WO2020202621A1 - 無人移動体及び情報処理方法 - Google Patents

無人移動体及び情報処理方法 Download PDF

Info

Publication number
WO2020202621A1
WO2020202621A1 PCT/JP2019/042665 JP2019042665W WO2020202621A1 WO 2020202621 A1 WO2020202621 A1 WO 2020202621A1 JP 2019042665 W JP2019042665 W JP 2019042665W WO 2020202621 A1 WO2020202621 A1 WO 2020202621A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
moving body
unmanned moving
speaker
person
Prior art date
Application number
PCT/JP2019/042665
Other languages
English (en)
French (fr)
Inventor
俊介 久原
ステファン ジョン
一暢 小西
浅井 勝彦
井上 和夫
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021511090A priority Critical patent/JP7426631B2/ja
Priority to EP19923335.4A priority patent/EP3950498B1/en
Priority to CN201980085549.6A priority patent/CN113226928A/zh
Publication of WO2020202621A1 publication Critical patent/WO2020202621A1/ja
Priority to US17/349,210 priority patent/US20210311506A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/323Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/326Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction

Definitions

  • This disclosure relates to unmanned moving objects, etc.
  • Patent Document 1 proposes a sounding control device that controls the sounding state of a moving body to the outside. Patent Document 1 indicates that the direction corresponding to the recognized position of the detected object is set as the sounding direction.
  • an object of the present disclosure is to provide an unmanned moving body capable of integrally producing or collecting sounds for a plurality of objects.
  • the unmanned moving body is an unmanned moving body, which includes a directional speaker that outputs sound in a directional direction and a processor that acquires one or more sensing data. , It is determined whether or not there is a second object around the first object according to at least one of the one or more sensing data, and when it is determined that the second object exists, the one or more sensing is performed.
  • the positional relationship between the first object and the second object is calculated from at least one of the data, and the first object and the second object are within a range in which sound can reach a predetermined quality or higher by the directional speaker.
  • the first position of the unmanned moving body including the above is determined according to the positional relationship, and the unmanned moving body is moved to the first position.
  • the unmanned moving body is an unmanned moving body, and includes one or more directional microphones that collect sound from a directional direction and data acquired from the directional microphone.
  • a processor for acquiring sensing data is provided, and the processor determines whether or not a second object exists in the vicinity of the first object according to at least one of the one or more sensing data, and the second object is present.
  • the positional relationship between the first object and the second object is calculated from at least one of the one or more sensing data, and the sound is produced with a predetermined quality or higher by the directional microphone.
  • the first position of the unmanned moving body which includes the first object and the second target within the range in which the sound is picked up, is determined according to the positional relationship, and the unmanned moving body is moved to the first position. ..
  • the unmanned moving body or the like can integrally output or collect sound for a plurality of objects.
  • FIG. 1 is a block diagram showing a basic configuration example of an unmanned moving body according to the first embodiment.
  • FIG. 2 is a flowchart showing a basic operation example of the unmanned moving body according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing a specific operation example of the unmanned moving body according to the first embodiment.
  • FIG. 4 is a block diagram showing a specific configuration example of the unmanned moving body according to the first embodiment.
  • FIG. 5 is a flowchart showing a specific operation example of the unmanned moving body according to the first embodiment.
  • FIG. 6 is a conceptual diagram showing the attenuation of sound pressure in the first embodiment.
  • FIG. 7 is a data diagram showing the relationship between the sound pressure of the sound source in the first embodiment and the sound pressure at a place away from the sound source.
  • FIG. 8 is a conceptual diagram showing the positional relationship between the speaker, the related person, and the unmanned moving body in the first embodiment.
  • FIG. 9 is a data diagram showing the relationship between the distance between the speaker and the person concerned in the first embodiment, the sound pressure of the sound produced by the unmanned moving body, and the sound output range.
  • FIG. 10 is a data diagram showing the relationship between the sound pressure of the sound source in the first embodiment and the range in which the sound reaches within a predetermined range of sound pressure.
  • FIG. 11 is a conceptual diagram showing an example in the case where the distance between the speaker and the person concerned in the first embodiment is 3 m.
  • FIG. 12 is a conceptual diagram showing an example in the case where the distance between the speaker and the person concerned in the first embodiment is 10 m.
  • FIG. 13 is a conceptual diagram showing an example of a person who is in contact with the speaker in the first embodiment.
  • FIG. 14 is a conceptual diagram showing an example of a person who is in contact with a speaker in the first embodiment through an object.
  • FIG. 15 is a conceptual diagram showing an example of a related person having a conversation with the speaker in the first embodiment.
  • FIG. 16 is a conceptual diagram showing an example of a related person having a small distance to the speaker in the first embodiment.
  • FIG. 17 is a conceptual diagram showing an example of a person who has the same clothes as the speaker in the first embodiment.
  • FIG. 18 is a conceptual diagram showing an example of a speaker in the first embodiment and a related person existing in a predetermined area.
  • FIG. 19 is a conceptual diagram showing an example of a related person approaching the speaker in the first embodiment.
  • FIG. 20 is a conceptual diagram showing an example of a person concerned who exists within the reach of the voice of the speaker in the first embodiment.
  • FIG. 21 is a conceptual diagram showing a movement example in which the persons concerned existing in the range where the voice of the speaker can reach in the first embodiment are included in the sound output range.
  • FIG. 22 is a conceptual diagram showing an example of a person concerned who has a conversation separately from the person who speaks in the first embodiment.
  • FIG. 23 is a conceptual diagram showing an example of a person concerned who is appropriate for sound output and sound collection in the first embodiment.
  • FIG. 24 is a conceptual diagram showing an example of a sound output position on a straight line passing through the position of the speaker and the position of the person concerned in the first embodiment.
  • FIG. 25 is a conceptual diagram showing an example of a sound output position close to the speaker in the first embodiment.
  • FIG. 26 is a conceptual diagram showing an example of a sound output position close to an elderly person in the first embodiment.
  • FIG. 27 is a conceptual diagram showing an example of the sound output position corrected to the front side centering on the person concerned in the first embodiment.
  • FIG. 28 is a conceptual diagram showing an example of a sound output position determined centering on the speaker so that the persons concerned in the first embodiment are included in the sound output range.
  • FIG. 29 is a conceptual diagram showing an example of sound output positions on the front side of the speaker and related persons in the first embodiment.
  • FIG. 30 is a conceptual diagram showing an example of a sound output position on a straight line in an oblique direction with respect to a horizontal plane in the first embodiment.
  • FIG. 31 is a conceptual diagram showing an example of a sound output position on a straight line in the horizontal direction in the first embodiment.
  • FIG. 32 is a conceptual diagram showing an example of a sound output position at the same height as the speaker and related persons in the first embodiment.
  • FIG. 33 is a conceptual diagram showing an example of a sound output position higher than that of the speaker and the related persons in the first embodiment.
  • FIG. 34 is a conceptual diagram showing an example of the height of the sound output position in the first embodiment.
  • FIG. 35 is a conceptual diagram showing an example of a sound output position for excluding an unrelated person from the sound output range in the first embodiment.
  • FIG. 36 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body in the first embodiment on a horizontal plane.
  • FIG. 37 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body in the first embodiment on a vertical plane.
  • FIG. 38 is a conceptual diagram showing an example of a sound output position for excluding another person from the sound output range in the first embodiment.
  • FIG. 39 is a conceptual diagram showing an example in which the unmanned moving body according to the first embodiment moves to the sound output position.
  • FIG. 40 is a conceptual diagram showing an example in which the unmanned moving body according to the first embodiment moves to the sound output position after starting sound output.
  • FIG. 41 is a conceptual diagram showing an example in which the unmanned moving body according to the first embodiment moves to the sound output position through the front side.
  • FIG. 42 is a conceptual diagram showing an example in which the unmanned moving body according to the first embodiment changes the sound output range.
  • FIG. 43 is a conceptual diagram showing an example of selective operation of movement and change of sound output range in the first embodiment.
  • FIG. 44 is a conceptual diagram showing an example in the case where the person concerned in the first embodiment is out of the sound output range.
  • FIG. 45 is a conceptual diagram showing an example in the case where another person in the first embodiment enters the sound output range.
  • FIG. 41 is a conceptual diagram showing an example in which the unmanned moving body according to the first embodiment moves to the sound output position through the front side.
  • FIG. 42 is a conceptual diagram showing an example in which the unmanned moving body according to the first embodiment changes
  • FIG. 46 is a block diagram showing a basic configuration example of the unmanned moving body according to the second embodiment.
  • FIG. 47 is a flowchart showing a basic operation example of the unmanned moving body according to the second embodiment.
  • FIG. 48 is a conceptual diagram showing a specific operation example of the unmanned moving body according to the second embodiment.
  • FIG. 49 is a block diagram showing a specific configuration example of the unmanned moving body according to the second embodiment.
  • FIG. 50 is a flowchart showing a specific operation example of the unmanned moving body according to the second embodiment.
  • FIG. 51 is a conceptual diagram showing an example of a sound collecting position on a straight line passing through a position of a speaker and a position of a related person in the second embodiment.
  • FIG. 51 is a conceptual diagram showing an example of a sound collecting position on a straight line passing through a position of a speaker and a position of a related person in the second embodiment.
  • FIG. 52 is a conceptual diagram showing an example of a sound collecting position close to the speaker in the second embodiment.
  • FIG. 53 is a conceptual diagram showing an example of a sound collecting position close to the elderly in the second embodiment.
  • FIG. 54 is a conceptual diagram showing an example of the sound pick-up position corrected to the front side centering on the person concerned in the second embodiment.
  • FIG. 55 is a conceptual diagram showing an example of a sound collection position determined mainly by the speaker so that the persons concerned in the second embodiment are included in the sound collection range.
  • FIG. 56 is a conceptual diagram showing an example of the sound collecting position on the front side of the speaker and the related persons in the second embodiment.
  • FIG. 57 is a conceptual diagram showing an example of a sound collecting position on a straight line in an oblique direction with respect to a horizontal plane in the second embodiment.
  • FIG. 58 is a conceptual diagram showing an example of a sound collecting position on a straight line in the horizontal direction in the second embodiment.
  • FIG. 59 is a conceptual diagram showing an example of a sound collecting position at the same height as the speaker and the related persons in the second embodiment.
  • FIG. 60 is a conceptual diagram showing an example of a sound collection position higher than that of the speaker and the related persons in the second embodiment.
  • FIG. 61 is a conceptual diagram showing an example of the height of the sound collecting position in the second embodiment.
  • FIG. 62 is a conceptual diagram showing an example of a sound collecting position for excluding an unrelated person from the sound collecting range in the second embodiment.
  • FIG. 63 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body in the second embodiment on a horizontal plane.
  • FIG. 64 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body in the second embodiment on a vertical plane.
  • FIG. 65 is a conceptual diagram showing an example of a sound collecting position for excluding another person from the sound collecting range in the second embodiment.
  • FIG. 66 is a conceptual diagram showing an example of a sound collection position determined according to the sound produced by the speaker and the sound produced by the persons concerned in the second embodiment.
  • FIG. 67 is a conceptual diagram showing an example in which the unmanned moving body according to the second embodiment moves to the sound collecting position.
  • FIG. 68 is a conceptual diagram showing an example in which the unmanned moving body according to the second embodiment moves to the sound collecting position through the front side.
  • FIG. 69 is a conceptual diagram showing an example in which the unmanned moving body according to the second embodiment changes the sound collection range.
  • FIG. 70 is a conceptual diagram showing an example of a selective operation of movement and change of the sound collection range in the second embodiment.
  • FIG. 71 is a conceptual diagram showing an example in the case where the person concerned in the second embodiment is out of the sound collection range.
  • FIG. 72 is a conceptual diagram showing an example in the case where another person in the second embodiment enters the sound collection range.
  • FIG. 73 is a conceptual diagram showing an example when the group in the second embodiment is within the sound collection range.
  • FIG. 74 is a conceptual diagram showing an example in the case where the person concerned in the second embodiment enters the sound collection range.
  • FIG. 75 is a block diagram showing a basic configuration example of the unmanned moving body according to the third embodiment.
  • FIG. 76 is a flowchart showing a basic operation example of the unmanned moving body according to the third embodiment.
  • FIG. 77 is a conceptual diagram showing an example of a sound output range and a sound collection range in the third embodiment.
  • FIG. 78 is a conceptual diagram showing an example in which sound is collected from a range in which the sound output range and the sound collection range do not overlap in the third embodiment.
  • FIG. 80 is a block diagram showing a specific configuration example of the unmanned moving body according to the third embodiment.
  • FIG. 81 is a flowchart showing a specific operation example of the unmanned moving body according to the third embodiment.
  • an unmanned mobile body is equipped with a microphone (microphone) and a speaker to have a conversation with a person.
  • Such an unmanned moving body may be a robot or an unmanned aerial vehicle also called a drone.
  • the unmanned moving body may identify the conversation content by itself by artificial intelligence (AI) or the like mounted on the unmanned moving body and have a conversation with a person.
  • AI artificial intelligence
  • the remote operator or remote manager of the unmanned moving object may have a conversation with a person other than the remote operator or the remote manager or the like via the unmanned moving object.
  • the unmanned aerial vehicle has the characteristic that the flight noise is loud because it flies by rotating the propeller at high speed. Therefore, for example, an unmanned aerial vehicle emits a loud sound in consideration of the flight sound when talking with a person. As a result, the unmanned aerial vehicle can make a person who has a conversation with the unmanned aerial vehicle recognize the sound emitted by the unmanned aerial vehicle. On the other hand, the loud noise emitted by the unmanned aerial vehicle causes discomfort to those who are around the person who has a conversation with the unmanned aerial vehicle.
  • a directional speaker may be used not only to increase the volume but also to reach only the person who has a conversation with the unmanned aerial vehicle so that the sound emitted by the unmanned aerial vehicle can reach the person.
  • the directional speaker is aimed at the person talking to the unmanned aerial vehicle. As a result, a person who has a conversation with the unmanned aerial vehicle can hear the sound emitted by the unmanned aerial vehicle.
  • a directional microphone may be used so that a loud flight sound does not enter the microphone as noise and the sound enters the microphone only from a person who has a conversation with the unmanned aerial vehicle.
  • the directional microphone is aimed at the person talking to the unmanned aerial vehicle. This allows the unmanned aerial vehicle to recognize the sounds made by a person having a conversation with the unmanned aerial vehicle.
  • the number of people who have a conversation with an unmanned aerial vehicle is not always one.
  • a speaker who has a conversation with an unmanned aerial vehicle may have a conversation with the unmanned aerial vehicle together with an acquaintance of the speaker, a family member, or a person related to the speaker such as a colleague of a company.
  • the unmanned aerial vehicle emits a sound only to the speaker, it is difficult for the persons concerned existing around the speaker to hear the sound emitted by the unmanned aerial vehicle.
  • the unmanned moving body is an unmanned moving body, which includes a directional speaker that outputs sound in a directional direction and a processor that acquires one or more sensing data.
  • the processor determines whether or not a second object exists around the first object according to at least one of the one or more sensing data, and if it determines that the second object exists, the one or more.
  • the positional relationship between the first object and the second object is calculated from at least one of the sensing data of the above, and the first object and the first object are within a range in which sound reaches a predetermined quality or higher by the directional speaker.
  • the first position of the unmanned moving body including the object is determined according to the positional relationship, and the unmanned moving body is moved to the first position.
  • the unmanned moving body can appropriately output sound to the first target and the second target. That is, the unmanned moving body can integrally output sound to a plurality of objects.
  • the unmanned moving body is an unmanned moving body, and includes one or more directional microphones that collect sound from a directional direction and data acquired from the directional microphone.
  • a processor for acquiring sensing data is provided, and the processor determines whether or not a second object exists in the vicinity of the first object according to at least one of the one or more sensing data, and the second object.
  • the positional relationship between the first object and the second object is calculated from at least one of the one or more sensing data, and the sound is produced with a predetermined quality or higher by the directional microphone.
  • the first position of the unmanned moving body which includes the first object and the second target within the range in which the sound is picked up, is determined according to the positional relationship, and the unmanned moving body is moved to the first position. ..
  • the unmanned moving body can appropriately collect sound from the first target and the second target. That is, the unmanned moving body can integrally collect sound for a plurality of objects.
  • the processor adjusts the range according to the positional relationship, and determines the first position according to the adjusted range.
  • the unmanned moving body can appropriately adjust the range of sound output or sound collection according to the positional relationship, and can appropriately include a plurality of objects in the adjusted range.
  • the first position is a position on the front side of the first object and the second object.
  • the processor acquires the physical information of the first target and the physical information of the second target according to at least one of the one or more sensing data, and the physical information of the first target and the physical information of the first target.
  • the first position is determined according to the physical information of the second object.
  • the unmanned moving body can move to an appropriate position with respect to the physical information of the first target and the physical information of the second target.
  • the processor estimates the age of the first object and the age of at least one of the second object according to at least one of the one or more sensing data, and the first object and the second object.
  • the first position is also determined according to the age of at least one of the subjects.
  • the unmanned moving body can move to an appropriate position according to the age, and can appropriately output or collect sound for a plurality of objects.
  • the processor determines the first position that does not include the first object and the third object unrelated to the second object within the range.
  • the unmanned moving body can suppress the sound output or sound collection to the unrelated third object.
  • the processor detects the position of an obstacle according to at least one of the one or more sensing data, and determines the first position according to the position of the obstacle.
  • the unmanned moving body can appropriately determine the position for sound output or sound collection for a plurality of objects according to the position of the obstacle. Then, the unmanned moving body can suppress sound output or sound collection to an unrelated third object by using, for example, an obstacle.
  • the processor determines that the second target exists during the period during which the first target is producing or collecting sound
  • the first target is included in the range.
  • the unmanned moving body is moved to the first position.
  • the unmanned moving body can move to an appropriate position for having a conversation with the first target and the second target while continuing the conversation with the first target.
  • the processor determines that the second object exists during the period in which sound is output or collected from the first object
  • the processor passes through the front side of the first object and the first object is used.
  • the unmanned moving body is moved to one position.
  • the unmanned moving object can move to an appropriate position for having a conversation with the first object and the second object through an appropriate area for having a conversation with the first object.
  • the processor determines that the second object exists during the period in which the sound is output or collected from the first object
  • the processor outputs or collects sound from the first object.
  • the unmanned moving body is moved to the first position while maintaining a constant quality.
  • the unmanned moving body can move to an appropriate position for having a conversation with the first target and the second target while appropriately continuing the conversation with the first target.
  • the second object is an object related to the first object
  • the processor obtains information indicating a relationship with the first object from at least one of the one or more sensing data. And, at least one of the information indicating the relationship with the unmanned moving body is acquired, and at least one of the information indicating the relationship with the first object and the information indicating the relationship with the unmanned moving body. Therefore, it is determined whether or not the second object exists in the vicinity of the first object by determining whether or not the object existing in the vicinity of the first object is related to the first object. ..
  • the unmanned moving body can appropriately determine whether or not the second target related to the first target exists in the vicinity of the first target.
  • the processor detects the frequency at which the first object makes a sound and the frequency at which the second object makes a sound according to at least one of the one or more sensing data, and the first object and the first object and the second object make a sound.
  • the first position which is closer to the first object and the second object to produce sound more frequently than to the second object to produce sound less frequently, is determined.
  • the unmanned moving object can move near the object that frequently makes a sound. Therefore, the unmanned moving body can appropriately collect sound from an object that frequently emits sound.
  • the processor detects the volume of the first target and the volume of the second target according to at least one of the one or more sensing data, and the volume of the first target and the second target. The first position closer to the lower volume of the first object and the second object than the larger one is determined.
  • the unmanned moving object can move closer to a low volume object. Therefore, the unmanned moving body can appropriately collect sound from an object having a low volume.
  • the unmanned moving body further includes a directional microphone
  • the range is a range in which sound is further picked up by the directional microphone with a predetermined quality or higher.
  • the unmanned moving body can appropriately output sound to the first target and the second target, and can appropriately collect sound from the first target and the second target.
  • the processor controls the timing of movement of the unmanned moving body according to a conversation between the first object and the unmanned moving body.
  • the unmanned moving body can move at an appropriate timing according to the conversation.
  • the processor moves the unmanned moving body to the first position during a period in which sound is being collected for the first object.
  • the unmanned moving body can move during a period in which the first target is making a sound and the unmanned moving body is not making a sound. Therefore, the unmanned moving body can suppress the second object from entering the range of the sound output during the sound output, and can transmit the entire content of the sound output to the second object.
  • the processor starts the sound output to the directional speaker after the movement of the unmanned moving body is completed. Let me.
  • the unmanned moving body can start sound output after moving to an appropriate position for sound output to the first target and the second target. Therefore, the unmanned moving body can suppress the second object from entering the range of the sound output during the sound output, and can transmit the entire content of the sound output to the second object.
  • the processor moves the unmanned moving body during a period in which sound is not output or collected from the first object.
  • the unmanned moving body can suppress fragmentation of sound, and can output or collect sound in a unit.
  • the unmanned moving body can suppress the mixing of noise due to the movement.
  • the one or more sensing data includes the image data generated by the image sensor, and the processor acquires the positional relationship according to the image data generated by the image sensor.
  • the unmanned moving body can appropriately acquire the positional relationship between the first target and the second target according to the image data.
  • the one or more sensing data includes the distance measurement data generated by the distance measurement sensor, and the processor acquires the positional relationship according to the distance measurement data generated by the distance measurement sensor.
  • the unmanned moving object can appropriately acquire the positional relationship between the first target and the second target according to the distance measurement data.
  • the positional relationship includes at least one of a distance and a position related to the first object and the second object.
  • one or more sensing data are acquired, and a second object exists around the first object according to at least one of the one or more sensing data.
  • the positional relationship between the first object and the second object is calculated from at least one of the one or more sensing data, and the person is unmanned.
  • the first position of the unmanned moving body which includes the first object and the second object within a range in which sound reaches a predetermined quality or higher by the directional speaker provided in the moving body, is determined according to the positional relationship, and the above The unmanned moving body is moved to the first position.
  • sound can be appropriately output to the first target and the second target. That is, the sound output can be integrally performed on a plurality of objects.
  • the program according to one aspect of the present disclosure causes a computer to execute the information processing method.
  • one or more sensing data are acquired, and a second object exists around the first object according to at least one of the one or more sensing data.
  • the positional relationship between the first object and the second object is calculated from at least one of the one or more sensing data, and the person is unmanned.
  • the first position of the unmanned moving body which includes the first object and the second object within a range in which sound is picked up by a directional microphone provided in the moving body with a predetermined quality or higher, is determined according to the positional relationship. Then, the unmanned moving body is moved to the first position.
  • sound can be appropriately collected from the first target and the second target. That is, sound collection can be performed integrally for a plurality of objects.
  • the program according to one aspect of the present disclosure causes a computer to execute the information processing method.
  • these comprehensive or specific embodiments may be implemented in a system, device, method, integrated circuit, computer program, or non-temporary recording medium such as a computer-readable CD-ROM, system. , Devices, methods, integrated circuits, computer programs, and any combination of recording media.
  • ordinal numbers such as first, second, and third may be attached to the elements. These ordinal numbers are attached to the elements to identify them and do not necessarily correspond to a meaningful order. These ordinals may be replaced, newly added, or removed as appropriate.
  • the sound pressure may be read as the sound pressure level or the volume
  • the volume may be read as the sound pressure or the sound pressure level
  • conversation may be read as communication.
  • FIG. 1 is a block diagram showing a basic configuration example of an unmanned moving body according to the present embodiment.
  • an unmanned mobile body 100 including a directional speaker 107 and a processor 150 is shown.
  • the unmanned moving body 100 is a moving device.
  • the unmanned moving body 100 autonomously moves or stands still. When the unmanned moving body 100 receives an operation, it may move according to the operation.
  • the unmanned aerial vehicle 100 is typically an unmanned aerial vehicle, but is not limited to the unmanned aerial vehicle, and may be a device that travels on a surface.
  • the unmanned moving body 100 may include a moving mechanism such as a motor and an actuator for moving in the air or on a surface.
  • the unmanned moving body 100 may be provided with one or more sensors.
  • the unmanned moving body 100 may be provided with an image sensor, a distance measuring sensor, a microphone as a sound sensor, or a human detection sensor.
  • a position detector may be provided as a position sensor.
  • the directional speaker 107 is a speaker that outputs sound in the directional direction.
  • the directivity direction of the directional speaker 107 may be adjustable, or the sound pressure of the sound produced by the directional speaker 107 may be adjustable.
  • the directivity direction of the directional speaker 107 can also be expressed as a sound output direction.
  • the processor 150 is composed of a circuit that performs information processing.
  • the processor 150 may control the movement of the unmanned moving body 100.
  • the processor 150 may control the movement of the unmanned moving body 100 by controlling the operation of a moving mechanism such as a motor and an actuator for moving in the air or on a surface.
  • the processor 150 may adjust the directivity direction of the directional speaker 107 by sending a control signal to the directional speaker 107, or may adjust the sound pressure of the sound emitted by the directional speaker 107. Good. Further, the processor 150 may adjust the directivity direction of the directional speaker 107 by adjusting the direction of the unmanned moving body 100.
  • FIG. 2 is a flowchart showing a basic operation example of the unmanned moving body 100 shown in FIG. Mainly, the processor 150 in the unmanned mobile body 100 performs the operation shown in FIG.
  • the processor 150 acquires one or more sensing data (S101).
  • the processor 150 may acquire one or more sensing data from one or more sensors inside the unmanned moving body 100, or may acquire one or more sensing data from one or more sensors outside the unmanned moving body 100. May be good. Further, the processor 150 may acquire a plurality of sensing data from one or more sensors inside the unmanned moving body 100 and one or more sensors outside the unmanned moving body 100.
  • an image sensor for example, an image sensor, a distance measuring sensor, a microphone, a person detection sensor, a position detector, or the like may be used as one or more sensors outside the unmanned moving body 100.
  • the processor 150 determines whether or not the second target exists in the vicinity of the first target according to at least one of the acquired one or more sensing data (S102).
  • the first subject is the speaker and the second subject is the party associated with the speaker.
  • each of the first object and the second object is not limited to a human being, and may be an animal or a device.
  • the area around the first target is a predetermined range based on the first target.
  • the processor 150 calculates the positional relationship between the first target and the second target from at least one of the one or more sensing data ( S103). That is, the processor 150 derives the positional relationship between the first object and the second object from at least one of the one or more sensing data.
  • the positional relationship includes at least one of the positions and distances related to the first object and the second object.
  • the positional relationship may include the respective positions of the first object and the second object, or may include the distance between the first object and the second object.
  • the processor 150 uses the image data acquired from the image sensor to calculate the position of the first target, the position of the second target, the distance between the first target and the second target, and the like. You may. Further, the processor 150 uses the distance measurement data acquired from the distance measurement sensor to obtain the distance between the unmanned moving body 100 and the first target, the distance between the unmanned moving body 100 and the second target, and the distance between the second target. The distance between the first object and the second object may be calculated.
  • the processor 150 determines the first position according to the calculated positional relationship.
  • the first position is the position of the unmanned moving body 100 such that the first object and the second object are included within the range in which the sound reaches a predetermined quality or higher by the directional speaker 107. Then, the processor 150 moves the unmanned moving body 100 to the determined first position (S104).
  • the unmanned moving body 100 can appropriately output sound to the first target and the second target. That is, the unmanned moving body 100 can integrally generate sound for a plurality of objects.
  • the second target is a target related to the first target.
  • the processor 150 may determine whether or not an object existing around the first object is related to the first object according to at least one of the one or more sensing data. Then, the processor 150 may determine whether or not the second object exists in the vicinity of the first object.
  • the processor 150 acquires at least one of the information indicating the relationship with the first object and the information indicating the relationship with the unmanned moving object 100 from at least one of the one or more sensing data. You may. Then, the processor 150 sets the target existing around the first target as the first target according to at least one of the information indicating the relationship with the first target and the information indicating the relationship with the unmanned moving body 100. It may be determined whether it is related or not.
  • the processor 150 determines that the target existing in the vicinity of the first target is related to the first target when the target existing in the vicinity of the first target satisfies one or more of a plurality of conditions. You may.
  • these plurality of conditions are "contact with the first object”, “conversation with the first object”, “existing at a distance below the threshold value with respect to the first object”, and “first object”.
  • the clothes are the same as”, “exists with the first target in the specified area”, “linked to the first target”, “approaching the first target”, “the voice of the first target arrives” “Exists in range”, “Calling the unmanned moving body 100 during a conversation between the first object and the unmanned moving body 100", and “Unmanned moving during a conversation between the first target and the unmanned moving body 100” It may include “looking at the body 100" and the like.
  • FIG. 3 is a conceptual diagram showing a specific operation example of the unmanned moving body 100 shown in FIG.
  • the unmanned mobile body 100 is an unmanned aerial vehicle, also called a drone.
  • the speaker corresponds to the first target, and the parties concerned correspond to the second target.
  • the unmanned moving body 100 outputs a sound to the speaker in the vicinity of the speaker. Then, the unmanned moving body 100 determines whether or not there is a related person in the vicinity of the speaker.
  • the unmanned moving body 100 senses the vicinity of the speaker using the sensor included in the unmanned moving body 100, and determines whether or not there is a person around the speaker according to the result.
  • an image sensor can be used as the sensor included in the unmanned moving body 100. Then, when it is determined that the person existing in the vicinity of the speaker is a related person of the speaker, the unmanned moving body 100 determines that the related person exists in the vicinity of the speaker.
  • the unmanned moving body 100 has a sound output position so that the speaker and the related person are included in the sound output range in which the sound produced by the unmanned moving body 100 reaches.
  • the sound output range to which the sound produced by the unmanned moving body 100 reaches may be determined according to the directivity direction of the directional speaker 107.
  • the unmanned moving body 100 moves to the determined sound output position and emits sound.
  • the unmanned moving body 100 can deliver the sound to the speaker and the related persons included in the sound output range.
  • FIG. 4 is a block diagram showing a specific configuration example of the unmanned moving body 100 shown in FIG.
  • the unmanned mobile body 100 shown in FIG. 4 includes a GPS receiver 101, a gyro sensor 102, an acceleration sensor 103, a human detection sensor 104, a distance measuring sensor 105, an image sensor 106, a directional speaker 107, a directional microphone 108, and a drive.
  • a unit 109, a communication unit 110, a control unit 120, a storage unit 130, and a power supply unit 141 are provided.
  • the GPS receiver 101 is a receiver that constitutes a GPS (Global Positioning System) for measuring a position and acquires a position by receiving a signal. For example, the GPS receiver 101 acquires the position of the unmanned moving body 100. That is, the GPS receiver 101 operates as a sensor that detects the position of the unmanned moving body 100.
  • GPS Global Positioning System
  • the gyro sensor 102 is a sensor that detects the posture of the unmanned moving body 100, that is, the angle or inclination of the unmanned moving body 100.
  • the acceleration sensor 103 is a sensor that detects the acceleration of the unmanned moving body 100.
  • the person detection sensor 104 is a sensor that detects people in the vicinity of the unmanned moving body 100.
  • the human detection sensor 104 may be an infrared sensor.
  • the distance measurement sensor 105 is a sensor that measures the distance between the unmanned moving body 100 and the target, and generates distance measurement data.
  • the image sensor 106 is a sensor that performs imaging, and generates an image by imaging.
  • the image sensor 106 may be a camera.
  • the directional speaker 107 is a speaker that outputs sound in the directional direction.
  • the directivity direction of the directional speaker 107 may be adjustable, or the sound pressure of the sound produced by the directional speaker 107 may be adjustable.
  • the directional microphone 108 is a microphone that collects sound from the directional direction.
  • the directivity direction of the directional microphone 108 may be adjustable, or the sound collection sensitivity of the directional microphone 108 may be adjustable.
  • the directivity direction of the directional microphone 108 can also be expressed as a sound collecting direction.
  • the drive unit 109 is a motor, an actuator, or the like that moves the unmanned moving body 100.
  • the communication unit 110 is a communication device that communicates with an external device of the unmanned mobile body 100.
  • the communication unit 110 may receive an operation signal for moving the unmanned moving body 100. Further, the communication unit 110 may send and receive the contents of the conversation.
  • the control unit 120 corresponds to the processor 150 shown in FIG. 1 and is composed of a circuit that performs information processing. Specifically, in this example, the control unit 120 includes a person detection unit 121, a related person determination unit 122, a sound output range determination unit 123, a sound output position determination unit 124, a sound output control unit 125, and a movement control unit. It includes 126. That is, the processor 150 may play these roles.
  • the person detection unit 121 detects a person existing in the vicinity of the unmanned moving body 100.
  • the person detection unit 121 detects a person existing in the vicinity of the unmanned moving body 100 according to the sensing data obtained from the person detection sensor 104 or another sensor.
  • the related party determination unit 122 determines whether or not the person detected by the person detection unit 121 is a related party related to the speaker.
  • the sound output range determination unit 123 determines the sound output range according to the positional relationship between the speaker and the person concerned.
  • the sound output position determination unit 124 determines the sound output position according to the determined sound output range.
  • the sound output control unit 125 controls the sound output of the directional speaker 107 by transmitting a control signal to the directional speaker 107.
  • the movement control unit 126 controls the movement of the unmanned moving body 100 by transmitting a control signal to the driving unit 109.
  • the movement control unit 126 controls the flight of the unmanned moving body 100, which is an unmanned flying body.
  • the storage unit 130 is a memory for storing information, and stores the control program 131 and the sound pressure output range correspondence information 132.
  • the control program 131 is an information processing program performed by the control unit 120.
  • the sound pressure output range correspondence information 132 is information indicating the correspondence relationship between the sound pressure of the sound emitted by the directional speaker 107 and the sound output range in which the sound reaches a predetermined quality or higher.
  • the power supply unit 141 is a circuit that supplies power to a plurality of components included in the unmanned mobile body 100.
  • the power supply unit 141 includes a power source.
  • FIG. 5 is a flowchart showing a specific operation example of the unmanned moving body 100 shown in FIG. For example, a plurality of components in the unmanned moving body 100 shown in FIG. 4 cooperate to perform the operation shown in FIG.
  • the unmanned moving body 100 moves to a conversation position for having a conversation with a speaker (S111).
  • the conversation position is a position where the voice emitted by the speaker reaches from the position of the speaker and the sound emitted by the unmanned moving body 100 reaches.
  • the speaker may be predetermined.
  • the unmanned moving object 100 may determine the speaker during the flight.
  • the person detection unit 121 detects the speaker according to the sensing data obtained from the person detection sensor 104, the image sensor 106, or the like. Then, the movement control unit 126 moves the unmanned moving body 100 from the speaker to a conversation position within a predetermined range via the drive unit 109.
  • the unmanned moving body 100 starts a conversation (S112). That is, the unmanned moving body 100 starts at least one of sound output and sound collection.
  • the sound output control unit 125 causes the directional speaker 107 to start sound output.
  • the control unit 120 may cause the directional microphone 108 to start collecting sound.
  • the unmanned moving body 100 senses the vicinity of the speaker (S113).
  • the person detection unit 121 detects a person around the speaker by causing the person detection sensor 104, the image sensor 106, or the like to sense the surroundings of the speaker. Any sensor for detecting a person can be used for this detection.
  • the periphery of the speaker corresponds to, for example, an area within a predetermined range from the speaker.
  • the unmanned moving body 100 determines whether or not a person other than the speaker is detected (S114). For example, the person detection unit 121 determines whether or not a person other than the speaker has been detected in the vicinity of the speaker. When a person other than the speaker is not detected (No in S114), the unmanned moving body 100 repeats sensing (S113) around the speaker.
  • the unmanned moving object 100 determines whether or not the detected person is related to the speaker (S115).
  • the related party determination unit 122 may determine whether or not the detected person is a related person according to whether or not the distance between the speaker and the related person is within the threshold value, and may be related to grouping and the like. It may be determined whether or not the detected person is a related person according to other determination criteria. This determination will be described later.
  • the unmanned moving body 100 repeats sensing (S113) around the speaker.
  • the unmanned moving body 100 measures the separation distance between the speaker and the related person (S116). For example, the sound output range determination unit 123 calculates the distance between the position of the speaker detected according to the sensing data and the position of the related person detected according to the sensing data, so that the speaker and the related person can interact with each other. The separation distance may be measured.
  • the unmanned moving body 100 determines the sound output range according to the distance between the speaker and the person concerned (S117). For example, the sound output range determination unit 123 determines the sound output range according to the measured separation distance. At that time, the sound output range determination unit 123 increases the sound output range as the measured separation distance increases.
  • the sound output range is, for example, a range relatively determined using the unmanned moving body 100 as a reference, and is a range in which sound reaches a predetermined quality or higher by the directional speaker 107.
  • the quality equal to or higher than the predetermined quality may correspond to the sound pressure within the predetermined range, or may correspond to the SN ratio (signal-to-noise ratio) within the predetermined range. The determination of the sound output range will be described later.
  • the unmanned moving body 100 determines the sound output position according to the position of the speaker, the position of the person concerned, and the sound output range (S118).
  • the sound output position determination unit 124 determines the sound output position so that the determined sound output range includes the detected position of the speaker and the detected position of the related person. The determination of the sound output position will be described later.
  • the unmanned moving body 100 moves to the sound output position (S119).
  • the movement control unit 126 moves the unmanned moving body 100 to the sound output position by controlling the operation of the drive unit 109.
  • the sound output control unit 125 may control the sound output of the directional speaker 107 so that the sound reaches the sound output range with a predetermined quality or higher.
  • the unmanned moving body 100 can appropriately output sound to the speaker and related persons.
  • the unmanned moving body 100 performs a process (S113 to S119) for moving to the sound output position after starting a conversation with the speaker (after S112), but the speaker Before starting the conversation with, a process for moving to the sound output position may be performed.
  • the unmanned moving body 100 repeats sensing (S113) around the speaker.
  • the unmanned moving body 100 may modify the sound output position so that the sound is not output to a person (third object) who is not a related person. That is, the sound output position determination unit 124 in the unmanned moving body 100 may modify the sound output position so that a person who is not a related person is not included in the sound output range.
  • the sound output position determination unit 124 may correct the sound output position so that a person who is not a related person deviates from the sound output direction. As a result, the possibility of entering the sound output range when a person who is not a related person moves is suppressed.
  • the unmanned moving body 100 when the sound output range is fixed, that is, when the sound pressure of the sound emitted by the directional speaker 107 is fixed, the unmanned moving body 100 has the distance between the speaker and the person concerned within the sound output range. You may decide whether or not to enter. Then, when the separation distance falls within the sound output range, the unmanned moving body 100 may determine the sound output position and move to the determined sound output position. The unmanned moving body 100 does not have to move when the separation distance does not fall within the sound output range.
  • FIG. 6 is a conceptual diagram showing the attenuation of sound pressure. It can be assumed that the sound pressure is attenuated by 6 dB when the distance is doubled with respect to the sound source (specifically, the point sound source). In the example of FIG. 6, the sound pressure is 74 dB at a position 1 m from the sound source. The sound pressure is 68 dB at a position 2 m from the sound source. The sound pressure is 62 dB at a position 4 m from the sound source. The sound pressure is 56 dB at a position 8 m from the sound source.
  • FIG. 7 is a data diagram showing the relationship between the sound pressure of the sound source and the sound pressure at a place away from the sound source.
  • the sound pressure of the sound source is 56 dB
  • the sound pressure at a place 2 m away from the sound source is 50 dB
  • the sound pressure at a place 4 m away from the sound source is 44 dB
  • the sound pressure at a place 8 m away from the sound source is.
  • the sound pressure is 38 dB.
  • the sound pressure of the sound source is 62 dB
  • the sound pressure at a place 2 m away from the sound source is 56 dB
  • the sound pressure at a place 4 m away from the sound source is 50 dB
  • the sound pressure at a place 8 m away from the sound source Is 44 dB.
  • the sound pressure of the sound source is 68 dB
  • the sound pressure at a place 2 m away from the sound source is 62 dB
  • the sound pressure at a place 4 m away from the sound source is 56 dB
  • the sound pressure at a place 8 m away from the sound source is 50 dB.
  • the range in which the sound reaches at 50 dB or more is the range of 2 m from the sound source.
  • the range in which the sound reaches at 50 dB or more is the range of 4 m from the sound source.
  • the range in which the sound reaches at 50 dB or more is the range of 8 m from the sound source.
  • FIG. 8 is a conceptual diagram showing the positional relationship between the speaker, the person concerned, and the unmanned moving body 100.
  • the sound pressure of the sound delivered by the unmanned moving body 100 to the speaker and the related persons may be predetermined to be 50 dB or more. Then, it may be predetermined that the distance between the speaker and the persons concerned, which is closer to the unmanned moving body 100, and the unmanned moving body 100 is 0.5 m or more.
  • the sound pressure of the sound produced by the unmanned moving body 100 and the sound output range extending from the unmanned moving body 100 in the sound output direction are determined.
  • FIG. 9 is a data diagram showing the relationship between the distance between the speaker and the person concerned in the present embodiment, the sound pressure of the sound produced by the unmanned moving body 100, and the sound output range.
  • the sound output range extending from the unmanned moving body 100 in the sound output direction, that is, The range in which the sound reaches at a sound pressure of 50 dB or more is the range of the directivity width ⁇ 2 m.
  • the directional width is the width at which the sound spreads in the direction perpendicular to the sound output direction.
  • the sound output range extending from the unmanned moving body 100 in the sound output direction is a range of the directional width ⁇ 4 m.
  • the sound output range extending from the unmanned moving body 100 in the sound output direction is a range of the directivity width ⁇ 8 m.
  • the unmanned moving body 100 emits sound at a position at least 0.5 m away from the speaker and related persons. Therefore, when the distance between the speaker and the related person is in the range of 0 m to 1.5 m, the speaker and the related person can be included in the range of the unmanned moving body 100 to 2 m. Therefore, in this case, the unmanned moving body 100 can determine the sound pressure of the sound produced by the unmanned moving body 100 to be 56 dB, and the sound output range extending from the unmanned moving body 100 in the sound output direction is set to the directivity width ⁇ 2 m. Can be determined.
  • the unmanned moving body 100 can determine the sound pressure of the sound produced by the unmanned moving body 100 as 62 dB.
  • the sound output range extending from the unmanned moving body 100 in the sound output direction can be defined as the directivity width ⁇ 4 m.
  • the unmanned moving body 100 can determine the sound pressure of the sound produced by the unmanned moving body 100 as 68 dB.
  • the sound output range extending from the unmanned moving body 100 in the sound output direction can be defined as the directivity width ⁇ 8 m.
  • FIG. 10 is a data diagram showing the relationship between the sound pressure of a sound source and the range in which sound reaches within a predetermined range of sound pressure.
  • the sound pressure in the predetermined range is specifically 46 to 54 dB.
  • the sound arrives at 54 dB at a position 2 m away from the sound source, the sound reaches 48 dB at a position 4 m away from the sound source, and 42 dB at a position 8 m away from the sound source.
  • the sound arrives at 36 dB at a position 16 m away from the sound source.
  • the sound pressure of the sound source is 70 dB
  • the sound arrives at 64 dB at a position 2 m away from the sound source
  • the sound reaches 58 dB at a position 4 m away from the sound source
  • the sound reaches 52 dB at a position 8 m away from the sound source.
  • the sound reaches at 46 dB at a position 16 m away from the sound source.
  • the position where the sound reaches at 46 to 54 dB is about 2 to 5 m from the sound source when the sound pressure of the sound source is 60 dB, and about 6 to 16 m from the sound source when the sound pressure of the sound source is 70 dB.
  • the sound output position is determined so that the speaker and related persons are included in the range in which the sound reaches with such a predetermined range of sound pressure.
  • FIG. 11 is a conceptual diagram showing an example in the case where the distance between the speaker and the person concerned is 3 m. Specifically, an example of a sound output position determined based on FIG. 10 is shown when the distance between the speaker and the person concerned is 3 m. When the distance between the speaker and the person concerned is 3 m, the unmanned moving body 100 makes a sound at 60 dB so that the speaker and the person concerned who are 3 m apart from each other can reach the sound at 46 to 54 dB. Can be included.
  • the unmanned moving body 100 moves the speaker and the person concerned to a sound output position that can be included in the range where the sound can reach at 46 to 54 dB, and emits a sound at 60 dB.
  • the unmanned moving body 100 can deliver the sound to the speaker and the person concerned at 46 to 54 dB.
  • FIG. 12 is a conceptual diagram showing an example in the case where the distance between the speaker and the person concerned is 10 m. Specifically, an example of a sound output position determined based on FIG. 10 is shown when the distance between the speaker and the person concerned is 10 m.
  • the unmanned moving body 100 makes a sound at 70 dB so that the speaker and the person concerned who are 10 m apart from each other can reach the sound at 46 to 54 dB. Can be included.
  • the unmanned moving body 100 moves the speaker and the person concerned to a sound output position that can be included in the range where the sound can reach at 46 to 54 dB, and emits a sound at 70 dB.
  • the unmanned moving body 100 can deliver the sound to the speaker and the person concerned at 46 to 54 dB.
  • the unmanned moving body 100 can include a speaker and a related person who are 3 m apart from each other within a range where the sound can reach at 46 to 54 dB.
  • the power consumption also increases. Therefore, the unmanned moving body 100 produces a sound at 60 dB when the speaker and the person concerned are separated by 3 m.
  • the unmanned moving body 100 emits sound with the minimum sound pressure that can include the speaker and the person concerned within the range where the sound can reach with a predetermined quality or higher. Then, the unmanned moving body 100 determines the sound output position according to the minimum sound pressure, and moves to the determined sound output position. This reduces power consumption. In addition, this reduces the sound output range and reduces the possibility that unrelated parties are included in the sound output range.
  • the unmanned moving body 100 may determine the sound output position so that the current sound pressure of the sound reaching the speaker is maintained and the sound reaches the related parties newly. As a result, the discomfort to the speaker is suppressed. Further, in this case, in order to maintain the sound pressure of the sound reaching the speaker, the minimum sound pressure as described above may not be used. That is, a sound pressure higher than the minimum sound pressure as described above may be used.
  • the noise generated by the unmanned moving body 100 is not considered, but the noise generated by the unmanned moving body 100 may be considered.
  • a higher sound pressure may be used.
  • the relationship between the sound pressure and the sound output range as described above may be stored in the storage unit 130 as the sound pressure sound output range correspondence information 132.
  • the unmanned moving body 100 basically performs image recognition processing of an image generated by taking an image of the surroundings of a speaker, and determines a related person.
  • the determination of the parties concerned may be made before the conversation or during the conversation.
  • the related party determination unit 122 of the unmanned moving body 100 determines the related parties according to the following criteria.
  • FIG. 13 is a conceptual diagram showing an example of a related person who is in contact with the speaker.
  • the unmanned moving body 100 may determine a person who is in contact with the speaker as a related person. Further, when the time when the person is in contact with the speaker elapses for a predetermined time, the unmanned moving body 100 may determine the person who is in contact with the speaker as a related person. As a result, the unmanned moving body 100 can suppress an erroneous determination caused by a person accidentally touching a speaker.
  • FIG. 13 shows an example in which the parent is a speaker and the child is a related person among the parents and children holding hands, but the speaker and the related person may be opposite.
  • FIG. 14 is a conceptual diagram showing an example of a person who is in contact with a speaker through an object.
  • the unmanned moving body 100 is not limited to a person who is in direct contact with the speaker, and may determine a person who is in contact with the speaker through an object as a related person.
  • a person is in contact with the speaker through a wheelchair.
  • the unmanned moving body 100 may determine a person who is in contact with the speaker via a wheelchair as a related person.
  • the unmanned moving body 100 causes the person who is in contact with the speaker to be involved. May be determined.
  • FIG. 14 shows an example in which the person in the wheelchair is the speaker and the person pushing the wheelchair is the related person, but the speaker and the related person may be opposite to each other. ..
  • FIG. 15 is a conceptual diagram showing an example of a related person having a conversation with a speaker.
  • the unmanned moving body 100 may determine a person who is talking with the speaker as a related person. For example, when the unmanned moving body 100 detects that the speaker is facing a person and has his / her mouth open by the image recognition process, the unmanned moving body 100 may determine that the person is a related person. Further, for example, when the unmanned moving body 100 detects that a person has his / her mouth open toward the speaker by the image recognition process, the unmanned moving body 100 may determine that the person is a related person.
  • FIG. 15 shows an example in which a person who opens his mouth toward the speaker is a related person, but the speaker and the related person may be opposite to each other.
  • FIG. 16 is a conceptual diagram showing an example of a person concerned who has a small distance to the speaker.
  • the unmanned moving body 100 may determine a person who has a small distance to the speaker as a related person. For example, the unmanned moving body 100 detects the position of the speaker and the position of a person other than the speaker, and according to the position of the speaker and the position of the person other than the speaker, the speaker and the non-speaker Calculate the distance to a person. Then, when the calculated distance is equal to or less than the threshold value, the unmanned moving body 100 determines that the person is a related person.
  • the unmanned moving object 100 may determine that person as a related person. Thereby, the unmanned moving body 100 can suppress the erroneous determination caused by the temporary approach of the speaker and the person other than the speaker.
  • FIG. 17 is a conceptual diagram showing an example of a person who has the same clothes as the speaker.
  • the unmanned moving body 100 may determine a person in the same clothes as the speaker as a related person. Specifically, the unmanned moving body 100 may determine a person in the same uniform as the speaker as a related person. For example, the unmanned moving body 100 may determine whether or not the clothes of the speaker and the clothes of a person other than the speaker are the same by performing the image recognition process. Then, when the clothes of the speaker and the clothes of a person other than the speaker are the same as each other, the unmanned moving body 100 may determine that person as a related person.
  • the unmanned moving object 100 has the same clothes as the speaker.
  • a person may be determined to be a related person.
  • the unmanned moving object 100 may determine that many people in the same clothes are not related persons. More specifically, if a large number of people are wearing suits and ties, they may not be involved. Therefore, the unmanned moving body 100 can suppress erroneous determination by determining that a large number of people in the same clothes are not related persons.
  • FIG. 18 is a conceptual diagram showing an example of a speaker and a related person existing in a predetermined area.
  • the unmanned moving body 100 may determine a speaker and a person existing in a predetermined area as related persons.
  • the predetermined area is a place used by the speaker and the person concerned together, and may be registered in advance.
  • the predetermined area may be a place where a bench is installed.
  • the predetermined area may be around one table, a meeting room, or a vehicle such as a boat that can be used by a small number of people.
  • FIG. 19 is a conceptual diagram showing an example of a related person approaching a speaker.
  • the unmanned moving body 100 may determine a person who approaches the speaker as a related person.
  • the unmanned moving body 100 detects a person approaching the speaker by detecting the position of the speaker and the position of a person other than the speaker at any time, and determines that the person approaching the speaker is a related person. May be good. It is presumed that the person approaching the speaker is likely to be related to the speaker and is trying to hear the sound produced by the unmanned moving object 100. Therefore, the unmanned moving body 100 can appropriately output sound to these persons by determining the persons approaching the speaker as related persons.
  • the unmanned moving object 100 may determine that a person other than the speaker approaches the speaker within a predetermined range as a related person. Further, the unmanned moving body 100 may determine that the person is a related person when a predetermined time elapses in a state where a person other than the speaker is approaching from the speaker within a predetermined range.
  • FIG. 20 is a conceptual diagram showing an example of related parties existing within the reach of the voice of the speaker.
  • the unmanned moving body 100 may determine a person who exists within the reach of the voice of the speaker as a related person. For example, the unmanned moving body 100 estimates the range in which the sound emitted by the speaker reaches according to the sound pressure of the sound emitted by the speaker. Then, the unmanned moving body 100 determines a person existing in the estimated range as a related person. It should be noted that this example corresponds to the threshold value in the example described with reference to FIG. 16 being determined according to the sound pressure of the sound emitted by the speaker.
  • FIG. 21 is a conceptual diagram showing a movement example in which related parties existing within the reach of the voice of the speaker are included in the sound output range.
  • the unmanned moving body 100 When the unmanned mobile body 100 has a conversation with the speaker, the unmanned moving body 100 responds to the question of the speaker. It is difficult for a person other than the speaker to understand the meaning of the response even if the response made by the unmanned moving object 100 is heard without hearing the speaker's question. Therefore, the unmanned moving body 100 determines a person who is within the reach of the voice of the speaker as a related person, and moves so that the person who is within the range where the voice of the speaker can reach is included in the sound output range.
  • FIG. 22 is a conceptual diagram showing an example of a person concerned who has a conversation with the unmanned moving object 100 separately from the speaker.
  • the unmanned moving body 100 may determine the person who talks to the unmanned moving body 100 as a related person. For example, when the unmanned moving body 100 detects a sound or a voice from a direction different from that of the speaker during a conversation with the speaker using the directional microphone 108, the unmanned moving body 100 determines that the person existing in that direction is a related person.
  • the unmanned moving body 100 detects a voice different from the voice of the speaker during a conversation with the speaker, the person who uttered the voice may be determined to be a related person.
  • an omnidirectional microphone may be used.
  • the unmanned moving object 100 is different from the voice of the speaker from the same direction as the speaker during the conversation with the speaker using the directional microphone 108.
  • the person who uttered the voice may be determined to be a related person.
  • the unmanned moving body 100 is a person who talks to the unmanned moving body 100 when a person other than the talking person talks to the unmanned moving body 100 during a conversation with the talking person regarding the content consistent with the context of the conversation content. May be determined as a related person. That is, when a person other than the speaker talks to the unmanned moving body 100 about a content that does not match the context of the conversation content during a conversation with the talking person, the unmanned moving body 100 excludes the person who talks to the unmanned moving body 100. It may be determined to be a related person.
  • the unmanned moving body 100 may narrow down the related persons from a plurality of persons who are determined to be related persons. That is, the unmanned moving body 100 may select the final related party to deliver the sound from a plurality of related parties.
  • the person closest to the speaker may be selected as the final person from a plurality of people.
  • one or more related parties may be selected so that the number of related parties entering the sound output range is the largest. More specifically, for example, in the unmanned moving body 100, one or more related parties may be selected so that the number of related parties existing on a straight line passing through the position of the speaker is the largest. As a result, the unmanned moving body 100 can appropriately output sound to a larger number of related parties.
  • a person with a high degree of certainty of the related person may be selected as the final related person from a plurality of people who are determined to be related to each other.
  • the unmanned moving object 100 may select the final related party according to a predetermined accuracy level for each determination criterion.
