WO2020202590A1 - Moving body - Google Patents

Moving body Download PDF

Info

Publication number
WO2020202590A1
WO2020202590A1 PCT/JP2019/022900 JP2019022900W WO2020202590A1 WO 2020202590 A1 WO2020202590 A1 WO 2020202590A1 JP 2019022900 W JP2019022900 W JP 2019022900W WO 2020202590 A1 WO2020202590 A1 WO 2020202590A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
unit
cooling unit
gas turbine
seawater
Prior art date
Application number
PCT/JP2019/022900
Other languages
French (fr)
Japanese (ja)
Inventor
岩井聡
吉野成保
藤原由喜男
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to JP2021511082A priority Critical patent/JP7146070B2/en
Priority to CN201980095023.6A priority patent/CN113614347A/en
Priority to KR1020217031901A priority patent/KR20210143209A/en
Priority to SG11202110787TA priority patent/SG11202110787TA/en
Publication of WO2020202590A1 publication Critical patent/WO2020202590A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants

Definitions

  • the combined cycle power generation system supplies the combustion gas generated by the combustion means to the gas turbine to rotate the gas turbine, and the generator generates electricity by the rotational force and exhausts the heat remaining in the exhaust gas from the gas turbine.
  • This is a system in which a heat recovery boiler recovers steam to generate steam, the steam turbine is rotated by the generated steam, and a generator generates electricity by the rotational force.
  • This type of combined cycle power generation system is not only used in onshore power plants, but in recent years it is a system that can demonstrate high power generation efficiency, so its use outside of land is also being considered.
  • Patent Document 1 discloses a ship power generation system mounted on a ship for the purpose of power generation on board.
  • This ship power generation system is a power generation system installed on a ship such as an LNG ship, and like the above-mentioned combined cycle power generation system, generates rotational power by supplying combustion gas to a gas turbine to generate rotational power of the gas turbine.
  • steam is generated by recovering heat from the exhaust gas discharged from the gas turbine, and the generated steam is supplied to the steam turbine to generate rotational power, which is the rotational force of the steam turbine.
  • the generator generates electricity.
  • the air is sucked and compressed, mixed with the fuel gas by the combustion means and burned, and the gas turbine is rotationally driven by the generated combustion gas, so that the generator generates power by this rotational force.
  • the temperature of the air supplied to the combustion means rises, the air density decreases, so that the mass of the air sent to the combustion means decreases, and as a result, the output decreases (in other words, the amount of power generation decreases).
  • a method for lowering the temperature of the air supplied to the combustion means has been conventionally proposed.
  • a method for example there is a method in which mist is generated in the intake chamber where the air is sucked, and the air sucked into the intake chamber cools the air supplied to the combustion means by taking away the latent heat of vaporization of the mist. ..
  • the method using mist can evaporate only the amount of mist up to the saturated steam pressure corresponding to the atmospheric temperature, so if the power generation system is installed in a hot and humid tropical region, or in a hot and humid environment in summer, the power generation system In the case of using the above, there is a problem that the air supplied to the combustion means cannot be sufficiently cooled, and it is difficult to obtain the effect of recovering the output.
  • a refrigerator is provided to produce cold water using the heat of combustion of fuel, and the heat using the cold water (cold heat source) produced by the refrigerator is provided.
  • a exchanger is installed in the intake chamber to cool the air supplied to the combustion means by this cold water.
  • the gas turbine unit has a heat input to the refrigerator and an input power amount.
  • the effect of output recovery is small and the energy efficiency of the entire power generation system is reduced.
  • the size of the refrigerator is inevitably increased and the cost burden is large.
  • the power generation system installed on the mobile body has a problem. Since space saving is required as described above, expansion of the installation space of the refrigerator is also a big problem.
  • the above method alone can save power generation systems while suppressing the problem that the effect of output recovery depends on the environment in which the power generation system is located and the decrease in energy efficiency of the entire power generation system. There is a problem that it is difficult to suppress a decrease in the output of the gas turbine unit while realizing space.
  • the present invention has been made in view of the above circumstances, and provides a moving body provided with a cooling device capable of efficiently cooling the air supplied to the combustion means and suppressing a decrease in the output of the gas turbine unit. Is the purpose.
  • the characteristic configuration of the moving body according to the present invention for achieving the above object is to generate a combustion gas by burning a mixture of fuel gas and air in which liquid fuel is vaporized by a combustion means, and generate the combustion gas by the combustion means. It is used in a power generation system including a gas turbine unit in which a gas turbine is rotationally driven by the generated combustion gas and a first power generation means for generating power by utilizing the rotational force of the gas turbine, and cooling of air supplied to the combustion means.
  • the first cooling unit that uses the heat medium used to vaporize the liquid fuel as a cold heat source, the second cooling unit that uses the heat medium from the refrigerator as a cold heat source, and seawater as a heat medium are used as cold heat sources.
  • the point is that at least two of the third cooling units are provided.
  • a first cooling unit using a heat medium used for vaporizing liquid fuel as a cold heat source a second cooling unit using a heat medium from a refrigerator as a cold heat source, and seawater as a heat medium.
  • the air supplied to the combustion means is cooled in at least two cooling units of the third cooling unit using the above as a cooling heat source.
  • the present invention is a moving body provided with the above-mentioned cooling device, for example, by moving the moving body to a place where a combined cycle power generation system without a cooling device is installed, the moving body can be moved.
  • a cooling device can be attached to this combined cycle power generation system, which makes it possible to suppress a decrease in the output of the gas turbine unit.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit and the second cooling unit.
  • the air supplied to the combustion means is cooled by using the heat medium used for vaporizing the liquid fuel as a cooling heat source, and the air is supplied to the second cooling unit.
  • the heat medium from the refrigerator is used as a cooling heat source for cooling.
  • a heat medium that has taken cold heat from the liquid fuel is inevitably generated when the liquid fuel is vaporized. Therefore, the heat medium that has taken cold heat from the liquid fuel is burned.
  • the cold heat of the liquid fuel can be effectively utilized.
  • not only the cooling by the cold heat source from the refrigerator but also the cold heat of the liquid fuel is used. By using the same cooling together, it is not necessary to cool the air only by cooling with the cold heat of the cold water from the refrigerator.
  • the cold heat of the liquid fuel can be effectively utilized to cool the air supplied to the combustion means, and the decrease in energy efficiency of the entire power generation system can be suppressed.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device is such that the air supplied to the combustion means flows in the order of the second cooling unit and the first cooling unit. The point is that the second cooling unit is arranged.
  • the heat medium used as a cold heat source in the first cooling unit is used for vaporizing the liquid fuel, and the temperature is extremely low by obtaining a considerable amount of cold heat.
  • the heat medium used as a cold heat source in the second cooling unit is cold water produced by a refrigerator, and the temperature is relatively higher than that of the heat medium used in the first cooling unit. There is a tendency. Therefore, according to the above characteristic configuration, the air supplied to the combustion means is cooled in the second cooling unit where the temperature of the heat medium used is relatively high, and then the temperature of the heat medium used is relatively low. Since cooling is performed in the cooling unit, the air can be cooled without wasting the cold heat of each heat medium used in the two cooling units as much as possible.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit and the third cooling unit.
  • the air supplied to the combustion means is cooled by using the heat medium used for vaporizing the liquid fuel as a cooling source, and the air is supplied to the third cooling unit.
  • Seawater as a heat medium is cooled as a cold heat source.
  • the cold heat of the liquid fuel is effectively utilized by using a heat medium that has taken away the cold heat that is inevitably generated in the system that generates electricity using the liquid fuel as a cold heat source. It can be used.
  • the third cooling In the unit the temperature can be lowered by cooling the air supplied to the combustion means with the cold heat of seawater. This makes it easier to suppress a decrease in the output of the power generation system.
  • the refrigerator since the refrigerator is not required in this feature configuration, the problem of increasing the size of the refrigerator does not occur, the burden on the cost can be reduced, and the space of the power generation system can be saved.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device is such that the air supplied to the combustion means flows in the order of the third cooling unit and the first cooling unit. The point is that the third cooling unit is arranged.
  • the heat medium used as a cold heat source in the first cooling unit obtains a considerable amount of cold heat from the liquid fuel, and its temperature is extremely low.
  • the temperature of seawater used as a cold heat source in the third cooling section is relatively higher than that of the heat medium used as a cold heat source in the first cooling section, although it depends on the sampling depth. There is a tendency. Therefore, according to the above characteristic configuration, the air supplied to the fuel means is cooled in the third cooling unit where the temperature of the heat medium used is relatively high, and then the temperature of the heat medium used is relatively low. Since cooling is performed in the cooling unit, the air can be cooled without wasting the cold heat of each heat medium used in the two cooling units as much as possible.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the second cooling unit and the third cooling unit.
  • the air supplied to the combustion means is cooled by using the heat medium from the refrigerator as a cooling heat source in the second cooling unit, and the air is used as a heat medium in the third cooling unit. It is cooled using seawater as a cold heat source.
  • the combustion is performed after suppressing the decrease in the energy efficiency of the entire power generation system, reducing the burden on the cost, and saving the space of the power generation system.
  • the air supplied to the means can be cooled, which can suppress a decrease in the output of the gas turbine unit.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device has the second and second cooling devices so that the air supplied to the combustion means flows in the order of the third cooling section and the second cooling section.
  • the third cooling unit is arranged.
  • the temperature of the seawater used as the cold heat source in the third cooling section tends to be relatively higher than that of the cold water from the refrigerator used as the cold heat source in the second cooling section, although it depends on the sampling depth. .. Therefore, according to the above characteristic configuration, the air supplied to the combustion means is cooled in the third cooling unit where the temperature of the heat medium used is relatively high, and then the temperature of the heat medium used is relatively low. Since cooling is performed in the cooling unit, the air can be cooled without wasting the cold heat of each heat medium used in the two cooling units as much as possible.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit, the second cooling unit, and the third cooling unit.
  • the first cooling unit that uses the heat medium used to vaporize the liquid fuel as a cold heat source
  • the second cooling unit that uses the heat medium from the refrigerator as a cold heat source
  • seawater The air supplied to the combustion means is cooled in the third cooling unit used as a cold heat source.
  • the cold heat obtained by vaporizing the liquid fuel consumed by the power generation system during power generation can be obtained.
  • the temperature of the air supplied to the combustion means can be suppressed from the decrease in the output of the power generation system only by the cold heat of each heat medium used in any two of the three cooling units due to insufficient reasons. Even in cases where the temperature cannot be lowered to such a temperature, by providing three cooling units, the air supplied to the combustion means is cooled by the cold heat of each heat medium used in these three cooling units. The temperature can be lowered. As a result, the decrease in the output of the power generation system can be further suppressed.
  • a further characteristic configuration of the moving body according to the present invention is that in the cooling device, the air supplied to the combustion means circulates in the order of the third cooling unit, the second cooling unit, and the first cooling unit. The point is that the first, second and third cooling units are arranged.
  • the temperature of seawater used as a cold heat source in the third cooling section is higher than that of the heat medium used as a cold heat source in the first cooling section and the second cooling section, although it depends on the sampling depth.
  • the temperature tends to be relatively high, and the heat medium used as a cold heat source in the second cooling section tends to have a relatively high temperature as compared with the heat medium used in the first cooling section. .. Therefore, according to the above-mentioned characteristic configuration, the air supplied to the combustion means is cooled in the order of the cooling unit having the highest relative temperature of the heat medium to be used, that is, after cooling in the third cooling unit, the second cooling unit. Since the cooling is performed in the first cooling unit and then cooled in the first cooling unit, the air can be cooled without wasting the cooling heat of each of the heat media used in the three cooling units as much as possible.
  • a further characteristic configuration of the moving body according to the present invention is a fuel tank in which the liquid fuel is stored and a fuel tank.
  • a vaporization unit that vaporizes the liquid fuel by using the heat medium used in the first cooling unit as a heat source. With the gas turbine unit The point is that the first power generation means is provided.
  • the moving body is a moving body including a cooling device, a fuel tank, a vaporization unit, a gas turbine unit, and a first power generation means.
  • the gas turbine unit The first power generation means generates electricity by the rotational force of the gas turbine.
  • the air supplied to the combustion means is cooled by the above cooling device, and mist is generated as in the conventional case. Since it is not used, the effect of recovering the output of the power generation system can be obtained.
  • a further characteristic configuration of the moving body according to the present invention is an exhaust heat recovery boiler unit that vaporizes water by exhaust gas from the gas turbine unit.
  • a steam turbine unit in which the steam turbine is rotationally driven by steam vaporized in the exhaust heat recovery boiler unit, and A second power generation means for generating power by utilizing the rotational force of the steam turbine is provided. It is a ship.
  • the moving body becomes a ship further provided with the exhaust heat recovery boiler unit, the above-mentioned turbine unit, and the second power generation means (in other words, a ship equipped with a combined cycle power generation system), and this movement
  • the steam turbine is rotationally driven by utilizing the heat of the exhaust gas from the gas turbine unit, and the rotational force of the steam turbine also generates electricity by the second power generation means. Therefore, it is possible to efficiently generate electricity by effectively utilizing the heat of the exhaust gas from the gas turbine unit.
  • the moving body according to the present invention even if the area where the moving ship is navigating or anchoring is often in the tropics, the air supplied to the combustion means is cooled by the above cooling device. Since the mist is not used as in the above, the effect of recovering the output of the power generation system can be obtained.
  • the cooling device includes a third cooling unit that uses seawater as a heat medium as a cold heat source.
  • the steam turbine unit includes a condenser that recovers steam used for rotationally driving the steam turbine as condensate. The point is that the seawater used in the third cooling unit is used as a cold heat source, and a condensate cooling unit for cooling the inside of the condenser is provided.
  • the seawater used in the third cooling unit is used as a cooling heat source, the inside of the condenser is cooled in the condensate cooling unit, and the steam discharged from the steam turbine is used in the condenser. It can be cooled inside and recovered as condensate. Therefore, it is possible to share a part of the seawater pipes for supplying seawater to the third cooling part and the condensate cooling part and recovering seawater from these cooling parts, so that the arrangement of the pipes can be simplified. , The number of pumps required to distribute seawater in the pipe can be reduced.
  • a further characteristic configuration of the moving body according to the present invention is a first seawater flow path through which the seawater supplied to the third cooling unit flows.
  • the air is cooled even if the amount of seawater supplied to the third cooling unit is small. It is difficult to make a difference in the effect, but even in such a case, it is an unnecessary increase in pump output to always distribute the entire amount of seawater pumped by the pump to the condensate cooling section via the third cooling section. Connect. Further, when the temperature of the seawater is higher than the temperature of the outside air, the air may be heated by supplying the seawater to the third cooling unit.
  • a bypass flow path connecting the first seawater flow path and the second seawater flow path is provided, and the amount of seawater flowing through the bypass flow path is adjusted by the adjusting means to adjust the third cooling unit.
  • the amount of seawater flowing to the condensate cooling section via the above and the amount of seawater flowing to the condensate cooling section through the bypass flow path without passing through the third cooling section can be adjusted. Therefore, by adjusting the amount of seawater flowing through the bypass flow path according to the amount of seawater required by the third cooling unit, it is possible to suppress an unnecessary increase in pump output.
  • the total amount of seawater pumped up by the pump is adjusted so that it flows through the bypass flow path so that seawater is not supplied to the third cooling unit. It is also possible to prevent the situation where the air is heated.
  • a further characteristic configuration of the moving body according to the present invention is to determine the number of operating gas turbine units based on the power demand and the operating state of the cooling device.
  • the operating state of the cooling device changes depending on the degree of cooling of the air supplied to the combustion means in each of the first cooling part, the second cooling part, and the third cooling part, and the degree of cooling of the air by each cooling part is determined. By changing it, the operating state of the cooling device can be changed as appropriate. Further, the degree of cooling of air by each cooling unit can be changed by changing the temperature of the heat medium supplied to the cooling unit or by starting or stopping the supply of the heat medium to the cooling unit. Further, the electric power demand in the present application means the electric power required by the mobile body, the electric power required by one or more facilities to which the electric power is supplied from the mobile body, and the power generation system for the purpose of storing electricity. It is a concept that includes electric power to be generated.
  • a further characteristic configuration of the moving body according to the present invention is to determine the operating state of the cooling device based on the electric power demand and the output characteristics of the gas turbine unit.
  • the cooling device can be operated in an appropriate operating state that meets the power demand, and it is possible to prevent the cooling device from being loaded more than necessary.
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit and at least one of the second cooling unit and the third cooling unit. With the air supplied to the combustion means cooled by the first cooling unit, at least one of the second cooling unit and the third cooling unit is used based on the power demand and the output characteristics of the gas turbine unit. The point is that the operating state of the cooling device is determined by determining the degree of cooling of the air supplied to the combustion means.
  • the air by at least one of the second cooling unit and the third cooling unit is based on the power demand and the output characteristics of the gas turbine unit.
  • the degree of cooling can be determined, and the operating state of the cooling device can be determined. Therefore, the operating state of the cooling device determined in this way is an operating state in which the cold heat of the liquid fuel is effectively utilized.
  • the air supplied to the combustion means is cooled by the first cooling unit, and the combustion is performed by the second cooling unit and the third cooling unit based on the power demand and the output characteristics of the gas turbine unit.
  • the degree of cooling of the air supplied to the means the operating state of the cooling device is determined, and with the air supplied to the combustion means cooled by the first cooling unit, the power demand and the output characteristics of the gas turbine unit.
  • the degree of cooling of the air supplied to the combustion means by the second cooling unit based on the above, the operating state of the cooling device is determined, and the air supplied to the combustion means is cooled by the first cooling unit. This includes determining the operating state of the cooling device by determining the degree of cooling of the air supplied to the combustion means by the third cooling unit based on the power demand and the output characteristics of the gas turbine unit. ..
  • a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit, the second cooling unit, and the third cooling unit.
  • the combustion means by the second cooling unit is based on the power demand and the output characteristics of the gas turbine unit.
  • the degree of cooling of the air supplied to the cooling device is determined.
  • the degree of cooling of the air by the second cooling unit is determined based on the power demand and the output characteristics of the gas turbine.
  • the operating state of the cooling device can be determined. Therefore, the operating state of the cooling device determined in this way is an operating state in which the cold heat of the liquid fuel is effectively utilized.
  • a further characteristic configuration of the moving body according to the present invention determines the operating state of the cooling device according to at least one of the air condition and the cooling device condition, and the first cooling unit. The point is to determine the degree of cooling of the air supplied to the combustion means by at least one of the second cooling unit and the third cooling unit.
  • the degree of cooling of air by each cooling unit after determining the operating state of the cooling device according to the atmospheric condition. Therefore, for example, after determining the state in which the air is not cooled by any one of the first to third cooling units as the operating state of the cooling device, the degree of cooling of the air by the other cooling units is determined. You can decide and operate the cooling system.
  • the atmospheric condition is the atmospheric temperature, atmospheric pressure, humidity, etc.
  • the condition of the cooling device is the presence or absence of a failure, the temperature of the seawater used, the amount of LNG used, and the like.
  • FIG. 1 is a diagram showing a schematic configuration of a power generation system E mounted on a ship (LNG carrier).
  • the power generation system E uses a fuel tank 1 in which liquefied natural gas (LNG) as a liquid fuel is stored and water as a heat medium to vaporize the LNG into a fuel gas.
  • LNG liquefied natural gas
  • a mixture of the vessel 2 (vaporizer) and fuel gas and air is burned by the combustor 6 (combustion means) to generate combustion gas, and the combustion gas generated by the combustor 6 rotates the gas turbine 7.
  • the exhaust heat recovery boiler unit 25 that vaporizes water to generate steam
  • It includes a first generator 35 (first power generation means) that uses it to generate electricity, and a second generator 36 (second power generation means) that uses the rotational force of the steam turbine 30 to generate power.
  • the fuel tank 1 is connected to the other end of the fuel supply path L1 whose one end is connected to the combustor 6 in the gas turbine unit G, and the vaporizer 2 is arranged in the fuel supply path L1. .. Further, the vaporizer 2 is a heat exchanger in which a vaporization medium supply path L2 through which water as a heat source flows and a first cooling medium supply path L3 through which water obtained with cold heat from LNG flows are connected.
  • the LNG supplied from the inside of the fuel tank 1 is heated and vaporized by the heat of the water supplied through the vaporization medium supply path L2 in the vaporizer 2, and is supplied to the combustor 6 as a fuel gas. ..
  • the gas turbine unit G has a compressor 5, a combustor 6, and a gas turbine 7.
  • the compressor 5 is rotationally driven by the gas turbine 7, and the air cooled by the cooling device 20 described later is supplied through the first air supply path L10, and the supplied air is compressed and sent out to the combustor 6. It is configured. Further, the combustor 6 burns a mixture of fuel gas supplied through the fuel supply path L1 and compressed air supplied from the compressor 5 through the second air supply path L11 to generate combustion.
  • the gas is sent to the gas turbine 7 through the combustion gas supply path L12.
  • the gas turbine 7 is rotationally driven by the combustion gas sent from the combustor 6, and the rotational force is transmitted to the compressor 5 and the first generator 35. Further, the combustion gas used to drive the rotation of the gas turbine 7 is sent out as exhaust gas to the exhaust heat recovery boiler unit 25, which will be described later, through the exhaust gas supply path L13.
  • the refrigerator 10 in the present embodiment is a so-called absorption chiller, and as shown in FIG. 2, includes an evaporator 11, a absorber 13, a regenerator 15 and a condenser 17.
  • the evaporator 11 is provided inside the second cooling medium supply path L4 through which water supplied as a cooling heat source to the second cooling section 22 of the cooling device 20 described later flows, and the second cooling medium supply path L4.
  • a cooling medium recovery path L5 through which water that has been connected and has been deprived of cold heat flows is arranged in the second cooling unit 22, and water stored in the evaporator 11 is pumped up by a pump (not shown).
  • a first spraying means 12 for spraying is provided in the evaporator 11. Further, the evaporator 11 is in a state of communicating with the absorber 13 via a passage, and the inside of the evaporator 11 and the absorber 13 is depressurized by a vacuum pump (not shown).
  • the water sprayed by the first spraying means 12 is evaporated at a low temperature of about 5 ° C. under reduced pressure to cool the water flowing through the cooling medium recovery path L5, thereby cooling the water.
  • Water having cold heat used as a cold heat source is produced in the cooling unit 22. The water evaporated at low temperature (that is, water vapor) moves to the absorber 13 through the passage.
  • the absorber 13 stores an absorbing liquid (for example, an aqueous solution of lithium bromide) inside the absorber 13 and sprays a high-concentration absorbing liquid heated in the regenerator 15 described later into the absorber 13.
  • the second spraying means 14 is arranged. In the absorber 13, the high-concentration absorption liquid sprayed by the second spraying means 14 is cooled by the refrigerant, and the water vapor generated in the evaporator 11 is absorbed by the cooled absorption liquid.
  • the absorbent liquid stored in the absorber 13 is pumped up by a pump (not shown) and supplied, so that the supplied absorbent liquid is heated by the heating means 16. It has become.
  • the heating means 16 is not particularly limited as long as it can heat the absorbing liquid, and examples thereof include those using the heat of combustion of fuel gas and the heat of an electric heater.
  • the water vapor absorbed by the absorbent liquid in the absorber 13 is separated by heating the absorbent liquid supplied from the absorber 13. The separated water vapor moves to the condenser 17 which is in a state of being communicated with the regenerator 15 via the passage.
  • the water vapor separated by the regenerator 15 is cooled by the refrigerant, and the condensed water is supplied to the evaporator 11.
  • the cold heat of the refrigerant for example, water supplied from the outside as appropriate is used to cool the absorber 13 and the condenser.
  • a refrigerant flow path La through which this refrigerant flows passes through the inside of the 17.
  • the water as a cold heat source produced in the evaporator 11 of the refrigerator 10 may be used only by the second cooling unit 22, but is used for the air conditioner provided on the ship. Is also good. That is, the flow paths branched from the second cooling medium supply path L4 and the cooling medium recovery path L5 connected to the evaporator 11 are appropriately connected to the air conditioner, and serve as a cooling heat source through the second cooling medium supply path L4. The water may be supplied to the air conditioner, and the water from which the cold heat has been deprived in the air conditioner may be recovered through the cooling medium recovery path L5.
