WO2020202656A1 - Curable resin composition, dry film, cured product, and electronic component - Google Patents

Curable resin composition, dry film, cured product, and electronic component Download PDF

Info

Publication number
WO2020202656A1
WO2020202656A1 PCT/JP2019/049159 JP2019049159W WO2020202656A1 WO 2020202656 A1 WO2020202656 A1 WO 2020202656A1 JP 2019049159 W JP2019049159 W JP 2019049159W WO 2020202656 A1 WO2020202656 A1 WO 2020202656A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
resin
silica
resin composition
curable resin
Prior art date
Application number
PCT/JP2019/049159
Other languages
French (fr)
Japanese (ja)
Inventor
千穂 植田
岡田 和也
知哉 工藤
沙和子 嶋田
将太郎 種
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to KR1020217032878A priority Critical patent/KR20210148177A/en
Priority to CN201980094329.XA priority patent/CN113631603A/en
Publication of WO2020202656A1 publication Critical patent/WO2020202656A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a curable resin composition, a dry film, a cured product, and an electronic component.
  • Patent Document 1 discloses a photosensitive resin composition in which two kinds of inorganic fillers having a specific refractive index and organic fillers having a specific particle size are combined to give high resolution and a low coefficient of linear expansion. There is.
  • an object of the present invention is a curable resin composition capable of obtaining a cured product having excellent resolution and embedding property of a high-density wiring pattern, a dry film having a resin layer obtained from the composition, the composition or the present invention.
  • An object of the present invention is to provide a cured product of a resin layer of a dry film and an electronic component having the cured product.
  • the present inventors have diligently studied the surface treatment of silica in order to realize the above object. As a result, the present inventors have a refractive index of 1.50 to 1.65 at the D line (25 ° C) as opposed to a photocurable resin having a refractive index of 1.50 to 1.65 at the D line (25 ° C). It has been found that the above-mentioned problems can be solved by blending silica coated with 65 organic alkoxysilanes, and the present invention has been completed.
  • the curable resin composition of the present invention is a curable resin composition containing (A) a photocurable resin, (B) a photopolymerization initiator, and (C) silica, and the above-mentioned (A) light.
  • the refractive index of the curable resin in the D line measured at 25 ° C. is 1.50 to 1.65
  • the refractive index of the silica (C) in the D line measured at 25 ° C. is 1.50 to 1.65. It is characterized in that it is coated with the organic alkoxysilane.
  • the organic alkoxysilane has a cardo structure.
  • the silica (C) is coated with at least two kinds of the organic alkoxysilanes, or is coated with the organic alkoxysilanes and organic alkoxysilanes other than the organic alkoxysilanes. Is preferable.
  • the dry film of the present invention is characterized by having a resin layer obtained by applying the curable resin composition to the film and drying it.
  • the cured product of the present invention is characterized by being obtained by curing the curable resin composition or the resin layer of the dry film.
  • the electronic component of the present invention is characterized by having the cured product.
  • a curable resin composition capable of obtaining a cured product having excellent resolution and embedding property of a high-density wiring pattern, a dry film having a resin layer obtained from the composition, the composition or the dry product.
  • a cured product of the resin layer of the film and an electronic component having the cured product can be provided.
  • the curable resin composition of the present invention is a curable resin composition containing (A) a photocurable resin, (B) a photopolymerization initiator, and (C) silica, and the (A) photocurable resin composition.
  • the refractive index of the resin in the D line measured at 25 ° C. is 1.50 to 1.65
  • the refractive index of the (C) silica in the D line measured at 25 ° C. is 1.50 to 1.65. It is characterized in that it is coated with an organic alkoxysilane.
  • the refractive index of silica at D line (25 ° C.) is 1.42, and the higher the filling, the more scattered light at the interface, and it is difficult to obtain a small-diameter aperture.
  • the present invention has a photocurable resin having a refractive index of 1.50 to 1.65 at the D line (25 ° C.) and a refractive index of 1.50 to 1.65 at the D line (25 ° C.).
  • the difference between the refractive index of (A) the photocurable resin and the refractive index of (B) the organic alkoxysilane coating silica is preferably 0.10 or less, and preferably 0.08 or less. It is more preferably 0.06 or less, further preferably 0.03 or less, and particularly preferably 0.03 or less.
  • the refractive index of either (A) photocurable resin and (B) organic that coats silica may be 0.10 or less.
  • the refractive index of (A) the photocurable resin contained most in the (A) photocurable resin in terms of mass% and (C) silica are coated. It is preferable that the difference from the refractive index of the organic alkoxysilane is 0.10 or less.
  • the organic alkoxysilane preferably has a cardo structure such as a fluorene skeleton.
  • a cardo structure such as a fluorene skeleton.
  • the curable resin composition of the present invention is exposed to ultraviolet rays (around 400 nm), and the refractive index is controlled by using the widely generally shown refractive index of D line.
  • the curable resin composition of the present invention has a (A) photocurable resin having a refractive index of 1.50 to 1.65 on the D line and a refractive index of 1.50 to 1.65 on the D line. Since excellent resolution could be obtained by using (C) silica coated with organic alkoxysilane in combination, the object of the present invention could be obtained by adjusting the refractive index at the D line. It turns out that it can be fully achieved.
  • the photocurable resin (A) is a photocurable resin having a refractive index of 1.50 to 1.65 at the D line (25 ° C.), and is a compound having one or more ethylenically unsaturated groups in the molecule. Is preferably used.
  • the compound having an ethylenically unsaturated group a known and commonly used compound may be used, and a polymer such as an alkali-soluble resin having an ethylenically unsaturated group, a photopolymerizable oligomer which is a photosensitive monomer, or a photopolymerizable vinyl monomer may be used.
  • Etc. may be a radically polymerizable monomer or a cationically polymerizable monomer.
  • examples of the ethylenically unsaturated group include a vinyl group and a (meth) acryloyl group.
  • the term (meth) acryloyl group is a general term for acryloyl groups, methacryloyl groups, and mixtures thereof, and the same applies to other similar expressions.
  • the (A) photocurable resin is preferably an alkali-soluble resin.
  • the photocurable resin (A) is an alkali-soluble resin, a cured product having particularly excellent resolution can be obtained.
  • the alkali-soluble resin may be any resin having an alkali-soluble group, and the alkali-soluble group is, for example, any one of a phenolic hydroxyl group, a thiol group and a carboxyl group.
  • the alkali-soluble resin examples include compounds having two or more phenolic hydroxyl groups, carboxyl group-containing resins, compounds having phenolic hydroxyl groups and carboxyl groups, and compounds having two or more thiol groups, and among them, excellent developability. Therefore, a carboxyl group-containing resin is preferable.
  • a photocurable resin using a phenol resin as a starting material a photocurable copolymer resin having a maleimide structure, and a photocurable resin having an epoxy acrylate structure are preferable.
  • the photocurable resin (A) one type may be used alone, or two or more types may be used in combination.
  • (A) photocurable resin examples include, but are not limited to, the following compounds (either oligomer or polymer).
  • a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth) acrylic acid with an unsaturated group-containing compound such as styrene or ⁇ -methylstyrene, and glycidyl (meth) acrylate or ⁇ -
  • a carboxyl group-containing photosensitive resin having a copolymerization structure obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups to a molecule such as methylglycidyl (meth) acrylate.
  • a diisocyanate such as an aromatic diisocyanate, a carboxyl group-containing dialcohol compound, a diol compound, and a compound having one isocyanate group and one or more (meth) acryloyl groups in the molecule.
  • a carboxyl group-containing photosensitive resin having a urethane structure.
  • (3-1) Contains a carboxyl group having a urethane structure by a double addition reaction of a diisocyanate, a (meth) acrylate of a bifunctional epoxy resin or a partially acid anhydride modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
  • Photosensitive resin (3-2) Carboxylic acid having a urethane structure formed by adding a compound having one epoxy group and one or more (meth) acryloyl groups in the molecule to the carboxyl group-containing photosensitive resin of (3-1). Group-containing photosensitive resin.
  • (3-3) Diisocyanate, (meth) acrylate of bifunctional epoxy resin or partially acid anhydride modified product thereof, carboxyl group-containing dialcohol compound, diol compound, one hydroxyl group in the molecule and one or more (Meta) A carboxyl group-containing photosensitive resin having a urethane structure obtained by reacting with a compound having an acryloyl group.
  • (3-4) Diisocyanate, (meth) acrylate of bifunctional epoxy resin or partially acid anhydride modified product thereof, carboxyl group-containing dialcohol compound, diol compound, one isocyanate group in the molecule and one or more.
  • a carboxyl group-containing photosensitive resin having a urethane structure obtained by reacting with a compound having a (meth) acryloyl group.
  • An unsaturated monocarboxylic acid such as (meth) acrylic acid is reacted with a polyfunctional epoxy resin, and dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride is added to the hydroxyl group existing in the side chain.
  • dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride is added to the hydroxyl group existing in the side chain.
  • Carboxylic anhydride-containing photosensitive resin with an added substance.
  • An epoxy compound having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol, and an unsaturated mono Polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipic anhydride with respect to the alcoholic hydroxyl group of the reaction product obtained by reacting with a carboxylic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting with.
  • Reaction production obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with alkylene oxide such as ethylene oxide and propylene oxide with an unsaturated group-containing monocarboxylic acid.
  • alkylene oxide such as ethylene oxide and propylene oxide
  • a carboxyl group-containing photosensitive resin obtained by reacting a substance with a polybasic acid anhydride.
  • maleimide or maleimide derivatives such as N-phenylmaleimide and N-benzylmaleimide, unsaturated carboxylic acids such as (meth) acrylic acid, and unsaturated group-containing compounds having a hydroxyl group such as hydroxyalkyl (meth) acrylate.
  • the acid value thereof is appropriately in the range of 40 to 200 mgKOH / g, and more preferably in the range of 45 to 120 mgKOH / g.
  • the acid value of the photocurable resin (A) is 40 mgKOH / g or more, alkaline development becomes easy, while drawing a normal cured product pattern of 200 mgKOH / g or less becomes easy, which is preferable.
  • Examples of the photopolymerizable oligomer include epoxy (meth) acrylates such as phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, and bisphenol type epoxy (meth) acrylate, epoxy urethane (meth) acrylate, and polyester (meth) acrylate. And so on.
  • epoxy (meth) acrylates such as phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, and bisphenol type epoxy (meth) acrylate, epoxy urethane (meth) acrylate, and polyester (meth) acrylate. And so on.
  • Examples of the photopolymerizable vinyl monomer include known and commonly used styrene derivatives such as styrene, chlorostyrene and ⁇ -methylstyrene, allyl compounds such as triallyl isocyanurate, diallyl phthalate and diallyl isophthalate, and phenyl (meth).
  • examples thereof include esters of (meth) acrylic acid such as acrylate and phenoxyethyl (meth) acrylate, and isocyanurate-type poly (meth) acrylates such as tris [(meth) acryloxyethyl] isocyanurate.
  • the refractive index of the photocurable resin at the D line (25 ° C.) is preferably 1.52 or more, and more preferably 1.54 or more.
  • the blending amount of the (A) photocurable resin is, for example, 10 to 50% by mass with respect to the total solid content of the curable resin composition.
  • the curable resin composition of the present invention may contain a photocurable compound having a refractive index of less than 1.50 at the D line (25 ° C.).
  • the blending amount of the photocurable compound having a refractive index of less than 1.50 is a combination of a photocurable compound having a refractive index of less than 1.50 and a photocurable resin having a refractive index of 1.50 to 1.65. It may be less than 50% by mass with respect to the total amount.
  • Examples of the photocurable compound having a refractive index of less than 1.50 include hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and pentaerythritol tri (meth) acrylate; methoxyethyl.
  • hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and pentaerythritol tri (meth) acrylate; methoxyethyl.
  • Alkoxyalkylene glycol mono (meth) acrylates such as (meth) acrylate and ethoxyethyl (meth) acrylate; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1 , 6-Hexanediol di (meth) acrylate, trimethylolpropantri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate and other alkylene polyol poly (meth) acrylate; diethylene glycol di (meth) acrylate.
  • Polyoxyalkylene glycol poly (meth) acrylates such as acrylates, triethylene glycol di (meth) acrylates, ethoxylated trimetylolpropan triacrylates, propoxylated trimethylol propantri (meth) acrylates; neopentyl glycol hydroxybivariate Examples thereof include poly (meth) acrylates such as ester di (meth) acrylate.
  • photopolymerization initiator (B) any photopolymerization initiator known as a photopolymerization initiator or a photoradical generator can be used.
  • Examples of the photopolymerization initiator (B) include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, and bis-.
  • the blending amount of the (B) photopolymerization initiator is, for example, 0.1 to 30% by mass with respect to the total solid content of the curable resin composition.
  • (C) silica is coated with an organic alkoxysilane having a refractive index of 1.50 to 1.65 at the D line (25 ° C.).
  • Examples of silica include fused silica, spherical silica, amorphous silica, crystalline silica, sol silica and the like, but spherical silica is preferable.
  • the organic alkoxysilane having a refractive index of 1.50 to 1.65 on the D line (25 ° C.) is not particularly limited, and a known and commonly used organic alkoxysilane may be used.
  • the refractive index is the refractive index in the measurement of D line (25 ° C., also referred to as sodium D line)
  • KBM-202SS diimethoxydiphenylsilane: refractive index 1.54 manufactured by Shinetsu Chemical Industry Co., Ltd., X-12.
  • SC-001 Fluolene-containing silane: Refractive index 1.56
  • SC-003 Fluorene-containing Silane: Refractive index 1.53
  • an alkoxysilane having an aromatic ring is preferable, and an organic alkoxysilane having a cardo structure is particularly preferable.
  • an organic alkoxysilane having a fluorene skeleton such as SC-001 or SC-003 is preferable, and an organic alkoxysilane having a fluorene skeleton having a cardo structure is more preferable.
  • the alkoxy group of the organic alkoxysilane is, for example, an alkoxy group having 1 to 5 carbon atoms.
  • the organic alkoxysilane may be used alone or in combination of two or more depending on the refractive index of the (A) photocurable resin.
  • organic alkoxysilane having a fluorene skeleton having a cardo structure examples include organic alkoxysilanes represented by the following formulas (1-1) and (1-2). (In the equation, n and m each independently indicate an integer of 1 to 6.)
  • Examples of commercially available products of the organic alkoxysilane represented by the above formula (1-1) include Ogsol SC-001 manufactured by Osaka Gas Chemical Co., Ltd.
  • Examples of commercially available products of the organic alkoxysilane represented by the above formula (1-2) include Ogsol SC-003 manufactured by Osaka Gas Chemical Co., Ltd.
  • the organic alkoxysilane may have a curable reactive group.
  • the curable reactive group is not particularly limited as long as it is a group that cures with a component (for example, a photocurable resin or a thermosetting resin) blended in the curable resin composition, and even a photocurable reactive group is thermosetting. It may be a sexual reactive group.
  • the coating method is not particularly limited, and for example, a known and commonly used method such as a method of treating silica using the organic alkoxysilane as a silane coupling agent may be used.
  • the coating with an organic alkoxysilane having a refractive index of 1.50 to 1.65 on the D line (25 ° C.) is, for example, 1 to 50 parts by mass with respect to 100 parts by mass of silica.
  • the silica (C) is preferably coated with at least two kinds of the organic alkoxysilanes, or with an organic alkoxysilane other than the organic alkoxysilanes and the organic alkoxysilanes. By blending the silica coated in this way, a cured product having low CTE and excellent cold resistance can be obtained. Such coating treatment may be performed before, after, or at the same time as the coating treatment with the organic alkoxysilane.
  • the organic alkoxysilane having a refractive index of 1.50 to 1.65 at the D line (25 ° C.) may or may not have a curable reactive group.
  • the organic alkoxysilane having a refractive index of 1.50 to 1.65 at the D line (25 ° C.) does not have a curable reactive group, it is preferable to use it in combination with an organic alkoxysilane having a curable reactive group. When used in this way, heat resistance, thermal stability and crack resistance during a cold cycle are improved.
  • Examples of the organic silane other than the organic alkoxysilane include KBM-502 (refractive index: 1.43), KBM-503 (refractive index: 1.43), KBE-502 (refractive index: 1.43), and KBE-503. (Refractive index: 1.43), KBM-5803 (refractive index: 1.44), methacrylsilane such as KR-503 (refractive index: 1.45), KBM-5103 (refractive index: 1.43), X 12-1048 (refractive index: 1.45), X-12-1050 (refractive index: 1.48), KR-513 (refractive index: 1.45), KBM-1003 (refractive index: 1.39)
  • Examples thereof include silane having an equal refractive index of less than 1.50.
  • the organic silane other than the organic alkoxysilane is preferably a silane having a reactive group with the component (A).
  • methacrylic silane is preferable from the viewpoint of physical properties such as tensile strength.
  • epoxy silane such as KBM-403 (refractive index: 1.43) may be mixed and added to control the refractive index.
  • the coating with an organic silane other than the organic alkoxysilane is 1 to 50 parts by mass with respect to 100 parts by mass of silica.
  • (C) silica may be further coated with an inorganic substance.
  • the inorganic substance is not particularly limited, and examples thereof include silicon hydrated oxide, aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide.
  • the coating with the inorganic substance is, for example, 1 to 40 parts by mass with respect to 100 parts by mass of silica.
  • the average particle size of (C) silica is, for example, 0.01 to 0.8 ⁇ m.
  • the average particle size of (C) silica is the average particle size (D50) including not only the particle size of the primary particles but also the particle size of the secondary particles (aggregates), and is a laser. It is a value of D50 measured by a diffraction method. Examples of the measuring device by the laser diffraction method include Microtrac MT3300EXII manufactured by Microtrac Bell.
  • the average particle size of (C) silica may be adjusted, and for example, it is preferable to pre-disperse it with a bead mill or a jet mill. Further, the inorganic filler is preferably blended in a slurry state, and by blending in a slurry state, high dispersion is facilitated, aggregation is prevented, and handling is facilitated.
  • Silica may be used alone or in combination of two or more.
  • the blending amount of silica (C) may be, for example, 10% by mass or more, further 20% by mass or more, or even 30% by mass or more, based on the total solid content of the curable resin composition.
  • the upper limit of the amount of silica blended is, for example, 80% by mass or less.
  • the curable resin composition of the present invention may contain a known and commonly used inorganic filler other than (C) silica as long as the effects of the present invention are not impaired.
  • inorganic filler examples include silica other than silica coated with organic alkoxysilane having a refractive index of 1.50 to 1.65 at D line (25 ° C.), Neuburg silica clay, aluminum hydroxide, and glass. Powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica, aluminum hydroxide, barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate, Examples include inorganic fillers such as zinc flower.
  • thermosetting resin The curable resin composition of the present invention can contain a thermosetting resin.
  • the thermosetting resin improves the heat resistance of the cured product and also improves the adhesion to the substrate.
  • known and commonly used thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, epoxy compounds, polyfunctional oxetane compounds, and episulfide resins can be used. ..
  • epoxy compounds polyfunctional oxetane compounds, and compounds having two or more thioether groups in the molecule, that is, episulfide resins are preferable, and epoxy compounds are more preferable.
  • One type of thermosetting resin may be used alone, or two or more types may be used in combination.
  • the above-mentioned epoxy compound is a compound having an epoxy group, and any conventionally known compound can be used. Examples thereof include polyfunctional epoxy compounds having a plurality of epoxy groups in the molecule. It may be a hydrogenated epoxy compound.
  • polyfunctional epoxy compound examples include epoxidized vegetable oil; bisphenol A type epoxy resin; hydroquinone type epoxy resin; bisphenol type epoxy resin; thioether type epoxy resin; brominated epoxy resin; novolac type epoxy resin; biphenol novolac type epoxy resin; bisphenol F.
  • Type epoxy resin hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydrantin type epoxy resin; alicyclic epoxy resin; trihydroxyphenylmethane type epoxy resin; bixyleneol type or biphenol type epoxy resin or a mixture thereof; Bisphenol S type epoxy resin; Bisphenol A novolak type epoxy resin; Tetraphenylol ethane type epoxy resin; Heterocyclic epoxy resin; Diglycidyl phthalate resin; Tetraglycidyl xylenoyl ethane resin; Naphthalene group-containing epoxy resin; Dicyclopentadiene skeleton Epoxy resin with glycidyl methacrylate copolymer; epoxy resin copolymerized with cyclohexyl maleimide and glycidyl methacrylate; epoxy-modified polybutadiene rubber derivative; CTBN-modified epoxy resin and the like, but are not limited thereto.
  • epoxy resins may be used alone or in combination of two or more.
  • novolak type epoxy resin bisphenol type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin, biphenol novolac type epoxy resin, naphthalene type epoxy resin or a mixture thereof is particularly preferable.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, and 1,4-bis [(3-3-oxythylmethoxy) methyl] ether.
  • Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin and the like. Further, using the same synthesis method, an episulfide resin in which the oxygen atom of the epoxy group of the novolak type epoxy resin is replaced with a sulfur atom can also be used.
  • amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycol uryl compounds and methylol urea compounds.
  • a polyisocyanate compound can be blended as the isocyanate compound.
  • the polyisocyanate compound include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolyrene isocyanate dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexylisocyanate) and isophorone diisocyanate; Alicyclic polyisocyanates such as bicycloheptanetriisocyanate; and adducts, burettes, and is
  • an addition reaction product of the isocyanate compound and the isocyanate blocking agent can be used.
  • the isocyanate compound capable of reacting with the isocyanate blocking agent include the above-mentioned polyisocyanate compound and the like.
  • isocyanate blocking agents include phenol-based blocking agents; lactam-based blocking agents; active methylene-based blocking agents; alcohol-based blocking agents; oxime-based blocking agents; mercaptan-based blocking agents; acid amide-based blocking agents; imide-based blocking agents; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents and the like can be mentioned.
  • thermosetting resin for example, 1 to 50% by mass based on the total solid content of the composition.
  • the curable resin composition of the present invention can contain a curing accelerator.
  • the curing accelerator include imidazole, 2-methylimidazole, 2-ethyl imidazole, 2-ethyl-4-methyl imidazole, 2-phenyl imidazole, 4-phenyl imidazole, 1-cyanoethyl-2-phenyl imidazole, 1-.
  • Imidazole derivatives such as (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzyl
  • amine compounds such as amines, 4-methyl-N, N-dimethylbenzylamine and 4-dimethylaminopyridine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
  • the curing accelerator one type may be used alone, or two or more types may be used in combination.
  • the blending amount of the curing accelerator is, for example, 0.01 to 30% by mass in the total solid content of the composition.
  • the curable resin composition of the present invention may contain a colorant.
  • a colorant known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable that it does not contain halogen from the viewpoint of reducing the environmental load and affecting the human body.
  • the colorant one type may be used alone, or two or more types may be used in combination.
  • the blending amount of the colorant is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
  • the curable resin composition of the present invention may contain an organic solvent for the purpose of preparing the composition, adjusting the viscosity when applied to a substrate or a film, and the like.
  • organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethyl benzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol and propylene glycol monomethyl ether.
  • the curable resin composition of the present invention may contain other additives known and commonly used in the field of electronic materials.
  • Other additives include thermal polymerization inhibitors, UV absorbers, silane coupling agents, plasticizers, flame retardants, antistatic agents, anti-aging agents, antioxidants, antibacterial / antifungal agents, antifoaming agents, leveling.
  • the curable resin composition of the present invention may contain (A) an alkali-soluble resin or a solvent-soluble resin that is not a photocurable resin as long as the effects of the present invention are not impaired.
  • the curable resin composition of the present invention is not particularly limited, and may be, for example, a photocurable thermosetting resin composition or a non-thermosetting photocurable resin composition. Further, it may be an alkali-developed type or a solvent-developed type. That is, when the composition of the present invention is an alkali-developable type containing an alkali-soluble resin, a negative-type pattern cured film can be obtained by irradiation with active energy rays and an alkali developer, and when the composition does not contain the alkali-soluble resin. Can obtain a negative pattern cured film by irradiation with active energy rays and a developing solution composed of an organic solvent.
  • a known and commonly used component may be selected according to the curability and application.
  • the curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
  • the dry film of the present invention has a resin layer obtained by applying the curable resin composition of the present invention on a carrier film and drying it.
  • the curable resin composition of the present invention is diluted with the above organic solvent to adjust the viscosity to an appropriate level, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. , Reverse coater, transfer coater, gravure coater, spray coater, etc., and apply to a uniform thickness on the carrier film.
  • the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer.
  • the coating film thickness is not particularly limited, but is generally selected as appropriate in the range of 3 to 150 ⁇ m, preferably 5 to 60 ⁇ m after drying.
  • a plastic film is used, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used.
  • PET polyethylene terephthalate
  • the thickness of the carrier film is not particularly limited, but is generally selected as appropriate in the range of 10 to 150 ⁇ m. More preferably, it is in the range of 15 to 130 ⁇ m.
  • a peelable cover is further applied to the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer. It is preferable to stack the films.
  • the peelable cover film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used.
  • the cover film may be smaller than the adhesive force between the resin layer and the carrier film when the cover film is peeled off.
  • the curable resin composition of the present invention may be applied onto the cover film and dried to form a resin layer, and a carrier film may be laminated on the surface thereof. That is, either a carrier film or a cover film may be used as the film to which the curable resin composition of the present invention is applied when producing the dry film in the present invention.
  • the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method using the above organic solvent, and the substrate is used.
  • the organic solvent contained in the composition is applied at a temperature of 60 to 100 ° C.
  • a tack-free resin layer is formed by volatile drying (temporary drying).
  • a resin layer is formed on the substrate by sticking the resin layer on the substrate with a laminator or the like so as to be in contact with the substrate and then peeling off the carrier film.
  • the above-mentioned substrates include printed wiring boards and flexible printed wiring boards whose circuits are formed in advance with copper or the like, as well as paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, and glass cloth / paper epoxy. It is made of materials such as copper-clad laminates for high-frequency circuits using synthetic fiber epoxy, fluororesin / polyethylene / polyimideene ether, polyphenylene oxide / cyanate, etc., and all grades (FR-4, etc.) of copper-clad laminates.
  • metal substrates, polyimide films, PET films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can be mentioned.
  • the circuit may be pretreated.
  • GliCAP manufactured by Shikoku Chemicals Corporation
  • New Organic AP Adhesion promoter
  • MEC New Organic AP
  • Nova Bond manufactured by Atotech Japan, etc.
  • Adhesion to a cured film such as a resist may be improved, or pretreatment may be performed with a rust preventive.
  • Volatile drying performed after applying the curable resin composition of the present invention is carried out in a hot air circulation type drying oven, IR furnace, hot plate, convection oven, etc. (using a steam-based air heating type heat source in the dryer). It can be carried out by using a method of bringing hot air into countercurrent contact and a method of blowing hot air onto a support from a nozzle).
  • a resin layer on the printed wiring board After forming a resin layer on the printed wiring board, it is selectively exposed to active energy rays through a photomask having a predetermined pattern, and the unexposed portion is exposed to a dilute alkaline aqueous solution (for example, 0.3 to 3% by mass sodium carbonate aqueous solution). ) To form a pattern of the cured product. Further, the cured product is adhered by irradiating the cured product with active energy rays and then heat curing (for example, 100 to 220 ° C.), or by irradiating the cured product with active energy rays after heat curing or by performing final finish curing (main curing) only by heat curing. It forms a cured film with excellent properties such as properties and hardness.
  • a dilute alkaline aqueous solution for example, 0.3 to 3% by mass sodium carbonate aqueous solution.
  • the exposure machine used for the above-mentioned active energy ray irradiation if it is a device equipped with a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiates the active energy ray in the range of 350 to 450 nm.
  • a projection exposure machine using a projection lens or a direct drawing device for example, a laser direct imaging device that directly draws an image with a laser from CAD data from a computer
  • the lamp light source or the laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, etc.
  • the developing solution includes potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, etc.
  • Alkaline aqueous solutions such as ammonia and amines can be used.
  • the curable resin composition of the present invention is suitably used for forming a cured film on an electronic component, particularly for forming a cured film on a printed wiring board, and more preferably for forming a permanent film. And more preferably used to form solder resists, interlayer insulating layers, coverslays, encapsulants. Further, it is suitable for forming a permanent coating (particularly solder resist) for a printed wiring board, for example, a package substrate, particularly FC-BGA, which requires a high degree of reliability. Further, the curable resin composition of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the roughness of the circuit surface is small, for example, a printed wiring board for high frequency.
  • the surface roughness Ra is 0.05 ⁇ m or less, particularly 0.03 ⁇ m or less, it can be preferably used. It can also be suitably used when a cured film is formed on a low-polarity base material, for example, a base material containing an active ester. Further, it is suitably used for forming a cured film on a roughening-free wafer or a glass substrate.
  • the obtained reaction solution was washed with water using a 5% NaCl aqueous solution, toluene was removed by distillation under reduced pressure, and then diethylene glycol monoethyl ether acetate was added to obtain an acrylate resin solution having a solid content of 67%.
  • 322 parts of the obtained acrylate resin solution, 0.1 part of hydroquinone monomethyl ether, and 0.3 part of triphenylphosphine were charged into a four-necked flask equipped with a stirrer and a reflux condenser, and the mixture was charged at 110 ° C.
  • 60 parts of tetrahydrophthalic anhydride was added, the mixture was reacted for 4 hours, cooled, and then taken out.
  • the photosensitive carboxyl group-containing resin solution A-1 thus obtained had a solid content of 70% and a solid content acid value of 81 mgKOH / g.
  • the values shown in Table 1 are parts by mass of the solid content that does not contain a
  • a mixture of 10 parts (hydrocarbon solution) and 21.2 parts of carbitol acetate was charged. While maintaining the reaction temperature at 80 ° C., the dropping was carried out from the dropping tanks 1, 2, 4 to 3 hours and from the dropping tank 3 for 2.5 hours. After the completion of the dropping, the reaction was continued at 80 ° C. for 30 minutes. Then, the reaction temperature was raised to 95 ° C., and the reaction was continued for 1.5 hours to obtain a polymer solution before the radical polymerizable double bond introduction reaction.
  • Photocurable resin A-3 700 g of diethylene glycol monoethyl ether acetate and orthocresol novolac type epoxy resin [manufactured by DIC Corporation, EPICLON N-695, softening point 95 ° C., epoxy equivalent 214, average number of functional groups 7.6] 1070 g (number of glycidyl groups (total number of aromatic rings): 5.0 mol), 360 g (5.0 mol) of acrylic acid, and 1.5 g of hydroquinone were charged and heated and stirred at 100 ° C. to uniformly dissolve. Next, 4.3 g of triphenylphosphine was charged, heated to 110 ° C.
  • the photosensitive carboxyl group-containing resin solution A-3 thus obtained had a solid content of 65% and an acid value of the solid content of 87 mgKOH / g.
  • the values shown in Table 1 are parts by mass of the solid content that does not contain a solvent.
  • C-1 Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, and a silane coupling agent having a methoxy group (KBM-202SS manufactured by Shin-Etsu Chemical Co., Ltd .: D line (25)
  • a silica solvent-dispersed product C-1 was obtained by uniformly dispersing 1.54) and 2 g of a refractive index at (° C.).
  • C-2 Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, a methoxy group, and a silane coupling agent having a fluorene skeleton having a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.)
  • a silica solvent-dispersed product C-2 was obtained by uniformly dispersing 2 g of a refractive index of 1.56) in SC-001: D line (25 ° C.).
  • C-3 Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, a methoxy group, and a silane coupling agent having a fluorene skeleton having a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.) SC-003: Refractive index 1.53) 2 g on D line (25 ° C.) was uniformly dispersed to obtain a silica solvent-dispersed product C-3.
  • SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm
  • MEK methyl ethyl ketone
  • SC-003 Refractive index 1.53
  • C-4 Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, methoxy group, and a silane coupling agent having a fluorene skeleton having a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.) SC-001: Refractive index at D line (25 ° C.) 1.56)
  • a silane coupling agent further having a methoxy group and a methacryl group KBM-503: D line (manufactured by Shinetsu Chemical Industry Co., Ltd.) The refractive index of 1.43) at 25 ° C.) was uniformly dispersed with 1 g to obtain a silica solvent-dispersed product C-4.
  • C-5 Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, a silane coupling agent having a fluorene skeleton having a methoxy group and a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.) SC-001: Refractive index at D line (25 ° C.) 1.56)
  • a silane coupling agent further having a methoxy group and an amino group KBM-573: D line (manufactured by Shinetsu Chemical Industry Co., Ltd.) The refractive index of 1.43) at 25 ° C.) was uniformly dispersed with 1 g to obtain a silica solvent-dispersed product C-5.
  • R-1 Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, and a silane coupling agent having a methoxy group and a methacrylic group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.):
  • a silica solvent-dispersed product R-1 was obtained by uniformly dispersing 2 g of a refractive index of 1.43) on the D line (25 ° C.).
  • R-2 60 g of spherical silica (SFP-20M manufactured by Denka, average particle size: 400 nm, refractive index at D line (25 ° C.) 1.42) and 40 g of MEK (methyl ethyl ketone) as a solvent are uniformly dispersed, and the silica solvent-dispersed product R I got -2.
  • SFP-20M spherical silica manufactured by Denka, average particle size: 400 nm, refractive index at D line (25 ° C.) 1.42
  • MEK methyl ethyl ketone
  • R-3 60 g of barium sulfate (B-30NC (unsurface treated product) manufactured by Sakai Chemical Industry Co., Ltd., average particle size: 300 nm, refractive index at D line (25 ° C.) 1.65) and 40 g of MEK (methyl ethyl ketone) as a solvent are uniformly dispersed.
  • the barium solvent-dispersed product R-3 was obtained. These were blended so as to have the solid content of the numerical values of Examples and Comparative Examples.
  • ⁇ Refractive index measurement method> The refractive index of the photocurable resin, the organic alkoxysilane and the inorganic filler adjusted above was measured by applying each sample on glass using a refractive index meter ER-7MW manufactured by ERMA, and drying the sample at 25 ° C. Measured under conditions.
  • the coating liquid was applied onto a polyethylene terephthalate film having a thickness of 38 ⁇ m (carrier film: Embret PTH-25 manufactured by Unitika Ltd.) and dried at a temperature of 80 ° C. for 15 minutes to form a resin layer having a thickness of 20 ⁇ m. ..
  • a biaxially stretched polypropylene film cover film: OPP-FOA manufactured by Futamura Co., Ltd.
  • the PET film is peeled off and developed (1 mass% Na 2 CO 3 , 30). °C, 0.2 MPa) was carried out in 60 seconds to form a pattern of the resin layer.
  • the resin layer is irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer to have an evaluation substrate having a pattern cured film.
  • a UV conveyor furnace equipped with a high-pressure mercury lamp
  • the substrate was placed in a constant temperature bath having an oxygen atmosphere at 175 ° C., and the time during which peeling with the cellophane tape peel did not occur was confirmed.
  • No peeling of 2000 hrs or more
  • Some peeling occurs at 1500 hrs or more and less than 2000 hrs
  • Peeling occurs at 1000 hrs or more and less than 1500 hrs
  • Peeling occurs within 1000 hrs
  • ⁇ CTE> A cured film was formed on the low profile copper foil under the same conditions as the above ⁇ high temperature standing test>. The obtained cured film was peeled off from the copper foil, a sample was cut out so that a measurement size (3 mm ⁇ 10 mm size) could be obtained, and CTE was measured with TMA6100 manufactured by Hitachi High-Tech. The measurement conditions were that the test load was 5 g and the sample was heated above room temperature at a rate of temperature rise of 10 ° C./min twice, and a linear expansion coefficient (CTE ( ⁇ 2)) of Tg or less was obtained in the second time. It can be seen that the smaller the CTE, the better the thermal stability. ⁇ : 30 ppm or less ⁇ : 30 ppm or more, 40 ppm or less ⁇ : 40 ppm or more, 50 ppm or less ⁇ : 50 ppm or less
  • Solvent dispersion product C-1 C-2 A solvent-dispersed product of silica coated with a silane coupling agent having a fluorene skeleton having a methoxy group and a cardo structure (refractive index at D line (25 ° C.) of 1.56) prepared above.
  • 2 C-3 Solvent-dispersed product of silica coated with a silane coupling agent having a fluorene skeleton having a methoxy group and a cardo structure (refractive index at D line (25 ° C.) of 1.53) prepared above.
  • C-4 A silane coupling agent having a methoxy group and a fluorene skeleton having a cardo structure (refractive index at D line (25 ° C.) of 1.56) prepared above, and a silane cup having a methoxy group and a methacryl group.
  • C-5 A silane coupling agent having a methoxy group and a fluorene skeleton having a cardo structure (refractive index at D line (25 ° C.) of 1.56) prepared above, and a silane cup having a methoxy group and an amino group.
  • Solvent-dispersed product C-5 of silica coated with a ring agent (refractive index at D line (25 ° C.) 1.43)
  • R-1 Solvent-dispersed product of silica coated with a silane coupling agent having a methoxy group and a methacrylic group (refractive index 1.43 at D line (25 ° C.)) adjusted above.
  • R-2 Solvent-dispersed product of silica (refractive index 1.42 at D line (25 ° C)) adjusted above
  • R-3 Solvent-dispersed product of barium (refractive index 1.65 at D line (25 ° C.)) adjusted above R-3
  • the curable resin compositions of Examples 1 to 6 of the present invention can be obtained as a cured product having excellent resolution and embedding property of a high-density wiring pattern.