  • the accuracy level is set in advance with respect to the criteria for determining whether or not the person is in contact with the speaker (FIGS. 13 and 14) or the criteria for determining whether or not the person is in contact with the speaker (FIG. 15). It may be set high.
  • the accuracy level is medium in advance with respect to the criteria for determining whether or not the clothes are the same as those of the speaker (FIG. 16) or whether or not they are present in a predetermined area with the speaker (FIG. 18). It may be set to a degree.
  • the unmanned moving body 100 may select a person who is determined to be a related person by a judgment criterion of higher accuracy from a plurality of people who are determined to be related to each other as the final related person. Good.
  • the unmanned moving body 100 selects, as the final related party, a person who more satisfies a plurality of conditions in the plurality of determination criteria from a plurality of persons determined to be related parties. May be good. For example, if the condition of being close to the speaker (Fig. 16), the condition of being close to the speaker for a predetermined time or longer (Fig. 16), and the condition of being dressed the same as the speaker (Fig. 17) are satisfied. The number of conditions is three. The final party may be selected according to the number thus counted.
  • the unmanned moving body 100 may be evaluated by weighting the number of satisfied conditions according to a predetermined accuracy level for each determination criterion.
  • the unmanned moving body 100 finally selects a person who receives sound by moving only within a predetermined range such as an area on the front side of the speaker from among a plurality of people who are determined to be related to each other. You may choose as a related party. This allows the speaker to continue the conversation appropriately.
  • the unmanned moving body 100 is prevented from moving significantly within a predetermined range. Therefore, the speaker can continue the conversation appropriately without paying much attention to the movement of the unmanned moving body 100.
  • the unmanned moving body 100 may select a person who can appropriately output and collect sound from a plurality of people who are determined to be related to each other as the final related person. That is, the unmanned moving body 100 may select a person who is appropriate for sound output and sound collection. In other words, the unmanned mobile body 100 may select an appropriate party for having a conversation with the unmanned mobile body 100.
  • FIG. 23 is a conceptual diagram showing an example of a person concerned who is appropriate for sound output and sound collection.
  • the unmanned moving body 100 selects a person who is in the sound output range where the sound is reached by the directional speaker 107 and is in the sound collection range where the sound is picked up by the directional microphone 108 as the final party. ..
  • the sound collection range may be determined according to a sound pressure predetermined as the sound pressure of an average human voice.
  • the sound collection range can also be expressed as a human voice sound collection range.
  • the overlapping range between the sound output range and the sound collection range is defined as the conversation range.
  • the unmanned mobile body 100 selects a person included in the conversation range as the final party.
  • the unmanned moving body 100 may simulate the movement of the unmanned moving body 100 and select a related person who can be included in the conversation range together with the talking person from a plurality of related parties as the final related person. ..
  • FIG. 23 shows an example of narrowing down to a plurality of related parties, it may be used for determining the related parties. That is, the unmanned moving body 100 may determine a person who exists at an appropriate position for conversation as a related person. Further, other narrowing-down methods may also be used as a method for finally determining the related parties with respect to a plurality of related party candidates.
  • the unmanned moving object 100 may determine whether or not a person other than the speaker is related to the speaker by face recognition.
  • the speaker and the faces of the persons concerned with the speaker may be linked and managed in advance. Then, when the face of a person other than the speaker matches the face associated with the speaker as the face of the person concerned with the speaker, the unmanned moving body 100 may determine that person as the person concerned.
  • the unmanned moving body 100 is not limited to the face, and other features such as physique may be used.
  • the unmanned moving body 100 may determine that person as a related person.
  • the unmanned moving body 100 determines the position of the unmanned moving body 100 as the sound output position so that the speaker and the related persons can be included in the sound output range.
  • the sound output position determination unit 124 of the unmanned moving body 100 determines the sound output position.
  • a more specific method for determining the sound output position will be described with reference to FIGS. 24 to 38.
  • FIG. 24 is a conceptual diagram showing an example of the sound output position on a straight line passing through the position of the speaker and the position of the person concerned.
  • the unmanned moving body 100 is a position on a straight line passing through the position of the speaker and the position of the person concerned, and the speaker and the person concerned are within the sound output range relatively determined by the position.
  • the position that is included is determined as the sound output position.
  • the unmanned moving body 100 can appropriately output sound to the speaker and related persons along the sound output direction.
  • FIG. 25 is a conceptual diagram showing an example of a sound output position close to the speaker.
  • the unmanned moving body 100 emits sound from the sound output position outside the speaker and the related person in a direction direction toward the speaker and the related person on a straight line passing through the position of the speaker and the position of the related person. Do. In the example of FIG. 25, the unmanned moving body 100 emits sound at the sound output position on the speaker side. That is, the unmanned moving body 100 determines a position close to the speaker as a sound output position.
  • the predetermined speaker has more conversations with the unmanned moving object 100 than the parties concerned. Further, when a related person exists between the unmanned moving body 100 and the speaker, the related person may interfere with the conversation between the unmanned moving body 100 and the talking person. Therefore, by determining the position close to the speaker as the sound output position, more conversations can be smoothly performed.
  • FIG. 26 is a conceptual diagram showing an example of a sound output position close to that of an elderly person.
  • the unmanned moving body 100 may determine a position close to the elderly as a sound output position instead of a position close to the speaker. For example, the unmanned moving body 100 determines a position close to the elderly as a sound output position when the speaker is not predetermined.
  • the unmanned mobile body 100 may estimate the age by face recognition.
  • the unmanned moving body 100 can deliver a sound having a higher sound pressure to the elderly person by determining a position close to the elderly person as a sound output position. Therefore, the unmanned mobile body 100 can compensate for the reduced hearing.
  • the position close to the elderly that is, the position close to the parent is determined as the sound output position. As a result, it is possible to keep the child away from the unmanned moving body 100.
  • the unmanned mobile body 100 may determine a person whose age is estimated to be older than a predetermined age as an elderly person. Then, when it is determined that one of the speaker and the person concerned is an elderly person, the unmanned moving body 100 may determine a position close to the elderly person as a sound output position. Further, when it is determined that both the speaker and the person concerned are elderly, the unmanned moving body 100 may determine a position equidistant from both as the sound output position, or may output sound according to other conditions. The position may be determined.
  • FIG. 27 is a conceptual diagram showing an example of the sound output position corrected to the front side centering on the persons concerned.
  • the unmanned moving body 100 delivers the sound to the talking person and the related person. Can be done.
  • the unmanned moving body 100 is present on the front side of the speaker and the related person rather than on the side side, the talking person and the related person can easily talk with the unmanned moving body 100.
  • the unmanned moving body 100 can provide a smooth conversation to the speaker and the related person by being present on the front side of the speaker and the related person. Therefore, the unmanned moving body 100 may correct the sound output position on the front side of the speaker and the persons concerned.
  • the unmanned moving body 100 has a sound output position on the front side of the speaker and the related person along a circle assumed around the related person. It may be corrected. As a result, the unmanned moving body 100 can correct the sound output position without changing the distance to the persons concerned.
  • the unmanned moving body 100 may correct the sound output position along a circle assumed around the speaker. As a result, the unmanned moving body 100 can correct the sound output position without changing the distance to the speaker. However, the unmanned moving body 100 is located between each of the talking person and the related persons and the unmanned moving body 100 by using a circle assumed mainly on the one farther from the unmanned moving body 100 among the talking person and the related persons. Fluctuations in distance can be suppressed.
  • the unmanned moving body 100 is not limited to correcting the sound output position along the circle, but moves in the front direction of at least one of the speaker and the related person, and changes the sound output direction of the speaker and the related person. You may point it at at least one of them.
  • the unmanned moving body 100 may correct the sound output position to a position in the front direction for performing such an operation.
  • FIG. 28 is a conceptual diagram showing an example of a sound output position determined mainly by the speaker so that the persons concerned are included in the sound output range.
  • the unmanned moving body 100 exists on the front side of the speaker during a conversation with the speaker. After that, as shown in the lower part of FIG. 28, the unmanned moving body 100 may move along a circle assumed around the speaker so that the related persons are included in the sound output range. In this case, the unmanned moving body 100 may determine the sound output position along a circle assumed around the speaker.
  • the unmanned moving body 100 can move to a position where the sound can be delivered to the talking person and the related persons without changing the distance to the talking person.
  • FIG. 29 is a conceptual diagram showing an example of the sound output position on the front side of the speaker and the persons concerned.
  • the unmanned moving body 100 is located on the front side of the talking person and the related person. The position may be determined as the sound output position.
  • the unmanned moving body 100 can output sound to the speaker and related persons from the position on the front side of the speaker and related persons. That is, the unmanned moving body 100 can have a conversation from a position on the front side of the speaker and the persons concerned. Therefore, the unmanned moving body 100 can provide a smooth conversation to the speaker and the persons concerned.
  • the unmanned moving body 100 may preferentially determine the position on the front side of the speaker and the related persons as the sound output position.
  • FIG. 30 is a conceptual diagram showing an example of a sound output position on a straight line in an oblique direction with respect to a horizontal plane.
  • the unmanned moving body 100 may acquire the physical information of the speaker and the physical information of the persons concerned by image recognition processing, face recognition processing, or the like. Then, the unmanned moving body 100 may determine the sound output position according to the physical information of the speaker and the physical information of the persons concerned.
  • the physical information may be height or face height.
  • the unmanned moving body 100 passes through the position of the speaker's face and the position of the person's face when the height of the speaker's face and the height of the person's face deviate from each other. A position on a straight line and in which the speaker and related persons are included in the sound output range is determined as the sound output position. In this case, the unmanned moving body 100 emits sound along the sound output direction oblique to the horizontal plane.
  • the unmanned moving body 100 can appropriately output sound to the speaker and related persons along the sound output direction.
  • FIG. 30 shows an example in which the parent is a speaker and the child is a related person, the speaker and the related person may be opposite to each other.
  • the sound output in the diagonal direction it is assumed that the sound is output from the lower side to the higher side and the sound is output from the higher side to the lower side. If the sound is emitted from the lower side to the higher side, it is difficult to fly due to the low flight altitude, and there is a possibility of contact with a person. In addition, the unmanned moving body 100 approaches a small child. Therefore, the sound may be output from the higher side to the lower side. As a result, for example, the possibility of collision is suppressed.
  • FIG. 31 is a conceptual diagram showing an example of the sound output position on a straight line in the horizontal direction.
  • the unmanned moving body 100 is at a position where the face of the speaker and the face of the person concerned are included in the sound output range when the face of the speaker and the face of the person concerned are within the directivity range of the sound output.
  • the position for producing sound in the horizontal direction may be determined as the sound output position. That is, when the height of the face of the speaker and the height of the face of the person concerned deviate from each other beyond a predetermined range, the unmanned moving body 100 emits sound in an oblique direction as shown in FIG.
  • the position of may be determined as the sound output position.
  • the unmanned moving object 100 does not have to change the altitude as long as the difference between the height of the face of the speaker and the height of the face of the person concerned is within a predetermined range. This simplifies the process.
  • the unmanned moving body 100 can suppress the possibility of a collision or the like by increasing the altitude, and can provide a smooth conversation.
  • FIG. 32 is a conceptual diagram showing an example of a sound output position at the same height as the speaker and related persons.
  • the unmanned moving body 100 may determine a position for producing sound in the horizontal direction as a sound output position. This simplifies the process.
  • the unmanned moving body 100 may come into contact with a person. Further, since a person far from the unmanned moving body 100 and the unmanned moving body 100 have a conversation straddling a person close to the unmanned moving body 100, it is difficult to have a conversation. Specifically, in the example of FIG. 32, since the person concerned and the unmanned moving body 100 have a conversation across the speaker, it is difficult to have a conversation.
  • FIG. 33 is a conceptual diagram showing an example of a sound output position higher than that of the speaker and the persons concerned.
  • the unmanned moving body 100 may be determined as a sound output position by giving priority to a position higher than that of the speaker and related persons. As a result, the unmanned moving body 100 can suppress the possibility of collision and the like. Further, the unmanned moving body 100 can provide a smooth conversation to a person close to the unmanned moving body 100 and a person far from the unmanned moving body 100.
  • FIG. 34 is a conceptual diagram showing an example of the height of the sound output position. If the sound output position is too high, the angle at which the speaker and the persons concerned look up at the unmanned moving body 100 becomes too large. As a result, the speaker and the persons concerned will have a conversation while looking up at the unmanned moving object 100, which makes smooth conversation difficult.
  • an upper limit may be set for the altitude of the sound output position or the angle between the sound output direction and the horizontal plane.
  • the upper limit of the altitude of the sound output position may be determined according to the distance between the unmanned moving body 100 and the speaker and the persons concerned who are closer to the unmanned moving body 100. For example, the closer to the speaker and the person concerned, the lower the upper limit of the altitude of the sound output position is set. As a result, the angle at which the speaker and the persons concerned look up at the unmanned moving body 100 is suppressed to be small.
  • FIG. 35 is a conceptual diagram showing an example of a sound output position for excluding an unrelated person from the sound output range.
  • the unmanned moving body 100 may determine the sound output position so that the person determined not to be a related person is not included in the sound output range. That is, when it is determined that a person other than the speaker is an unrelated person, the unmanned moving body 100 may determine the sound output position so that the unrelated person is not included in the sound output range.
  • the unmanned moving body 100 determines the sound output position so that the distance between the unmanned moving body 100 and the unrelated person becomes large, and moves to the sound output position. As a result, the unmanned moving body 100 can make it difficult for the sound to reach unrelated persons.
  • the unmanned moving body 100 determines the sound output position within a range in which the sound does not reach the unrelated persons and the sound reaches the speaker. That is, the unmanned moving body 100 determines the sound output position so that the unrelated person is not included in the sound output range and the speaker is included in the sound output range. As a result, the unmanned moving body 100 can output sound to the speaker without producing sound to the unrelated person.
  • the unmanned moving body 100 may determine the sound output position so that the unrelated person is not included in the sound output range and the speaker and the related person are included in the sound output range. As a result, the unmanned moving body 100 can output sound to the speaker and related persons without producing sound to unrelated persons.
  • FIG. 36 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body 100 on a horizontal plane.
  • the unmanned moving body 100 may determine a position far from an unrelated person as a sound output position, as in the upper example of FIG. 36.
  • the sound may reach the unrelated person.
  • the unmanned moving body 100 may determine the sound output position so that the unrelated person deviates from the sound output direction as in the lower example of FIG. 36. Specifically, the unmanned moving body 100 may determine a position not included in the straight line passing through the position of the speaker and the position of the person concerned as the sound output position. As a result, the unmanned moving body 100 can suppress the possibility that the sound reaches an unrelated person.
  • the unmanned moving body 100 has a sound output position so that the unrelated person is not included in the sound output range and the speaker and the related person are included in the sound output range. You may decide.
  • FIG. 37 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body 100 on a vertical plane.
  • the unmanned moving body 100 may output sound to the speaker from above the speaker.
  • the unmanned moving body 100 can suppress the possibility that the unrelated person enters the sound output range or the sound output direction, and can suppress the possibility that the sound reaches the unrelated person.
  • the unmanned moving body 100 may determine the altitude of the sound output position so that the unrelated person is not included in the sound output range and the speaker and the related person are included in the sound output range.
  • FIG. 38 is a conceptual diagram showing an example of a sound output position for excluding another person from the sound output range.
  • the unmanned moving body 100 may determine the position of the unmanned moving body 100 that sandwiches the speaker between the unmanned moving body 100 and the obstacle as the sound output position. Then, the unmanned moving body 100 may move to the sound output position and output sound to the speaker. As a result, the unmanned moving body 100 can suppress the possibility that the sound reaches another person.
  • the obstacle is, for example, a physical environment that prevents another person from entering the sound output range.
  • the obstacle may be a physical environment that hinders the expansion of the sound output range, or may be a physical environment that people cannot pass through.
  • the obstacle may be a wall, a building, or a cliff.
  • the unmanned moving body 100 may detect the position of an obstacle by image recognition processing, or may detect the position of an obstacle by an obstacle detection sensor (not shown).
  • the unmanned moving body 100 may specify the position of the obstacle from the map information including the position of the obstacle.
  • the map information may be stored in advance in the storage unit 130 of the unmanned moving body 100, or may be input to the unmanned moving body 100 from an external device using the communication unit 110 of the unmanned moving body 100. Then, the unmanned moving body 100 may detect the position of the obstacle according to the map information by detecting the position of the unmanned moving body 100.
  • the position of the unmanned moving body 100 that sandwiches the speaker and the related person between the unmanned moving body 100 and the obstacle may be determined as the sound output position.
  • the unmanned moving body 100 can output sound to the speaker and related persons without producing sound to another person.
  • any one of the plurality of determination methods described with reference to FIGS. 24 to 38 may be used, or any combination of two or more of these determination methods. May be used. Subsequently, a plurality of examples relating to the movement of the unmanned moving body 100 and the like will be described.
  • FIG. 39 is a conceptual diagram showing an example in which the unmanned moving body 100 moves to the sound output position.
  • the unmanned moving body 100 moves to the sound output position so that the speaker does not deviate from the sound output range during the movement.
  • the unmanned moving body 100 can continuously deliver the sound to the speaker.
  • the unmanned moving body 100 moves to the sound output position while pointing the directing direction of the directional speaker 107 toward the speaker. Further, the unmanned moving body 100 moves within a predetermined distance from the speaker. This predetermined distance corresponds to the length of the sound output range in the sound output direction.
  • the unmanned moving body 100 may create a moving path within a predetermined distance from the speaker and move to the sound output position along the created moving path. As a result, the unmanned moving body 100 can move to the sound output position so that the speaker does not deviate from the sound output range during the movement.
  • the unmanned moving body 100 produces a sound according to the distance between the unmanned moving body 100 and the speaker so that the sound pressure of the sound reaching the speaker is kept constant during the movement.
  • the sound pressure of may be changed.
  • the unmanned moving body 100 may move while increasing the sound pressure of the sound produced by the unmanned moving body 100 when moving away from the speaker.
  • the unmanned moving body 100 may move while lowering the sound pressure of the sound produced by the unmanned moving body 100.
  • FIG. 40 is a conceptual diagram showing an example in which the unmanned moving body 100 starts producing sound and then moves to the sound producing position.
  • the unmanned moving body 100 moves to the sound output position while producing sound to the speaker. That is, the unmanned moving body 100 moves to the sound output position after starting the sound output.
  • the person concerned enters the sound output range during the sound output. Therefore, it is difficult for the persons concerned to grasp the first content of the sound output.
  • the unmanned moving body 100 may control the timing of movement of the unmanned moving body 100 according to the conversation between the unmanned moving body 100 and the speaker.
  • the unmanned moving body 100 may move toward the sound output position while the speaker is talking to the unmanned moving body 100. It is assumed that the unmanned moving body 100 does not make a sound while the speaker is talking to the unmanned moving body 100. Therefore, the unmanned moving body 100 can suppress the movement to the sound output position while producing the sound, and can suppress the person concerned from entering the sound output range during the sound output.
  • the unmanned moving body 100 may determine whether or not the speaker is talking to the unmanned moving body 100 by image recognition processing, or the speaker may talk to the unmanned moving body 100 by the directional microphone 108. It may be determined whether or not.
  • the unmanned moving body 100 may move toward the sound output position during the period when the speaker is receiving sound. It is assumed that the speaker is speaking to the unmanned moving body 100 during the period when the sound is being picked up by the speaker, and the unmanned moving body 100 is assumed not to output sound. Therefore, the unmanned moving body 100 suppresses the person concerned from entering the sound output range in the middle of sound output by moving toward the sound output position during the period when the speaker is receiving sound. can do.
  • the unmanned moving body 100 may control whether or not to move depending on the condition of the sound picked up by the directional microphone 108. Specifically, when the condition of the sound picked up by the directional microphone 108 is poor, the unmanned moving body 100 does not move. As a result, the unmanned moving body 100 can prevent the condition of the sound picked up from becoming worse as the moving body 100 moves.
  • the unmanned moving body 100 moves unmanned.
  • the body 100 continues to move toward the sound output position.
  • the unmanned moving body 100 outputs a sound after reaching the sound output position.
  • the unmanned moving body 100 can prevent a person concerned from entering the sound output range during the sound output.
  • the unmanned moving body 100 may move stepwise to the sound output position. Specifically, the unmanned moving body 100 may repeatedly move and stop toward the sound output position, and output sound during the stop. As a result, the unmanned moving body 100 can prevent a person concerned from entering the sound output range during one sound output. In addition, the unmanned moving body 100 can suppress a delay in the response to the speaker.
  • the unmanned moving body 100 may move toward the sound output position while the conversation between the unmanned moving body 100 and the speaker is temporarily interrupted.
  • the unmanned moving body 100 can suppress the person concerned from entering the sound output range in the middle of sound output, and can suppress the deterioration of sound output and sound collection for the speaker.
  • the unmanned moving body 100 may move toward the sound output position during the period when the speaker is not producing or collecting sound. As a result, the unmanned moving body 100 can suppress the person concerned from entering the sound output range during the sound output, and can suppress the deterioration of the sound output and the sound collection.
  • the unmanned moving body 100 may stop moving because it does not output or collect sound when the conversation between the unmanned moving body 100 and the speaker ends.
  • the unmanned moving body 100 recognizes whether the conversation between the unmanned moving body 100 and the speaker is temporarily interrupted or the conversation between the unmanned moving body 100 and the speaker is completed. May be good.
  • FIG. 41 is a conceptual diagram showing an example in which the unmanned moving body 100 moves to the sound output position through the front side.
  • the unmanned moving body 100 moves to the sound output position through the front side of the speaker.
  • the front side of the speaker corresponds to the field of view of the speaker.
  • the unmanned moving body 100 can provide a smooth conversation to the speaker while moving by moving to the sound output position through the front side of the speaker.
  • the unmanned moving body 100 may specify the visual field range of the speaker by detecting the front side of the speaker by image recognition processing. Then, the unmanned moving body 100 may create a moving path within the specified visual field range and move to the sound output position along the created moving path.
  • the unmanned moving body 100 moves to the sound output position through the front side of the speaker, but the unmanned moving body 100 moves to the sound output position through the front side of the speaker and related persons. You may move. As a result, the unmanned moving body 100 can provide a smooth conversation to the parties concerned.
  • FIG. 42 is a conceptual diagram showing an example in which the unmanned moving body 100 changes the sound output range.
  • the unmanned moving body 100 may adjust the sound output range so that the speaker and the persons concerned are included in the sound output range. Specifically, the unmanned moving body 100 may adjust the sound output range by adjusting the sound pressure of the sound emitted by the directional speaker 107.
  • the speaker and the person other than the speaker are output. Move to the sound output position that enters the sound direction. Then, the unmanned moving body 100 adjusts the sound pressure of the sound emitted by the directional speaker 107 so that the sound reaches the speaker and does not reach the person other than the speaker. That is, the unmanned moving body 100 reduces the sound pressure of the sound produced by the directional speaker 107.
  • the unmanned moving body 100 when it is determined that a person other than the speaker has a high probability of being a related person, the unmanned moving body 100 so that the sound reaches the person other than the speaker.
  • the sound pressure of the sound produced by the directional speaker 107 is adjusted. That is, the unmanned moving body 100 increases the sound pressure of the sound produced by the directional speaker 107.
  • the unmanned mobile body 100 can immediately output a sound to a person other than the speaker when the probability that a person other than the speaker is a related person increases.
  • the unmanned moving body 100 may move in the sound output direction without increasing the sound pressure.
  • the unmanned moving body 100 can suppress an increase in power consumption due to an increase in sound pressure.
  • FIG. 43 is a conceptual diagram showing an example of selective operation of movement and change of sound output range.
  • the unmanned moving body 100 can select whether to expand the sound output range or move in the sound output direction. That is, the unmanned moving body 100 can include the speaker and the related person in the sound output range by expanding the sound output range, or can move the speaker and the related person in the sound output direction. It can also be included in the sound output range.
  • the unmanned moving body 100 when the unmanned moving body 100 expands the sound output range, the sound pressure of the sound produced by the unmanned moving body 100 is increased. As a result, it is expected that the power consumption will increase. Therefore, the unmanned moving body 100 may give priority to moving in the sound output direction rather than expanding the sound output range.
  • the unmanned moving object 100 may come into contact with the speaker. Further, when the unmanned moving body 100 is too close to the speaker, the sound received from the unmanned moving body 100 may be too loud. Therefore, the unmanned moving body 100 may move in the sound output direction as close as possible to the speaker. In that state, the unmanned moving body 100 may expand the sound output range when the persons concerned are not included in the sound output range. As a result, the unmanned moving body 100 can appropriately output sound to the speaker and related persons.
  • FIG. 44 is a conceptual diagram showing an example when a person concerned is out of the sound output range. For example, when a related person goes out of the sound output range, more specifically, when the related person goes out of the sound output range by himself / herself, the related person intends to have a conversation with the unmanned moving object 100. It is assumed that they do not have it.
  • the unmanned moving body 100 does not move to the sound output position for including the person concerned in the sound output range.
  • the unmanned moving body 100 can suppress power consumption due to unnecessary movement, and can also suppress unnecessary sound output to the persons concerned.
  • the unmanned moving body 100 may skip the movement for including the related person in the sound output range.
  • the person concerned may move while having the intention of having a conversation with the unmanned moving object 100.
  • the person concerned may have an intention to have a conversation with the unmanned moving object 100. Therefore, when the person concerned is not so far from the sound output range for a predetermined time or more, the unmanned moving body 100 may move to include the person concerned in the sound output range.
  • the state in which the related parties are not so far from the sound output range is, for example, a state in which the related parties do not exist in the sound output range and the related parties exist in a predetermined range around the sound output range. ..
  • FIG. 45 is a conceptual diagram showing an example when another person enters the sound output range.
  • the unmanned moving body 100 when a person other than the speaker enters the sound output range or the sound output direction while the speaker is producing sound, the other person enters the sound output range or the sound output direction. It may be moved so as to deviate from the sound output direction. For example, when the image recognition process detects that another person has entered the sound output range or the sound output direction, the unmanned moving body 100 is such that the other person is out of the sound output range or the sound output direction. The sound output position may be changed and moved to the changed sound output position.
  • the unmanned moving body 100 determines whether or not another person is a related person, and when it is determined that the other person is not a related person, the other person deviates from the sound output range or the sound output direction.
  • the sound output position may be changed as described above.
  • the unmanned moving body 100 when a person other than the speaker and the related person enters the sound output range or the sound output direction, the unmanned moving body 100 outputs the sound to the speaker and the related person. It may be moved so that another person is out of the sound output range or the sound output direction.
  • the unmanned mobile body 100 in the present embodiment includes a directional speaker 107 and a processor 150.
  • the directional speaker 107 outputs sound in the directional direction.
  • Processor 150 acquires one or more sensing data.
  • the processor 150 determines whether or not there is a second target around the first target according to at least one of the one or more sensing data.
  • the processor 150 calculates the positional relationship between the first target and the second target from at least one of the one or more sensing data.
  • the processor 150 determines the first position of the unmanned moving body 100, which includes the first object and the second object within the range where the sound reaches a predetermined quality or higher by the directional speaker 107, according to the positional relationship.
  • the unmanned moving body 100 is moved to one position.
  • the unmanned moving body 100 can appropriately output sound to the first target and the second target. That is, the unmanned moving body 100 can integrally generate sound for a plurality of objects.
  • variable sound output range is used in the above description, a fixed sound output range may be used. That is, the sound pressure of the sound produced by the unmanned moving body 100 may be fixed. Further, an omnidirectional speaker may be used instead of the directional speaker 107. Even in such a configuration, by moving to an appropriate sound output position, sound can be appropriately output to a plurality of targets.
  • the first embodiment is mainly related to sound output.
  • This embodiment is mainly related to sound collection.
  • the configuration and operation shown in the first embodiment can be applied to the present embodiment by replacing the sound output and the speaker and the like of the first embodiment with the sound collection and the microphone and the like.
  • the configuration and operation in the present embodiment will be specifically described.
  • FIG. 46 is a block diagram showing a basic configuration example of the unmanned moving body according to the present embodiment.
  • an unmanned mobile body 200 with a directional microphone 208 and a processor 250 is shown.
  • the unmanned moving body 200 is a moving device.
  • the unmanned moving body 200 autonomously moves or stands still.
  • the unmanned moving body 200 may move according to the operation.
  • the unmanned aerial vehicle 200 is typically an unmanned aerial vehicle, but is not limited to the unmanned aerial vehicle, and may be a device that travels on a surface.
  • the unmanned moving body 200 may include a moving mechanism such as a motor and an actuator for moving in the air or on a surface.
  • the unmanned moving body 200 may be provided with one or more sensors.
  • the unmanned moving object 200 may include an image sensor, a distance measuring sensor, a directional microphone 208 or another microphone as a sound sensor, and a person detection.
  • a sensor may be provided, or a position detector may be provided as a position sensor.
  • the directional microphone 208 is a microphone that collects sound from the directional direction.
  • the directivity direction of the directional microphone 208 may be adjustable, or the sound collection sensitivity of the directional microphone 208 may be adjustable.
  • the directivity direction of the directional microphone 208 can also be expressed as a sound collecting direction.
  • the processor 250 is composed of a circuit that processes information.
  • the processor 250 may control the movement of the unmanned moving body 200.
  • the processor 250 may control the movement of the unmanned moving body 200 by controlling the operation of a moving mechanism such as a motor and an actuator for moving in the air or on a surface.
  • the processor 250 may adjust the directivity direction of the directional microphone 208 by sending a control signal to the directional microphone 208, or may adjust the sound collection sensitivity of the directional microphone 208. Further, the processor 250 may adjust the directivity direction of the directional microphone 208 by adjusting the direction of the unmanned moving body 200.
  • FIG. 47 is a flowchart showing a basic operation example of the unmanned moving body 200 shown in FIG. 46. Mainly, the processor 250 in the unmanned mobile body 200 performs the operation shown in FIG. 47.
  • the processor 250 acquires one or more sensing data (S201).
  • the processor 250 may acquire one or more sensing data from one or more sensors inside the unmanned moving body 200, or may acquire one or more sensing data from one or more sensors outside the unmanned moving body 200. May be good. Further, the processor 250 may acquire a plurality of sensing data from one or more sensors inside the unmanned moving body 200 and one or more sensors outside the unmanned moving body 200.
  • an image sensor for example, an image sensor, a distance measuring sensor, a microphone, a human detection sensor, a position detector, or the like may be used as one or more sensors outside the unmanned moving body 200.
  • the processor 250 determines whether or not the second target exists in the vicinity of the first target according to at least one of the acquired one or more sensing data (S202).
  • the first subject is the speaker and the second subject is the party associated with the speaker.
  • each of the first object and the second object is not limited to a human being, and may be an animal or a device.
  • the processor 250 calculates the positional relationship between the first target and the second target from at least one of the one or more sensing data ( S203). That is, the processor 250 derives the positional relationship between the first object and the second object from at least one of the one or more sensing data.
  • the positional relationship includes at least one of the positions and distances related to the first object and the second object.
  • the positional relationship may include the respective positions of the first object and the second object, or may include the distance between the first object and the second object.
  • the processor 250 uses the image data acquired from the image sensor to calculate the position of the first target, the position of the second target, the distance between the first target and the second target, and the like. You may. Further, the processor 250 uses the distance measurement data acquired from the distance measurement sensor to obtain a distance between the unmanned moving object 200 and the first object, a distance between the unmanned moving object 200 and the second object, and a distance. The distance between the first object and the second object may be calculated.
  • the processor 250 determines the first position according to the calculated positional relationship.
  • the first position is the position of the unmanned moving body 200 such that the first object and the second object are included in the range in which the sound is picked up by the directional microphone 208 with a predetermined quality or higher. Then, the processor 250 moves the unmanned moving body 200 to the determined first position (S204).
  • the unmanned moving body 200 can appropriately collect sound from the first target and the second target. That is, the unmanned moving body 200 can integrally collect sound for a plurality of objects.
  • the second target is a target related to the first target.
  • the processor 250 may determine whether or not an object existing around the first object is related to the first object according to at least one of the one or more sensing data. Then, the processor 250 may determine whether or not the second object exists in the vicinity of the first object.
  • the processor 250 acquires at least one of the information indicating the relationship with the first object and the information indicating the relationship with the unmanned moving object 200 from at least one of the one or more sensing data. You may. Then, the processor 250 sets the target existing around the first target as the first target according to at least one of the information indicating the relationship with the first target and the information indicating the relationship with the unmanned moving body 200. It may be determined whether it is related or not.
  • the processor 250 determines that the object existing in the vicinity of the first object is related to the first object when the object existing in the vicinity of the first object satisfies one or more of a plurality of conditions. You may.
  • these plurality of conditions are "contact with the first object”, “conversation with the first object”, “existing at a distance below the threshold value with respect to the first object”, and “first object”.
  • the clothes are the same as”, “exists with the first target in the specified area”, “linked to the first target”, “approaching the first target”, “the voice of the first target arrives” “Exists in range”, “Calling the unmanned moving body 200 during a conversation between the first object and the unmanned moving body 200", and “Unmanned moving during a conversation between the first target and the unmanned moving body 200" It may include “looking at the body 200" and the like.
  • FIG. 48 is a conceptual diagram showing a specific operation example of the unmanned moving body 200 shown in FIG. 46.
  • the unmanned mobile body 200 is an unmanned aerial vehicle, also called a drone.
  • the speaker corresponds to the first target, and the parties concerned correspond to the second target.
  • the unmanned moving body 200 collects sound from the speaker in the vicinity of the speaker. Then, the unmanned moving body 200 determines whether or not there is a related person in the vicinity of the speaker.
  • the unmanned moving body 200 senses the surroundings of the speaker using the sensor included in the unmanned moving body 200, and determines whether or not there is a person around the speaker according to the result.
  • an image sensor can be used as the sensor included in the unmanned moving body 200. Then, when it is determined that the person existing in the vicinity of the speaker is a related person of the speaker, the unmanned moving body 200 determines that the related person exists in the vicinity of the speaker.
  • the unmanned moving body 200 collects the speaker and the related person so that the sound picking range in which the sound is picked up by the unmanned moving body 200 is included. Determine the sound position.
  • the sound collection range in which sound is picked up by the unmanned moving body 200 may be determined according to the direction of the directional microphone 208.
  • the unmanned moving body 200 moves to the determined sound collecting position and collects sound.
  • the unmanned moving body 200 can collect sound from the speakers and related persons included in the sound collecting range.
  • FIG. 49 is a block diagram showing a specific configuration example of the unmanned moving body 200 shown in FIG. 48.
  • the unmanned mobile body 200 shown in FIG. 49 includes a GPS receiver 201, a gyro sensor 202, an acceleration sensor 203, a human detection sensor 204, a distance measuring sensor 205, an image sensor 206, a directional speaker 207, a directional microphone 208, and a drive. It includes a unit 209, a communication unit 210, a control unit 220, a storage unit 230, and a power supply unit 241.
  • the GPS receiver 201 is a receiver that constitutes a GPS (Global Positioning System) for measuring a position and acquires a position by receiving a signal.
  • the GPS receiver 201 acquires the position of the unmanned moving body 200. That is, the GPS receiver 201 operates as a sensor that detects the position of the unmanned moving body 200.
  • the gyro sensor 202 is a sensor that detects the posture of the unmanned moving body 200, that is, the angle or inclination of the unmanned moving body 200.
  • the acceleration sensor 203 is a sensor that detects the acceleration of the unmanned moving body 200.
  • the person detection sensor 204 is a sensor that detects a person around the unmanned moving body 200.
  • the human detection sensor 204 may be an infrared sensor.
  • the distance measurement sensor 205 is a sensor that measures the distance between the unmanned moving object 200 and the target, and generates distance measurement data.
  • the image sensor 206 is a sensor that performs imaging, and generates an image by imaging.
  • the image sensor 206 may be a camera.
  • the directional speaker 207 is a speaker that outputs sound in the directional direction.
  • the directivity direction of the directional speaker 207 may be adjustable, or the sound pressure of the sound emitted by the directional speaker 207 may be adjustable.
  • the directivity direction of the directional speaker 207 can also be expressed as a sound output direction.
  • the directional microphone 208 is a microphone that collects sound from the directional direction.
  • the directivity direction of the directional microphone 208 may be adjustable, or the sound collection sensitivity of the directional microphone 208 may be adjustable.
  • the drive unit 209 is a motor, an actuator, or the like that moves the unmanned moving body 200.
  • the communication unit 210 is a communication device that communicates with an external device of the unmanned mobile body 200.
  • the communication unit 210 may receive an operation signal for moving the unmanned moving body 200. Further, the communication unit 210 may send and receive the contents of the conversation.
  • the control unit 220 corresponds to the processor 250 shown in FIG. 46 and is composed of a circuit that performs information processing. Specifically, in this example, the control unit 220 includes a person detection unit 221, a related person determination unit 222, a sound collection range determination unit 223, a sound collection position determination unit 224, a sound collection control unit 225, and a movement control unit. 226 is provided. That is, the processor 250 may play these roles.
  • the person detection unit 221 detects a person existing in the vicinity of the unmanned moving body 200.
  • the person detection unit 221 detects a person existing in the vicinity of the unmanned moving body 200 according to the sensing data obtained from the person detection sensor 204 or another sensor.
  • the related party determination unit 222 determines whether or not the person detected by the person detection unit 221 is a related party related to the speaker.
  • the sound collection range determination unit 223 determines the sound collection range according to the positional relationship between the speaker and the person concerned.
  • the sound collection position determination unit 224 determines the sound collection position according to the determined sound collection range.
  • the sound collection control unit 225 controls the sound collection of the directional microphone 208 by transmitting a control signal to the directional microphone 208.
  • the movement control unit 226 controls the movement of the unmanned moving body 200 by transmitting a control signal to the driving unit 209.
  • the movement control unit 226 controls the flight of the unmanned moving body 200, which is an unmanned flying body.
  • the storage unit 230 is a memory for storing information, and stores the control program 231 and the sound collection sensitivity sound collection range correspondence information 232.
  • the control program 231 is an information processing program performed by the control unit 220.
  • the sound collection sensitivity sound collection range correspondence information 232 is information indicating the correspondence relationship between the sound collection sensitivity of the directional microphone 208 and the sound collection range in which sound is collected with a quality equal to or higher than a predetermined value.
  • the power supply unit 241 is a circuit that supplies power to a plurality of components included in the unmanned mobile body 200.
  • the power supply unit 241 includes a power supply.
  • FIG. 50 is a flowchart showing a specific operation example of the unmanned moving body 200 shown in FIG. 48. For example, a plurality of components in the unmanned moving body 200 shown in FIG. 49 cooperate to perform the operation shown in FIG. 50.
  • the unmanned moving body 200 moves to a conversation position for having a conversation with a speaker (S211).
  • the conversation position is a position where the voice emitted by the speaker reaches from the position of the speaker and the sound emitted by the unmanned moving object 200 reaches.
  • the speaker may be predetermined.
  • the unmanned mobile body 200 may determine the speaker during the flight.
  • the person detection unit 221 detects the speaker according to the sensing data obtained from the person detection sensor 204, the image sensor 206, or the like. Then, the movement control unit 226 moves the unmanned moving body 200 from the speaker to the conversation position within a predetermined range via the drive unit 209.
  • the unmanned moving body 200 starts a conversation (S212). That is, the unmanned moving body 200 starts at least one of sound output and sound collection.
  • the sound collection control unit 225 causes the directional microphone 208 to start sound collection.
  • the control unit 220 may start the directional speaker 207 to output sound.
  • the unmanned moving body 200 senses the vicinity of the speaker (S213).
  • the person detection unit 221 detects a person around the speaker by causing the person detection sensor 204, the image sensor 206, or the like to sense the vicinity of the speaker. Any sensor for detecting a person can be used for this detection.
  • the periphery of the speaker corresponds to, for example, an area within a predetermined range from the speaker.
  • the unmanned moving body 200 determines whether or not a person other than the speaker is detected (S214). For example, the person detection unit 221 determines whether or not a person other than the speaker has been detected in the vicinity of the speaker. When a person other than the speaker is not detected (No in S214), the unmanned moving body 200 repeats sensing (S213) around the speaker.
  • the unmanned moving object 200 determines whether or not the detected person is related to the speaker (S215).
  • the related party determination unit 222 may determine whether or not the detected person is a related person according to whether or not the distance between the speaker and the related person is within the threshold value, and may be related to grouping and the like. It may be determined whether or not the detected person is a related person according to other determination criteria. This determination is the same as the determination described in the first embodiment.
  • the unmanned moving body 200 repeats sensing (S213) around the speaker.
  • the unmanned moving body 200 measures the separation distance between the speaker and the related person (S216). For example, the sound collection range determination unit 223 calculates the distance between the position of the speaker detected according to the sensing data and the position of the related person detected according to the sensing data, so that the speaker and the related person can interact with each other. The separation distance may be measured.
  • the unmanned moving body 200 determines the sound collection range according to the distance between the speaker and the person concerned (S217). For example, the sound collection range determination unit 223 determines the sound collection range according to the measured separation distance. At that time, the sound collection range determination unit 223 increases the sound collection range as the measured separation distance increases.
  • the sound collection range is, for example, a range relatively determined using the unmanned moving object 200 as a reference, and is a range in which sound is collected with a predetermined quality or higher by the directional microphone 208.
  • the quality equal to or higher than the predetermined quality may correspond to the sound pressure within the predetermined range, or may correspond to the SN ratio (signal-to-noise ratio) within the predetermined range.
  • the unmanned moving body 200 determines the sound collecting position according to the position of the speaker, the position of the person concerned, and the sound collecting range (S218).
  • the sound collection position determination unit 224 determines the sound collection position so that the determined sound collection range includes the detected position of the speaker and the detected position of the related person. The determination of the sound collection position will be described later.
  • the unmanned moving body 200 moves to the sound collecting position (S219).
  • the movement control unit 226 moves the unmanned moving body 200 to the sound collecting position by controlling the operation of the driving unit 209.
  • the sound collection control unit 225 may control the sound collection of the directional microphone 208 so that the sound is collected from the sound collection range with a predetermined quality or higher.
  • the unmanned moving body 200 can appropriately collect sound for the speaker and related persons.
  • the unmanned moving body 200 performs the process (S213 to S219) for moving to the sound collecting position after starting the conversation with the speaker (after S212), but the speaker Before starting the conversation with, a process for moving to the sound collecting position may be performed.
  • the unmanned moving body 200 when the detected person is not a related person (No in S215), the unmanned moving body 200 repeats sensing (S213) around the speaker. However, the unmanned moving body 200 may modify the sound collecting position so as not to collect sound for a person (third object) who is not a related person. That is, the sound collecting position determining unit 224 in the unmanned moving body 200 may modify the sound collecting position so that a person who is not a related person is not included in the sound collecting range.
  • the sound collection position determination unit 224 may correct the sound collection position so that a person who is not a related person deviates from the sound collection direction. As a result, the possibility of entering the sound collection range when a person who is not a related person moves is suppressed.
  • the sound collection range is also expressed as a human voice sound collection range, for example, a range in which a human voice can be collected at a predetermined sound pressure or higher.
  • the sound collection range is a range extending from the directional microphone 208 in the sound collection direction and within a predetermined distance (for example, 5 m) from the directional microphone 208. This predetermined distance depends on the sound collection sensitivity of the directional microphone 208. The higher the sound collection sensitivity, the longer the predetermined distance and the larger the sound collection range.
  • the sound collection control unit 225 can increase the sound collection range by increasing the sound collection sensitivity of the directional microphone 208. Further, the sound collection control unit 225 can reduce the sound collection range by lowering the sound collection sensitivity of the directional microphone 208. Further, the sound collection control unit 225 may remove noise that increases by increasing the sound collection sensitivity with a noise removal filter.
  • the range in which a human voice can be picked up above a predetermined sound pressure also depends on the sound pressure of the human voice. There are individual differences in the sound pressure of human voices. Therefore, the sound pickup range may be defined according to the sound pressure of the voice produced by the average person. Therefore, the sound collection range is a guideline range, and the voice of a person within the sound collection range is not always collected at a predetermined sound pressure or higher.
  • the unmanned moving body 200 may identify the attributes of the speaker or the related person, and determine the sound collection range according to the identified attributes. For example, the unmanned moving body 200 may determine the sound collection range according to gender, age, and the like.
  • the unmanned moving body 200 may authenticate the speaker or the related person, and determine the sound collection range according to the sound pressure registered in advance for the authenticated speaker or the related person.
  • the unmanned moving body 200 stores information on the speaker or related person and sound pressure as a history, estimates the sound pressure of the speaker or related person according to the past history, and sets the sound collection range according to the estimated sound pressure. You may decide. Face information may be stored and used for authentication as information of a speaker or a related person.
  • the sound collection range may be determined according to the result of measuring the sound pressure of a human voice by an experiment. At that time, the sound collection range may be determined for each sound collection sensitivity. Further, the sound collection range may be determined according to the characteristics of the point sound source as shown in FIG.
  • the sound pressure of the voice emitted by the speaker may differ from the sound pressure of the voice emitted by the person concerned.
  • the sound collection range may be determined according to the smaller sound pressure of these sound pressures, or the sound collection range may be determined according to the larger sound pressure of these sound pressures.
  • the sound collection range may be determined according to the average sound pressure. Further, the sound collection range may be determined according to the sound pressure of the voice emitted by the speaker, or the sound collection range may be determined according to the sound pressure of the voice emitted by the person concerned.
  • the unmanned moving body 200 may determine the sound collecting position and move to the determined sound collecting position when the separation distance falls within the sound collecting range. The unmanned moving body 200 does not have to move when the separation distance does not fall within the sound collection range.
  • the sound collection range is defined according to the sound pressure of the voice emitted by the average person without considering individual differences, and the sound collection range can be adjusted by adjusting the sound collection sensitivity.
  • the explanation will be given on the assumption that there is.
  • the sound collection range may be adjusted in consideration of individual differences.
  • the relationship between the sound collection sensitivity and the sound collection range as described above may be stored in the storage unit 230 as the sound collection sensitivity sound collection range correspondence information 232.
  • the sound collection range determination unit 223 determines the sound collection sensitivity and the sound collection range so that the speaker and the person concerned are included in the sound collection range according to the distance between the speaker and the person concerned. For example, in the first embodiment, this operation is performed so that the sound output range determination unit 123 includes the speaker and the related party in the sound output range according to the distance between the speaker and the related party. It is performed in the same way as the operation of determining the sound output range.
  • the criteria for determining whether or not a person other than the speaker is a related person are the same as the criteria described with reference to FIGS. 13 to 23 in the first embodiment. The explanation is omitted.
  • the unmanned moving body 200 determines the position of the unmanned moving body 200 as the sound collecting position so that the speaker and the persons concerned can be included in the sound collecting range.
  • the sound collecting position determination unit 224 of the unmanned moving body 200 determines the sound collecting position.
  • a more specific method for determining the sound collecting position will be described with reference to FIGS. 51 to 66.
  • FIG. 51 is a conceptual diagram showing an example of a sound collecting position on a straight line passing through the position of the speaker and the position of the person concerned.
  • the unmanned moving body 200 is a position on a straight line passing through the position of the speaker and the position of the person concerned, and the speaker and the person concerned are within the sound collection range relatively determined by the position.
  • the position that is included is determined as the sound collection position.
  • the unmanned moving body 200 can appropriately collect sound from the speaker and related persons along the sound collecting direction.
  • FIG. 52 is a conceptual diagram showing an example of a sound collecting position close to the speaker.
  • the unmanned moving body 200 collects sound from a sound collecting position outside the speaker and the related person in a direction direction toward the speaker and the related person on a straight line passing through the position of the speaker and the position of the related person. Do. In the example of FIG. 52, the unmanned moving body 200 collects sound at the sound collecting position on the speaker side. That is, the unmanned moving body 200 determines a position close to the speaker as a sound collecting position.
  • the predetermined speaker has more conversations with the unmanned moving object 200 than the parties concerned. Further, when a related person exists between the unmanned moving body 200 and the speaker, the related person may interfere with the conversation between the unmanned moving body 200 and the talking person. Therefore, by determining the position close to the speaker as the sound collecting position, more conversations can be smoothly performed.
  • FIG. 53 is a conceptual diagram showing an example of a sound collecting position close to that of an elderly person.
  • the unmanned moving body 200 may determine a position close to the elderly as a sound collecting position instead of a position close to the speaker. For example, the unmanned moving body 200 determines a position close to the elderly as a sound collecting position when the speaker is not predetermined.
  • the unmanned mobile body 200 may estimate the age by face recognition.
  • the unmanned moving body 200 can collect the voice emitted by the elderly person with a small sound pressure by determining the position close to the elderly person as the sound collecting position. Therefore, the unmanned moving body 200 can compensate for the sound pressure that has decreased with aging.
  • the position close to the elderly that is, the position close to the parent is determined as the sound collection position. As a result, it is possible to keep the child away from the unmanned moving body 200.
  • the unmanned moving body 200 may determine a person whose age is estimated to be older than a predetermined age as an elderly person. Then, when it is determined that one of the speaker and the person concerned is an elderly person, the unmanned moving body 200 may determine a position close to the elderly person as a sound collecting position. Further, when it is determined that both the speaker and the person concerned are elderly, the unmanned moving body 200 may determine a position equidistant from both as a sound collecting position, or may collect sound according to other conditions. The position may be determined.
  • FIG. 54 is a conceptual diagram showing an example of the sound collection position corrected to the front side centering on the persons concerned.
  • the unmanned moving body 200 collects sound from the talking person and the related person. be able to.
  • the unmanned moving body 200 is present on the front side of the speaker and the related person rather than on the side side, the talking person and the related person can easily talk with the unmanned moving body 200.
  • the unmanned moving body 200 since the unmanned moving body 200 exists on the front side of the speaker and the related person, it is possible to provide a smooth conversation to the speaker and the related person. Therefore, the unmanned moving body 200 may correct the sound collecting position on the front side of the speaker and the related persons.
  • the unmanned moving body 200 has a sound collecting position on the front side of the speaker and the related person along a circle assumed around the related person. It may be corrected. As a result, the unmanned moving body 200 can correct the sound collecting position without changing the distance to the persons concerned.
  • the unmanned moving body 200 may correct the sound collection position along a circle assumed around the speaker. As a result, the unmanned moving body 200 can correct the sound collecting position without changing the distance to the speaker. However, the unmanned moving body 200 is located between the talking person and the related persons and the unmanned moving body 200 by using a circle assumed mainly on the one farther from the unmanned moving body 200 among the talking person and the related persons. Fluctuations in distance can be suppressed.
  • the unmanned moving body 200 is not limited to correcting the sound collecting position along the circle, but moves in the front direction of at least one of the speaker and the related person, and sets the sound collecting direction of the speaker and the related person. You may point it at at least one of them.
  • the unmanned moving body 100 may correct the sound collecting position to a position in the front direction for performing such an operation.
  • FIG. 55 is a conceptual diagram showing an example of a sound collection position determined mainly by the speaker so that the persons concerned are included in the sound collection range.
  • the unmanned moving body 200 is present on the front side of the speaker during a conversation with the speaker. After that, as shown in the lower part of FIG. 55, the unmanned moving body 200 may move along a circle assumed around the speaker so that the related persons are included in the sound picking range. In this case, the unmanned moving body 200 may determine the sound collecting position along a circle assumed around the speaker.
  • the unmanned moving body 200 can move to a position where sound can be picked up from the speaker and related persons without changing the distance to the speaker.
  • FIG. 56 is a conceptual diagram showing an example of the sound collection position on the front side of the speaker and the persons concerned.
  • the unmanned moving object 200 is located on the front side of the talking person and the related person.
  • the position may be determined as the sound collecting position.
  • the unmanned moving body 200 can collect sound from the speaker and the related person at a position on the front side of the speaker and the related person. That is, the unmanned moving body 200 can have a conversation from a position on the front side of the speaker and the persons concerned. Therefore, the unmanned moving body 200 can provide a smooth conversation to the speaker and the persons concerned.
  • the unmanned moving body 200 may preferentially determine the position on the front side of the speaker and the related persons as the sound collecting position.
  • FIG. 57 is a conceptual diagram showing an example of a sound collecting position on a straight line in an oblique direction with respect to a horizontal plane.
  • the unmanned moving body 200 may acquire the physical information of the speaker and the physical information of the persons concerned by image recognition processing, face recognition processing, or the like. Then, the unmanned moving body 200 may determine the sound collecting position according to the physical information of the speaker and the physical information of the persons concerned.
  • the physical information may be height or face height.
  • the unmanned moving body 200 passes through the position of the speaker's face and the position of the person's face when the height of the speaker's face and the height of the person's face deviate from each other. A position on a straight line and in which the speaker and related persons are included in the sound collection range is determined as the sound collection position. In this case, the unmanned moving body 200 collects sound along a sound collecting direction oblique to the horizontal plane.
  • the unmanned moving body 200 can appropriately collect sound from the speaker and related persons along the sound collecting direction.
  • FIG. 57 shows an example in which the parent is a speaker and the child is a related person, the speaker and the related person may be opposite to each other.