  • the cooling device 20 is configured to cool the air flowing through the first air supply path L10 (air supplied to the combustor 6). Specifically, in the present embodiment, the cooling device 20 uses the first cooling unit 21 that uses water as a heat medium used for vaporizing LNG as a cold heat source, and the water produced by the refrigerator 10. A second cooling unit 22 used as a cold heat source and a third cooling unit 23 using seawater as a heat medium as a cold heat source are provided.
  • the first cooling unit 21 is a heat exchanger to which the vaporization medium supply path L2 and the first cooling medium supply path L3 are connected, and water as a heat medium is a heat exchanger between the vaporizer 2 and the first cooling unit 21. It circulates between them through the vaporization medium supply path L2 and the first cooling medium supply path L3.
  • the first cooling unit 21 cools the air supplied to the combustor 6 by the cold heat of the water supplied through the first cooling medium supply path L3 (that is, the water obtained from the LNG).
  • the second cooling unit 22 is a heat exchanger to which the second cooling medium supply path L4 and the cooling medium recovery path L5 are connected, and the water as the heat medium is the evaporator 11 of the refrigerator 10 and the second cooling. It circulates with the unit 22 through the second cooling medium supply path L4 and the cooling medium recovery path L5.
  • the second cooling unit 22 cools the air supplied to the combustor 6 by the cold heat of the water supplied through the second cooling medium supply path L4 (that is, the water produced by the refrigerator 10 and obtained cold heat). To do.
  • the third cooling unit 23 supplies seawater to which the seawater supplied from the condensate cooling unit 32, which will be described later, flows through the first seawater supply channel L6 (first seawater channel) through which the seawater pumped from the sea by the pump P1 flows. It is a heat exchanger connected to the passage L7 (second seawater flow path).
  • the third cooling unit 23 cools the air supplied to the combustor 6 by the cold heat of seawater as a cold heat source supplied through the first seawater supply path L6.
  • a bypass flow path L8 connecting the first seawater supply path L6 and the second seawater supply path L7 is connected between the pump P1 and the third cooling unit 23 in the first seawater supply path L6.
  • an adjusting device 24 (adjusting means) is provided at a connection point of the bypass flow path L8 in the first seawater supply path L6, and the adjusting device 24 adjusts the amount of seawater flowing through the bypass flow path L8. You can do it.
  • the cooling units 21, 22, and 23 are the third cooling unit 23, the second cooling unit 22, and the first cooling unit 21 from the upstream side in the flow direction of the air flowing to the combustor 6.
  • the air is arranged in this order, and the air sucked into the first air supply passage L10 is cooled in the order of the third cooling unit 23, the second cooling unit 22, and the first cooling unit 21.
  • the exhaust heat recovery boiler unit 25 is used to rotate and drive the gas turbine 7, and is configured to recover the heat of the exhaust gas discharged from the gas turbine 7. Specifically, in the present embodiment, the exhaust heat recovery boiler unit 25 heats and vaporizes the water in the plurality of drums 26 by the heat of the exhaust gas from the gas turbine 7 to produce steam. Then, this steam is sent to the steam turbine 30 of the steam turbine unit S through the steam supply path L14. The exhaust gas from which the heat has been recovered is appropriately discharged to the outside.
  • the steam turbine unit S includes a steam turbine 30, a condenser 31, and a condenser cooling unit 32.
  • the steam turbine 30 is rotationally driven by the steam sent from the exhaust heat recovery boiler unit 25, and the rotational force is transmitted to the second generator 36.
  • the condenser 31 is provided with a condenser cooling unit 32 inside, and the steam used to drive the rotation of the steam turbine 30 is returned to water in the condenser 31 to supply water. It is supplied to the drum 26 through the road L15.
  • the condensate cooling unit 32 is a heat exchanger in which the second seawater supply path L7 and the seawater discharge path L9 for discharging seawater to the sea are connected, and the cold heat of the seawater supplied through the second seawater supply path L7.
  • the inside of the condenser 31 is cooled by, and the seawater used for cooling the inside of the condenser 31 is discharged to the sea through the seawater discharge path L9.
  • the temperature of the seawater supplied through the second seawater supply path L7 is about 32 ° C.
  • the temperature of the seawater used for cooling the inside of the condenser 31 is It will be about 42 ° C.
  • the first generator 35 is driven by the gas turbine 7 to generate electricity
  • the second generator 36 is driven by the steam turbine 30 to generate electricity.
  • the fuel gas vaporized in the vaporizer 2 is supplied to the combustor 6, and the air cooled in the cooling device 20 is supplied to the combustor 6 in the combustor 6.
  • a mixture of fuel gas and air is burned, and the generated combustion gas is sent to the gas turbine 7, so that the gas turbine 7 is rotationally driven, and the rotational force drives the first generator 35. And power is generated.
  • the combustion gas used to drive the rotation of the gas turbine 7 is sent to the exhaust heat recovery boiler unit 25 as exhaust gas, and the steam is generated in the exhaust heat recovery boiler unit 25 by utilizing the heat of the exhaust gas.
  • the steam turbine 30 is rotationally driven, and the rotational force drives the second generator 36 to generate power.
  • the output of the power generation system E is reduced (in other words, the amount of power generation is reduced). Can be suppressed. Further, in the case where a plurality of gas turbine units G are installed on a ship, since the decrease in the output of the power generation system E can be suppressed by providing the cooling device 20, the gas turbine unit G required to obtain the same electric power It is possible to reduce the number of installed turbines, and it is possible to reduce equipment costs, maintenance costs, and installation space.
  • cooling device 20 in the present embodiment is used as a cooling heat source for cooling the air that supplies the combustor 6 with the heat medium that has taken the cold heat from the LNG, which is inevitably generated when the LNG is vaporized.
  • the cold heat of LNG can be effectively utilized.
  • the air supplied to the combustor 6 is cooled in the three cooling units 21, 22, 23, there is a problem that the energy efficiency of the entire power generation system E is lowered, and the size of the refrigerator 10 is increased.
  • the combustor solves the problem that the output of the power generation system E decreases due to the inevitable problem and the lack of cooling heat obtained by vaporizing the LNG consumed by the power generation system E during power generation.
  • the air supplied to No. 6 can be sufficiently cooled to suppress a decrease in the output of the power generation system E.
  • the water used as a cold heat source in the first cooling unit 21 is used for vaporizing LNG.
  • the temperature of LNG is about ⁇ 160 ° C.
  • LNG when LNG is vaporized by the water used in the first cooling unit 21 to make a fuel gas of about 10 ° C., heat is generated.
  • Water as a medium obtains a considerable amount of cold heat, and if the temperature before obtaining the cold heat is about 13 ° C., the temperature after obtaining the cold heat is about 5 ° C.
  • the water used as the cold heat source in the second cooling unit 22 is produced by the refrigerator 10, and the temperature is relatively higher than the water used in the first cooling unit 21.
  • the temperature at the time of supplying to the second cooling unit 22 is about 7 ° C., and after the second cooling unit 22 is deprived of cold heat by the air.
  • the temperature at is about 15 ° C.
  • the seawater used as a cold heat source in the third cooling unit 23 depends on the sampling depth, but if it is pumped from a depth of 30 m to 70 m, it is about 20 to 30 ° C., as shown in FIG. As shown, in the present embodiment, the temperature is about 25 ° C., and the temperature after the cold heat is taken away by the air in the third cooling unit 23 is about 32 ° C.
  • the third cooling unit 23, the second cooling unit 22, and the first cooling unit 21 are arranged in this order from the upstream side in the flow direction of the air flowing to the combustor 6, so that the first air is supplied.
  • the air sucked into the passage L10 (35 ° C. in this embodiment) is cooled in the order of the cooling units 21, 22, 23 in which the temperature of the heat medium to be used is relatively high, that is, the third cooling unit 23 first.
  • the temperature becomes about 30 ° C.
  • the second cooling unit 22 the temperature becomes about 20 ° C.
  • the first cooling unit 21 the air supplied to the combustor 6 is supplied.
  • it can be cooled to about 15 ° C., and the air can be efficiently cooled without wasting the cold heat of each heat medium used by the three cooling units 21, 22, 23 as much as possible.
  • a part of the seawater piping (that is, for supplying seawater to the third cooling unit 23 and the condensate cooling unit 32 and collecting seawater from these cooling units 23 and 32 (that is,).
  • the first seawater supply route L6, the second seawater supply route L7, and the seawater discharge route L9) are shared, which simplifies the arrangement of pipes and increases the number of pumps P1 for distributing seawater. Only one unit is needed.
  • a bypass flow path L8 connecting the first seawater supply path L6 and the second seawater supply path L7 is provided so that the amount of seawater flowing through the bypass flow path L8 can be adjusted by the adjusting device 24.
  • the air can be supplied even if the amount of seawater supplied to the third cooling unit 23 is small. Although it is difficult to make a difference in the cooling effect, flowing seawater to the condensate cooling unit 32 via the third cooling unit 23 leads to an unnecessary increase in the pump output even in such a case. Further, when the temperature of the sucked air is higher than the temperature of the seawater, the air may be heated by supplying the seawater to the third cooling unit 23.
  • an unnecessary increase in the output of the pump P1 can be suppressed by adjusting the amount of seawater flowing through the bypass flow path L8 by the adjusting device 24 as needed. ..
  • the temperature of the seawater is higher than the temperature of the air by adjusting the total amount of the seawater pumped by the pump P1 so as to flow through the bypass flow path L8 by the adjusting device 24. Even in such a case, it is possible to prevent a situation in which the air is heated by seawater.
  • FIG. 3 is a diagram showing a schematic configuration of a power generation system E1 mounted on a ship (LNG carrier).
  • the power generation system E1 includes a vaporizer 2, a plurality of gas turbine units Ga and Gb, a refrigerator 10, a plurality of cooling devices 20a and 20b, and a plurality of exhaust heat recovery boiler units 25a. It includes 25b and a steam turbine unit S.
  • the power generation system E1 includes a control device 40 and a temperature sensor Tb for detecting the atmospheric temperature.
  • the mobile power generation system E1 according to the second embodiment also includes a fuel tank in which liquefied natural gas is stored and the rotational force of the gas turbines 7a and 7b of the gas turbine units Ga and Gb.
  • a first power generation means for generating power by utilizing the above, and a second power generation means for generating power by utilizing the rotational force of the steam turbine 30 are provided.
  • FIG. 3 a configuration in which two of each of a plurality of gas turbine units, a plurality of cooling devices, and a plurality of exhaust heat recovery boiler units are provided is shown.
  • a fuel regulating valve V1 is provided between the fuel tank and the vaporizer 2 in the fuel supply path L1, and the opening / closing operation of the fuel regulating valve V1 is the operation of the electric power demand and the gas turbine unit. It is controlled by the control device 40 based on the state and the like.
  • the vaporization medium supply path L2 connected to the vaporizer 2 is branched into the vaporization medium supply paths L2a and L2b on the upstream side thereof, and the first cooling is also connected to the vaporizer 2.
  • the media supply path L3 is branched into the first cooling medium supply paths L3a and L3b on the downstream side thereof.
  • the cooling medium supply path L3 is provided with a heat exchanger 37 and a buffer tank 38 in this order from the upstream side.
  • the heat exchanger 37 is for exchanging heat between the water obtained from LNG in the vaporizer 2 and the seawater appropriately pumped from the sea, and the buffer tank 38 is used at the time of starting the power generation system E1. This is for temporarily storing the water supplied to the first cooling units 21a and 21b.
  • the two gas turbine units Ga and Gb have the same configuration as the gas turbine unit G in the first embodiment, and include compressors 5a and 5b and gas turbines 7a and 7b. That is, in the present embodiment, the air cooled by the cooling devices 20a and 20b is supplied to the compressors 5a and 5b through the first air supply paths L10a and L10b, respectively. Further, the air supplied to the compressors 5a and 5b is mixed with the fuel gas and burned in a combustor (not shown).
  • the combustion gas generated in the combustor is sent to the gas turbines 7a and 7b to be used for rotational driving of the gas turbines 7a and 7b, and then as exhaust gas through the exhaust gas supply paths L13a and L13b, the exhaust heat recovery boiler unit 25a, It is sent to 25b.
  • the second cooling medium supply path L4 connected to the refrigerator 10 is branched into the second cooling medium supply paths L4a and L4b on the downstream side of the refrigerator 10 and is also frozen.
  • the cooling medium recovery path L5 connected to the machine 10 branches into the cooling medium recovery paths L5a and L5b on the upstream side of the refrigerator 10.
  • a seawater temperature sensor Ta that measures the temperature of seawater is provided in the refrigerant flow path La that passes through the inside of the absorber 13 and the condenser 17 of the refrigerator 10.
  • the vaporization medium supply paths L2a and L2b and the first cooling medium supply paths L3a and L3b are connected to the first cooling units 21a and 21b of the cooling devices 20a and 20b in the second embodiment, respectively. Further, the second cooling medium supply paths L4a and L4b and the cooling medium recovery paths L5a and L5b are connected to the second cooling units 22a and 22b, respectively.
  • the first seawater supply passage L6 branches into the first seawater supply passages L6a and L6b on the downstream side of the pump P1, and the third cooling unit 23a of the cooling devices 20a and 20b,
  • the first seawater supply channels L6a and L6b are connected to the 23b, and the seawater drainage channels L9a and L9b are connected to the 23b, and the first seawater supply channels L6a and L6b are connected to the third cooling units 23a and 23b.
  • the supplied seawater is discarded into the sea through the seawater drainage channels L9a and L9b.
  • the cooling units 21a, 21b, 22a, 22b, 23a and 23b are the third cooling units 23a, 23b and the second from the upstream side of the first air supply passages L10a and L10b.
  • the cooling units 22a and 22b and the first cooling units 21a and 21b are arranged in this order.
  • the exhaust heat recovery boiler units 25a and 25b in the second embodiment vaporize the water in the drums 26a and 26b by the exhaust gas sent from the gas turbines 7a and 7b through the exhaust gas supply paths L13a and L13b, respectively, to produce steam. Then, this steam is sent to the steam turbine 30 through the supply paths L14a and L14b.
  • the condensate cooling unit 32 of the steam turbine unit S is connected to the second seawater supply line L7 branched from the first seawater supply line L6b and is connected to the seawater discharge line L9c.
  • the seawater supplied through the seawater supply channel L7 is discarded into the sea through the seawater discharge channel L9c.
  • the steam produced by the exhaust heat recovery boiler units 25a and 25b is returned to water in the condenser 31 and supplied to the drums 26a and 26b through the water supply passages L15a and L15b.
  • the control device 40 is a device responsible for various controls related to the operation of the power generation system E1.
  • the control device 40 can determine the number of operating gas turbine units Ga and Gb based on the power demand and the operating states of the cooling devices 20a and 20b.
  • the operating states of the cooling devices 20a and 20b can be predetermined, or can be appropriately determined based on the power demand and the output characteristics of the gas turbine units Ga and Gb. Further, the output characteristics of the gas turbine units Ga and Gb are predetermined according to the atmospheric temperature, atmospheric pressure, humidity, seawater temperature and the like.
  • FIG. 4 is a graph showing the output characteristics of the gas turbine unit determined in advance according to the atmospheric temperature.
  • the one-point chain line X1 in the figure shows the first output characteristic when one gas turbine unit is operated while the cooling device is operated so that the air supplied to the combustor becomes 15 ° C.
  • X2 shows the second output characteristic when two gas turbine units are operated in a state where the cooling device is operated so that the air supplied to the combustor becomes 15 ° C.
  • the two-point chain wire Y1 in the figure shows the third output characteristic when one gas turbine unit is operated while the cooling device is operated so that the air supplied to the combustor becomes 10 ° C.
  • the two-point chain wire Y2 shows the fourth output characteristic when two gas turbine units are operated in a state where the cooling device is operated so that the air supplied to the combustor becomes 10 ° C.
  • control device 40 can meet the power demand of 49.2 MW at an atmospheric temperature of 20 ° C. in a predetermined operating state of the cooling devices 20a and 20b (an operating state in which the air supplied to the combustor is 15 ° C.).
  • the number of operating gas turbine units Ga and Gb is determined to be two, and the two gas turbine units Ga and Gb are operated (the state of the black circle (1) in FIG. 4).
  • the temperature of the cold water supplied from the refrigerator 10 to the second cooling unit is lowered (that is, the degree of cooling of the air by the second cooling unit is increased), and the cooling devices 20a and 20b are used.
  • the operating state is changed to an operating state in which the air supplied to the combustor is 10 ° C., and one of the two operating gas turbine units Ga and Gb is stopped.
  • the operating state of the cooling devices 20a and 20b and the number of operating gas turbine units Ga and Gb can be determined according to the power demand, which meets the power demand.
  • the cooling device can be operated in an appropriate operating state, and the number of gas turbine units that meets the power demand can be operated without unnecessarily increasing the number of operating gas turbine units.
  • control device 40 when the gas turbine units Ga and Gb are rapidly started or when the trips of the gas turbines 7a and 7b are stopped, the flow rate of LNG suddenly increases and the heat retained in the water supplied to the vaporizer 2 suddenly decreases. Even when the operation is performed properly, the buffer tank 38 provided in the cooling medium supply path L3 is provided with a sufficient amount of water, and control is performed so that water can be supplied quickly. As a result, it is possible to prevent the vaporizer 2 from being damaged by freezing due to insufficient heat.
  • the cooling devices 20, 20a, 20b include first cooling units 21,21a, 21b, second cooling units 22, 22a, 22b, and third cooling units 23, 23a, 23b.
  • the configuration is set, a configuration in which the cooling device includes at least any two of the above three cooling units may be adopted.
  • the air supplied to the combustor 6 is cooled by the first cooling units 21, 21a, 21b and the second cooling units 22, 22a, 22b. Therefore, it is possible to suppress a decrease in the output of the power generation systems E and E1 in the same manner as described above.
  • the air supplied to the combustor 6 is the second cooling unit 22, 22a, 22b, and the first cooling unit from the viewpoint of cooling the air without wasting the cold heat of the heat medium as much as possible. It is preferable to arrange these two cooling units 21,21a, 21b, 22, 22a, 22b so that they are distributed in the order of 21,21a, 21b.
  • the cold heat of the LNG is effectively utilized and the energy efficiency of the entire power generation system is lowered.
  • the air supplied to the combustor 6 is supplied to the first cooling units 21 and 21a and 21b and the third cooling units 23, 23a and 23b, while suppressing the problem of the chiller and the inevitable increase in size of the refrigerator. Since it can be cooled by the above, it is possible to suppress a decrease in the output of the power generation systems E and E1 in the same manner as described above.
  • these two cooling units 21 and 21a so that the air supplied to the combustor 6 circulates in the order of the third cooling units 23, 23a and 23b and the first cooling units 21 and 21a and 21b. It is preferable to arrange 21b, 23, 23a, 23b, and in this way, the air can be cooled without wasting the cold heat of the heat medium as much as possible.
  • the configuration including the second cooling units 22, 22a, 22b and the third cooling units 23, 23a, 23b is adopted, there is a problem that the energy efficiency of the entire power generation system is lowered and the size of the refrigerator is increased.
  • the air supplied to the combustor 6 can be cooled by the second cooling units 22, 22a, 22b and the third cooling units 23, 23a, 23b, while suppressing the occurrence of the problem that the above is unavoidable.
  • the two cooling units 22, 22a so that the air supplied to the combustor 6 flows in the order of the third cooling units 23, 23a, 23b and the second cooling units 22, 22a, 22b. It is preferable to arrange 22b, 23, 23a, 23b, and in this way, the air can be cooled without wasting the cold heat of the heat medium as much as possible.
  • the first cooling units 21,21a, 21b, the second cooling units 22, 22a, 22b and the third cooling units 23, 23a, 23b constituting the cooling devices 20, 20a, 20b burn.
  • the configuration was such that the third cooling units 23, 23a, 23b, the second cooling units 22, 22a, 22b, and the first cooling units 21, 21, 21a, 21b were arranged in this order from the upstream side in the flow direction of the air flowing to the vessel 6.
  • the arrangement of these cooling units is not limited to this, and can be appropriately set.
  • the moving body is a ship including a fuel tank 1, a vaporizer 2, a gas turbine unit G, an exhaust heat recovery boiler unit 25, a steam turbine unit S, and generators 35 and 36, respectively.
  • a moving body equipped with a cooling device may be used, and in addition to the cooling device, the configuration required for gas turbine power generation (fuel tank, vaporizer, gas turbine unit and It may be a moving body equipped with a first generator).
  • the cooling device provided by the moving body can be used in this power generation system.
  • moving objects include, but are not limited to, LPG carriers, ethylene ships, ammonia ships, liquefied hydrogen carriers, large tuna ships, refrigerated container ships, floating ships, etc. It also includes floating structures that have been built or modified and towed to the site of use and moored during the trial period or almost permanently, and other various land transportation facilities (trucks, dolly vehicles).
  • a part of the seawater piping for supplying seawater to the third cooling unit 23 and the condensate cooling unit 32 and collecting seawater from these cooling units 23 and 32 is not limited to this.
  • a pipe for supplying seawater and collecting seawater to the third cooling unit 23 and a pipe for supplying seawater and collecting seawater to the condensate cooling unit 32 are provided, respectively, for third cooling.
  • the condensate cooling unit 32 may use seawater supplied from a pipe different from the seawater used in the unit 23.
  • a bypass flow path L8 connecting the first seawater supply path L6 and the second seawater supply path L7 is provided, and an adjusting device for adjusting the amount of seawater flowing through the bypass flow path L8.
  • the configuration is provided with 24, the configuration is not limited to this, and a bypass flow path and an adjusting device may be provided as necessary.
  • the mode of adjusting the amount of seawater flowing through the second seawater supply channel L7 is not adopted, but as in the first embodiment, an appropriate adjusting device is provided to provide a second. The amount of seawater flowing through the seawater supply channel L7 may be adjusted.
  • water is used as the heat medium used in the vaporizer 2 and the first cooling units 21, 21, 21a, 21b, but an antifreeze solution such as ethylene glycol is used instead of water. Is also good. If an antifreeze solution is used, the temperature of the antifreeze solution is lower than that of water (for example, to 0 ° C.) by vaporizing LNG into fuel gas by heat exchange with the antifreeze solution in the vaporizer 2. By using the antifreeze liquid obtained from the LNG in the first cooling unit 21 and cooling the air supplied to the combustor 6, the air can be cooled to, for example, about 10 ° C.
  • the cold heat of the refrigerant supplied from the outside is appropriately used for cooling the high-concentration absorbent liquid in the absorber 13 of the refrigerator 10 and cooling the water vapor in the condenser 17.
  • the refrigerant flow path La is branched from the first seawater supply passages L6 and L6a, flows through the absorber 13 and the condenser 17, and is connected to the second seawater supply passage L7, seawater is provided.
  • the piping can be shared.
  • the arrangement of can be simplified.
  • the flow path of the cooling water used in the condenser of the electric turbo refrigerator is branched from the first seawater supply passages L6 and L6a. If it is provided so as to circulate in the condenser and connect to the second seawater supply path L7, a part of the seawater pipe can be shared and the arrangement of the pipe can be further simplified as described above.
  • the pipe through which seawater flows is preferably made of stainless steel or titanium in consideration of the occurrence of rust and the like.
  • seawater used as a cold heat source is pumped up from a depth of 30 m to 70 m as an example, but the present invention is not limited to this.
  • deep seawater can be used as a cold heat source.
  • FIG. 1 does not show the configuration corresponding to the heat exchanger 37 and the buffer tank 38 in the second embodiment, also in the power generation system E mounted on the ship according to the first embodiment. It is preferable to provide a heat exchanger and a buffer tank in the first cooling medium supply path L3.
  • the output characteristics of the gas turbine units Ga and Gb for determining the operating state of the cooling devices 20a and 20b those predetermined in accordance with the atmospheric temperature are used. Predetermined ones may be used according to the atmospheric pressure, humidity, and seawater temperature.