Abstract

Provided are: a curable resin composition from which a cured product having excellent resolution and embedding properties of high-density wiring patterns is obtained; a dry film having a resin layer obtained from the composition; a cured product of the composition or the resin layer of the dry film; and an electronic component having the cured product. The curable resin composition is characterized by including (A) a photocurable resin, (B) a photopolymerization initiator, and (C) silica, wherein (A) the photocurable resin has a refractive index of 1.50-1.65 on a D line as measured at 25 ˚C, and (C) the silica is covered with an organic alkoxysilane having a refractive index of 1.50-1.65 on a D line as measured at 25 ˚C.

Description

硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品Curable resin compositions, dry films, cured products, and electronic components
 本発明は、硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品に関する。 The present invention relates to a curable resin composition, a dry film, a cured product, and an electronic component.
 半導体パッケージのソルダーレジスト等に使用される硬化性樹脂組成物には、ファインピッチ(Fine Pitch)化に伴う解像精度の要求が高まっている。一方で熱応力に対する耐性も持ち合わせなければならないため、高耐熱性の樹脂や無機材料の添加による熱線膨張率のコントロールが行われている。そこに使用される無機材料は、低CTE化やクラック耐性という物性面だけでなく、コストや比重などの使いやすさからシリカが従来から使用されている。
 例えば、特許文献1には、2種の特定屈折率の無機フィラーと特定粒子径の有機フィラーを組み合わせて、高解像性と同時に低線膨張係数を与えるという感光性樹脂組成物が開示されている。
For curable resin compositions used for solder resists and the like of semiconductor packages, there is an increasing demand for resolution accuracy due to fine pitch (Fine Pitch). On the other hand, since it is necessary to have resistance to thermal stress, the coefficient of linear thermal expansion is controlled by adding a highly heat-resistant resin or an inorganic material. As the inorganic material used there, silica has been conventionally used not only in terms of physical properties such as low CTE and crack resistance, but also in terms of ease of use such as cost and specific gravity.
For example, Patent Document 1 discloses a photosensitive resin composition in which two kinds of inorganic fillers having a specific refractive index and organic fillers having a specific particle size are combined to give high resolution and a low coefficient of linear expansion. There is.
特許6210060号公報Japanese Patent No. 621060
 しかしながら、特許文献1に記載の感光性樹脂組成物でも、ファインピッチ化に伴う解像精度の高い要求に対して十分な高解像性を得ることが困難であった。
 また、シリカを配合することにより組成物の粘度が高くなり、高密度配線パターンの埋め込み精度が劣り、絶縁信頼性の低下の問題もあった。
 そこで本発明の目的は、解像性および高密度配線パターンの埋め込み性に優れた硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することにある。
However, even with the photosensitive resin composition described in Patent Document 1, it has been difficult to obtain sufficiently high resolution to meet the demand for high resolution accuracy due to fine pitching.
Further, by blending silica, the viscosity of the composition is increased, the embedding accuracy of the high-density wiring pattern is inferior, and there is a problem that the insulation reliability is lowered.
Therefore, an object of the present invention is a curable resin composition capable of obtaining a cured product having excellent resolution and embedding property of a high-density wiring pattern, a dry film having a resin layer obtained from the composition, the composition or the present invention. An object of the present invention is to provide a cured product of a resin layer of a dry film and an electronic component having the cured product.
 本発明者らは、上記目的の実現に向け、シリカの表面処理に着目して鋭意検討を行なった。その結果、本発明者らは、D線(25℃)における屈折率が1.50~1.65の光硬化性樹脂に対し、D線(25℃)における屈折率が1.50~1.65の有機アルコキシシランで被覆されたシリカを配合することによって、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have diligently studied the surface treatment of silica in order to realize the above object. As a result, the present inventors have a refractive index of 1.50 to 1.65 at the D line (25 ° C) as opposed to a photocurable resin having a refractive index of 1.50 to 1.65 at the D line (25 ° C). It has been found that the above-mentioned problems can be solved by blending silica coated with 65 organic alkoxysilanes, and the present invention has been completed.
 即ち、本発明の硬化性樹脂組成物は、(A)光硬化性樹脂、(B)光重合開始剤、および、(C)シリカを含む硬化性樹脂組成物であって、前記(A)光硬化性樹脂の25℃で測定したD線における屈折率が1.50~1.65であり、前記(C)シリカが、25℃で測定したD線における屈折率が1.50~1.65である有機アルコキシシランで被覆されていることを特徴とするものである。 That is, the curable resin composition of the present invention is a curable resin composition containing (A) a photocurable resin, (B) a photopolymerization initiator, and (C) silica, and the above-mentioned (A) light. The refractive index of the curable resin in the D line measured at 25 ° C. is 1.50 to 1.65, and the refractive index of the silica (C) in the D line measured at 25 ° C. is 1.50 to 1.65. It is characterized in that it is coated with the organic alkoxysilane.
 本発明の硬化性樹脂組成物は、前記有機アルコキシシランがカルド構造を有することが好ましい。 In the curable resin composition of the present invention, it is preferable that the organic alkoxysilane has a cardo structure.
 本発明の硬化性樹脂組成物は、前記(C)シリカが、少なくとも2種の前記有機アルコキシシランで被覆されている、または、前記有機アルコキシシランおよび前記有機アルコキシシラン以外の有機アルコキシシランで被覆されていることが好ましい。 In the curable resin composition of the present invention, the silica (C) is coated with at least two kinds of the organic alkoxysilanes, or is coated with the organic alkoxysilanes and organic alkoxysilanes other than the organic alkoxysilanes. Is preferable.
 本発明のドライフィルムは、前記硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 The dry film of the present invention is characterized by having a resin layer obtained by applying the curable resin composition to the film and drying it.
 本発明の硬化物は、前記硬化性樹脂組成物、または、前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product of the present invention is characterized by being obtained by curing the curable resin composition or the resin layer of the dry film.
 本発明の電子部品は、前記硬化物を有することを特徴とするものである。 The electronic component of the present invention is characterized by having the cured product.
 本発明によれば、解像性および高密度配線パターンの埋め込み性に優れた硬化物が得られる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有する電子部品を提供することができる。 According to the present invention, a curable resin composition capable of obtaining a cured product having excellent resolution and embedding property of a high-density wiring pattern, a dry film having a resin layer obtained from the composition, the composition or the dry product. A cured product of the resin layer of the film and an electronic component having the cured product can be provided.
 本発明の硬化性樹脂組成物は、(A)光硬化性樹脂、(B)光重合開始剤、および、(C)シリカを含む硬化性樹脂組成物であって、前記(A)光硬化性樹脂の25℃で測定したD線における屈折率が1.50~1.65であり、前記(C)シリカが、25℃で測定したD線における屈折率が1.50~1.65である有機アルコキシシランで被覆されていることを特徴とするものである。
 従来、シリカのD線(25℃)における屈折率は1.42であり、高充填化するほど界面での散乱光が増え、小径開口性が得られにくかった。
 これに対し、本発明は、D線(25℃)における屈折率が1.50~1.65の光硬化性樹脂と、D線(25℃)における屈折率が1.50~1.65である有機アルコキシシランで被覆されたシリカを併用することにより、解像性および高密度配線パターンの埋め込み性にも優れるようになる。
 即ち、本発明においては、(A)前記屈折率を有する光硬化性樹脂と、前記屈折率を有する特定の有機アルコキシシランで被覆されたシリカ表面との屈折率差が比較的近いので、活性エネルギー線の散乱(レイリー散乱およびミー散乱)が生じないようにすることができる。これにより、理論的には活性エネルギー線の透過率が最大となり、本発明においては良好な深部硬化性を得ることができる。よって、シリカを高充填した場合においても解像性に優れた硬化物を得ることができる。
The curable resin composition of the present invention is a curable resin composition containing (A) a photocurable resin, (B) a photopolymerization initiator, and (C) silica, and the (A) photocurable resin composition. The refractive index of the resin in the D line measured at 25 ° C. is 1.50 to 1.65, and the refractive index of the (C) silica in the D line measured at 25 ° C. is 1.50 to 1.65. It is characterized in that it is coated with an organic alkoxysilane.
Conventionally, the refractive index of silica at D line (25 ° C.) is 1.42, and the higher the filling, the more scattered light at the interface, and it is difficult to obtain a small-diameter aperture.
On the other hand, the present invention has a photocurable resin having a refractive index of 1.50 to 1.65 at the D line (25 ° C.) and a refractive index of 1.50 to 1.65 at the D line (25 ° C.). By using silica coated with a certain organic alkoxysilane in combination, the resolvability and the embedding property of a high-density wiring pattern can be improved.
That is, in the present invention, (A) the difference in refractive index between the photocurable resin having the refractive index and the silica surface coated with the specific organic alkoxysilane having the refractive index is relatively close, so that the active energy It is possible to prevent line scattering (Rayleigh scattering and Mie scattering). As a result, theoretically, the transmittance of the active energy ray is maximized, and in the present invention, good deep curability can be obtained. Therefore, a cured product having excellent resolution can be obtained even when highly filled with silica.
 本発明において、(A)光硬化性樹脂の屈折率と(B)シリカを被覆する有機アルコキシシランの屈折率との差は0.10以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらにより好ましく、0.03以下であることが特に好ましい。ここで、(A)光硬化性樹脂と(C)シリカを被覆する有機アルコキシシランがそれぞれ複数存在する場合、いずれかの(A)光硬化性樹脂の屈折率と(B)シリカを被覆する有機アルコキシシランの屈折率との差が0.10以下であればよい。但し、(A)光硬化性樹脂が複数の場合は、質量%換算で(A)光硬化性樹脂中に最も多く含まれる(A)光硬化性樹脂の屈折率と、(C)シリカを被覆する有機アルコキシシランの屈折率との差が0.10以下であることが好ましい。 In the present invention, the difference between the refractive index of (A) the photocurable resin and the refractive index of (B) the organic alkoxysilane coating silica is preferably 0.10 or less, and preferably 0.08 or less. It is more preferably 0.06 or less, further preferably 0.03 or less, and particularly preferably 0.03 or less. Here, when there are a plurality of (A) photocurable resin and (C) organic alkoxysilanes that coat silica, the refractive index of either (A) photocurable resin and (B) organic that coats silica The difference from the refractive index of alkoxysilane may be 0.10 or less. However, when there are a plurality of (A) photocurable resins, the refractive index of (A) the photocurable resin contained most in the (A) photocurable resin in terms of mass% and (C) silica are coated. It is preferable that the difference from the refractive index of the organic alkoxysilane is 0.10 or less.
 また、本発明において、前記有機アルコキシシランは、フルオレン骨格などのカルド構造を有することが好ましい。カルド構造を有する有機アルコキシシランにて被覆したシリカを配合することにより、より耐熱性に優れた硬化物が得られ、また、粗化レス基板やシリコン基板(即ち、アンカー効果の小さい基板)との密着性にも優れる。 Further, in the present invention, the organic alkoxysilane preferably has a cardo structure such as a fluorene skeleton. By blending silica coated with an organic alkoxysilane having a cardo structure, a cured product having more excellent heat resistance can be obtained, and a roughened-less substrate or a silicon substrate (that is, a substrate having a small anchor effect) can be obtained. It also has excellent adhesion.
 本発明においては、(A)光硬化性樹脂としての後述するフェノール樹脂を出発原料とする光硬化性樹脂やマレイミド構造を有する光硬化性共重合樹脂と、(C)特定の有機アルコキシシランで被覆されたシリカを併用することにより、解像性とさらなるフロー性の改善に加え、耐熱性および熱安定性の向上も確認できた。 In the present invention, (A) a photocurable resin using a phenol resin described later as a photocurable resin as a starting material, a photocurable copolymer resin having a maleimide structure, and (C) a specific organic alkoxysilane are coated. By using the above-mentioned silica together, it was confirmed that the heat resistance and the thermal stability were improved in addition to the improvement of the resolution and the further flowability.
 本発明の硬化性樹脂組成物は紫外線(400nm前後)で露光を行うが、屈折率のコントロールは、広く一般的に示されるD線での屈折率を用いる。本発明の硬化性樹脂組成物は、D線での屈折率が1.50~1.65の(A)光硬化性樹脂と、D線での屈折率が1.50~1.65である有機アルコキシシランで被覆されている(C)シリカとを併用することにより、優れた解像性を得ることができたことから、D線での屈折率で調整した組合せで、本発明の目的を十分に達成することができることが分かる。 The curable resin composition of the present invention is exposed to ultraviolet rays (around 400 nm), and the refractive index is controlled by using the widely generally shown refractive index of D line. The curable resin composition of the present invention has a (A) photocurable resin having a refractive index of 1.50 to 1.65 on the D line and a refractive index of 1.50 to 1.65 on the D line. Since excellent resolution could be obtained by using (C) silica coated with organic alkoxysilane in combination, the object of the present invention could be obtained by adjusting the refractive index at the D line. It turns out that it can be fully achieved.
 以下に、本発明の硬化性樹脂組成物の各成分について説明する。 The components of the curable resin composition of the present invention will be described below.
[(A)光硬化性樹脂]
 (A)光硬化性樹脂は、D線(25℃)における屈折率が1.50~1.65である光硬化性樹脂であり、分子中に1個以上のエチレン性不飽和基を有する化合物が好ましく用いられる。エチレン性不飽和基を有する化合物としては、公知慣用の化合物を用いればよく、エチレン性不飽和基を有するアルカリ可溶性樹脂等のポリマーや、感光性モノマーである光重合性オリゴマー、光重合性ビニルモノマー等を用いることができ、ラジカル重合性のモノマーやカチオン重合性のモノマーでもよい。エチレン性不飽和基としては、ビニル基や(メタ)アクリロイル基が挙げられる。本明細書において、(メタ)アクリロイル基とは、アクリロイル基、メタクリロイル基およびそれらの混合物を総称する用語であり、他の類似の表現についても同様である。
[(A) Photocurable resin]
The photocurable resin (A) is a photocurable resin having a refractive index of 1.50 to 1.65 at the D line (25 ° C.), and is a compound having one or more ethylenically unsaturated groups in the molecule. Is preferably used. As the compound having an ethylenically unsaturated group, a known and commonly used compound may be used, and a polymer such as an alkali-soluble resin having an ethylenically unsaturated group, a photopolymerizable oligomer which is a photosensitive monomer, or a photopolymerizable vinyl monomer may be used. Etc., and may be a radically polymerizable monomer or a cationically polymerizable monomer. Examples of the ethylenically unsaturated group include a vinyl group and a (meth) acryloyl group. As used herein, the term (meth) acryloyl group is a general term for acryloyl groups, methacryloyl groups, and mixtures thereof, and the same applies to other similar expressions.
 本発明の組成物がアルカリ現像型の場合には、(A)光硬化性樹脂はアルカリ可溶性樹脂であることが好ましい。(A)光硬化性樹脂がアルカリ可溶性樹脂であると、特に解像性に優れた硬化物を得ることができる。アルカリ可溶性樹脂としては、アルカリ可溶性基を有する樹脂であればよく、アルカリ可溶性基としては、例えば、フェノール性水酸基、チオール基およびカルボキシル基のうちのいずれか1種である。アルカリ可溶性樹脂としては、例えば、フェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物が挙げられ、中でも現像性に優れるためカルボキシル基含有樹脂が好ましい。カルボキシル基含有樹脂の中でもフェノール樹脂を出発原料とする光硬化性樹脂、マレイミド構造を有する光硬化性共重合樹脂、エポキシアクリレート構造を有する光硬化性樹脂が好ましい。(A)光硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 When the composition of the present invention is an alkali-developed type, the (A) photocurable resin is preferably an alkali-soluble resin. When the photocurable resin (A) is an alkali-soluble resin, a cured product having particularly excellent resolution can be obtained. The alkali-soluble resin may be any resin having an alkali-soluble group, and the alkali-soluble group is, for example, any one of a phenolic hydroxyl group, a thiol group and a carboxyl group. Examples of the alkali-soluble resin include compounds having two or more phenolic hydroxyl groups, carboxyl group-containing resins, compounds having phenolic hydroxyl groups and carboxyl groups, and compounds having two or more thiol groups, and among them, excellent developability. Therefore, a carboxyl group-containing resin is preferable. Among the carboxyl group-containing resins, a photocurable resin using a phenol resin as a starting material, a photocurable copolymer resin having a maleimide structure, and a photocurable resin having an epoxy acrylate structure are preferable. As the photocurable resin (A), one type may be used alone, or two or more types may be used in combination.
 (A)光硬化性樹脂の具体例としては、以下のような化合物(オリゴマーおよびポリマーのいずれでもよい)が挙げられるが、それらに限らない。 Specific examples of the (A) photocurable resin include, but are not limited to, the following compounds (either oligomer or polymer).
(1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂に、グリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなる、共重合構造を有するカルボキシル基含有感光性樹脂。 (1) A carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth) acrylic acid with an unsaturated group-containing compound such as styrene or α-methylstyrene, and glycidyl (meth) acrylate or α- A carboxyl group-containing photosensitive resin having a copolymerization structure, obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups to a molecule such as methylglycidyl (meth) acrylate.
(2)芳香族ジイソシアネート等のジイソシアネートと、カルボキシル基含有ジアルコール化合物と、ジオール化合物と、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物とを反応させて得られるウレタン構造を有するカルボキシル基含有感光性樹脂。 (2) Obtained by reacting a diisocyanate such as an aromatic diisocyanate, a carboxyl group-containing dialcohol compound, a diol compound, and a compound having one isocyanate group and one or more (meth) acryloyl groups in the molecule. A carboxyl group-containing photosensitive resin having a urethane structure.
(3-1)ジイソシアネートと、2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物と、カルボキシル基含有ジアルコール化合物と、ジオール化合物との重付加反応によるウレタン構造を有するカルボキシル基含有感光性樹脂。
(3-2)(3-1)のカルボキシル基含有感光性樹脂に、さらに分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるウレタン構造を有するカルボキシル基含有感光性樹脂。
(3-3)ジイソシアネートと、2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物と、カルボキシル基含有ジアルコール化合物と、ジオール化合物と、分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物とを反応させて得られるウレタン構造を有するカルボキシル基含有感光性樹脂。
(3-4)ジイソシアネートと、2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物と、カルボキシル基含有ジアルコール化合物と、ジオール化合物と、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物とを反応させて得られるウレタン構造を有するカルボキシル基含有感光性樹脂。
(3-1) Contains a carboxyl group having a urethane structure by a double addition reaction of a diisocyanate, a (meth) acrylate of a bifunctional epoxy resin or a partially acid anhydride modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound. Photosensitive resin.
(3-2) Carboxylic acid having a urethane structure formed by adding a compound having one epoxy group and one or more (meth) acryloyl groups in the molecule to the carboxyl group-containing photosensitive resin of (3-1). Group-containing photosensitive resin.
(3-3) Diisocyanate, (meth) acrylate of bifunctional epoxy resin or partially acid anhydride modified product thereof, carboxyl group-containing dialcohol compound, diol compound, one hydroxyl group in the molecule and one or more (Meta) A carboxyl group-containing photosensitive resin having a urethane structure obtained by reacting with a compound having an acryloyl group.