  • the sound collection in the diagonal direction it is assumed that the sound is collected toward the higher side in the lower side and the sound is collected toward the lower side in the higher side. If the sound is picked up from the lower side toward the higher side, it is difficult to fly due to the low flight altitude, and there is a possibility of contact with a person.
  • the unmanned moving body 200 approaches a small child. Therefore, the sound may be picked up from the higher side toward the lower side. As a result, for example, the possibility of collision is suppressed.
  • the speaker and the related persons utter a voice toward the upper side where the unmanned moving body 200 exists. Therefore, the voice is diverged and it is difficult to collect the sound. Therefore, the sound may be picked up from the lower side toward the higher side.
  • the sound may be picked up toward the higher side in the lower part, and in a place where there are many people, the sound may be picked up toward the lower side in the higher side.
  • FIG. 58 is a conceptual diagram showing an example of a sound collecting position on a straight line in the horizontal direction.
  • the unmanned moving body 200 is at a position where the face of the speaker and the face of the person concerned are included in the sound collection range when the face of the speaker and the face of the person concerned are within the directivity range of sound collection.
  • the position for collecting sound in the horizontal direction may be determined as the sound collecting position. That is, when the height of the face of the speaker and the height of the face of the person concerned deviate from each other beyond a predetermined range, the unmanned moving body 200 collects sound in an oblique direction as shown in FIG. 57.
  • the position of may be determined as the sound collecting position.
  • the unmanned moving object 200 does not have to change the altitude. This simplifies the process.
  • the unmanned moving body 200 can suppress the possibility of a collision or the like by increasing the altitude, and can provide a smooth conversation.
  • FIG. 59 is a conceptual diagram showing an example of a sound collection position at the same height as the speaker and related persons.
  • the unmanned moving body 200 may determine a position for collecting sound in the horizontal direction as a sound collecting position. This simplifies the process.
  • the unmanned moving body 200 may come into contact with a person. Further, since a person far from the unmanned moving body 200 and the unmanned moving body 200 have a conversation straddling a person close to the unmanned moving body 200, it is difficult to have a conversation. Specifically, in the example of FIG. 59, it is difficult for the person concerned and the unmanned moving object 200 to have a conversation because they have a conversation across the speaker.
  • FIG. 60 is a conceptual diagram showing an example of a sound collection position higher than that of the speaker and the persons concerned.
  • the unmanned moving body 200 may be determined as a sound collecting position by giving priority to a position higher than that of the speaker and the persons concerned. As a result, the unmanned moving body 200 can suppress the possibility of collision and the like. Further, the unmanned moving body 200 can provide a smooth conversation to a person close to the unmanned moving body 200 and a person far from the unmanned moving body 200.
  • FIG. 61 is a conceptual diagram showing an example of the height of the sound collecting position. If the sound pick-up position becomes too high, the angle at which the speaker and the persons concerned look up at the unmanned moving body 200 becomes too large. As a result, the speaker and the persons concerned will have a conversation while looking up at the unmanned moving object 200, which makes smooth conversation difficult.
  • an upper limit may be set for the altitude of the sound collecting position or the angle between the sound collecting direction and the horizontal plane.
  • the upper limit of the altitude of the sound collecting position may be determined according to the distance between the unmanned moving body 200 and the speaker and the related persons who are closer to the unmanned moving body 200. For example, the closer to the speaker and the person concerned, the lower the upper limit of the altitude of the sound collection position is set. As a result, the angle at which the speaker and the persons concerned look up at the unmanned moving body 200 is suppressed to be small.
  • FIG. 62 is a conceptual diagram showing an example of a sound collection position for excluding an unrelated person from the sound collection range.
  • the unmanned moving body 200 may determine the sound collecting position so that the person determined not to be a related person is not included in the sound collecting range. That is, when it is determined that a person other than the speaker is an unrelated person, the unmanned moving body 200 may determine the sound collecting position so that the unrelated person is not included in the sound collecting range.
  • the unmanned moving body 200 determines the sound collecting position and moves to the sound collecting position so that the distance between the unmanned moving body 200 and the unrelated person becomes large. As a result, the unmanned moving body 200 can make it difficult for the sound to be picked up by an unrelated person.
  • the sound collecting position is determined within the range in which the sound is not collected from the unrelated person and the sound is collected from the speaker. That is, the unmanned moving body 200 determines the sound collecting position so that the unrelated person is not included in the sound collecting range and the speaker is included in the sound collecting range. As a result, the unmanned moving body 200 can collect sound for the speaker without collecting sound for the unrelated person.
  • the unmanned moving body 200 may be kept away from non-related persons within a range in which sound is collected from the speaker at a predetermined sound pressure or higher. Specifically, the unmanned moving body 200 calculates a range in which sound is picked up from the speaker at a predetermined sound pressure or higher according to the sound pressure of the sound picked up by the speaker before moving, and within that range. The position farthest from the non-related person may be determined as the sound collecting position. As a result, the unmanned moving body 200 can make it difficult for the sound to be picked up by an unrelated person, and can maintain an appropriate sound picking up for the speaker.
  • the unmanned moving body 200 may determine the sound collecting position so that the unrelated person is not included in the sound collecting range and the speaker and the related person are included in the sound collecting range. As a result, the unmanned moving body 200 can collect sound for the speaker and the related person without collecting sound for the unrelated person.
  • FIG. 63 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body 200 on a horizontal plane.
  • the unmanned moving body 200 may determine a position far from an unrelated person as a sound collecting position as in the upper example of FIG. 63.
  • the sound may be picked up from the non-related person.
  • the unmanned moving body 200 may determine the sound collecting position so that the unrelated person deviates from the sound collecting direction as in the lower example of FIG. 63. Specifically, the unmanned moving body 200 may determine a position not included in the straight line passing through the position of the speaker and the position of the person concerned as the sound collecting position. As a result, the unmanned moving body 200 can suppress the possibility of sound being picked up by an unrelated person.
  • the unmanned moving body 200 has a sound collecting position so that the unrelated person is not included in the sound collecting range and the speaker and the related person are included in the sound collecting range. You may decide.
  • FIG. 64 is a conceptual diagram showing an example of the positional relationship between an unrelated person, a speaker, and an unmanned moving body 200 on a vertical plane.
  • the unmanned moving body 200 may collect sound from the upper side of the speaker to the speaker.
  • the unmanned moving body 200 can suppress the possibility that an unrelated person enters the sound collecting range or the sound collecting direction, and can suppress the possibility that the sound is picked up by the unrelated person.
  • the unmanned moving body 200 may determine the altitude of the sound collection position so that the unrelated person is not included in the sound collection range and the speaker and the related person are included in the sound collection range.
  • FIG. 65 is a conceptual diagram showing an example of a sound collection position for excluding another person from the sound collection range.
  • the unmanned moving body 200 may determine the position of the unmanned moving body 200 that sandwiches the speaker between the unmanned moving body 200 and the obstacle as the sound picking position. Then, the unmanned moving body 200 may move to the sound collecting position and collect sound for the speaker. As a result, the unmanned moving body 200 can suppress the possibility of sound being picked up by another person.
  • the obstacle is, for example, a physical environment that prevents another person from entering the sound collection range.
  • the obstacle may be a physical environment that hinders the expansion of the sound collection range, or may be a physical environment that people cannot pass through.
  • the obstacle may be a wall, a building, or a cliff.
  • the unmanned moving body 200 may detect the position of an obstacle by image recognition processing, or may detect the position of an obstacle by an obstacle detection sensor (not shown).
  • the unmanned moving body 200 may specify the position of the obstacle from the map information including the position of the obstacle.
  • the map information may be stored in advance in the storage unit 230 of the unmanned moving body 200, or may be input to the unmanned moving body 200 from an external device using the communication unit 210 of the unmanned moving body 200. Then, the unmanned moving body 200 may detect the position of the obstacle according to the map information by detecting the position of the unmanned moving body 200.
  • the position of the unmanned moving body 200 that sandwiches the speaker and the related person between the unmanned moving body 200 and the obstacle may be determined as the sound collecting position.
  • the unmanned moving body 200 can collect sound for the speaker and related persons without collecting sound for another person.
  • FIG. 66 is a conceptual diagram showing an example of a sound collection position determined according to a sound produced by a speaker and a sound produced by a person concerned.
  • the unmanned moving body 200 may determine a position closer to the speaker and related persons who have a higher utterance frequency as a sound collecting position. Specifically, the unmanned moving body 200 acquires the frequency of occurrence of the speaker and the frequency of occurrence of the persons concerned according to the picked-up sound, and sets the position closer to the one with the higher utterance frequency as the pick-up position. You may decide. For example, when the person concerned speaks to the unmanned moving object 200 more times than the number of times the speaker speaks to the unmanned moving object 200, the position closer to the person concerned is determined as the sound collecting position.
  • the unmanned moving body 200 can more appropriately collect sound from the speaker and the related persons who have a higher utterance frequency.
  • the unmanned moving body 200 may determine a position closer to the speaker and the related persons whose volume is lower as the sound collecting position. Specifically, the unmanned moving body 200 acquires the volume of the voice of the speaker and the volume of the voice of the person concerned according to the picked-up sound, and picks up a position closer to the lower volume. May be determined as. For example, when the volume of the person concerned is lower than the volume of the speaker, the position close to the person concerned is determined as the sound collection position.
  • the unmanned moving body 200 estimates the sound pressure of the voice uttered by the speaker and the sound pressure of the voice uttered by the persons concerned as the volume according to the collected sound. Then, the unmanned moving body 200 identifies the one with the lower volume by comparing the volume estimated for the speaker and the volume estimated for the person concerned.
  • the unmanned moving body 200 refers to a table showing the relationship between the sound pressure of the voice emitted by a person, the distance between the person and the unmanned moving body 200, and the sound pressure of the voice picked up by the unmanned moving body 200. Then, the sound pressure of the voice uttered by the speaker and the sound pressure of the voice uttered by the persons concerned may be estimated as the volume. This table may be stored in advance in the storage unit 230.
  • the unmanned moving body 200 moves to a sound collecting position closer to the lower volume of the speaker and the related persons and collects the sound, so that the speaker and the related persons also have the lower volume. Sound can be picked up properly.
  • any one of the plurality of determination methods described with reference to FIGS. 51 to 66 may be used, or any combination of two or more of these determination methods may be used. May be used. Subsequently, a plurality of examples relating to the movement of the unmanned moving body 200 and the like will be described.
  • FIG. 67 is a conceptual diagram showing an example in which the unmanned moving body 200 moves to the sound collecting position.
  • the unmanned moving body 200 moves to the sound collecting position while collecting sound for the speaker, the unmanned moving body 200 moves to the sound collecting position so that the speaker does not deviate from the sound collecting range during the movement.
  • the unmanned moving body 200 can continuously collect sound from the speaker.
  • the unmanned moving body 200 moves to the sound collecting position while pointing the directing direction of the directional microphone 208 toward the speaker. Further, the unmanned moving body 200 moves within a predetermined distance from the speaker. This predetermined distance corresponds to the length of the sound collection range in the sound collection direction.
  • the unmanned moving body 200 may create a moving route within a predetermined distance from the speaker and move to the sound collecting position along the created moving route. As a result, the unmanned moving body 200 can move to the sound collecting position so that the speaker does not deviate from the sound collecting range during the movement.
  • the unmanned moving body 200 adjusts the sound collecting sensitivity according to the distance between the unmanned moving body 200 and the speaker so that the sound pressure of the sound picked up by the speaker is maintained constant during the movement. You may change it. For example, the unmanned moving body 200 may move while increasing the sound collecting sensitivity when moving away from the speaker. On the contrary, the unmanned moving body 200 may move while lowering the sound collecting sensitivity when approaching the speaker.
  • the unmanned moving body 200 moves when the conversation is interrupted so that the sound of the fragmented conversation is not picked up by entering the sound picking range while the related parties are having a conversation during the sound picking. You may go.
  • FIG. 68 is a conceptual diagram showing an example in which the unmanned moving body 200 moves to the sound collecting position through the front side.
  • the unmanned moving body 200 moves to the sound collecting position through the front side of the speaker.
  • the front side of the speaker corresponds to the field of view of the speaker.
  • the unmanned moving object 200 is out of the field of view of the speaker, it becomes difficult for the speaker to have a conversation with the unmanned moving object 200.
  • By moving the unmanned moving body 200 to the sound collecting position through the front side of the speaker it is possible to provide the speaker with a smooth conversation during the movement.
  • the unmanned moving body 200 may specify the visual field range of the speaker by detecting the front side of the speaker by image recognition processing. Then, the unmanned moving body 200 may create a moving path within the specified visual field range and move to the sound collecting position along the created moving path.
  • the unmanned moving body 200 moves to the sound collecting position through the front side of the speaker, but the unmanned moving body 200 moves to the sound collecting position through the front side of the speaker and the persons concerned. You may move.
  • the unmanned mobile body 200 can provide a smooth conversation to the parties concerned.
  • FIG. 69 is a conceptual diagram showing an example in which the unmanned moving body 200 changes the sound collection range.
  • the unmanned moving body 200 may adjust the sound collecting range so that the speaker and the persons concerned are included in the sound collecting range. Specifically, the unmanned moving body 200 may adjust the sound collecting range by adjusting the sound collecting sensitivity of the directional microphone 208.
  • the unmanned moving body 200 when it is determined that the unmanned moving body 200 has a moderate probability that a person other than the speaker is involved, the speaker and the person other than the speaker are collected. Move to the sound collection position that enters the sound direction. Then, the unmanned moving body 200 adjusts the sound collecting sensitivity of the directional microphone 208 so that the sound is picked up from the speaker and the sound is not picked up by a person other than the speaker. That is, the unmanned moving body 200 lowers the sound collecting sensitivity of the directional microphone 208.
  • the unmanned moving body 200 when it is determined that the unmanned moving body 200 has a high probability that a person other than the speaker is a related person, the sound is picked up from the person other than the speaker.
  • the sound collection sensitivity of the directional microphone 208 is adjusted. That is, the unmanned moving body 200 increases the sound collecting sensitivity of the directional microphone 208.
  • the unmanned moving body 200 can immediately collect sound to a person other than the talking person without moving when the probability that a person other than the talking person is a related person increases.
  • the unmanned moving body 200 may move in the sound collecting direction without increasing the sound collecting sensitivity.
  • the unmanned mobile body 200 can suppress an increase in power consumption due to an increase in sound collection sensitivity.
  • FIG. 70 is a conceptual diagram showing an example of selective operation of movement and change of sound collection range.
  • the unmanned moving body 200 can select whether to expand the sound collecting range or move in the sound collecting direction. That is, the unmanned moving body 200 can include the speaker and the related person in the sound collecting range by expanding the sound collecting range, and can include the talking person and the related person by moving in the sound collecting direction. It can also be included in the sound collection range.
  • the unmanned moving body 200 increases the sound collection sensitivity when the sound collection range is expanded. As a result, it is expected that the power consumption will increase. Therefore, the unmanned moving body 200 may give priority to moving in the sound collecting direction rather than expanding the sound collecting range.
  • the unmanned moving object 200 may come into contact with the speaker. Further, when the unmanned moving body 200 is too close to the speaker, the sound picked up by the speaker may be too loud. Therefore, the unmanned moving body 200 may move in the sound collecting direction as close as possible to the speaker. In that state, the unmanned moving body 200 may expand the sound collecting range when the persons concerned are not included in the sound collecting range. As a result, the unmanned moving body 200 can appropriately collect sounds for the speaker and related persons.
  • FIG. 71 is a conceptual diagram showing an example when a person concerned is out of the sound collection range. For example, when a related person goes out of the sound collecting range, more specifically, when the related person goes out of the sound collecting range by himself / herself, the related person intends to have a conversation with the unmanned moving object 200. It is assumed that they do not have it.
  • the unmanned moving body 200 does not move to the sound collecting position for including the person concerned in the sound collecting range.
  • the unmanned moving body 200 can suppress power consumption due to unnecessary movement, and can also suppress unnecessary sound collection for the persons concerned.
  • the person concerned may move while having the intention of having a conversation with the unmanned moving object 200.
  • the person concerned may have an intention to have a conversation with the unmanned moving object 200. Therefore, when the person concerned is not so far from the sound collection range for a predetermined time or more, the unmanned moving body 200 may move to include the person concerned in the sound collection range.
  • the state in which the related parties are not so far from the sound collecting range is, for example, a state in which the related parties do not exist in the sound collecting range and the related parties exist in a predetermined range around the sound collecting range. ..
  • FIG. 72 is a conceptual diagram showing an example when another person enters the sound collection range.
  • the unmanned moving body 200 when a person other than the speaker enters the sound collection range or the sound collection direction while collecting sound for the speaker, the other person enters the sound collection range or the sound collection direction. It may be moved so as to deviate from the sound collecting direction. For example, when the image recognition process detects that another person has entered the sound collecting range or the sound collecting direction, the unmanned moving body 200 has the unmanned moving body 200 so that the other person deviates from the sound collecting range or the sound collecting direction. The sound collecting position may be changed and moved to the changed sound collecting position.
  • the unmanned moving body 200 has a sound collecting position so that the other person deviates from the sound collecting range or the sound collecting direction at the timing when the directional microphone 208 detects that the voice of another person is picked up. May be changed to move to the changed sound collection position.
  • the unmanned moving body 200 may move so that the other person deviates from the sound picking range or the sound picking direction. ..
  • the unmanned moving body 200 determines whether or not another person is a related person, and when it is determined that the other person is not a related person, the other person deviates from the sound collecting range or the sound collecting direction. As described above, the sound collection position may be changed.
  • the unmanned moving body 200 collects the sound from the speaker and the related person. It may be moved so that another person is out of the sound collection range or the sound collection direction.
  • FIG. 73 is a conceptual diagram showing an example when the group enters the sound collection range.
  • a group of people other than the speaker may have a conversation within the group. Therefore, when the group enters the sound collecting range or the sound collecting direction, the unmanned moving body 200 may move so that the conversation in the group is not picked up. That is, in this case, the unmanned moving body 200 may move so that the group entering the sound collecting range or the sound collecting direction deviates from the sound collecting range or the sound collecting direction.
  • the unmanned moving body 200 when the unmanned moving body 200 detects that the group has entered the sound collecting range or the sound collecting direction by the image recognition process, the unmanned moving body 200 sets the sound collecting position so that the group deviates from the sound collecting range or the sound collecting direction. It may be changed and moved to the changed sound collecting position.
  • the unmanned moving body 200 determines whether or not a plurality of people other than the speaker form a group by using the criteria of whether or not a person other than the speaker is related to the speaker. You may. That is, even if the unmanned moving body 200 determines whether or not a plurality of people form a group related to each other by using the criteria described with reference to FIGS. 13 to 23 in the first embodiment. Good.
  • a group composed of a plurality of persons other than the speaker and related persons is in the sound collecting range or the sound collecting direction.
  • the group may be moved so as to be out of the sound collection range or the sound collection direction.
  • FIG. 74 is a conceptual diagram showing an example when a person concerned enters the sound collection range.
  • the sound output from the unmanned moving body 100 makes a sound from the unmanned moving body 100 to the person concerned. It is easy for the person concerned to recognize that the person concerned has entered the sound output range.
  • the person concerned when the person concerned enters the sound collection range by moving the unmanned moving body 200 to the sound collection position, the person concerned may recognize that the person concerned has entered the sound collection range. It's not easy.
  • the unmanned moving body 200 notifies the related person that the related person has entered the sound collecting range when the unmanned moving body 200 moves to the sound collecting position and the related person enters the sound collecting range. Good.
  • the unmanned moving body 200 may use the directional speaker 207 to output a sound message "entering the sound collection range". That is, the unmanned moving body 200 may notify by sound.
  • the unmanned moving body 200 may be equipped with an LED for notification. Then, the unmanned moving body 200 may give a notification by an LED.
  • the unmanned mobile body 200 may give a notification by transmitting information indicating that the related person has entered the sound collection range to the mobile terminal of the related person by the communication unit 210.
  • the unmanned mobile body 200 in the present embodiment includes a directional microphone 208 and a processor 250.
  • the directional microphone 208 picks up sound from the directional direction.
  • Processor 250 acquires one or more sensing data, including data acquired from directional microphone 208.
  • the processor 250 determines whether or not the second target exists in the vicinity of the first target according to at least one of the one or more sensing data.
  • the processor 250 calculates the positional relationship between the first target and the second target from at least one of the one or more sensing data.
  • the processor 250 determines the first position of the unmanned moving body 200, which includes the first object and the second object within the range in which the sound is picked up by the directional microphone 208 with a predetermined quality or higher, according to the positional relationship. Then, the unmanned moving body 200 is moved to the first position.
  • the unmanned moving body 200 can appropriately collect sound to the first target and the second target. That is, the unmanned moving body 200 can integrally collect sound for a plurality of objects.
  • variable sound collection range is used in the above description, a fixed sound collection range may be used. That is, the sound collection sensitivity may be fixed. Further, an omnidirectional microphone may be used instead of the directional microphone 208. Even with such a configuration, sound can be appropriately collected for a plurality of objects by moving to an appropriate sound collection position.
  • the first embodiment is mainly related to sound output.
  • the second embodiment is mainly related to sound collection. This embodiment relates to both sound output and sound collection.
  • the configuration and operation shown in the first embodiment and the configuration and operation shown in the second embodiment can also be applied to the present embodiment.
  • configurations and operations related to both sound output and sound collection will be described.
  • FIG. 75 is a block diagram showing a basic configuration example of the unmanned moving body according to the present embodiment.
  • FIG. 75 shows an unmanned mobile unit 300 with a directional speaker 307, a directional microphone 308 and a processor 350.
  • the unmanned moving body 300 is a moving device.
  • the unmanned moving body 300 autonomously moves or stands still.
  • the unmanned moving body 300 may move according to the operation.
  • the unmanned aerial vehicle 300 is typically an unmanned aerial vehicle, but is not limited to the unmanned aerial vehicle, and may be a device that travels on a surface.
  • the unmanned moving body 300 may include a moving mechanism such as a motor and an actuator for moving in the air or on a surface.
  • the unmanned moving body 300 may be provided with one or more sensors.
  • the unmanned moving body 300 may be provided with an image sensor, a distance measuring sensor, a directional microphone 308 or another microphone as a sound sensor, or a person detection.
  • a sensor may be provided, or a position detector may be provided as a position sensor.
  • the directional speaker 307 is a speaker that outputs sound in the directional direction.
  • the directivity direction of the directional speaker 307 may be adjustable, or the sound pressure of the sound produced by the directional speaker 307 may be adjustable.
  • the directivity direction of the directional speaker 307 can also be expressed as a sound output direction.
  • the directional microphone 308 is a microphone that collects sound from the directional direction.
  • the directivity direction of the directional microphone 308 may be adjustable, or the sound collection sensitivity of the directional microphone 308 may be adjustable.
  • the directivity direction of the directional microphone 308 can also be expressed as a sound collecting direction.
  • the processor 350 is composed of a circuit that processes information.
  • the processor 350 may control the movement of the unmanned moving body 300.
  • the processor 350 may control the movement of the unmanned moving body 300 by controlling the operation of a moving mechanism such as a motor and an actuator for moving in the air or on a surface.
  • the processor 350 may adjust the directivity direction of the directional speaker 307 by sending a control signal to the directional speaker 307, or may adjust the sound pressure of the sound emitted by the directional speaker 307. Good. Further, the processor 350 may adjust the directivity direction of the directional speaker 307 by adjusting the direction of the unmanned moving body 300.
  • the processor 350 may adjust the directivity direction of the directional microphone 308 by sending a control signal to the directional microphone 308, or may adjust the sound collection sensitivity of the directional microphone 308. Further, the processor 350 may adjust the directivity direction of the directional microphone 308 by adjusting the direction of the unmanned moving body 300.
  • FIG. 76 is a flowchart showing a basic operation example of the unmanned moving body 300 shown in FIG. 75. Mainly, the processor 350 in the unmanned mobile body 300 performs the operation shown in FIG.
  • the processor 350 acquires one or more sensing data (S301).
  • the processor 350 may acquire one or more sensing data from one or more sensors inside the unmanned moving body 300, or may acquire one or more sensing data from one or more sensors outside the unmanned moving body 300. May be good. Further, the processor 350 may acquire a plurality of sensing data from one or more sensors inside the unmanned moving body 300 and one or more sensors outside the unmanned moving body 300.
  • an image sensor for example, an image sensor, a distance measuring sensor, a microphone, a person detection sensor, a position detector, or the like may be used as one or more sensors outside the unmanned moving body 300.
  • the processor 350 determines whether or not the second target exists in the vicinity of the first target according to at least one of the acquired one or more sensing data (S302).
  • the first subject is the speaker and the second subject is the party associated with the speaker.
  • each of the first object and the second object is not limited to a human being, and may be an animal or a device.
  • the processor 350 calculates the positional relationship between the first target and the second target from at least one of the one or more sensing data ( S303). That is, the processor 350 derives the positional relationship between the first object and the second object from at least one of the one or more sensing data.
  • the positional relationship includes at least one of the positions and distances related to the first object and the second object.
  • the positional relationship may include the respective positions of the first object and the second object, or may include the distance between the first object and the second object.
  • the processor 350 uses the image data acquired from the image sensor to calculate the position of the first target, the position of the second target, the distance between the first target and the second target, and the like. You may. Further, the processor 350 uses the distance measurement data acquired from the distance measurement sensor to obtain a distance between the unmanned moving object 300 and the first object, a distance between the unmanned moving object 300 and the second object, and a distance. The distance between the first object and the second object may be calculated.
  • the processor 350 determines the first position according to the calculated positional relationship.
  • the first position is the first target and the second target within the range where the sound reaches the predetermined quality or higher by the directional speaker 307 and the sound is picked up by the directional microphone 308 at the predetermined quality or higher. Is the position of the unmanned moving body 300 such that the above is included. Then, the processor 350 moves the unmanned moving body 300 to the determined first position (S304).
  • the unmanned moving body 300 can appropriately output and collect sound for the first target and the second target. That is, the unmanned moving body 300 can integrally perform sound output and sound collection for a plurality of objects.
  • the unmanned mobile body 300 is an unmanned aerial vehicle, also called a drone.
  • the first target corresponds to the speaker, and the parties concerned correspond to the second target.
  • FIG. 77 is a conceptual diagram showing an example of a sound output range and a sound collection range.
  • the sound output range in the present embodiment is defined in the same manner as the sound output range in the first embodiment, and the sound collection range in the present embodiment is defined in the same manner as the sound collection range in the second embodiment.
  • the unmanned moving body 300 Since the unmanned moving body 300 and the person have a conversation with each other, the unmanned moving body 300 has a conversation in which the sound reaches the person by the directional speaker 307 and the sound is picked up from the person by the directional microphone 308. Move to position. Specifically, the unmanned moving body 300 determines the conversation position according to the overlapping range of the sound output range and the sound collection range.
  • the unmanned moving body 300 determines the conversation position so that the speaker is included in the overlapping range of the sound output range and the sound collection range. Further, for example, when a person related to the speaker exists in the vicinity of the person, the unmanned moving body 300 has a conversation position so that the speaker and the related person are included in the overlapping range of the sound output range and the sound collection range. To decide.
  • This operation is an operation of determining the sound output position so that the speaker or the like is included in the sound output range in the first embodiment, and an operation of determining the sound output position so that the speaker or the like is included in the sound collection range in the second embodiment. It is performed in the same way as the operation of determining the sound collecting position.
  • the unmanned moving body 300 moves to the conversation position determined according to the overlapping range of the sound output range and the sound collection range.
  • FIG. 78 is a conceptual diagram showing an example in which sound is picked up from a range in which the sound output range and the sound pick-up range do not overlap.
  • the sound output range and the sound pickup range may partially overlap. That is, a part of the sound output range and a part of the sound collection range may overlap, and the other part of the sound output range and the other part of the sound collection range may not overlap. Then, a person may exist within the range of only one of the sound output range and the sound pickup range.
  • the unmanned moving body 300 may operate so as not to have a conversation with a person who exists within only one of the sound output range and the sound collection range.
  • a person may exist within the sound collection range and outside the sound output range.
  • the sound is picked up from the person, but the sound does not reach the person from the unmanned moving body 300. Therefore, for example, the unmanned moving body 300 is picked up when it is determined that the picked-up sound is a sound picked up from a place different from the overlapping range of the sound output range and the sound pick-up range. You may ignore the sound. That is, the unmanned moving body 300 may skip the response processing to the sound picked up from this person.
  • the unmanned moving body 300 may detect a person who is within the sound collection range and outside the sound output range by image recognition processing, voice recognition processing, or the like. Then, the unmanned moving body 300 may ignore the sound picked up by the person.
  • the above operation may be performed on a person who is different from the speaker and whose presence or absence is unknown.
  • the above operation may be performed on a person who is a speaker or a related person.
  • FIG. 79 is a conceptual diagram showing an example of adjusting a range in which the sound output range and the sound collection range do not overlap.
  • the unmanned moving body 300 may adjust the range in which the sound output range and the sound collection range do not overlap.
  • the unmanned moving body 300 has the orientation of the unmanned moving body 300, the directivity direction and the directivity of the directional speaker 307 so that a person does not enter only one of the sound output range and the sound collection range. At least one of the directivity directions of the microphone 308 may be adjusted. Alternatively, the unmanned moving body 300 has at least one of the directional width of the directional speaker 307 and the directional width of the directional microphone 308 so that a person does not enter only one of the sound output range and the sound collection range. You may narrow the one.
  • FIG. 80 is a block diagram showing a specific configuration example of the unmanned moving body 300 shown in FIG. 75.
  • the unmanned mobile body 300 shown in FIG. 80 includes a GPS receiver 301, a gyro sensor 302, an acceleration sensor 303, a human detection sensor 304, a distance measuring sensor 305, an image sensor 306, a directional speaker 307, a directional microphone 308, and a drive. It includes a unit 309, a communication unit 310, a control unit 320, a storage unit 330, and a power supply unit 341.
  • the GPS receiver 301 is a receiver that constitutes a GPS (Global Positioning System) for measuring a position and acquires a position by receiving a signal. For example, the GPS receiver 301 acquires the position of the unmanned moving body 300.
  • GPS Global Positioning System
  • the gyro sensor 302 is a sensor that detects the posture of the unmanned moving body 300, that is, the angle or inclination of the unmanned moving body 300.
  • the acceleration sensor 303 is a sensor that detects the acceleration of the unmanned moving body 300.
  • the person detection sensor 304 is a sensor that detects a person around the unmanned moving body 300.
  • the human detection sensor 304 may be an infrared sensor.
  • the distance measurement sensor 305 is a sensor that measures the distance between the unmanned moving object 300 and the target, and generates distance measurement data.
  • the image sensor 306 is a sensor that performs imaging, and generates an image by imaging.
  • the image sensor 306 may be a camera.
  • the directional speaker 307 is a speaker that outputs sound in the directional direction.
  • the directivity direction of the directional speaker 307 may be adjustable, or the sound pressure of the sound produced by the directional speaker 307 may be adjustable.
  • the directional microphone 308 is a microphone that collects sound from the directional direction.
  • the directivity direction of the directional microphone 308 may be adjustable, or the sound collection sensitivity of the directional microphone 308 may be adjustable.
  • the drive unit 309 is a motor, an actuator, or the like that moves the unmanned moving body 300.
  • the communication unit 310 is a communication device that communicates with an external device of the unmanned mobile body 300.
  • the communication unit 310 may receive an operation signal for moving the unmanned moving body 300. Further, the communication unit 310 may send and receive the contents of the conversation.
  • the control unit 320 corresponds to the processor 350 shown in FIG. 75 and is composed of a circuit that performs information processing. Specifically, in this example, the control unit 320 includes a person detection unit 321, a related person determination unit 322, a range determination unit 323, a conversation position determination unit 324, a conversation control unit 325, and a movement control unit 326. That is, the processor 350 may play these roles.
  • the person detection unit 321 detects a person existing in the vicinity of the unmanned moving body 300.
  • the person detection unit 321 detects a person existing in the vicinity of the unmanned moving body 300 according to the sensing data obtained from the person detection sensor 304 or another sensor.
  • the related party determination unit 322 determines whether or not the person detected by the person detection unit 321 is a related party related to the speaker.
  • the range determination unit 323 determines the sound output range and the sound collection range according to the positional relationship between the speaker and the person concerned.
  • the conversation position determination unit 324 determines the conversation position according to the sound output range and the sound collection range.
  • the conversation control unit 325 controls the sound output of the directional speaker 307 by transmitting a control signal to the directional speaker 307, and transmits the control signal to the directional microphone 308 to collect the sound of the directional microphone 308. To control.
  • the movement control unit 326 controls the movement of the unmanned moving body 300 by transmitting a control signal to the driving unit 309.
  • the movement control unit 326 controls the flight of the unmanned moving body 300, which is an unmanned flying body.
  • the storage unit 330 is a memory for storing information, and stores the control program 331 and the corresponding information 332.
  • the control program 331 is an information processing program performed by the control unit 320.
  • Correspondence information 332 is the correspondence relationship between the sound pressure of the sound emitted by the directional speaker 307 and the sound output range in which the sound reaches with a quality equal to or higher than a predetermined value, and the sound collection sensitivity of the directional microphone 308 with a quality equal to or higher than a predetermined value. This information indicates the correspondence with the sound collection range in which the sound is collected.
  • the power supply unit 341 is a circuit that supplies power to a plurality of components included in the unmanned mobile body 300.
  • the power supply unit 341 includes a power source.
  • FIG. 81 is a flowchart showing a specific operation example of the unmanned moving body 300 shown in FIG. 80.
  • a plurality of components in the unmanned moving body 300 shown in FIG. 80 cooperate to perform the operation shown in FIG. 81.
  • the unmanned moving body 300 moves to a conversation position for having a conversation with a speaker (S311).
  • the conversation position is a position where the voice emitted by the speaker reaches from the position of the speaker and the sound emitted by the unmanned moving body 300 reaches. That is, the unmanned moving body 300 moves to a conversation position in which the speaker is included in the overlapping range of the sound output range and the sound collection range.
  • the speaker may be predetermined.
  • the unmanned moving object 300 may determine the speaker during the flight.
  • the person detection unit 321 detects the speaker according to the sensing data obtained from the person detection sensor 304, the image sensor 306, or the like. Then, the movement control unit 326 moves the unmanned moving body 300 from the speaker to the conversation position within a predetermined range via the drive unit 309.
  • the unmanned moving body 300 starts a conversation (S312). That is, the unmanned moving body 300 starts at least one of sound output and sound collection.
  • the conversation control unit 325 may cause the directional microphone 308 to start collecting sound, or the directional speaker 307 may start producing sound.
  • the unmanned moving body 300 senses the vicinity of the speaker (S313).
  • the person detection unit 321 detects a person around the speaker by causing the person detection sensor 304, the image sensor 306, or the like to sense the surroundings of the speaker. Any sensor for detecting a person can be used for this detection.
  • the periphery of the speaker corresponds to, for example, an area within a predetermined range from the speaker.
  • the unmanned moving body 300 determines whether or not a person other than the speaker has been detected (S314). For example, the person detection unit 321 determines whether or not a person other than the speaker has been detected in the vicinity of the speaker. When a person other than the speaker is not detected (No in S314), the unmanned moving body 300 repeats sensing (S313) around the speaker.
  • the unmanned moving object 300 determines whether or not the detected person is related to the speaker (S315).
  • the related party determination unit 322 may determine whether or not the detected person is a related person according to whether or not the distance between the speaker and the related person is within the threshold value, and may be related to grouping and the like. It may be determined whether or not the detected person is a related person according to other determination criteria. This determination is the same as the determination described in the first embodiment.
  • the unmanned moving body 300 repeats sensing (S313) around the speaker.
  • the unmanned moving body 300 measures the separation distance between the speaker and the related person (S316). For example, the range determination unit 323 calculates the distance between the position of the speaker detected according to the sensing data and the position of the related person detected according to the sensing data, thereby increasing the distance between the speaker and the related person. May be measured.
  • the unmanned moving body 300 determines the sound output range and the sound collection range according to the distance between the speaker and the person concerned (S317).
  • the range determination unit 323 determines the sound output range and the sound collection range according to the measured separation distance.
  • the range determining unit 323 increases the sound output range and the sound collection range as the measured separation distance increases.
  • the sound output range is, for example, a range relatively determined using the unmanned moving body 300 as a reference, and is a range in which sound reaches a predetermined quality or higher by the directional speaker 307.
  • the sound pick-up range is, for example, a range relatively determined using the unmanned moving body 300 as a reference, and is a range in which sound is picked up by the directional microphone 308 with a predetermined quality or higher.
  • the quality equal to or higher than the predetermined quality may correspond to the sound pressure within the predetermined range, or may correspond to the SN ratio (signal-to-noise ratio) within the predetermined range.
  • the unmanned moving body 300 determines a new conversation position according to the position of the speaker, the position of the person concerned, the sound output range, and the sound collection range (S318).
  • the conversation position determination unit 324 sets a new conversation position so that the overlapping range of the sound output range and the sound collection range includes the detected position of the speaker and the position of the detected related person. decide.
  • the unmanned moving body 300 moves to a new conversation position (S319).
  • the movement control unit 326 moves the unmanned moving body 300 to a new conversation position by controlling the operation of the driving unit 309.
  • the conversation control unit 325 may control the sound output of the directional speaker 307 so that the sound reaches the sound output range with a predetermined quality or higher.
  • the conversation control unit 325 may control the sound collection of the directional microphone 308 so that the sound is collected from the sound collection range with a predetermined quality or higher.
  • the unmanned moving body 300 can appropriately output and collect sound for the speaker and related persons.
  • the unmanned moving body 300 performs a process (S313 to S319) for moving to a new conversation position for the speaker and related persons after starting a conversation with the speaker (after S312). Is going.
  • the unmanned moving body 300 may perform a process for moving to a new conversation position for the speaker and related persons before starting a conversation with the speaker.
  • the unmanned moving body 300 repeats sensing (S313) around the speaker.
  • the unmanned moving body 300 may modify the conversation position so as not to output and collect sound to a person who is not a related person. That is, the conversation position determination unit 324 in the unmanned moving body 300 may modify the conversation position so that a person who is not a related person is not included in the sound output range or the sound collection range.
  • the conversation position determination unit 324 may modify the conversation position so that a person who is not a related person deviates from the sound output direction and the sound collection direction. As a result, the possibility of entering the sound output range or the sound collection range when a person who is not a related person moves is suppressed.
  • the unmanned moving body 300 determines whether or not the separation distance between the speaker and the person concerned falls within the overlapping range of the sound output range and the sound collection range. You may. Then, when the separation distance falls within the overlapping range, the unmanned moving body 300 may determine a new conversation position and move to the determined new conversation position. The unmanned moving body 300 does not have to move when the separation distance does not fall within the overlapping range.
  • the mode of the unmanned moving body has been described above based on the embodiment and the like, the mode of the unmanned moving body is not limited to the embodiment and the like. Modifications that can be conceived by those skilled in the art may be applied to the embodiments and the like, and a plurality of components in the embodiments and the like may be arbitrarily combined. For example, the process executed by a specific component in the embodiment or the like may be executed by another component instead of the specific component. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • the conversation in the above explanation may be a unidirectional conversation or a two-way conversation.
  • the unmanned moving body controls the directivity directions of the directional speaker and the directional microphone so that the directivity directions of the directional speaker and the directional microphone are directed toward the speaker and the related parties.
  • sound is output and sound is collected for the speaker and related persons.
  • Sound output and sound collection may be performed for only one person. That is, sound output and sound collection may be performed on the speaker without determining the related parties.
  • the position may be determined so that the sound is not output or picked up by a person other than the speaker. Specifically, as in the case of non-related persons in FIGS. 35 to 37 and 62 to 64, the position is determined so that sound is not output or picked up by a person other than the speaker. May be good.
  • the information processing method including the steps performed by each component of the unmanned moving body may be executed by any device or system. That is, this information processing method may be executed by an unmanned moving body, or may be executed by another device or system.
  • the above information processing method may be executed by a computer including a processor, a memory, an input / output circuit, and the like.
  • the information processing method may be executed by executing the program for causing the computer to execute the information processing method.
  • the program may be recorded on a non-temporary computer-readable recording medium.
  • the above program acquires one or more sensing data in a computer and determines whether or not a second target exists around the first target according to at least one of the one or more sensing data.
  • the positional relationship between the first target and the second target is calculated from at least one of the one or more sensing data, and the directivity of the unmanned moving body is provided.
  • the first position of the unmanned moving body which includes the first object and the second object within a range in which sound reaches a predetermined quality or higher by the speaker, is determined according to the positional relationship, and the unmanned object is moved to the first position.
  • the information processing method is executed to move the moving body.
  • the above program acquires one or more sensing data in a computer, and determines whether or not a second target exists around the first target according to at least one of the one or more sensing data.
  • the positional relationship between the first object and the second object is calculated from at least one of the one or more sensing data, and the unmanned moving body is provided.
  • the first position of the unmanned moving body which includes the first object and the second object within a range in which sound is collected by a directional microphone with a predetermined quality or higher, is determined according to the positional relationship, and the first position is determined.
  • An information processing method for moving the unmanned moving object to one position is executed.
  • the plurality of components of the unmanned moving body may be composed of dedicated hardware, general-purpose hardware for executing the above program or the like, or a combination thereof. May be good.
  • the general-purpose hardware may be composed of a memory in which the program is stored, a general-purpose processor that reads and executes the program from the memory, and the like.
  • the memory may be a semiconductor memory, a hard disk, or the like
  • the general-purpose processor may be a CPU or the like.
  • the dedicated hardware may be composed of a memory, a dedicated processor, and the like.
  • a dedicated processor may refer to the memory and execute the above information processing method.
  • each component of the unmanned moving body may be an electric circuit.
  • These electric circuits may form one electric circuit as a whole, or may be separate electric circuits. Further, these electric circuits may be compatible with dedicated hardware, or may be compatible with general-purpose hardware for executing the above program or the like.
  • the unmanned mobile body (100, 200, 300) in one aspect of the present disclosure includes a directional speaker (107, 207, 307) and a processor (150, 250, 350).
  • the directional speakers (107, 207, 307) output sound in the directional direction.
  • the processor (150, 250, 350) acquires one or more sensing data. Further, the processor (150, 250, 350) determines whether or not the second object exists in the vicinity of the first object according to at least one of the one or more sensing data. Further, when the processor (150, 250, 350) determines that the second target exists, it calculates the positional relationship between the first target and the second target from at least one of the one or more sensing data.
  • the processor (150, 250, 350) determines the first position according to the positional relationship.
  • the first position is an unmanned moving body (100, 200, 307) that includes the first object and the second object within a range in which sound reaches a predetermined quality or higher by a directional speaker (107, 207, 307). It is the position of 300). Then, the processor (150, 250, 350) moves the unmanned moving body (100, 200, 300) to the first position.
  • the unmanned moving body (100, 200, 300) can appropriately output sound to the first target and the second target. That is, the unmanned moving body (100, 200, 300) can integrally output sound to a plurality of objects.
  • the unmanned mobile body (100, 200, 300) in one aspect of the present disclosure includes a directional microphone (108, 208, 308) and a processor (150, 250, 350).
  • the directional microphones (108, 208, 308) pick up sound from the directional direction.
  • the processor (150, 250, 350) acquires one or more sensing data including the data acquired from the directional microphones (108, 208, 308). Further, the processor (150, 250, 350) determines whether or not the second object exists in the vicinity of the first object according to at least one of the one or more sensing data. Further, when the processor (150, 250, 350) determines that the second target exists, it calculates the positional relationship between the first target and the second target from at least one of the one or more sensing data.
  • the processor (150, 250, 350) determines the first position according to the positional relationship.
  • the first position is an unmanned moving body (100) that includes the first object and the second object within a range in which sound is picked up by a directional microphone (108, 208, 308) with a predetermined quality or higher. , 200, 300). Then, the processor (150, 250, 350) moves the unmanned moving body (100, 200, 300) to the first position.
  • the unmanned moving body (100, 200, 300) can appropriately collect sound from the first target and the second target. That is, the unmanned moving body (100, 200, 300) can integrally collect sound for a plurality of objects.
  • the processor (150, 250, 350) adjusts the range according to the positional relationship, and determines the first position according to the adjusted range.
  • the range is a range in which the sound reaches a predetermined quality or higher by the directional speaker (107, 207, 307), and the sound is picked up by the directional microphone (108, 208, 308) at a predetermined quality or higher. At least one of the ranges.
  • the unmanned moving body (100, 200, 300) can appropriately adjust the range of sound output or sound collection according to the positional relationship, and can appropriately include a plurality of objects in the adjusted range.
  • the first position is the position on the front side of the first object and the second object.
  • the unmanned moving body (100, 200, 300) can be moved to an appropriate position for having a conversation with a plurality of objects.
  • the processor (150, 250, 350) acquires the physical information of the first target and the physical information of the second target according to at least one of the one or more sensing data. Then, the processor (150, 250, 350) determines the first position according to the physical information of the first target and the physical information of the second target. As a result, the unmanned moving body (100, 200, 300) can move to an appropriate position with respect to the physical information of the first target and the physical information of the second target.
  • the processor (150, 250, 350) estimates the age of the first target and the age of at least one of the second target according to at least one of the one or more sensing data.
  • the processor (150, 250, 350) determines the first position according to the age of at least one of the first and second objects.
  • the unmanned moving body (100, 200, 300) can move to a position close to the target whose ability is assumed to be low, and can appropriately output or collect sound for a plurality of targets. it can.
  • the processor determines the first position that does not include the first object and the third object that is not related to the second object in the range.
  • the unmanned moving body 100, 200, 300
  • the unmanned moving body can suppress the sound output or sound collection to the unrelated third object.
  • the processor (150, 250, 350) detects the position of an obstacle according to at least one of one or more sensing data, and determines the first position according to the position of the obstacle.
  • the unmanned moving body (100, 200, 300) can appropriately determine the position for sound output or sound collection for a plurality of objects according to the position of the obstacle. Then, the unmanned moving body (100, 200, 300) can suppress sound output or sound collection to an unrelated third object by using, for example, an obstacle.
  • the processor (150, 250, 350) determines that the second target exists during the period when the first target is producing or collecting sound, the first target is included in the range.
  • the unmanned moving body (100, 200, 300) is moved to the first position in this state.
  • the unmanned moving body (100, 200, 300) can move to an appropriate position for having a conversation with the first object and the second object while continuing the conversation with the first object.
  • the processor (150, 250, 350) determines that the second target exists during the period during which the first target is producing or collecting sound
  • the processor (150, 250, 350) sets the front side of the first target.
  • the unmanned moving body (100, 200, 300) is moved to the first position through the passage.
  • the unmanned moving object (100, 200, 300) moves to an appropriate position for having a conversation with the first object and the second object through an appropriate area for having a conversation with the first object. can do.
  • the processor (150, 250, 350) determines that the second target exists during the period when the sound is output or collected from the first target
  • the processor (150, 250, 350) outputs the sound to the first target.
  • the unmanned moving body (100, 200, 300) is moved to the first position while maintaining the quality of sound or sound collection constant.
  • the unmanned moving body (100, 200, 300) can move to an appropriate position for having a conversation with the first object and the second object while appropriately continuing the conversation with the first object. it can.
  • the second object is an object related to the first object.
  • the processor (150, 250, 350) shows the information indicating the association with the first object and the association with the unmanned mobile body (100, 200, 300) from at least one of the one or more sensing data. Get at least one of the information.
  • the processor (150, 250, 350) first follows at least one of the information indicating the association with the first object and the information indicating the association with the unmanned mobile body (100, 200, 300). By determining whether or not the object existing in the vicinity of the object is related to the first object, it is determined whether or not the second object exists in the vicinity of the first object.
  • the unmanned moving body (100, 200, 300) can appropriately determine whether or not the second object related to the first object exists in the vicinity of the first object.
  • the processor (150, 250, 350) detects the frequency with which the first object makes a sound and the frequency with which the second object makes a sound according to at least one of the one or more sensing data. Then, the processor (150, 250, 350) is closer to the first target and the second target having a higher frequency of sound than the first target and the second target having a lower frequency of sound production. Determine the position.
  • the unmanned moving object (100, 200, 300) can move near the object that frequently makes a sound. Therefore, the unmanned moving body (100, 200, 300) can appropriately collect sound from an object that frequently emits sound.
  • the processor (150, 250, 350) detects the volume of the first target and the volume of the second target according to at least one of the one or more sensing data. Then, the processor (150, 250, 350) determines the first position closer to the lower volume of the first object and the second object than to the louder one of the first object and the second object.
  • the unmanned moving object (100, 200, 300) can move near a low-volume object. Therefore, the unmanned moving body (100, 200, 300) can appropriately collect sound from an object having a low volume.
  • an unmanned mobile body including a directional speaker (107, 207, 307) and a processor (150, 250, 350) may further include a directional microphone (108, 208,). 308) and.
  • the range in which the sound reaches the predetermined quality or higher by the directional speaker (107, 207, 307) is the range in which the sound is picked up by the directional microphone (108, 208, 308) in the predetermined quality or higher. is there.
  • the unmanned moving body (100, 200, 300) can appropriately output sound to the first target and the second target, and can appropriately collect sound from the first target and the second target. Can be done.
  • the processor (150, 250, 350) moves the unmanned moving body (100, 200, 300) in response to the conversation between the first object and the unmanned moving body (100, 200, 300).
  • the unmanned moving body (100, 200, 300) can move at an appropriate timing according to the conversation.
  • the processor moves the unmanned moving body (100, 200, 300) to the first position during the period when the sound is collected for the first object.
  • the unmanned moving body (100, 200, 300) can suppress the second target from entering the range of the sound output during the sound output, and transmits the entire content of the sound output to the second target. can do.
  • the processor 150, 250, 350
  • the directional speakers start to output sound.
  • the unmanned moving body (100, 200, 300) can start sound output after moving to an appropriate position for sound output to the first object and the second object. Therefore, the unmanned moving body (100, 200, 300) can suppress the second target from entering the range of the sound output during the sound output, and transmits the entire content of the sound output to the second target. can do.
  • the processor (150, 250, 350) moves an unmanned moving body (100, 200, 300) during a period in which sound is not output or picked up from the first object.
  • the unmanned moving body (100, 200, 300) can suppress fragmentation of sound, and can output or collect sound in a unit. Further, the unmanned moving body (100, 200, 300) can suppress the mixing of noise due to the movement.
  • one or more sensing data includes image data generated by an image sensor.
  • the processor 150, 250, 350
  • the unmanned moving body 100, 200, 300
  • one or more sensing data includes distance measurement data generated by the distance measurement sensor.
  • the processor (150, 250, 350) acquires the positional relationship between the first object and the second object according to the distance measurement data generated by the distance measurement sensor.
  • the unmanned moving body (100, 200, 300) can appropriately acquire the positional relationship between the first target and the second target according to the distance measurement data.
  • the positional relationship includes at least one of the distances and positions related to the first object and the second object.
  • the unmanned moving body (100, 200, 300) can move to an appropriate position according to the distance or position related to the first object and the second object.
  • one or more sensing data are acquired (S101). Further, it is determined whether or not the second target exists in the vicinity of the first target according to at least one of the one or more sensing data (S102). Further, when it is determined that the second target exists, the positional relationship between the first target and the second target is calculated from at least one of the one or more sensing data (S103).
  • the first position is determined according to the positional relationship.
  • the first position is the first target and the second target within the range where the sound can reach the predetermined quality or higher by the directional speakers (107, 207, 307) provided in the unmanned moving body (100, 200, 300).
  • the position of the unmanned moving body (100, 200, 300) including.
  • the unmanned moving body (100, 200, 300) is moved to the first position (S104).
  • sound can be appropriately output to the first target and the second target. That is, the sound output can be integrally performed on a plurality of objects.
  • the program in one aspect of the present disclosure is a program for causing a computer to execute the above information processing method.
  • sound can be appropriately output to the first target and the second target. That is, the sound output can be integrally performed on a plurality of objects.
  • one or more sensing data are acquired (S201). Further, it is determined from at least one of the one or more sensing data whether or not the second target exists in the vicinity of the first target (S202). Further, when it is determined that the second target exists, the positional relationship between the first target and the second target is calculated according to at least one of the one or more sensing data (S203).
  • the first position is determined according to the positional relationship.
  • the first position is the first object and the first position within a range in which sound is picked up with a predetermined quality or higher by the directional microphones (108, 208, 308) included in the unmanned moving body (100, 200, 300).
  • sound can be appropriately collected from the first target and the second target. That is, sound collection can be performed integrally for a plurality of objects.
  • the program in one aspect of the present disclosure is a program for causing a computer to execute the above information processing method.
  • sound can be appropriately picked up from the first target and the second target. That is, sound collection can be performed integrally for a plurality of objects.
  • the position of the unmanned moving body is determined based on the sound output range of the speaker or the sound collection range of the microphone.
  • the presentation device is directly presented to the target like a speaker.
  • the presenting device includes a display. That is, the present disclosure can be applied not only to sound but also to other information transmission media such as light.
  • This disclosure can be used for unmanned moving objects, etc. that have a conversation with a speaker, and can be applied to a guidance system, a watching system, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Manipulator (AREA)
  • Traffic Control Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)