  • the gas turbine units Ga and Gb are provided so as to be able to meet a predetermined power demand under a predetermined atmospheric temperature in a predetermined operating state of the cooling devices 20a and 20b. After determining the number of operating units, the gas turbine units Ga and Gb are operated, and then the operating state of the cooling devices 20a and 20b and the number of operating units of the gas turbine units Ga and Gb are appropriately adjusted according to the power demand and changes in the atmospheric temperature. The mode is changed, but the present invention is not limited to this.
  • the operating states of the cooling devices 20a and 20b are determined based on the power demand and the output characteristics of the gas turbine units Ga and Gb, and further, the gas turbine units Ga and Gb are determined based on the determined operating state and the power demand.
  • the gas turbine units Ga and Gb may be operated after determining the number of operating units.
  • the cooling devices 20a and 20b are operated in advance according to the state where the atmospheric temperature is the highest and the electric power demand is the highest. The state and the number of operating gas turbine units Ga and Gb may be determined.
  • the present invention is not limited to this.
  • the operating state of the cooling devices 20a and 20b changes the degree of cooling of air by at least one of the first cooling units 21a and 21b, the second cooling units 22a and 22b and the third cooling unit 23a and 23b.
  • the temperature of seawater measured by the seawater temperature sensor Ta may be high, and it may be considered that the cooling of air by the third cooling units 23a and 23b is not effective.
  • the regulating valves appropriately provided in the first seawater supply paths L6a and L6b are closed to change the operating state of the cooling devices 20a and 20b to the three cooling units 21a, 21b, 22a, 22b, 23a and 23b.
  • the air is cooled by the first cooling units 21a and 21b and the second cooling units 22a and 22b, and the air is not cooled by the third cooling units 23a and 23b (in other words, the first cooling). It is also possible to change to an operating state in which the cooling degree of air by the third cooling portions 23a and 23b is lowered without changing the cooling degree of air by the portions 21a and 21b and the second cooling portions 22a and 22b).
  • the air produced by the first cooling units 21a and 21b, the second cooling units 22a and 22b, and the third cooling units 23a and 23b is based on the power demand and the output characteristics of the gas turbine unit.
  • the operating state of the cooling devices 20a and 20b is determined by determining the degree of cooling, but the present invention is not limited to this.
  • the operating states of the cooling devices 20a and 20b are determined according to the atmospheric conditions (atmospheric temperature, atmospheric pressure, humidity, etc.), and the first cooling units 21a and 21b, the second cooling units 22a and 22b, and the third cooling unit 23a, The degree of cooling of the air by 23b may be determined.
  • the operating state of the cooling devices 20a and 20b is determined to be a state in which the air having a low temperature is operated with a cooling capacity capable of cooling to a predetermined temperature.
  • the degree of cooling of air by each of the cooling units 21a, 21b, 22a, 22b, 23a, and 23b may be determined so as to obtain such an operating state.
  • the output characteristics of the gas turbine units Ga and Gb are taken into consideration when determining the operating state of the cooling devices 20a and 20b and the number of operating gas turbine units Ga and Gb.
  • the operation is not limited to this, and the operation of the power generation system may be controlled in consideration of the efficiency characteristics of the gas turbine units Ga and Gb.
  • An example of operation control of the power generation system in consideration of the efficiency characteristics of the gas turbine units Ga and Gb will be described with reference to FIG.
  • FIG. 5 is a graph showing the efficiency characteristics of the gas turbine unit, and the one-point chain line Z1 in the figure shows a load factor of 60 in a state where the cooling device is operated so that the air supplied to the combustor is 15 ° C.
  • the efficiency characteristic per gas turbine unit (first efficiency characteristic) when it is% is shown, and the one-point chain wire Z2 shows the load factor in a state where the cooling device is operated so that the air supplied to the combustor becomes 15 ° C.
  • the efficiency characteristic per gas turbine unit (second efficiency characteristic) when it is 100% is shown, and the two-point chain wire Z3 is in a state where the cooling device is operated so that the air supplied to the combustor becomes 10 ° C.
  • the efficiency characteristics (third efficiency characteristics) per gas turbine unit when the load factor is 100% are shown.
  • the cooling device was operated at a load factor of 60% so that the air supplied to the combustor was 15 ° C., and two gas turbine units were operated (black circles (1) in FIG.
  • the cooling device On condition that the power demand can be met, the cooling device is operated so that the air supplied to the combustor becomes 10 ° C. by a method such as lowering the temperature of the cold water supplied from the refrigerator, and the gas turbine unit is operated.
  • the number of operating units is reduced to one (the state of the black circle (5) in FIG. 5).
  • the efficiency per gas turbine unit will be slightly reduced from the viewpoint of increasing the cooling capacity of the cooling device, but by reducing the number of operating gas turbine units to one, the gas turbine unit The efficiency per unit will eventually improve. In this way, by controlling the operation of the power generation system in consideration of the efficiency characteristics of the gas turbine unit, the gas turbine unit can be operated efficiently.
  • the present invention can be used for a moving body provided with a cooling device capable of efficiently cooling the air supplied to the combustion means and suppressing a decrease in the output of the gas turbine unit.

Abstract

Provided is a moving body equipped with a cooling device capable of efficiently cooling air supplied to a combustion means and capable of suppressing a reduction in the output of a gas turbine unit. This moving body is equipped with a cooling device 20 used in the cooling of air supplied to a combustion means 6 and used in a power generation system E equipped with: a gas turbine unit G, which generates a combustion gas by burning in a combustion means 6 an air-fuel mixture of air and a fuel gas obtained by gasifying a liquid fuel, and rotationally drives the gas turbine 7 by means of the combustion gas generated by the combustion means 6; and a first power generation means 35, which uses the rotational force of the gas turbine 7 to generate power. The cooling device 20 is provided with at least two units among a first cooling unit 21, which uses as a cold heat source a heat medium used for gasifying the liquid fuel, a second cooling unit 22 which uses as a cold heat source a heat medium from a refrigeration machine 10, and a third cooling unit 23 which uses as a cold heat source seawater serving as a heat medium.

Description

移動体Mobile
 発電システムにおける燃焼手段に供給する空気の冷却に供される冷却装置を備えた移動体に関する。 Regarding a moving body equipped with a cooling device used to cool the air supplied to the combustion means in the power generation system.
 コンバインドサイクル発電システムは、燃焼手段で発生した燃焼ガスをガスタービンに供給して当該ガスタービンを回転させて、その回転力によって発電機が発電するとともに、ガスタービンからの排ガスに残存する熱を排熱回収ボイラーで回収して蒸気を発生させ、この発生させた蒸気によって蒸気タービンを回転させて、その回転力によって発電機が発電するシステムである。 The combined cycle power generation system supplies the combustion gas generated by the combustion means to the gas turbine to rotate the gas turbine, and the generator generates electricity by the rotational force and exhausts the heat remaining in the exhaust gas from the gas turbine. This is a system in which a heat recovery boiler recovers steam to generate steam, the steam turbine is rotated by the generated steam, and a generator generates electricity by the rotational force.
 この種のコンバインドサイクル発電システムは、陸上の発電プラントで使用されるだけでなく、近年、高い発電効率を発揮できるシステムであることから、陸上以外での使用も検討されている。 This type of combined cycle power generation system is not only used in onshore power plants, but in recent years it is a system that can demonstrate high power generation efficiency, so its use outside of land is also being considered.
 例えば、特許文献1には、船上での発電を目的として船舶に搭載される船用発電システムが開示されている。この船用発電システムは、LNG船等の船舶に設置された発電システムであり、上記コンバインドサイクル発電システムと同様に、燃焼ガスをガスタービンに供給することによって回転動力を生成し、ガスタービンの回転力によって発電機が発電するとともに、ガスタービンから排出された排ガスから熱を回収することによって蒸気を生成して、生成した蒸気を蒸気タービンに供給することによって回転動力を生成し、蒸気タービンの回転力によって発電機が発電を行う。 For example, Patent Document 1 discloses a ship power generation system mounted on a ship for the purpose of power generation on board. This ship power generation system is a power generation system installed on a ship such as an LNG ship, and like the above-mentioned combined cycle power generation system, generates rotational power by supplying combustion gas to a gas turbine to generate rotational power of the gas turbine. Along with generating electricity from the generator, steam is generated by recovering heat from the exhaust gas discharged from the gas turbine, and the generated steam is supplied to the steam turbine to generate rotational power, which is the rotational force of the steam turbine. The generator generates electricity.
特開2018-141381号公報Japanese Unexamined Patent Publication No. 2018-141381
 ところで、ガスタービンユニットは、大気を吸入圧縮して、燃焼手段で燃料ガスと混合させ燃焼し、発生した燃焼ガスによってガスタービンを回転駆動させることで、この回転力によって発電機が発電するが、燃焼手段に供給する空気の温度が上昇すると、空気密度が小さくなるので、燃焼手段に送出される空気の質量が低下し、その結果、出力が低下した状態(言い換えれば、発電量が低下した状態)となってしまう。 By the way, in the gas turbine unit, the air is sucked and compressed, mixed with the fuel gas by the combustion means and burned, and the gas turbine is rotationally driven by the generated combustion gas, so that the generator generates power by this rotational force. When the temperature of the air supplied to the combustion means rises, the air density decreases, so that the mass of the air sent to the combustion means decreases, and as a result, the output decreases (in other words, the amount of power generation decreases). ).
 そのため、燃焼手段に供給する空気の温度に左右されることなく、必要な発電量を確保しようとする場合には、ガスタービンユニットの設置数を増やすといった対応が必要となる。 Therefore, when trying to secure the required amount of power generation regardless of the temperature of the air supplied to the combustion means, it is necessary to take measures such as increasing the number of installed gas turbine units.
 しかしながら、ガスタービンユニットの設置数を増やすとコストの増加などの問題が生じる。とりわけ、特許文献1記載の船用発電システムのような船舶などの移動体上に設置される発電システムにおいては、移動体上のスペースの関係上、発電システムの省スペース化が求められるため、コスト面だけでなく、設置スペースの拡大も大きな問題となる。 However, increasing the number of installed gas turbine units causes problems such as increased costs. In particular, in a power generation system installed on a moving body such as a ship such as the ship power generation system described in Patent Document 1, space saving of the power generation system is required due to the space on the moving body, so that the cost aspect Not only that, the expansion of the installation space is also a big problem.
 一方で、ガスタービンユニットの出力の低下を改善するための方法として、従来から、燃焼手段に供給する空気の温度を下げる方法が提案されている。このような方法としては、例えば、大気が吸入される吸気室内にミストを発生させ、吸気室内に吸入された大気がミストの蒸発潜熱を奪うことによって燃焼手段に供給する空気を冷却する方法がある。 On the other hand, as a method for improving the decrease in the output of the gas turbine unit, a method for lowering the temperature of the air supplied to the combustion means has been conventionally proposed. As such a method, for example, there is a method in which mist is generated in the intake chamber where the air is sucked, and the air sucked into the intake chamber cools the air supplied to the combustion means by taking away the latent heat of vaporization of the mist. ..
 しかしながら、ミストを利用する方法では、大気温度に対応する飽和蒸気圧力までのミスト量しか蒸発できないため、発電システムが高温多湿の熱帯地方に設置されている場合や、夏季の高温湿潤環境で発電システムを使用する場合においては、燃焼手段に供給する空気を十分に冷却することができなくなり、出力回復の効果が得られ難いという問題がある。 However, the method using mist can evaporate only the amount of mist up to the saturated steam pressure corresponding to the atmospheric temperature, so if the power generation system is installed in a hot and humid tropical region, or in a hot and humid environment in summer, the power generation system In the case of using the above, there is a problem that the air supplied to the combustion means cannot be sufficiently cooled, and it is difficult to obtain the effect of recovering the output.
 とりわけ、特許文献1記載の船用発電システムのような船舶などの移動体上に設置される発電システムについては、移動体が熱帯地域を移動する場合も多く、出力回復の効果が十分に得られない場合も多い。 In particular, with respect to a power generation system installed on a moving body such as a ship such as the ship power generation system described in Patent Document 1, the moving body often moves in a tropical region, and the effect of power recovery cannot be sufficiently obtained. In many cases.
 また、燃焼手段に供給する空気の温度を下げる方法としては、燃料の燃焼熱などを利用して冷水を製造する冷凍機を設けるとともに、冷凍機で作られた冷水(冷熱源)を利用する熱交換器を吸気室内に設置して、この冷水によって燃焼手段に供給する空気を冷却する方法もある。 In addition, as a method of lowering the temperature of the air supplied to the combustion means, a refrigerator is provided to produce cold water using the heat of combustion of fuel, and the heat using the cold water (cold heat source) produced by the refrigerator is provided. There is also a method in which a exchanger is installed in the intake chamber to cool the air supplied to the combustion means by this cold water.
 しかしながら、冷凍機からの冷水を利用する方法では、燃焼手段に供給する空気を十分に冷却できる冷水を冷凍機で製造しようとする場合、冷凍機への投入熱量、投入電力量に対するガスタービンユニットの出力回復の効果が小さく、発電システム全体でのエネルギー効率が低下するという問題がある。また、製造する冷水の量を多くしようとした場合、冷凍機の大型化が避けられず、コスト面での負担が大きいという問題もあり、とりわけ、移動体上に設置される発電システムについては、上記のように省スペース化が求められるため、冷凍機の設置スペースの拡大も大きな問題となる。 However, in the method using the cold water from the refrigerator, when the refrigerator is to produce cold water capable of sufficiently cooling the air supplied to the combustion means, the gas turbine unit has a heat input to the refrigerator and an input power amount. There is a problem that the effect of output recovery is small and the energy efficiency of the entire power generation system is reduced. In addition, when trying to increase the amount of cold water to be produced, there is a problem that the size of the refrigerator is inevitably increased and the cost burden is large. Especially, the power generation system installed on the mobile body has a problem. Since space saving is required as described above, expansion of the installation space of the refrigerator is also a big problem.
 このように、上記のような方法だけでは、発電システムが置かれている環境によって出力回復の効果が左右されるという問題や、発電システム全体でのエネルギー効率の低下を抑えつつ、発電システムの省スペース化を実現した上で、ガスタービンユニットの出力の低下を抑えることが難しいという問題があった。 In this way, the above method alone can save power generation systems while suppressing the problem that the effect of output recovery depends on the environment in which the power generation system is located and the decrease in energy efficiency of the entire power generation system. There is a problem that it is difficult to suppress a decrease in the output of the gas turbine unit while realizing space.
 本発明は以上の実情に鑑みなされたものであり、燃焼手段に供給する空気を効率良く冷却することができ、ガスタービンユニットの出力の低下を抑えることができる冷却装置を備えた移動体の提供を、その目的とする。 The present invention has been made in view of the above circumstances, and provides a moving body provided with a cooling device capable of efficiently cooling the air supplied to the combustion means and suppressing a decrease in the output of the gas turbine unit. Is the purpose.
 上記目的を達成するための本発明に係る移動体の特徴構成は、液体燃料が気化した燃料ガス及び空気との混合気を燃焼手段で燃焼して燃焼ガスを発生させて、当該燃焼手段で発生した燃焼ガスによってガスタービンが回転駆動するガスタービンユニットと、前記ガスタービンの回転力を利用して発電する第一発電手段とを備えた発電システムに用いられ、前記燃焼手段に供給する空気の冷却に供される冷却装置、を備えた移動体であって、
 前記冷却装置は、
 前記液体燃料を気化するために利用した熱媒体を冷熱源として利用する第一冷却部、冷凍機からの熱媒体を冷熱源として利用する第二冷却部及び熱媒体としての海水を冷熱源として利用する第三冷却部のうち、少なくともいずれか二つを備える点にある。
The characteristic configuration of the moving body according to the present invention for achieving the above object is to generate a combustion gas by burning a mixture of fuel gas and air in which liquid fuel is vaporized by a combustion means, and generate the combustion gas by the combustion means. It is used in a power generation system including a gas turbine unit in which a gas turbine is rotationally driven by the generated combustion gas and a first power generation means for generating power by utilizing the rotational force of the gas turbine, and cooling of air supplied to the combustion means. It is a moving body equipped with a cooling device, which is used for
The cooling device
The first cooling unit that uses the heat medium used to vaporize the liquid fuel as a cold heat source, the second cooling unit that uses the heat medium from the refrigerator as a cold heat source, and seawater as a heat medium are used as cold heat sources. The point is that at least two of the third cooling units are provided.
 上記特徴構成によれば、液体燃料を気化するために利用した熱媒体を冷熱源とする第一冷却部、冷凍機からの熱媒体を冷熱源とする第二冷却部、及び熱媒体としての海水を冷熱源とする第三冷却部のうちの少なくとも2つの冷却部において、燃焼手段に供給する空気が冷却される。 According to the above characteristic configuration, a first cooling unit using a heat medium used for vaporizing liquid fuel as a cold heat source, a second cooling unit using a heat medium from a refrigerator as a cold heat source, and seawater as a heat medium. The air supplied to the combustion means is cooled in at least two cooling units of the third cooling unit using the above as a cooling heat source.
 例えば、従来のように、冷凍機からの冷水(冷熱源)がもつ冷熱だけを利用する場合、冷凍機からの冷水がもつ冷熱だけでは十分に空気を冷却できない場合も多いという問題があり、また、空気を十分に冷却できる冷水を製造しようとすれば、発電システム全体でのエネルギー効率が低下し、冷水の製造量を多くしようとすれば、冷凍機の大型化が避けられないという別の問題の発生が避けられなかった。しかし、上記特徴構成においては、少なくとも2つの冷却部において燃焼手段に供給する空気を冷却するようにしていることで、冷凍機からの冷熱源がもつ冷熱だけを利用するような場合と比較して、上記のような問題の発生を抑えつつ、燃焼手段に供給する空気を十分に冷却できるようになり、発電システムの出力回復の効果が得やすくなる。 For example, when using only the cold heat of the cold water (cold heat source) from the refrigerator as in the past, there is a problem that the air cannot be sufficiently cooled only by the cold heat of the cold water from the refrigerator. Another problem is that if you try to produce cold water that can cool the air sufficiently, the energy efficiency of the entire power generation system will decrease, and if you try to increase the amount of cold water produced, the size of the refrigerator will inevitably increase. Was inevitable. However, in the above-mentioned characteristic configuration, by cooling the air supplied to the combustion means in at least two cooling units, as compared with the case where only the cold heat of the cold heat source from the refrigerator is used. The air supplied to the combustion means can be sufficiently cooled while suppressing the occurrence of the above-mentioned problems, and the effect of recovering the output of the power generation system can be easily obtained.
 また、本発明は、上記のような冷却装置を備えた移動体であるため、例えば、冷却装置を備えていないコンバインドサイクル発電システムが設置されている場所に、当該移動体を移動させることで、このコンバインドサイクル発電システムに冷却装置を取り付けることができ、これにより、ガスタービンユニットの出力低下を抑えられるようになる。 Further, since the present invention is a moving body provided with the above-mentioned cooling device, for example, by moving the moving body to a place where a combined cycle power generation system without a cooling device is installed, the moving body can be moved. A cooling device can be attached to this combined cycle power generation system, which makes it possible to suppress a decrease in the output of the gas turbine unit.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記第一冷却部と前記第二冷却部とを備える点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit and the second cooling unit.
 上記特徴構成によれば、第一冷却部において、液体燃料を気化するために利用した熱媒体を冷熱源として、燃焼手段に供給する空気が冷却されるとともに、当該空気が、第二冷却部において、冷凍機からの熱媒体を冷熱源として冷却される。 According to the above characteristic configuration, in the first cooling unit, the air supplied to the combustion means is cooled by using the heat medium used for vaporizing the liquid fuel as a cooling heat source, and the air is supplied to the second cooling unit. , The heat medium from the refrigerator is used as a cooling heat source for cooling.
 液体燃料を利用して発電を行う発電システムにおいては、液体燃料を気化する際に当該液体燃料から冷熱を奪った熱媒体が必然的に生じるため、この液体燃料から冷熱を奪った熱媒体を燃焼手段に供給する空気を冷却するための冷熱源として使用することで、液体燃料がもつ冷熱を有効に活用することができる。
 また、上記のように、冷凍機からの冷熱源がもつ冷熱だけを利用するような場合と異なり、上記特徴構成においては、冷凍機からの冷熱源による冷却だけでなく、液体燃料がもつ冷熱を利用した冷却を併用していることで、冷凍機からの冷水が持つ冷熱による冷却だけで空気を冷却する必要がなくなる。したがって、燃焼手段に供給する空気を十分に冷却して、発電システムの出力回復の効果を得られるようにしても、発電システム全体でのエネルギー効率の低下を抑えられ、冷凍機の大型化も避けられるため、コスト面での負担の軽減や、発電システムの省スペース化を図ることができる。
In a power generation system that generates power using a liquid fuel, a heat medium that has taken cold heat from the liquid fuel is inevitably generated when the liquid fuel is vaporized. Therefore, the heat medium that has taken cold heat from the liquid fuel is burned. By using it as a cold heat source for cooling the air supplied to the means, the cold heat of the liquid fuel can be effectively utilized.
Further, unlike the case where only the cold heat of the cold heat source from the refrigerator is used as described above, in the above characteristic configuration, not only the cooling by the cold heat source from the refrigerator but also the cold heat of the liquid fuel is used. By using the same cooling together, it is not necessary to cool the air only by cooling with the cold heat of the cold water from the refrigerator. Therefore, even if the air supplied to the combustion means is sufficiently cooled to obtain the effect of recovering the output of the power generation system, the decrease in energy efficiency of the entire power generation system can be suppressed and the size of the refrigerator can be avoided. Therefore, it is possible to reduce the burden on the cost and save the space of the power generation system.
 このように、上記特徴構成を備えた移動体によれば、液体燃料がもつ冷熱を有効に活用して燃焼手段に供給する空気を冷却でき、また、発電システム全体でのエネルギー効率の低下を抑えるとともに、コスト面での負担の軽減や発電システムの省スペース化を図った上で、燃焼手段に供給する空気を冷却することができ、これにより、ガスタービンユニットの出力低下を抑えられるようになる。 As described above, according to the moving body having the above-mentioned characteristic configuration, the cold heat of the liquid fuel can be effectively utilized to cool the air supplied to the combustion means, and the decrease in energy efficiency of the entire power generation system can be suppressed. At the same time, it is possible to cool the air supplied to the combustion means while reducing the cost burden and space saving of the power generation system, which makes it possible to suppress a decrease in the output of the gas turbine unit. ..
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記燃焼手段に供給する空気が前記第二冷却部、前記第一冷却部の順に流通するように、前記第一及び第二冷却部が配置されている点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device is such that the air supplied to the combustion means flows in the order of the second cooling unit and the first cooling unit. The point is that the second cooling unit is arranged.
 第一冷却部において冷熱源として利用する熱媒体は、液体燃料を気化するために利用したものであり、相当の冷熱を得てその温度が極めて低温になっている。
 これに対して、第二冷却部において冷熱源として利用する熱媒体は、冷凍機で製造された冷水などであり、第一冷却部において利用する熱媒体と比較して、相対的に温度が高い傾向にある。
 したがって、上記特徴構成によれば、燃焼手段に供給する空気を、利用する熱媒体の温度が相対的に高い第二冷却部において冷却した後、利用する熱媒体の温度が相対的に低い第一冷却部において冷却するため、2つの冷却部で利用する各熱媒体がもつ冷熱を極力無駄にすることなく、空気を冷却することができる。
The heat medium used as a cold heat source in the first cooling unit is used for vaporizing the liquid fuel, and the temperature is extremely low by obtaining a considerable amount of cold heat.
On the other hand, the heat medium used as a cold heat source in the second cooling unit is cold water produced by a refrigerator, and the temperature is relatively higher than that of the heat medium used in the first cooling unit. There is a tendency.
Therefore, according to the above characteristic configuration, the air supplied to the combustion means is cooled in the second cooling unit where the temperature of the heat medium used is relatively high, and then the temperature of the heat medium used is relatively low. Since cooling is performed in the cooling unit, the air can be cooled without wasting the cold heat of each heat medium used in the two cooling units as much as possible.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記第一冷却部と前記第三冷却部とを備える点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit and the third cooling unit.
