施例6及び7の成形体の強度及び弾性率は、比較例4、5、及び7の成形体のそれらに比べて大きく、優れている。そして、実施例6及び7の成形体は、繊維含有量が増加したにもかかわらず、その耐衝撃性は比較例4、5、及び7の成形体のそれに比べて大きな低下はない。 The strength and elastic modulus of the molded bodies of Examples 6 and 7 are large and excellent as compared with those of the molded bodies of Comparative Examples 4, 5, and 7. The impact resistance of the molded products of Examples 6 and 7 is not much lower than that of the molded products of Comparative Examples 4, 5, and 7 even though the fiber content is increased.
(4-1) (A)MFCとしてフィブリル化アセチル化トドマツ(フィブリル化Acトドマツ)、(B)植物繊維としてケナフ(化学修飾無)又はアセチル化ケナフ(Acケナフ)、及び(C)熱可塑性樹脂としてPA6を含有する繊維強化樹脂組成物 (4-1) (A) MFC fibrillated acetylated Todomatsu (fibrillated Ac Todomatsu), (B) vegetable fiber kenaf (without chemical modification) or acetylated kenaf (Ac kenaf), and (C) thermoplastic resin Fiber-reinforced resin composition containing PA6 as
実施例8(試験番号 PA6-631):フィブリル化Acトドマツ(Ac化DS 0.56)及びケナフを含有するPA6組成物、及びその成形体の製造
 ラミー(化学修飾無)の代わりにケナフ(化学修飾無)を使用する以外は、実施例1と同様にして、フィブリル化Acトドマツ(Ac化DS 0.56)とケナフとを含有するPA6組成物を調製し、これを成形加工してフィブリル化Acトドマツ(Ac化DS 0.56)とケナフ(化学修飾無)とを含有する成形体を調製した。
Example 8 (Test No. PA6-631): Preparation of PA6 Composition Containing Fibrillated Ac Todomatsu (Ac Derivative DS 0.56) and Kenaf, and Molded Article Thereof Instead of ramie (no chemical modification), kenaf (no chemical modification) ) Was used in the same manner as in Example 1 to prepare a PA6 composition containing fibrillated Ac todomatsu (DS 0.56 Ac) and kenaf, and molding this to prepare a fibrillated Ac todomatsu (Ac) And a kenaf (without chemical modification) was prepared.
実施例9(試験番号 PA6-687):フィブリル化Acトドマツ(Ac化DS 0.67)及びAcケナフ(Ac化DS 0.25)を含有するPA6組成物、及びその成形体の製造
 シート状AcトドマツP-2(Ac化DS 0.7)の代わりにシート状AcトドマツP-3(Ac化DS 0.67)を、Acラミー(Ac化DS 0.33)の代わりにAcケナフ(Ac化DS 0.25)を使用し、実施例3と同様に操作して、フィブリル化Acトドマツ(Ac化DS 0.67)とAcケナフ(Ac化DS 0.25)とを含有するPA6組成物を調製し、これを成形加工して、成形体を得た。
Example 9 (Test No. PA6-687): Production of PA6 composition containing fibrillated Ac Todomatsu (Ac-compound DS 0.67) and Ac kenaf (Ac-compound DS 0.25), and molded article thereof Ac-Todomatsu sheet P-2 Example 3 using sheet Ac Ac Todomatsu P-3 (Ac compound DS 0.67) instead of (Ac compound DS 0.7) and Ac kenaf (Ac compound DS 0.25) instead of Ac ramie (Ac compound DS 0.33) A PA6 composition containing fibrillated Ac todomatsu (Ac-modified DS 0.67) and Ac kenaf (Ac-modified DS 0.25) was prepared in the same manner as in 1., and molded to obtain a molded product.
実施例10(試験番号 PA6-688):フィブリル化Acトドマツ(Ac化DS 0.67)及びAcケナフ(Ac化DS 0.64)を含有するPA6組成物、及びその成形体の製造