Abstract

無人移動体(100)は、指向方向へ音を出力する指向性スピーカ(107)と、一以上のセンシングデータを取得するプロセッサ(150)とを備え、プロセッサ(150)は、一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、第二対象が存在すると判定した場合に、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出し、指向性スピーカ(107)により所定の品質以上で音が届く範囲内に第一対象と第二対象とを含ませる、無人移動体(100)の第一位置を位置関係に従って決定し、第一位置へ無人移動体(100)を移動させる。

Description

無人移動体及び情報処理方法
 本開示は、無人移動体等に関する。
 特許文献1において、移動体の外部への発音状態を制御する発音制御装置が提案されている。特許文献1では、認識した被検知体の位置に対応する方向を発音させる方向として設定することが示されている。
特開2005-319952号公報
 しかしながら、複数の対象に対して出音又は収音を行う場合において、音の方向の制御のみでは、出音又は収音を複数の対象に対して一体的に行うことが困難なおそれがある。
 そこで、本開示は、出音又は収音を複数の対象に対して一体的に行うことができる無人移動体を提供することを目的とする。
 例えば、本開示の一態様に係る無人移動体は、無人移動体であって、指向方向へ音を出力する指向性スピーカと、一以上のセンシングデータを取得するプロセッサと、を備え、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、前記指向性スピーカにより所定の品質以上で音が届く範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる。
 また、例えば、本開示の一態様に係る無人移動体は、無人移動体であって、指向方向から音を収音する指向性マイクロフォンと、前記指向性マイクロフォンから取得されるデータを含む一以上のセンシングデータを取得するプロセッサと、を備え、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、前記指向性マイクロフォンにより所定の品質以上で音が収音される範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる。
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様に係る無人移動体等は、出音又は収音を複数の対象に対して一体的に行うことができる。
図1は、実施の形態1における無人移動体の基本的な構成例を示すブロック図である。 図2は、実施の形態1における無人移動体の基本的な動作例を示すフローチャートである。 図3は、実施の形態1における無人移動体の具体的な動作例を示す概念図である。 図4は、実施の形態1における無人移動体の具体的な構成例を示すブロック図である。 図5は、実施の形態1における無人移動体の具体的な動作例を示すフローチャートである。 図6は、実施の形態1における音圧の減衰を示す概念図である。 図7は、実施の形態1における音源の音圧と音源から離れた場所における音圧との関係を示すデータ図である。 図8は、実施の形態1における会話者と関係者と無人移動体との位置関係を示す概念図である。 図9は、実施の形態1における会話者と関係者との離間距離、無人移動体が出す音の音圧および出音範囲の関係を示すデータ図である。 図10は、実施の形態1における音源の音圧と所定範囲の音圧で音が届く範囲との関係を示すデータ図である。 図11は、実施の形態1における会話者と関係者との離間距離が3mである場合の例を示す概念図である。 図12は、実施の形態1における会話者と関係者との離間距離が10mである場合の例を示す概念図である。 図13は、実施の形態1における会話者と接触している関係者の例を示す概念図である。 図14は、実施の形態1における会話者と物を介して接触している関係者の例を示す概念図である。 図15は、実施の形態1における会話者と会話している関係者の例を示す概念図である。 図16は、実施の形態1における会話者に対する距離が小さい関係者の例を示す概念図である。 図17は、実施の形態1における会話者と服装が同じ関係者の例を示す概念図である。 図18は、実施の形態1における会話者と所定エリアに存在する関係者の例を示す概念図である。 図19は、実施の形態1における会話者に近づく関係者の例を示す概念図である。 図20は、実施の形態1における会話者の声が届く範囲に存在する関係者の例を示す概念図である。 図21は、実施の形態1における会話者の声が届く範囲に存在する関係者を出音範囲に含める移動例を示す概念図である。 図22は、実施の形態1における会話者とは別に会話を行う関係者の例を示す概念図である。 図23は、実施の形態1における出音及び収音に適切な関係者の例を示す概念図である。 図24は、実施の形態1における会話者の位置と関係者の位置とを通る直線上の出音位置の例を示す概念図である。 図25は、実施の形態1における会話者に近い出音位置の例を示す概念図である。 図26は、実施の形態1における高齢者に近い出音位置の例を示す概念図である。 図27は、実施の形態1における関係者を中心に正面側に補正された出音位置の例を示す概念図である。 図28は、実施の形態1における関係者が出音範囲に含まれるように会話者を中心に決定された出音位置の例を示す概念図である。 図29は、実施の形態1における会話者及び関係者の正面側の出音位置の例を示す概念図である。 図30は、実施の形態1における水平面に対して斜め方向の直線上の出音位置の例を示す概念図である。 図31は、実施の形態1における水平方向の直線上の出音位置の例を示す概念図である。 図32は、実施の形態1における会話者及び関係者と同じ高さの出音位置の例を示す概念図である。 図33は、実施の形態1における会話者及び関係者よりも高い出音位置の例を示す概念図である。 図34は、実施の形態1における出音位置の高さの例を示す概念図である。 図35は、実施の形態1における出音範囲から非関係者を排除するための出音位置の例を示す概念図である。 図36は、実施の形態1における非関係者と会話者と無人移動体との水平面上の位置関係の例を示す概念図である。 図37は、実施の形態1における非関係者と会話者と無人移動体との垂直面上の位置関係の例を示す概念図である。 図38は、実施の形態1における出音範囲から別の人を排除するための出音位置の例を示す概念図である。 図39は、実施の形態1における無人移動体が出音位置へ移動する例を示す概念図である。 図40は、実施の形態1における無人移動体が出音を開始してから出音位置へ移動する例を示す概念図である。 図41は、実施の形態1における無人移動体が正面側を通って出音位置へ移動する例を示す概念図である。 図42は、実施の形態1における無人移動体が出音範囲を変更する例を示す概念図である。 図43は、実施の形態1における移動と出音範囲の変更との選択的動作の例を示す概念図である。 図44は、実施の形態1における関係者が出音範囲から外れた場合の例を示す概念図である。 図45は、実施の形態1における別の人が出音範囲に入った場合の例を示す概念図である。 図46は、実施の形態2における無人移動体の基本的な構成例を示すブロック図である。 図47は、実施の形態2における無人移動体の基本的な動作例を示すフローチャートである。 図48は、実施の形態2における無人移動体の具体的な動作例を示す概念図である。 図49は、実施の形態2における無人移動体の具体的な構成例を示すブロック図である。 図50は、実施の形態2における無人移動体の具体的な動作例を示すフローチャートである。 図51は、実施の形態2における会話者の位置と関係者の位置とを通る直線上の収音位置の例を示す概念図である。 図52は、実施の形態2における会話者に近い収音位置の例を示す概念図である。 図53は、実施の形態2における高齢者に近い収音位置の例を示す概念図である。 図54は、実施の形態2における関係者を中心に正面側に補正された収音位置の例を示す概念図である。 図55は、実施の形態2における関係者が収音範囲に含まれるように会話者を中心に決定された収音位置の例を示す概念図である。 図56は、実施の形態2における会話者及び関係者の正面側の収音位置の例を示す概念図である。 図57は、実施の形態2における水平面に対して斜め方向の直線上の収音位置の例を示す概念図である。 図58は、実施の形態2における水平方向の直線上の収音位置の例を示す概念図である。 図59は、実施の形態2における会話者及び関係者と同じ高さの収音位置の例を示す概念図である。 図60は、実施の形態2における会話者及び関係者よりも高い収音位置の例を示す概念図である。 図61は、実施の形態2における収音位置の高さの例を示す概念図である。 図62は、実施の形態2における収音範囲から非関係者を排除するための収音位置の例を示す概念図である。 図63は、実施の形態2における非関係者と会話者と無人移動体との水平面上の位置関係の例を示す概念図である。 図64は、実施の形態2における非関係者と会話者と無人移動体との垂直面上の位置関係の例を示す概念図である。 図65は、実施の形態2における収音範囲から別の人を排除するための収音位置の例を示す概念図である。 図66は、実施の形態2における会話者が出す音及び関係者が出す音に従って決定される収音位置の例を示す概念図である。 図67は、実施の形態2における無人移動体が収音位置へ移動する例を示す概念図である。 図68は、実施の形態2における無人移動体が正面側を通って収音位置へ移動する例を示す概念図である。 図69は、実施の形態2における無人移動体が収音範囲を変更する例を示す概念図である。 図70は、実施の形態2における移動と収音範囲の変更との選択的動作の例を示す概念図である。 図71は、実施の形態2における関係者が収音範囲から外れた場合の例を示す概念図である。 図72は、実施の形態2における別の人が収音範囲に入った場合の例を示す概念図である。 図73は、実施の形態2におけるグループが収音範囲に入った場合の例を示す概念図である。 図74は、実施の形態2における関係者が収音範囲に入った場合の例を示す概念図である。 図75は、実施の形態3における無人移動体の基本的な構成例を示すブロック図である。 図76は、実施の形態3における無人移動体の基本的な動作例を示すフローチャートである。 図77は、実施の形態3における出音範囲と収音範囲との例を示す概念図である。 図78は、実施の形態3における出音範囲と収音範囲とが重複しない範囲から音が収音される例を示す概念図である。 図79は、実施の形態3における出音範囲と収音範囲とが重複しない範囲を調整する例を示す概念図である。 図80は、実施の形態3における無人移動体の具体的な構成例を示すブロック図である。 図81は、実施の形態3における無人移動体の具体的な動作例を示すフローチャートである。
 (本開示の基礎となった知見)
 無人移動体が、マイクロフォン(マイク)及びスピーカを搭載し、人と会話を行うことが検討されている。このような無人移動体は、ロボットであってもよいし、ドローンとも呼ばれる無人飛行体であってもよい。また、無人移動体は、無人移動体に搭載された人工知能(AI)等によって会話内容を自ら識別し、人と会話を行ってもよい。あるいは、無人移動体の遠隔操縦者又は遠隔管理者等が、無人移動体を介して、遠隔操縦者又は遠隔管理者等とは別の人と会話を行ってもよい。
 また、無人飛行体は、プロペラを高速に回転して飛行するため、飛行音が大きいという特徴を有する。そのため、例えば、無人飛行体は、人と会話を行う際に、飛行音を考慮して、大きな音量で音を発する。これにより、無人飛行体は、無人飛行体と会話を行う人に、無人飛行体が発する音を認識させることができる。一方、無人飛行体と会話を行う人の周辺に存在する人に、無人飛行体が発する大きな音は、不快感を与える。
 このような弊害を抑制するため、音量を大きくするのみではなく、無人飛行体と会話を行う人のみに、無人飛行体が発する音が届くように、指向性スピーカが用いられてもよい。この場合、指向性スピーカが、無人飛行体と会話を行う人に向けられる。これにより、無人飛行体と会話を行う人は、無人飛行体が発する音を聞き取ることができる。
 また、大きい飛行音がノイズとしてマイクに入らないように、かつ、無人飛行体と会話を行う人のみから音がマイクに入るように、指向性マイクが用いられてもよい。この場合、指向性マイクが、無人飛行体と会話を行う人に向けられる。これにより、無人飛行体は、無人飛行体と会話を行う人が発する音を認識することができる。
 しかしながら、無人飛行体と会話を行う人は、必ずしも一人とは限らない。例えば、無人飛行体と会話を行う会話者は、会話者の知人、家族、又は、会社の同僚等のような会話者の関係者と一緒に無人飛行体と会話を行う場合がある。このような場合において、無人飛行体が会話者のみに音を発すると、会話者の周辺に存在する関係者には無人飛行体が発する音を聞き取ることが困難である。また、無人飛行体は、単にマイクを会話者に向けたのみでは、会話者の周辺に存在する関係者が発する音を適切に収音することは困難である。
 したがって、関係者が無人飛行体と会話者との間の会話に入ることが困難であり、無人飛行体と会話者と関係者との間で会話を成立させることが困難である。このような弊害は、無人飛行体に限らず、無人飛行体以外の無人移動体においても起こり得る。
 そこで、例えば、本開示の一態様に係る無人移動体は、無人移動体であって、指向方向へ音を出力する指向性スピーカと、一以上のセンシングデータを取得するプロセッサと、を備え、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、前記指向性スピーカにより所定の品質以上で音が届く範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる。
 これにより、無人移動体は、第一対象及び第二対象へ適切に出音を行うことができる。すなわち、無人移動体は、出音を複数の対象に対して一体的に行うことができる。
 また、例えば、本開示の一態様に係る無人移動体は、無人移動体であって、指向方向から音を収音する指向性マイクロフォンと、前記指向性マイクロフォンから取得されるデータを含む一以上のセンシングデータを取得するプロセッサと、を備え、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、前記指向性マイクロフォンにより所定の品質以上で音が収音される範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる。
 これにより、無人移動体は、第一対象及び第二対象から適切に収音を行うことができる。すなわち、無人移動体は、収音を複数の対象に対して一体的に行うことができる。
 また、例えば、前記プロセッサは、前記位置関係に従って前記範囲を調整し、調整された前記範囲に従って前記第一位置を決定する。
 これにより、無人移動体は、位置関係に従って出音又は収音の範囲を適切に調整することができ、調整された範囲に複数の対象を適切に含めることができる。
 また、例えば、前記第一位置は、前記第一対象及び前記第二対象の正面側の位置である。
 これにより、無人移動体は、複数の対象と会話を行うための適切な位置に移動することができる。
 また、例えば、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って、前記第一対象の身体情報及び前記第二対象の身体情報を取得し、前記第一対象の身体情報及び前記第二対象の身体情報に従って前記第一位置を決定する。
 これにより、無人移動体は、第一対象の身体情報及び第二対象の身体情報に対して適切な位置に移動することができる。
 また、例えば、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って、前記第一対象の年齢及び前記第二対象の少なくとも一方の年齢を推定し、前記第一対象及び前記第二対象の少なくとも一方の年齢にも従って前記第一位置を決定する。
 これにより、無人移動体は、年齢に従って適切な位置へ移動することができ、複数の対象に対して出音又は収音を適切に行うことができる。
 また、例えば、前記プロセッサは、前記第一対象及び前記第二対象と関連のない第三対象を前記範囲内に含ませない前記第一位置を決定する。
 これにより、無人移動体は、関連のない第三対象に対して出音又は収音を行うことを抑制することができる。
 また、例えば、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って、障害物の位置を検知し、前記障害物の位置に従って、前記第一位置を決定する。
 これにより、無人移動体は、複数の対象に対して出音又は収音を行うための位置を障害物の位置に従って適切に決定することができる。そして、無人移動体は、例えば、障害物を用いて、関連のない第三対象に対して出音又は収音を行うことを抑制することができる。
 また、例えば、前記プロセッサは、前記第一対象に対して出音又は収音が行われている期間に前記第二対象が存在すると判定した場合、前記第一対象が前記範囲に含まれる状態で前記第一位置へ前記無人移動体を移動させる。
 これにより、無人移動体は、第一対象との会話を継続しながら、第一対象及び第二対象との会話を行うための適切な位置に移動することができる。
 また、例えば、前記プロセッサは、前記第一対象に対して出音又は収音が行われている期間に前記第二対象が存在すると判定した場合、前記第一対象の正面側を通って前記第一位置へ前記無人移動体を移動させる。
 これにより、無人移動体は、第一対象と会話を行うための適切な領域を通って、第一対象及び第二対象との会話を行うための適切な位置に移動することができる。
 また、例えば、前記プロセッサは、前記第一対象に対して出音又は収音が行われている期間に前記第二対象が存在すると判定した場合、前記第一対象に対して出音又は収音の品質を一定に維持しながら、前記第一位置へ前記無人移動体を移動させる。
 これにより、無人移動体は、第一対象との会話を適切に継続しながら、第一対象及び第二対象との会話を行うための適切な位置に移動することができる。
 また、例えば、前記第二対象は、前記第一対象に関連する対象であり、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つから、前記第一対象との関連を示す情報、及び、前記無人移動体との関連を示す情報のうちの少なくとも一つを取得し、前記第一対象との関連を示す情報、及び、前記無人移動体との関連を示す情報のうちの少なくとも一つに従って、前記第一対象の周辺に存在する対象が前記第一対象に関連するか否かを判定することにより、前記第一対象の周辺に前記第二対象が存在するか否かを判定する。
 これにより、無人移動体は、第一対象に関連する第二対象が第一対象の周辺に存在するか否かを適切に判定することができる。
 また、例えば、前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って、前記第一対象が音を出す頻度及び前記第二対象が音を出す頻度を検知し、前記第一対象及び前記第二対象のうち音を出す頻度の低い方よりも前記第一対象及び前記第二対象のうち音を出す頻度の高い方に近い前記第一位置を決定する。
 これにより、無人移動体は、音を出す頻度の高い対象の近くに移動することができる。したがって、無人移動体は、音を出す頻度の高い対象から適切に収音を行うことができる。
 また、例えば、前記プロセッサは、前記一以上のセンシングデータのうち少なくとも一つに従って、前記第一対象の音量及び前記第二対象の音量を検知し、前記第一対象及び前記第二対象のうち音量の大きい方よりも前記第一対象及び前記第二対象のうち音量の小さい方に近い前記第一位置を決定する。
 これにより、無人移動体は、音量の小さい対象の近くに移動することができる。したがって、無人移動体は、音量の小さい対象から適切に収音を行うことができる。
 また、例えば、前記無人移動体は、さらに、指向性マイクロフォンを備え、前記範囲は、さらに、前記指向性マイクロフォンにより所定の品質以上で音が収音される範囲である。
 これにより、無人移動体は、第一対象及び第二対象へ適切に出音を行うことができ、かつ、第一対象及び第二対象から適切に収音を行うことができる。
 また、例えば、前記プロセッサは、前記第一対象と前記無人移動体との会話に従って、前記無人移動体の移動のタイミングを制御する。
 これにより、無人移動体は、会話に応じた適切なタイミングで移動することができる。
 また、例えば、前記プロセッサは、前記第一対象に対して収音が行われている期間に、前記第一位置へ前記無人移動体を移動させる。
 これにより、無人移動体は、第一対象が音を出しており、かつ、無人移動体が出音を行っていないと想定される期間に移動することができる。したがって、無人移動体は、出音の途中に、第二対象が出音の範囲に入ることを抑制することができ、出音の全体の内容を第二対象へ伝達することができる。
 また、例えば、前記プロセッサは、前記無人移動体の移動の途中で前記第一対象から出される音が終わった場合、前記無人移動体の移動が完了してから前記指向性スピーカに出音を開始させる。
 これにより、無人移動体は、第一対象及び第二対象に対して出音を行うための適切な位置に移動した後に、出音を開始することができる。したがって、無人移動体は、出音の途中に、第二対象が出音の範囲に入ることを抑制することができ、出音の全体の内容を第二対象へ伝達することができる。
 また、例えば、前記プロセッサは、前記第一対象に対する出音又は収音が行われていない期間に、前記無人移動体を移動させる。
 これにより、無人移動体は、音の断片化を抑制することができ、まとまった単位で出音又は収音を行うことができる。また、無人移動体は、移動に伴うノイズの混入を抑制することができる。
 また、例えば、前記一以上のセンシングデータは、イメージセンサによって生成された画像データを含み、前記プロセッサは、前記イメージセンサによって生成された画像データに従って前記位置関係を取得する。
 これにより、無人移動体は、画像データに従って第一対象及び第二対象の位置関係を適切に取得することができる。
 また、例えば、前記一以上のセンシングデータは、測距センサによって生成された測距データを含み、前記プロセッサは、前記測距センサによって生成された測距データに従って前記位置関係を取得する。
 これにより、無人移動体は、測距データに従って第一対象及び第二対象の位置関係を適切に取得することができる。
 また、例えば、前記位置関係は、前記第一対象と前記第二対象とに関連する距離及び位置のうち少なくとも一つを含む。
 これにより、無人移動体は、第一対象及び第二対象に関連する距離又は位置に従って適切な位置へ移動することができる。
 また、例えば、本開示の一態様に係る情報処理方法は、一以上のセンシングデータを取得し、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、無人移動体が備える指向性スピーカにより所定の品質以上で音が届く範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる。
 これにより、情報処理方法が行われることで、第一対象及び第二対象へ適切に出音が行われ得る。すなわち、出音が複数の対象に対して一体的に行われ得る。
 また、例えば、本開示の一態様に係るプログラムは、前記情報処理方法をコンピュータに実行させる。
 これにより、プログラムが実行されることで、第一対象及び第二対象へ適切に出音が行われ得る。すなわち、出音が複数の対象に対して一体的に行われ得る。
 また、例えば、本開示の一態様に係る情報処理方法は、一以上のセンシングデータを取得し、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、無人移動体が備える指向性マイクロフォンにより所定の品質以上で音が収音される範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる。
 これにより、情報処理方法が行われることで、第一対象及び第二対象から適切に収音が行われ得る。すなわち、収音が複数の対象に対して一体的に行われ得る。
 また、例えば、本開示の一態様に係るプログラムは、前記情報処理方法をコンピュータに実行させる。
 これにより、プログラムが実行されることで、第一対象及び第二対象から適切に収音が行われ得る。すなわち、収音が複数の対象に対して一体的に行われ得る。
 さらに、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、以下の説明において、第一、第二及び第三等の序数が要素に付けられている場合がある。これらの序数は、要素を識別するため、要素に付けられており、意味のある順序に必ずしも対応しない。これらの序数は、適宜、入れ替えられてもよいし、新たに付与されてもよいし、取り除かれてもよい。
 また、以下の説明において、音圧は、音圧レベル又は音量に読み替えられてもよいし、音量は、音圧又は音圧レベルに読み替えられてもよい。また、会話はコミュニケーションに読み替えられてもよい。
 (実施の形態1)
 図1は、本実施の形態における無人移動体の基本的な構成例を示すブロック図である。図1において、指向性スピーカ107及びプロセッサ150を備える無人移動体100が示されている。
 無人移動体100は、移動する装置である。例えば、無人移動体100は、自律的に移動又は静止する。無人移動体100は、操作を受けた場合に、操作に従って移動してもよい。また、無人移動体100は、典型的には無人飛行体であるが、無人飛行体に限られず、面上を走行する装置であってもよい。無人移動体100は、空中又は面上を移動するためのモータ及びアクチュエータ等の移動機構を備えていてもよい。
 また、無人移動体100は、一以上のセンサを備えていてもよい。例えば、無人移動体100は、イメージセンサを備えていてもよいし、測距センサを備えていてもよいし、マイクロフォンを音センサとして備えていてもよいし、人検知センサを備えていてもよいし、位置検知器を位置センサとして備えてもよい。
 指向性スピーカ107は、指向方向へ出音を行うスピーカである。指向性スピーカ107の指向方向が調整可能であってもよいし、指向性スピーカ107が出す音の音圧が調整可能であってもよい。指向性スピーカ107の指向方向は、出音方向とも表現され得る。
 プロセッサ150は、情報処理を行う回路で構成される。例えば、プロセッサ150は、無人移動体100の移動を制御してもよい。具体的には、プロセッサ150は、空中又は面上を移動するためのモータ及びアクチュエータ等の移動機構の動作を制御することにより、無人移動体100の移動を制御してもよい。
 また、プロセッサ150は、指向性スピーカ107に対して制御信号を送ることにより、指向性スピーカ107の指向方向を調整してもよいし、指向性スピーカ107が出す音の音圧を調整してもよい。また、プロセッサ150は、無人移動体100の向きを調整することにより、指向性スピーカ107の指向方向を調整してもよい。
 図2は、図1に示された無人移動体100の基本的な動作例を示すフローチャートである。主に、無人移動体100におけるプロセッサ150が、図2に示された動作を行う。
 まず、プロセッサ150は、一以上のセンシングデータを取得する(S101)。プロセッサ150は、無人移動体100の内部の一以上のセンサから一以上のセンシングデータを取得してもよいし、無人移動体100の外部の一以上のセンサから一以上のセンシングデータを取得してもよい。また、プロセッサ150は、無人移動体100の内部の一以上のセンサ、及び、無人移動体100の外部の一以上のセンサから、複数のセンシングデータを取得してもよい。
 例えば、無人移動体100の外部の一以上のセンサとして、イメージセンサ、測距センサ、マイクロフォン、人検知センサ、又は、位置検知器等が用いられてもよい。
 そして、プロセッサ150は、取得された一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定する(S102)。例えば、第一対象は会話者であり、第二対象は会話者に関連する関係者である。ただし、第一対象及び第二対象のそれぞれは、人に限られず、動物であってもよいし、装置であってもよい。なお、第一対象の周辺は、第一対象を基準とした所定範囲である。
 そして、第一対象の周辺に第二対象が存在すると判定された場合、プロセッサ150は、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出する(S103)。つまり、プロセッサ150は、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を導出する。
 例えば、位置関係は、第一対象及び第二対象に関連する位置及び距離のうち少なくとも一つを含む。位置関係は、第一対象及び第二対象のそれぞれの位置を含んでいてもよいし、第一対象と第二対象との間の距離を含んでいてもよい。
 具体的には、プロセッサ150は、イメージセンサから取得された画像データを用いて、第一対象の位置、第二対象の位置、及び、第一対象と第二対象との間の距離等を算出してもよい。また、プロセッサ150は、測距センサから取得された測距データを用いて、無人移動体100と第一対象との間の距離、無人移動体100と第二対象との間の距離、及び、第一対象と第二対象との間の距離等を算出してもよい。
 そして、プロセッサ150は、算出された位置関係に従って第一位置を決定する。第一位置は、指向性スピーカ107により所定の品質以上で音が届く範囲内に第一対象と第二対象とが含まれるような無人移動体100の位置である。そして、プロセッサ150は、決定された第一位置へ無人移動体100を移動させる(S104)。
 これにより、無人移動体100は、第一対象及び第二対象へ適切に出音を行うことができる。すなわち、無人移動体100は、出音を複数の対象に対して一体的に行うことができる。
 例えば、第二対象は、第一対象に関連する対象である。プロセッサ150は、一以上のセンシングデータのうちの少なくとも一つに従って、第一対象の周辺に存在する対象が第一対象に関連するか否かを判定してもよい。そして、これにより、プロセッサ150は、第一対象の周辺に第二対象が存在するか否かを判定してもよい。
 その際、プロセッサ150は、一以上のセンシングデータのうちの少なくとも一つから、第一対象との関連を示す情報、及び、無人移動体100との関連を示す情報のうちの少なくとも一つを取得してもよい。そして、プロセッサ150は、第一対象との関連を示す情報、及び、無人移動体100との関連を示す情報のうちの少なくとも一つに従って、第一対象の周辺に存在する対象が第一対象に関連するか否かを判定してもよい。
 具体的には、プロセッサ150は、第一対象の周辺に存在する対象が複数の条件のうちの一以上を満たす場合に、第一対象の周辺に存在する対象が第一対象に関連すると判定してもよい。
 例えば、この複数の条件は、「第一対象と接触している」、「第一対象と会話している」、「第一対象に対して閾値以下の距離に存在する」、「第一対象と服装が同一である」、「所定エリアに第一対象と存在する」、「第一対象と紐づけられている」、「第一対象に近づいている」、「第一対象の声が届く範囲に存在する」、「第一対象と無人移動体100との会話中に無人移動体100に声をかけている」、及び、「第一対象と無人移動体100との会話中に無人移動体100を見ている」等を含んでいてもよい。
 図3は、図1に示された無人移動体100の具体的な動作例を示す概念図である。この例において、無人移動体100は、ドローンとも呼ばれる無人飛行体である。会話者は第一対象に対応し、関係者は第二対象に対応する。
 例えば、無人移動体100は、会話者の周辺において、会話者に対して出音を行う。そして、無人移動体100は、会話者の周辺に関係者が存在するか否かを判定する。
 例えば、無人移動体100は、無人移動体100が備えるセンサを用いて会話者の周辺をセンシングし、その結果に従って、会話者の周辺に人が存在するか否かを判定する。具体的には、無人移動体100が備えるセンサとして、イメージセンサが用いられ得る。そして、無人移動体100は、会話者の周辺に存在する人が会話者の関係者であると判定される場合に、会話者の周辺に関係者が存在すると判定する。
 そして、無人移動体100は、会話者の周辺に関係者が存在すると判定された場合、無人移動体100が出す音が届く出音範囲に会話者及び関係者が含まれるように、出音位置を決定する。無人移動体100が出す音が届く出音範囲は、指向性スピーカ107の指向方向に従って定められてもよい。
 そして、無人移動体100は、決定された出音位置に移動して出音を行う。これにより、無人移動体100は、出音範囲に含まれる会話者及び関係者に音を届けることができる。
 図4は、図3に示された無人移動体100の具体的な構成例を示すブロック図である。図4に示された無人移動体100は、GPS受信機101、ジャイロセンサ102、加速度センサ103、人検知センサ104、測距センサ105、イメージセンサ106、指向性スピーカ107、指向性マイクロフォン108、駆動部109、通信部110、制御部120、記憶部130、及び、電力供給部141を備える。
 GPS受信機101は、位置を測定するためのGPS(Global Positioning System)を構成し、信号を受信することにより位置を取得する受信機である。例えば、GPS受信機101は、無人移動体100の位置を取得する。すなわち、GPS受信機101は、無人移動体100の位置を検知するセンサとして動作する。
 ジャイロセンサ102は、無人移動体100の姿勢、つまり、無人移動体100の角度又は傾きを検知するセンサである。加速度センサ103は、無人移動体100の加速度を検知するセンサである。人検知センサ104は、無人移動体100の周辺の人を検知するセンサである。人検知センサ104は、赤外線センサであってもよい。
 測距センサ105は、無人移動体100と対象との間の距離を測定するセンサであって測距データを生成する。イメージセンサ106は、撮像を行うセンサであり、撮像によって画像を生成する。イメージセンサ106は、カメラであってもよい。
 指向性スピーカ107は、上述した通り、指向方向へ出音を行うスピーカである。指向性スピーカ107の指向方向が調整可能であってもよいし、指向性スピーカ107が出す音の音圧が調整可能であってもよい。指向性マイクロフォン108は、指向方向から収音を行うマイクロフォンである。指向性マイクロフォン108の指向方向が調整可能であってもよいし、指向性マイクロフォン108の収音感度が調整可能であってもよい。指向性マイクロフォン108の指向方向は、収音方向とも表現され得る。
 駆動部109は、無人移動体100を移動させるモータ及びアクチュエータ等である。通信部110は、無人移動体100の外部の装置と通信を行う通信器である。通信部110は、無人移動体100の移動のための操作信号を受けてもよい。また、通信部110は、会話の内容を送受信してもよい。
 制御部120は、図1に示されたプロセッサ150に対応し、情報処理を行う回路で構成される。具体的には、この例において、制御部120は、人検知部121、関係者判定部122、出音範囲決定部123、出音位置決定部124、出音制御部125、及び、移動制御部126を備える。すなわち、プロセッサ150は、これらの役割を果たしてもよい。
 人検知部121は、無人移動体100の周辺に存在する人を検知する。人検知部121は、人検知センサ104又は他のセンサから得られるセンシングデータに従って、無人移動体100の周辺に存在する人を検知する。
 関係者判定部122は、人検知部121で検知された人が会話者に関連する関係者であるか否かを判定する。出音範囲決定部123は、会話者と関係者との位置関係に従って出音範囲を決定する。出音位置決定部124は、決定された出音範囲に従って出音位置を決定する。出音制御部125は、指向性スピーカ107へ制御信号を送信することにより、指向性スピーカ107の出音を制御する。
 移動制御部126は、駆動部109へ制御信号を送信することにより、無人移動体100の移動を制御する。この例において、移動制御部126は、無人飛行体である無人移動体100の飛行を制御する。
 記憶部130は、情報を記憶するためのメモリであり、制御プログラム131及び音圧出音範囲対応情報132を記憶している。制御プログラム131は、制御部120が行う情報処理のプログラムである。音圧出音範囲対応情報132は、指向性スピーカ107が出す音の音圧と、所定以上の品質で音が届く出音範囲との対応関係を示す情報である。
 電力供給部141は、無人移動体100に含まれる複数の構成要素に対して電力を供給する回路である。例えば、電力供給部141は、電源を含む。
 図5は、図3に示された無人移動体100の具体的な動作例を示すフローチャートである。例えば、図4に示された無人移動体100における複数の構成要素が連携して図5に示された動作を行う。
 まず、無人移動体100は、会話者と会話を行うための会話位置に移動する(S111)。例えば、会話位置は、会話者の位置から会話者が発する声が届き、かつ、無人移動体100が発する音が届く位置である。会話者は、事前に決定されていてもよい。無人移動体100は、飛行中に会話者を決定してもよい。
 例えば、無人移動体100において、人検知部121が、人検知センサ104又はイメージセンサ106等から得られるセンシングデータに従って、会話者を検知する。そして、移動制御部126は、駆動部109を介して、会話者から所定範囲内の会話位置へ無人移動体100を移動させる。
 そして、無人移動体100は、会話を開始する(S112)。つまり、無人移動体100は、出音及び収音の少なくとも一方を開始する。例えば、出音制御部125は、指向性スピーカ107に出音を開始させる。また、制御部120は、指向性マイクロフォン108に収音を開始させてもよい。
 そして、無人移動体100は、会話者の周辺をセンシングする(S113)。例えば、人検知部121は、人検知センサ104又はイメージセンサ106等に、会話者の周辺をセンシングさせることにより、会話者の周辺の人を検知する。この検知には、人を検知するための任意のセンサが用いられ得る。また、会話者の周辺は、例えば、会話者から所定範囲内の領域に対応する。
 そして、無人移動体100は、会話者以外の人が検知されたか否かを判定する(S114)。例えば、人検知部121は、会話者の周辺において、会話者以外の人が検知されたか否かを判定する。会話者以外の人が検知されなかった場合(S114でNo)、無人移動体100は、会話者の周辺のセンシング(S113)を繰り返す。
 会話者以外の人が検知された場合(S114でYes)、無人移動体100は、検知された人が会話者の関係者であるか否かを判定する(S115)。例えば、関係者判定部122が、会話者と関係者との距離が閾値以内であるか否かに従って、検知された人が関係者であるか否かを判定してもよいし、グルーピング等に関するその他の判定基準に従って、検知された人が関係者であるか否かを判定してもよい。この判定については、後述する。
 検知された人が関係者でない場合(S115でNo)、無人移動体100は、会話者の周辺のセンシング(S113)を繰り返す。
 検知された人が関係者である場合(S115でYes)、無人移動体100は、会話者と関係者との間の離間距離を測定する(S116)。例えば、出音範囲決定部123は、センシングデータに従って検知された会話者の位置と、センシングデータに従って検知された関係者の位置との間の距離を算出することにより、会話者と関係者との離間距離を測定してもよい。
 そして、無人移動体100は、会話者と関係者との離間距離に従って、出音範囲を決定する(S117)。例えば、出音範囲決定部123は、測定された離間距離に従って、出音範囲を決定する。その際、出音範囲決定部123は、測定された離間距離が大きいほど、出音範囲を大きくする。
 また、出音範囲は、例えば、無人移動体100を基準に用いて相対的に定められる範囲であり、指向性スピーカ107により所定品質以上で音が届く範囲である。所定品質以上は、所定範囲内の音圧に対応していてもよいし、所定範囲内のSN比(信号対雑音比)に対応していてもよい。出音範囲の決定については、後述する。
 そして、無人移動体100は、会話者の位置、関係者の位置、及び、出音範囲に従って、出音位置を決定する(S118)。例えば、出音位置決定部124は、決定された出音範囲に、検知された会話者の位置、及び、検知された関係者の位置が含まれるように、出音位置を決定する。出音位置の決定については、後述する。
 そして、無人移動体100は、出音位置に移動する(S119)。例えば、移動制御部126は、駆動部109の動作を制御することにより、無人移動体100を出音位置に移動させる。また、出音制御部125は、出音範囲に所定品質以上で音が届くように、指向性スピーカ107の出音を制御してもよい。
 これにより、無人移動体100は、会話者及び関係者に対して適切に出音を行うことができる。
 なお、上記の例では、無人移動体100は、会話者と会話を開始した後(S112の後)に、出音位置に移動するための処理(S113~S119)を行っているが、会話者と会話を開始する前に、出音位置に移動するための処理を行ってもよい。
 また、上記の例では、検知された人が関係者でない場合(S115でNo)、無人移動体100は、会話者の周辺のセンシング(S113)を繰り返す。しかし、無人移動体100は、関係者でない人(第三対象)に対して出音を行わないように、出音位置を修正してもよい。つまり、無人移動体100における出音位置決定部124は、関係者でない人が出音範囲に含まれないように、出音位置を修正してもよい。
 また、出音位置決定部124は、関係者でない人が出音方向から外れるように、出音位置を修正してもよい。これにより、関係者でない人が移動した場合に出音範囲に入る可能性が抑制される。
 また、出音範囲が固定である場合、つまり、指向性スピーカ107が出す音の音圧が固定である場合、無人移動体100は、会話者と関係者との離間距離が出音範囲内に入るか否かを判定してもよい。そして、無人移動体100は、離間距離が出音範囲内に入る場合に、出音位置を決定して、決定された出音位置に移動してもよい。無人移動体100は、離間距離が出音範囲内に入らない場合に、移動しなくてもよい。
 図6は、音圧の減衰を示す概念図である。音源(具体的には、点音源)に対して、距離が2倍に遠ざかると、音圧は6dB減衰すると想定され得る。図6の例では、音源から1mの位置において音圧は74dBである。音源から2mの位置において音圧は68dBである。音源から4mの位置において音圧は62dBである。音源から8mの位置において音圧は56dBである。
 図7は、音源の音圧と音源から離れた場所における音圧との関係を示すデータ図である。この例では、音源の音圧が56dBである場合に、音源から2m離れた場所の音圧は50dBであり、音源から4m離れた場所の音圧は44dBであり、音源から8m離れた場所の音圧は38dBである。
 また、音源の音圧が62dBである場合に、音源から2m離れた場所の音圧は56dBであり、音源から4m離れた場所の音圧は50dBであり、音源から8m離れた場所の音圧は44dBである。また、音源の音圧が68dBである場合に、音源から2m離れた場所の音圧は62dBであり、音源から4m離れた場所の音圧は56dBであり、音源から8m離れた場所の音圧は50dBである。
 したがって、音源の音圧が56dBである場合に、50dB以上で音が届く範囲は、音源から2mの範囲である。音源の音圧が62dBである場合に、50dB以上で音が届く範囲は、音源から4mの範囲である。音源の音圧が68dBである場合に、50dB以上で音が届く範囲は、音源から8mの範囲である。このような特性を用いて、無人移動体100が出す音の音圧、及び、無人移動体100から出音方向へ延在する出音範囲が定められる。
 図8は、会話者と関係者と無人移動体100との位置関係を示す概念図である。例えば、無人移動体100が会話者及び関係者に届ける音の音圧が、50dB以上であると予め定められていてもよい。そして、会話者及び関係者のうち無人移動体100に近い方と、無人移動体100との離間距離が、0.5m以上であると予め定められていてもよい。例えば、このような前提において、無人移動体100が出す音の音圧、及び、無人移動体100から出音方向へ延在する出音範囲が定められる。
 図9は、本実施の形態における会話者と関係者との離間距離、無人移動体100が出す音の音圧および出音範囲の関係を示すデータ図である。例えば、図6~図8を用いて説明された前提において、無人移動体100が出す音の音圧が56dBである場合、無人移動体100から出音方向へ延在する出音範囲、つまり、50dB以上の音圧で音が届く範囲は、指向幅×2mの範囲である。指向幅は、出音方向に対して垂直な方向に音が広がる幅である。
 また、無人移動体100が出す音の音圧が62dBである場合、無人移動体100から出音方向へ延在する出音範囲は、指向幅×4mの範囲である。また、無人移動体100が出す音の音圧が68dBである場合、無人移動体100から出音方向へ延在する出音範囲は、指向幅×8mの範囲である。
 また、無人移動体100は、会話者及び関係者から少なくとも0.5m離れた位置において、出音を行う。したがって、会話者と関係者との間の距離が0m~1.5mの範囲である場合、無人移動体100から2mの範囲に、会話者と関係者とを含めることが可能である。したがって、この場合、無人移動体100は、無人移動体100が出す音の音圧を56dBと定めることができ、無人移動体100から出音方向へ延在する出音範囲を指向幅×2mと定めることができる。
 同様に、会話者と関係者との間の距離が1.5m~3.5mの範囲である場合、無人移動体100は、無人移動体100が出す音の音圧を62dBと定めることができ、無人移動体100から出音方向へ延在する出音範囲を指向幅×4mと定めることができる。同様に、会話者と関係者との間の距離が3.5m~7.5mの範囲である場合、無人移動体100は、無人移動体100が出す音の音圧を68dBと定めることができ、無人移動体100から出音方向へ延在する出音範囲を指向幅×8mと定めることができる。