(3-4) Diisocyanate, (meth) acrylate of bifunctional epoxy resin or partially acid anhydride modified product thereof, carboxyl group-containing dialcohol compound, diol compound, one isocyanate group in the molecule and one or more. A carboxyl group-containing photosensitive resin having a urethane structure obtained by reacting with a compound having a (meth) acryloyl group.
(4)多官能エポキシ樹脂に(メタ)アクリル酸等の不飽和モノカルボン酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (4) An unsaturated monocarboxylic acid such as (meth) acrylic acid is reacted with a polyfunctional epoxy resin, and dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride is added to the hydroxyl group existing in the side chain. Carboxylic anhydride-containing photosensitive resin with an added substance.
(5)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に不飽和基含有モノカルボン酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (5) A carboxyl group obtained by reacting a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl group of a bifunctional epoxy resin with epichlorohydrin with an unsaturated group-containing monocarboxylic acid, and adding a dibasic acid anhydride to the generated hydroxyl group. Containing photosensitive resin.
(6)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、不飽和モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (6) An epoxy compound having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule such as p-hydroxyphenethyl alcohol, and an unsaturated mono Polybasic acid anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipic anhydride with respect to the alcoholic hydroxyl group of the reaction product obtained by reacting with a carboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting with.
(7)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシドなどのアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (7) Reaction production obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with alkylene oxide such as ethylene oxide and propylene oxide with an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting a substance with a polybasic acid anhydride.
(8)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネートなどの環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (8) Obtained by reacting an unsaturated group-containing monocarboxylic acid with a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. A carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
(9)N-フェニルマレイミド、N-ベンジルマレイミド等のマレイミドまたはマレイミド誘導体と、(メタ)アクリル酸等の不飽和カルボン酸と、ヒドロキシアルキル(メタ)アクリレート等の水酸基を有する不飽和基含有化合物と、スチレン、α-メチルスチレン、α-クロロスチレン、ビニルトルエン等の芳香環を有する不飽和基含有化合物とを単量体とするカルボキシル基含有共重合樹脂に、グリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート、エポキシシクロヘキシルメチル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなる、共重合構造を有するカルボキシル基含有感光性樹脂。 (9) Maleimide or maleimide derivatives such as N-phenylmaleimide and N-benzylmaleimide, unsaturated carboxylic acids such as (meth) acrylic acid, and unsaturated group-containing compounds having a hydroxyl group such as hydroxyalkyl (meth) acrylate. , Styrene, α-methylstyrene, α-chlorostyrene, vinyltoluene and other unsaturated group-containing compounds having an aromatic ring as monomers in a carboxyl group-containing copolymer resin, glycidyl (meth) acrylate, α-methyl Carboxylic group-containing photosensitive having a copolymerization structure, which is formed by adding a compound having one epoxy group and one or more (meth) acryloyl groups to a molecule such as glycidyl (meth) acrylate or epoxycyclohexylmethyl (meth) acrylate. Sex resin.
(10)前記(2)~(8)のカルボキシル基含有感光性樹脂に、グリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート、エポキシシクロヘキシルメチル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。 (10) One epoxy in a molecule such as glycidyl (meth) acrylate, α-methylglycidyl (meth) acrylate, and epoxycyclohexylmethyl (meth) acrylate in the carboxyl group-containing photosensitive resin of (2) to (8). A carboxyl group-containing photosensitive resin obtained by adding a compound having a group and one or more (meth) acryloyl groups.
 (A)光硬化性樹脂がアルカリ可溶性樹脂の場合は、その酸価は、40~200mgKOH/gの範囲が適当であり、より好ましくは45~120mgKOH/gの範囲である。(A)光硬化性樹脂の酸価が40mgKOH/g以上であるとアルカリ現像が容易となり、一方、200mgKOH/g以下である正常な硬化物パターンの描画が容易となるので好ましい。 (A) When the photocurable resin is an alkali-soluble resin, the acid value thereof is appropriately in the range of 40 to 200 mgKOH / g, and more preferably in the range of 45 to 120 mgKOH / g. When the acid value of the photocurable resin (A) is 40 mgKOH / g or more, alkaline development becomes easy, while drawing a normal cured product pattern of 200 mgKOH / g or less becomes easy, which is preferable.
 光重合性オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート等が挙げられる。 Examples of the photopolymerizable oligomer include epoxy (meth) acrylates such as phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, and bisphenol type epoxy (meth) acrylate, epoxy urethane (meth) acrylate, and polyester (meth) acrylate. And so on.
 光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレン等のスチレン誘導体、トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリル等のアリル化合物、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の(メタ)アクリル酸のエステル類、トリス[(メタ)アクリロキシエチル]イソシアヌレート等のイソシアヌルレート型ポリ(メタ)アクリレート類等が挙げられる。 Examples of the photopolymerizable vinyl monomer include known and commonly used styrene derivatives such as styrene, chlorostyrene and α-methylstyrene, allyl compounds such as triallyl isocyanurate, diallyl phthalate and diallyl isophthalate, and phenyl (meth). Examples thereof include esters of (meth) acrylic acid such as acrylate and phenoxyethyl (meth) acrylate, and isocyanurate-type poly (meth) acrylates such as tris [(meth) acryloxyethyl] isocyanurate.
 (A)光硬化性樹脂のD線(25℃)における屈折率は、1.52以上であることが好ましく、1.54以上であることがより好ましい。 (A) The refractive index of the photocurable resin at the D line (25 ° C.) is preferably 1.52 or more, and more preferably 1.54 or more.
 (A)光硬化性樹脂の配合量は、例えば、硬化性樹脂組成物の固形分全量に対し、10~50質量%である。なお、本発明の硬化性樹脂組成物においては、D線(25℃)における屈折率が1.50未満の光硬化性化合物を含んでいてもよい。例えば、屈折率が1.50未満の光硬化性化合物の配合量としては、屈折率が1.50未満の光硬化性化合物と屈折率が1.50~1.65の光硬化性樹脂との合計量に対し、50質量%未満であればよい。屈折率が1.50未満の光硬化性化合物としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等のアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のアルキレンポリオールポリ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート等のポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシビバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート等のポリ(メタ)アクリレート類等が挙げられる。 The blending amount of the (A) photocurable resin is, for example, 10 to 50% by mass with respect to the total solid content of the curable resin composition. The curable resin composition of the present invention may contain a photocurable compound having a refractive index of less than 1.50 at the D line (25 ° C.). For example, the blending amount of the photocurable compound having a refractive index of less than 1.50 is a combination of a photocurable compound having a refractive index of less than 1.50 and a photocurable resin having a refractive index of 1.50 to 1.65. It may be less than 50% by mass with respect to the total amount. Examples of the photocurable compound having a refractive index of less than 1.50 include hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and pentaerythritol tri (meth) acrylate; methoxyethyl. Alkoxyalkylene glycol mono (meth) acrylates such as (meth) acrylate and ethoxyethyl (meth) acrylate; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1 , 6-Hexanediol di (meth) acrylate, trimethylolpropantri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate and other alkylene polyol poly (meth) acrylate; diethylene glycol di (meth) acrylate. ) Polyoxyalkylene glycol poly (meth) acrylates such as acrylates, triethylene glycol di (meth) acrylates, ethoxylated trimetylolpropan triacrylates, propoxylated trimethylol propantri (meth) acrylates; neopentyl glycol hydroxybivariate Examples thereof include poly (meth) acrylates such as ester di (meth) acrylate.
[(B)光重合開始剤]
 (B)光重合開始剤としては、光重合開始剤や光ラジカル発生剤として公知の光重合開始剤であれば、いずれのものを用いることもできる。
[(B) Photopolymerization Initiator]
As the photopolymerization initiator (B), any photopolymerization initiator known as a photopolymerization initiator or a photoradical generator can be used.
 (B)光重合開始剤としては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のモノアシルフォスフィンオキサイド類;1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the photopolymerization initiator (B) include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, and bis-. (2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, Bis- (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4) , 6-trimethylbenzoyl) -bisacylphosphine oxides such as phenylphosphine oxide; 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyl Monoacylphosphine oxides such as phenylphosphinic acid methyl ester, 2-methylbenzoyldiphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; 1-hydroxy -Cyclohexylphenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one, 2-hydroxy-1- {4- [4- (2) -Hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one and other hydroxyacetophenones; benzoyl, benzyl , Benzoyl methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n-butyl ether and other benzoins; benzoin alkyl ethers; benzophenone, p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'- Benzoyls such as dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1- Dichloroacetophenone, 1-hydroxycyclohexylphenylketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, N-dimethylaminoacetophenone, etc. Acetphenones; thioxanthones such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone; anthraquinone, chloroanthraquinone , 2-Methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylantraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, 2-aminoanthraquinone and other anthraquinones; acetphenone dimethyl ketal, benzyl dimethyl ketal and other ketals; ethyl Orthoperic acid esters such as -4-dimethylaminobenzoate, 2- (dimethylamino) ethylbenzoate, p-dimethylbenzoic acid ethyl ester; 1,2-octanedione, 1- [4- (phenylthio)-, 2-( O-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (O-acetyloxime) and other oxime esters; (eta 5-2,4-cyclopentadiene-1-yl) - bis (2,6-difluoro-3-(1H-pyrrol-1-yl) phenyl) titanium, bis (cyclopentadienyl) - bis [2 , 6-Difluoro-3- (2- (1-pyr-1-yl) ethyl) phenyl] Titanocenes such as titanium; phenyldisulfide 2-nitrofluorene, butyroine, anisoine ethyl ether, azobisisobutyronitrile, Examples thereof include tetramethylthiuram disulfide. As the photopolymerization initiator, one type may be used alone, or two or more types may be used in combination.
 (B)光重合開始剤の配合量は、例えば、硬化性樹脂組成物の固形分全量に対し、0.1~30質量%である。 The blending amount of the (B) photopolymerization initiator is, for example, 0.1 to 30% by mass with respect to the total solid content of the curable resin composition.
[(C)シリカ]
 本発明において、(C)シリカは、D線(25℃)における屈折率が1.50~1.65である有機アルコキシシランで被覆されている。シリカとしては、溶融シリカ、球状シリカ、無定形シリカ、結晶性シリカ、ゾルシリカなどが挙げられるが、球状シリカであることが好ましい。
[(C) Silica]
In the present invention, (C) silica is coated with an organic alkoxysilane having a refractive index of 1.50 to 1.65 at the D line (25 ° C.). Examples of silica include fused silica, spherical silica, amorphous silica, crystalline silica, sol silica and the like, but spherical silica is preferable.
 D線(25℃)における屈折率が1.50~1.65の有機アルコキシシランは特に限定されず、公知慣用の有機アルコキシシランを用いればよい。例えば(以下、屈折率はD線(25℃、ナトリウムD線ともいう)の測定における屈折率)、信越化学工業社製KBM-202SS(ジメトキシジフェニルシラン:屈折率1.54)、X-12-1156(メトキシ基およびメルカプト基含有オルガノシラン:屈折率1.52)、X-12-1154(メトキシ基およびメルカプト基含有オルガノシラン::屈折率:1.51)、KR-511(メトキシ基およびビニル基含有シロキサン:屈折率1.51)、X-12-1159L(メトキシ基およびイソシアネート基含有オルガノシラン:屈折率1.50)、KBM-573(アミノ基含有N-フェニルー3-アミノプロピルトリメトキシシラン:屈折率1.50)、KBM-1403(スチリルトリメトキシシラン:屈折率1.50)、大阪ガスケミカル社製SC-001(フルオレン含有シラン:屈折率1.56)、SC-003(フルオレン含有シラン:屈折率1.53)等が挙げられる。なかでも、芳香環を有するアルコキシシランが好ましく、特にカルド構造を有する有機アルコキシシランが好ましい。また、上記のとおり、耐熱性の観点から、SC-001、SC-003等のフルオレン骨格を有する有機アルコキシシランが好ましく、カルド構造のフルオレン骨格を有する有機アルコキシシランがより好ましい。前記有機アルコキシシランのアルコキシ基は、例えば、炭素数1~5のアルコキシ基である。前記有機アルコキシシランは、(A)光硬化性樹脂の屈折率に合わせて、1種または2種以上を組み合わせてもよい。 The organic alkoxysilane having a refractive index of 1.50 to 1.65 on the D line (25 ° C.) is not particularly limited, and a known and commonly used organic alkoxysilane may be used. For example (hereinafter, the refractive index is the refractive index in the measurement of D line (25 ° C., also referred to as sodium D line)), KBM-202SS (dimethoxydiphenylsilane: refractive index 1.54) manufactured by Shinetsu Chemical Industry Co., Ltd., X-12. 1156 (organosilane containing methoxy group and mercapto group: refractive index 1.52), X-12-1154 (organosilane containing methoxy group and mercapto group :: refractive index: 1.51), KR-511 (methoxy group and vinyl) Group-containing siloxane: Refractive index 1.51), X-12-1159L (Methoxy group and isocyanate group-containing organosilane: Refractive index 1.50), KBM-573 (Amino group-containing N-phenyl-3-aminopropyltrimethoxysilane) : Refractive index 1.50), KBM-1403 (Styryltrimethoxysilane: Refractive index 1.50), Osaka Gas Chemical Co., Ltd. SC-001 (Fluolene-containing silane: Refractive index 1.56), SC-003 (Fluorene-containing Silane: Refractive index 1.53) and the like. Of these, an alkoxysilane having an aromatic ring is preferable, and an organic alkoxysilane having a cardo structure is particularly preferable. Further, as described above, from the viewpoint of heat resistance, an organic alkoxysilane having a fluorene skeleton such as SC-001 or SC-003 is preferable, and an organic alkoxysilane having a fluorene skeleton having a cardo structure is more preferable. The alkoxy group of the organic alkoxysilane is, for example, an alkoxy group having 1 to 5 carbon atoms. The organic alkoxysilane may be used alone or in combination of two or more depending on the refractive index of the (A) photocurable resin.
 前記カルド構造のフルオレン骨格を有する有機アルコキシシランとしては、下記式(1-1)および式(1-2)で表される有機アルコキシシランが挙げられる。
Figure JPOXMLDOC01-appb-I000001
(式中、nおよびmはそれぞれ独立に1~6の整数を示す。)
Examples of the organic alkoxysilane having a fluorene skeleton having a cardo structure include organic alkoxysilanes represented by the following formulas (1-1) and (1-2).
Figure JPOXMLDOC01-appb-I000001
(In the equation, n and m each independently indicate an integer of 1 to 6.)
 前記式(1-1)で表される有機アルコキシシランの市販品としては、例えば、大阪ガスケミカル社製オグソールSC-001等が挙げられる。また、前記式(1-2)で表される有機アルコキシシランの市販品としては、例えば、大阪ガスケミカル社製オグソールSC-003等が挙げられる。 Examples of commercially available products of the organic alkoxysilane represented by the above formula (1-1) include Ogsol SC-001 manufactured by Osaka Gas Chemical Co., Ltd. Examples of commercially available products of the organic alkoxysilane represented by the above formula (1-2) include Ogsol SC-003 manufactured by Osaka Gas Chemical Co., Ltd.
 前記有機アルコキシシランは、硬化性反応基を有していてもよい。硬化性反応基は、硬化性樹脂組成物に配合する成分(例えば、光硬化性樹脂や熱硬化性樹脂)と硬化反応する基であれば、特に限定されず、光硬化性反応基でも熱硬化性反応基でもよい。 The organic alkoxysilane may have a curable reactive group. The curable reactive group is not particularly limited as long as it is a group that cures with a component (for example, a photocurable resin or a thermosetting resin) blended in the curable resin composition, and even a photocurable reactive group is thermosetting. It may be a sexual reactive group.
 被覆方法は特に限定されず、例えば、前記有機アルコキシシランをシランカップリング剤としてシリカを処理する方法等の公知慣用の方法で行えばよい。 The coating method is not particularly limited, and for example, a known and commonly used method such as a method of treating silica using the organic alkoxysilane as a silane coupling agent may be used.
 D線(25℃)における屈折率が1.50~1.65の有機アルコキシシランによる被覆は、シリカ100質量部に対して、例えば、1~50質量部である。 The coating with an organic alkoxysilane having a refractive index of 1.50 to 1.65 on the D line (25 ° C.) is, for example, 1 to 50 parts by mass with respect to 100 parts by mass of silica.
 (C)シリカは、少なくとも2種の前記有機アルコキシシランで被覆されている、または、前記有機アルコキシシランおよび前記有機アルコキシシラン以外の有機アルコキシシランで被覆されていることが好ましい。このように被覆されたシリカを配合することにより、低CTEおよび冷熱耐性に優れた硬化物を得ることができる。そのような被覆処理は、前記有機アルコキシシランによる被覆処理の前でも後でも同時でもよい。 The silica (C) is preferably coated with at least two kinds of the organic alkoxysilanes, or with an organic alkoxysilane other than the organic alkoxysilanes and the organic alkoxysilanes. By blending the silica coated in this way, a cured product having low CTE and excellent cold resistance can be obtained. Such coating treatment may be performed before, after, or at the same time as the coating treatment with the organic alkoxysilane.
 D線(25℃)における屈折率が1.50~1.65の有機アルコキシシランは、硬化性反応基を有していてもいなくてもよい。D線(25℃)における屈折率が1.50~1.65の有機アルコキシシランが硬化性反応基を有していない場合は、硬化性反応基を有する有機アルコキシシランと併用することが好ましい。このように併用することにより、耐熱性、熱安定性および冷熱サイクル時のクラック耐性が向上する。 The organic alkoxysilane having a refractive index of 1.50 to 1.65 at the D line (25 ° C.) may or may not have a curable reactive group. When the organic alkoxysilane having a refractive index of 1.50 to 1.65 at the D line (25 ° C.) does not have a curable reactive group, it is preferable to use it in combination with an organic alkoxysilane having a curable reactive group. When used in this way, heat resistance, thermal stability and crack resistance during a cold cycle are improved.
 前記有機アルコキシシラン以外の有機シランとしては、KBM-502(屈折率:1.43)、KBM-503(屈折率:1.43)、KBE-502(屈折率:1.43)、KBE-503(屈折率:1.43)、KBM-5803(屈折率:1.44)、KR-503(屈折率:1.45)などのメタクリルシラン、KBM-5103(屈折率:1.43)、X-12-1048(屈折率:1.45)、X-12-1050(屈折率:1.48)、KR-513(屈折率:1.45)、KBM-1003(屈折率:1.39)等屈折率が1.50未満のシラン等が挙げられる。前記有機アルコキシシラン以外の有機シランは、(A)成分との反応基を有するシランであることが好ましい。なかでも、引張強度などの物性の観点からメタクリルシランであることが好ましい。また、KBM-403(屈折率:1.43)などのエポキシシランなども屈折率コントロールのために混合添加してもよい。 Examples of the organic silane other than the organic alkoxysilane include KBM-502 (refractive index: 1.43), KBM-503 (refractive index: 1.43), KBE-502 (refractive index: 1.43), and KBE-503. (Refractive index: 1.43), KBM-5803 (refractive index: 1.44), methacrylsilane such as KR-503 (refractive index: 1.45), KBM-5103 (refractive index: 1.43), X 12-1048 (refractive index: 1.45), X-12-1050 (refractive index: 1.48), KR-513 (refractive index: 1.45), KBM-1003 (refractive index: 1.39) Examples thereof include silane having an equal refractive index of less than 1.50. The organic silane other than the organic alkoxysilane is preferably a silane having a reactive group with the component (A). Of these, methacrylic silane is preferable from the viewpoint of physical properties such as tensile strength. In addition, epoxy silane such as KBM-403 (refractive index: 1.43) may be mixed and added to control the refractive index.