 上記特徴構成によれば、第一冷却部において、液体燃料を気化するために利用した熱媒体を冷却源として、燃焼手段に供給する空気が冷却されるとともに、当該空気が、第三冷却部において、熱媒体としての海水を冷熱源として冷却される。 According to the above characteristic configuration, in the first cooling unit, the air supplied to the combustion means is cooled by using the heat medium used for vaporizing the liquid fuel as a cooling source, and the air is supplied to the third cooling unit. , Seawater as a heat medium is cooled as a cold heat source.
 上記と同様に、第一冷却部においては、液体燃料を利用して発電を行うシステムで必然的に生じる冷熱を奪った熱媒体を冷熱源として使用することで、液体燃料がもつ冷熱を有効に活用できる。
 また、発電システムが発電時に消費する液体燃料を気化して得られる冷熱だけでは空気の温度を発電システムの出力低下を抑えられるような温度にまで下げることができない場合であっても、第三冷却部において、燃焼手段に供給する空気を海水のもつ冷熱でも冷却して温度を下げることができる。これにより、発電システムの出力低下を抑え易くなる。
 更に、この特徴構成においては、冷凍機を必要としないため、冷凍機の大型化という問題も発生せず、コスト面での負担の軽減や、発電システムの省スペース化を図ることもできる。
Similar to the above, in the first cooling section, the cold heat of the liquid fuel is effectively utilized by using a heat medium that has taken away the cold heat that is inevitably generated in the system that generates electricity using the liquid fuel as a cold heat source. It can be used.
In addition, even if the temperature of the air cannot be lowered to a temperature that can suppress the decrease in the output of the power generation system only by the cold heat obtained by vaporizing the liquid fuel consumed by the power generation system during power generation, the third cooling In the unit, the temperature can be lowered by cooling the air supplied to the combustion means with the cold heat of seawater. This makes it easier to suppress a decrease in the output of the power generation system.
Further, since the refrigerator is not required in this feature configuration, the problem of increasing the size of the refrigerator does not occur, the burden on the cost can be reduced, and the space of the power generation system can be saved.
 このように、上記特徴構成を備えた移動体であっても、液体燃料がもつ冷熱を有効に活用して燃焼手段に供給する空気を冷却でき、また、発電システム全体でのエネルギー効率の低下を抑えるとともに、コスト面での負担の軽減や発電システムの省スペース化を図った上で、燃焼手段に供給する空気を冷却でき、これにより、ガスタービンユニットの出力低下を抑えられるようになる。 In this way, even a moving body having the above-mentioned characteristic configuration can effectively utilize the cold heat of the liquid fuel to cool the air supplied to the combustion means, and reduce the energy efficiency of the entire power generation system. In addition to suppressing the cost burden, the space of the power generation system can be reduced, and the air supplied to the combustion means can be cooled, whereby the output decrease of the gas turbine unit can be suppressed.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記燃焼手段に供給する空気が前記第三冷却部、前記第一冷却部の順に流通するように、前記第一及び第三冷却部が配置されている点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device is such that the air supplied to the combustion means flows in the order of the third cooling unit and the first cooling unit. The point is that the third cooling unit is arranged.
 上記のように、第一冷却部において冷熱源として利用する熱媒体は、相当の冷熱を液体燃料から得ており、その温度が極めて低温になっている。
 これに対して、第三冷却部において冷熱源として利用する海水は、採取する深さにもよるが、その温度は第一冷却部において冷熱源として利用する熱媒体と比較して相対的に高い傾向にある。
 したがって、上記特徴構成によれば、燃料手段に供給する空気を、利用する熱媒体の温度が相対的に高い第三冷却部において冷却した後、利用する熱媒体の温度が相対的に低い第一冷却部において冷却するため、2つの冷却部で利用する各熱媒体がもつ冷熱を極力無駄にすることなく、空気を冷却できる。
As described above, the heat medium used as a cold heat source in the first cooling unit obtains a considerable amount of cold heat from the liquid fuel, and its temperature is extremely low.
On the other hand, the temperature of seawater used as a cold heat source in the third cooling section is relatively higher than that of the heat medium used as a cold heat source in the first cooling section, although it depends on the sampling depth. There is a tendency.
Therefore, according to the above characteristic configuration, the air supplied to the fuel means is cooled in the third cooling unit where the temperature of the heat medium used is relatively high, and then the temperature of the heat medium used is relatively low. Since cooling is performed in the cooling unit, the air can be cooled without wasting the cold heat of each heat medium used in the two cooling units as much as possible.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記第二冷却部と前記第三冷却部とを備える点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the second cooling unit and the third cooling unit.
 上記特徴構成によれば、第二冷却部において、冷凍機からの熱媒体を冷熱源として、燃焼手段に供給する空気が冷却されるとともに、当該空気が、第三冷却部において、熱媒体としての海水を冷熱源として冷却される。 According to the above characteristic configuration, the air supplied to the combustion means is cooled by using the heat medium from the refrigerator as a cooling heat source in the second cooling unit, and the air is used as a heat medium in the third cooling unit. It is cooled using seawater as a cold heat source.
 上記のように、冷凍機からの冷熱源がもつ冷熱だけを利用するような場合と異なり、上記特徴構成においては、冷凍機からの冷熱源による冷却だけでなく、海水がもつ冷熱を利用した冷却を併用していることで、冷凍機からの冷水が持つ冷熱による冷却だけで空気を冷却する必要がなくなる。したがって、燃焼手段に供給する空気を十分に冷却して、発電システムの出力回復の効果を得られるようにしても、発電システム全体でのエネルギー効率の低下を抑えられ、冷凍機の大型化も避けられるため、コスト面での負担の軽減や、発電システムの省スペース化を図ることができる。 Unlike the case where only the cold heat of the cold heat source from the refrigerator is used as described above, in the above characteristic configuration, not only the cooling by the cold heat source from the refrigerator but also the cooling using the cold heat of seawater is used. By using the above together, it is not necessary to cool the air only by cooling with the cold heat of the cold water from the refrigerator. Therefore, even if the air supplied to the combustion means is sufficiently cooled to obtain the effect of recovering the output of the power generation system, the decrease in energy efficiency of the entire power generation system can be suppressed and the size of the refrigerator can be avoided. Therefore, it is possible to reduce the burden on the cost and save the space of the power generation system.
 このように、上記特徴構成を備えた移動体によれば、発電システム全体でのエネルギー効率の低下を抑えるとともに、コスト面での負担の軽減や発電システムの省スペース化を図った上で、燃焼手段に供給する空気を冷却でき、これにより、ガスタービンユニットの出力低下を抑えられるようになる。 As described above, according to the moving body having the above-mentioned characteristic configuration, the combustion is performed after suppressing the decrease in the energy efficiency of the entire power generation system, reducing the burden on the cost, and saving the space of the power generation system. The air supplied to the means can be cooled, which can suppress a decrease in the output of the gas turbine unit.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記燃焼手段に供給する空気が前記第三冷却部、前記第二冷却部の順に流通するように、前記第二及び第三冷却部が配置されている点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device has the second and second cooling devices so that the air supplied to the combustion means flows in the order of the third cooling section and the second cooling section. The point is that the third cooling unit is arranged.
 第三冷却部において冷熱源として利用する海水の温度は、採取する深さにもよるが、第二冷却部において冷熱源として利用する冷凍機からの冷水と比較して相対的に高い傾向にある。
 したがって、上記特徴構成によれば、燃焼手段に供給する空気を、利用する熱媒体の温度が相対的に高い第三冷却部において冷却した後、利用する熱媒体の温度が相対的に低い第二冷却部において冷却するため、2つの冷却部で利用する各熱媒体がもつ冷熱を極力無駄にすることなく、空気を冷却できる。
The temperature of the seawater used as the cold heat source in the third cooling section tends to be relatively higher than that of the cold water from the refrigerator used as the cold heat source in the second cooling section, although it depends on the sampling depth. ..
Therefore, according to the above characteristic configuration, the air supplied to the combustion means is cooled in the third cooling unit where the temperature of the heat medium used is relatively high, and then the temperature of the heat medium used is relatively low. Since cooling is performed in the cooling unit, the air can be cooled without wasting the cold heat of each heat medium used in the two cooling units as much as possible.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記第一冷却部と前記第二冷却部と前記第三冷却部とを備える点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit, the second cooling unit, and the third cooling unit.
 上記特徴構成によれば、液体燃料を気化するために利用した熱媒体を冷熱源として利用する第一冷却部、及び冷凍機からの熱媒体を冷熱源として利用する第二冷却部、及び海水を冷熱源として利用する第三冷却部において、燃焼手段に供給する空気が冷却される。 According to the above characteristic configuration, the first cooling unit that uses the heat medium used to vaporize the liquid fuel as a cold heat source, the second cooling unit that uses the heat medium from the refrigerator as a cold heat source, and seawater. The air supplied to the combustion means is cooled in the third cooling unit used as a cold heat source.
 このように、第一、第二及び第三冷却部において燃焼手段に供給する空気を冷却するようにしていることで、例えば、発電システムが発電時に消費する液体燃料を気化して得られる冷熱が不足しているなどの理由で、3つの冷却部のうち、いずれか2つの冷却部において利用する各熱媒体の持つ冷熱だけでは燃焼手段に供給する空気の温度を発電システムの出力低下を抑えられるような温度にまで下げることができないような場合であっても、3つの冷却部を設けることによって、これら3つの冷却部において利用する各熱媒体のもつ冷熱によって燃焼手段に供給する空気を冷却して温度を下げることができる。これにより、発電システムの出力低下をより抑えられるようになる。 By cooling the air supplied to the combustion means in the first, second, and third cooling units in this way, for example, the cold heat obtained by vaporizing the liquid fuel consumed by the power generation system during power generation can be obtained. The temperature of the air supplied to the combustion means can be suppressed from the decrease in the output of the power generation system only by the cold heat of each heat medium used in any two of the three cooling units due to insufficient reasons. Even in cases where the temperature cannot be lowered to such a temperature, by providing three cooling units, the air supplied to the combustion means is cooled by the cold heat of each heat medium used in these three cooling units. The temperature can be lowered. As a result, the decrease in the output of the power generation system can be further suppressed.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記燃焼手段に供給する空気が前記第三冷却部、前記第二冷却部、前記第一冷却部の順に流通するように、前記第一、第二及び第三冷却部が配置されている点にある。 Further, a further characteristic configuration of the moving body according to the present invention is that in the cooling device, the air supplied to the combustion means circulates in the order of the third cooling unit, the second cooling unit, and the first cooling unit. The point is that the first, second and third cooling units are arranged.
 上記のように、第三冷却部において冷熱源として利用する海水は、採取する深さにもよるが、その温度は第一冷却部及び第二冷却部において冷熱源として利用する熱媒体と比較して相対的に温度が高い傾向にあり、また、第二冷却部において冷熱源として利用する熱媒体は、第一冷却部において利用する熱媒体と比較して、相対的に温度が高い傾向にある。
 したがって、上記特徴構成によれば、燃焼手段に供給する空気を、利用する熱媒体の相対的な温度が高い冷却部の順に冷却する、即ち、第三冷却部において冷却した後、第二冷却部において冷却し、その後、第一冷却部において冷却するため、3つの冷却部で利用する各熱媒体がもつ冷熱を極力無駄にすることなく、空気を冷却することができる。
As described above, the temperature of seawater used as a cold heat source in the third cooling section is higher than that of the heat medium used as a cold heat source in the first cooling section and the second cooling section, although it depends on the sampling depth. The temperature tends to be relatively high, and the heat medium used as a cold heat source in the second cooling section tends to have a relatively high temperature as compared with the heat medium used in the first cooling section. ..
Therefore, according to the above-mentioned characteristic configuration, the air supplied to the combustion means is cooled in the order of the cooling unit having the highest relative temperature of the heat medium to be used, that is, after cooling in the third cooling unit, the second cooling unit. Since the cooling is performed in the first cooling unit and then cooled in the first cooling unit, the air can be cooled without wasting the cooling heat of each of the heat media used in the three cooling units as much as possible.
 また、本発明に係る移動体の更なる特徴構成は、前記液体燃料が貯蔵された燃料タンクと、
 前記第一冷却部で利用する前記熱媒体を温熱源として利用して前記液体燃料を気化する気化部と、
 前記ガスタービンユニットと、
 前記第一発電手段と、を備える点にある。
Further, a further characteristic configuration of the moving body according to the present invention is a fuel tank in which the liquid fuel is stored and a fuel tank.
A vaporization unit that vaporizes the liquid fuel by using the heat medium used in the first cooling unit as a heat source.
With the gas turbine unit
The point is that the first power generation means is provided.
 上記特徴構成によれば、移動体は、冷却装置と、燃料タンクと、気化部と、ガスタービンユニットと、第一発電手段とを備えた移動体となり、この移動体においては、ガスタービンユニットにおけるガスタービンの回転力によって、第一発電手段が発電する。このような構成を備えた移動体は、上記冷却装置を備えていることにより、発電システム全体でのエネルギー効率の低下を抑えるとともに、コスト面での負担の軽減や発電システムの省スペース化を図った上で、燃焼手段に供給する空気を冷却することができ、これにより、ガスタービンユニットの出力低下を抑えることができ、効率良く発電を行うことができる。
 また、本発明に係る移動体においては、移動体が移動又は停止している地域が熱帯地方であっても、燃焼手段に供給する空気の冷却を上記冷却装置によって行い、従来のようにミストを利用して行うようにしていないため、発電システムの出力回復の効果を得ることができる。
According to the above characteristic configuration, the moving body is a moving body including a cooling device, a fuel tank, a vaporization unit, a gas turbine unit, and a first power generation means. In this moving body, the gas turbine unit The first power generation means generates electricity by the rotational force of the gas turbine. By providing the above-mentioned cooling device, the moving body having such a configuration suppresses the decrease in energy efficiency of the entire power generation system, reduces the burden on the cost, and saves the space of the power generation system. On top of that, the air supplied to the combustion means can be cooled, whereby a decrease in the output of the gas turbine unit can be suppressed, and power generation can be efficiently performed.
Further, in the moving body according to the present invention, even if the area where the moving body is moving or stopped is a tropical region, the air supplied to the combustion means is cooled by the above cooling device, and mist is generated as in the conventional case. Since it is not used, the effect of recovering the output of the power generation system can be obtained.
 また、本発明に係る移動体の更なる特徴構成は、前記ガスタービンユニットからの排ガスによって水を気化する排熱回収ボイラーユニットと、
 前記排熱回収ボイラーユニットで気化された蒸気により蒸気タービンが回転駆動する蒸気タービンユニットと、
 前記蒸気タービンの回転力を利用して発電する第二発電手段と、を備え、
 船舶である点にある。
Further, a further characteristic configuration of the moving body according to the present invention is an exhaust heat recovery boiler unit that vaporizes water by exhaust gas from the gas turbine unit.
A steam turbine unit in which the steam turbine is rotationally driven by steam vaporized in the exhaust heat recovery boiler unit, and
A second power generation means for generating power by utilizing the rotational force of the steam turbine is provided.
It is a ship.
 上記特徴構成によれば、移動体は、排熱回収ボイラーユニットと、上記タービンユニットと、第二発電手段とを更に備えた船舶(言い換えれば、コンバインドサイクル発電システムを搭載した船舶)となり、この移動体たる船舶においては、ガスタービンユニットからの排ガスのもつ温熱を利用して、蒸気タービンを回転駆動させ、この蒸気タービンの回転力によって第二発電手段でも発電する。したがって、ガスタービンユニットからの排ガスのもつ温熱を有効利用して効率良く発電を行うことができる。
 また、本発明に係る移動体においては、移動体たる船舶が航行又は停泊している地域が熱帯地方である場合が多くても、燃焼手段に供給する空気の冷却を上記冷却装置によって行い、従来のようにミストを利用して行うようにしていないため、発電システムの出力回復の効果を得ることができる。
According to the above-mentioned characteristic configuration, the moving body becomes a ship further provided with the exhaust heat recovery boiler unit, the above-mentioned turbine unit, and the second power generation means (in other words, a ship equipped with a combined cycle power generation system), and this movement In the body ship, the steam turbine is rotationally driven by utilizing the heat of the exhaust gas from the gas turbine unit, and the rotational force of the steam turbine also generates electricity by the second power generation means. Therefore, it is possible to efficiently generate electricity by effectively utilizing the heat of the exhaust gas from the gas turbine unit.
Further, in the moving body according to the present invention, even if the area where the moving ship is navigating or anchoring is often in the tropics, the air supplied to the combustion means is cooled by the above cooling device. Since the mist is not used as in the above, the effect of recovering the output of the power generation system can be obtained.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、熱媒体としての海水を冷熱源として利用する第三冷却部を備え、
 前記蒸気タービンユニットは、前記蒸気タービンの回転駆動に利用した蒸気を復水として回収する復水器と、
 前記第三冷却部において利用する前記海水を冷熱源として利用し、前記復水器の内部を冷却する復水冷却部とを備える点にある。
Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device includes a third cooling unit that uses seawater as a heat medium as a cold heat source.
The steam turbine unit includes a condenser that recovers steam used for rotationally driving the steam turbine as condensate.
The point is that the seawater used in the third cooling unit is used as a cold heat source, and a condensate cooling unit for cooling the inside of the condenser is provided.
 上記特徴構成によれば、第三冷却部において利用する海水を冷熱源として利用して、復水冷却部において復水器の内部を冷却して、蒸気タービンから排出された蒸気を復水器の内部で冷却して復水として回収できる。
 したがって、第三冷却部及び復水冷却部に海水を供給したり、これらの冷却部から海水を回収したりするための海水用配管の一部を共用化できるため、配管の配置をシンプル化したり、配管内に海水を流通させるために必要なポンプの台数を削減したりできる。
According to the above characteristic configuration, the seawater used in the third cooling unit is used as a cooling heat source, the inside of the condenser is cooled in the condensate cooling unit, and the steam discharged from the steam turbine is used in the condenser. It can be cooled inside and recovered as condensate.
Therefore, it is possible to share a part of the seawater pipes for supplying seawater to the third cooling part and the condensate cooling part and recovering seawater from these cooling parts, so that the arrangement of the pipes can be simplified. , The number of pumps required to distribute seawater in the pipe can be reduced.
 また、本発明に係る移動体の更なる特徴構成は、前記第三冷却部に供給される前記海水が流通する第一海水流路と、
 前記第三冷却部から前記復水冷却部へと供給される前記海水が流通する第二海水流路と、
 前記第一海水流路と前記第二海水流路とを繋ぐバイパス流路と、
 前記バイパス流路を流通する前記海水の量を調節する調節手段とを備える点にある。
Further, a further characteristic configuration of the moving body according to the present invention is a first seawater flow path through which the seawater supplied to the third cooling unit flows.
A second seawater flow path through which the seawater supplied from the third cooling unit to the condensate cooling unit flows,
A bypass flow path connecting the first seawater flow path and the second seawater flow path,
The point is that it is provided with an adjusting means for adjusting the amount of the seawater flowing through the bypass flow path.
 第三冷却部へ供給する海水と燃焼手段に供給するために吸入される外気との間の温度差が小さい場合には、第三冷却部へ供給する海水の量が少なくても空気を冷却する効果に差が現れ難いが、このような場合にまで常にポンプで汲み上げた海水の全量を第三冷却部を経由して復水冷却部へと流通させることは、ポンプ出力の不必要な増加に繋がる。また、海水の温度の方が外気の温度よりも高いような場合には、第三冷却部へ海水を供給することによって空気を加熱することにもなりかねない。
 上記特徴構成によれば、第一海水流路と第二海水流路とを繋ぐバイパス流路を設け、このバイパス流路に流通する海水の量を調節手段によって調節することで、第三冷却部を経由して復水冷却部へと流れる海水の量と、第三冷却部を経由することなくバイパス流路を通って復水冷却部へと流れる海水の量とを調節することができる。
 したがって、第三冷却部が必要とする海水の量に応じて、バイパス流路に流通する海水の量を調節することにより、ポンプ出力の不必要な増加を抑えることができる。また、外気の温度よりも海水の温度が高いような場合に、ポンプで汲み上げた海水の全量をバイパス流路に流通するように調節し、第三冷却部へ海水を供給しないようにすることで、空気を加熱してしまうような事態を防止することもできる。
When the temperature difference between the seawater supplied to the third cooling unit and the outside air sucked in to supply the combustion means is small, the air is cooled even if the amount of seawater supplied to the third cooling unit is small. It is difficult to make a difference in the effect, but even in such a case, it is an unnecessary increase in pump output to always distribute the entire amount of seawater pumped by the pump to the condensate cooling section via the third cooling section. Connect. Further, when the temperature of the seawater is higher than the temperature of the outside air, the air may be heated by supplying the seawater to the third cooling unit.
According to the above characteristic configuration, a bypass flow path connecting the first seawater flow path and the second seawater flow path is provided, and the amount of seawater flowing through the bypass flow path is adjusted by the adjusting means to adjust the third cooling unit. The amount of seawater flowing to the condensate cooling section via the above and the amount of seawater flowing to the condensate cooling section through the bypass flow path without passing through the third cooling section can be adjusted.
Therefore, by adjusting the amount of seawater flowing through the bypass flow path according to the amount of seawater required by the third cooling unit, it is possible to suppress an unnecessary increase in pump output. In addition, when the temperature of seawater is higher than the temperature of the outside air, the total amount of seawater pumped up by the pump is adjusted so that it flows through the bypass flow path so that seawater is not supplied to the third cooling unit. , It is also possible to prevent the situation where the air is heated.
 また、本発明に係る移動体の更なる特徴構成は、電力需要と前記冷却装置の運転状態とに基づいて、前記ガスタービンユニットの運転台数を決定する点にある。 Further, a further characteristic configuration of the moving body according to the present invention is to determine the number of operating gas turbine units based on the power demand and the operating state of the cooling device.
 上記特徴構成によれば、ガスタービンユニットの運転台数を不必要に増やすことなく、電力需要に見合った台数のガスタービンユニットを稼働させることができる。 According to the above feature configuration, it is possible to operate the number of gas turbine units that meet the power demand without unnecessarily increasing the number of operating gas turbine units.
 尚、冷却装置の運転状態とは、第一冷却部、第二冷却部、第三冷却部それぞれにおける燃焼手段に供給する空気の冷却度合によって変わるものであり、各冷却部による空気の冷却度合を変えることで、冷却装置の運転状態を適宜変更することができる。また、各冷却部による空気の冷却度合は、冷却部に供給する熱媒体の温度を変えたり、冷却部への熱媒体の供給を開始、停止したりすることで変更できる。
 また、本願における電力需要とは、移動体が必要とする電力や、移動体から電力が供給される一又は複数の設備が必要とする電力の他、蓄電などを目的として発電システムにより発電しようとする電力などを含む概念である。
The operating state of the cooling device changes depending on the degree of cooling of the air supplied to the combustion means in each of the first cooling part, the second cooling part, and the third cooling part, and the degree of cooling of the air by each cooling part is determined. By changing it, the operating state of the cooling device can be changed as appropriate. Further, the degree of cooling of air by each cooling unit can be changed by changing the temperature of the heat medium supplied to the cooling unit or by starting or stopping the supply of the heat medium to the cooling unit.
Further, the electric power demand in the present application means the electric power required by the mobile body, the electric power required by one or more facilities to which the electric power is supplied from the mobile body, and the power generation system for the purpose of storing electricity. It is a concept that includes electric power to be generated.
 更に、本発明に係る移動体の更なる特徴構成は、電力需要と前記ガスタービンユニットの出力特性とに基づいて、前記冷却装置の運転状態を決定する点にある。 Further, a further characteristic configuration of the moving body according to the present invention is to determine the operating state of the cooling device based on the electric power demand and the output characteristics of the gas turbine unit.
 上記特徴構成によれば、電力需要に見合った適当な運転状態で冷却装置を稼働させることができ、冷却装置に必要以上に負荷が掛かったような状態となるのを防止できる。 According to the above-mentioned feature configuration, the cooling device can be operated in an appropriate operating state that meets the power demand, and it is possible to prevent the cooling device from being loaded more than necessary.