 図10は、音源の音圧と所定範囲の音圧で音が届く範囲との関係を示すデータ図である。この例において、所定範囲の音圧は、具体的には、46~54dBである。
 また、この例において、音源の音圧が60dBである場合、音源から2m離れた位置に54dBで音が届き、音源から4m離れた位置に48dBで音が届き、音源から8m離れた位置に42dBで音が届き、音源から16m離れた位置に36dBで音が届く。また、音源の音圧が70dBである場合、音源から2m離れた位置に64dBで音が届き、音源から4m離れた位置に58dBで音が届き、音源から8m離れた位置に52dBで音が届き、音源から16m離れた位置に46dBで音が届く。
 したがって、46~54dBで音が届く位置は、音源の音圧が60dBである場合において音源から約2~5mの位置であり、音源の音圧が70dBである場合において音源から約6~16mの位置である。すなわち、46~54dBで音が届く範囲は、音源の音圧が60dBである場合において3mの長さを有し、音源の音圧が70dBである場合において10mの長さを有する。
 例えば、このような所定範囲の音圧で音が届く範囲に、会話者及び関係者が含まれるように、出音位置が定められる。
 図11は、会話者と関係者との離間距離が3mである場合の例を示す概念図である。具体的には、会話者と関係者との離間距離が3mである場合に、図10に基づいて定められる出音位置の例が示されている。会話者と関係者との離間距離が3mである場合、無人移動体100は、60dBで音を出すことにより、互いに3m離れている会話者と関係者とを46~54dBで音が届く範囲に含めることができる。
 そこで、無人移動体100は、会話者と関係者とを46~54dBで音が届く範囲に含めることができる出音位置に移動し、60dBで音を出す。これにより、無人移動体100は、会話者と関係者とに46~54dBで音を届けることができる。
 図12は、会話者と関係者との離間距離が10mである場合の例を示す概念図である。具体的には、会話者と関係者との離間距離が10mである場合に、図10に基づいて定められる出音位置の例が示されている。会話者と関係者との離間距離が10mである場合、無人移動体100は、70dBで音を出すことにより、互いに10m離れている会話者と関係者とを46~54dBで音が届く範囲に含めることができる。
 そこで、無人移動体100は、会話者と関係者とを46~54dBで音が届く範囲に含めることができる出音位置に移動し、70dBで音を出す。これにより、無人移動体100は、会話者と関係者とに46~54dBで音を届けることができる。
 なお、無人移動体100は、70dBで音を出すことにより、互いに3m離れている会話者と関係者とを46~54dBで音が届く範囲に含めることもできる。しかしながら、音圧を上げることにより、消費電力も大きくなる。そこで、無人移動体100は、会話者と関係者とが3m離れている場合、60dBで音を出す。
 すなわち、無人移動体100は、会話者と関係者とを所定品質以上で音が届く範囲に含めることができる最小の音圧で音を出す。そして、無人移動体100は、最小の音圧に従って出音位置を決定し、決定された出音位置に移動する。これにより、消費電力が削減される。また、これにより、出音範囲が縮小され、非関係者が出音範囲に含まれる可能性が低減される。
 また、無人移動体100は、会話者に届いている音の現在の音圧が維持されるように、かつ、新たに関係者に音が届くように、出音位置を決定してもよい。これにより、会話者に対する違和感が抑制される。また、この場合、会話者に届いている音の音圧を維持するため、上記のような最小の音圧が用いられなくてもよい。すなわち、上記のような最小の音圧よりも大きい音圧が用いられてもよい。
 また、図6~図12において、無人移動体100によって発生する騒音が考慮されていないが、無人移動体100によって発生する騒音が考慮されてもよい。例えば、より大きい音圧が用いられてもよい。
 また、上述したような、音圧と出音範囲との関係が、音圧出音範囲対応情報132として、記憶部130に記憶されていてもよい。
 次に、図13~図23を用いて、検知された人が関係者であるか否かを判定するための基準の例を説明する。無人移動体100は、基本的に、会話者の周辺の撮像を行うことにより生成された画像の画像認識処理を行って、関係者の判定を行う。関係者の判定は、会話前に行われてもよいし、会話中に行われてもよい。また、例えば、無人移動体100の関係者判定部122が、以下の基準に従って、関係者の判定を行う。
 図13は、会話者と接触している関係者の例を示す概念図である。無人移動体100は、会話者と接触している人を関係者と判定してもよい。また、人が会話者に接触している時間が所定時間を経過した場合に、無人移動体100は、会話者に接触している人を関係者と判定してもよい。これにより、無人移動体100は、人が会話者に誤って触れたことによって発生する誤判定を抑制することができる。
 なお、図13には、手を繋いだ親子のうち、親が会話者であり、子が関係者である例が示されているが、会話者と関係者とは反対であってもよい。
 図14は、会話者と物を介して接触している関係者の例を示す概念図である。無人移動体100は、会話者と直接接触している人に限らず、物を介して会話者と接触している人を関係者と判定してもよい。図14の例では、車椅子を介して、会話者に人が接触している。この場合に、無人移動体100は、車椅子を介して会話者に接触している人を関係者と判定してもよい。
 なお、図13の例と同様に、物を介して人が会話者に接触している時間が所定時間を経過した場合に、無人移動体100は、会話者に接触している人を関係者と判定してもよい。また、図14には、車椅子に乗っている人が会話者であり、車椅子を押している人が関係者である例が示されているが、会話者と関係者とは反対であってもよい。
 図15は、会話者と会話している関係者の例を示す概念図である。無人移動体100は、会話者と会話している人を関係者と判定してもよい。例えば、無人移動体100は、画像認識処理によって、会話者が人に向いて口を開いていることを検知した場合、その人が関係者であると判定してもよい。また、例えば、無人移動体100は、画像認識処理によって、人が会話者に向いて口を開いていることを検知した場合、その人が関係者であると判定してもよい。
 なお、図15には、会話者に向いて口を開いている人が関係者である例が示されているが、会話者と関係者とは反対であってもよい。
 図16は、会話者に対する距離が小さい関係者の例を示す概念図である。無人移動体100は、会話者に対する距離が小さい人を関係者と判定してもよい。例えば、無人移動体100は、会話者の位置と、会話者以外の人の位置とを検知し、会話者の位置と、会話者以外の人の位置とに従って、会話者と、会話者以外の人との距離を算出する。そして、算出された距離が閾値以下である場合に、無人移動体100は、その人を関係者と判定する。
 なお、会話者と、会話者以外の人との距離が閾値以下である時間が所定時間を経過した場合に、無人移動体100は、その人を関係者と判定してもよい。これにより、無人移動体100は、会話者と、会話者以外の人とが一時的に近づいたことによって発生する誤判定を抑制することができる。
 図17は、会話者と服装が同じ関係者の例を示す概念図である。無人移動体100は、会話者と同じ服装の人を関係者と判定してもよい。具体的には、無人移動体100は、会話者と同じ制服の人を関係者と判定してもよい。例えば、無人移動体100は、画像認識処理を行うことによって、会話者の服装と、会話者以外の人の服装とが互いに同じであるか否かを判定してもよい。そして、会話者の服装と、会話者以外の人の服装とが互いに同じである場合、無人移動体100は、その人を関係者と判定してもよい。
 なお、会話者の服装と、会話者以外の人の服装とが互いに同じであって、その同じ服装が、さらに他の人とは異なる場合に、無人移動体100は、会話者と同じ服装の人を関係者と判定してもよい。
 例えば、多数の人が同じ服装である場合、無人移動体100は、同じ服装の多数の人が関係者でないと判定してもよい。より具体的には、多数の人がスーツ及びネクタイを着用している場合、これらの人は関係者でない可能性がある。したがって、無人移動体100は、同じ服装の多数の人が関係者でないと判定することにより、誤判定を抑制するこができる。
 図18は、会話者と所定エリアに存在する関係者の例を示す概念図である。無人移動体100は、会話者と所定エリアに存在する人を関係者と判定してもよい。ここで、所定エリアは、会話者と関係者とが一緒に利用する場所であって、予め登録されていてもよい。具体的には、図18のように、所定エリアは、ベンチの設置された場所であってもよい。また、所定エリアは、1つのテーブルの周辺であってもよいし、ミーティングルームであってもよいし、ボート等の少人数で同乗可能な乗り物であってもよい。
 図19は、会話者に近づく関係者の例を示す概念図である。無人移動体100は、会話者に近づく人を関係者と判定してもよい。
 例えば、無人移動体100は、会話者の位置と、会話者以外の人の位置とを随時検知することにより、会話者に近づく人を検知し、会話者に近づく人を関係者と判定してもよい。会話者に近づく人は、会話者に関連する人である可能性が高く、また、無人移動体100が出す音を聞こうとしていると推定される。よって、無人移動体100は、会話者に近づく人を関係者と判定することにより、これらの人に対して適切に出音を行うことができる。
 なお、無人移動体100は、会話者から所定範囲内に会話者以外の人が近づいた場合に、その人を関係者と判定してもよい。また、無人移動体100は、会話者から所定範囲内に会話者以外の人が近づいた状態における時間が所定時間を経過した場合に、その人を関係者と判定してもよい。
 図20は、会話者の声が届く範囲に存在する関係者の例を示す概念図である。無人移動体100は、会話者の声が届く範囲に存在する人を関係者と判定してもよい。例えば、無人移動体100は、会話者が発する音の音圧に従って会話者が発する音が届く範囲を推定する。そして、無人移動体100は、推定された範囲に存在する人を関係者と判定する。なお、この例は、図16を用いて説明された例における閾値が、会話者が発する音の音圧に従って定められることに対応する。
 図21は、会話者の声が届く範囲に存在する関係者を出音範囲に含める移動例を示す概念図である。
 無人移動体100は、会話者と会話を行う場合、会話者の問いかけに対して応答を行う。会話者以外の人にとって、会話者の問いかけが聞こえない状態で、無人移動体100によって行われる応答が聞こえても、応答の意味を理解することは困難である。そのため、無人移動体100は、会話者の声が届く範囲に存在する人を関係者と判定し、会話者の声が届く範囲に存在する人が出音範囲に含まれるように移動する。
 これにより、会話者以外の人に、問いかけ及び応答のうち一方のみが聞こえて、混乱を与えることが抑制され得る。
 図22は、会話者とは別に無人移動体100と会話を行う関係者の例を示す概念図である。無人移動体100は、会話者と会話中に、会話者以外の人が無人移動体100に話しかけた場合、無人移動体100に話しかけた人を関係者と判定してもよい。例えば、無人移動体100は、指向性マイクロフォン108を用いて会話者と会話中に、会話者とは異なる方向から音又は声を検知した場合、その方向に存在する人を関係者と判定する。
 また、例えば、無人移動体100は、会話者と会話中に、会話者の声とは異なる声を検知した場合、その声を発した人を関係者と判定してもよい。この場合、無指向性マイクロフォンが用いられてもよい。また、関係者は会話者の近くにいると想定されるため、無人移動体100は、指向性マイクロフォン108を用いて会話者と会話中に、会話者と同じ方向から会話者の声とは異なる声を検知した場合、その声を発した人を関係者と判定してもよい。
 また、例えば、無人移動体100は、会話者と会話中に、その会話内容の文脈に整合する内容に関して会話者以外の人が無人移動体100に話しかけた場合、無人移動体100に話しかけた人を関係者と判定してもよい。すなわち、無人移動体100は、会話者と会話中に、その会話内容の文脈に整合しない内容に関して会話者以外の人が無人移動体100に話しかけた場合、無人移動体100に話しかけた人を非関係者と判定してもよい。
 図13~図22を用いて説明された複数の判定基準のうちのいずれか一つが用いられてもよいし、これらの判定基準のうちの任意の二以上の組み合わせが用いられてもよい。また、複数の人のそれぞれが関係者であると判定された場合、無人移動体100は、それぞれが関係者であると判定された複数の人から関係者の絞り込みを行ってもよい。つまり、無人移動体100は、複数の関係者の中から、音を届ける最終的な関係者を選択してもよい。
 例えば、無人移動体100は、複数の関係者から、会話者に最も近い関係者を最終的な関係者として選択してもよい。
 また、例えば、無人移動体100は、出音範囲に入る関係者の数が最も多くなるように、一以上の関係者を選択してもよい。より具体的には、例えば、無人移動体100は、会話者の位置を通る直線上に存在する関係者の数が最も多くなるように、一以上の関係者を選択してもよい。これにより、無人移動体100は、より多くの関係者に対して適切に出音を行うことができる。
 また、例えば、無人移動体100は、それぞれが関係者であると判定された複数の人の中から、関係者の確度の高い人を最終的な関係者として選択してもよい。
 具体的には、例えば、無人移動体100は、判定基準毎に予め定められた確度レベルに従って、最終的な関係者を選択してもよい。ここで、会話者と接触しているか否かの判定基準(図13及び図14)、又は、会話者と会話しているか否かの判定基準(図15)等に対して、確度レベルが予め高く定められていてもよい。また、会話者と同じ服装であるか否かの判定基準(図16)、又は、会話者と所定エリアに存在するか否かの判定基準(図18)等に対して、確度レベルが予め中程度に定められていてもよい。
 そして、無人移動体100は、それぞれが関係者であると判定された複数の人の中から、より高い確度の判定基準によって関係者と判定された人を最終的な関係者として選択してもよい。
 あるいは、無人移動体100は、それぞれが関係者であると判定された複数の人の中から、複数の判定基準における複数の条件をより多く満たしている人を最終的な関係者として選択してもよい。例えば、会話者に近いという条件(図16)、所定時間以上において会話者に近いという条件(図16)、及び、会話者と同じ服装であるという条件(図17)が満たされる場合、満たされている条件の数は3である。このようにカウントされる数に従って、最終的な関係者が選択されてもよい。
 あるいは、無人移動体100は、満たされている条件の数を判定基準毎に予め定められた確度レベルに従って重み付けして評価してもよい。
 あるいは、無人移動体100は、それぞれが関係者であると判定された複数の人の中から、会話者の正面側の領域等のような所定範囲内のみにおける移動によって音が届く人を最終的な関係者として選択してもよい。これにより、会話者は会話を適切に継続することができる。所定範囲によって無人移動体100が大きく移動することが抑制される。よって、会話者は、無人移動体100の移動をあまり気にせず、会話を適切に継続することができる。
 あるいは、無人移動体100は、それぞれが関係者であると判定された複数の人の中から、適切に出音及び収音が行われる人を最終的な関係者として選択してもよい。つまり、無人移動体100は、出音及び収音に適切な関係者を選択してもよい。さらに言い換えれば、無人移動体100は、無人移動体100と会話を行うための適切な関係者を選択してもよい。
 図23は、出音及び収音に適切な関係者の例を示す概念図である。無人移動体100は、指向性スピーカ107によって音が届く出音範囲に存在し、かつ、指向性マイクロフォン108によって音が収音される収音範囲に存在する人を最終的な関係者として選択する。ここで、収音範囲は、平均的な人の声の音圧として予め定められる音圧に従って定められてもよい。収音範囲は、人声収音可能範囲とも表現され得る。
 例えば、出音範囲と収音範囲との重複範囲が会話範囲として定められる。無人移動体100は、会話範囲に含まれる人を最終的な関係者として選択する。
 なお、無人移動体100の移動に伴って、出音範囲及び収音範囲は変位し、会話範囲も変位する。そのため、無人移動体100は、無人移動体100の移動をシミュレーションし、複数の関係者の中から会話者と共に会話範囲に入れることが可能な関係者を最終的な関係者として選択してもよい。
 また、上記において説明された複数の絞り込み方法が、適宜、組み合わせられてもよい。また、図23は、複数の関係者に対する絞り込みの例が示されているが、関係者の判定に用いられてもよい。つまり、無人移動体100は、会話に適切な位置に存在する人を関係者として判定してもよい。また、その他の絞り込み方法も、複数の関係者候補に対して関係者を最終的に判定するための方法として用いられてもよい。
 また、図13~図23に示されていないが、無人移動体100は、顔認証によって、会話者以外の人が会話者の関係者であるか否かを判定してもよい。例えば、会話者と、会話者の関係者の顔とが予め紐づけられて管理されていてもよい。そして、無人移動体100は、会話者以外の人の顔が、会話者の関係者の顔として会話者に紐づけられた顔に適合する場合、その人を関係者として判定してもよい。なお、無人移動体100は、顔に限らず、体格等のその他の特徴を用いてもよい。
 また、無人移動体100と会話者との会話中に、会話者以外の人が無人移動体100に向いている場合、無人移動体100と会話者との会話に会話者以外の人が関心を示していると推定される。したがって、この場合、無人移動体100は、その人を関係者と判定してもよい。
 無人移動体100は、会話者及び関係者を出音範囲に含めることができるような、無人移動体100の位置を出音位置として決定する。例えば、無人移動体100の出音位置決定部124が、出音位置を決定する。以下、図24~図38を用いて、より具体的な出音位置の決定方法を説明する。
 図24は、会話者の位置と関係者の位置とを通る直線上の出音位置の例を示す概念図である。この例では、無人移動体100は、会話者の位置と関係者の位置とを通る直線上の位置であって、かつ、その位置によって相対的に定められる出音範囲に会話者及び関係者が含まれるような位置を出音位置として決定する。これにより、無人移動体100は、出音方向に沿って、適切に会話者及び関係者へ出音を行うことができる。
 図25は、会話者に近い出音位置の例を示す概念図である。例えば、無人移動体100は、会話者の位置と関係者の位置とを通る直線上において、会話者及び関係者の外側の出音位置から会話者及び関係者に指向方向を向けて出音を行う。図25の例において、無人移動体100は、会話者側の出音位置において出音を行う。つまり、無人移動体100は、会話者に近い位置を出音位置として決定する。
 予め定められた会話者は、関係者よりも無人移動体100とより多く会話を行うと推定される。また、無人移動体100と会話者との間に関係者が存在する場合、関係者が無人移動体100と会話者との会話の妨げになる可能性がある。したがって、会話者に近い位置が出音位置として決定されることにより、より多く行われる会話が円滑に行われ得る。
 図26は、高齢者に近い出音位置の例を示す概念図である。無人移動体100は、会話者に近い位置の代わりに、高齢者に近い位置を出音位置として決定してもよい。例えば、無人移動体100は、会話者が予め定められていない場合、高齢者に近い位置を出音位置として決定する。無人移動体100は、顔認証で年齢を推定してもよい。
 聴力は、加齢に伴って低下すると想定される。無人移動体100は、高齢者に近い位置を出音位置として決定することにより、より大きい音圧の音を高齢者に届けることができる。したがって、無人移動体100は、低下した聴力を補うことができる。
 なお、親子の場合、高齢者に近い位置、すなわち、親に近い位置が出音位置として決定される。これにより、無人移動体100から子を遠ざけることが可能である。
 また、無人移動体100は、年齢が所定の年齢以上と推定される人を高齢者と判定してもよい。そして、無人移動体100は、会話者及び関係者の一方が高齢者であると判定された場合、その高齢者に近い位置を出音位置として決定してもよい。また、無人移動体100は、会話者及び関係者の両方が高齢者であると判定された場合、両者から等距離の位置を出音位置として決定してもよいし、他の条件に従って出音位置を決定してもよい。
 図27は、関係者を中心に正面側に補正された出音位置の例を示す概念図である。図27の上側に示されているように、会話者及び関係者の横側に無人移動体100が存在する場合であっても、無人移動体100は、会話者及び関係者に音を届けることができる。一方で、会話者及び関係者の横側よりも正面側に無人移動体100が存在している方が、会話者及び関係者は無人移動体100と会話しやすい。
 すなわち、無人移動体100は、会話者及び関係者の正面側に存在することにより、会話者及び関係者に対して円滑な会話を提供することができる。したがって、無人移動体100は、会話者及び関係者の正面側に出音位置を補正してもよい。
 具体的には、無人移動体100は、図27の下側に示されているように、関係者を中心として想定される円に沿って、会話者及び関係者の正面側に出音位置を補正してもよい。これにより、無人移動体100は、関係者に対する距離を変えずに、出音位置を補正することができる。
 なお、無人移動体100は、会話者を中心に想定される円に沿って出音位置を補正してもよい。これにより、無人移動体100は、会話者に対する距離を変えずに、出音位置を補正することができる。ただし、無人移動体100は、会話者及び関係者のうち無人移動体100から遠い方を中心に想定される円を用いることにより、会話者及び関係者のそれぞれと無人移動体100との間における距離の変動を抑制することができる。
 また、無人移動体100は、円に沿って出音位置を補正することに限らず、会話者及び関係者のうちの少なくとも一方の正面方向に移動し、出音方向を会話者及び関係者のうちの少なくとも一方に向けてもよい。無人移動体100は、このような動作を行うための正面方向の位置に出音位置を補正してもよい。
 図28は、関係者が出音範囲に含まれるように会話者を中心に決定された出音位置の例を示す概念図である。例えば、図28の上側に示されるように、無人移動体100は、会話者と会話中において会話者の正面側に存在する。その後、図28の下側に示されるように、無人移動体100は、出音範囲に関係者が含まれるように、会話者を中心に想定される円に沿って移動してもよい。この場合、無人移動体100は、会話者を中心に想定される円に沿って出音位置を決定してもよい。
 これにより、無人移動体100は、会話者に対する距離を変えずに、会話者及び関係者に音を届けることが可能な位置に移動することができる。
 図29は、会話者及び関係者の正面側の出音位置の例を示す概念図である。会話者及び関係者の正面方向に対して垂直な横方向における会話者と関係者との間の距離が、指向幅以内である場合、無人移動体100は、会話者及び関係者の正面側の位置を出音位置として決定してもよい。
 これにより、無人移動体100は、会話者及び関係者の正面側の位置から会話者及び関係者へ出音を行うことができる。すなわち、無人移動体100は、会話者及び関係者の正面側の位置から会話を行うことができる。よって、無人移動体100は、会話者及び関係者に対して円滑な会話を提供することができる。
 なお、会話者及び関係者の横側の位置よりも会話者及び関係者の正面側の位置が会話に適していると想定される。したがって、無人移動体100は、会話者及び関係者の正面側の位置を優先的に出音位置として決定してもよい。
 図30は、水平面に対して斜め方向の直線上の出音位置の例を示す概念図である。例えば、無人移動体100は、画像認識処理又は顔認証処理等によって、会話者の身体情報及び関係者の身体情報を取得してもよい。そして、無人移動体100は、会話者の身体情報及び関係者の身体情報に従って、出音位置を決定してもよい。身体情報は、身長であってもよいし、顔の高さであってもよい。
 具体的には、無人移動体100は、会話者の顔の高さと、関係者の顔の高さとが乖離している場合、会話者の顔の位置と、関係者の顔の位置とを通る直線上の位置であって、かつ、出音範囲に会話者及び関係者が含まれるような位置を出音位置として決定する。この場合、無人移動体100は、水平面に対して斜めの出音方向に沿って出音を行う。
 これにより、無人移動体100は、出音方向に沿って、適切に会話者及び関係者へ出音を行うことができる。
 なお、会話者の顔の高さと、関係者の顔の高さとに乖離がある場合の例として、会話者と関係者とが親子である場合、又は、会話者と関係者とが車椅子に乗る人と車椅子を押す人とである場合がある。また、図30には、親が会話者であり、子が関係者である例が示されているが、会話者と関係者とは反対であってもよい。
 また、斜め方向の出音として、低い方から高い方へ向かって行われる出音と、高い方から低い方へ向かって行われる出音とが想定される。低い方から高い方へ向かって出音が行われる場合、飛行高度が低いため、飛行が困難であり、人と接触する可能性がある。また、無人移動体100が小さな子供に近づいてしまう。したがって、高い方から低い方へ向かって出音が行われてもよい。これにより、例えば、衝突等の可能性が抑制される。
 図31は、水平方向の直線上の出音位置の例を示す概念図である。無人移動体100は、会話者の顔と、関係者の顔とが、出音の指向幅に入る場合、出音範囲に会話者の顔及び関係者の顔が含まれるような位置であって、水平方向に出音を行うための位置を出音位置として決定してもよい。すなわち、会話者の顔の高さと、関係者の顔の高さとが所定範囲を超えて乖離している場合において、無人移動体100は、図30のように、斜め方向に出音を行うための位置を出音位置として決定してもよい。
 さらに言い換えれば、会話者の顔の高さと、関係者の顔の高さとの差が所定範囲内であれば、無人移動体100は、高度を変更しなくてもよい。これにより、処理が簡素化される。ただし、無人移動体100は、高度を高くすることで、衝突等の可能性を抑制することができ、円滑な会話を提供することができる。
 図32は、会話者及び関係者と同じ高さの出音位置の例を示す概念図である。上述した通り、無人移動体100は、水平方向に出音を行うための位置を出音位置として決定してもよい。これにより、処理が簡素化される。
 ただし、この場合、無人移動体100は、人と接触する可能性がある。また、無人移動体100から遠い人と、無人移動体100とは、無人移動体100に近い人を跨いで会話を行うため、会話を行い難い。具体的には、図32の例において、関係者と無人移動体100とは、会話者を跨いで会話を行うため、会話を行い難い。
 図33は、会話者及び関係者よりも高い出音位置の例を示す概念図である。無人移動体100は、会話者及び関係者よりも高い位置を優先して出音位置として決定してもよい。これにより、無人移動体100は、衝突等の可能性を抑制することができる。また、無人移動体100は、無人移動体100に近い人にも、無人移動体100から遠い人にも、円滑な会話を提供することができる。
 図34は、出音位置の高さの例を示す概念図である。出音位置が高くなりすぎると、会話者及び関係者が無人移動体100を見上げる角度が大きくなりすぎる。これにより、会話者及び関係者が無人移動体100を見上げながら会話を行うことになり、円滑な会話が困難になる。
 そこで、出音位置の高度、又は、出音方向と水平面との角度に上限が定められてもよい。例えば、出音位置の高度の上限は、無人移動体100と、会話者及び関係者のうち無人移動体100に近い方との離間距離に従って定められてもよい。例えば、会話者及び関係者に近いほど、出音位置の高度の上限は低く定められる。これにより、会話者及び関係者が無人移動体100を見上げる角度が小さく抑制される。
 図35は、出音範囲から非関係者を排除するための出音位置の例を示す概念図である。無人移動体100は、会話者以外の人が関係者でないと判定された場合、関係者でないと判定された人が出音範囲に含まれないように出音位置を決定してもよい。つまり、無人移動体100は、会話者以外の人が非関係者であると判定された場合、非関係者が出音範囲に含まれないように出音位置を決定してもよい。
 例えば、無人移動体100は、無人移動体100と非関係者との離間距離が大きくなるように、出音位置を決定して、出音位置へ移動する。これにより、無人移動体100は、非関係者に音が届きにくくすることができる。
 また、例えば、無人移動体100は、非関係者に音が届かず、会話者に音が届く範囲で出音位置を決定する。つまり、無人移動体100は、非関係者が出音範囲に含まれず、かつ、会話者が出音範囲に含まれるように、出音位置を決定する。これにより、無人移動体100は、非関係者に対して出音を行わずに、会話者に対して出音を行うことができる。
 なお、無人移動体100は、非関係者が出音範囲に含まれず、かつ、会話者及び関係者が出音範囲に含まれるように、出音位置を決定してもよい。これにより、無人移動体100は、非関係者に対して出音を行わずに、会話者及び関係者に対して出音を行うことができる。
 図36は、非関係者と会話者と無人移動体100との水平面上の位置関係の例を示す概念図である。例えば、無人移動体100は、図36の上側の例ように、非関係者から遠い位置を出音位置として決定してもよい。しかし、図36の上側の例では、非関係者が出音方向に入っているため、非関係者に音が届く可能性がある。
 そこで、無人移動体100は、図36の下側の例ように、非関係者が出音方向から外れるように出音位置を決定してもよい。具体的には、無人移動体100は、会話者の位置と関係者の位置とを通る直線上に含まれない位置を出音位置として決定してもよい。これにより、無人移動体100は、非関係者に音が届く可能性を抑制することができる。
 なお、図36の下側の例においても、無人移動体100は、非関係者が出音範囲に含まれず、かつ、会話者及び関係者が出音範囲に含まれるように、出音位置を決定してもよい。
 図37は、非関係者と会話者と無人移動体100との垂直面上の位置関係の例を示す概念図である。無人移動体100から水平方向に出音が行われた場合、非関係者が出音範囲又は出音方向に入る可能性が比較的高く、非関係者に音が届く可能性がある。したがって、無人移動体100は、会話者の上側から会話者に対して出音を行ってもよい。これにより、無人移動体100は、非関係者が出音範囲又は出音方向に入る可能性を抑制することができ、非関係者に音が届く可能性を抑制することができる。
 なお、無人移動体100は、非関係者が出音範囲に含まれず、かつ、会話者及び関係者が出音範囲に含まれるように、出音位置の高度を決定してもよい。
 図38は、出音範囲から別の人を排除するための出音位置の例を示す概念図である。無人移動体100は、出音範囲から別の人を排除するため、無人移動体100と障害物とで会話者を挟む無人移動体100の位置を出音位置として決定してもよい。そして、無人移動体100は、出音位置へ移動し、会話者に対して出音を行ってもよい。これにより、無人移動体100は、別の人に音が届く可能性を抑制することができる。
 ここで、障害物は、例えば、出音範囲に別の人が入ることを妨げる物理的環境である。障害物は、出音範囲の広がりを妨げる物理的環境であってもよいし、人が通れない物理的環境であってもよい。具体的には、障害物は、壁であってもよいし、建物であってもよいし、崖であってもよい。
 また、無人移動体100は、画像認識処理によって障害物の位置を検知してもよいし、図示しない障害物検知センサによって障害物の位置を検知してもよい。
 また、無人移動体100は、障害物の位置を含むマップ情報から障害物の位置を特定してもよい。マップ情報は、無人移動体100の記憶部130に予め記憶されていてもよいし、無人移動体100の通信部110を用いて外部装置から無人移動体100へ入力されてもよい。そして、無人移動体100は、無人移動体100の位置を検知することにより、マップ情報に従って障害物の位置を検知してもよい。
 例えば、図38の上側では、無人移動体100から会話者を挟んで反対側に障害物が存在しないため、出音範囲に別の人が入る可能性がある。これに対して、図38の下側では、無人移動体100から会話者を挟んで反対側に壁等の障害物が存在するため、出音範囲に別の人が入る可能性が抑制される。
 なお、会話者のみでなく、関係者が考慮されてもよい。具体的には、無人移動体100と障害物とで会話者及び関係者を挟む無人移動体100の位置を出音位置として決定してもよい。これにより、無人移動体100は、別の人に対して出音を行わずに、会話者及び関係者に対して出音を行うことができる。
 出音位置の決定方法に関して、図24~図38を用いて説明された複数の決定方法のうちのいずれか一つが用いられてもよいし、これらの決定方法のうちの任意の二以上の組み合わせが用いられてもよい。続いて、無人移動体100の移動等に関する複数の例を説明する。
 図39は、無人移動体100が出音位置へ移動する例を示す概念図である。例えば、無人移動体100は、会話者に対して出音を行いながら出音位置へ移動する場合、移動中において会話者が出音範囲から外れないように、出音位置へ移動する。これにより、無人移動体100は、継続的に会話者へ音を届けることができる。
 具体的には、この場合、無人移動体100は、指向性スピーカ107の指向方向を会話者へ向けながら出音位置へ移動する。また、無人移動体100は、会話者から所定距離内で移動する。この所定距離は、出音方向における出音範囲の長さに対応する。無人移動体100は、会話者から所定距離内の移動経路を作成して、作成された移動経路に沿って出音位置へ移動してもよい。これにより、無人移動体100は、移動中において会話者が出音範囲から外れないように、出音位置へ移動することができる。
 また、無人移動体100は、移動中において、会話者へ届く音の音圧が一定に維持されるように、無人移動体100と会話者との間の距離に従って、無人移動体100が出す音の音圧を変更してもよい。例えば、無人移動体100は、会話者から遠ざかる場合、無人移動体100が出す音の音圧を上げながら移動してもよい。逆に、無人移動体100は、会話者へ近づく場合、無人移動体100が出す音の音圧を下げながら移動してもよい。
 図40は、無人移動体100が出音を開始してから出音位置へ移動する例を示す概念図である。例えば、無人移動体100は、会話者に対して出音を行いながら出音位置へ移動する。すなわち、無人移動体100は、出音を開始した後に、出音位置へ移動する。この場合、出音の途中に、関係者が出音範囲に入る。したがって、関係者が出音の内容のうち始めの内容を把握することは困難である。
 そこで、無人移動体100は、無人移動体100と会話者との会話に応じて、無人移動体100の移動のタイミングを制御してもよい。
 具体的には、無人移動体100は、会話者が無人移動体100に話しかけている間に、出音位置へ向かって移動してもよい。会話者が無人移動体100に話しかけている間、無人移動体100は、出音を行わないと想定される。したがって、無人移動体100は、出音を行いながら出音位置へ移動することを抑制することができ、出音の途中に関係者が出音範囲に入ることを抑制することができる。
 例えば、無人移動体100は、画像認識処理によって、会話者が無人移動体100に話しかけているか否かを判定してもよいし、指向性マイクロフォン108によって、会話者が無人移動体100に話しかけているか否かを判定してもよい。
 また、無人移動体100は、会話者に対して収音が行われている期間に、出音位置へ向かって移動してもよい。会話者に対して収音が行われている期間において、会話者が無人移動体100に話しかけていると想定され、無人移動体100は、出音を行わないと想定される。したがって、無人移動体100は、会話者に対して収音が行われている期間において、出音位置へ向かって移動することにより、出音の途中に関係者が出音範囲に入ることを抑制することができる。
 また、無人移動体100は、指向性マイクロフォン108によって収音される音の状況によって、移動を行うか否かを制御してもよい。具体的には、指向性マイクロフォン108によって収音される音の状況が悪い場合、無人移動体100は移動しない。これにより、無人移動体100は、移動に伴って、収音される音の状況がさらに悪化することを抑制することができる。
 また、例えば、無人移動体100が出音位置へ向かって移動を開始した後、無人移動体100が出音位置へ到達する前に、会話者が無人移動体100に話し終わった場合、無人移動体100は、出音位置へ向かって移動を継続する。そして、無人移動体100は、出音位置へ到達した後に、出音を行う。これにより、無人移動体100は、出音の途中に関係者が出音範囲に入ることを抑制することができる。
 また、例えば、移動距離が長い場合、無人移動体100は、出音位置へ段階的に移動してもよい。具体的には、無人移動体100は、出音位置へ向かって移動と停止とを繰り返し、停止中に出音を行ってもよい。これにより、無人移動体100は、一回の出音の途中に関係者が出音範囲に入ることを抑制することができる。また、無人移動体100は、会話者に対する応答の遅延を抑制することができる。
 また、例えば、無人移動体100は、無人移動体100と会話者と会話が一時的に途切れている間に、出音位置へ向かって移動してもよい。これにより、無人移動体100は、出音の途中に関係者が出音範囲に入ることを抑制することができ、会話者に対する出音及び収音の劣化を抑制することができる。
 また、無人移動体100は、会話者に対して出音及び収音が行われていない期間に、出音位置へ向かって移動してもよい。これにより、無人移動体100は、出音の途中に関係者が出音範囲に入ることを抑制することができ、出音及び収音の劣化を抑制することができる。
 また、例えば、無人移動体100は、無人移動体100と会話者との間の会話が終了した場合、出音及び収音を行わないため、移動を中止してもよい。無人移動体100は、会話内容を認識することにより、無人移動体100と会話者と会話が一時的に途切れたか、無人移動体100と会話者との間の会話が終了したかを認識してもよい。
 図41は、無人移動体100が正面側を通って出音位置へ移動する例を示す概念図である。例えば、無人移動体100は、会話者の正面側を通って、出音位置へ移動する。会話者の正面側は、会話者の視界範囲に対応する。会話者の視界範囲から無人移動体100が外れた場合、会話者が無人移動体100と会話を行うことが困難になる。無人移動体100は、会話者の正面側を通って出音位置へ移動することにより、移動中において円滑な会話を会話者へ提供することができる。
 具体的には、無人移動体100は、画像認識処理によって、会話者の正面側を検知することにより、会話者の視界範囲を特定してもよい。そして、無人移動体100は、特定された視界範囲内の移動経路を作成して、作成された移動経路に沿って出音位置へ移動してもよい。
 また、上記の説明では、無人移動体100は会話者の正面側を通って出音位置へ移動しているが、無人移動体100は会話者及び関係者の正面側を通って出音位置へ移動してもよい。これにより、無人移動体100は、円滑な会話を関係者にも提供することができる。
 図42は、無人移動体100が出音範囲を変更する例を示す概念図である。無人移動体100は、会話者及び関係者が出音範囲に含まれるように、出音範囲を調整してもよい。具体的には、無人移動体100は、指向性スピーカ107が出す音の音圧を調整することにより、出音範囲を調整してもよい。
 また、図42の上側の例のように、無人移動体100は、会話者以外の人が関係者である確度が中程度であると判定された場合、会話者及び会話者以外の人が出音方向に入る出音位置に移動する。そして、無人移動体100は、会話者に音が届き、会話者以外の人に音が届かないように、指向性スピーカ107が出す音の音圧を調整する。つまり、無人移動体100は、指向性スピーカ107が出す音の音圧を小さくする。
 そして、図42の下側の例のように、無人移動体100は、会話者以外の人が関係者である確度が高いと判定された場合、会話者以外の人に音が届くように、指向性スピーカ107が出す音の音圧を調整する。つまり、無人移動体100は、指向性スピーカ107が出す音の音圧を大きくする。
 これにより、無人移動体100は、会話者以外の人が関係者である確度が上昇した場合に、移動なしで即時に、会話者以外の人に対して出音を行うことができる。なお、無人移動体100は、音圧を大きくせずに、出音方向に移動してもよい。これにより、無人移動体100は、音圧を大きくすることに伴う消費電力の増加を抑制することができる。
 図43は、移動と出音範囲の変更との選択的動作の例を示す概念図である。無人移動体100は、会話者と関係者とが共に出音方向に存在する場合、出音範囲を拡大するか、出音方向に移動するかを選択することができる。つまり、無人移動体100は、出音範囲を拡大することにより、会話者と関係者とを出音範囲に含めることもできるし、出音方向に移動することにより、会話者と関係者とを出音範囲に含めることもできる。
 ただし、無人移動体100は、出音範囲を拡大する場合、無人移動体100が出す音の音圧を大きくする。これにより、消費電力が大きくなると想定される。したがって、無人移動体100は、出音範囲を拡大することよりも、出音方向に移動することを優先してもよい。
 また、無人移動体100は、会話者に近すぎる場合、会話者に接触する可能性がある。また、無人移動体100は、会話者に近すぎる場合、無人移動体100から届く音が大きすぎる場合がある。したがって、無人移動体100は、可能な範囲で会話者に最も近くまで、出音方向に移動してもよい。その状態において、関係者が出音範囲に含まれない場合、無人移動体100は、出音範囲を拡大してもよい。これにより、無人移動体100は、会話者及び関係者に対して適切に出音を行うことができる。
 図44は、関係者が出音範囲から外れた場合の例を示す概念図である。例えば、関係者が出音範囲から外れた場合、より具体的には、関係者が自ら出音範囲から離れて出て行った場合、その関係者は、無人移動体100と会話を行う意思を有していないと想定される。
 したがって、例えば、上記の場合、無人移動体100は、その関係者を出音範囲に含めるための出音位置に移動しない。これにより、無人移動体100は、無駄な移動に伴う消費電力を抑制することができ、また、その関係者に対する不要な出音を抑制することができる。
 また、例えば、無人移動体100の出音中に関係者が出音範囲から離れた場合、その関係者は、無人移動体100から音を聞く意思を有していない可能性がより高い。したがって、例えば、この場合に、無人移動体100は、その関係者を出音範囲に含めるための移動をスキップしてもよい。
 ただし、関係者が、無人移動体100と会話を行う意思を有しつつ、移動する可能性もある。例えば、関係者が出音範囲からあまり離れていない状態が所定時間以上続いた場合、関係者が無人移動体100と会話を行う意思を有している可能性がある。そこで、関係者が出音範囲からあまり離れていない状態が所定時間以上続いた場合、無人移動体100は、その関係者を出音範囲に含めるための移動を行ってもよい。
 なお、関係者が出音範囲からあまり離れていない状態は、例えば、関係者が出音範囲内に存在せず、かつ、関係者が出音範囲の周辺の所定範囲内に存在する状態である。
 図45は、別の人が出音範囲に入った場合の例を示す概念図である。無人移動体100は、会話者に対して出音を行っている間に、会話者とは別の人が出音範囲又は出音方向に入ってきた場合、その別の人が出音範囲又は出音方向から外れるように、移動してもよい。例えば、無人移動体100は、画像認識処理によって、別の人が出音範囲又は出音方向に入ったことが検知された場合、別の人が出音範囲又は出音方向から外れるように、出音位置を変更し、変更された出音位置へ移動してもよい。
 また、無人移動体100は、別の人が関係者であるか否かを判定し、別の人が関係者でないと判定された場合に、別の人が出音範囲又は出音方向から外れるように、出音位置を変更してもよい。
 また、無人移動体100は、会話者及び関係者に対して出音を行っている間に、会話者及び関係者とは別の人が出音範囲又は出音方向に入ってきた場合、その別の人が出音範囲又は出音方向から外れるように、移動してもよい。
 上述したように、本実施の形態における無人移動体100は、指向性スピーカ107及びプロセッサ150を備える。指向性スピーカ107は、指向方向へ音を出力する。プロセッサ150は、一以上のセンシングデータを取得する。
 そして、プロセッサ150は、一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定する。プロセッサ150は、第二対象が存在すると判定した場合に、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出する。
 そして、プロセッサ150は、指向性スピーカ107により所定の品質以上で音が届く範囲内に第一対象と第二対象とを含ませる、無人移動体100の第一位置を位置関係に従って決定し、第一位置へ無人移動体100を移動させる。
 これにより、無人移動体100は、第一対象及び第二対象へ適切に出音を行うことができる。すなわち、無人移動体100は、出音を複数の対象に対して一体的に行うことができる。
 なお、上記の説明では、可変の出音範囲が用いられているが、固定の出音範囲が用いられてもよい。つまり、無人移動体100が出す音の音圧は、固定されていてもよい。また、指向性スピーカ107の代わりに、無指向性スピーカが用いられてもよい。このような構成でも、適切な出音位置に移動することにより、複数の対象に対して適切に出音が行われ得る。
 (実施の形態2)
 実施の形態1は、主に出音に関連する。本実施の形態は、主に収音に関連する。実施の形態1に示された構成及び動作は、実施の形態1の出音及びスピーカ等を収音及びマイクロフォン等に読み替えることにより、本実施の形態に適用され得る。以下、具体的に、本実施の形態における構成及び動作を説明する。
 図46は、本実施の形態における無人移動体の基本的な構成例を示すブロック図である。図46において、指向性マイクロフォン208及びプロセッサ250を備える無人移動体200が示されている。