 前記有機アルコキシシラン以外の有機シランでさらに被覆する場合、前記有機アルコキシシラン以外の有機シランによる被覆は、シリカ100質量部に対して、1~50質量部である。 When further coating with an organic silane other than the organic alkoxysilane, the coating with an organic silane other than the organic alkoxysilane is 1 to 50 parts by mass with respect to 100 parts by mass of silica.
 なお、(C)シリカは、さらに無機物により被覆されていてもよい。無機物としては特に限定されず、例えば、ケイ素の水和酸化物、アルミニウムの水和酸化物、ジルコニウムの水和酸化物、亜鉛の水和酸化物、チタンの水和酸化物等が挙げられる。 Note that (C) silica may be further coated with an inorganic substance. The inorganic substance is not particularly limited, and examples thereof include silicon hydrated oxide, aluminum hydrated oxide, zirconium hydrated oxide, zinc hydrated oxide, and titanium hydrated oxide.
 無機物でさらに被覆する場合、無機物による被覆は、シリカ100質量部に対して、例えば、1~40質量部である。 When further coating with an inorganic substance, the coating with the inorganic substance is, for example, 1 to 40 parts by mass with respect to 100 parts by mass of silica.
 (C)シリカの平均粒子径は、例えば、0.01~0.8μmである。ここで、本明細書において、(C)シリカの平均粒子径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒子径(D50)であり、レーザー回折法により測定されたD50の値である。レーザー回折法による測定装置としては、マイクロトラック・ベル社製のMicrotrac MT3300EXIIが挙げられる。 The average particle size of (C) silica is, for example, 0.01 to 0.8 μm. Here, in the present specification, the average particle size of (C) silica is the average particle size (D50) including not only the particle size of the primary particles but also the particle size of the secondary particles (aggregates), and is a laser. It is a value of D50 measured by a diffraction method. Examples of the measuring device by the laser diffraction method include Microtrac MT3300EXII manufactured by Microtrac Bell.
 (C)シリカは、平均粒子径を調整してもよく、例えば、ビーズミルやジェットミルで予備分散することが好ましい。また、無機フィラーは、スラリー状態で配合されることが好ましく、スラリー状態で配合することによって、高分散化が容易であり、凝集を防止し、取り扱いが容易になる。 The average particle size of (C) silica may be adjusted, and for example, it is preferable to pre-disperse it with a bead mill or a jet mill. Further, the inorganic filler is preferably blended in a slurry state, and by blending in a slurry state, high dispersion is facilitated, aggregation is prevented, and handling is facilitated.
 (C)シリカは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。(C)シリカの配合量は、例えば、硬化性樹脂組成物の固形分全量に対し、10質量%以上、さらには、20質量%以上、またさらには30質量%以上であってもよい。シリカの配合量の上限としては例えば、80質量%以下である。 (C) Silica may be used alone or in combination of two or more. The blending amount of silica (C) may be, for example, 10% by mass or more, further 20% by mass or more, or even 30% by mass or more, based on the total solid content of the curable resin composition. The upper limit of the amount of silica blended is, for example, 80% by mass or less.
 本発明の硬化性樹脂組成物は、本発明の効果を損なわない範囲で、(C)シリカ以外の公知慣用の無機フィラーを含有してもよい。そのような無機フィラーとしては、例えば、D線(25℃)における屈折率が1.50~1.65である有機アルコキシシランで被覆されたシリカ以外のシリカ、ノイブルグ珪土、水酸化アルミニウム、ガラス粉末、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、天然マイカ、合成マイカ、水酸化アルミニウム、硫酸バリウム、チタン酸バリウム、酸化鉄、非繊維状ガラス、ハイドロタルサイト、ミネラルウール、アルミニウムシリケート、カルシウムシリケート、亜鉛華等の無機フィラーが挙げられる。 The curable resin composition of the present invention may contain a known and commonly used inorganic filler other than (C) silica as long as the effects of the present invention are not impaired. Examples of such an inorganic filler include silica other than silica coated with organic alkoxysilane having a refractive index of 1.50 to 1.65 at D line (25 ° C.), Neuburg silica clay, aluminum hydroxide, and glass. Powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica, aluminum hydroxide, barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate, Examples include inorganic fillers such as zinc flower.
(熱硬化性樹脂)
 本発明の硬化性樹脂組成物は、熱硬化性樹脂を含有することができる。熱硬化性樹脂によって、硬化物の耐熱性が向上し、また、下地との密着性が向上する。熱硬化性樹脂としては、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、エポキシ化合物、多官能オキセタン化合物、エピスルフィド樹脂などの公知慣用の熱硬化性樹脂が使用できる。これらの中でもエポキシ化合物、多官能オキセタン化合物、分子内に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂が好ましく、エポキシ化合物がより好ましい。熱硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Thermosetting resin)
The curable resin composition of the present invention can contain a thermosetting resin. The thermosetting resin improves the heat resistance of the cured product and also improves the adhesion to the substrate. As the thermosetting resin, known and commonly used thermosetting resins such as isocyanate compounds, blocked isocyanate compounds, amino resins, benzoxazine resins, carbodiimide resins, cyclocarbonate compounds, epoxy compounds, polyfunctional oxetane compounds, and episulfide resins can be used. .. Among these, epoxy compounds, polyfunctional oxetane compounds, and compounds having two or more thioether groups in the molecule, that is, episulfide resins are preferable, and epoxy compounds are more preferable. One type of thermosetting resin may be used alone, or two or more types may be used in combination.
 上記エポキシ化合物は、エポキシ基を有する化合物であり、従来公知のものをいずれも使用できる。分子中に複数のエポキシ基を有する多官能エポキシ化合物等が挙げられる。なお、水素添加されたエポキシ化合物であってもよい。 The above-mentioned epoxy compound is a compound having an epoxy group, and any conventionally known compound can be used. Examples thereof include polyfunctional epoxy compounds having a plurality of epoxy groups in the molecule. It may be a hydrogenated epoxy compound.
 多官能エポキシ化合物としては、エポキシ化植物油;ビスフェノールA型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビスフェノール型エポキシ樹脂;チオエーテル型エポキシ樹脂;ブロム化エポキシ樹脂;ノボラック型エポキシ樹脂;ビフェノールノボラック型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;脂環式エポキシ樹脂;トリヒドロキシフェニルメタン型エポキシ樹脂;ビキシレノール型もしくはビフェノール型エポキシ樹脂またはそれらの混合物;ビスフェノールS型エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂;テトラフェニロールエタン型エポキシ樹脂;複素環式エポキシ樹脂;ジグリシジルフタレート樹脂;テトラグリシジルキシレノイルエタン樹脂;ナフタレン基含有エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂;シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体;CTBN変性エポキシ樹脂等が挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種を単独または2種以上を組み合わせて用いることができる。これらの中でも特にノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂またはそれらの混合物が好ましい。 Examples of the polyfunctional epoxy compound include epoxidized vegetable oil; bisphenol A type epoxy resin; hydroquinone type epoxy resin; bisphenol type epoxy resin; thioether type epoxy resin; brominated epoxy resin; novolac type epoxy resin; biphenol novolac type epoxy resin; bisphenol F. Type epoxy resin; hydrogenated bisphenol A type epoxy resin; glycidylamine type epoxy resin; hydrantin type epoxy resin; alicyclic epoxy resin; trihydroxyphenylmethane type epoxy resin; bixyleneol type or biphenol type epoxy resin or a mixture thereof; Bisphenol S type epoxy resin; Bisphenol A novolak type epoxy resin; Tetraphenylol ethane type epoxy resin; Heterocyclic epoxy resin; Diglycidyl phthalate resin; Tetraglycidyl xylenoyl ethane resin; Naphthalene group-containing epoxy resin; Dicyclopentadiene skeleton Epoxy resin with glycidyl methacrylate copolymer; epoxy resin copolymerized with cyclohexyl maleimide and glycidyl methacrylate; epoxy-modified polybutadiene rubber derivative; CTBN-modified epoxy resin and the like, but are not limited thereto. .. These epoxy resins may be used alone or in combination of two or more. Among these, novolak type epoxy resin, bisphenol type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin, biphenol novolac type epoxy resin, naphthalene type epoxy resin or a mixture thereof is particularly preferable.
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。 Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, and 1,4-bis [(3-3-oxythylmethoxy) methyl] ether. Methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-3) Oxetane) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and polyfunctional oxetane such as their oligomers or copolymers, as well as oxetane alcohol and novolak resin , Poly (p-hydroxystyrene), cardo-type bisphenols, calix arrayes, calix resorcinarenes, etherified products with a resin having a hydroxyl group such as silsesquioxane, and the like. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate can also be mentioned.
 分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。 Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin and the like. Further, using the same synthesis method, an episulfide resin in which the oxygen atom of the epoxy group of the novolak type epoxy resin is replaced with a sulfur atom can also be used.
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。 Examples of amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycol uryl compounds and methylol urea compounds.
 イソシアネート化合物として、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンイソシアネートダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。 A polyisocyanate compound can be blended as the isocyanate compound. Examples of the polyisocyanate compound include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolyrene isocyanate dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexylisocyanate) and isophorone diisocyanate; Alicyclic polyisocyanates such as bicycloheptanetriisocyanate; and adducts, burettes, and isocyanurates of the isocyanate compounds mentioned above can be mentioned.
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物が用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。 As the blocked isocyanate compound, an addition reaction product of the isocyanate compound and the isocyanate blocking agent can be used. Examples of the isocyanate compound capable of reacting with the isocyanate blocking agent include the above-mentioned polyisocyanate compound and the like. Examples of isocyanate blocking agents include phenol-based blocking agents; lactam-based blocking agents; active methylene-based blocking agents; alcohol-based blocking agents; oxime-based blocking agents; mercaptan-based blocking agents; acid amide-based blocking agents; imide-based blocking agents; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents and the like can be mentioned.
 熱硬化性樹脂の配合量は、例えば、組成物の固形分全量中、1~50質量%である。 The blending amount of the thermosetting resin is, for example, 1 to 50% by mass based on the total solid content of the composition.
(硬化促進剤)
 本発明の硬化性樹脂組成物は、硬化促進剤を含有することができる。硬化促進剤としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン、4-ジメチルアミノピリジン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物等が挙げられる。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもできる。硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Curing accelerator)
The curable resin composition of the present invention can contain a curing accelerator. Examples of the curing accelerator include imidazole, 2-methylimidazole, 2-ethyl imidazole, 2-ethyl-4-methyl imidazole, 2-phenyl imidazole, 4-phenyl imidazole, 1-cyanoethyl-2-phenyl imidazole, 1-. Imidazole derivatives such as (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzyl Examples include amine compounds such as amines, 4-methyl-N, N-dimethylbenzylamine and 4-dimethylaminopyridine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine. In addition, guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as -S-triazine-isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine-isocyanuric acid adduct can also be used. As the curing accelerator, one type may be used alone, or two or more types may be used in combination.
 硬化促進剤の配合量は、例えば、組成物の固形分全量中、0.01~30質量%である。 The blending amount of the curing accelerator is, for example, 0.01 to 30% by mass in the total solid content of the composition.
(着色剤)
 本発明の硬化性樹脂組成物には、着色剤が含まれていてもよい。着色剤としては、赤、青、緑、黄、黒、白等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。但し、環境負荷低減並びに人体への影響の観点からハロゲンを含有しないことが好ましい。着色剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Colorant)
The curable resin composition of the present invention may contain a colorant. As the colorant, known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable that it does not contain halogen from the viewpoint of reducing the environmental load and affecting the human body. As the colorant, one type may be used alone, or two or more types may be used in combination.
 着色剤の配合量は、例えば、組成物の固形分全量中、0.01~10質量%である。 The blending amount of the colorant is, for example, 0.01 to 10% by mass based on the total solid content of the composition.
(有機溶剤)
 本発明の硬化性樹脂組成物には、組成物の調製や、基板やフィルムに塗布する際の粘度調整等の目的で、有機溶剤を含有させることができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Organic solvent)
The curable resin composition of the present invention may contain an organic solvent for the purpose of preparing the composition, adjusting the viscosity when applied to a substrate or a film, and the like. Examples of the organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethyl benzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol and propylene glycol monomethyl ether. , Dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether and other glycol ethers; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, and propylene carbonate; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha are known. Conventional organic solvents can be used. One of these organic solvents may be used alone, or two or more thereof may be used in combination.
(その他の任意成分)
 さらに、本発明の硬化性樹脂組成物には、電子材料の分野において公知慣用の他の添加剤を配合してもよい。他の添加剤としては、熱重合禁止剤、紫外線吸収剤、シランカップリング剤、可塑剤、難燃剤、帯電防止剤、老化防止剤、酸化防止剤、抗菌・防黴剤、消泡剤、レベリング剤、増粘剤、密着性付与剤、チキソ性付与剤、光開始助剤、増感剤、有機フィラー、エラストマー、熱可塑性樹脂、離型剤、表面処理剤、分散剤、分散助剤、表面改質剤、安定剤、蛍光体等が挙げられる。
(Other optional ingredients)
Further, the curable resin composition of the present invention may contain other additives known and commonly used in the field of electronic materials. Other additives include thermal polymerization inhibitors, UV absorbers, silane coupling agents, plasticizers, flame retardants, antistatic agents, anti-aging agents, antioxidants, antibacterial / antifungal agents, antifoaming agents, leveling. Agents, thickeners, adhesion imparting agents, thixoness imparting agents, photoinitiator aids, sensitizers, organic fillers, elastomers, thermoplastic resins, mold release agents, surface treatment agents, dispersants, dispersion aids, surfaces Examples include modifiers, stabilizers, and phosphors.
 また、本発明の硬化性樹脂組成物には、本発明の効果を損なわない範囲で、(A)光硬化性樹脂ではないアルカリ可溶性樹脂や溶剤可溶性樹脂を含んでもよい。 Further, the curable resin composition of the present invention may contain (A) an alkali-soluble resin or a solvent-soluble resin that is not a photocurable resin as long as the effects of the present invention are not impaired.
 本発明の硬化性樹脂組成物は特に限定されず、例えば、光硬化性熱硬化性樹脂組成物であっても、熱硬化性ではない光硬化性樹脂組成物であってもよい。また、アルカリ現像型であっても、溶剤現像型であってもよい。即ち、本発明の組成物がアルカリ可溶性樹脂を含むアルカリ現像型の場合には、活性エネルギー線照射およびアルカリ現像液によりネガ型のパターン硬化膜を得ることができ、アルカリ可溶性樹脂を含まない場合には、活性エネルギー線照射および有機溶剤からなる現像液によりネガ型のパターン硬化膜を得ることができる。 The curable resin composition of the present invention is not particularly limited, and may be, for example, a photocurable thermosetting resin composition or a non-thermosetting photocurable resin composition. Further, it may be an alkali-developed type or a solvent-developed type. That is, when the composition of the present invention is an alkali-developable type containing an alkali-soluble resin, a negative-type pattern cured film can be obtained by irradiation with active energy rays and an alkali developer, and when the composition does not contain the alkali-soluble resin. Can obtain a negative pattern cured film by irradiation with active energy rays and a developing solution composed of an organic solvent.
 本発明の硬化性樹脂組成物が含有する任意成分は、硬化性や用途に合わせて、公知慣用の成分を選択すればよい。 As the optional component contained in the curable resin composition of the present invention, a known and commonly used component may be selected according to the curability and application.
 本発明の硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。液状として用いる場合は、1液性でも2液性以上でもよい。 The curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
 本発明のドライフィルムは、キャリアフィルム上に、本発明の硬化性樹脂組成物を塗布、乾燥させることにより得られる樹脂層を有する。ドライフィルムを形成する際には、まず、本発明の硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整した上で、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等により、キャリアフィルム上に均一な厚さに塗布する。その後、塗布された組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成することができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、3~150μm、好ましくは5~60μmの範囲で適宜選択される。 The dry film of the present invention has a resin layer obtained by applying the curable resin composition of the present invention on a carrier film and drying it. When forming a dry film, first, the curable resin composition of the present invention is diluted with the above organic solvent to adjust the viscosity to an appropriate level, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. , Reverse coater, transfer coater, gravure coater, spray coater, etc., and apply to a uniform thickness on the carrier film. Then, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer. The coating film thickness is not particularly limited, but is generally selected as appropriate in the range of 3 to 150 μm, preferably 5 to 60 μm after drying.
 キャリアフィルムとしては、プラスチックフィルムが用いられ、例えば、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等を用いることができる。キャリアフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。より好ましくは15~130μmの範囲である。 As the carrier film, a plastic film is used, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used. The thickness of the carrier film is not particularly limited, but is generally selected as appropriate in the range of 10 to 150 μm. More preferably, it is in the range of 15 to 130 μm.
 キャリアフィルム上に本発明の硬化性樹脂組成物からなる樹脂層を形成した後、樹脂層の表面に塵が付着することを防ぐ等の目的で、さらに、樹脂層の表面に、剥離可能なカバーフィルムを積層することが好ましい。剥離可能なカバーフィルムとしては、例えば、ポリエチレンフィルムやポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができる。カバーフィルムとしては、カバーフィルムを剥離するときに、樹脂層とキャリアフィルムとの接着力よりも小さいものであればよい。 After forming the resin layer made of the curable resin composition of the present invention on the carrier film, a peelable cover is further applied to the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer. It is preferable to stack the films. As the peelable cover film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used. The cover film may be smaller than the adhesive force between the resin layer and the carrier film when the cover film is peeled off.