 Acケナフ(Ac化DS 0.25)の代わりに、Acケナフ(Ac化DS 0.64)を使用する以外は、実施例9と同様にして、フィブリル化Acトドマツ(Ac化DS 0.67)とAcケナフ(Ac化DS 0.64)を含有するPA6組成物を調製し、これを成形加工し、成形体を得た。
Example 10 (Study No. PA6-688): Preparation of a PA6 composition containing fibrillated Ac todomatsu (Ac-compound DS 0.67) and Ac kenaf (Ac-comprising DS 0.64), and moldings thereof Ac kenaf (Ac-comprising DS 0.25) PA6 containing fibrillated Ac todomatsu (Ac-modified DS 0.67) and Ac kenaf (Ac-modified DS 0.64) in the same manner as in Example 9 except that Ac-kenaf (Ac-modified DS 0.64) was used instead of). A composition was prepared and molded to obtain a molded body.
比較例8(試験番号 PA6-682):フィブリル化Acトドマツ(Ac化DS 0.67)を含有するPA6組成物、及びその成形体の製造
 シート状AcトドマツP-2(Ac化DS 0.7)の代わりにシート状AcトドマツP-3(Ac化DS 0.67)を使用する以外は、比較例2と同様にして、PA6とフィブリル化AcトドマツP(Ac化DS 0.66)とを含むPA6組成物を調製し、これを成形し、成形体を得た。
Comparative Example 8 (Test No. PA6-682): Production of PA6 composition containing fibrillated Ac todomatsu (Ac-compound DS 0.67) and molded article thereof Instead of sheet-like Ac todomatsu P-2 (Ac-compound DS 0.7) A PA6 composition containing PA6 and fibrillated Ac Todomatsu P (Ac-modified DS 0.66) was prepared in the same manner as in Comparative Example 2 except that sheet-like Ac Todomatsu P-3 (Ac-modified DS 0.67) was used. This was molded to obtain a molded body.
(4-2)成形体の試験結果
 上記の成形体(試験片)について、曲げ弾性率、曲げ強度、及び耐衝撃性を前記の試験方法で測定した。結果を表4に示す。
(4-2) Test Results of Molded Body The flexural modulus, bending strength, and impact resistance of the above molded body (test piece) were measured by the above-described test methods. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 なお、表4の組成含有比において、化学修飾繊維(Acトドマツ及びAcケナフ)の組成含有比は、それぞれ対応する未修飾繊維(トドマツ及びケナフ)の質量百分率に換算したものを表示している。 Note that, in the composition content ratios in Table 4, the composition content ratios of the chemically modified fibers (Ac Todomatsu and Ac Kenaf) are converted into the mass percentages of the corresponding unmodified fibers (Todomatsu and Kenaf).
 実施例8~10の成形体の強度及び弾性率は、比較例1、4及び8の成形体のそれらに比べて大きく、優れている。そして、実施例8~10の成形体は、繊維含有量が増加したにもかかわらず、その耐衝撃性は比較例1、4及び8の成形体のそれに比べて大きな低下はない。 The strength and elastic modulus of the molded bodies of Examples 8 to 10 are large and superior to those of the molded bodies of Comparative Examples 1, 4 and 8. The impact resistances of the molded products of Examples 8 to 10 are not much lower than those of the molded products of Comparative Examples 1, 4 and 8 even though the fiber content is increased.