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記第一冷却部と、前記第二冷却部及び前記第三冷却部のうちの少なくともいずれか一方とを備え、
 前記第一冷却部により前記燃焼手段に供給する空気を冷却した状態で、前記電力需要と前記ガスタービンユニットの出力特性とに基づいて、前記第二冷却部及び前記第三冷却部の少なくとも一方による前記燃焼手段に供給する空気の冷却度合を決定することで、前記冷却装置の運転状態を決定する点にある。
Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit and at least one of the second cooling unit and the third cooling unit.
With the air supplied to the combustion means cooled by the first cooling unit, at least one of the second cooling unit and the third cooling unit is used based on the power demand and the output characteristics of the gas turbine unit. The point is that the operating state of the cooling device is determined by determining the degree of cooling of the air supplied to the combustion means.
 上記特徴構成によれば、第一冷却部によって空気を冷却する状態で、電力需要とガスタービンユニットの出力特性とに基づいて、第二冷却部及び第三冷却部のうちの少なくとも一方による空気の冷却度合を決定し、冷却装置の運転状態を決定できる。したがって、このようにして決定した冷却装置の運転状態は、液体燃料がもつ冷熱を有効に活用した運転状態となる。 According to the above characteristic configuration, in a state where the air is cooled by the first cooling unit, the air by at least one of the second cooling unit and the third cooling unit is based on the power demand and the output characteristics of the gas turbine unit. The degree of cooling can be determined, and the operating state of the cooling device can be determined. Therefore, the operating state of the cooling device determined in this way is an operating state in which the cold heat of the liquid fuel is effectively utilized.
 尚、上記特徴構成には、燃焼手段に供給する空気を第一冷却部によって冷却する状態で、電力需要とガスタービンユニットの出力特性とに基づいて、第二冷却部及び第三冷却部による燃焼手段に供給する空気の冷却度合を決定することで、冷却装置の運転状態を決定すること、燃焼手段に供給する空気を第一冷却部によって冷却する状態で、電力需要とガスタービンユニットの出力特性とに基づいて、第二冷却部による燃焼手段に供給する空気の冷却度合を決定することで、冷却装置の運転状態を決定すること、並びに、燃焼手段に供給する空気を第一冷却部によって冷却する状態で、電力需要とガスタービンユニットの出力特性とに基づいて、第三冷却部による燃焼手段に供給する空気の冷却度合を決定することで、冷却装置の運転状態を決定することが含まれる。 In the above characteristic configuration, the air supplied to the combustion means is cooled by the first cooling unit, and the combustion is performed by the second cooling unit and the third cooling unit based on the power demand and the output characteristics of the gas turbine unit. By determining the degree of cooling of the air supplied to the means, the operating state of the cooling device is determined, and with the air supplied to the combustion means cooled by the first cooling unit, the power demand and the output characteristics of the gas turbine unit. By determining the degree of cooling of the air supplied to the combustion means by the second cooling unit based on the above, the operating state of the cooling device is determined, and the air supplied to the combustion means is cooled by the first cooling unit. This includes determining the operating state of the cooling device by determining the degree of cooling of the air supplied to the combustion means by the third cooling unit based on the power demand and the output characteristics of the gas turbine unit. ..
 また、本発明に係る移動体の更なる特徴構成は、前記冷却装置は、前記第一冷却部、前記第二冷却部及び前記第三冷却部を備え、
 前記燃焼手段に供給する空気を前記第一冷却部及び前記第三冷却部によって冷却する状態で、前記電力需要と前記ガスタービンユニットの出力特性とに基づいて、前記第二冷却部による前記燃焼手段に供給する空気の冷却度合を決定することで、前記冷却装置の運転状態を決定する点にある。
Further, a further characteristic configuration of the moving body according to the present invention is that the cooling device includes the first cooling unit, the second cooling unit, and the third cooling unit.
With the air supplied to the combustion means cooled by the first cooling unit and the third cooling unit, the combustion means by the second cooling unit is based on the power demand and the output characteristics of the gas turbine unit. By determining the degree of cooling of the air supplied to the cooling device, the operating state of the cooling device is determined.
 上記特徴構成によれば、第一冷却部及び第三冷却部によって空気を冷却する状態で、電力需要とガスタービンの出力特性とに基づいて、第二冷却部による空気の冷却度合を決定し、冷却装置の運転状態を決定できる。したがって、このようにして決定した冷却装置の運転状態は、液体燃料がもつ冷熱を有効に活用した運転状態となる。 According to the above characteristic configuration, in a state where the air is cooled by the first cooling unit and the third cooling unit, the degree of cooling of the air by the second cooling unit is determined based on the power demand and the output characteristics of the gas turbine. The operating state of the cooling device can be determined. Therefore, the operating state of the cooling device determined in this way is an operating state in which the cold heat of the liquid fuel is effectively utilized.
 また、本発明に係る移動体の更なる特徴構成は、大気の状態及び前記冷却装置の状況のうちの少なくともいずれか一方に応じて、前記冷却装置の運転状態を決定し、前記第一冷却部、前記第二冷却部及び前記第三冷却部のうちの少なくともいずれかによる前記燃焼手段に供給する空気の冷却度合を決定する点にある。 Further, a further characteristic configuration of the moving body according to the present invention determines the operating state of the cooling device according to at least one of the air condition and the cooling device condition, and the first cooling unit. The point is to determine the degree of cooling of the air supplied to the combustion means by at least one of the second cooling unit and the third cooling unit.
 上記特徴構成によれば、大気の状態に応じて、冷却装置の運転状態を決定した上で、各冷却部による空気の冷却度合を決定することができる。したがって、例えば、第1~第3冷却部のうちのいずれか1つの冷却部による空気の冷却を行わない状態を冷却装置の運転状態と決定した上で、他の冷却部による空気の冷却度合を決定して、冷却装置を運転することができる。尚、大気の状態とは、大気温度や気圧、湿度等であり、冷却装置の状況とは、故障の有無や使用する海水の温度、LNGの使用量等である。 According to the above characteristic configuration, it is possible to determine the degree of cooling of air by each cooling unit after determining the operating state of the cooling device according to the atmospheric condition. Therefore, for example, after determining the state in which the air is not cooled by any one of the first to third cooling units as the operating state of the cooling device, the degree of cooling of the air by the other cooling units is determined. You can decide and operate the cooling system. The atmospheric condition is the atmospheric temperature, atmospheric pressure, humidity, etc., and the condition of the cooling device is the presence or absence of a failure, the temperature of the seawater used, the amount of LNG used, and the like.
第1実施形態に係る、船舶に搭載された発電システムの概略構成を示す図である。It is a figure which shows the schematic structure of the power generation system mounted on a ship which concerns on 1st Embodiment. 冷凍機の概略構成を示す図である。It is a figure which shows the schematic structure of the refrigerator. 第2実施形態に係る、船舶に搭載された発電システムの概略構成を示す図である。It is a figure which shows the schematic structure of the power generation system mounted on a ship which concerns on 2nd Embodiment. ガスタービンユニットの出力特性を示すグラフである。It is a graph which shows the output characteristic of a gas turbine unit. ガスタービンユニットの効率特性を示すグラフである。It is a graph which shows the efficiency characteristic of a gas turbine unit.
〔第1実施形態〕
 以下、図面を参照して本発明の第1実施形態に係る移動体について説明する。尚、本実施形態では、移動体が船舶である場合を例示して説明する。
[First Embodiment]
Hereinafter, the moving body according to the first embodiment of the present invention will be described with reference to the drawings. In this embodiment, a case where the moving body is a ship will be described as an example.
 図1は、船舶(LNG船)に搭載された発電システムEの概略構成を示す図である。同図に示すように、発電システムEは、液体燃料としての液化天然ガス(LNG)が貯蔵された燃料タンク1と、熱媒体としての水を利用してLNGを気化して燃料ガスとする気化器2(気化部)と、燃料ガス及び空気との混合気を燃焼器6(燃焼手段)で燃焼して燃焼ガスを発生させて、この燃焼器6で発生した燃焼ガスによってガスタービン7が回転駆動するガスタービンユニットGと、冷熱源としての水を製造する冷凍機10と、燃焼器6に供給する空気を冷却する冷却装置20と、ガスタービンユニットGから排出された排ガスの温熱を利用して水を気化して蒸気を作り出す排熱回収ボイラーユニット25と、ガスタービンユニットGからの排ガスによって気化された蒸気により蒸気タービン30が回転駆動する蒸気タービンユニットSと、ガスタービン7の回転力を利用して発電する第一発電機35(第一発電手段)と、蒸気タービン30の回転力を利用して発電する第二発電機36(第二発電手段)とを備えている。 FIG. 1 is a diagram showing a schematic configuration of a power generation system E mounted on a ship (LNG carrier). As shown in the figure, the power generation system E uses a fuel tank 1 in which liquefied natural gas (LNG) as a liquid fuel is stored and water as a heat medium to vaporize the LNG into a fuel gas. A mixture of the vessel 2 (vaporizer) and fuel gas and air is burned by the combustor 6 (combustion means) to generate combustion gas, and the combustion gas generated by the combustor 6 rotates the gas turbine 7. Utilizing the gas turbine unit G to be driven, the refrigerating machine 10 for producing water as a cold heat source, the cooling device 20 for cooling the air supplied to the combustor 6, and the heat of the exhaust gas discharged from the gas turbine unit G. The exhaust heat recovery boiler unit 25 that vaporizes water to generate steam, the steam turbine unit S in which the steam turbine 30 is rotationally driven by the steam vaporized by the exhaust gas from the gas turbine unit G, and the rotational force of the gas turbine 7. It includes a first generator 35 (first power generation means) that uses it to generate electricity, and a second generator 36 (second power generation means) that uses the rotational force of the steam turbine 30 to generate power.
 燃料タンク1には、一端がガスタービンユニットGにおける燃焼器6に接続された燃料供給路L1の他端が接続されており、この燃料供給路L1には、気化器2が配設されている。また、気化器2は、温熱源としての水が流通する気化用媒体供給路L2とLNGから冷熱を得た水が流通する第一冷却用媒体供給路L3とが接続された熱交換器であり、燃料タンク1内から供給されたLNGは、気化器2において気化用媒体供給路L2を通して供給される水の持つ温熱によって加温されて気化し、燃料ガスとなって燃焼器6に供給される。 The fuel tank 1 is connected to the other end of the fuel supply path L1 whose one end is connected to the combustor 6 in the gas turbine unit G, and the vaporizer 2 is arranged in the fuel supply path L1. .. Further, the vaporizer 2 is a heat exchanger in which a vaporization medium supply path L2 through which water as a heat source flows and a first cooling medium supply path L3 through which water obtained with cold heat from LNG flows are connected. The LNG supplied from the inside of the fuel tank 1 is heated and vaporized by the heat of the water supplied through the vaporization medium supply path L2 in the vaporizer 2, and is supplied to the combustor 6 as a fuel gas. ..
 ガスタービンユニットGは、コンプレッサ5と、燃焼器6と、ガスタービン7とを有している。コンプレッサ5は、ガスタービン7により回転駆動され、後述する冷却装置20で冷却された空気が第一空気供給路L10を通して供給され、この供給された空気を圧縮して燃焼器6へ送出するように構成されている。また、燃焼器6は、燃料供給路L1を通して供給される燃料ガスと、第二空気供給路L11を通してコンプレッサ5から供給される圧縮された空気とを混合した混合気を燃焼させて、発生した燃焼ガスを燃焼ガス供給路L12を通してガスタービン7に送出する。ガスタービン7は、燃焼器6から送出された燃焼ガスにより回転駆動され、回転力がコンプレッサ5及び第一発電機35に伝達される。また、ガスタービン7の回転駆動に供された燃焼ガスは、排ガスとして後述する排熱回収ボイラーユニット25に排ガス供給路L13を通して送出される。 The gas turbine unit G has a compressor 5, a combustor 6, and a gas turbine 7. The compressor 5 is rotationally driven by the gas turbine 7, and the air cooled by the cooling device 20 described later is supplied through the first air supply path L10, and the supplied air is compressed and sent out to the combustor 6. It is configured. Further, the combustor 6 burns a mixture of fuel gas supplied through the fuel supply path L1 and compressed air supplied from the compressor 5 through the second air supply path L11 to generate combustion. The gas is sent to the gas turbine 7 through the combustion gas supply path L12. The gas turbine 7 is rotationally driven by the combustion gas sent from the combustor 6, and the rotational force is transmitted to the compressor 5 and the first generator 35. Further, the combustion gas used to drive the rotation of the gas turbine 7 is sent out as exhaust gas to the exhaust heat recovery boiler unit 25, which will be described later, through the exhaust gas supply path L13.
 本実施形態における冷凍機10は、所謂吸収式冷凍機であって、図2に示すように、蒸発器11、吸収器13、再生器15及び凝縮器17を備えている。 The refrigerator 10 in the present embodiment is a so-called absorption chiller, and as shown in FIG. 2, includes an evaporator 11, a absorber 13, a regenerator 15 and a condenser 17.
 蒸発器11は、その内部に、後述する冷却装置20の第二冷却部22に冷熱源として供給する水が流通する第二冷却用媒体供給路L4と、この第二冷却用媒体供給路L4に連結され、第二冷却部22において冷熱が奪われた水が流通する冷却用媒体回収路L5とが配置されるとともに、当該蒸発器11内に貯留された水をポンプ(図示せず)により汲み上げて蒸発器11内に噴霧する第一噴霧手段12が配設されている。また、蒸発器11は、吸収器13と通路を介して連通した状態となっており、これら蒸発器11及び吸収器13内が真空ポンプ(図示せず)により減圧されている。この蒸発器11においては、第一噴霧手段12により噴霧された水を減圧下において約5℃程度で低温蒸発させることで、冷却用媒体回収路L5を流通する水を冷却し、これにより、第二冷却部22において冷熱源として利用される冷熱をもった水が製造される。尚、低温蒸発した水(つまり、水蒸気)は通路を通して吸収器13に移動する。 The evaporator 11 is provided inside the second cooling medium supply path L4 through which water supplied as a cooling heat source to the second cooling section 22 of the cooling device 20 described later flows, and the second cooling medium supply path L4. A cooling medium recovery path L5 through which water that has been connected and has been deprived of cold heat flows is arranged in the second cooling unit 22, and water stored in the evaporator 11 is pumped up by a pump (not shown). A first spraying means 12 for spraying is provided in the evaporator 11. Further, the evaporator 11 is in a state of communicating with the absorber 13 via a passage, and the inside of the evaporator 11 and the absorber 13 is depressurized by a vacuum pump (not shown). In the evaporator 11, the water sprayed by the first spraying means 12 is evaporated at a low temperature of about 5 ° C. under reduced pressure to cool the water flowing through the cooling medium recovery path L5, thereby cooling the water. (Ii) Water having cold heat used as a cold heat source is produced in the cooling unit 22. The water evaporated at low temperature (that is, water vapor) moves to the absorber 13 through the passage.
 吸収器13は、その内部に、吸収液(例えば、臭化リチウム水溶液など)が貯留されるとともに、後述する再生器15内で加熱された高濃度の吸収液を当該吸収器13内に噴霧する第二噴霧手段14が配設されている。この吸収器13においては、第二噴霧手段14により噴霧された高濃度の吸収液を冷媒によって冷却するとともに、蒸発器11で発生した水蒸気を冷却された吸収液によって吸収する。 The absorber 13 stores an absorbing liquid (for example, an aqueous solution of lithium bromide) inside the absorber 13 and sprays a high-concentration absorbing liquid heated in the regenerator 15 described later into the absorber 13. The second spraying means 14 is arranged. In the absorber 13, the high-concentration absorption liquid sprayed by the second spraying means 14 is cooled by the refrigerant, and the water vapor generated in the evaporator 11 is absorbed by the cooled absorption liquid.
 再生器15は、吸収器13内に貯留された吸収液がポンプ(図示せず)により汲み上げられて供給されるようになっており、供給された吸収液が加熱手段16によって加熱されるようになっている。尚、加熱手段16は、吸収液を加熱できれば特に限定されるものではなく、例えば、燃料ガスの燃焼熱や電気ヒータの熱などを利用するものを例示できる。この再生器15においては、吸収器13から供給された吸収液を加熱することで、吸収器13において吸収液で吸収した水蒸気を分離する。尚、分離された水蒸気は、通路を介して再生器15と連通した状態となっている凝縮器17に移動する。 In the regenerator 15, the absorbent liquid stored in the absorber 13 is pumped up by a pump (not shown) and supplied, so that the supplied absorbent liquid is heated by the heating means 16. It has become. The heating means 16 is not particularly limited as long as it can heat the absorbing liquid, and examples thereof include those using the heat of combustion of fuel gas and the heat of an electric heater. In the regenerator 15, the water vapor absorbed by the absorbent liquid in the absorber 13 is separated by heating the absorbent liquid supplied from the absorber 13. The separated water vapor moves to the condenser 17 which is in a state of being communicated with the regenerator 15 via the passage.
 凝縮器17においては、再生器15で分離した水蒸気を冷媒によって冷却し、凝縮した水は、蒸発器11に供給される。尚、吸収器13における高濃度の吸収液の冷却、及び凝縮器17における水蒸気の冷却には、適宜外部から供給される冷媒(例えば、水)のもつ冷熱を利用し、吸収器13及び凝縮器17の内部には、この冷媒が流通する冷媒流路Laが通っている。 In the condenser 17, the water vapor separated by the regenerator 15 is cooled by the refrigerant, and the condensed water is supplied to the evaporator 11. For cooling the high-concentration absorbing liquid in the absorber 13 and cooling the water vapor in the condenser 17, the cold heat of the refrigerant (for example, water) supplied from the outside as appropriate is used to cool the absorber 13 and the condenser. A refrigerant flow path La through which this refrigerant flows passes through the inside of the 17.
 尚、冷凍機10の蒸発器11において製造される冷熱源としての水は、第二冷却部22だけで利用されるようにしても良いが、船舶に設けられた空調装置のために利用されても良い。即ち、蒸発器11に接続された第二冷却用媒体供給路L4及び冷却用媒体回収路L5からそれぞれ分岐した流路が適宜空調装置に接続され、第二冷却用媒体供給路L4を通して冷熱源としての水を空調装置に供給するとともに、空調装置において冷熱が奪われた水を冷却用媒体回収路L5を通して回収するようにしても良い。 The water as a cold heat source produced in the evaporator 11 of the refrigerator 10 may be used only by the second cooling unit 22, but is used for the air conditioner provided on the ship. Is also good. That is, the flow paths branched from the second cooling medium supply path L4 and the cooling medium recovery path L5 connected to the evaporator 11 are appropriately connected to the air conditioner, and serve as a cooling heat source through the second cooling medium supply path L4. The water may be supplied to the air conditioner, and the water from which the cold heat has been deprived in the air conditioner may be recovered through the cooling medium recovery path L5.
 冷却装置20は、第一空気供給路L10を流通する空気(燃焼器6に供給する空気)を冷却するように構成されている。具体的に、本実施形態において、この冷却装置20は、LNGを気化するために利用した熱媒体としての水を冷熱源として利用する第一冷却部21と、冷凍機10で製造された水を冷熱源として利用する第二冷却部22と、熱媒体としての海水を冷熱源として利用する第三冷却部23とを備えている。 The cooling device 20 is configured to cool the air flowing through the first air supply path L10 (air supplied to the combustor 6). Specifically, in the present embodiment, the cooling device 20 uses the first cooling unit 21 that uses water as a heat medium used for vaporizing LNG as a cold heat source, and the water produced by the refrigerator 10. A second cooling unit 22 used as a cold heat source and a third cooling unit 23 using seawater as a heat medium as a cold heat source are provided.
 第一冷却部21は、気化用媒体供給路L2及び第一冷却用媒体供給路L3が接続された熱交換器であり、熱媒体としての水は、気化器2と第一冷却部21との間で気化用媒体供給路L2及び第一冷却用媒体供給路L3を通して循環するようになっている。この第一冷却部21は、第一冷却用媒体供給路L3を通して供給された水(即ち、LNGから冷熱を得た水)の持つ冷熱によって燃焼器6に供給する空気を冷却する。 The first cooling unit 21 is a heat exchanger to which the vaporization medium supply path L2 and the first cooling medium supply path L3 are connected, and water as a heat medium is a heat exchanger between the vaporizer 2 and the first cooling unit 21. It circulates between them through the vaporization medium supply path L2 and the first cooling medium supply path L3. The first cooling unit 21 cools the air supplied to the combustor 6 by the cold heat of the water supplied through the first cooling medium supply path L3 (that is, the water obtained from the LNG).
 第二冷却部22は、第二冷却用媒体供給路L4及び冷却用媒体回収路L5が接続された熱交換器であり、熱媒体としての水は、冷凍機10の蒸発器11と第二冷却部22との間で第二冷却用媒体供給路L4及び冷却用媒体回収路L5を通して循環するようになっている。この第二冷却部22は、第二冷却用媒体供給路L4を通して供給された水(即ち、冷凍機10で製造され、冷熱を得た水)のもつ冷熱によって燃焼器6に供給する空気を冷却する。 The second cooling unit 22 is a heat exchanger to which the second cooling medium supply path L4 and the cooling medium recovery path L5 are connected, and the water as the heat medium is the evaporator 11 of the refrigerator 10 and the second cooling. It circulates with the unit 22 through the second cooling medium supply path L4 and the cooling medium recovery path L5. The second cooling unit 22 cools the air supplied to the combustor 6 by the cold heat of the water supplied through the second cooling medium supply path L4 (that is, the water produced by the refrigerator 10 and obtained cold heat). To do.
 第三冷却部23は、ポンプP1によって海から汲み上げた海水が流通する第一海水供給路L6(第一海水流路)と後述する復水冷却部32に供給する海水が流通する第二海水供給路L7(第二海水流路)とが接続された熱交換器である。この第三冷却部23は、第一海水供給路L6を通して供給された、冷熱源としての海水のもつ冷熱によって燃焼器6に供給する空気を冷却する。尚、第一海水供給路L6における、ポンプP1と第三冷却部23との間には、第一海水供給路L6と第二海水供給路L7とを繋ぐバイパス流路L8が接続されている。 The third cooling unit 23 supplies seawater to which the seawater supplied from the condensate cooling unit 32, which will be described later, flows through the first seawater supply channel L6 (first seawater channel) through which the seawater pumped from the sea by the pump P1 flows. It is a heat exchanger connected to the passage L7 (second seawater flow path). The third cooling unit 23 cools the air supplied to the combustor 6 by the cold heat of seawater as a cold heat source supplied through the first seawater supply path L6. A bypass flow path L8 connecting the first seawater supply path L6 and the second seawater supply path L7 is connected between the pump P1 and the third cooling unit 23 in the first seawater supply path L6.
 また、第一海水供給路L6におけるバイパス流路L8の接続箇所には、調節装置24(調節手段)が設けられており、当該調節装置24によって、バイパス流路L8を流通する海水の量を調節することができるようになっている。 Further, an adjusting device 24 (adjusting means) is provided at a connection point of the bypass flow path L8 in the first seawater supply path L6, and the adjusting device 24 adjusts the amount of seawater flowing through the bypass flow path L8. You can do it.
 更に、本実施形態において、各冷却部21,22,23は、燃焼器6へと流通する空気の流通方向上流側から、第三冷却部23、第二冷却部22、第一冷却部21の順に配置されており、第一空気供給路L10に吸入された空気が、第三冷却部23、第二冷却部22、第一冷却部21の順に冷却されるようになっている。 Further, in the present embodiment, the cooling units 21, 22, and 23 are the third cooling unit 23, the second cooling unit 22, and the first cooling unit 21 from the upstream side in the flow direction of the air flowing to the combustor 6. The air is arranged in this order, and the air sucked into the first air supply passage L10 is cooled in the order of the third cooling unit 23, the second cooling unit 22, and the first cooling unit 21.