 無人移動体200は、移動する装置である。例えば、無人移動体200は、自律的に移動又は静止する。無人移動体200は、操作を受けた場合に、操作に従って移動してもよい。また、無人移動体200は、典型的には無人飛行体であるが、無人飛行体に限られず、面上を走行する装置であってもよい。無人移動体200は、空中又は面上を移動するためのモータ及びアクチュエータ等の移動機構を備えていてもよい。
 また、無人移動体200は、一以上のセンサを備えていてもよい。例えば、無人移動体200は、イメージセンサを備えていてもよいし、測距センサを備えていてもよいし、指向性マイクロフォン208又は他のマイクロフォンを音センサとして備えていてもよいし、人検知センサを備えていてもよいし、位置検知器を位置センサとして備えてもよい。
 指向性マイクロフォン208は、指向方向から収音を行うマイクロフォンである。指向性マイクロフォン208の指向方向が調整可能であってもよいし、指向性マイクロフォン208の収音感度が調整可能であってもよい。指向性マイクロフォン208の指向方向は、収音方向とも表現され得る。
 プロセッサ250は、情報処理を行う回路で構成される。例えば、プロセッサ250は、無人移動体200の移動を制御してもよい。具体的には、プロセッサ250は、空中又は面上を移動するためのモータ及びアクチュエータ等の移動機構の動作を制御することにより、無人移動体200の移動を制御してもよい。
 また、プロセッサ250は、指向性マイクロフォン208に対して制御信号を送ることにより、指向性マイクロフォン208の指向方向を調整してもよいし、指向性マイクロフォン208の収音感度を調整してもよい。また、プロセッサ250は、無人移動体200の向きを調整することにより、指向性マイクロフォン208の指向方向を調整してもよい。
 図47は、図46に示された無人移動体200の基本的な動作例を示すフローチャートである。主に、無人移動体200におけるプロセッサ250が、図47に示された動作を行う。
 まず、プロセッサ250は、一以上のセンシングデータを取得する(S201)。プロセッサ250は、無人移動体200の内部の一以上のセンサから一以上のセンシングデータを取得してもよいし、無人移動体200の外部の一以上のセンサから一以上のセンシングデータを取得してもよい。また、プロセッサ250は、無人移動体200の内部の一以上のセンサ、及び、無人移動体200の外部の一以上のセンサから、複数のセンシングデータを取得してもよい。
 例えば、無人移動体200の外部の一以上のセンサとして、イメージセンサ、測距センサ、マイクロフォン、人検知センサ、又は、位置検知器等が用いられてもよい。
 そして、プロセッサ250は、取得された一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定する(S202)。例えば、第一対象は会話者であり、第二対象は会話者に関連する関係者である。ただし、第一対象及び第二対象のそれぞれは、人に限られず、動物であってもよいし、装置であってもよい。
 そして、第一対象の周辺に第二対象が存在すると判定された場合、プロセッサ250は、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出する(S203)。つまり、プロセッサ250は、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を導出する。
 例えば、位置関係は、第一対象及び第二対象に関連する位置及び距離のうち少なくとも一つを含む。位置関係は、第一対象及び第二対象のそれぞれの位置を含んでいてもよいし、第一対象と第二対象との間の距離を含んでいてもよい。
 具体的には、プロセッサ250は、イメージセンサから取得された画像データを用いて、第一対象の位置、第二対象の位置、及び、第一対象と第二対象との間の距離等を算出してもよい。また、プロセッサ250は、測距センサから取得された測距データを用いて、無人移動体200と第一対象との間の距離、無人移動体200と第二対象との間の距離、及び、第一対象と第二対象との間の距離等を算出してもよい。
 そして、プロセッサ250は、算出された位置関係に従って第一位置を決定する。第一位置は、指向性マイクロフォン208により所定の品質以上で音が収音される範囲内に第一対象と第二対象とが含まれるような無人移動体200の位置である。そして、プロセッサ250は、決定された第一位置へ無人移動体200を移動させる(S204)。
 これにより、無人移動体200は、第一対象及び第二対象から適切に収音を行うことができる。すなわち、無人移動体200は、収音を複数の対象に対して一体的に行うことができる。
 例えば、第二対象は、第一対象に関連する対象である。プロセッサ250は、一以上のセンシングデータのうちの少なくとも一つに従って、第一対象の周辺に存在する対象が第一対象に関連するか否かを判定してもよい。そして、これにより、プロセッサ250は、第一対象の周辺に第二対象が存在するか否かを判定してもよい。
 その際、プロセッサ250は、一以上のセンシングデータのうちの少なくとも一つから、第一対象との関連を示す情報、及び、無人移動体200との関連を示す情報のうちの少なくとも一つを取得してもよい。そして、プロセッサ250は、第一対象との関連を示す情報、及び、無人移動体200との関連を示す情報のうちの少なくとも一つに従って、第一対象の周辺に存在する対象が第一対象に関連するか否かを判定してもよい。
 具体的には、プロセッサ250は、第一対象の周辺に存在する対象が複数の条件のうちの一以上を満たす場合に、第一対象の周辺に存在する対象が第一対象に関連すると判定してもよい。
 例えば、この複数の条件は、「第一対象と接触している」、「第一対象と会話している」、「第一対象に対して閾値以下の距離に存在する」、「第一対象と服装が同一である」、「所定エリアに第一対象と存在する」、「第一対象と紐づけられている」、「第一対象に近づいている」、「第一対象の声が届く範囲に存在する」、「第一対象と無人移動体200との会話中に無人移動体200に声をかけている」、及び、「第一対象と無人移動体200との会話中に無人移動体200を見ている」等を含んでいてもよい。
 図48は、図46に示された無人移動体200の具体的な動作例を示す概念図である。この例において、無人移動体200は、ドローンとも呼ばれる無人飛行体である。会話者は第一対象に対応し、関係者は第二対象に対応する。
 例えば、無人移動体200は、会話者の周辺において、会話者に対して収音を行う。そして、無人移動体200は、会話者の周辺に関係者が存在するか否かを判定する。
 例えば、無人移動体200は、無人移動体200が備えるセンサを用いて会話者の周辺をセンシングし、その結果に従って、会話者の周辺に人が存在するか否かを判定する。具体的には、無人移動体200が備えるセンサとして、イメージセンサが用いられ得る。そして、無人移動体200は、会話者の周辺に存在する人が会話者の関係者であると判定される場合に、会話者の周辺に関係者が存在すると判定する。
 そして、無人移動体200は、会話者の周辺に関係者が存在すると判定された場合、無人移動体200によって音が収音される収音範囲に会話者及び関係者が含まれるように、収音位置を決定する。無人移動体200によって音が収音される収音範囲は、指向性マイクロフォン208の指向方向に従って定められてもよい。
 そして、無人移動体200は、決定された収音位置に移動して収音を行う。これにより、無人移動体200は、収音範囲に含まれる会話者及び関係者から収音を行うことができる。
 図49は、図48に示された無人移動体200の具体的な構成例を示すブロック図である。図49に示された無人移動体200は、GPS受信機201、ジャイロセンサ202、加速度センサ203、人検知センサ204、測距センサ205、イメージセンサ206、指向性スピーカ207、指向性マイクロフォン208、駆動部209、通信部210、制御部220、記憶部230、及び、電力供給部241を備える。
 GPS受信機201は、位置を測定するためのGPS(Global Positioning System)を構成し、信号を受信することにより位置を取得する受信機である。例えば、GPS受信機201は、無人移動体200の位置を取得する。すなわち、GPS受信機201は、無人移動体200の位置を検知するセンサとして動作する。
 ジャイロセンサ202は、無人移動体200の姿勢、つまり、無人移動体200の角度又は傾きを検知するセンサである。加速度センサ203は、無人移動体200の加速度を検知するセンサである。人検知センサ204は、無人移動体200の周辺の人を検知するセンサである。人検知センサ204は、赤外線センサであってもよい。
 測距センサ205は、無人移動体200と対象との間の距離を測定するセンサであって測距データを生成する。イメージセンサ206は、撮像を行うセンサであり、撮像によって画像を生成する。イメージセンサ206は、カメラであってもよい。
 指向性スピーカ207は、指向方向へ出音を行うスピーカである。指向性スピーカ207の指向方向が調整可能であってもよいし、指向性スピーカ207が出す音の音圧が調整可能であってもよい。指向性スピーカ207の指向方向は、出音方向とも表現され得る。指向性マイクロフォン208は、上述した通り、指向方向から収音を行うマイクロフォンである。指向性マイクロフォン208の指向方向は調整可能であってもよいし、指向性マイクロフォン208の収音感度が調整可能であってもよい。
 駆動部209は、無人移動体200を移動させるモータ及びアクチュエータ等である。通信部210は、無人移動体200の外部の装置と通信を行う通信器である。通信部210は、無人移動体200の移動のための操作信号を受けてもよい。また、通信部210は、会話の内容を送受信してもよい。
 制御部220は、図46に示されたプロセッサ250に対応し、情報処理を行う回路で構成される。具体的には、この例において、制御部220は、人検知部221、関係者判定部222、収音範囲決定部223、収音位置決定部224、収音制御部225、及び、移動制御部226を備える。すなわち、プロセッサ250は、これらの役割を果たしてもよい。
 人検知部221は、無人移動体200の周辺に存在する人を検知する。人検知部221は、人検知センサ204又は他のセンサから得られるセンシングデータに従って、無人移動体200の周辺に存在する人を検知する。
 関係者判定部222は、人検知部221で検知された人が会話者に関連する関係者であるか否かを判定する。収音範囲決定部223は、会話者と関係者との位置関係に従って収音範囲を決定する。収音位置決定部224は、決定された収音範囲に従って収音位置を決定する。収音制御部225は、指向性マイクロフォン208へ制御信号を送信することにより、指向性マイクロフォン208の収音を制御する。
 移動制御部226は、駆動部209へ制御信号を送信することにより、無人移動体200の移動を制御する。この例において、移動制御部226は、無人飛行体である無人移動体200の飛行を制御する。
 記憶部230は、情報を記憶するためのメモリであり、制御プログラム231及び収音感度収音範囲対応情報232を記憶している。制御プログラム231は、制御部220が行う情報処理のプログラムである。収音感度収音範囲対応情報232は、指向性マイクロフォン208の収音感度と、所定以上の品質で音が収音される収音範囲との対応関係を示す情報である。
 電力供給部241は、無人移動体200に含まれる複数の構成要素に対して電力を供給する回路である。例えば、電力供給部241は、電源を含む。
 図50は、図48に示された無人移動体200の具体的な動作例を示すフローチャートである。例えば、図49に示された無人移動体200における複数の構成要素が連携して図50に示された動作を行う。
 まず、無人移動体200は、会話者と会話を行うための会話位置に移動する(S211)。例えば、会話位置は、会話者の位置から会話者が発する声が届き、かつ、無人移動体200が発する音が届く位置である。会話者は、事前に決定されていてもよい。無人移動体200は、飛行中に会話者を決定してもよい。
 例えば、無人移動体200において、人検知部221が、人検知センサ204又はイメージセンサ206等から得られるセンシングデータに従って、会話者を検知する。そして、移動制御部226は、駆動部209を介して、会話者から所定範囲内の会話位置へ無人移動体200を移動させる。
 そして、無人移動体200は、会話を開始する(S212)。つまり、無人移動体200は、出音及び収音の少なくとも一方を開始する。例えば、収音制御部225は、指向性マイクロフォン208に収音を開始させる。また、制御部220は、指向性スピーカ207に出音を開始させてもよい。
 そして、無人移動体200は、会話者の周辺をセンシングする(S213)。例えば、人検知部221は、人検知センサ204又はイメージセンサ206等に、会話者の周辺をセンシングさせることにより、会話者の周辺の人を検知する。この検知には、人を検知するための任意のセンサが用いられ得る。また、会話者の周辺は、例えば、会話者から所定範囲内の領域に対応する。
 そして、無人移動体200は、会話者以外の人が検知されたか否かを判定する(S214)。例えば、人検知部221は、会話者の周辺において、会話者以外の人が検知されたか否かを判定する。会話者以外の人が検知されなかった場合(S214でNo)、無人移動体200は、会話者の周辺のセンシング(S213)を繰り返す。
 会話者以外の人が検知された場合(S214でYes)、無人移動体200は、検知された人が会話者の関係者であるか否かを判定する(S215)。例えば、関係者判定部222が、会話者と関係者との距離が閾値以内であるか否かに従って、検知された人が関係者であるか否かを判定してもよいし、グルーピング等に関するその他の判定基準に従って、検知された人が関係者であるか否かを判定してもよい。この判定は、実施の形態1において説明された判定と同じである。
 検知された人が関係者でない場合(S215でNo)、無人移動体200は、会話者の周辺のセンシング(S213)を繰り返す。
 検知された人が関係者である場合(S215でYes)、無人移動体200は、会話者と関係者との間の離間距離を測定する(S216)。例えば、収音範囲決定部223は、センシングデータに従って検知された会話者の位置と、センシングデータに従って検知された関係者の位置との間の距離を算出することにより、会話者と関係者との離間距離を測定してもよい。
 そして、無人移動体200は、会話者と関係者との離間距離に従って、収音範囲を決定する(S217)。例えば、収音範囲決定部223は、測定された離間距離に従って、収音範囲を決定する。その際、収音範囲決定部223は、測定された離間距離が大きいほど、収音範囲を大きくする。
 また、収音範囲は、例えば、無人移動体200を基準に用いて相対的に定められる範囲であり、指向性マイクロフォン208により所定品質以上で音が収音される範囲である。所定品質以上は、所定範囲内の音圧に対応していてもよいし、所定範囲内のSN比(信号対雑音比)に対応していてもよい。
 そして、無人移動体200は、会話者の位置、関係者の位置、及び、収音範囲に従って、収音位置を決定する(S218)。例えば、収音位置決定部224は、決定された収音範囲に、検知された会話者の位置、及び、検知された関係者の位置が含まれるように、収音位置を決定する。収音位置の決定については、後述する。
 そして、無人移動体200は、収音位置に移動する(S219)。例えば、移動制御部226は、駆動部209の動作を制御することにより、無人移動体200を収音位置に移動させる。また、収音制御部225は、収音範囲から所定品質以上で音が収音されるように、指向性マイクロフォン208の収音を制御してもよい。
 これにより、無人移動体200は、会話者及び関係者に対して適切に収音を行うことができる。
 なお、上記の例では、無人移動体200は、会話者と会話を開始した後(S212の後)に、収音位置に移動するための処理(S213~S219)を行っているが、会話者と会話を開始する前に、収音位置に移動するための処理を行ってもよい。
 また、上記の例では、検知された人が関係者でない場合(S215でNo)、無人移動体200は、会話者の周辺のセンシング(S213)を繰り返す。しかし、無人移動体200は、関係者でない人(第三対象)に対して収音を行わないように、収音位置を修正してもよい。つまり、無人移動体200における収音位置決定部224は、関係者でない人が収音範囲に含まれないように、収音位置を修正してもよい。
 また、収音位置決定部224は、関係者でない人が収音方向から外れるように、収音位置を修正してもよい。これにより、関係者でない人が移動した場合に収音範囲に入る可能性が抑制される。
 また、収音範囲は、人声収音可能範囲とも表現され、例えば、人の声を所定音圧以上で収音可能な範囲である。具体的には、収音範囲は、指向性マイクロフォン208から収音方向に延在する範囲であり、かつ、指向性マイクロフォン208から所定距離(例えば、5m)以内の範囲である。この所定距離は、指向性マイクロフォン208の収音感度に依存する。収音感度が高いほど、所定距離は長く、収音範囲は大きい。
 したがって、例えば、収音制御部225は、指向性マイクロフォン208の収音感度を上げることにより、収音範囲を大きくすることができる。また、収音制御部225は、指向性マイクロフォン208の収音感度を下げることにより、収音範囲を小さくすることができる。また、収音制御部225は、収音感度を上げることにより増加するノイズをノイズ除去フィルタによって除去してもよい。
 また、人の声を所定音圧以上で収音可能な範囲は、人が発する声の音圧にも依存する。人が発する声の音圧には個人差がある。したがって、収音範囲は、平均的な人が発する声の音圧に従って規定されてもよい。そのため、収音範囲は、目安の範囲であって、必ずしも収音範囲内の人の声が所定音圧以上で収音されるとは限られない。
 また、無人移動体200は、会話者又は関係者の属性を識別し、識別された属性に従って、収音範囲を決定してもよい。例えば、無人移動体200は、性別又は年齢等に従って、収音範囲を決定してもよい。
 あるいは、無人移動体200は、会話者又は関係者を認証し、認証された会話者又は関係者に対して予め登録された音圧に従って収音範囲を決定してもよい。あるいは、無人移動体200は、会話者又は関係者及び音圧の情報を履歴として記憶し、過去の履歴に従って会話者又は関係者の音圧を推定し、推定された音圧に従って収音範囲を決定してもよい。会話者又は関係者の情報として顔の情報が、記憶され認証に用いられてもよい。
 また、収音範囲は、実験によって人の声の音圧を測定し、その結果に従って定められてもよい。その際、収音感度毎に、収音範囲が定められてもよい。また、図6のような点音源の特性に従って、収音範囲が定められてもよい。
 また、会話者が発する声の音圧と関係者が発する声の音圧とが異なる場合がある。この場合、これらの音圧のうち小さい音圧に従って収音範囲が定められてもよいし、これらの音圧のうち大きい音圧に従って収音範囲が定められてもよいし、これらの音圧の平均音圧に従って収音範囲が定められてもよい。また、会話者が発する声の音圧に従って収音範囲が定められてもよいし、関係者が発する声の音圧に従って収音範囲が定められてもよい。
 また、収音範囲が固定である場合、つまり、指向性マイクロフォン208の収音感度が固定である場合、無人移動体200は、会話者と関係者との離間距離が収音範囲内に入るか否かを判定してもよい。そして、無人移動体200は、離間距離が収音範囲内に入る場合に、収音位置を決定して、決定された収音位置に移動してもよい。無人移動体200は、離間距離が収音範囲内に入らない場合に、移動しなくてもよい。
 説明を簡便化するため、以下では、個人差を考慮せずに平均的な人が発する声の音圧に従って収音範囲が規定され、かつ、収音感度の調整によって収音範囲が調整可能であることを前提に説明を行う。ただし、個人差を考慮して収音範囲が調整されてもよい。
 また、上述したような、収音感度と収音範囲との関係が、収音感度収音範囲対応情報232として、記憶部230に記憶されていてもよい。
 収音範囲決定部223は、会話者と関係者との離間距離に従って、会話者と関係者とが収音範囲に含まれるように、収音感度及び収音範囲を決定する。例えば、この動作は、実施の形態1において、出音範囲決定部123が、会話者と関係者との離間距離に従って、会話者と関係者とが出音範囲に含まれるように、音圧及び出音範囲を決定する動作と同じように行われる。
 本実施の形態において、会話者以外の人が関係者であるか否かを判定するための基準は、実施の形態1において図13~図23を用いて説明された基準と同じであるため、説明を省略する。
 無人移動体200は、会話者及び関係者を収音範囲に含めることができるような、無人移動体200の位置を収音位置として決定する。例えば、無人移動体200の収音位置決定部224が、収音位置を決定する。以下、図51~図66を用いて、より具体的な収音位置の決定方法を説明する。
 図51は、会話者の位置と関係者の位置とを通る直線上の収音位置の例を示す概念図である。この例では、無人移動体200は、会話者の位置と関係者の位置とを通る直線上の位置であって、かつ、その位置によって相対的に定められる収音範囲に会話者及び関係者が含まれるような位置を収音位置として決定する。これにより、無人移動体200は、収音方向に沿って、適切に会話者及び関係者から収音を行うことができる。
 図52は、会話者に近い収音位置の例を示す概念図である。例えば、無人移動体200は、会話者の位置と関係者の位置とを通る直線上において、会話者及び関係者の外側の収音位置から会話者及び関係者に指向方向を向けて収音を行う。図52の例において、無人移動体200は、会話者側の収音位置において収音を行う。つまり、無人移動体200は、会話者に近い位置を収音位置として決定する。
 予め定められた会話者は、関係者よりも無人移動体200とより多く会話を行うと推定される。また、無人移動体200と会話者との間に関係者が存在する場合、関係者が無人移動体200と会話者との会話の妨げになる可能性がある。したがって、会話者に近い位置が収音位置として決定されることにより、より多く行われる会話が円滑に行われ得る。
 図53は、高齢者に近い収音位置の例を示す概念図である。無人移動体200は、会話者に近い位置の代わりに、高齢者に近い位置を収音位置として決定してもよい。例えば、無人移動体200は、会話者が予め定められていない場合、高齢者に近い位置を収音位置として決定する。無人移動体200は、顔認証で年齢を推定してもよい。
 人が発する声の音圧は、加齢に伴って低下すると想定される。無人移動体200は、高齢者に近い位置を収音位置として決定することにより、高齢者が小さい音圧で発する声を収音することができる。したがって、無人移動体200は、加齢に伴って低下した音圧を補うことができる。
 なお、親子の場合、高齢者に近い位置、すなわち、親に近い位置が収音位置として決定される。これにより、無人移動体200から子を遠ざけることが可能である。
 また、無人移動体200は、年齢が所定の年齢以上と推定される人を高齢者と判定してもよい。そして、無人移動体200は、会話者及び関係者の一方が高齢者であると判定された場合、その高齢者に近い位置を収音位置として決定してもよい。また、無人移動体200は、会話者及び関係者の両方が高齢者であると判定された場合、両者から等距離の位置を収音位置として決定してもよいし、他の条件に従って収音位置を決定してもよい。
 図54は、関係者を中心に正面側に補正された収音位置の例を示す概念図である。図54の上側に示されているように、会話者及び関係者の横側に無人移動体200が存在する場合であっても、無人移動体200は、会話者及び関係者から収音を行うことができる。一方で、会話者及び関係者の横側よりも正面側に無人移動体200が存在している方が、会話者及び関係者は無人移動体200と会話しやすい。
 すなわち、無人移動体200は、会話者及び関係者の正面側に存在することにより、会話者及び関係者に対して円滑な会話を提供することができる。したがって、無人移動体200は、会話者及び関係者の正面側に収音位置を補正してもよい。
 具体的には、無人移動体200は、図54の下側に示されているように、関係者を中心として想定される円に沿って、会話者及び関係者の正面側に収音位置を補正してもよい。これにより、無人移動体200は、関係者に対する距離を変えずに、収音位置を補正することができる。
 なお、無人移動体200は、会話者を中心に想定される円に沿って収音位置を補正してもよい。これにより、無人移動体200は、会話者に対する距離を変えずに、収音位置を補正することができる。ただし、無人移動体200は、会話者及び関係者のうち無人移動体200から遠い方を中心に想定される円を用いることにより、会話者及び関係者のそれぞれと無人移動体200との間における距離の変動を抑制することができる。
 また、無人移動体200は、円に沿って収音位置を補正することに限らず、会話者及び関係者のうちの少なくとも一方の正面方向に移動し、収音方向を会話者及び関係者のうちの少なくとも一方に向けてもよい。無人移動体100は、このような動作を行うための正面方向の位置に収音位置を補正してもよい。
 図55は、関係者が収音範囲に含まれるように会話者を中心に決定された収音位置の例を示す概念図である。例えば、図55の上側に示されるように、無人移動体200は、会話者と会話中において会話者の正面側に存在する。その後、図55の下側に示されるように、無人移動体200は、収音範囲に関係者が含まれるように、会話者を中心に想定される円に沿って移動してもよい。この場合、無人移動体200は、会話者を中心に想定される円に沿って収音位置を決定してもよい。
 これにより、無人移動体200は、会話者に対する距離を変えずに、会話者及び関係者から収音を行うことが可能な位置に移動することができる。
 図56は、会話者及び関係者の正面側の収音位置の例を示す概念図である。会話者及び関係者の正面方向に対して垂直な横方向における会話者と関係者との間の距離が、指向幅以内である場合、無人移動体200は、会話者及び関係者の正面側の位置を収音位置として決定してもよい。
 これにより、無人移動体200は、会話者及び関係者の正面側の位置において会話者及び関係者から収音を行うことができる。すなわち、無人移動体200は、会話者及び関係者の正面側の位置から会話を行うことができる。よって、無人移動体200は、会話者及び関係者に対して円滑な会話を提供することができる。
 なお、会話者及び関係者の横側の位置よりも会話者及び関係者の正面側の位置が会話に適していると想定される。したがって、無人移動体200は、会話者及び関係者の正面側の位置を優先的に収音位置として決定してもよい。
 図57は、水平面に対して斜め方向の直線上の収音位置の例を示す概念図である。例えば、無人移動体200は、画像認識処理又は顔認証処理等によって、会話者の身体情報及び関係者の身体情報を取得してもよい。そして、無人移動体200は、会話者の身体情報及び関係者の身体情報に従って、収音位置を決定してもよい。身体情報は、身長であってもよいし、顔の高さであってもよい。
 具体的には、無人移動体200は、会話者の顔の高さと、関係者の顔の高さとが乖離している場合、会話者の顔の位置と、関係者の顔の位置とを通る直線上の位置であって、かつ、収音範囲に会話者及び関係者が含まれるような位置を収音位置として決定する。この場合、無人移動体200は、水平面に対して斜めの収音方向に沿って収音を行う。
 これにより、無人移動体200は、収音方向に沿って、適切に会話者及び関係者から収音を行うことができる。
 なお、会話者の顔の高さと、関係者の顔の高さとに乖離がある場合の例として、会話者と関係者とが親子である場合、又は、会話者と関係者とが車椅子に乗る人と車椅子を押す人とである場合がある。また、図57には、親が会話者であり、子が関係者である例が示されているが、会話者と関係者とは反対であってもよい。
 また、斜め方向の収音として、低い方において高い方へ向かって行われる収音と、高い方において低い方へ向かって行われる収音とが想定される。低い方において高い方へ向かって収音が行われる場合、飛行高度が低いため、飛行が困難であり、人と接触する可能性がある。また、無人移動体200が小さな子供に近づいてしまう。したがって、高い方において低い方へ向かって収音が行われてもよい。これにより、例えば、衝突等の可能性が抑制される。
 一方、高い方において低い方へ向かって収音が行われる場合、会話者及び関係者は、無人移動体200が存在する上方に向かって声を発する。したがって、声が発散し、収音が困難である。よって、低い方において高い方へ向かって収音が行われてもよい。
 また、低い方において高い方へ向かって行われる収音と、高い方において低い方へ向かって行われる収音とが切り替え可能であってもよい。人が少ない場所では、低い方において高い方へ向かって収音が行われ、人が多い場所では、高い方において低い方へ向かって収音が行われてもよい。
 図58は、水平方向の直線上の収音位置の例を示す概念図である。無人移動体200は、会話者の顔と、関係者の顔とが、収音の指向幅に入る場合、収音範囲に会話者の顔及び関係者の顔が含まれるような位置であって、水平方向に収音を行うための位置を収音位置として決定してもよい。すなわち、会話者の顔の高さと、関係者の顔の高さとが所定範囲を超えて乖離している場合において、無人移動体200は、図57のように、斜め方向に収音を行うための位置を収音位置として決定してもよい。
 さらに言い換えれば、会話者の顔の高さと、関係者の顔の高さとの差が所定範囲内であれば、無人移動体200は、高度を変更しなくてもよい。これにより、処理が簡素化される。ただし、無人移動体200は、高度を高くすることで、衝突等の可能性を抑制することができ、円滑な会話を提供することができる。
 図59は、会話者及び関係者と同じ高さの収音位置の例を示す概念図である。上述した通り、無人移動体200は、水平方向に収音を行うための位置を収音位置として決定してもよい。これにより、処理が簡素化される。
 ただし、この場合、無人移動体200は、人と接触する可能性がある。また、無人移動体200から遠い人と、無人移動体200とは、無人移動体200に近い人を跨いで会話を行うため、会話を行い難い。具体的には、図59の例において、関係者と無人移動体200とは、会話者を跨いで会話を行うため、会話を行い難い。
 図60は、会話者及び関係者よりも高い収音位置の例を示す概念図である。無人移動体200は、会話者及び関係者よりも高い位置を優先して収音位置として決定してもよい。これにより、無人移動体200は、衝突等の可能性を抑制することができる。また、無人移動体200は、無人移動体200に近い人にも、無人移動体200から遠い人にも、円滑な会話を提供することができる。
 図61は、収音位置の高さの例を示す概念図である。収音位置が高くなりすぎると、会話者及び関係者が無人移動体200を見上げる角度が大きくなりすぎる。これにより、会話者及び関係者が無人移動体200を見上げながら会話を行うことになり、円滑な会話が困難になる。
 そこで、収音位置の高度、又は、収音方向と水平面との角度に上限が定められてもよい。例えば、収音位置の高度の上限は、無人移動体200と、会話者及び関係者のうち無人移動体200に近い方との離間距離に従って定められてもよい。例えば、会話者及び関係者に近いほど、収音位置の高度の上限は低く定められる。これにより、会話者及び関係者が無人移動体200を見上げる角度が小さく抑制される。
 図62は、収音範囲から非関係者を排除するための収音位置の例を示す概念図である。無人移動体200は、会話者以外の人が関係者でないと判定された場合、関係者でないと判定された人が収音範囲に含まれないように収音位置を決定してもよい。つまり、無人移動体200は、会話者以外の人が非関係者であると判定された場合、非関係者が収音範囲に含まれないように収音位置を決定してもよい。
 例えば、無人移動体200は、無人移動体200と非関係者との離間距離が大きくなるように、収音位置を決定して、収音位置へ移動する。これにより、無人移動体200は、非関係者から音が収音されにくくすることができる。
 また、例えば、無人移動体200は、非関係者から音が収音されず、会話者から音が収音される範囲で収音位置を決定する。つまり、無人移動体200は、非関係者が収音範囲に含まれず、かつ、会話者が収音範囲に含まれるように、収音位置を決定する。これにより、無人移動体200は、非関係者に対して収音を行わずに、会話者に対して収音を行うことができる。
 また、例えば、無人移動体200は、会話者から所定音圧以上で音が収音される範囲内で、非関係者から遠ざかってもよい。具体的には、無人移動体200は、移動前に会話者から収音される音の音圧に従って、会話者から所定音圧以上で音が収音される範囲を算出し、その範囲内で非関係者から最も遠い位置を収音位置として決定してもよい。これにより、無人移動体200は、非関係者から音が収音されにくくすることができ、かつ、会話者に対する適切な収音を維持することができる。
 なお、無人移動体200は、非関係者が収音範囲に含まれず、かつ、会話者及び関係者が収音範囲に含まれるように、収音位置を決定してもよい。これにより、無人移動体200は、非関係者に対して収音を行わずに、会話者及び関係者に対して収音を行うことができる。
 図63は、非関係者と会話者と無人移動体200との水平面上の位置関係の例を示す概念図である。例えば、無人移動体200は、図63の上側の例ように、非関係者から遠い位置を収音位置として決定してもよい。しかし、図63の上側の例では、非関係者が収音方向に入っているため、非関係者から音が収音される可能性がある。
 そこで、無人移動体200は、図63の下側の例ように、非関係者が収音方向から外れるように収音位置を決定してもよい。具体的には、無人移動体200は、会話者の位置と関係者の位置とを通る直線上に含まれない位置を収音位置として決定してもよい。これにより、無人移動体200は、非関係者から音が収音される可能性を抑制することができる。
 なお、図63の下側の例においても、無人移動体200は、非関係者が収音範囲に含まれず、かつ、会話者及び関係者が収音範囲に含まれるように、収音位置を決定してもよい。
 図64は、非関係者と会話者と無人移動体200との垂直面上の位置関係の例を示す概念図である。無人移動体200から水平方向に収音が行われた場合、非関係者が収音範囲又は収音方向に入る可能性が比較的高く、非関係者から音が収音される可能性がある。したがって、無人移動体200は、会話者の上側から会話者に対して収音を行ってもよい。これにより、無人移動体200は、非関係者が収音範囲又は収音方向に入る可能性を抑制することができ、非関係者から音が収音される可能性を抑制することができる。
 なお、無人移動体200は、非関係者が収音範囲に含まれず、かつ、会話者及び関係者が収音範囲に含まれるように、収音位置の高度を決定してもよい。
 図65は、収音範囲から別の人を排除するための収音位置の例を示す概念図である。無人移動体200は、収音範囲から別の人を排除するため、無人移動体200と障害物とで会話者を挟む無人移動体200の位置を収音位置として決定してもよい。そして、無人移動体200は、収音位置へ移動し、会話者に対して収音を行ってもよい。これにより、無人移動体200は、別の人から音が収音される可能性を抑制することができる。
 ここで、障害物は、例えば、収音範囲に別の人が入ることを妨げる物理的環境である。障害物は、収音範囲の広がりを妨げる物理的環境であってもよいし、人が通れない物理的環境であってもよい。具体的には、障害物は、壁であってもよいし、建物であってもよいし、崖であってもよい。
 また、無人移動体200は、画像認識処理によって障害物の位置を検知してもよいし、図示しない障害物検知センサによって障害物の位置を検知してもよい。
 また、無人移動体200は、障害物の位置を含むマップ情報から障害物の位置を特定してもよい。マップ情報は、無人移動体200の記憶部230に予め記憶されていてもよいし、無人移動体200の通信部210を用いて外部装置から無人移動体200へ入力されてもよい。そして、無人移動体200は、無人移動体200の位置を検知することにより、マップ情報に従って障害物の位置を検知してもよい。
 例えば、図65の上側では、無人移動体200から会話者を挟んで反対側に障害物が存在しないため、収音範囲に別の人が入る可能性がある。これに対して、図65の下側では、無人移動体200から会話者を挟んで反対側に壁等の障害物が存在するため、収音範囲に別の人が入る可能性が抑制される。
 なお、会話者のみでなく、関係者が考慮されてもよい。具体的には、無人移動体200と障害物とで会話者及び関係者を挟む無人移動体200の位置を収音位置として決定してもよい。これにより、無人移動体200は、別の人に対して収音を行わずに、会話者及び関係者に対して収音を行うことができる。
 図66は、会話者が出す音及び関係者が出す音に従って決定される収音位置の例を示す概念図である。
 無人移動体200は、会話者及び関係者のうち発声頻度が高い方に対して近い位置を収音位置として決定してもよい。具体的には、無人移動体200は、収音された音に従って、会話者の発生頻度と、関係者の発生頻度とを取得し、発声頻度が高い方に対して近い位置を収音位置として決定してもよい。例えば、会話者が無人移動体200に対して話す回数よりも、関係者が無人移動体200に対して話す回数が多い場合、関係者に近い位置を収音位置として決定する。
 これにより、無人移動体200は、会話者及び関係者のうち発声頻度が高い方からより適切に収音を行うことができる。
 また、無人移動体200は、会話者及び関係者のうち音量が小さい方に対して近い位置を収音位置として決定してもよい。具体的には、無人移動体200は、収音された音に従って、会話者の声の音量と、関係者の声の音量とを取得し、音量が小さい方に対して近い位置を収音位置として決定してもよい。例えば、関係者の音量が会話者の音量よりも小さい場合、関係者に近い位置を収音位置として決定する。
 より具体的には、無人移動体200は、収音された音に従って、会話者が発する声の音圧と、関係者が発する声の音圧とをそれぞれ音量として推定する。そして、無人移動体200は、会話者に対して推定された音量と、関係者に対して推定された音量とを比較することにより、音量が小さい方を特定する。
 また、無人移動体200は、人が発する声の音圧と、人と無人移動体200との離間距離と、無人移動体200で収音される声の音圧との関係を示すテーブルを参照して、会話者が発する声の音圧と、関係者が発する声の音圧とをそれぞれ音量として推定してもよい。このテーブルは、記憶部230に予め記憶されていてもよい。
 そして、無人移動体200は、会話者及び関係者のうち音量が小さい方に対して近い収音位置に移動して収音を行うことにより、会話者及び関係者のうち音量が小さい方からも適切に収音を行うことができる。
 収音位置の決定方法に関して、図51~図66を用いて説明された複数の決定方法のうちのいずれか一つが用いられてもよいし、これらの決定方法のうちの任意の二以上の組み合わせが用いられてもよい。続いて、無人移動体200の移動等に関する複数の例を説明する。
 図67は、無人移動体200が収音位置へ移動する例を示す概念図である。例えば、無人移動体200は、会話者に対して収音を行いながら収音位置へ移動する場合、移動中において会話者が収音範囲から外れないように、収音位置へ移動する。これにより、無人移動体200は、継続的に会話者から収音を行うことができる。
 具体的には、この場合、無人移動体200は、指向性マイクロフォン208の指向方向を会話者へ向けながら収音位置へ移動する。また、無人移動体200は、会話者から所定距離内で移動する。この所定距離は、収音方向における収音範囲の長さに対応する。無人移動体200は、会話者から所定距離内の移動経路を作成して、作成された移動経路に沿って収音位置へ移動してもよい。これにより、無人移動体200は、移動中において会話者が収音範囲から外れないように、収音位置へ移動することができる。
 また、無人移動体200は、移動中において、会話者から収音される音の音圧が一定に維持されるように、無人移動体200と会話者との間の距離に従って、収音感度を変更してもよい。例えば、無人移動体200は、会話者から遠ざかる場合、収音感度を上げながら移動してもよい。逆に、無人移動体200は、会話者へ近づく場合、収音感度を下げながら移動してもよい。
 なお、無人移動体200は、収音の途中に関係者が会話を行いながら収音範囲に入ることで断片化された会話の収音が行われないよう、会話が途切れた時等に移動を行ってもよい。
 図68は、無人移動体200が正面側を通って収音位置へ移動する例を示す概念図である。例えば、無人移動体200は、会話者の正面側を通って、収音位置へ移動する。会話者の正面側は、会話者の視界範囲に対応する。会話者の視界範囲から無人移動体200が外れた場合、会話者が無人移動体200と会話を行うことが困難になる。無人移動体200は、会話者の正面側を通って収音位置へ移動することにより、移動中において円滑な会話を会話者へ提供することができる。
 具体的には、無人移動体200は、画像認識処理によって、会話者の正面側を検知することにより、会話者の視界範囲を特定してもよい。そして、無人移動体200は、特定された視界範囲内の移動経路を作成して、作成された移動経路に沿って収音位置へ移動してもよい。
 また、上記の説明では、無人移動体200は会話者の正面側を通って収音位置へ移動しているが、無人移動体200は会話者及び関係者の正面側を通って収音位置へ移動してもよい。これにより、無人移動体200は、円滑な会話を関係者にも提供することができる。
 図69は、無人移動体200が収音範囲を変更する例を示す概念図である。無人移動体200は、会話者及び関係者が収音範囲に含まれるように、収音範囲を調整してもよい。具体的には、無人移動体200は、指向性マイクロフォン208の収音感度を調整することにより、収音範囲を調整してもよい。
 また、図69の上側の例のように、無人移動体200は、会話者以外の人が関係者である確度が中程度であると判定された場合、会話者及び会話者以外の人が収音方向に入る収音位置に移動する。そして、無人移動体200は、会話者から音が収音され、会話者以外の人から音が収音されないように、指向性マイクロフォン208の収音感度を調整する。つまり、無人移動体200は、指向性マイクロフォン208の収音感度を低くする。
 そして、図69の下側の例のように、無人移動体200は、会話者以外の人が関係者である確度が高いと判定された場合、会話者以外の人から音が収音されるように、指向性マイクロフォン208の収音感度を調整する。つまり、無人移動体200は、指向性マイクロフォン208の収音感度を高くする。
 これにより、無人移動体200は、会話者以外の人が関係者である確度が上昇した場合に、移動なしで即時に、会話者以外の人に対して収音を行うことができる。なお、無人移動体200は、収音感度を高くせずに、収音方向に移動してもよい。これにより、無人移動体200は、収音感度を大きくすることに伴う消費電力の増加を抑制することができる。
 図70は、移動と収音範囲の変更との選択的動作の例を示す概念図である。無人移動体200は、会話者と関係者とが共に収音方向に存在する場合、収音範囲を拡大するか、収音方向に移動するかを選択することができる。つまり、無人移動体200は、収音範囲を拡大することにより、会話者と関係者とを収音範囲に含めることもできるし、収音方向に移動することにより、会話者と関係者とを収音範囲に含めることもできる。
 ただし、無人移動体200は、収音範囲を拡大する場合、収音感度を大きくする。これにより、消費電力が大きくなると想定される。したがって、無人移動体200は、収音範囲を拡大することよりも、収音方向に移動することを優先してもよい。
 また、無人移動体200は、会話者に近すぎる場合、会話者に接触する可能性がある。また、無人移動体200は、会話者に近すぎる場合、会話者から収音される音が大きすぎる場合がある。したがって、無人移動体200は、可能な範囲で会話者に最も近くまで、収音方向に移動してもよい。その状態において、関係者が収音範囲に含まれない場合、無人移動体200は、収音範囲を拡大してもよい。これにより、無人移動体200は、会話者及び関係者に対して適切に収音を行うことができる。
 図71は、関係者が収音範囲から外れた場合の例を示す概念図である。例えば、関係者が収音範囲から外れた場合、より具体的には、関係者が自ら収音範囲から離れて出て行った場合、その関係者は、無人移動体200と会話を行う意思を有していないと想定される。
 したがって、例えば、上記の場合、無人移動体200は、その関係者を収音範囲に含めるための収音位置に移動しない。これにより、無人移動体200は、無駄な移動に伴う消費電力を抑制することができ、また、その関係者に対する不要な収音を抑制することができる。
 ただし、関係者が、無人移動体200と会話を行う意思を有しつつ、移動する可能性もある。例えば、関係者が収音範囲からあまり離れていない状態が所定時間以上続いた場合、関係者が無人移動体200と会話を行う意思を有している可能性がある。そこで、関係者が収音範囲からあまり離れていない状態が所定時間以上続いた場合、無人移動体200は、その関係者を収音範囲に含めるための移動を行ってもよい。
 なお、関係者が収音範囲からあまり離れていない状態は、例えば、関係者が収音範囲内に存在せず、かつ、関係者が収音範囲の周辺の所定範囲内に存在する状態である。
 図72は、別の人が収音範囲に入った場合の例を示す概念図である。無人移動体200は、会話者に対して収音を行っている間に、会話者とは別の人が収音範囲又は収音方向に入ってきた場合、その別の人が収音範囲又は収音方向から外れるように、移動してもよい。例えば、無人移動体200は、画像認識処理によって、別の人が収音範囲又は収音方向に入ったことが検知された場合、別の人が収音範囲又は収音方向から外れるように、収音位置を変更し、変更された収音位置へ移動してもよい。
 また、無人移動体200は、指向性マイクロフォン208によって別の人の声が収音されたことを検知したタイミングで、その別の人が収音範囲又は収音方向から外れるように、収音位置を変更し、変更された収音位置へ移動してもよい。