Claims (10)

  1.  (A)ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物であって、
     前記(A)ミクロフィブリル化セルロース系繊維及び前記(B)植物繊維が、それぞれ下記要件(a)及び(b)を満たす、繊維強化樹脂組成物。
    要件(a):
     (A)ミクロフィブリル化セルロース系繊維が、下式(1):
    (Lg)Cell-O-R  (1)
    〔式(1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。
    -O-Rは、セルロース系高分子中のセルロース、ホロセルロース及び/又はリグノセルロースを構成する多糖及びリグニン中の、水酸基を示すか、又は一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、水素原子、炭素数2~4のアシル基、下式(2):
    Figure JPOXMLDOC01-appb-C000001
    (式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
    で表される非化学修飾又は化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
    要件(b):
     (B)植物繊維が、
    (B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
    (B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
    A fiber-reinforced resin composition containing (A) microfibrillated cellulosic fibers, (B) plant fibers, and (C) a thermoplastic resin,
    A fiber-reinforced resin composition in which the (A) microfibrillated cellulosic fiber and the (B) plant fiber satisfy the following requirements (a) and (b), respectively.
    Requirement (a):
    (A) The microfibrillated cellulosic fiber has the following formula (1):
    (Lg) Cell-OR (1)
    [In the formula (1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin constituting cellulose, holocellulose and / or lignocellulose in the cellulosic polymer.
    -OR represents a hydroxyl group in the cellulose and holocellulose and / or lignocellulosic polysaccharides and lignin in the cellulosic polymer, or a hydrogen atom of a part of the hydroxyl group is substituted with a substituent R. R represents a hydrogen atom, an acyl group having 2 to 4 carbon atoms, and the following formula (2):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
    It is a microfibrillated fiber of a fiber composed of a non-chemically modified or chemically modified cellulosic polymer represented by.
    Requirement (b):
    (B) vegetable fiber
    (B-1) one or more vegetable fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
    (B-2) A part of the hydrogen atoms of the hydroxyl groups of the cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
  2.  前記要件(a)の式(1)におけるRが、炭素数2~4のアシル基、下式(2):
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩である、請求項1に記載の繊維強化樹脂組成物。
    R in the formula (1) of the requirement (a) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by The fiber-reinforced resin composition according to claim 1, which is a salt of a group-containing acyl group.
  3.  前記要件(a)の式(1)におけるRが、アセチル基である、請求項1又は2に記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to claim 1 or 2, wherein R in the formula (1) of the requirement (a) is an acetyl group.
  4.  前記要件(b)の(B)植物繊維が、(B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維である、請求項1~3のいずれかに記載の繊維強化樹脂組成物。 The requirement (b) (B) vegetable fiber is (B-1) one or more vegetable fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton. The fiber-reinforced resin composition according to any one of claims 1 to 3.
  5.  前記要件(b)の(B)植物繊維が、(B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基で修飾された1種又は2種以上の化学修飾植物繊維である、請求項1~3のいずれかに記載の繊維強化樹脂組成物。 The requirement (b) (B) vegetable fiber is (B-2) a part of the hydrogen atoms of the hydroxyl groups of the cellulose constituting the (B-1) vegetable fiber is an acyl group having 2 to 4 carbon atoms. The fiber-reinforced resin composition according to any one of claims 1 to 3, which is one or more chemically modified plant fibers modified.
  6.  前記要件(b)の(B)植物繊維が、ラミー及び/又はアセチル基で修飾されたラミーである、請求項1~3のいずれかに記載の繊維強化樹脂組成物。 The fiber-reinforced resin composition according to any one of claims 1 to 3, wherein the (B) vegetable fiber of the requirement (b) is a ramie and / or a ramie modified with an acetyl group.