 排熱回収ボイラーユニット25は、ガスタービン7の回転駆動に供され、当該ガスタービン7から排出された排ガスのもつ温熱を回収するように構成されている。具体的に、本実施形態において、この排熱回収ボイラーユニット25は、ガスタービン7からの排ガスのもつ温熱によって、複数のドラム26内の水を加温して気化し、蒸気を作り出す。そして、この蒸気は、蒸気供給路L14を通して、蒸気タービンユニットSの蒸気タービン30に送出される。尚、温熱が回収された排ガスは、適宜外部に排出される。 The exhaust heat recovery boiler unit 25 is used to rotate and drive the gas turbine 7, and is configured to recover the heat of the exhaust gas discharged from the gas turbine 7. Specifically, in the present embodiment, the exhaust heat recovery boiler unit 25 heats and vaporizes the water in the plurality of drums 26 by the heat of the exhaust gas from the gas turbine 7 to produce steam. Then, this steam is sent to the steam turbine 30 of the steam turbine unit S through the steam supply path L14. The exhaust gas from which the heat has been recovered is appropriately discharged to the outside.
 蒸気タービンユニットSは、蒸気タービン30と、復水器31と、復水冷却部32とを有している。蒸気タービン30は、排熱回収ボイラーユニット25から送出された蒸気により回転駆動され、回転力が第二発電機36に伝達される。また、復水器31は、その内部に復水冷却部32が配設されており、蒸気タービン30の回転駆動に供された蒸気は、この復水器31内で水に戻され、水供給路L15を通してドラム26に供給される。復水冷却部32は、第二海水供給路L7と海水を海へと排出する海水排出路L9とが接続された熱交換器であり、第二海水供給路L7を通して供給される海水の持つ冷熱によって復水器31内を冷却し、復水器31内の冷却に供された海水は、海水排出路L9を通して海へと排出される。尚、本実施形態において、復水冷却部32では、第二海水供給路L7を通して供給される海水の温度が32℃程度である場合、復水器31内の冷却に供された海水の温度は42℃程度となる。 The steam turbine unit S includes a steam turbine 30, a condenser 31, and a condenser cooling unit 32. The steam turbine 30 is rotationally driven by the steam sent from the exhaust heat recovery boiler unit 25, and the rotational force is transmitted to the second generator 36. Further, the condenser 31 is provided with a condenser cooling unit 32 inside, and the steam used to drive the rotation of the steam turbine 30 is returned to water in the condenser 31 to supply water. It is supplied to the drum 26 through the road L15. The condensate cooling unit 32 is a heat exchanger in which the second seawater supply path L7 and the seawater discharge path L9 for discharging seawater to the sea are connected, and the cold heat of the seawater supplied through the second seawater supply path L7. The inside of the condenser 31 is cooled by, and the seawater used for cooling the inside of the condenser 31 is discharged to the sea through the seawater discharge path L9. In the present embodiment, in the condensate cooling unit 32, when the temperature of the seawater supplied through the second seawater supply path L7 is about 32 ° C., the temperature of the seawater used for cooling the inside of the condenser 31 is It will be about 42 ° C.
 第一発電機35は、ガスタービン7により駆動されて発電し、第二発電機36は、蒸気タービン30により駆動されて発電する。 The first generator 35 is driven by the gas turbine 7 to generate electricity, and the second generator 36 is driven by the steam turbine 30 to generate electricity.
 以上の構成を備えた移動体においては、気化器2において気化された燃料ガスが燃焼器6に供給されるとともに、冷却装置20において冷却された空気が燃焼器6に供給され、燃焼器6において、燃料ガスと空気とを混合した混合気が燃焼され、発生した燃焼ガスがガスタービン7に送出されることで、当該ガスタービン7が回転駆動し、その回転力によって第一発電機35が駆動されて発電が行われる。 In the moving body having the above configuration, the fuel gas vaporized in the vaporizer 2 is supplied to the combustor 6, and the air cooled in the cooling device 20 is supplied to the combustor 6 in the combustor 6. , A mixture of fuel gas and air is burned, and the generated combustion gas is sent to the gas turbine 7, so that the gas turbine 7 is rotationally driven, and the rotational force drives the first generator 35. And power is generated.
 また、この移動体においては、ガスタービン7の回転駆動に供された燃焼ガスが排ガスとして排熱回収ボイラーユニット25に送出され、排熱回収ボイラーユニット25において排ガスの持つ温熱を利用して蒸気が作り出され、この蒸気が蒸気タービン30に送出されることで、当該蒸気タービン30が回転駆動し、その回転力によって第二発電機36が駆動されて発電が行われる。 Further, in this moving body, the combustion gas used to drive the rotation of the gas turbine 7 is sent to the exhaust heat recovery boiler unit 25 as exhaust gas, and the steam is generated in the exhaust heat recovery boiler unit 25 by utilizing the heat of the exhaust gas. When the steam is produced and sent to the steam turbine 30, the steam turbine 30 is rotationally driven, and the rotational force drives the second generator 36 to generate power.
 本実施形態に係る発電システムEを備えた船舶によれば、燃焼器6に供給する空気が冷却装置20によって冷却されているため、発電システムEの出力の低下(言い換えれば、発電量の低下)を抑えることができる。また、船舶にガスタービンユニットGを複数台設置するような場合において、冷却装置20を備えたことで発電システムEの出力の低下を抑えられるため、同じ電力を得るために必要なガスタービンユニットGの設置台数を減らすことが可能となり、設備費やメンテナンス費、設置スペースの削減を図ることができる。 According to the ship provided with the power generation system E according to the present embodiment, since the air supplied to the combustor 6 is cooled by the cooling device 20, the output of the power generation system E is reduced (in other words, the amount of power generation is reduced). Can be suppressed. Further, in the case where a plurality of gas turbine units G are installed on a ship, since the decrease in the output of the power generation system E can be suppressed by providing the cooling device 20, the gas turbine unit G required to obtain the same electric power It is possible to reduce the number of installed turbines, and it is possible to reduce equipment costs, maintenance costs, and installation space.
 また、本実施形態における冷却装置20は、LNGを気化する際に必然的に生じる、LNGから冷熱を奪った熱媒体を燃焼器6に供給する空気を冷却するための冷熱源として使用するため、LNGが持つ冷熱を有効に活用できる。 Further, since the cooling device 20 in the present embodiment is used as a cooling heat source for cooling the air that supplies the combustor 6 with the heat medium that has taken the cold heat from the LNG, which is inevitably generated when the LNG is vaporized. The cold heat of LNG can be effectively utilized.
 更に、3つの冷却部21,22,23において、燃焼器6に供給する空気を冷却するようにしていることで、発電システムE全体でのエネルギー効率が低下するという問題や冷凍機10の大型化が避けられないという問題、発電システムEが発電時に消費するLNGを気化して得られる冷熱が不足しているなどの理由で発電システムEの出力が低下するという問題などを解消しつつ、燃焼器6に供給する空気を十分に冷却して、発電システムEの出力の低下を抑えることができる。 Further, since the air supplied to the combustor 6 is cooled in the three cooling units 21, 22, 23, there is a problem that the energy efficiency of the entire power generation system E is lowered, and the size of the refrigerator 10 is increased. The combustor solves the problem that the output of the power generation system E decreases due to the inevitable problem and the lack of cooling heat obtained by vaporizing the LNG consumed by the power generation system E during power generation. The air supplied to No. 6 can be sufficiently cooled to suppress a decrease in the output of the power generation system E.
 ここで、第一冷却部21において冷熱源として利用する水は、LNGを気化するために利用したものである。本実施形態においては、図1に示すように、LNGの温度が-160℃程度である場合、第一冷却部21において利用する水によってLNGを気化して10℃程度の燃料ガスにすると、熱媒体たる水は相当の冷熱を得ることになり、冷熱を得る前の温度が13℃程度であった場合、冷熱を得た後の温度は5℃程度となる。 Here, the water used as a cold heat source in the first cooling unit 21 is used for vaporizing LNG. In the present embodiment, as shown in FIG. 1, when the temperature of LNG is about −160 ° C., when LNG is vaporized by the water used in the first cooling unit 21 to make a fuel gas of about 10 ° C., heat is generated. Water as a medium obtains a considerable amount of cold heat, and if the temperature before obtaining the cold heat is about 13 ° C., the temperature after obtaining the cold heat is about 5 ° C.
 これに対して、第二冷却部22において冷熱源として利用する水は、冷凍機10で製造されたものであり、第一冷却部21において利用する水と比較して、相対的に温度が高い傾向にあり、本実施形態においては、図1に示すように、第二冷却部22に供給する時点での温度が7℃程度であり、第二冷却部22において空気に冷熱を奪われた後での温度は15℃程度である。 On the other hand, the water used as the cold heat source in the second cooling unit 22 is produced by the refrigerator 10, and the temperature is relatively higher than the water used in the first cooling unit 21. In this embodiment, as shown in FIG. 1, the temperature at the time of supplying to the second cooling unit 22 is about 7 ° C., and after the second cooling unit 22 is deprived of cold heat by the air. The temperature at is about 15 ° C.
 また、第三冷却部23において冷熱源として利用する海水は、採取する深さにもよるが、深さ30m~70mから汲み上げたものであれば、およそ20~30℃程度であり、図1に示すように、本実施形態においては25℃程度であり、第三冷却部23において空気に冷熱を奪われた後での温度は32℃程度である。 The seawater used as a cold heat source in the third cooling unit 23 depends on the sampling depth, but if it is pumped from a depth of 30 m to 70 m, it is about 20 to 30 ° C., as shown in FIG. As shown, in the present embodiment, the temperature is about 25 ° C., and the temperature after the cold heat is taken away by the air in the third cooling unit 23 is about 32 ° C.
 本実施形態においては、燃焼器6へと流通する空気の流通方向上流側から、第三冷却部23、第二冷却部22、第一冷却部21の順に配置されているため、第一空気供給路L10に吸入された空気(本実施形態においては35℃)を、利用する熱媒体の温度が相対的に高い冷却部21,22,23の順に冷却する、即ち、初めに第三冷却部23において冷却することで30℃程度となり、次に第二冷却部22において冷却することで20℃程度となり、しかる後、第一冷却部21において冷却することで、燃焼器6へと供給する空気を最終的に15℃程度まで冷却することでき、3つの冷却部21,22,23で利用する各熱媒体がもつ冷熱を極力無駄にすることなく、空気を効率良く冷却することができる。 In the present embodiment, the third cooling unit 23, the second cooling unit 22, and the first cooling unit 21 are arranged in this order from the upstream side in the flow direction of the air flowing to the combustor 6, so that the first air is supplied. The air sucked into the passage L10 (35 ° C. in this embodiment) is cooled in the order of the cooling units 21, 22, 23 in which the temperature of the heat medium to be used is relatively high, that is, the third cooling unit 23 first. By cooling in, the temperature becomes about 30 ° C., then in the second cooling unit 22, the temperature becomes about 20 ° C., and then in the first cooling unit 21, the air supplied to the combustor 6 is supplied. Finally, it can be cooled to about 15 ° C., and the air can be efficiently cooled without wasting the cold heat of each heat medium used by the three cooling units 21, 22, 23 as much as possible.
 また、本実施形態においては、第三冷却部23及び復水冷却部32に海水を供給したり、これらの冷却部23,32から海水を回収したりするための海水用配管の一部(即ち、第一海水供給路L6、第二海水供給路L7及び海水排出路L9)を共用化していることで、配管の配置がシンプルなものとなり、また、海水を流通させるためのポンプP1の台数が1台で済むようになっている。 Further, in the present embodiment, a part of the seawater piping (that is, for supplying seawater to the third cooling unit 23 and the condensate cooling unit 32 and collecting seawater from these cooling units 23 and 32 (that is,). , The first seawater supply route L6, the second seawater supply route L7, and the seawater discharge route L9) are shared, which simplifies the arrangement of pipes and increases the number of pumps P1 for distributing seawater. Only one unit is needed.
 更に、本実施形態においては、第一海水供給路L6と第二海水供給路L7とを繋ぐバイパス流路L8を設け、このバイパス流路L8に流通する海水の量を調節装置24によって調節できるようにしていることで、以下のような利点がある。 Further, in the present embodiment, a bypass flow path L8 connecting the first seawater supply path L6 and the second seawater supply path L7 is provided so that the amount of seawater flowing through the bypass flow path L8 can be adjusted by the adjusting device 24. By doing so, there are the following advantages.
 例えば、第一空気供給路L10に吸入された空気と第三冷却部23で利用する海水との温度差が小さい場合には、第三冷却部23へ供給する海水の量が少なくても空気を冷却する効果に差が現れ難いが、このような場合にまで第三冷却部23を経由して復水冷却部32に海水を流通させることは、ポンプ出力の不必要な増加に繋がる。また、海水の温度よりも吸入された空気の温度の方が高いような場合には、第三冷却部23へ海水を供給することによって却って空気を加熱することになりかねない。 For example, when the temperature difference between the air sucked into the first air supply path L10 and the seawater used by the third cooling unit 23 is small, the air can be supplied even if the amount of seawater supplied to the third cooling unit 23 is small. Although it is difficult to make a difference in the cooling effect, flowing seawater to the condensate cooling unit 32 via the third cooling unit 23 leads to an unnecessary increase in the pump output even in such a case. Further, when the temperature of the sucked air is higher than the temperature of the seawater, the air may be heated by supplying the seawater to the third cooling unit 23.
 しかしながら、本実施形態に係る移動体においては、必要に応じて調節装置24によりバイパス流路L8を流通する海水の量を調節することで、ポンプP1の出力の不必要な増加を抑えることができる。また、本実施形態に係る移動体においては、ポンプP1で汲み上げた海水の全量がバイパス流路L8を流通するように調節装置24によって調節することで、空気の温度よりも海水の温度が高いような場合でも、海水によって空気を加熱してしまうような事態を防止できる。 However, in the moving body according to the present embodiment, an unnecessary increase in the output of the pump P1 can be suppressed by adjusting the amount of seawater flowing through the bypass flow path L8 by the adjusting device 24 as needed. .. Further, in the moving body according to the present embodiment, the temperature of the seawater is higher than the temperature of the air by adjusting the total amount of the seawater pumped by the pump P1 so as to flow through the bypass flow path L8 by the adjusting device 24. Even in such a case, it is possible to prevent a situation in which the air is heated by seawater.
〔第2実施形態〕
 次に、本発明の第2実施形態に係る移動体について説明する。尚、本実施形態においても、移動体が船舶である場合を例示して説明する。また、第1実施形態と同様の構成については同一の符号を付し、詳細な説明は省略する。
[Second Embodiment]
Next, the moving body according to the second embodiment of the present invention will be described. In this embodiment as well, the case where the moving body is a ship will be described as an example. Further, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図3は、船舶(LNG船)に搭載された発電システムE1の概略構成を示す図である。同図に示すように、発電システムE1は、気化器2と、複数のガスタービンユニットGa,Gbと、冷凍機10と、複数の冷却装置20a,20bと、複数の排熱回収ボイラーユニット25a,25bと、蒸気タービンユニットSとを備えている。また、この発電システムE1は、制御装置40や、大気温度を検出する温度センサTbを備えている。尚、図示は省略したが、第2実施形態に係る移動体の発電システムE1にも、液化天然ガスが貯蔵された燃料タンクや、各ガスタービンユニットGa,Gbのガスタービン7a,7bの回転力を利用して発電する第一発電手段、蒸気タービン30の回転力を利用して発電する第二発電手段が設けられている。尚、図3においては、複数のガスタービンユニット、複数の冷却装置及び複数の排熱回収ボイラーユニットについて、いずれもこれらを2つずつ備えた構成を図示した。 FIG. 3 is a diagram showing a schematic configuration of a power generation system E1 mounted on a ship (LNG carrier). As shown in the figure, the power generation system E1 includes a vaporizer 2, a plurality of gas turbine units Ga and Gb, a refrigerator 10, a plurality of cooling devices 20a and 20b, and a plurality of exhaust heat recovery boiler units 25a. It includes 25b and a steam turbine unit S. Further, the power generation system E1 includes a control device 40 and a temperature sensor Tb for detecting the atmospheric temperature. Although not shown, the mobile power generation system E1 according to the second embodiment also includes a fuel tank in which liquefied natural gas is stored and the rotational force of the gas turbines 7a and 7b of the gas turbine units Ga and Gb. A first power generation means for generating power by utilizing the above, and a second power generation means for generating power by utilizing the rotational force of the steam turbine 30 are provided. In addition, in FIG. 3, a configuration in which two of each of a plurality of gas turbine units, a plurality of cooling devices, and a plurality of exhaust heat recovery boiler units are provided is shown.
 第2実施形態において、燃料供給路L1における燃料タンクと気化器2との間には燃料調整弁V1が設けられており、この燃料調整弁V1の開閉動作は、電力需要やガスタービンユニットの運転状態などに基づいて制御装置40により制御される。 In the second embodiment, a fuel regulating valve V1 is provided between the fuel tank and the vaporizer 2 in the fuel supply path L1, and the opening / closing operation of the fuel regulating valve V1 is the operation of the electric power demand and the gas turbine unit. It is controlled by the control device 40 based on the state and the like.
 第2実施形態においては、気化器2に接続された気化用媒体供給路L2が、その上流側において、気化用媒体供給路L2a,L2bに分岐し、同じく気化器2に接続された第一冷却用媒体供給路L3が、その下流側において、第一冷却用媒体供給路L3a,L3bに分岐している。また、冷却用媒体供給路L3には、上流側から順に、熱交換器37とバッファタンク38とが設けられている。熱交換器37は、気化器2においてLNGから冷熱を得た水と、海から適宜汲み上げた海水との間で熱交換を行うためのものであり、バッファタンク38は、発電システムE1の起動時に第一冷却部21a,21bに供給する水を一時的に貯留するためのものである。 In the second embodiment, the vaporization medium supply path L2 connected to the vaporizer 2 is branched into the vaporization medium supply paths L2a and L2b on the upstream side thereof, and the first cooling is also connected to the vaporizer 2. The media supply path L3 is branched into the first cooling medium supply paths L3a and L3b on the downstream side thereof. Further, the cooling medium supply path L3 is provided with a heat exchanger 37 and a buffer tank 38 in this order from the upstream side. The heat exchanger 37 is for exchanging heat between the water obtained from LNG in the vaporizer 2 and the seawater appropriately pumped from the sea, and the buffer tank 38 is used at the time of starting the power generation system E1. This is for temporarily storing the water supplied to the first cooling units 21a and 21b.
 2つのガスタービンユニットGa,Gbは、第1実施形態におけるガスタービンユニットGと同一の構成を備えたものであり、コンプレッサ5a,5bやガスタービン7a,7bを有している。即ち、本実施形態において、コンプレッサ5a,5bには、それぞれ冷却装置20a,20bで冷却された空気が第一空気供給路L10a,L10bを通して供給される。また、コンプレッサ5a,5bに供給された空気は、図示しない燃焼器において燃料ガスと混合されて燃焼される。そして、燃焼器で発生した燃焼ガスは、ガスタービン7a,7bに送出されてガスタービン7a,7bの回転駆動に供された後、排ガスとして排ガス供給路L13a、L13bを通して排熱回収ボイラーユニット25a,25bに送出される。 The two gas turbine units Ga and Gb have the same configuration as the gas turbine unit G in the first embodiment, and include compressors 5a and 5b and gas turbines 7a and 7b. That is, in the present embodiment, the air cooled by the cooling devices 20a and 20b is supplied to the compressors 5a and 5b through the first air supply paths L10a and L10b, respectively. Further, the air supplied to the compressors 5a and 5b is mixed with the fuel gas and burned in a combustor (not shown). Then, the combustion gas generated in the combustor is sent to the gas turbines 7a and 7b to be used for rotational driving of the gas turbines 7a and 7b, and then as exhaust gas through the exhaust gas supply paths L13a and L13b, the exhaust heat recovery boiler unit 25a, It is sent to 25b.
 また、第二実施形態においては、冷凍機10に接続された第二冷却用媒体供給路L4が、冷凍機10の下流側において、第二冷却用媒体供給路L4a,L4bに分岐し、同じく冷凍機10に接続された冷却用媒体回収路L5が、冷凍機10の上流側において、冷却用媒体回収路L5a,L5bに分岐している。更に、第2実施形態では、冷凍機10の吸収器13及び凝縮器17の内部を通る冷媒流路Laに海水の温度を計測する海水温度センサTaが設けられている。 Further, in the second embodiment, the second cooling medium supply path L4 connected to the refrigerator 10 is branched into the second cooling medium supply paths L4a and L4b on the downstream side of the refrigerator 10 and is also frozen. The cooling medium recovery path L5 connected to the machine 10 branches into the cooling medium recovery paths L5a and L5b on the upstream side of the refrigerator 10. Further, in the second embodiment, a seawater temperature sensor Ta that measures the temperature of seawater is provided in the refrigerant flow path La that passes through the inside of the absorber 13 and the condenser 17 of the refrigerator 10.
 第二実施形態における冷却装置20a,20bの第一冷却部21a,21bには、それぞれ気化用媒体供給路L2a,L2b及び第一冷却用媒体供給路L3a,L3bが接続されている。また、第二冷却部22a,22bには、それぞれ第二冷却用媒体供給路L4a,L4b及び冷却用媒体回収路L5a,L5bが接続されている。 The vaporization medium supply paths L2a and L2b and the first cooling medium supply paths L3a and L3b are connected to the first cooling units 21a and 21b of the cooling devices 20a and 20b in the second embodiment, respectively. Further, the second cooling medium supply paths L4a and L4b and the cooling medium recovery paths L5a and L5b are connected to the second cooling units 22a and 22b, respectively.
 また、第二実施形態においては、第一海水供給路L6が、ポンプP1の下流側において、第一海水供給路L6a,L6bに分岐しており、冷却装置20a,20bの第三冷却部23a,23bには、これら第一海水供給路L6a,L6bが各々接続されるとともに、海水排水路L9a,L9bが接続されており、第一海水供給路L6a,L6bを通して各第三冷却部23a,23bに供給された海水は、海水排水路L9a,L9bを通して海に廃棄される。尚、この冷却装置20a,20bにおいても、各冷却部21a,21b,22a,22b,23a,23bは、第一空気供給路L10a,L10bの上流側から、第三冷却部23a,23b、第二冷却部22a,22b、第一冷却部21a,21bの順に配置されている。 Further, in the second embodiment, the first seawater supply passage L6 branches into the first seawater supply passages L6a and L6b on the downstream side of the pump P1, and the third cooling unit 23a of the cooling devices 20a and 20b, The first seawater supply channels L6a and L6b are connected to the 23b, and the seawater drainage channels L9a and L9b are connected to the 23b, and the first seawater supply channels L6a and L6b are connected to the third cooling units 23a and 23b. The supplied seawater is discarded into the sea through the seawater drainage channels L9a and L9b. In the cooling devices 20a and 20b, the cooling units 21a, 21b, 22a, 22b, 23a and 23b are the third cooling units 23a, 23b and the second from the upstream side of the first air supply passages L10a and L10b. The cooling units 22a and 22b and the first cooling units 21a and 21b are arranged in this order.
 第二実施形態における排熱回収ボイラーユニット25a,25bは、それぞれガスタービン7a,7bから排ガス供給路L13a,L13bを通して送出された排ガスによってドラム26a,26b内の水を気化して蒸気を作り出す。そして、この蒸気は、上記供給路L14a,L14bを通して蒸気タービン30に送出される。 The exhaust heat recovery boiler units 25a and 25b in the second embodiment vaporize the water in the drums 26a and 26b by the exhaust gas sent from the gas turbines 7a and 7b through the exhaust gas supply paths L13a and L13b, respectively, to produce steam. Then, this steam is sent to the steam turbine 30 through the supply paths L14a and L14b.
 第二実施形態において、蒸気タービンユニットSの復水冷却部32は、第一海水供給路L6bから分岐した第二海水供給路L7が接続されるとともに、海水排出路L9cが接続されており、第二海水供給路L7を通して供給された海水が海水排出路L9cを通して海へと廃棄される。また、各排熱回収ボイラーユニット25a,25bで作り出された蒸気は、復水器31内で水に戻され、水供給路L15a,L15bを通してドラム26a,26bに供給される。 In the second embodiment, the condensate cooling unit 32 of the steam turbine unit S is connected to the second seawater supply line L7 branched from the first seawater supply line L6b and is connected to the seawater discharge line L9c. (Ii) The seawater supplied through the seawater supply channel L7 is discarded into the sea through the seawater discharge channel L9c. Further, the steam produced by the exhaust heat recovery boiler units 25a and 25b is returned to water in the condenser 31 and supplied to the drums 26a and 26b through the water supply passages L15a and L15b.