 例えば、収音範囲又は収音方向に存在する別の人が声を発していない場合等では、別の人の声が収音されない。このような場合、別の人の影響が生じないため、無人移動体200は、移動しなくてもよい。そして、別の人の声が収音され、別の人の影響が生じた場合に、無人移動体200は、別の人が収音範囲又は収音方向から外れるように、移動してもよい。
 また、無人移動体200は、別の人が関係者であるか否かを判定し、別の人が関係者でないと判定された場合に、別の人が収音範囲又は収音方向から外れるように、収音位置を変更してもよい。
 また、無人移動体200は、会話者及び関係者に対して収音を行っている間に、会話者及び関係者とは別の人が収音範囲又は収音方向に入ってきた場合、その別の人が収音範囲又は収音方向から外れるように、移動してもよい。
 図73は、グループが収音範囲に入った場合の例を示す概念図である。会話者とは別の複数の人で構成されるグループは、グループ内で会話を行っている可能性がある。そのため、グループが収音範囲又は収音方向に入ってきた場合、無人移動体200は、グループ内の会話が収音されないように移動してもよい。つまり、この場合、無人移動体200は、収音範囲又は収音方向に入ってきたグループが収音範囲又は収音方向から外れるように、移動してもよい。
 例えば、無人移動体200は、画像認識処理によって、グループが収音範囲又は収音方向に入ったことが検知された場合、グループが収音範囲又は収音方向から外れるように、収音位置を変更し、変更された収音位置へ移動してもよい。
 また、無人移動体200は、会話者以外の人が会話者の関係者であるか否かの基準を用いて、会話者とは別の複数の人がグループを構成するか否かを判定してもよい。つまり、無人移動体200は、実施の形態1において図13~図23を用いて説明された基準を用いて、複数の人が互いに関連するようなグループを構成するか否かを判定してもよい。
 また、無人移動体200は、会話者及び関係者に対して収音を行っている間に、会話者及び関係者とは別の複数の人で構成されるグループが収音範囲又は収音方向に入ってきた場合、そのグループが収音範囲又は収音方向から外れるように、移動してもよい。
 図74は、関係者が収音範囲に入った場合の例を示す概念図である。例えば、実施の形態1において、無人移動体100が出音位置に移動することで関係者が出音範囲に入った場合、無人移動体100が行う出音によって無人移動体100から関係者へ音が届くため、関係者が出音範囲に入ったことを関係者が認識することは容易である。一方、本実施の形態において、無人移動体200が収音位置に移動することで関係者が収音範囲に入った場合、関係者が収音範囲に入ったことを関係者が認識することは容易ではない。
 そこで、無人移動体200は、無人移動体200が収音位置に移動することで関係者が収音範囲に入った場合、関係者が収音範囲に入ったことを関係者へ通知してもよい。
 例えば、無人移動体200は、指向性スピーカ207を用いて、「収音範囲に入りました」というメッセージの出音を行ってもよい。つまり、無人移動体200は、音によって通知を行ってもよい。あるいは、無人移動体200は、通知のためのLEDを搭載していてもよい。そして、無人移動体200は、LEDによって通知を行ってもよい。あるいは、無人移動体200は、通信部210によって、関係者が収音範囲に入ったことを示す情報を関係者の携帯端末へ送信することにより、通知を行ってもよい。
 上述したように、本実施の形態における無人移動体200は、指向性マイクロフォン208及びプロセッサ250を備える。指向性マイクロフォン208は、指向方向から音を収音する。プロセッサ250は、指向性マイクロフォン208から取得されるデータを含む一以上のセンシングデータを取得する。
 そして、プロセッサ250は、一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定する。プロセッサ250は、第二対象が存在すると判定した場合に、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出する。
 そして、プロセッサ250は、指向性マイクロフォン208により所定の品質以上で音が収音される範囲内に第一対象と第二対象とを含ませる、無人移動体200の第一位置を位置関係に従って決定し、第一位置へ無人移動体200を移動させる。
 これにより、無人移動体200は、第一対象及び第二対象へ適切に収音を行うことができる。すなわち、無人移動体200は、収音を複数の対象に対して一体的に行うことができる。
 なお、上記の説明では、可変の収音範囲が用いられているが、固定の収音範囲が用いられてもよい。つまり、収音感度は、固定されていてもよい。また、指向性マイクロフォン208の代わりに、無指向性マイクロフォンが用いられてもよい。このような構成でも、適切な収音位置に移動することにより、複数の対象に対して適切に収音が行われ得る。
 (実施の形態3)
 実施の形態1は、主に出音に関連する。実施の形態2は、主に収音に関連する。本実施の形態は、出音及び収音の両方に関連する。実施の形態1に示された構成及び動作、並びに、実施の形態2に示された構成及び動作は、本実施の形態にも適用され得る。以下、出音及び収音の両方に関連する構成及び動作を説明する。
 図75は、本実施の形態における無人移動体の基本的な構成例を示すブロック図である。図75において、指向性スピーカ307、指向性マイクロフォン308及びプロセッサ350を備える無人移動体300が示されている。
 無人移動体300は、移動する装置である。例えば、無人移動体300は、自律的に移動又は静止する。無人移動体300は、操作を受けた場合に、操作に従って移動してもよい。また、無人移動体300は、典型的には無人飛行体であるが、無人飛行体に限られず、面上を走行する装置であってもよい。無人移動体300は、空中又は面上を移動するためのモータ及びアクチュエータ等の移動機構を備えていてもよい。
 また、無人移動体300は、一以上のセンサを備えていてもよい。例えば、無人移動体300は、イメージセンサを備えていてもよいし、測距センサを備えていてもよいし、指向性マイクロフォン308又は他のマイクロフォンを音センサとして備えていてもよいし、人検知センサを備えていてもよいし、位置検知器を位置センサとして備えてもよい。
 指向性スピーカ307は、指向方向へ出音を行うスピーカである。指向性スピーカ307の指向方向が調整可能であってもよいし、指向性スピーカ307が出す音の音圧が調整可能であってもよい。指向性スピーカ307の指向方向は、出音方向とも表現され得る。
 指向性マイクロフォン308は、指向方向から収音を行うマイクロフォンである。指向性マイクロフォン308の指向方向が調整可能であってもよいし、指向性マイクロフォン308の収音感度が調整可能であってもよい。指向性マイクロフォン308の指向方向は、収音方向とも表現され得る。
 プロセッサ350は、情報処理を行う回路で構成される。例えば、プロセッサ350は、無人移動体300の移動を制御してもよい。具体的には、プロセッサ350は、空中又は面上を移動するためのモータ及びアクチュエータ等の移動機構の動作を制御することにより、無人移動体300の移動を制御してもよい。
 また、プロセッサ350は、指向性スピーカ307に対して制御信号を送ることにより、指向性スピーカ307の指向方向を調整してもよいし、指向性スピーカ307が出す音の音圧を調整してもよい。また、プロセッサ350は、無人移動体300の向きを調整することにより、指向性スピーカ307の指向方向を調整してもよい。
 また、プロセッサ350は、指向性マイクロフォン308に対して制御信号を送ることにより、指向性マイクロフォン308の指向方向を調整してもよいし、指向性マイクロフォン308の収音感度を調整してもよい。また、プロセッサ350は、無人移動体300の向きを調整することにより、指向性マイクロフォン308の指向方向を調整してもよい。
 図76は、図75に示された無人移動体300の基本的な動作例を示すフローチャートである。主に、無人移動体300におけるプロセッサ350が、図76に示された動作を行う。
 まず、プロセッサ350は、一以上のセンシングデータを取得する(S301)。プロセッサ350は、無人移動体300の内部の一以上のセンサから一以上のセンシングデータを取得してもよいし、無人移動体300の外部の一以上のセンサから一以上のセンシングデータを取得してもよい。また、プロセッサ350は、無人移動体300の内部の一以上のセンサ、及び、無人移動体300の外部の一以上のセンサから、複数のセンシングデータを取得してもよい。
 例えば、無人移動体300の外部の一以上のセンサとして、イメージセンサ、測距センサ、マイクロフォン、人検知センサ、又は、位置検知器等が用いられてもよい。
 そして、プロセッサ350は、取得された一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定する(S302)。例えば、第一対象は会話者であり、第二対象は会話者に関連する関係者である。ただし、第一対象及び第二対象のそれぞれは、人に限られず、動物であってもよいし、装置であってもよい。
 そして、第一対象の周辺に第二対象が存在すると判定された場合、プロセッサ350は、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出する(S303)。つまり、プロセッサ350は、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を導出する。
 例えば、位置関係は、第一対象及び第二対象に関連する位置及び距離のうち少なくとも一つを含む。位置関係は、第一対象及び第二対象のそれぞれの位置を含んでいてもよいし、第一対象と第二対象との間の距離を含んでいてもよい。
 具体的には、プロセッサ350は、イメージセンサから取得された画像データを用いて、第一対象の位置、第二対象の位置、及び、第一対象と第二対象との間の距離等を算出してもよい。また、プロセッサ350は、測距センサから取得された測距データを用いて、無人移動体300と第一対象との間の距離、無人移動体300と第二対象との間の距離、及び、第一対象と第二対象との間の距離等を算出してもよい。
 そして、プロセッサ350は、算出された位置関係に従って第一位置を決定する。第一位置は、指向性スピーカ307により所定の品質以上で音が届く範囲内、かつ、指向性マイクロフォン308により所定の品質以上で音が収音される範囲内に第一対象と第二対象とが含まれるような無人移動体300の位置である。そして、プロセッサ350は、決定された第一位置へ無人移動体300を移動させる(S304)。
 これにより、無人移動体300は、第一対象及び第二対象に対して適切に出音及び収音を行うことができる。すなわち、無人移動体300は、出音及び収音を複数の対象に対して一体的に行うことができる。
 以下、図77~図81を用いて、より具体的な例を説明する。以下の例において、無人移動体300は、ドローンとも呼ばれる無人飛行体である。第一対象は会話者に対応し、関係者は第二対象に対応する。
 図77は、出音範囲と収音範囲との例を示す概念図である。本実施の形態における出音範囲は、実施の形態1における出音範囲と同じように定められ、本実施の形態における収音範囲は、実施の形態2における収音範囲と同じように定められる。
 無人移動体300と人とが相互に会話を行うため、無人移動体300は、指向性スピーカ307によりその人へ音が届き、かつ、指向性マイクロフォン308によりその人から音が収音される会話位置に移動する。具体的には、無人移動体300は、出音範囲と収音範囲との重複範囲に従って、会話位置を決定する。
 例えば、無人移動体300は、出音範囲と収音範囲との重複範囲に会話者が含まれるように、会話位置を決定する。また、例えば、会話者の周辺に会話者の関係者が存在する場合、無人移動体300は、出音範囲と収音範囲との重複範囲に会話者及び関係者が含まれるように、会話位置を決定する。この動作は、実施の形態1において会話者等が出音範囲に含まれるように、出音位置を決定する動作、及び、実施の形態2において会話者等が収音範囲に含まれるように、収音位置を決定する動作と同じように行われる。
 そして、無人移動体300は、出音範囲と収音範囲との重複範囲に従って決定された会話位置に移動する。
 図78は、出音範囲と収音範囲とが重複しない範囲から音が収音される例を示す概念図である。出音範囲と収音範囲とは、部分的に重複する場合がある。つまり、出音範囲の一部と収音範囲の一部とが重複し、出音範囲の他部と収音範囲の他部とが重複しない場合がある。そして、人が出音範囲と収音範囲とのうち一方のみの範囲内に存在している場合がある。例えば、無人移動体300は、出音範囲と収音範囲とのうち一方のみの範囲内に存在している人と会話を行わないように、動作してもよい。
 具体的には、図78のように、人が収音範囲内かつ出音範囲外に存在している場合がある。この場合、無人移動体300において、その人から音が収音されるが、無人移動体300から、その人へ音は届かない。そこで、例えば、無人移動体300は、収音された音が、出音範囲と収音範囲との重複範囲とは異なる場所から収音された音であると判定された場合、収音された音を無視してもよい。つまり、無人移動体300は、この人から収音された音に対する応答処理をスキップしてもよい。
 また、例えば、無人移動体300は、画像認識処理又は音声認識処理等によって、収音範囲内かつ出音範囲外に存在している人を検知してもよい。そして、無人移動体300は、その人から収音される音を無視してもよい。
 なお、上記の動作は、会話者とは異なる人であって、関係者であるか否かが不明な人に対して行われてもよい。あるいは、上記の動作は、会話者又は関係者である人に対して行われてもよい。
 図79は、出音範囲と収音範囲とが重複しない範囲を調整する例を示す概念図である。無人移動体300は、出音範囲と収音範囲とのうち一方の範囲のみに人が入ることを抑制するため、出音範囲と収音範囲とが重複しない範囲を調整してもよい。
 具体的には、無人移動体300は、出音範囲と収音範囲とのうち一方の範囲のみに人が入らないように、無人移動体300の向き、指向性スピーカ307の指向方向及び指向性マイクロフォン308の指向方向のうちの少なくとも一つを調整してもよい。あるいは、無人移動体300は、出音範囲と収音範囲とのうち一方の範囲のみに人が入らないように、指向性スピーカ307の指向幅及び指向性マイクロフォン308の指向幅のうちの少なくとも一つを狭めてもよい。
 図80は、図75に示された無人移動体300の具体的な構成例を示すブロック図である。図80に示された無人移動体300は、GPS受信機301、ジャイロセンサ302、加速度センサ303、人検知センサ304、測距センサ305、イメージセンサ306、指向性スピーカ307、指向性マイクロフォン308、駆動部309、通信部310、制御部320、記憶部330、及び、電力供給部341を備える。
 GPS受信機301は、位置を測定するためのGPS(Global Positioning System)を構成し、信号を受信することにより位置を取得する受信機である。例えば、GPS受信機301は、無人移動体300の位置を取得する。
 ジャイロセンサ302は、無人移動体300の姿勢、つまり、無人移動体300の角度又は傾きを検知するセンサである。加速度センサ303は、無人移動体300の加速度を検知するセンサである。人検知センサ304は、無人移動体300の周辺の人を検知するセンサである。人検知センサ304は、赤外線センサであってもよい。
 測距センサ305は、無人移動体300と対象との間の距離を測定するセンサであって測距データを生成する。イメージセンサ306は、撮像を行うセンサであり、撮像によって画像を生成する。イメージセンサ306は、カメラであってもよい。
 指向性スピーカ307は、上述した通り、指向方向へ出音を行うスピーカである。指向性スピーカ307の指向方向が調整可能であってもよいし、指向性スピーカ307が出す音の音圧が調整可能であってもよい。指向性マイクロフォン308は、上述した通り、指向方向から収音を行うマイクロフォンである。指向性マイクロフォン308の指向方向が調整可能であってもよいし、指向性マイクロフォン308の収音感度が調整可能であってもよい。
 駆動部309は、無人移動体300を移動させるモータ及びアクチュエータ等である。通信部310は、無人移動体300の外部の装置と通信を行う通信器である。通信部310は、無人移動体300の移動のための操作信号を受けてもよい。また、通信部310は、会話の内容を送受信してもよい。
 制御部320は、図75に示されたプロセッサ350に対応し、情報処理を行う回路で構成される。具体的には、この例において、制御部320は、人検知部321、関係者判定部322、範囲決定部323、会話位置決定部324、会話制御部325、及び、移動制御部326を備える。すなわち、プロセッサ350は、これらの役割を果たしてもよい。
 人検知部321は、無人移動体300の周辺に存在する人を検知する。人検知部321は、人検知センサ304又は他のセンサから得られるセンシングデータに従って、無人移動体300の周辺に存在する人を検知する。
 関係者判定部322は、人検知部321で検知された人が会話者に関連する関係者であるか否かを判定する。範囲決定部323は、会話者と関係者との位置関係に従って出音範囲及び収音範囲を決定する。会話位置決定部324は、出音範囲及び収音範囲に従って会話位置を決定する。会話制御部325は、指向性スピーカ307へ制御信号を送信することにより、指向性スピーカ307の出音を制御し、指向性マイクロフォン308へ制御信号を送信することにより、指向性マイクロフォン308の収音を制御する。
 移動制御部326は、駆動部309へ制御信号を送信することにより、無人移動体300の移動を制御する。この例において、移動制御部326は、無人飛行体である無人移動体300の飛行を制御する。
 記憶部330は、情報を記憶するためのメモリであり、制御プログラム331及び対応情報332を記憶している。制御プログラム331は、制御部320が行う情報処理のプログラムである。対応情報332は、指向性スピーカ307が出す音の音圧と、所定以上の品質で音が届く出音範囲との対応関係、及び、指向性マイクロフォン308の収音感度と、所定以上の品質で音が収音される収音範囲との対応関係を示す情報である。
 電力供給部341は、無人移動体300に含まれる複数の構成要素に対して電力を供給する回路である。例えば、電力供給部341は、電源を含む。
 図81は、図80に示された無人移動体300の具体的な動作例を示すフローチャートである。例えば、図80に示された無人移動体300における複数の構成要素が連携して図81に示された動作を行う。
 まず、無人移動体300は、会話者と会話を行うための会話位置に移動する(S311)。例えば、会話位置は、会話者の位置から会話者が発する声が届き、かつ、無人移動体300が発する音が届く位置である。つまり、無人移動体300は、出音範囲と収音範囲との重複範囲に会話者を含ませる会話位置に移動する。会話者は、事前に決定されていてもよい。無人移動体300は、飛行中に会話者を決定してもよい。
 例えば、無人移動体300において、人検知部321が、人検知センサ304又はイメージセンサ306等から得られるセンシングデータに従って、会話者を検知する。そして、移動制御部326は、駆動部309を介して、会話者から所定範囲内の会話位置へ無人移動体300を移動させる。
 そして、無人移動体300は、会話を開始する(S312)。つまり、無人移動体300は、出音及び収音の少なくとも一方を開始する。具体的には、会話制御部325は、指向性マイクロフォン308に収音を開始させてもよいし、指向性スピーカ307に出音を開始させてもよい。
 そして、無人移動体300は、会話者の周辺をセンシングする(S313)。例えば、人検知部321は、人検知センサ304又はイメージセンサ306等に、会話者の周辺をセンシングさせることにより、会話者の周辺の人を検知する。この検知には、人を検知するための任意のセンサが用いられ得る。また、会話者の周辺は、例えば、会話者から所定範囲内の領域に対応する。
 そして、無人移動体300は、会話者以外の人が検知されたか否かを判定する(S314)。例えば、人検知部321は、会話者の周辺において、会話者以外の人が検知されたか否かを判定する。会話者以外の人が検知されなかった場合(S314でNo)、無人移動体300は、会話者の周辺のセンシング(S313)を繰り返す。
 会話者以外の人が検知された場合(S314でYes)、無人移動体300は、検知された人が会話者の関係者であるか否かを判定する(S315)。例えば、関係者判定部322が、会話者と関係者との距離が閾値以内であるか否かに従って、検知された人が関係者であるか否かを判定してもよいし、グルーピング等に関するその他の判定基準に従って、検知された人が関係者であるか否かを判定してもよい。この判定は、実施の形態1において説明された判定と同じである。
 検知された人が関係者でない場合(S315でNo)、無人移動体300は、会話者の周辺のセンシング(S313)を繰り返す。
 検知された人が関係者である場合(S315でYes)、無人移動体300は、会話者と関係者との間の離間距離を測定する(S316)。例えば、範囲決定部323は、センシングデータに従って検知された会話者の位置と、センシングデータに従って検知された関係者の位置との間の距離を算出することにより、会話者と関係者との離間距離を測定してもよい。
 そして、無人移動体300は、会話者と関係者との離間距離に従って、出音範囲及び収音範囲を決定する(S317)。例えば、範囲決定部323は、測定された離間距離に従って、出音範囲及び収音範囲を決定する。その際、範囲決定部323は、測定された離間距離が大きいほど、出音範囲及び収音範囲を大きくする。
 また、出音範囲は、例えば、無人移動体300を基準に用いて相対的に定められる範囲であり、指向性スピーカ307により所定品質以上で音が届く範囲である。収音範囲は、例えば、無人移動体300を基準に用いて相対的に定められる範囲であり、指向性マイクロフォン308により所定品質以上で音が収音される範囲である。所定品質以上は、所定範囲内の音圧に対応していてもよいし、所定範囲内のSN比(信号対雑音比)に対応していてもよい。
 そして、無人移動体300は、会話者の位置、関係者の位置、出音範囲、及び、収音範囲に従って、新たな会話位置を決定する(S318)。例えば、会話位置決定部324は、出音範囲と収音範囲との重複範囲に、検知された会話者の位置、及び、検知された関係者の位置が含まれるように、新たな会話位置を決定する。
 そして、無人移動体300は、新たな会話位置に移動する(S319)。例えば、移動制御部326は、駆動部309の動作を制御することにより、無人移動体300を新たな会話位置に移動させる。また、会話制御部325は、出音範囲に所定品質以上で音が届くように、指向性スピーカ307の出音を制御してもよい。また、会話制御部325は、収音範囲から所定品質以上で音が収音されるように、指向性マイクロフォン308の収音を制御してもよい。
 これにより、無人移動体300は、会話者及び関係者に対して適切に出音及び収音を行うことができる。
 なお、上記の例では、無人移動体300は、会話者と会話を開始した後(S312の後)に、会話者及び関係者に対する新たな会話位置に移動するための処理(S313~S319)を行っている。しかし、無人移動体300は、会話者と会話を開始する前に、会話者及び関係者に対する新たな会話位置に移動するための処理を行ってもよい。
 また、上記の例では、検知された人が関係者でない場合(S315でNo)、無人移動体300は、会話者の周辺のセンシング(S313)を繰り返す。しかし、無人移動体300は、関係者でない人に対して出音及び収音を行わないように、会話位置を修正してもよい。つまり、無人移動体300における会話位置決定部324は、関係者でない人が出音範囲にも収音範囲にも含まれないように、会話位置を修正してもよい。
 また、会話位置決定部324は、関係者でない人が出音方向からも収音方向からも外れるように、会話位置を修正してもよい。これにより、関係者でない人が移動した場合に出音範囲又は収音範囲に入る可能性が抑制される。
 また、出音範囲及び収音範囲が固定である場合、無人移動体300は、会話者と関係者との離間距離が出音範囲と収音範囲との重複範囲内に入るか否かを判定してもよい。そして、無人移動体300は、離間距離が重複範囲内に入る場合に、新たな会話位置を決定して、決定された新たな会話位置に移動してもよい。無人移動体300は、離間距離が重複範囲内に入らない場合に、移動しなくてもよい。
 また、上述した通り、実施の形態1に示された構成及び動作、並びに、実施の形態2に示された構成及び動作は、本実施の形態にも適用され得る。
 以上、無人移動体の態様を実施の形態等に基づいて説明したが、無人移動体の態様は、実施の形態等に限定されない。実施の形態等に対して当業者が思いつく変形が施されてもよいし、実施の形態等における複数の構成要素が任意に組み合わされてもよい。例えば、実施の形態等において特定の構成要素によって実行される処理を特定の構成要素の代わりに別の構成要素が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
 また、上記の説明における会話は、単方向の会話であってもよいし、双方向の会話であってもよい。また、無人移動体は、指向性スピーカ及び指向性マイクロフォンの指向方向が会話者及び関係者に向くように、指向性スピーカ及び指向性マイクロフォンの指向方向を制御する。
 また、上記の説明では、会話者及び関係者に対して出音及び収音が行われている。しかし、一人のみに対して出音及び収音を行うことが予め定められている場合、又は、一人のみに対して出音及び収音を行うことが動作モードの切り替えにより指定されている場合、一人のみに対して出音及び収音が行われてもよい。つまり、関係者の判定を行わずに、会話者に対して出音及び収音が行われてもよい。
 そして、会話者以外の人に対して出音及び収音が行われないように、位置が定められてもよい。具体的には、図35~図37及び図62~図64における非関係者と同じように、会話者以外の人に対して出音及び収音が行われないように、位置が定められてもよい。
 また、無人移動体の各構成要素が行うステップを含む情報処理方法が任意の装置又はシステムによって実行されてもよい。つまり、この情報処理方法は、無人移動体によって実行されてもよいし、他の装置又はシステムによって実行されてもよい。
 例えば、上記の情報処理方法は、プロセッサ、メモリおよび入出力回路等を備えるコンピュータによって実行されてもよい。その際、コンピュータに情報処理方法を実行させるためのプログラムがコンピュータによって実行されることにより、情報処理方法が実行されてもよい。また、非一時的なコンピュータ読み取り可能な記録媒体に、プログラムが記録されていてもよい。
 例えば、上記のプログラムは、コンピュータに、一以上のセンシングデータを取得し、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、無人移動体が備える指向性スピーカにより所定の品質以上で音が届く範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる、情報処理方法を実行させる。
 また、例えば、上記のプログラムは、コンピュータに、一以上のセンシングデータを取得し、前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、無人移動体が備える指向性マイクロフォンにより所定の品質以上で音が収音される範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる、情報処理方法を実行させる。
 また、無人移動体の複数の構成要素は、専用のハードウェアで構成されてもよいし、上記のプログラム等を実行する汎用のハードウェアで構成されてもよいし、これらの組み合わせで構成されてもよい。また、汎用のハードウェアは、プログラムが記憶されたメモリ、及び、メモリからプログラムを読み出して実行する汎用のプロセッサ等で構成されてもよい。ここで、メモリは、半導体メモリ又はハードディスク等でもよいし、汎用のプロセッサは、CPU等でもよい。
 また、専用のハードウェアが、メモリ及び専用のプロセッサ等で構成されてもよい。例えば、専用のプロセッサが、メモリを参照して、上記の情報処理方法を実行してもよい。
 また、無人移動体の各構成要素は、電気回路であってもよい。これらの電気回路は、全体として1つの電気回路を構成してもよいし、それぞれ別々の電気回路であってもよい。また、これらの電気回路は、専用のハードウェアに対応していてもよいし、上記のプログラム等を実行する汎用のハードウェアに対応していてもよい。
 以下、本開示の一態様における無人移動体の基本的な構成及び代表的な変形例等を示す。これらは、互いに組み合わされてもよいし、上記の実施の形態等の一部と組み合わされてもよい。
 (1)例えば、本開示の一態様における無人移動体(100、200、300)は、指向性スピーカ(107、207、307)と、プロセッサ(150、250、350)とを備える。指向性スピーカ(107、207、307)は、指向方向へ音を出力する。
 プロセッサ(150、250、350)は、一以上のセンシングデータを取得する。また、プロセッサ(150、250、350)は、一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定する。また、プロセッサ(150、250、350)は、第二対象が存在すると判定した場合に、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出する。
 また、プロセッサ(150、250、350)は、位置関係に従って第一位置を決定する。ここで、第一位置は、指向性スピーカ(107、207、307)により所定の品質以上で音が届く範囲内に第一対象と第二対象とを含ませる、無人移動体(100、200、300)の位置である。そして、プロセッサ(150、250、350)は、第一位置へ無人移動体(100、200、300)を移動させる。
 これにより、無人移動体(100、200、300)は、第一対象及び第二対象へ適切に出音を行うことができる。すなわち、無人移動体(100、200、300)は、出音を複数の対象に対して一体的に行うことができる。
 (2)例えば、本開示の一態様における無人移動体(100、200、300)は、指向性マイクロフォン(108、208、308)と、プロセッサ(150、250、350)とを備える。指向性マイクロフォン(108、208、308)は、指向方向から音を収音する。
 プロセッサ(150、250、350)は、指向性マイクロフォン(108、208、308)から取得されるデータを含む一以上のセンシングデータを取得する。また、プロセッサ(150、250、350)は、一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定する。また、プロセッサ(150、250、350)は、第二対象が存在すると判定した場合に、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係を算出する。
 また、プロセッサ(150、250、350)は、位置関係に従って第一位置を決定する。ここで、第一位置は、指向性マイクロフォン(108、208、308)により所定の品質以上で音が収音される範囲内に第一対象と第二対象とを含ませる、無人移動体(100、200、300)の位置である。そして、プロセッサ(150、250、350)は、第一位置へ無人移動体(100、200、300)を移動させる。
 これにより、無人移動体(100、200、300)は、第一対象及び第二対象から適切に収音を行うことができる。すなわち、無人移動体(100、200、300)は、収音を複数の対象に対して一体的に行うことができる。
 (3)例えば、プロセッサ(150、250、350)は、位置関係に従って範囲を調整し、調整された範囲に従って第一位置を決定する。ここで、範囲は、指向性スピーカ(107、207、307)により所定の品質以上で音が届く範囲、及び、指向性マイクロフォン(108、208、308)により所定の品質以上で音が収音される範囲のうち少なくとも一方である。
 これにより、無人移動体(100、200、300)は、位置関係に従って出音又は収音の範囲を適切に調整することができ、調整された範囲に複数の対象を適切に含めることができる。
 (4)例えば、第一位置は、第一対象及び第二対象の正面側の位置である。これにより、無人移動体(100、200、300)は、複数の対象と会話を行うための適切な位置に移動することができる。
 (5)例えば、プロセッサ(150、250、350)は、一以上のセンシングデータのうちの少なくとも一つに従って、第一対象の身体情報及び第二対象の身体情報を取得する。そして、プロセッサ(150、250、350)は、第一対象の身体情報及び第二対象の身体情報に従って第一位置を決定する。これにより、無人移動体(100、200、300)は、第一対象の身体情報及び第二対象の身体情報に対して適切な位置に移動することができる。
 (6)例えば、プロセッサ(150、250、350)は、一以上のセンシングデータのうちの少なくとも一つに従って、第一対象の年齢及び第二対象の少なくとも一方の年齢を推定する。そして、プロセッサ(150、250、350)は、第一対象及び第二対象の少なくとも一方の年齢に従って第一位置を決定する。
 これにより、無人移動体(100、200、300)は、能力が低いと想定される対象に近い位置へ移動することができ、複数の対象に対して出音又は収音を適切に行うことができる。
 (7)例えば、プロセッサ(150、250、350)は、第一対象及び第二対象と関連のない第三対象を範囲内に含ませない第一位置を決定する。これにより、無人移動体(100、200、300)は、関連のない第三対象に対して出音又は収音を行うことを抑制することができる。
 (8)例えば、プロセッサ(150、250、350)は、一以上のセンシングデータのうちの少なくとも一つに従って、障害物の位置を検知し、障害物の位置に従って、第一位置を決定する。これにより、無人移動体(100、200、300)は、複数の対象に対して出音又は収音を行うための位置を障害物の位置に従って適切に決定することができる。そして、無人移動体(100、200、300)は、例えば、障害物を用いて、関連のない第三対象に対して出音又は収音を行うことを抑制することができる。
 (9)例えば、プロセッサ(150、250、350)は、第一対象に対して出音又は収音が行われている期間に第二対象が存在すると判定した場合、第一対象が範囲に含まれる状態で第一位置へ無人移動体(100、200、300)を移動させる。これにより、無人移動体(100、200、300)は、第一対象との会話を継続しながら、第一対象及び第二対象との会話を行うための適切な位置に移動することができる。
 (10)例えば、プロセッサ(150、250、350)は、第一対象に対して出音又は収音が行われている期間に第二対象が存在すると判定した場合、第一対象の正面側を通って第一位置へ無人移動体(100、200、300)を移動させる。これにより、無人移動体(100、200、300)は、第一対象と会話を行うための適切な領域を通って、第一対象及び第二対象との会話を行うための適切な位置に移動することができる。
 (11)例えば、プロセッサ(150、250、350)は、第一対象に対して出音又は収音が行われている期間に第二対象が存在すると判定した場合、第一対象に対して出音又は収音の品質を一定に維持しながら、第一位置へ無人移動体(100、200、300)を移動させる。
 これにより、無人移動体(100、200、300)は、第一対象との会話を適切に継続しながら、第一対象及び第二対象との会話を行うための適切な位置に移動することができる。
 (12)例えば、第二対象は、第一対象に関連する対象である。プロセッサ(150、250、350)は、一以上のセンシングデータのうちの少なくとも一つから、第一対象との関連を示す情報、及び、無人移動体(100、200、300)との関連を示す情報のうちの少なくとも一つを取得する。
 そして、プロセッサ(150、250、350)は、第一対象との関連を示す情報、及び、無人移動体(100、200、300)との関連を示す情報のうちの少なくとも一つに従って、第一対象の周辺に存在する対象が第一対象に関連するか否かを判定することにより、第一対象の周辺に第二対象が存在するか否かを判定する。
 これにより、無人移動体(100、200、300)は、第一対象に関連する第二対象が第一対象の周辺に存在するか否かを適切に判定することができる。
 (13)例えば、プロセッサ(150、250、350)は、一以上のセンシングデータのうちの少なくとも一つに従って、第一対象が音を出す頻度及び第二対象が音を出す頻度を検知する。そして、プロセッサ(150、250、350)は、第一対象及び第二対象のうち音を出す頻度の低い方よりも第一対象及び第二対象のうち音を出す頻度の高い方に近い第一位置を決定する。
 これにより、無人移動体(100、200、300)は、音を出す頻度の高い対象の近くに移動することができる。したがって、無人移動体(100、200、300)は、音を出す頻度の高い対象から適切に収音を行うことができる。
 (14)例えば、プロセッサ(150、250、350)は、一以上のセンシングデータのうち少なくとも一つに従って、第一対象の音量及び第二対象の音量を検知する。そして、プロセッサ(150、250、350)は、第一対象及び第二対象のうち音量の大きい方よりも第一対象及び第二対象のうち音量の小さい方に近い第一位置を決定する。
 これにより、無人移動体(100、200、300)は、音量の小さい対象の近くに移動することができる。したがって、無人移動体(100、200、300)は、音量の小さい対象から適切に収音を行うことができる。
 (15)例えば、指向性スピーカ(107、207、307)と、プロセッサ(150、250、350)とを備える無人移動体(100、200、300)は、さらに、指向性マイクロフォン(108、208、308)とを備える。また、指向性スピーカ(107、207、307)により所定の品質以上で音が届く範囲は、さらに、指向性マイクロフォン(108、208、308)により所定の品質以上で音が収音される範囲である。
 これにより、無人移動体(100、200、300)は、第一対象及び第二対象へ適切に出音を行うことができ、かつ、第一対象及び第二対象から適切に収音を行うことができる。
 (16)例えば、プロセッサ(150、250、350)は、第一対象と無人移動体(100、200、300)との会話に応じて、無人移動体(100、200、300)の移動のタイミングを制御する。これにより、無人移動体(100、200、300)は、会話に応じた適切なタイミングで移動することができる。
 (17)例えば、プロセッサ(150、250、350)は、第一対象に対して収音が行われている期間に、第一位置へ無人移動体(100、200、300)を移動させる。
 これにより、無人移動体(100、200、300)は、第一対象が音を出しており、かつ、無人移動体(100、200、300)が出音を行っていないと想定される期間に移動することができる。したがって、無人移動体(100、200、300)は、出音の途中に、第二対象が出音の範囲に入ることを抑制することができ、出音の全体の内容を第二対象へ伝達することができる。
 (18)例えば、プロセッサ(150、250、350)は、無人移動体(100、200、300)の移動の途中で第一対象から出される音が終わった場合、無人移動体(100、200、300)の移動が完了してから指向性スピーカ(107、207、307)に出音を開始させる。
 これにより、無人移動体(100、200、300)は、第一対象及び第二対象に対して出音を行うための適切な位置に移動した後に、出音を開始することができる。したがって、無人移動体(100、200、300)は、出音の途中に、第二対象が出音の範囲に入ることを抑制することができ、出音の全体の内容を第二対象へ伝達することができる。
 (19)例えば、プロセッサ(150、250、350)は、第一対象に対する出音又は収音が行われていない期間に、無人移動体(100、200、300)を移動させる。これにより、無人移動体(100、200、300)は、音の断片化を抑制することができ、まとまった単位で出音又は収音を行うことができる。また、無人移動体(100、200、300)は、移動に伴うノイズの混入を抑制することができる。
 (20)例えば、一以上のセンシングデータは、イメージセンサによって生成された画像データを含む。プロセッサ(150、250、350)は、イメージセンサによって生成された画像データに従って第一対象及び第二対象の位置関係を取得する。これにより、無人移動体(100、200、300)は、画像データに従って第一対象及び第二対象の位置関係を適切に取得することができる。
 (21)例えば、一以上のセンシングデータは、測距センサによって生成された測距データを含む。プロセッサ(150、250、350)は、測距センサによって生成された測距データに従って第一対象及び第二対象の位置関係を取得する。これにより、無人移動体(100、200、300)は、測距データに従って第一対象及び第二対象の位置関係を適切に取得することができる。
 (22)例えば、位置関係は、第一対象と第二対象とに関連する距離及び位置のうち少なくとも一つを含む。これにより、無人移動体(100、200、300)は、第一対象及び第二対象に関連する距離又は位置に従って適切な位置へ移動することができる。
 (23)例えば、本開示の一態様における情報処理方法では、一以上のセンシングデータが取得される(S101)。また、一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かが判定される(S102)。また、第二対象が存在すると判定された場合に、一以上のセンシングデータのうちの少なくとも一つから第一対象と第二対象との位置関係が算出される(S103)。
 また、第一位置が位置関係に従って決定される。ここで、第一位置は、無人移動体(100、200、300)が備える指向性スピーカ(107、207、307)により所定の品質以上で音が届く範囲内に第一対象と第二対象とを含ませる、無人移動体(100、200、300)の位置である。そして、第一位置へ無人移動体(100、200、300)が移動させられる(S104)。
 これにより、情報処理方法が行われることで、第一対象及び第二対象へ適切に出音が行われ得る。すなわち、出音が複数の対象に対して一体的に行われ得る。
 (24)例えば、本開示の一態様におけるプログラムは、上記の情報処理方法をコンピュータに実行させるためのプログラムである。これにより、プログラムが実行されることで、第一対象及び第二対象へ適切に出音が行われ得る。すなわち、出音が複数の対象に対して一体的に行われ得る。
 (25)例えば、本開示の一態様における情報処理方法では、一以上のセンシングデータが取得される(S201)。また、一以上のセンシングデータのうちの少なくとも一つから第一対象の周辺に第二対象が存在するか否かが判定される(S202)。また、第二対象が存在すると判定された場合に、一以上のセンシングデータのうちの少なくとも一つに従って第一対象と第二対象との位置関係が算出される(S203)。
 また、第一位置が位置関係に従って決定される。ここで、第一位置は、無人移動体(100、200、300)が備える指向性マイクロフォン(108、208、308)により所定の品質以上で音が収音される範囲内に第一対象と第二対象とを含ませる、無人移動体(100、200、300)の位置である。そして、第一位置へ無人移動体(100、200、300)が移動させられる(S204)。
 これにより、情報処理方法が行われることで、第一対象及び第二対象から適切に収音が行われ得る。すなわち、収音が複数の対象に対して一体的に行われ得る。
 (26)例えば、本開示の一態様におけるプログラムは、上記の情報処理方法をコンピュータに実行させるためのプログラムである。これにより、プログラムが実行されることで、第一対象及び第二対象から適切に収音が行われ得る。すなわち、収音が複数の対象に対して一体的に行われ得る。
 なお、上記の各実施の形態では、スピーカの出音範囲又はマイクロフォンの収音範囲に基づいて無人移動体の位置が決定されたが、スピーカのように対象に直接的に提示する提示装置であれば、他の提示装置が用いられてもよい。例えば、提示装置としてはディスプレイがある。つまり、音に限らず、光等の他の情報伝達媒体にも本開示は適用され得る。
 本開示は、会話者と会話を行う無人移動体等に利用可能であり、案内システム及び見守りシステム等に適用可能である。
  100、200、300 無人移動体
  101、201、301 GPS受信機
  102、202、302 ジャイロセンサ
  103、203、303 加速度センサ
  104、204、304 人検知センサ
  105、205、305 測距センサ
  106、206、306 イメージセンサ
  107、207、307 指向性スピーカ
  108、208、308 指向性マイクロフォン
  109、209、309 駆動部
  110、210、310 通信部
  120、220、320 制御部
  121、221、321 人検知部
  122、222、322 関係者判定部
  123 出音範囲決定部
  124 出音位置決定部
  125 出音制御部
  126、226、326 移動制御部
  130、230、330 記憶部
  131、231、331 制御プログラム
  132 音圧出音範囲対応情報
  141、241、341 電力供給部
  150、250、350 プロセッサ
  223 収音範囲決定部
  224 収音位置決定部
  225 収音制御部
  232 収音感度収音範囲対応情報
  323 範囲決定部
  324 会話位置決定部
  325 会話制御部
  332 対応情報