 なお、本発明においては、上記カバーフィルム上に本発明の硬化性樹脂組成物を塗布、乾燥させることにより樹脂層を形成して、その表面にキャリアフィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に本発明の硬化性樹脂組成物を塗布するフィルムとしては、キャリアフィルムおよびカバーフィルムのいずれを用いてもよい。 In the present invention, the curable resin composition of the present invention may be applied onto the cover film and dried to form a resin layer, and a carrier film may be laminated on the surface thereof. That is, either a carrier film or a cover film may be used as the film to which the curable resin composition of the present invention is applied when producing the dry film in the present invention.
 本発明の硬化性樹脂組成物を用いたプリント配線板の製造方法としては、従来公知の方法を用いればよい。アルカリ現像型の光硬化性熱硬化性樹脂組成物の場合を例にすると、例えば、本発明の硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基板上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。また、ドライフィルムの場合、ラミネーター等により樹脂層が基板と接触するように基板上に貼り合わせた後、キャリアフィルムを剥がすことにより、基板上に樹脂層を形成する。 As a method for producing a printed wiring board using the curable resin composition of the present invention, a conventionally known method may be used. Taking the case of an alkali-developed photocurable thermosetting resin composition as an example, for example, the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method using the above organic solvent, and the substrate is used. After applying by a method such as a dip coating method, a flow coating method, a roll coating method, a bar coater method, a screen printing method, a curtain coating method, etc., the organic solvent contained in the composition is applied at a temperature of 60 to 100 ° C. A tack-free resin layer is formed by volatile drying (temporary drying). Further, in the case of a dry film, a resin layer is formed on the substrate by sticking the resin layer on the substrate with a laminator or the like so as to be in contact with the substrate and then peeling off the carrier film.
 上記基板としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、PETフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。回路には、前処理が施されていてもよく、例えば、四国化成社製のGliCAP、メック社製のNew Organic AP(Adhesion promoter)、アトテックジャパン社製のNova Bond等で前処理を施し、ソルダーレジスト等の硬化被膜との密着性等を向上させたり、防錆剤で前処理を施してもよい。 The above-mentioned substrates include printed wiring boards and flexible printed wiring boards whose circuits are formed in advance with copper or the like, as well as paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, and glass cloth / paper epoxy. It is made of materials such as copper-clad laminates for high-frequency circuits using synthetic fiber epoxy, fluororesin / polyethylene / polyimideene ether, polyphenylene oxide / cyanate, etc., and all grades (FR-4, etc.) of copper-clad laminates. In addition, metal substrates, polyimide films, PET films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can be mentioned. The circuit may be pretreated. For example, GliCAP manufactured by Shikoku Chemicals Corporation, New Organic AP (Adhesion promoter) manufactured by MEC, Nova Bond manufactured by Atotech Japan, etc. are used for pretreatment and solder. Adhesion to a cured film such as a resist may be improved, or pretreatment may be performed with a rust preventive.
 本発明の硬化性樹脂組成物を塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 Volatile drying performed after applying the curable resin composition of the present invention is carried out in a hot air circulation type drying oven, IR furnace, hot plate, convection oven, etc. (using a steam-based air heating type heat source in the dryer). It can be carried out by using a method of bringing hot air into countercurrent contact and a method of blowing hot air onto a support from a nozzle).
 プリント配線板上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。さらに、硬化物に活性エネルギー線を照射後加熱硬化(例えば、100~220℃)、もしくは加熱硬化後活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化膜を形成する。 After forming a resin layer on the printed wiring board, it is selectively exposed to active energy rays through a photomask having a predetermined pattern, and the unexposed portion is exposed to a dilute alkaline aqueous solution (for example, 0.3 to 3% by mass sodium carbonate aqueous solution). ) To form a pattern of the cured product. Further, the cured product is adhered by irradiating the cured product with active energy rays and then heat curing (for example, 100 to 220 ° C.), or by irradiating the cured product with active energy rays after heat curing or by performing final finish curing (main curing) only by heat curing. It forms a cured film with excellent properties such as properties and hardness.
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で活性エネルギー線を照射する装置であればよく、さらに、基板と非接触なマスクレス露光として投影レンズを使用した投影露光機や直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。 As the exposure machine used for the above-mentioned active energy ray irradiation, if it is a device equipped with a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiates the active energy ray in the range of 350 to 450 nm. Often, a projection exposure machine using a projection lens or a direct drawing device (for example, a laser direct imaging device that directly draws an image with a laser from CAD data from a computer) can also be used as a maskless exposure that does not contact the substrate. .. The lamp light source or the laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm. The exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
 上記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。 The developing method can be a dipping method, a shower method, a spray method, a brush method, etc., and the developing solution includes potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, etc. Alkaline aqueous solutions such as ammonia and amines can be used.
 本発明の硬化性樹脂組成物は、電子部品に硬化膜を形成するために、特にはプリント配線板上に硬化膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用され、さらに好適には、ソルダーレジスト、層間絶縁層、カバーレイ、封止材を形成するために使用される。また、高度な信頼性が求められるプリント配線板、例えばパッケージ基板、特にFC-BGA用の永久被膜(特にソルダーレジスト)の形成に好適である。また、本発明の硬化性樹脂組成物は、回路表面の粗度が小さくても配線パターンを備えるプリント配線板、例えば高周波用のプリント配線板にも好適に用いることができる。例えば、表面粗度Raが0.05μm以下、特に0.03μm以下であっても好適に用いることができる。また、低極性の基材、例えば、活性エステルを含む基材上に硬化膜を形成する場合にも好適に用いることができる。更に、粗化レスなウェハやガラス基板上に硬化膜を形成するためにも好適に使用される。 The curable resin composition of the present invention is suitably used for forming a cured film on an electronic component, particularly for forming a cured film on a printed wiring board, and more preferably for forming a permanent film. And more preferably used to form solder resists, interlayer insulating layers, coverslays, encapsulants. Further, it is suitable for forming a permanent coating (particularly solder resist) for a printed wiring board, for example, a package substrate, particularly FC-BGA, which requires a high degree of reliability. Further, the curable resin composition of the present invention can be suitably used for a printed wiring board having a wiring pattern even if the roughness of the circuit surface is small, for example, a printed wiring board for high frequency. For example, even if the surface roughness Ra is 0.05 μm or less, particularly 0.03 μm or less, it can be preferably used. It can also be suitably used when a cured film is formed on a low-polarity base material, for example, a base material containing an active ester. Further, it is suitably used for forming a cured film on a roughening-free wafer or a glass substrate.
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following, "part" and "%" are all based on mass unless otherwise specified.
[光硬化性樹脂の合成]
(光硬化性樹脂A-1)
 冷却管、攪拌機を備えたフラスコに、ビスフェノールA456部、水228部、37%ホルマリン649部を仕込み、40℃以下の温度を保ち、25%水酸化ナトリウム水溶液228部を添加した、添加終了後50℃で10時間反応した。反応終了後40℃まで冷却し、40℃以下を保ちながら37.5%リン酸水溶液でpH4まで中和した。その後静置し水層を分離した。分離後メチルイソブチルケトン300部を添加し均一に溶解した後、蒸留水500部で3回洗浄し、50℃以下の温度で減圧下、水、溶媒等を除去した。得られたポリメチロール化合物をメタノール550部に溶解し、ポリメチロール化合物のメタノール溶液1230部を得た。
 得られたポリメチロール化合物のメタノール溶液の一部を真空乾燥機中室温で乾燥したところ、固形分が55.2%であった。
 冷却管、攪拌機を備えたフラスコに、得られたポリメチロール化合物のメタノール溶液500部、2,6-キシレノール440部を仕込み、50℃で均一に溶解した。均一に溶解した後50℃以下の温度で減圧下メタノールを除去した。その後シュウ酸8部を加え、100℃で10時間反応した。反応終了後180℃、50mmHgの減圧下で溜出分を除去し、ノボラック樹脂Aを550部を得た。
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック樹脂A 130部、50%水酸化ナトリウム水溶液2.6部、トルエン/メチルイソブチルケトン(質量比=2/1)100部を仕込み、撹拌しつつ系内を窒素置換し、次に加熱昇温し、150℃、8kg/cmでプロピレンオキシド60部を徐々に導入し反応させた。反応はゲージ圧0.0kg/cmとなるまで約4時間を続けた後、室温まで冷却した。この反応溶液に3.3部の36%塩酸水溶液を添加混合し、水酸化ナトリウムを中和した。この中和反応生成物をトルエンで希釈し、3回水洗し、エバポレーターにて脱溶剤して、水酸基価が189g/eq.であるノボラック樹脂Aのプロピレンオキシド付加物を得た。これは、フェノール性水酸基1当量当りプロピレンオキシドが平均1モル付加しているものであった。
 得られたノボラック樹脂Aのプロピレンオキシド付加物189部、アクリル酸36部、p-トルエンスルホン酸3.0部、ハイドロキノンモノメチルエーテル0.1部、トルエン140部を撹拌機、温度計、空気吹き込み管を備えた反応器に仕込み、空気を吹き込みながら攪拌して、115℃に昇温し、反応により生成した水をトルエンと共沸混合物として留去しながら、さらに4時間反応させたのち、室温まで冷却した。得られた反応溶液を5%NaCl水溶液を用いて水洗し、減圧留去にてトルエンを除去したのち、ジエチレングリコールモノエチルエーテルアセテートを加えて、固形分67%のアクリレート樹脂溶液を得た。
 次に、撹拌器および還流冷却器の付いた4つ口フラスコに、得られたアクリレート樹脂溶液322部、ハイドロキノンモノメチルエーテル0.1部、トリフェニルホスフィン0.3部を仕込み、この混合物を110℃に加熱し、テトラヒドロ無水フタル酸60部を加え、4時間反応させ、冷却後、取り出した。このようにして得られた感光性のカルボキシル基含有樹脂溶液A-1は、固形分70%、固形分酸価81mgKOH/gであった。なお、表1に記載の数値は溶剤を含まない固形分の質量部である。
[Synthesis of photocurable resin]
(Photocurable Resin A-1)
A flask equipped with a cooling tube and a stirrer was charged with 456 parts of bisphenol A, 228 parts of water, and 649 parts of 37% formalin, kept at a temperature of 40 ° C. or lower, and added 228 parts of a 25% sodium hydroxide aqueous solution. The reaction was carried out at ° C. for 10 hours. After completion of the reaction, the mixture was cooled to 40 ° C. and neutralized to pH 4 with a 37.5% aqueous phosphoric acid solution while maintaining 40 ° C. or lower. After that, it was allowed to stand and the aqueous layer was separated. After separation, 300 parts of methyl isobutyl ketone was added to uniformly dissolve the mixture, followed by washing with 500 parts of distilled water three times, and the water, solvent and the like were removed under reduced pressure at a temperature of 50 ° C. or lower. The obtained polymethylol compound was dissolved in 550 parts of methanol to obtain 1230 parts of a methanol solution of the polymethylol compound.
When a part of the obtained methanol solution of the polymethylol compound was dried in a vacuum dryer at room temperature, the solid content was 55.2%.
In a flask equipped with a cooling tube and a stirrer, 500 parts of a methanol solution of the obtained polymethylol compound and 440 parts of 2,6-xylenol were charged and dissolved uniformly at 50 ° C. After uniformly dissolving, methanol was removed under reduced pressure at a temperature of 50 ° C. or lower. Then, 8 parts of oxalic acid was added, and the reaction was carried out at 100 ° C. for 10 hours. After completion of the reaction, the distillate was removed at 180 ° C. under a reduced pressure of 50 mmHg to obtain 550 parts of novolak resin A.
In an autoclave equipped with a thermometer, a nitrogen introduction device and an alkylene oxide introduction device, and a stirrer, 130 parts of Novolak resin A, 2.6 parts of a 50% sodium hydroxide aqueous solution, and toluene / methyl isobutyl ketone (mass ratio = 2/1). 100 parts were charged, the inside of the system was replaced with toluene while stirring, then the temperature was raised by heating, and 60 parts of propylene oxide was gradually introduced at 150 ° C. and 8 kg / cm 2 to react. The reaction was continued for about 4 hours until the gauge pressure reached 0.0 kg / cm 2, and then cooled to room temperature. 3.3 parts of a 36% aqueous hydrochloric acid solution was added to and mixed with this reaction solution to neutralize sodium hydroxide. The neutralization reaction product was diluted with toluene, washed with water three times, and desolvated with an evaporator to have a hydroxyl value of 189 g / eq. A propylene oxide adduct of novolak resin A was obtained. This was an average addition of 1 mol of propylene oxide per equivalent of phenolic hydroxyl group.
189 parts of propylene oxide adduct of the obtained novolak resin A, 36 parts of acrylic acid, 3.0 parts of p-toluenesulfonic acid, 0.1 part of hydroquinone monomethyl ether and 140 parts of toluene were mixed with a stirrer, a thermometer and an air blowing tube. The mixture was charged into a reactor equipped with the above, stirred while blowing air, heated to 115 ° C., and the water produced by the reaction was distilled off as an azeotropic mixture with toluene to react for another 4 hours, and then to room temperature. Cooled. The obtained reaction solution was washed with water using a 5% NaCl aqueous solution, toluene was removed by distillation under reduced pressure, and then diethylene glycol monoethyl ether acetate was added to obtain an acrylate resin solution having a solid content of 67%.
Next, 322 parts of the obtained acrylate resin solution, 0.1 part of hydroquinone monomethyl ether, and 0.3 part of triphenylphosphine were charged into a four-necked flask equipped with a stirrer and a reflux condenser, and the mixture was charged at 110 ° C. To, 60 parts of tetrahydrophthalic anhydride was added, the mixture was reacted for 4 hours, cooled, and then taken out. The photosensitive carboxyl group-containing resin solution A-1 thus obtained had a solid content of 70% and a solid content acid value of 81 mgKOH / g. The values shown in Table 1 are parts by mass of the solid content that does not contain a solvent.
(光硬化性樹脂A-2)
 反応槽としての冷却管付きセパラブルフラスコに、カルビトールアセテート81.5部を仕込み、窒素置換した後、80℃に昇温した。他方、滴下槽1にN-フェニルマレイミドを30部、カルビトールアセテートを120部混合したもの、滴下槽2にスチレンを29部、メタアクリル酸2-ヒドロキシエチルを20部混合したもの、滴下槽3にアクリル酸を21部、カルビトールアセテートを10.6部混合したもの、滴下槽4に重合開始剤としてルペロックス11(商品名;アルケマ吉富社製、t-ブチルパーオキシピバレートを70%含有する炭化水素溶液)を10部、カルビトールアセテートを21.2部混合したものをそれぞれ仕込んだ。反応温度を80℃に保ちながら、滴下槽1、2、4から3時間、滴下槽3から2.5時間かけて滴下を行った。滴下終了後から更に80℃で30分、反応を継続した。その後、反応温度を95℃に昇温し、1.5時間反応を継続してラジカル重合性二重結合導入反応前の重合体溶液を得た。
 次いで、この重合体溶液にグリシジルメタクリレートを9.9部、カルビトールアセテートを7.4部、反応触媒としてトリフェニルホスフィンを0.7部、重合禁止剤としてアンテージW-400(川口化学工業社製)を0.2部加え、窒素と酸素との混合ガス(酸素濃度7%)をバブリングしながら115℃で反応させて、感光性のカルボキシル基含有ラジカル重合性重合体溶液A-2を得た。この感光性のカルボキシル基含有共重合樹脂は、固形分32%、固形分酸価120mgKOH/gであった。なお、表1に記載の数値は溶剤を含まない固形分の質量部である。
(Photocurable resin A-2)
81.5 parts of carbitol acetate was placed in a separable flask with a cooling tube as a reaction vessel, replaced with nitrogen, and then the temperature was raised to 80 ° C. On the other hand, 30 parts of N-phenylmaleimide and 120 parts of carbitol acetate were mixed in the dropping tank 1, 29 parts of styrene and 20 parts of 2-hydroxyethyl methacrylate were mixed in the dropping tank 2, and the dropping tank 3 21 parts of acrylic acid and 10.6 parts of hydrocarbon acetate are mixed, and the dropping tank 4 contains 70% of t-butylperoxypivalate as a polymerization initiator, Luperox 11 (trade name: manufactured by Alchema Yoshitomi Co., Ltd.). A mixture of 10 parts (hydrocarbon solution) and 21.2 parts of carbitol acetate was charged. While maintaining the reaction temperature at 80 ° C., the dropping was carried out from the dropping tanks 1, 2, 4 to 3 hours and from the dropping tank 3 for 2.5 hours. After the completion of the dropping, the reaction was continued at 80 ° C. for 30 minutes. Then, the reaction temperature was raised to 95 ° C., and the reaction was continued for 1.5 hours to obtain a polymer solution before the radical polymerizable double bond introduction reaction.
Next, 9.9 parts of glycidyl methacrylate, 7.4 parts of carbitol acetate as a reaction catalyst, 0.7 parts of triphenylphosphine as a reaction catalyst, and Antage W-400 (manufactured by Kawaguchi Chemical Industry Co., Ltd.) as a polymerization inhibitor in this polymer solution. ) Was added and reacted at 115 ° C. while bubbling a mixed gas of nitrogen and oxygen (oxygen concentration 7%) to obtain a photosensitive carboxyl group-containing radical polymerizable polymer solution A-2. .. This photosensitive carboxyl group-containing copolymer resin had a solid content of 32% and a solid content acid value of 120 mgKOH / g. The values shown in Table 1 are parts by mass of the solid content that does not contain a solvent.
(光硬化性樹脂A-3)
 ジエチレングリコールモノエチルエーテルアセテート700gにオルソクレゾールノボラック型エポキシ樹脂〔DIC株式会社製、EPICLON N-695、軟化点95℃、エポキシ当量214、平均官能基数7.6〕1070g(グリシジル基数(芳香環総数):5.0モル)、アクリル酸360g(5.0モル)、およびハイドロキノン1.5gを仕込み、100℃に加熱攪拌し、均一溶解した。次いで、トリフェニルホスフィン4.3gを仕込み、110℃に加熱して2時間反応後、更にトリフェニルホスフィン1.6gを追加し、120℃に昇温してさらに12時間反応を行った。得られた反応液に芳香族系炭化水素(ソルベッソ150)562g、テトラヒドロ無水フタル酸684g(4.5モル)を仕込み、110℃で4時間反応を行った。さらに、得られた反応液にグリシジルメタクリレート142.0g(1.0モル)を仕込み、115℃で4時間反応を行い、カルボキシル基含有樹脂溶液を得た。このようにして得られた感光性のカルボキシル基含有樹脂溶液A-3の固形分は65%、固形分の酸価は87mgKOH/gであった。なお、表1に記載の数値は溶剤を含まない固形分の質量部である。
(Photocurable resin A-3)
700 g of diethylene glycol monoethyl ether acetate and orthocresol novolac type epoxy resin [manufactured by DIC Corporation, EPICLON N-695, softening point 95 ° C., epoxy equivalent 214, average number of functional groups 7.6] 1070 g (number of glycidyl groups (total number of aromatic rings): 5.0 mol), 360 g (5.0 mol) of acrylic acid, and 1.5 g of hydroquinone were charged and heated and stirred at 100 ° C. to uniformly dissolve. Next, 4.3 g of triphenylphosphine was charged, heated to 110 ° C. for 2 hours, then 1.6 g of triphenylphosphine was further added, the temperature was raised to 120 ° C., and the reaction was carried out for another 12 hours. 562 g of aromatic hydrocarbon (Solbesso 150) and 684 g (4.5 mol) of tetrahydrophthalic anhydride were charged into the obtained reaction solution, and the reaction was carried out at 110 ° C. for 4 hours. Further, 142.0 g (1.0 mol) of glycidyl methacrylate was charged into the obtained reaction solution, and the reaction was carried out at 115 ° C. for 4 hours to obtain a carboxyl group-containing resin solution. The photosensitive carboxyl group-containing resin solution A-3 thus obtained had a solid content of 65% and an acid value of the solid content of 87 mgKOH / g. The values shown in Table 1 are parts by mass of the solid content that does not contain a solvent.
[無機フィラーの調製]
C-1:
 球状シリカ(デンカ社製SFP-20M、平均粒径:400nm)60gと、溶剤としてMEK(メチルエチルケトン)40gと、メトキシ基を有するシランカップリング剤(信越化学工業社製KBM-202SS:D線(25℃)における屈折率1.54)2gとを均一分散させて、シリカ溶剤分散品C-1を得た。
[Preparation of inorganic filler]
C-1:
Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, and a silane coupling agent having a methoxy group (KBM-202SS manufactured by Shin-Etsu Chemical Co., Ltd .: D line (25) A silica solvent-dispersed product C-1 was obtained by uniformly dispersing 1.54) and 2 g of a refractive index at (° C.).
C-2:
 球状シリカ(デンカ社製SFP-20M、平均粒径:400nm)60gと、溶剤としてMEK(メチルエチルケトン)40gと、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(大阪ガスケミカル社製SC-001:D線(25℃)における屈折率1.56)2gとを均一分散させて、シリカ溶剤分散品C-2を得た。
C-2:
Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, a methoxy group, and a silane coupling agent having a fluorene skeleton having a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.) A silica solvent-dispersed product C-2 was obtained by uniformly dispersing 2 g of a refractive index of 1.56) in SC-001: D line (25 ° C.).
C-3:
 球状シリカ(デンカ社製SFP-20M、平均粒径:400nm)60gと、溶剤としてMEK(メチルエチルケトン)40gと、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(大阪ガスケミカル社製SC-003:D線(25℃)における屈折率1.53)2gとを均一分散させて、シリカ溶剤分散品C-3を得た。
C-3:
Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, a methoxy group, and a silane coupling agent having a fluorene skeleton having a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.) SC-003: Refractive index 1.53) 2 g on D line (25 ° C.) was uniformly dispersed to obtain a silica solvent-dispersed product C-3.
C-4:
 球状シリカ(デンカ社製SFP-20M、平均粒径:400nm)60gと、溶剤としてMEK(メチルエチルケトン)40gと、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(大阪ガスケミカル社製SC-001:D線(25℃)における屈折率1.56)2gを均一分散させた後、更にメトキシ基とメタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503:D線(25℃)における屈折率1.43)1gとを均一分散させて、シリカ溶剤分散品C-4を得た。
C-4:
Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, methoxy group, and a silane coupling agent having a fluorene skeleton having a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.) SC-001: Refractive index at D line (25 ° C.) 1.56) After 2 g is uniformly dispersed, a silane coupling agent further having a methoxy group and a methacryl group (KBM-503: D line (manufactured by Shinetsu Chemical Industry Co., Ltd.) The refractive index of 1.43) at 25 ° C.) was uniformly dispersed with 1 g to obtain a silica solvent-dispersed product C-4.
C-5:
 球状シリカ(デンカ社製SFP-20M、平均粒径:400nm)60gと、溶剤としてMEK(メチルエチルケトン)40gと、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(大阪ガスケミカル社製SC-001:D線(25℃)における屈折率1.56)2gを均一分散させた後、更にメトキシ基とアミノ基を有するシランカップリング剤(信越化学工業社製KBM-573:D線(25℃)における屈折率1.43)1gとを均一分散させて、シリカ溶剤分散品C-5を得た。
C-5:
Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, a silane coupling agent having a fluorene skeleton having a methoxy group and a cardo structure (manufactured by Osaka Gas Chemical Co., Ltd.) SC-001: Refractive index at D line (25 ° C.) 1.56) After 2 g is uniformly dispersed, a silane coupling agent further having a methoxy group and an amino group (KBM-573: D line (manufactured by Shinetsu Chemical Industry Co., Ltd.) The refractive index of 1.43) at 25 ° C.) was uniformly dispersed with 1 g to obtain a silica solvent-dispersed product C-5.
R-1:
 球状シリカ(デンカ社製SFP-20M、平均粒径:400nm)60gと、溶剤としてMEK(メチルエチルケトン)40gと、メトキシ基とメタアクリル基を有するシランカップリング剤(信越化学工業社製KBM-503:D線(25℃)における屈折率1.43)2gとを均一分散させて、シリカ溶剤分散品R-1を得た。
R-1:
Spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 400 nm) 60 g, MEK (methyl ethyl ketone) 40 g as a solvent, and a silane coupling agent having a methoxy group and a methacrylic group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.): A silica solvent-dispersed product R-1 was obtained by uniformly dispersing 2 g of a refractive index of 1.43) on the D line (25 ° C.).
R-2:
 球状シリカ(デンカ社製SFP-20M、平均粒径:400nm、D線(25℃)における屈折率1.42)60gと、溶剤としてMEK(メチルエチルケトン)40gを均一分散させて、シリカ溶剤分散品R-2を得た。
R-2:
60 g of spherical silica (SFP-20M manufactured by Denka, average particle size: 400 nm, refractive index at D line (25 ° C.) 1.42) and 40 g of MEK (methyl ethyl ketone) as a solvent are uniformly dispersed, and the silica solvent-dispersed product R I got -2.
R-3:
 硫酸バリウム(堺化学工業社製B-30NC(表面未処理品)、平均粒径:300nm、D線(25℃)における屈折率1.65)60gと、溶剤としてMEK(メチルエチルケトン)40gを均一分散させて、バリウム溶剤分散品R-3を得た。
 これらは、実施例および比較例の数値の固形分となるよう配合した。
R-3:
60 g of barium sulfate (B-30NC (unsurface treated product) manufactured by Sakai Chemical Industry Co., Ltd., average particle size: 300 nm, refractive index at D line (25 ° C.) 1.65) and 40 g of MEK (methyl ethyl ketone) as a solvent are uniformly dispersed. The barium solvent-dispersed product R-3 was obtained.
These were blended so as to have the solid content of the numerical values of Examples and Comparative Examples.
<屈折率測定方法>
 光硬化性樹脂、有機アルコキシシランおよび上記で調整した無機フィラーの屈折率は、ERMA社製屈折率計ER-7MWを用いて、各試料をガラス上に塗布、乾燥し、D線、25℃の条件で測定した。
<Refractive index measurement method>
The refractive index of the photocurable resin, the organic alkoxysilane and the inorganic filler adjusted above was measured by applying each sample on glass using a refractive index meter ER-7MW manufactured by ERMA, and drying the sample at 25 ° C. Measured under conditions.
[実施例1~6、比較例1、2]
 上記の樹脂溶液(ワニス)を、表に示す種々の成分を、示す割合(質量部)にて配合し、攪拌機にて予備混合した後、3本ロールミルで混練し、硬化性樹脂組成物を調製した。
[Examples 1 to 6, Comparative Examples 1 and 2]
The above resin solution (varnish) is mixed with the various components shown in the table at the indicated ratios (parts by mass), premixed with a stirrer, and then kneaded with a three-roll mill to prepare a curable resin composition. did.
<ドライフィルムの作製>
 上記のようにして調整した硬化性樹脂組成物にメチルエチルケトン300gを加えて希釈し、攪拌機で15分間撹拌して塗工液を得た。塗工液を、厚さ38μmのポリエチレンテレフタレートフィルム(キャリアフィルム:ユニチカ社製エンブレットPTH-25)上に塗布し、通常、80℃の温度で15分間乾燥し、厚み20μmの樹脂層を形成した。次いで、樹脂層上に、二軸延伸ポリプロピレンフィルム(カバーフィルム:フタムラ社製OPP-FOA)を貼り合わせて、ドライフィルムを作製した。
<Making dry film>
300 g of methyl ethyl ketone was added to the curable resin composition prepared as described above to dilute it, and the mixture was stirred with a stirrer for 15 minutes to obtain a coating liquid. The coating liquid was applied onto a polyethylene terephthalate film having a thickness of 38 μm (carrier film: Embret PTH-25 manufactured by Unitika Ltd.) and dried at a temperature of 80 ° C. for 15 minutes to form a resin layer having a thickness of 20 μm. .. Next, a biaxially stretched polypropylene film (cover film: OPP-FOA manufactured by Futamura Co., Ltd.) was laminated on the resin layer to prepare a dry film.
<解像性>
 各実施例および比較例のドライフィルムを酸処理した銅張積層板の銅上に、真空ラミネーター(CVP-600:ニッコーマテリアル社製)を用いて100℃の第一チャンバーにて真空圧3hPa、バキューム時間30秒の条件下でラミネートした後、プレス圧0.5MPa、プレス時間30秒の条件でプレスを行い評価基板を得た。その後、DI露光機(光源:水銀ショートアークランプ)にてステップタブレット(41段)で10段が得られる露光量でφ30μmの開口パターンを露光後、PETフィルムを剥がし、現像(1質量%NaCO、30℃、0.2MPa)を60秒で行い、樹脂層のパターンを形成した。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、160℃で60分加熱して樹脂層を完全硬化させてパターン硬化膜を有する評価基板を作製し、感光性硬化塗膜の測長を行った。
◎:Top30μm、Bottom開口95~100%
〇:Top30μm、Bottom開口85%以上、95%未満
△:TopもBottomも80~90%の開口精度
×:ハレーションやアンダーカットが発生
<Resolution>
Vacuum pressure 3 hPa, vacuum in the first chamber at 100 ° C. using a vacuum laminator (CVP-600: manufactured by Nikko Material Co., Ltd.) on the copper of the copper-clad laminate in which the dry films of each example and the comparative example were acid-treated. After laminating under the condition of a time of 30 seconds, pressing was performed under the conditions of a press pressure of 0.5 MPa and a press time of 30 seconds to obtain an evaluation substrate. Then, after exposing an aperture pattern of φ30 μm with a DI exposure machine (light source: mercury short arc lamp) with an exposure amount of 10 steps with a step tablet (41 steps), the PET film is peeled off and developed (1 mass% Na 2). CO 3 , 30 ° C., 0.2 MPa) was carried out in 60 seconds to form a pattern of the resin layer. Subsequently, the resin layer is irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer to have an evaluation substrate having a pattern cured film. Was prepared, and the length of the photosensitive cured coating film was measured.
⊚: Top 30 μm, Bottom opening 95-100%
〇: Top 30 μm, Bottom opening 85% or more, less than 95% Δ: Both Top and Bottom have an opening accuracy of 80 to 90% ×: Halation and undercut occur
<埋め込み性およびBHAST耐性>
 導体厚10μm L/S=8μm/8μmの回路パターンが形成されている基板を酸処理後、上記<解像性>評価と同様にドライフィルムをラミネート、露光、現像、硬化し、埋め込み性を確認後、130℃、85%、3VにてBHASTを行い絶縁信頼性を評価した。
◎:ボイドなく埋め込め、BHAST300hrs以上の絶縁信頼性を達成
〇:ボイドなく埋め込め、BHAST200以上300hrs未満の絶縁信頼性を達成
△:1~2μm程度のボイドが確認され、絶縁耐性は200hrs未満
×:5μm以上の抜けが確認された。
<Implantability and BHAST resistance>
After acid-treating the substrate on which the circuit pattern of conductor thickness 10 μm L / S = 8 μm / 8 μm is formed, the dry film is laminated, exposed, developed, and cured in the same manner as in the above <resolution> evaluation, and the embedding property is confirmed. After that, BHAST was performed at 130 ° C., 85%, and 3 V to evaluate the insulation reliability.
⊚: Embedded without voids, achieving insulation reliability of BHAST 300 hrs or more 〇: Embedding without voids, achieving insulation reliability of BHAST 200 or more and less than 300 hrs Δ: Voids of about 1 to 2 μm were confirmed, and dielectric strength was less than 200 hrs ×: 5 μm The above omissions were confirmed.
<高温放置試験>
 各実施例および比較例のドライフィルムをメック社製CZ8101で処理した銅張積層板の銅上に、真空ラミネーター(CVP-600:ニッコーマテリアル社製)を用いて100℃の第一チャンバーにて真空圧3hPa、バキューム時間30秒の条件下でラミネートした後、プレス圧0.5MPa、プレス時間30秒の条件でプレスを行い評価基板を得た。その後、DI露光機にてステップタブレット(41段)で10段が得られる露光量でφ200μmの抜きパターンを形成するように露光後、PETフィルムを剥がし、現像(1質量%NaCO、30℃、0.2MPa)を60秒で行い、樹脂層のパターンを形成した。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、160℃で60分加熱して樹脂層を完全硬化させてパターン硬化膜を有する評価基板を作製した。
 その基板を175℃酸素雰囲気の恒温槽へ入れ、セロテープピールでの剥がれが発生しない時間を確認した。
◎:2000hrs以上剥がれ無し
〇:1500hrs以上、2000hrs未満で若干の剥がれが発生
△:1000hrs以上、1500hrs未満で剥がれ発生
×:1000hrs以内で剥がれが発生
<High temperature standing test>
Vacuum in the first chamber at 100 ° C. using a vacuum laminator (CVP-600: manufactured by Nikko Material Co., Ltd.) on the copper of the copper-clad laminate in which the dry films of each example and the comparative example were treated with CZ8101 manufactured by MEC. After laminating under the conditions of a pressure of 3 hPa and a vacuum time of 30 seconds, pressing was performed under the conditions of a press pressure of 0.5 MPa and a press time of 30 seconds to obtain an evaluation substrate. Then, after exposure with a DI exposure machine so as to form a punching pattern of φ200 μm with an exposure amount of 10 steps with a step tablet (41 steps), the PET film is peeled off and developed (1 mass% Na 2 CO 3 , 30). ℃, 0.2 MPa) was carried out in 60 seconds to form a pattern of the resin layer. Subsequently, the resin layer is irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer to have an evaluation substrate having a pattern cured film. Was produced.
The substrate was placed in a constant temperature bath having an oxygen atmosphere at 175 ° C., and the time during which peeling with the cellophane tape peel did not occur was confirmed.
⊚: No peeling of 2000 hrs or more 〇: Some peeling occurs at 1500 hrs or more and less than 2000 hrs Δ: Peeling occurs at 1000 hrs or more and less than 1500 hrs ×: Peeling occurs within 1000 hrs
<CTE>
 上記<高温放置試験>と同じ条件でロープロファイルの銅箔上に硬化膜を形成した。得られた硬化膜を銅箔より剥離し、測定サイズ(3mm×10mmサイズ)が得られるようにサンプルを切り出し、日立ハイテック社製TMA6100にてCTEを測定した。測定条件は、試験荷重5g、サンプルを10℃/分の昇温速度で室温より昇温することを2回繰り返し、2回目におけるTg以下の線膨張係数(CTE(α2))を得た。このCTEが小さいほど、熱安定性に優れることがわかる。
◎:30ppm以下
〇:30ppm超、40ppm以下
△:40ppm超、50ppm以下
×:50ppm超
<CTE>
A cured film was formed on the low profile copper foil under the same conditions as the above <high temperature standing test>. The obtained cured film was peeled off from the copper foil, a sample was cut out so that a measurement size (3 mm × 10 mm size) could be obtained, and CTE was measured with TMA6100 manufactured by Hitachi High-Tech. The measurement conditions were that the test load was 5 g and the sample was heated above room temperature at a rate of temperature rise of 10 ° C./min twice, and a linear expansion coefficient (CTE (α2)) of Tg or less was obtained in the second time. It can be seen that the smaller the CTE, the better the thermal stability.
⊚: 30 ppm or less 〇: 30 ppm or more, 40 ppm or less Δ: 40 ppm or more, 50 ppm or less ×: 50 ppm or less
<冷熱耐性評価>
 2mmの銅ラインパターンが形成されたBT基板に、各ドライフィルムを上記<高温放置試験>および<解像性>評価と同様にラミネートし、露光、現像、UVと熱硬化した。但し、露光時のパターンを3mm角の硬化膜パターンにとなるように変更し、銅ラインに3mm角の硬化膜パターンを形成した評価基板を作製した。この基板を-50℃と150℃の間で温度サイクルが行われる冷熱サイクル機に入れ、TCT(ThermalCycle Test)を行った。そして、1000cycleまで評価した際のクラックを確認した。
◎:1000cycleまでクラックの発生なし。
〇:500~750cycleでクラックが発生した。
△:250cycle以上、500cycle未満でクラックが発生した。
×:250cycle未満でクラックが発生した。
<Cold heat resistance evaluation>
Each dry film was laminated on a BT substrate on which a 2 mm copper line pattern was formed in the same manner as in the above <high temperature standing test> and <resolution> evaluation, and was heat-cured by exposure, development, and UV. However, the pattern at the time of exposure was changed so as to be a 3 mm square cured film pattern, and an evaluation substrate in which a 3 mm square cured film pattern was formed on a copper line was produced. This substrate was placed in a thermal cycle machine in which a temperature cycle was performed between −50 ° C. and 150 ° C., and TCT (Thermal Cycle Test) was performed. Then, cracks were confirmed when evaluated up to 1000 cycles.
⊚: No cracks occurred up to 1000 cycles.
〇: A crack occurred in 500 to 750 cycles.
Δ: Cracks occurred at 250 cycles or more and less than 500 cycles.
X: Cracks occurred below 250 cycles.
Figure JPOXMLDOC01-appb-T000002
※実施例2における(A)光硬化性樹脂と有機アルコキシシランのD線(25℃)における屈折率の差は、*2の光硬化性樹脂との差
Figure JPOXMLDOC01-appb-T000002
* The difference in the refractive index of the (A) photocurable resin and the organic alkoxysilane in the D line (25 ° C.) in Example 2 is the difference from the * 2 photocurable resin.
*1:上記で合成した光硬化性樹脂の溶液A-1(D線(25℃)における屈折率1.56)
*2:上記で合成した光硬化性樹脂の溶液A-2(D線(25℃)における屈折率1.55)
*3:上記で合成した光硬化性樹脂の溶液A-3(D線(25℃)における屈折率1.56)
*4:IGM Resins社製Omnirad TPO(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド)
*5:IGM Resins社製Omnirad907(2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン)
*6:日本化薬社製DPHA(ジペンタエリスリトールヘキサアクリレート、D線(25℃)における屈折率1.48)
*7:三菱ケミカル社製jER828(ビスフェノールA型エポキシ樹脂)
*8:日本化薬社製NC-6000(2-(4-ヒドロキシフェニル)-2-[4-[1,1-ビス(4-ヒドロキシフェニル)エチル]フェニル]プロパンのグリシジルエーテル化合物)
*9:日本化薬社製NC-3000H(ビフェノールノボラック型エポキシ樹脂)
*10:フタロシアニンブルー
*11:ジシアンジアミド
*12:メラミン
C-1:上記で調整した、メトキシ基を有するシランカップリング剤(D線(25℃)における屈折率1.54)で被覆されたシリカの溶剤分散品C-1
C-2:上記で調整した、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(D線(25℃)における屈折率1.56)で被覆されたシリカの溶剤分散品C-2
C-3:上記で調整した、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(D線(25℃)における屈折率1.53)で被覆されたシリカの溶剤分散品C-3
C-4:上記で調整した、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(D線(25℃)における屈折率1.56)と、メトキシ基とメタクリル基を有するシランカップリング剤(D線(25℃)における屈折率1.43)で被覆されたシリカの溶剤分散品C-4
C-5:上記で調整した、メトキシ基と、カルド構造をもつフルオレン骨格を有するシランカップリング剤(D線(25℃)における屈折率1.56)と、メトキシ基とアミノ基を有するシランカップリング剤(D線(25℃)における屈折率1.43)で被覆されたシリカの溶剤分散品C-5
R-1:上記で調整した、メトキシ基とメタアクリル基を有するシランカップリング剤(D線(25℃)における屈折率1.43)で被覆されたシリカの溶剤分散品R-1
R-2:上記で調整した、シリカ(D線(25℃)における屈折率1.42)の溶剤分散品R-2
R-3:上記で調整した、バリウム(D線(25℃)における屈折率1.65)の溶剤分散品R-3
* 1: Solution A-1 of the photocurable resin synthesized above (refractive index 1.56 at D line (25 ° C))
* 2: Solution A-2 of the photocurable resin synthesized above (refractive index 1.55 at D line (25 ° C))
* 3: Solution A-3 of the photocurable resin synthesized above (refractive index 1.56 at D line (25 ° C))
* 4: Omnirad TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) manufactured by IGM Resins.
* 5: Omnirad 907 manufactured by IGM Resins (2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one)
* 6: DPHA manufactured by Nippon Kayaku Co., Ltd. (dipentaerythritol hexaacrylate, refractive index 1.48 at D line (25 ° C))
* 7: Mitsubishi Chemical's jER828 (bisphenol A type epoxy resin)
* 8: NC-6000 manufactured by Nippon Kayaku Co., Ltd. (2- (4-hydroxyphenyl) -2- [4- [1,1-bis (4-hydroxyphenyl) ethyl] phenyl] propane glycidyl ether compound)
* 9: NC-3000H (biphenol novolac type epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
* 10: Phthalocyanine blue * 11: Dicyandiamide * 12: Melamine C-1: Silica coated with a silane coupling agent having a methoxy group (refractive index at D line (25 ° C.) 1.54) adjusted above. Solvent dispersion product C-1
C-2: A solvent-dispersed product of silica coated with a silane coupling agent having a fluorene skeleton having a methoxy group and a cardo structure (refractive index at D line (25 ° C.) of 1.56) prepared above. 2
C-3: Solvent-dispersed product of silica coated with a silane coupling agent having a fluorene skeleton having a methoxy group and a cardo structure (refractive index at D line (25 ° C.) of 1.53) prepared above. 3
C-4: A silane coupling agent having a methoxy group and a fluorene skeleton having a cardo structure (refractive index at D line (25 ° C.) of 1.56) prepared above, and a silane cup having a methoxy group and a methacryl group. Silane solvent-dispersed product C-4 coated with a ring agent (refractive index at D-ray (25 ° C.) 1.43)
C-5: A silane coupling agent having a methoxy group and a fluorene skeleton having a cardo structure (refractive index at D line (25 ° C.) of 1.56) prepared above, and a silane cup having a methoxy group and an amino group. Solvent-dispersed product C-5 of silica coated with a ring agent (refractive index at D line (25 ° C.) 1.43)
R-1: Solvent-dispersed product of silica coated with a silane coupling agent having a methoxy group and a methacrylic group (refractive index 1.43 at D line (25 ° C.)) adjusted above.
R-2: Solvent-dispersed product of silica (refractive index 1.42 at D line (25 ° C)) adjusted above R-2
R-3: Solvent-dispersed product of barium (refractive index 1.65 at D line (25 ° C.)) adjusted above R-3
 上記表中に示す結果から、本発明の実施例1~6の硬化性樹脂組成物は、解像性および高密度配線パターンの埋め込み性に優れた硬化物が得られることがわかる。 From the results shown in the above table, it can be seen that the curable resin compositions of Examples 1 to 6 of the present invention can be obtained as a cured product having excellent resolution and embedding property of a high-density wiring pattern.