 制御装置40は、発電システムE1の運転に関する各種制御を担う装置である。この制御装置40は、電力需要と冷却装置20a,20bの運転状態とに基づいて、ガスタービンユニットGa,Gbの運転台数を決定することができる。尚、冷却装置20a,20bの運転状態は、予め定めておくこともできるし、電力需要とガスタービンユニットGa,Gbの出力特性とに基づいて適宜決定することもできる。また、ガスタービンユニットGa,Gbの出力特性は、大気温度や気圧、湿度、海水温度等に準じて予め定められるものである。 The control device 40 is a device responsible for various controls related to the operation of the power generation system E1. The control device 40 can determine the number of operating gas turbine units Ga and Gb based on the power demand and the operating states of the cooling devices 20a and 20b. The operating states of the cooling devices 20a and 20b can be predetermined, or can be appropriately determined based on the power demand and the output characteristics of the gas turbine units Ga and Gb. Further, the output characteristics of the gas turbine units Ga and Gb are predetermined according to the atmospheric temperature, atmospheric pressure, humidity, seawater temperature and the like.
 以下、図4を参照して、制御装置40によって行う発電システムの運転制御の一例を説明する。尚、以下の説明において、冷却装置20a,20bの運転状態は、第一冷却部21a,21b及び第三冷却部23a,23bによる空気の冷却度合が一定となるようにした上で、第二冷却部22a,22bによる空気の冷却度合を変えることで変更するようにしている。また、図4は、大気温度に準じて予め定めたガスタービンユニットの出力特性を示すグラフである。同図中の一点鎖線X1は、燃焼器に供給する空気が15℃となるように冷却装置を運転した状態で1台のガスタービンユニットを稼働させた場合の第一出力特性を示し、一点鎖線X2は、燃焼器に供給する空気が15℃となるように冷却装置を運転した状態で2台のガスタービンユニットを稼働させた場合の第二出力特性を示す。また、同図中の二点鎖線Y1は、燃焼器に供給する空気が10℃となるように冷却装置を運転した状態で1台のガスタービンユニットを稼働させた場合の第三出力特性を示し、二点鎖線Y2は、燃焼器に供給する空気が10℃となるように冷却装置を運転した状態で2台のガスタービンユニットを稼働させた場合の第四出力特性を示す。 Hereinafter, an example of operation control of the power generation system performed by the control device 40 will be described with reference to FIG. In the following description, the operating state of the cooling devices 20a and 20b is such that the degree of cooling of air by the first cooling units 21a and 21b and the third cooling units 23a and 23b is constant, and then the second cooling is performed. It is changed by changing the degree of cooling of the air by the parts 22a and 22b. Further, FIG. 4 is a graph showing the output characteristics of the gas turbine unit determined in advance according to the atmospheric temperature. The one-point chain line X1 in the figure shows the first output characteristic when one gas turbine unit is operated while the cooling device is operated so that the air supplied to the combustor becomes 15 ° C. X2 shows the second output characteristic when two gas turbine units are operated in a state where the cooling device is operated so that the air supplied to the combustor becomes 15 ° C. Further, the two-point chain wire Y1 in the figure shows the third output characteristic when one gas turbine unit is operated while the cooling device is operated so that the air supplied to the combustor becomes 10 ° C. The two-point chain wire Y2 shows the fourth output characteristic when two gas turbine units are operated in a state where the cooling device is operated so that the air supplied to the combustor becomes 10 ° C.
 まず、制御装置40は、予め定めた冷却装置20a,20bの運転状態(燃焼器に供給する空気が15℃となる運転状態)で大気温度20℃において49.2MWの電力需要を賄うことが可能なガスタービンユニットGa,Gbの運転台数を2台に決定し、2台のガスタービンユニットGa,Gbを稼働させる(図4中の黒丸(1)の状態)。 First, the control device 40 can meet the power demand of 49.2 MW at an atmospheric temperature of 20 ° C. in a predetermined operating state of the cooling devices 20a and 20b (an operating state in which the air supplied to the combustor is 15 ° C.). The number of operating gas turbine units Ga and Gb is determined to be two, and the two gas turbine units Ga and Gb are operated (the state of the black circle (1) in FIG. 4).
 この状態から大気温度が35℃に上昇しても、電力需要が依然として49.2MWの状態(図4中の黒丸(2)の状態)であれば、この状態は、第一出力特性を示す一点鎖線X1と第二出力特性を示す一点鎖線X2との間に位置するため、冷却装置20a,20bの運転状態を変えることなく、電力需要を賄うことが可能であり、2台のガスタービンユニットGa,Gbを稼働させた状態を維持する。 Even if the atmospheric temperature rises from this state to 35 ° C., if the power demand is still in the state of 49.2 MW (the state of the black circle (2) in FIG. 4), this state is one point showing the first output characteristic. Since it is located between the chain wire X1 and the alternate long and short dash line X2 that exhibits the second output characteristic, it is possible to meet the power demand without changing the operating state of the cooling devices 20a and 20b, and the two gas turbine units Ga. , Keep Gb running.
 そして、この状態から電力需要が増加し、電力需要が82MW以下の状態(図4中の黒丸(3)の状態)になった場合、この状態は、第二出力特性を示す一点鎖線X2を超えない位置にある。したがって、冷却装置20a,20bの運転状態を変えることなく、電力需要を賄うことが可能であるため、2台のガスタービンユニットGa,Gbを稼働させた状態を維持する。 Then, when the power demand increases from this state and the power demand becomes 82 MW or less (the state of the black circle (3) in FIG. 4), this state exceeds the alternate long and short dash line X2 indicating the second output characteristic. Not in a position. Therefore, since it is possible to meet the power demand without changing the operating state of the cooling devices 20a and 20b, the two gas turbine units Ga and Gb are maintained in the operating state.
 一方、仮に、電力需要が82MWを大きく超える状態(図4中の白抜きの丸(3)’の状態)になった場合、この状態は、第二出力特性を示す一点鎖線X2及び第四出力特性を示す二点鎖線Y2を大きく超えた位置にある。したがって、冷却装置20a,20bの運転状態を燃焼器に供給する空気が10℃となる運転状態に変更したとしても電力需要を賄うことができないため、図示していない3台目のガスタービンユニットを稼働させて対応する。 On the other hand, if the power demand greatly exceeds 82 MW (the state of the white circle (3)'in FIG. 4), this state is the alternate long and short dash line X2 and the fourth output showing the second output characteristic. It is located far beyond the two-dot chain line Y2, which shows its characteristics. Therefore, even if the operating state of the cooling devices 20a and 20b is changed to the operating state in which the air supplied to the combustor is 10 ° C., the electric power demand cannot be met. Therefore, the third gas turbine unit (not shown) is used. Operate and respond.
 その後、大気温度が27℃まで低下するとともに、電力需要が42.6MWまで低下した状態(図4中の黒丸(4)の状態)になった場合、この状態は、第一出力特性を示す一点鎖線X1を超えているが、第三出力特性を示す二点鎖線Y1上に位置している。したがって、冷却装置20a,20bの運転状態を燃焼器に供給する空気が10℃となる運転状態へと変更することで、ガスタービンユニットの運転台数を1台に減らして電力需要を賄うことができる。そこで、第二実施形態においては、冷凍機10から第二冷却部へと供給する冷水の温度を下げて(即ち、第二冷却部による空気の冷却度合を上げて)、冷却装置20a,20bの運転状態を燃焼器に供給する空気が10℃となる運転状態へと変更するとともに、稼働中の2台のガスタービンユニットGa,Gbのうちのいずれか一方を停止させる。 After that, when the atmospheric temperature drops to 27 ° C. and the power demand drops to 42.6 MW (the state of the black circle (4) in FIG. 4), this state is one point indicating the first output characteristic. Although it exceeds the chain line X1, it is located on the alternate long and short dash line Y1 showing the third output characteristic. Therefore, by changing the operating state of the cooling devices 20a and 20b to an operating state in which the air supplied to the combustor is 10 ° C., the number of operating gas turbine units can be reduced to one to meet the power demand. .. Therefore, in the second embodiment, the temperature of the cold water supplied from the refrigerator 10 to the second cooling unit is lowered (that is, the degree of cooling of the air by the second cooling unit is increased), and the cooling devices 20a and 20b are used. The operating state is changed to an operating state in which the air supplied to the combustor is 10 ° C., and one of the two operating gas turbine units Ga and Gb is stopped.
 このように、第二実施形態に係る移動体においては、電力需要に応じて、冷却装置20a,20bの運転状態やガスタービンユニットGa,Gbの運転台数を決定することができ、電力需要に見合った適当な運転状態で冷却装置を稼働させることができ、また、ガスタービンユニットの運転台数を不必要に増やすことなく、電力需要に見合った台数のガスタービンユニットを稼働させることができる。 As described above, in the moving body according to the second embodiment, the operating state of the cooling devices 20a and 20b and the number of operating gas turbine units Ga and Gb can be determined according to the power demand, which meets the power demand. The cooling device can be operated in an appropriate operating state, and the number of gas turbine units that meets the power demand can be operated without unnecessarily increasing the number of operating gas turbine units.
 また、制御装置40は、ガスタービンユニットGa,Gbの急速起動時やガスタービン7a,7bのトリップ停止時に、LNGの流量が急増したり、気化器2に供給する水の保有熱が急減するような運転を行った場合でも、冷却用媒体供給路L3に設けたバッファタンク38の保有水量を十分に確保するとともに、迅速に水を供給できるような制御を行う。これにより、温熱量の不足による凍結によって気化器2が損傷するのを防止することができる。 Further, in the control device 40, when the gas turbine units Ga and Gb are rapidly started or when the trips of the gas turbines 7a and 7b are stopped, the flow rate of LNG suddenly increases and the heat retained in the water supplied to the vaporizer 2 suddenly decreases. Even when the operation is performed properly, the buffer tank 38 provided in the cooling medium supply path L3 is provided with a sufficient amount of water, and control is performed so that water can be supplied quickly. As a result, it is possible to prevent the vaporizer 2 from being damaged by freezing due to insufficient heat.
〔別実施形態〕
〔1〕上記各実施形態においては、冷却装置20,20a,20bが、第一冷却部21,21a,21b、第二冷却部22,22a,22b及び第三冷却部23,23a,23bを備える構成としたが、冷却装置が上記3つの冷却部のうち、少なくともいずれか二つを備える構成を採用しても良い。
[Another Embodiment]
[1] In each of the above embodiments, the cooling devices 20, 20a, 20b include first cooling units 21,21a, 21b, second cooling units 22, 22a, 22b, and third cooling units 23, 23a, 23b. Although the configuration is set, a configuration in which the cooling device includes at least any two of the above three cooling units may be adopted.
 第一冷却部21,21a,21bと第二冷却部22,22a,22bとを備える構成を採用した場合には、LNGが持つ冷熱を有効に活用し、発電システム全体でのエネルギー効率が低下するという問題や冷凍機の大型化が避けられないという問題を解消した上で、燃焼器6に供給する空気を第一冷却部21,21a,21b及び第二冷却部22,22a,22bによって冷却することができるため、上記と同様に、発電システムE,E1の出力の低下を抑えることができる。
 尚、この場合には、熱媒体がもつ冷熱を極力無駄にすることなく、空気を冷却するという観点から、燃焼器6に供給する空気が第二冷却部22,22a,22b、第一冷却部21,21a,21bの順に流通するように、これら2つの冷却部21,21a,21b,22,22a,22bを配置することが好ましい。
When a configuration including the first cooling units 21,21a, 21b and the second cooling units 22, 22a, 22b is adopted, the cold heat of the LNG is effectively utilized, and the energy efficiency of the entire power generation system is lowered. After solving the problem that the size of the refrigerator is inevitably increased, the air supplied to the combustor 6 is cooled by the first cooling units 21, 21a, 21b and the second cooling units 22, 22a, 22b. Therefore, it is possible to suppress a decrease in the output of the power generation systems E and E1 in the same manner as described above.
In this case, the air supplied to the combustor 6 is the second cooling unit 22, 22a, 22b, and the first cooling unit from the viewpoint of cooling the air without wasting the cold heat of the heat medium as much as possible. It is preferable to arrange these two cooling units 21,21a, 21b, 22, 22a, 22b so that they are distributed in the order of 21,21a, 21b.
 また、第一冷却部21,21a,21bと第三冷却部23,23a,23bとを備える構成を採用した場合でも、LNGがもつ冷熱を有効に活用し、発電システム全体でのエネルギー効率が低下するという問題や冷凍機の大型化が避けられないという問題の発生を抑えた上で、燃焼器6に供給する空気を第一冷却部21,21a,21b及び第三冷却部23,23a,23bによって冷却することができるため、上記と同様に、発電システムE,E1の出力の低下を抑えることができる。
 尚、この場合には、燃焼器6に供給する空気が第三冷却部23,23a,23b、第一冷却部21,21a,21bの順に流通するように、これら2つの冷却部21,21a,21b,23,23a,23bを配置することが好ましく、このようにすれば、熱媒体がもつ冷熱を極力無駄にすることなく、空気を冷却できる。
Further, even when a configuration including the first cooling units 21 and 21a and 21b and the third cooling units 23, 23a and 23b is adopted, the cold heat of the LNG is effectively utilized and the energy efficiency of the entire power generation system is lowered. The air supplied to the combustor 6 is supplied to the first cooling units 21 and 21a and 21b and the third cooling units 23, 23a and 23b, while suppressing the problem of the chiller and the inevitable increase in size of the refrigerator. Since it can be cooled by the above, it is possible to suppress a decrease in the output of the power generation systems E and E1 in the same manner as described above.
In this case, these two cooling units 21 and 21a, so that the air supplied to the combustor 6 circulates in the order of the third cooling units 23, 23a and 23b and the first cooling units 21 and 21a and 21b. It is preferable to arrange 21b, 23, 23a, 23b, and in this way, the air can be cooled without wasting the cold heat of the heat medium as much as possible.
 また、第二冷却部22,22a,22bと第三冷却部23,23a,23bとを備える構成を採用した場合には、発電システム全体でのエネルギー効率が低下するという問題や冷凍機の大型化が避けられないという問題の発生を抑えた上で、燃焼器6に供給する空気を第二冷却部22,22a,22b及び第三冷却部23,23a,23bによって冷却することができるため、上記と同様に、発電システムEの出力の低下を抑えることができる。
 尚、この場合には、燃焼器6に供給する空気が第三冷却部23,23a,23b、第二冷却部22,22a,22bの順に流通するように、これら2つの冷却部22,22a,22b,23,23a,23bを配置することが好ましく、このようにすれば、熱媒体がもつ冷熱を極力無駄にすることなく、空気を冷却できる。
Further, when the configuration including the second cooling units 22, 22a, 22b and the third cooling units 23, 23a, 23b is adopted, there is a problem that the energy efficiency of the entire power generation system is lowered and the size of the refrigerator is increased. The air supplied to the combustor 6 can be cooled by the second cooling units 22, 22a, 22b and the third cooling units 23, 23a, 23b, while suppressing the occurrence of the problem that the above is unavoidable. Similarly, it is possible to suppress a decrease in the output of the power generation system E.
In this case, the two cooling units 22, 22a, so that the air supplied to the combustor 6 flows in the order of the third cooling units 23, 23a, 23b and the second cooling units 22, 22a, 22b. It is preferable to arrange 22b, 23, 23a, 23b, and in this way, the air can be cooled without wasting the cold heat of the heat medium as much as possible.
〔2〕上記実施形態では、冷却装置20,20a,20bを構成する第一冷却部21,21a,21b、第二冷却部22,22a,22b及び第三冷却部23,23a,23bが、燃焼器6へと流通する空気の流通方向上流側から第三冷却部23,23a,23b、第二冷却部22,22a,22b、第一冷却部21,21a,21bの順に配置した構成としたが、これに限られるものではなく、これらの冷却部の配置は適宜設定することができる。 [2] In the above embodiment, the first cooling units 21,21a, 21b, the second cooling units 22, 22a, 22b and the third cooling units 23, 23a, 23b constituting the cooling devices 20, 20a, 20b burn. The configuration was such that the third cooling units 23, 23a, 23b, the second cooling units 22, 22a, 22b, and the first cooling units 21, 21, 21a, 21b were arranged in this order from the upstream side in the flow direction of the air flowing to the vessel 6. However, the arrangement of these cooling units is not limited to this, and can be appropriately set.
〔3〕上記実施形態においては、移動体が、燃料タンク1や気化器2、ガスタービンユニットG、排熱回収ボイラーユニット25、蒸気タービンユニットS、各発電機35,36を備えた船舶である場合を例示したが、これに限られるものではなく、少なくとも冷却装置を備えた移動体であれば良く、冷却装置に加え、ガスタービン発電に必要な構成(燃料タンク、気化器、ガスタービンユニット及び第一発電機)を備えた移動体であっても良い。
 冷却装置を備えた移動体であれば、例えば、冷却装置を備えていないコンバインドサイクル発電システムを備えた施設等に移動体を移動させることで、移動体が備えた冷却装置によって、この発電システムにおける燃焼器に供給する空気を冷却することが可能となり、ガスタービンユニットの出力低下を抑えられるようになる。
 また、冷却装置とガスタービン発電に必要な構成とを搭載するのであれば、比較的小型の移動体にも適用して実用化できる。
 尚、移動体としては、LNG船の他、LPG船、エチレン船、アンモニア船、液化水素運搬船、大型マグロ船、冷凍コンテナ船、浮船等が挙げられるが、これらに限定されず、造船所にて建造又は改造して使用地に曳航され、試用期間中又はほぼ恒久的に係留される浮体構造物、その他の陸上各種輸送機関(トラック、ドーリー車)なども含まれる。
[3] In the above embodiment, the moving body is a ship including a fuel tank 1, a vaporizer 2, a gas turbine unit G, an exhaust heat recovery boiler unit 25, a steam turbine unit S, and generators 35 and 36, respectively. Although the case has been illustrated, the case is not limited to this, and at least a moving body equipped with a cooling device may be used, and in addition to the cooling device, the configuration required for gas turbine power generation (fuel tank, vaporizer, gas turbine unit and It may be a moving body equipped with a first generator).
In the case of a moving body equipped with a cooling device, for example, by moving the moving body to a facility equipped with a combined cycle power generation system without a cooling device, the cooling device provided by the moving body can be used in this power generation system. It becomes possible to cool the air supplied to the combustor, and it becomes possible to suppress a decrease in the output of the gas turbine unit.
Further, if a cooling device and a configuration required for gas turbine power generation are installed, it can be applied to a relatively small mobile body and put into practical use.
In addition to LNG carriers, moving objects include, but are not limited to, LPG carriers, ethylene ships, ammonia ships, liquefied hydrogen carriers, large tuna ships, refrigerated container ships, floating ships, etc. It also includes floating structures that have been built or modified and towed to the site of use and moored during the trial period or almost permanently, and other various land transportation facilities (trucks, dolly vehicles).
〔4〕上記第1実施形態では、第三冷却部23及び復水冷却部32に海水を供給したり、これらの冷却部23,32から海水を回収したりするための海水用配管の一部(即ち、第一海水供給路L6、第二海水供給路L7及び海水排出路L9)を共用化し、復水冷却部32において、第三冷却部23で利用する海水を冷熱源として利用する構成としたが、これに限られるものではない。例えば、第三冷却部23に海水を供給したり、海水を回収したりする配管と、復水冷却部32に海水を供給したり、海水を回収したりする配管とをそれぞれ設け、第三冷却部23で利用する海水とは別の配管から供給される海水を復水冷却部32で利用するようにしても良い。 [4] In the first embodiment, a part of the seawater piping for supplying seawater to the third cooling unit 23 and the condensate cooling unit 32 and collecting seawater from these cooling units 23 and 32. (I. However, it is not limited to this. For example, a pipe for supplying seawater and collecting seawater to the third cooling unit 23 and a pipe for supplying seawater and collecting seawater to the condensate cooling unit 32 are provided, respectively, for third cooling. The condensate cooling unit 32 may use seawater supplied from a pipe different from the seawater used in the unit 23.
〔5〕上記第1実施形態においては、第一海水供給路L6と第二海水供給路L7とを繋ぐバイパス流路L8を設けるとともに、バイパス流路L8を流通する海水の量を調節する調節装置24を設けた構成としたが、これに限られるものではなく、必要に応じて、バイパス流路及び調節装置を設けない構成としても良い。
 また、上記第2実施形態では、第二海水供給路L7に流通する海水の量を調節する態様を採用していないが、上記第1実施形態と同様に、適宜調節装置を設けて、第二海水供給路L7に流通する海水の量を調節するようにしても良い。
[5] In the first embodiment, a bypass flow path L8 connecting the first seawater supply path L6 and the second seawater supply path L7 is provided, and an adjusting device for adjusting the amount of seawater flowing through the bypass flow path L8. Although the configuration is provided with 24, the configuration is not limited to this, and a bypass flow path and an adjusting device may be provided as necessary.
Further, in the second embodiment, the mode of adjusting the amount of seawater flowing through the second seawater supply channel L7 is not adopted, but as in the first embodiment, an appropriate adjusting device is provided to provide a second. The amount of seawater flowing through the seawater supply channel L7 may be adjusted.
〔6〕上記各実施形態では、気化器2及び第一冷却部21,21a,21bにおいて利用する熱媒体に水を用いるようにしたが、水に代えてエチレングリコールなどの不凍液を用いるようにしても良い。不凍液を用いるようにすれば、気化器2において、不凍液との熱交換によってLNGを気化して燃料ガスにすることで、当該不凍液の温度が水の場合よりも下がる(例えば0℃まで下がる)ため、このLNGから冷熱を得た不凍液を第一冷却部21において利用し、燃焼器6に供給する空気を冷却することで、例えば、10℃程度まで当該空気を冷却することができる。 [6] In each of the above embodiments, water is used as the heat medium used in the vaporizer 2 and the first cooling units 21, 21, 21a, 21b, but an antifreeze solution such as ethylene glycol is used instead of water. Is also good. If an antifreeze solution is used, the temperature of the antifreeze solution is lower than that of water (for example, to 0 ° C.) by vaporizing LNG into fuel gas by heat exchange with the antifreeze solution in the vaporizer 2. By using the antifreeze liquid obtained from the LNG in the first cooling unit 21 and cooling the air supplied to the combustor 6, the air can be cooled to, for example, about 10 ° C.
〔7〕上記各実施形態では、冷凍機10として所謂吸収式冷凍機を採用しているが、これに限られるものではなく、電動ターボ式冷凍機を採用しても良い。 [7] In each of the above embodiments, a so-called absorption chiller is adopted as the chiller 10, but the present invention is not limited to this, and an electric turbo chiller may be adopted.
〔8〕上記各実施形態においては、冷凍機10の吸収器13における高濃度の吸収液の冷却、及び凝縮器17における水蒸気の冷却に、適宜外部から供給される冷媒のもつ冷熱を利用する態様としたが、これに限られるものではない。例えば、冷媒流路Laを、第一海水供給路L6,L6aから分岐して、吸収器13内や凝縮器17内を流通し、第二海水供給路L7に接続するように設ければ、海水用配管の一部を、第三冷却部23,23a,23b及び復水冷却部32だけでなく、冷凍機の吸収器13及び凝縮器17に供給する海水の流路として共有化できるため、配管の配置をより簡略化することができる。また、冷凍機10として電動ターボ式冷凍機を採用した場合には、当該電動ターボ式冷凍機の凝縮器において使用する冷却水の流路を、第一海水供給路L6,L6aから分岐して、凝縮器内を流通し、第二海水供給路L7に接続するように設ければ、上記と同様に、海水用配管の一部を共有化でき、配管の配置をより簡略化することができる。尚、海水が流通する配管は、錆の発生等を考慮して、ステンレス製、或いはチタン製であることが好ましい。 [8] In each of the above embodiments, the cold heat of the refrigerant supplied from the outside is appropriately used for cooling the high-concentration absorbent liquid in the absorber 13 of the refrigerator 10 and cooling the water vapor in the condenser 17. However, it is not limited to this. For example, if the refrigerant flow path La is branched from the first seawater supply passages L6 and L6a, flows through the absorber 13 and the condenser 17, and is connected to the second seawater supply passage L7, seawater is provided. Since a part of the piping can be shared not only as the third cooling unit 23, 23a, 23b and the condensate cooling unit 32 but also as a flow path of seawater supplied to the absorber 13 and the condenser 17 of the refrigerator, the piping can be shared. The arrangement of can be simplified. When an electric turbo refrigerator is adopted as the refrigerator 10, the flow path of the cooling water used in the condenser of the electric turbo refrigerator is branched from the first seawater supply passages L6 and L6a. If it is provided so as to circulate in the condenser and connect to the second seawater supply path L7, a part of the seawater pipe can be shared and the arrangement of the pipe can be further simplified as described above. The pipe through which seawater flows is preferably made of stainless steel or titanium in consideration of the occurrence of rust and the like.