  7.  前記(C)熱可塑性樹脂が、ポリアミド、ポリオレフィン、脂肪族ポリエステル、芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリスチレン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート-ABSアロイ(PC-ABSアロイ)、及び変性ポリフェニレンエーテル(m-PPE)からなる群から選ばれる少なくとも1種の樹脂である、請求項1~6のいずれかに記載の繊維強化樹脂組成物。 The thermoplastic resin (C) is polyamide, polyolefin, aliphatic polyester, aromatic polyester, polyacetal, polycarbonate, polystyrene, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate-ABS alloy (PC-ABS alloy). The fiber-reinforced resin composition according to any one of claims 1 to 6, which is at least one resin selected from the group consisting of :, and modified polyphenylene ether (m-PPE).
  8.  請求項1~7のいずれかに記載の繊維強化樹脂組成物からなる成形体。 A molded product comprising the fiber-reinforced resin composition according to any one of claims 1 to 7.
  9.  (A-1)化学修飾ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物の製造方法であって、
    (AP)化学修飾セルロース系パルプ、(B)植物繊維、及び(C)熱可塑性樹脂を溶融混練し、当該溶融混練中に化学修飾セルロース系パルプをミクロフィブリル化する工程を含み、
    前記(AP)化学修飾セルロース系パルプ、前記(B)植物繊維、及び前記(A-1)化学修飾ミクロフィブリル化セルロース系繊維が、それぞれ下記要件(ap)、(b)、及び(a-1)を満たす、製造方法。
    要件(ap):
     (AP)化学修飾セルロース系パルプが、下式(1-1):
    (Lg)Cell-O-R  (1-1)
    〔式(1-1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。-O-Rは、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、炭素数2~4のアシル基、下式(2):
    Figure JPOXMLDOC01-appb-C000004
    (式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
    で表される化学修飾セルロース系高分子で構成される化学修飾セルロース系パルプである。
    要件(b):
     (B)植物繊維が、
    (B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
    (B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
    要件(a-1):
     (A-1)化学修飾ミクロフィブリル化セルロース系繊維が、前記式(1-1)で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。
    A method for producing a fiber-reinforced resin composition containing (A-1) a chemically modified microfibrillated cellulosic fiber, (B) a plant fiber, and (C) a thermoplastic resin,
    (AP) chemically modified cellulosic pulp, (B) vegetable fiber, and (C) thermoplastic resin is melt-kneaded, and the step of microfibrillating the chemically modified cellulosic pulp during the melt-kneading,
    The (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber have the following requirements (ap), (b), and (a-1), respectively. ), The manufacturing method.
    Requirements (ap):
    (AP) Chemically modified cellulosic pulp has the following formula (1-1):
    (Lg) Cell-OR (1-1)
    [In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer. -OR indicates that some of the hydrogen atoms of the hydroxyl groups in the polysaccharide and lignin constituting the cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer are replaced by the substituent R, and R is , An acyl group having 2 to 4 carbon atoms, the following formula (2):
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
    It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
    Requirement (b):
    (B) vegetable fiber
    (B-1) one or more vegetable fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
    (B-2) A part of the hydrogen atoms of the hydroxyl groups of the cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
    Requirement (a-1):
    The (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
  10.  (A-1)化学修飾ミクロフィブリル化セルロース系繊維、(B)植物繊維、及び(C)熱可塑性樹脂を含有する繊維強化樹脂組成物を製造する方法であって、
    工程(1):
     (AP)化学修飾セルロース系パルプ、及び(C)熱可塑性樹脂を混練して当該溶融混練中に化学修飾セルロース系パルプをミクロフィブリル化する工程、及び
    工程(2):
     前記工程(1)で得られた混練物と、(B)植物繊維、又は、植物繊維と熱可塑性樹脂とを含む樹脂組成物とを複合化する工程
    を含み、
    前記(AP)化学修飾セルロース系パルプ、前記(B)植物繊維、及び前記(A-1)化学修飾ミクロフィブリル化セルロース系繊維が、それぞれ下記要件(ap)、(b)、及び(a-1)を満たす、製造方法。
    要件(ap):
     (AP)化学修飾セルロース系パルプが、下式(1-1):
    (Lg)Cell-O-R  (1-1)
    〔式(1-1)中、(Lg)Cell-は、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニンから水酸基を除いた残基を示す。-O-Rは、セルロース系高分子中のセルロース、ホロセルロース、及び/又はリグノセルロースを構成する多糖及びリグニン中の一部の水酸基の水素原子が置換基Rにより置換されていることを示し、Rは、炭素数2~4のアシル基、下式(2):