Claims (6)

  1.  (A)光硬化性樹脂、
     (B)光重合開始剤、および、
     (C)シリカ
     を含む硬化性樹脂組成物であって、
     前記(A)光硬化性樹脂の25℃で測定したD線における屈折率が1.50~1.65であり、
     前記(C)シリカが、25℃で測定したD線における屈折率が1.50~1.65である有機アルコキシシランで被覆されていることを特徴とする硬化性樹脂組成物。
    (A) Photocurable resin,
    (B) Photopolymerization initiator and
    (C) A curable resin composition containing silica.
    The refractive index of the (A) photocurable resin in the D line measured at 25 ° C. is 1.50 to 1.65.
    A curable resin composition, wherein the silica (C) is coated with an organic alkoxysilane having a refractive index of 1.50 to 1.65 in the D line measured at 25 ° C.
  2.  前記有機アルコキシシランがカルド構造を有することを特徴とする請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the organic alkoxysilane has a cardo structure.
  3.  前記(C)シリカが、少なくとも2種の前記有機アルコキシシランで被覆されている、または、前記有機アルコキシシランおよび前記有機アルコキシシラン以外の有機アルコキシシランで被覆されていることを特徴とする請求項1または2記載の硬化性樹脂組成物。 Claim 1 is characterized in that the silica (C) is coated with at least two kinds of the organic alkoxysilanes, or is coated with an organic alkoxysilane other than the organic alkoxysilane and the organic alkoxysilane. Alternatively, the curable resin composition according to 2.
  4.  請求項1~3のいずれか一項記載の硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film characterized by having a resin layer obtained by applying the curable resin composition according to any one of claims 1 to 3 to a film and drying the film.
  5.  請求項1~3のいずれか一項に記載の硬化性樹脂組成物、または、請求項4記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 1 to 3 or the resin layer of the dry film according to claim 4.
  6.  請求項5記載の硬化物を有することを特徴とする電子部品。 An electronic component having the cured product according to claim 5.
PCT/JP2019/049159 2019-03-29 2019-12-16 Curable resin composition, dry film, cured product, and electronic component WO2020202656A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217032878A KR20210148177A (en) 2019-03-29 2019-12-16 Curable resin composition, dry film, cured product and electronic component
CN201980094329.XA CN113631603A (en) 2019-03-29 2019-12-16 Curable resin composition, dry film, cured product, and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069268 2019-03-29
JP2019069268A JP2020164760A (en) 2019-03-29 2019-03-29 Curable resin composition, dry film, cured product and electronic component