Claims (20)

  1.  無人移動体であって、
     指向方向へ音を出力する指向性スピーカと、
     一以上のセンシングデータを取得するプロセッサと、を備え、
     前記プロセッサは、
      前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、
      前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、
      前記指向性スピーカにより所定の品質以上で音が届く範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる、
     無人移動体。
  2.  無人移動体であって、
     指向方向から音を収音する指向性マイクロフォンと、
     前記指向性マイクロフォンから取得されるデータを含む一以上のセンシングデータを取得するプロセッサと、を備え、
     前記プロセッサは、
      前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、
      前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、
      前記指向性マイクロフォンにより所定の品質以上で音が収音される範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる、
     無人移動体。
  3.  前記プロセッサは、前記位置関係に従って前記範囲を調整し、調整された前記範囲に従って前記第一位置を決定する
     請求項1又は2に記載の無人移動体。
  4.  前記第一位置は、前記第一対象及び前記第二対象の正面側の位置である
     請求項1~3のいずれか1項に記載の無人移動体。
  5.  前記プロセッサは、
     前記一以上のセンシングデータのうちの少なくとも一つに従って、前記第一対象の身体情報及び前記第二対象の身体情報を取得し、
     前記第一対象の身体情報及び前記第二対象の身体情報に従って前記第一位置を決定する
     請求項1~4のいずれか1項に記載の無人移動体。
  6.  前記プロセッサは、
     前記一以上のセンシングデータのうちの少なくとも一つに従って、前記第一対象の年齢及び前記第二対象の少なくとも一方の年齢を推定し、
     前記第一対象及び前記第二対象の少なくとも一方の年齢にも従って前記第一位置を決定する
     請求項1~5のいずれか1項に記載の無人移動体。
  7.  前記プロセッサは、前記第一対象及び前記第二対象と関連のない第三対象を前記範囲内に含ませない前記第一位置を決定する
     請求項1~6のいずれか1項に記載の無人移動体。
  8.  前記プロセッサは、前記一以上のセンシングデータのうちの少なくとも一つに従って、障害物の位置を検知し、前記障害物の位置に従って、前記第一位置を決定する
     請求項7に記載の無人移動体。
  9.  前記プロセッサは、前記第一対象に対して出音又は収音が行われている期間に前記第二対象が存在すると判定した場合、前記第一対象が前記範囲に含まれる状態で前記第一位置へ前記無人移動体を移動させる
     請求項1~8のいずれか1項に記載の無人移動体。
  10.  前記プロセッサは、前記第一対象に対して出音又は収音が行われている期間に前記第二対象が存在すると判定した場合、前記第一対象の正面側を通って前記第一位置へ前記無人移動体を移動させる
     請求項1~9のいずれか1項に記載の無人移動体。
  11.  前記プロセッサは、前記第一対象に対して出音又は収音が行われている期間に前記第二対象が存在すると判定した場合、前記第一対象に対して出音又は収音の品質を一定に維持しながら、前記第一位置へ前記無人移動体を移動させる
     請求項1~10のいずれか1項に記載の無人移動体。
  12.  前記第二対象は、前記第一対象に関連する対象であり、
     前記プロセッサは、
     前記一以上のセンシングデータのうちの少なくとも一つから、前記第一対象との関連を示す情報、及び、前記無人移動体との関連を示す情報のうちの少なくとも一つを取得し、
     前記第一対象との関連を示す情報、及び、前記無人移動体との関連を示す情報のうちの少なくとも一つに従って、前記第一対象の周辺に存在する対象が前記第一対象に関連するか否かを判定することにより、前記第一対象の周辺に前記第二対象が存在するか否かを判定する
     請求項1~11のいずれか1項に記載の無人移動体。
  13.  前記プロセッサは、
     前記一以上のセンシングデータのうち少なくとも一つに従って、前記第一対象の音量及び前記第二対象の音量を検知し、
     前記第一対象及び前記第二対象のうち音量の大きい方よりも前記第一対象及び前記第二対象のうち音量の小さい方に近い前記第一位置を決定する
     請求項2に記載の無人移動体。
  14.  前記無人移動体は、さらに、指向性マイクロフォンを備え、
     前記範囲は、さらに、前記指向性マイクロフォンにより所定の品質以上で音が収音される範囲である
     請求項1に記載の無人移動体。
  15.  前記プロセッサは、前記第一対象と前記無人移動体との会話に従って、前記無人移動体の移動のタイミングを制御する
     請求項14に記載の無人移動体。
  16.  前記プロセッサは、前記第一対象に対して収音が行われている期間に、前記第一位置へ前記無人移動体を移動させる
     請求項15に記載の無人移動体。
  17.  前記プロセッサは、前記無人移動体の移動の途中で前記第一対象から出される音が終わった場合、前記無人移動体の移動が完了してから前記指向性スピーカに出音を開始させる
     請求項16に記載の無人移動体。
  18.  前記プロセッサは、前記第一対象に対する出音又は収音が行われていない期間に、前記無人移動体を移動させる
     請求項15に記載の無人移動体。
  19.  一以上のセンシングデータを取得し、
     前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、
     前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、
     無人移動体が備える指向性スピーカにより所定の品質以上で音が届く範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる、
     情報処理方法。
  20.  一以上のセンシングデータを取得し、
     前記一以上のセンシングデータのうちの少なくとも一つに従って第一対象の周辺に第二対象が存在するか否かを判定し、
     前記第二対象が存在すると判定した場合に、前記一以上のセンシングデータのうちの少なくとも一つから前記第一対象と前記第二対象との位置関係を算出し、
     無人移動体が備える指向性マイクロフォンにより所定の品質以上で音が収音される範囲内に前記第一対象と前記第二対象とを含ませる、前記無人移動体の第一位置を前記位置関係に従って決定し、前記第一位置へ前記無人移動体を移動させる、
     情報処理方法。
PCT/JP2019/042665 2019-03-29 2019-10-30 無人移動体及び情報処理方法 WO2020202621A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021511090A JP7426631B2 (ja) 2019-03-29 2019-10-30 無人移動体及び情報処理方法
EP19923335.4A EP3950498B1 (en) 2019-03-29 2019-10-30 Unmanned moving body and information processing method
CN201980085549.6A CN113226928A (zh) 2019-03-29 2019-10-30 无人移动体以及信息处理方法
US17/349,210 US20210311506A1 (en) 2019-03-29 2021-06-16 Unmanned moving body and information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-065940 2019-03-29
JP2019065940 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/349,210 Continuation US20210311506A1 (en) 2019-03-29 2021-06-16 Unmanned moving body and information processing method

Publications (1)

Publication Number Publication Date
WO2020202621A1 true WO2020202621A1 (ja) 2020-10-08

Family

ID=72667756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042665 WO2020202621A1 (ja) 2019-03-29 2019-10-30 無人移動体及び情報処理方法

Country Status (5)

Country Link
US (1) US20210311506A1 (ja)
EP (1) EP3950498B1 (ja)
JP (1) JP7426631B2 (ja)
CN (1) CN113226928A (ja)
WO (1) WO2020202621A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459391B2 (ja) 2021-01-29 2024-04-01 クゥアルコム・インコーポレイテッド オーディオソース指向性に基づく心理音響的強調
WO2024084953A1 (ja) * 2022-10-20 2024-04-25 ソニーグループ株式会社 情報処理装置および情報処理方法、並びにプログラム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034274A (ja) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd 会話ロボット及びその動作方法
WO2005076661A1 (ja) * 2004-02-10 2005-08-18 Mitsubishi Denki Engineering Kabushiki Kaisha 超指向性スピーカ搭載型移動体
JP2005319952A (ja) 2004-05-11 2005-11-17 Pioneer Electronic Corp 発音制御装置、その方法、そのプログラム、そのプログラムを記録した記録媒体、および、発音装置
JP2006181651A (ja) * 2004-12-24 2006-07-13 Toshiba Corp 対話型ロボット、対話型ロボットの音声認識方法および対話型ロボットの音声認識プログラム
JP2012076162A (ja) * 2010-09-30 2012-04-19 Waseda Univ 会話ロボット
JP2014176963A (ja) * 2013-03-14 2014-09-25 Toyota Motor Engineering & Manufacturing North America Inc ロボット装置/プラットフォームを使用して能動的且つ自動的なパーソナルアシスタンスを提供するコンピュータベースの方法及びシステム
JP2016181178A (ja) * 2015-03-24 2016-10-13 セコム株式会社 自律移動ロボット
JP2017177228A (ja) * 2016-03-28 2017-10-05 株式会社国際電気通信基礎技術研究所 サービス提供ロボットシステム
US20180234612A1 (en) * 2016-10-17 2018-08-16 Dolby Laboratories Licensing Corporation Audio Capture for Aerial Devices
JP2019505047A (ja) * 2016-01-28 2019-02-21 クアルコム,インコーポレイテッド ドローン飛行制御
JP2019036174A (ja) * 2017-08-17 2019-03-07 ヤフー株式会社 制御装置、入出力装置、制御方法、および制御プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599522B2 (ja) * 2006-02-21 2010-12-15 株式会社国際電気通信基礎技術研究所 コミュニケーションロボット
EP2063287A1 (en) * 2006-08-30 2009-05-27 NEC Corporation Localization system, robot, localization method, and sound source localization program
JP6167425B2 (ja) * 2014-08-29 2017-07-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機、及び無人航空機を用いた音声データ収集方法
JP6598064B2 (ja) * 2015-09-30 2019-10-30 パナソニックIpマネジメント株式会社 物体検出装置、物体検出システム、及び物体検出方法
JPWO2017081898A1 (ja) * 2015-11-09 2018-08-23 Necソリューションイノベータ株式会社 飛行制御装置、飛行制御方法、及びプログラム
US11122380B2 (en) * 2017-09-08 2021-09-14 Sony Interactive Entertainment Inc. Personal robot enabled surround sound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034274A (ja) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd 会話ロボット及びその動作方法
WO2005076661A1 (ja) * 2004-02-10 2005-08-18 Mitsubishi Denki Engineering Kabushiki Kaisha 超指向性スピーカ搭載型移動体
JP2005319952A (ja) 2004-05-11 2005-11-17 Pioneer Electronic Corp 発音制御装置、その方法、そのプログラム、そのプログラムを記録した記録媒体、および、発音装置
JP2006181651A (ja) * 2004-12-24 2006-07-13 Toshiba Corp 対話型ロボット、対話型ロボットの音声認識方法および対話型ロボットの音声認識プログラム
JP2012076162A (ja) * 2010-09-30 2012-04-19 Waseda Univ 会話ロボット
JP2014176963A (ja) * 2013-03-14 2014-09-25 Toyota Motor Engineering & Manufacturing North America Inc ロボット装置/プラットフォームを使用して能動的且つ自動的なパーソナルアシスタンスを提供するコンピュータベースの方法及びシステム
JP2016181178A (ja) * 2015-03-24 2016-10-13 セコム株式会社 自律移動ロボット
JP2019505047A (ja) * 2016-01-28 2019-02-21 クアルコム,インコーポレイテッド ドローン飛行制御
JP2017177228A (ja) * 2016-03-28 2017-10-05 株式会社国際電気通信基礎技術研究所 サービス提供ロボットシステム
US20180234612A1 (en) * 2016-10-17 2018-08-16 Dolby Laboratories Licensing Corporation Audio Capture for Aerial Devices
JP2019036174A (ja) * 2017-08-17 2019-03-07 ヤフー株式会社 制御装置、入出力装置、制御方法、および制御プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAAKI TAKAHASHI, MASAYASU OGATA, MICHITA IMAI (KEIO UNIV.), KEISUKE NAKAMURA, KAZUHIRO NAKADAI : "TeleCoBot: A telepresence system of taking account for conversation environment", IEICE TECHNICAL REPORT, vol. 114, no. 351, 4 December 2014 (2014-12-04), pages 1 - 5, XP009528130 *
See also references of EP3950498A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459391B2 (ja) 2021-01-29 2024-04-01 クゥアルコム・インコーポレイテッド オーディオソース指向性に基づく心理音響的強調
WO2024084953A1 (ja) * 2022-10-20 2024-04-25 ソニーグループ株式会社 情報処理装置および情報処理方法、並びにプログラム

Also Published As

Publication number Publication date
EP3950498B1 (en) 2024-05-15
EP3950498A4 (en) 2022-04-27
JPWO2020202621A1 (ja) 2020-10-08
JP7426631B2 (ja) 2024-02-02
US20210311506A1 (en) 2021-10-07
EP3950498A1 (en) 2022-02-09
CN113226928A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN108683972B (zh) 声音处理系统
EP3905007A1 (en) Hearing aid systems and methods
JP4204541B2 (ja) 対話型ロボット、対話型ロボットの音声認識方法および対話型ロボットの音声認識プログラム
KR20220031610A (ko) 멀티-모달 사용자 인터페이스
EP3301948A1 (en) System and method for localization and acoustic voice interface
US9392088B2 (en) Intelligent muting of a mobile device
JP2012220959A (ja) 入力された発話の関連性を判定するための装置および方法
US20210311506A1 (en) Unmanned moving body and information processing method
KR20130103204A (ko) 로봇 청소기 및 이의 제어 방법
KR101893768B1 (ko) 음성 인식 트리거를 제공하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
JP6977448B2 (ja) 機器制御装置、機器制御プログラム、機器制御方法、対話装置、及びコミュニケーションシステム
US11928974B2 (en) Unmanned aircraft, information processing method, and recording medium
KR20170111450A (ko) 보청장치, 휴대장치 및 그 제어방법
WO2022066393A1 (en) Hearing augmentation and wearable system with localized feedback
EP3195618B1 (en) A method for operating a hearing system as well as a hearing system
ES2795016T3 (es) Procedimiento de asistencia en el seguimiento de una conversación para una persona con problemas de audición
WO2018053225A9 (en) Hearing device including image sensor
US20200262071A1 (en) Mobile robot for recognizing queue and operating method of mobile robot
US20200314564A1 (en) Grouping of hearing device users based on spatial sensor input
Martinson et al. Improving human-robot interaction through adaptation to the auditory scene
US10523170B1 (en) Audio signal processing for motion detection
JPWO2020021861A1 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
WO2020170489A1 (ja) 無人飛行体、情報処理方法およびプログラム
US9993384B1 (en) Vision-assist systems and methods for assisting visually impaired users with navigating an environment using simultaneous audio outputs
JP7434635B1 (ja) 情報処理装置、情報処理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923335

Country of ref document: EP

Effective date: 20211029