    Figure JPOXMLDOC01-appb-C000006
    (式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩を示す。〕
    で表される化学修飾セルロース系高分子で構成される化学修飾セルロース系パルプである。
    要件(b):
     (B)植物繊維が、
    (B-1)ラミー、ヘンプ、リネン、ジュート、アバカ、サイザル、ケナフ、及び綿花からなる群から選ばれる1種又は2種以上の植物繊維、又は、
    (B-2)前記(B-1)の植物繊維を構成するセルロースの水酸基の一部の水素原子が、炭素数2~4のアシル基、下式(2):
    Figure JPOXMLDOC01-appb-C000007
    (式(2)中、R1及びR2は、同一又は異なって、水素原子、メチル基、エチル基、又は分岐鎖を有してもよい炭素数3~20のアルケニル基若しくはアルキル基を示す。但し、R1及びR2のいずれか一方の炭素数が4~20である場合、R1及びR2の他方は水素原子である。)で表されるカルボキシ基含有アシル基、又は当該カルボキシ基含有アシル基の塩で修飾された1種又は2種以上の化学修飾植物繊維である。
    要件(a-1):
     (A-1)化学修飾ミクロフィブリル化セルロース系繊維が、前記式(1-1)で表される化学修飾セルロース系高分子で構成される繊維のミクロフィブリル化繊維である。 
    A method for producing a fiber-reinforced resin composition containing (A-1) a chemically modified microfibrillated cellulosic fiber, (B) a plant fiber, and (C) a thermoplastic resin,
    Process (1):
    (AP) a chemically modified cellulosic pulp and (C) a thermoplastic resin are kneaded to microfibrillize the chemically modified cellulosic pulp during the melt-kneading, and step (2):
    Including the step of compounding the kneaded product obtained in the step (1), and (B) plant fiber, or a resin composition containing a plant fiber and a thermoplastic resin,
    The (AP) chemically modified cellulosic pulp, the (B) plant fiber, and the (A-1) chemically modified microfibrillated cellulosic fiber have the following requirements (ap), (b), and (a-1), respectively. ), The manufacturing method.
    Requirements (ap):
    (AP) Chemically modified cellulosic pulp has the following formula (1-1):
    (Lg) Cell-OR (1-1)
    [In the formula (1-1), (Lg) Cell- represents a residue obtained by removing a hydroxyl group from the polysaccharide and lignin that constitute cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer. -OR indicates that some of the hydrogen atoms of the hydroxyl groups in the polysaccharide and lignin constituting the cellulose, holocellulose, and / or lignocellulose in the cellulosic polymer are replaced by the substituent R, and R is , An acyl group having 2 to 4 carbon atoms, the following formula (2):
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by A salt of a group-containing acyl group is shown. ]
    It is a chemically modified cellulosic pulp composed of a chemically modified cellulosic polymer.
    Requirement (b):
    (B) vegetable fiber
    (B-1) one or more vegetable fibers selected from the group consisting of ramie, hemp, linen, jute, abaca, sisal, kenaf, and cotton, or
    (B-2) A part of the hydrogen atoms of the hydroxyl groups of the cellulose constituting the plant fiber of (B-1) is an acyl group having 2 to 4 carbon atoms, and the following formula (2):
    Figure JPOXMLDOC01-appb-C000007
    (In the formula (2), R 1 and R 2 are the same or different and each represents a hydrogen atom, a methyl group, an ethyl group, or an optionally branched alkenyl group or alkyl group having 3 to 20 carbon atoms. Provided that when one of R 1 and R 2 has 4 to 20 carbon atoms, the other of R 1 and R 2 is a hydrogen atom.), Or a carboxy group-containing acyl group represented by One or more chemically modified plant fibers modified with a salt of a group-containing acyl group.
    Requirement (a-1):
    The (A-1) chemically modified microfibrillated cellulosic fiber is a microfibrillated fiber composed of the chemically modified cellulosic polymer represented by the formula (1-1).
PCT/JP2019/043079 2018-11-05 2019-11-01 Fiber-reinforced resin composition and production method therefor, and molded article WO2020095845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-208202 2018-11-05
JP2018208202A JP7333510B2 (en) 2018-11-05 2018-11-05 Fiber-reinforced resin composition, method for producing the same, and molded article