Publications (1)

Publication Number Publication Date
WO2020202656A1 true WO2020202656A1 (en) 2020-10-08

Family

ID=72668460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049159 WO2020202656A1 (en) 2019-03-29 2019-12-16 Curable resin composition, dry film, cured product, and electronic component

Country Status (5)

Country Link
JP (1) JP2020164760A (en)
KR (1) KR20210148177A (en)
CN (1) CN113631603A (en)
TW (1) TWI814970B (en)
WO (1) WO2020202656A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276889A1 (en) * 2021-07-01 2023-01-05 昭和電工マテリアルズ株式会社 Adhesive film for connecting circuit, circuit connection structure, and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941180B2 (en) * 1976-01-19 1984-10-05 三菱製紙株式会社 Multilayer silver halide color photographic material
JP2011164270A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film, cured article, and printed wiring board
WO2013161756A1 (en) * 2012-04-23 2013-10-31 日立化成株式会社 Photosensitive resin composition, photosensitive film, permanent mask resist and process for producing permanent mask resist
JP2018028044A (en) * 2016-08-19 2018-02-22 味の素株式会社 Resin composition
WO2018123695A1 (en) * 2016-12-28 2018-07-05 太陽インキ製造株式会社 Curable composition, base resin, curing agent, dry film, cured product, and printed wiring board
JP2019179230A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210060A (en) 1993-01-19 1994-08-02 Adachi Raito Kogyosho Kk Tray of pachinko machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941180B2 (en) * 1976-01-19 1984-10-05 三菱製紙株式会社 Multilayer silver halide color photographic material
JP2011164270A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film, cured article, and printed wiring board
WO2013161756A1 (en) * 2012-04-23 2013-10-31 日立化成株式会社 Photosensitive resin composition, photosensitive film, permanent mask resist and process for producing permanent mask resist
JP2018028044A (en) * 2016-08-19 2018-02-22 味の素株式会社 Resin composition
WO2018123695A1 (en) * 2016-12-28 2018-07-05 太陽インキ製造株式会社 Curable composition, base resin, curing agent, dry film, cured product, and printed wiring board
JP2019179230A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276889A1 (en) * 2021-07-01 2023-01-05 昭和電工マテリアルズ株式会社 Adhesive film for connecting circuit, circuit connection structure, and method for manufacturing same

Also Published As

Publication number Publication date
KR20210148177A (en) 2021-12-07
JP2020164760A (en) 2020-10-08
TWI814970B (en) 2023-09-11
TW202035595A (en) 2020-10-01
CN113631603A (en) 2021-11-09

Similar Documents

Publication Publication Date Title
KR102369508B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JP2007249148A (en) Photosensitive thermosetting resin composition, smoothed printed wiring board coated with resist film and method for manufacturing the same
JP6951323B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP6770131B2 (en) Curable composition, dry film, cured product and printed wiring board
KR20120060938A (en) Photo-sensitive resin composition, dry film solder resist, and circuit board
CN112034680A (en) Curable resin composition, dry film, cured product, and printed wiring board
JP2020166215A (en) Dry film, cured product and electronic component
JPWO2020066601A1 (en) Curable resin composition, dry film, cured product, printed wiring board and electronic components
JP2020166207A (en) Curable resin composition, dry film, cured product and printed wiring board
JP6987011B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP7066634B2 (en) Curable composition, main agent and curing agent, dry film, cured product, and printed wiring board
TWI814970B (en) Curable resin compositions, dry films, hardened materials and electronic parts
TW201902973A (en) Photosensitive resin composition, dry film, and printed wiring board
JP6724097B2 (en) Curable resin composition, dry film, cured product, printed wiring board and electronic component
WO2021157282A1 (en) Curable composition, and dry film and cured object obtained therefrom
JP7101513B2 (en) Curable resin compositions, dry films, cured products, and electronic components
JP2021044387A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product
JP7339103B2 (en) Curable resin composition, dry film, cured product, and electronic component
JP2019178303A (en) Curable resin composition, dry film, cured product and electronic component
JP2022122104A (en) Curable resin composition, dry film, cured product, and electronic component
WO2020202690A1 (en) Curable resin composition, dry film, cured product, and electronic component
JP2021144097A (en) Curable resin composition, dry film, cured product, and electronic component
WO2021210570A1 (en) Curable resin composition, dry film, cured article, and printed wiring board
JP2021044386A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product
WO2023190393A1 (en) Cured product and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032878

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19922915

Country of ref document: EP

Kind code of ref document: A1