Publications (1)

Publication Number Publication Date
WO2020095845A1 true WO2020095845A1 (en) 2020-05-14

Family

ID=70612058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043079 WO2020095845A1 (en) 2018-11-05 2019-11-01 Fiber-reinforced resin composition and production method therefor, and molded article

Country Status (2)

Country Link
JP (1) JP7333510B2 (en)
WO (1) WO2020095845A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7533318B2 (en) 2021-03-31 2024-08-14 豊田合成株式会社 Cellulose fiber reinforced polyolefin resin composition and resin molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029927A (en) * 2007-07-26 2009-02-12 Toyota Boshoku Corp Manufacturing method for thermoplastic resin composition, and manufacturing method for molded article
JP2014220345A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
WO2016148233A1 (en) * 2015-03-19 2016-09-22 国立大学法人京都大学 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
WO2018123150A1 (en) * 2016-12-28 2018-07-05 旭化成株式会社 Cellulose-containing resin composition and cellulosic ingredient

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029927A (en) * 2007-07-26 2009-02-12 Toyota Boshoku Corp Manufacturing method for thermoplastic resin composition, and manufacturing method for molded article
JP2014220345A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
WO2016148233A1 (en) * 2015-03-19 2016-09-22 国立大学法人京都大学 Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
WO2018123150A1 (en) * 2016-12-28 2018-07-05 旭化成株式会社 Cellulose-containing resin composition and cellulosic ingredient

Also Published As

Publication number Publication date
JP2020075950A (en) 2020-05-21
JP7333510B2 (en) 2023-08-25

Similar Documents

Publication Publication Date Title
JP7185215B2 (en) Fiber-reinforced resin composition, fiber-reinforced molded article, and method for producing the same
JP6640623B2 (en) Masterbatch containing acylated modified microfibrillated plant fibers
JP6091589B2 (en) Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
Liu et al. Three‐dimensional printing of poly (lactic acid) bio‐based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance
JP5496435B2 (en) Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
Njuguna et al. Natural fibre-reinforced polymer composites and nanocomposites for automotive applications
JP6012206B2 (en) Modified cellulose nanofiber and resin composition containing modified cellulose nanofiber
WO2016148233A1 (en) Fiber-reinforced resin composition comprising chemically modified cellulose nanofibers and thermoplastic resin
JP6775160B2 (en) Defibering aid for hydrophobized cellulosic fibers, manufacturing method of resin composition using it, and molded article
WO2020050286A1 (en) Composite particles and resin composition
WO2021172407A1 (en) Fiber-reinforced resin composition having an improved fibrillation property and method for producing the same, and molded body and fibrillation agent
Padal et al. Mechanical properties of jute nanofibres reinforced composites
JP2019001938A (en) Manufacturing method of fibrillated cellulose fiber, and manufacturing method of resin composition
WO2020095845A1 (en) Fiber-reinforced resin composition and production method therefor, and molded article
JP6792265B2 (en) Acetylated pulp composition containing an ethylene glycol derivative, a resin composition containing a microfibrillated acetylated pulp, and a method for producing them.
Touati et al. Influence of different diss fiber treatments over the properties of poly propylene/recycled and regenerated low density polyethylene based biocomposites
JP7024953B2 (en) Thermal pressure molded product of chemically modified lignocellulosic and its manufacturing method
Yu et al. Effect of extracted nano-cellulose from paper egg trays on mechanical properties of vinyl ester/kenaf fibers composites
JP2020056045A (en) Fine cellulose-containing resin composition
JP2021020988A (en) Vinyl chloride-based polymer composition, method for producing the same and use thereof
WO2023013514A1 (en) Cellulose-containing resin composition, filament for 3d printers, and method for preparing cellulose-containing resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883266

Country of ref document: EP

Kind code of ref document: A1