〔9〕上記各実施形態においては、冷熱源として利用する海水を深さ30m~70mから汲み上げたものを一例として示したが、これに限られるものではない。例えば、深層海水を冷熱源として用いることができる。 [9] In each of the above embodiments, seawater used as a cold heat source is pumped up from a depth of 30 m to 70 m as an example, but the present invention is not limited to this. For example, deep seawater can be used as a cold heat source.
〔10〕図1には、第2実施形態における熱交換器37及びバッファタンク38に相当する構成を図示していないが、第1実施形態に係る、船舶に搭載された発電システムEにおいても、第一冷却用媒体供給路L3に熱交換器及びバッファタンクを設けることが好ましい。 [10] Although FIG. 1 does not show the configuration corresponding to the heat exchanger 37 and the buffer tank 38 in the second embodiment, also in the power generation system E mounted on the ship according to the first embodiment. It is preferable to provide a heat exchanger and a buffer tank in the first cooling medium supply path L3.
〔11〕上記第2実施形態では、複数の排熱回収ボイラーユニット25a,25bで作り出した蒸気を共通の蒸気タービン30に送出する構成を採用したが、これに限られるものではなく、複数の蒸気タービンユニットSを設けるようにしても良い。 [11] In the second embodiment, a configuration is adopted in which the steam produced by the plurality of exhaust heat recovery boiler units 25a and 25b is sent to the common steam turbine 30, but the present invention is not limited to this, and a plurality of steams are used. The turbine unit S may be provided.
〔12〕上記第2実施形態においては、冷却装置20a,20bの運転状態を決定するためのガスタービンユニットGa,Gbの出力特性として、大気温度に準じて予め定められたものを用いたが、気圧や湿度、海水温度に準じて予め定められたものを用いても良い。 [12] In the second embodiment, as the output characteristics of the gas turbine units Ga and Gb for determining the operating state of the cooling devices 20a and 20b, those predetermined in accordance with the atmospheric temperature are used. Predetermined ones may be used according to the atmospheric pressure, humidity, and seawater temperature.
〔13〕上記第2実施形態では、予め定めた冷却装置20a,20bの運転状態で、所定の大気温度下において所定の電力需要を賄うことが可能となるように、ガスタービンユニットGa,Gbの運転台数を決定した上でガスタービンユニットGa,Gbを稼働させ、その後、電力需要や大気温度の変化に応じて、冷却装置20a,20bの運転状態やガスタービンユニットGa,Gbの運転台数を適宜変更する態様としたが、これに限られるものではない。
 まず、電力需要とガスタービンユニットGa,Gbの出力特性とに基づいて冷却装置20a,20bの運転状態を決定し、更に、この決定した運転状態と電力需要とに基づいてガスタービンユニットGa,Gbの運転台数を決定した上で、ガスタービンユニットGa,Gbを稼働させるようにしても良い。
 また、一日における大気温度の変化や電力需要の変化が予め分かっているような場合には、最も大気温度が高い状態や最も電力需要が多い状態に合わせて、予め冷却装置20a,20bの運転状態やガスタービンユニットGa,Gbの運転台数を決定するようにしても良い。
[13] In the second embodiment, the gas turbine units Ga and Gb are provided so as to be able to meet a predetermined power demand under a predetermined atmospheric temperature in a predetermined operating state of the cooling devices 20a and 20b. After determining the number of operating units, the gas turbine units Ga and Gb are operated, and then the operating state of the cooling devices 20a and 20b and the number of operating units of the gas turbine units Ga and Gb are appropriately adjusted according to the power demand and changes in the atmospheric temperature. The mode is changed, but the present invention is not limited to this.
First, the operating states of the cooling devices 20a and 20b are determined based on the power demand and the output characteristics of the gas turbine units Ga and Gb, and further, the gas turbine units Ga and Gb are determined based on the determined operating state and the power demand. The gas turbine units Ga and Gb may be operated after determining the number of operating units.
Further, when the change in the atmospheric temperature and the change in the electric power demand in one day are known in advance, the cooling devices 20a and 20b are operated in advance according to the state where the atmospheric temperature is the highest and the electric power demand is the highest. The state and the number of operating gas turbine units Ga and Gb may be determined.
〔14〕上記第2実施形態においては、冷却装置20a,20bの運転状態を変える場合として、冷凍機10から第二冷却部へと供給する冷水の温度を下げる場合(即ち、第二冷却部22a,22bによる空気の冷却度合を上げる場合)を示したが、これに限られるものではない。
 冷却装置20a,20bの運転状態は、第一冷却部21a,21b、第二冷却部22a,22b及び第三冷却部23a,23bのうちの少なくともいずれかの冷却部による空気の冷却度合を変えることで変更できる。
 例えば、海水温度センサTaで計測された海水の温度が高く、第三冷却部23a,23bによる空気の冷却が有効でないと考えられる場合がある。この場合には、第一海水供給路L6a,L6bに適宜設けられる調整弁を閉弁して、冷却装置20a,20bの運転状態を、3つの冷却部21a,21b,22a,22b,23a,23bで空気を冷却する運転状態から第一冷却部21a,21b及び第二冷却部22a,22bで空気を冷却し、第三冷却部23a,23bで空気を冷却しない運転状態(言い換えれば、第一冷却部21a,21b及び第二冷却部22a,22bによる空気の冷却度合を変えずに、第三冷却部23a,23bによる空気の冷却度合を下げた運転状態)に変えることもできる。
[14] In the second embodiment, as a case of changing the operating state of the cooling devices 20a and 20b, a case of lowering the temperature of the cold water supplied from the refrigerator 10 to the second cooling unit (that is, the second cooling unit 22a). , 22b to increase the degree of cooling of air), but the present invention is not limited to this.
The operating state of the cooling devices 20a and 20b changes the degree of cooling of air by at least one of the first cooling units 21a and 21b, the second cooling units 22a and 22b and the third cooling unit 23a and 23b. Can be changed with.
For example, the temperature of seawater measured by the seawater temperature sensor Ta may be high, and it may be considered that the cooling of air by the third cooling units 23a and 23b is not effective. In this case, the regulating valves appropriately provided in the first seawater supply paths L6a and L6b are closed to change the operating state of the cooling devices 20a and 20b to the three cooling units 21a, 21b, 22a, 22b, 23a and 23b. In an operating state in which the air is cooled by the first cooling units 21a and 21b and the second cooling units 22a and 22b, and the air is not cooled by the third cooling units 23a and 23b (in other words, the first cooling). It is also possible to change to an operating state in which the cooling degree of air by the third cooling portions 23a and 23b is lowered without changing the cooling degree of air by the portions 21a and 21b and the second cooling portions 22a and 22b).
〔15〕上記第2実施形態においては、電力需要とガスタービンユニットの出力特性とに基づいて、第一冷却部21a,21b、第二冷却部22a,22b及び第三冷却部23a,23bによる空気の冷却度合を決定することで、冷却装置20a,20bの運転状態を決定するようにしているが、これに限られるものではない。
 大気の状態(大気温度や気圧、湿度など)に応じて、冷却装置20a,20bの運転状態を決定し、第一冷却部21a,21b、第二冷却部22a,22b及び第三冷却部23a,23bによる空気の冷却度合を決定しても良い。
 例えば、大気温度が低い場合(20~30℃程度)には、冷却装置20a,20bの運転状態をこの温度が低い空気を所定の温度まで冷却できるような冷却能力で運転する状態と決定し、このような運転状態となるように、各冷却部21a,21b,22a,22b,23a,23bによる空気の冷却度合を決定するようにしても良い。
[15] In the second embodiment, the air produced by the first cooling units 21a and 21b, the second cooling units 22a and 22b, and the third cooling units 23a and 23b is based on the power demand and the output characteristics of the gas turbine unit. The operating state of the cooling devices 20a and 20b is determined by determining the degree of cooling, but the present invention is not limited to this.
The operating states of the cooling devices 20a and 20b are determined according to the atmospheric conditions (atmospheric temperature, atmospheric pressure, humidity, etc.), and the first cooling units 21a and 21b, the second cooling units 22a and 22b, and the third cooling unit 23a, The degree of cooling of the air by 23b may be determined.
For example, when the atmospheric temperature is low (about 20 to 30 ° C.), the operating state of the cooling devices 20a and 20b is determined to be a state in which the air having a low temperature is operated with a cooling capacity capable of cooling to a predetermined temperature. The degree of cooling of air by each of the cooling units 21a, 21b, 22a, 22b, 23a, and 23b may be determined so as to obtain such an operating state.
〔16〕第2実施形態においては、冷却装置20a,20bの運転状態やガスタービンユニットGa,Gbの運転台数の決定に際して、ガスタービンユニットGa,Gbの出力特性を考慮するようにしているが、これに限られるものではなく、ガスタービンユニットGa,Gbの効率特性を考慮して、発電システムの運転制御を行うようにしても良い。ガスタービンユニットGa,Gbの効率特性を考慮した発電システムの運転制御の一例について、図5を参照して説明する。
 尚、図5は、ガスタービンユニットの効率特性を示すグラフであり、同図中の一点鎖線Z1は、燃焼器に供給する空気が15℃となるように冷却装置を運転した状態で負荷率60%である場合のガスタービンユニット1台あたりの効率特性(第一効率特性)を示し、一点鎖線Z2は、燃焼器に供給する空気が15℃となるように冷却装置を運転した状態で負荷率100%である場合のガスタービンユニット1台当たりの効率特性(第二効率特性)を示し、二点鎖線Z3は、燃焼器に供給する空気が10℃となるように冷却装置を運転した状態で負荷率100%である場合のガスタービンユニット1台当たりの効率特性(第三効率特性)を示す。
 大気温度20℃において、燃焼器に供給する空気が15℃となるように冷却装置を負荷率60%で運転し、ガスタービンユニットを2台稼働させた状態(図5中の黒丸(1)の状態)から、ガスタービンユニットの運転台数及び空気の冷却度合を変えずに大気温度が35℃に上昇した状態(図5中の黒丸(2)の状態)になると、ガスタービンユニット1台当たりの効率は低下する。この状態(図5中の黒丸(2)の状態)から、燃焼器に供給する空気が15℃となるようにガスタービン出力と冷却装置とが負荷率100%で運転した状態(図5中の黒丸(3)の状態)にすることで、ガスタービンユニット1台当たりの効率を向上させることができる。その後、大気温度が27℃まで低下し、同時に電力需要も低下してガスタービンユニット1台当たりの効率が低下したような状態(図5中の黒丸(4)の状態)となった際に、電力需要を賄うことができることを条件に、冷凍機から供給する冷水の温度を下げるなどの方法によって、燃焼器に供給する空気が10℃となるように冷却装置を運転して、ガスタービンユニットの運転台数を1台に減らした状態(図5中の黒丸(5)の状態)にする。そうすることで、冷却装置による冷却能力を上げるという点からすればガスタービンユニット1台当たりの効率は若干低下するが、ガスタービンユニットの運転台数を1台に減らしていることで、ガスタービンユニット1台当たりの効率は最終的に向上する。
 このように、ガスタービンユニットの効率特性を考慮して発電システムの運転制御を行うことで、ガスタービンユニットを効率良く稼働させることができる。
[16] In the second embodiment, the output characteristics of the gas turbine units Ga and Gb are taken into consideration when determining the operating state of the cooling devices 20a and 20b and the number of operating gas turbine units Ga and Gb. The operation is not limited to this, and the operation of the power generation system may be controlled in consideration of the efficiency characteristics of the gas turbine units Ga and Gb. An example of operation control of the power generation system in consideration of the efficiency characteristics of the gas turbine units Ga and Gb will be described with reference to FIG.
FIG. 5 is a graph showing the efficiency characteristics of the gas turbine unit, and the one-point chain line Z1 in the figure shows a load factor of 60 in a state where the cooling device is operated so that the air supplied to the combustor is 15 ° C. The efficiency characteristic per gas turbine unit (first efficiency characteristic) when it is% is shown, and the one-point chain wire Z2 shows the load factor in a state where the cooling device is operated so that the air supplied to the combustor becomes 15 ° C. The efficiency characteristic per gas turbine unit (second efficiency characteristic) when it is 100% is shown, and the two-point chain wire Z3 is in a state where the cooling device is operated so that the air supplied to the combustor becomes 10 ° C. The efficiency characteristics (third efficiency characteristics) per gas turbine unit when the load factor is 100% are shown.
At an air temperature of 20 ° C., the cooling device was operated at a load factor of 60% so that the air supplied to the combustor was 15 ° C., and two gas turbine units were operated (black circles (1) in FIG. 5). From the state), when the atmospheric temperature rises to 35 ° C. (the state of the black circle (2) in FIG. 5) without changing the number of operating gas turbine units and the degree of air cooling, one gas turbine unit per unit. Efficiency is reduced. From this state (the state of the black circle (2) in FIG. 5), the gas turbine output and the cooling device are operated at a load factor of 100% so that the air supplied to the combustor becomes 15 ° C. (in FIG. 5). By setting the black circle (3)), the efficiency per gas turbine unit can be improved. After that, when the air temperature dropped to 27 ° C., and at the same time, the power demand also dropped and the efficiency per gas turbine unit decreased (the state of the black circle (4) in FIG. 5). On condition that the power demand can be met, the cooling device is operated so that the air supplied to the combustor becomes 10 ° C. by a method such as lowering the temperature of the cold water supplied from the refrigerator, and the gas turbine unit is operated. The number of operating units is reduced to one (the state of the black circle (5) in FIG. 5). By doing so, the efficiency per gas turbine unit will be slightly reduced from the viewpoint of increasing the cooling capacity of the cooling device, but by reducing the number of operating gas turbine units to one, the gas turbine unit The efficiency per unit will eventually improve.
In this way, by controlling the operation of the power generation system in consideration of the efficiency characteristics of the gas turbine unit, the gas turbine unit can be operated efficiently.
〔17〕上記実施形態(別実施形態を含む)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 [17] The configuration disclosed in the above embodiment (including another embodiment) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction, and the present specification. The embodiments disclosed in the document are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.
 本発明は、燃焼手段に供給する空気を効率良く冷却することができ、ガスタービンユニットの出力の低下を抑えることができる冷却装置を備えた移動体に利用できる。 The present invention can be used for a moving body provided with a cooling device capable of efficiently cooling the air supplied to the combustion means and suppressing a decrease in the output of the gas turbine unit.
1  燃料タンク
2  気化器(気化部)
6  燃焼器(燃焼手段)
7,7a,7b  ガスタービン
10 冷凍機
20,20a,20b 冷却装置
21,21a,21b 第一冷却部
22,22a,22b 第二冷却部
23,23a,23b 第三冷却部
24 調節装置(調節手段)
25,25a,25b 排熱回収ボイラーユニット
30 蒸気タービン
31 復水器
32 復水冷却部
35 第一発電機(第一発電手段)
36 第二発電機(第二発電手段)
L6,L6a,L6b 第一海水供給路(第一海水流路)
L7 第二海水供給路(第二海水流路)
L8 バイパス流路
G,Ga,Gb  ガスタービンユニット
S  蒸気タービンユニット
E,E1  発電システム
1 Fuel tank 2 Vaporizer (vaporizer)
6 Combustor (combustion means)
7,7a, 7b Gas turbine 10 Refrigerator 20, 20a, 20b Cooling device 21, 21a, 21b First cooling unit 22, 22a, 22b Second cooling unit 23, 23a, 23b Third cooling unit 24 Adjusting device (adjusting means) )
25, 25a, 25b Exhaust heat recovery boiler unit 30 Steam turbine 31 Condenser 32 Condensation cooling unit 35 First generator (first power generation means)
36 Second generator (second power generation means)
L6, L6a, L6b 1st seawater supply channel (1st seawater channel)
L7 Second seawater supply channel (second seawater channel)
L8 Bypass flow path G, Ga, Gb Gas turbine unit S Steam turbine unit E, E1 Power generation system

Claims (18)

  1.  液体燃料が気化した燃料ガス及び空気との混合気を燃焼手段で燃焼して燃焼ガスを発生させて、当該燃焼手段で発生した燃焼ガスによってガスタービンが回転駆動するガスタービンユニットと、前記ガスタービンの回転力を利用して発電する第一発電手段とを備えた発電システムに用いられ、前記燃焼手段に供給する空気の冷却に供される冷却装置、を備えた移動体であって、
     前記冷却装置は、
     前記液体燃料を気化するために利用した熱媒体を冷熱源として利用する第一冷却部、冷凍機からの熱媒体を冷熱源として利用する第二冷却部及び熱媒体としての海水を冷熱源として利用する第三冷却部のうち、少なくともいずれか二つを備える移動体。
    A gas turbine unit in which a mixture of fuel gas vaporized from liquid fuel and air is burned by a combustion means to generate a combustion gas, and the gas turbine is rotationally driven by the combustion gas generated by the combustion means, and the gas turbine. It is a moving body provided with a cooling device, which is used in a power generation system provided with a first power generation means for generating power by utilizing the rotational force of the above combustion means and is used for cooling the air supplied to the combustion means.
    The cooling device
    The first cooling unit that uses the heat medium used to vaporize the liquid fuel as a cold heat source, the second cooling unit that uses the heat medium from the refrigerator as a cold heat source, and seawater as a heat medium are used as cold heat sources. A moving body including at least two of the third cooling units.
  2.  前記冷却装置は、前記第一冷却部と前記第二冷却部とを備える請求項1に記載の移動体。 The moving body according to claim 1, wherein the cooling device includes the first cooling unit and the second cooling unit.
  3.  前記冷却装置は、前記燃焼手段に供給する空気が前記第二冷却部、前記第一冷却部の順に流通するように、前記第一及び第二冷却部が配置されている請求項2に記載の移動体。 The second aspect of the present invention, wherein the first and second cooling units are arranged so that the air supplied to the combustion means flows in the order of the second cooling unit and the first cooling unit. Mobile body.
  4.  前記冷却装置は、前記第一冷却部と前記第三冷却部とを備える請求項1に記載の移動体。 The moving body according to claim 1, wherein the cooling device includes the first cooling unit and the third cooling unit.
  5.  前記冷却装置は、前記燃焼手段に供給する空気が前記第三冷却部、前記第一冷却部の順に流通するように、前記第一及び第三冷却部が配置されている請求項4に記載の移動体。 The fourth aspect of the present invention, wherein the first and third cooling units are arranged in the cooling device so that the air supplied to the combustion means flows in the order of the third cooling unit and the first cooling unit. Mobile body.
  6.  前記冷却装置は、前記第二冷却部と前記第三冷却部とを備える請求項1に記載の移動体。 The moving body according to claim 1, wherein the cooling device includes the second cooling unit and the third cooling unit.
  7.  前記冷却装置は、前記燃焼手段に供給する空気が前記第三冷却部、前記第二冷却部の順に流通するように、前記第二及び第三冷却部が配置されている請求項6に記載の移動体。 The sixth aspect of claim 6 in which the second and third cooling units are arranged so that the air supplied to the combustion means flows in the order of the third cooling unit and the second cooling unit. Mobile body.
  8.  前記冷却装置は、前記第一冷却部と前記第二冷却部と前記第三冷却部とを備える請求項1に記載の移動体。 The moving body according to claim 1, wherein the cooling device includes the first cooling unit, the second cooling unit, and the third cooling unit.
  9.  前記冷却装置は、前記燃焼手段に供給する空気が前記第三冷却部、前記第二冷却部、前記第一冷却部の順に流通するように、前記第一、第二及び第三冷却部が配置されている請求項8に記載の移動体。 In the cooling device, the first, second and third cooling units are arranged so that the air supplied to the combustion means flows in the order of the third cooling unit, the second cooling unit, and the first cooling unit. The moving body according to claim 8.
  10.  前記液体燃料が貯蔵された燃料タンクと、
     前記第一冷却部で利用する前記熱媒体を温熱源として利用して前記液体燃料を気化する気化部と、
     前記ガスタービンユニットと、
     前記第一発電手段と、を備える請求項1~9のいずれか一項に記載の移動体。
    The fuel tank in which the liquid fuel is stored and
    A vaporization unit that vaporizes the liquid fuel by using the heat medium used in the first cooling unit as a heat source.
    With the gas turbine unit
    The mobile body according to any one of claims 1 to 9, further comprising the first power generation means.
  11.  前記ガスタービンユニットからの排ガスによって水を気化する排熱回収ボイラーユニットと、
     前記排熱回収ボイラーユニットで気化された蒸気により蒸気タービンが回転駆動する蒸気タービンユニットと、
     前記蒸気タービンの回転力を利用して発電する第二発電手段と、を備え、
     船舶である請求項10に記載の移動体。
    An exhaust heat recovery boiler unit that vaporizes water with exhaust gas from the gas turbine unit,
    A steam turbine unit in which the steam turbine is rotationally driven by steam vaporized in the exhaust heat recovery boiler unit, and
    A second power generation means for generating power by utilizing the rotational force of the steam turbine is provided.
    The moving body according to claim 10, which is a ship.
  12.  前記冷却装置は、前記第三冷却部を備え、
     前記蒸気タービンユニットは、前記蒸気タービンの回転駆動に利用した蒸気を復水として回収する復水器と、
     前記第三冷却部において利用する前記海水を冷熱源として利用し、前記復水器の内部を冷却する復水冷却部とを備える請求項11に記載の移動体。
    The cooling device includes the third cooling unit.
    The steam turbine unit includes a condenser that recovers steam used for rotationally driving the steam turbine as condensate.
    The mobile body according to claim 11, further comprising a condensate cooling unit that cools the inside of the condenser by using the seawater used in the third cooling unit as a cooling heat source.
  13.  前記第三冷却部に供給される前記海水が流通する第一海水流路と、
     前記第三冷却部から前記復水冷却部へと供給される前記海水が流通する第二海水流路と、
     前記第一海水流路と前記第二海水流路とを繋ぐバイパス流路と、
     前記バイパス流路を流通する前記海水の量を調節する調節手段とを備える請求項12に記載の移動体。
    The first seawater flow path through which the seawater supplied to the third cooling unit flows, and
    A second seawater flow path through which the seawater supplied from the third cooling unit to the condensate cooling unit flows,
    A bypass flow path connecting the first seawater flow path and the second seawater flow path,
    The moving body according to claim 12, further comprising an adjusting means for adjusting the amount of seawater flowing through the bypass flow path.
  14.  電力需要と前記冷却装置の運転状態とに基づいて、前記ガスタービンユニットの運転台数を決定する請求項1~13のいずれか一項に記載の移動体。 The moving body according to any one of claims 1 to 13, which determines the number of operating gas turbine units based on the power demand and the operating state of the cooling device.
  15.  電力需要と前記ガスタービンユニットの出力特性とに基づいて、前記冷却装置の運転状態を決定する請求項1~14のいずれか一項に記載の移動体。 The moving body according to any one of claims 1 to 14, which determines the operating state of the cooling device based on the electric power demand and the output characteristics of the gas turbine unit.
  16.  前記冷却装置は、前記第一冷却部と、前記第二冷却部及び前記第三冷却部のうちの少なくともいずれか一方とを備え、
     前記燃焼手段に供給する空気を前記第一冷却部によって冷却する状態で、前記電力需要と前記ガスタービンユニットの出力特性とに基づいて、前記第二冷却部及び前記第三冷却部の少なくとも一方による前記燃焼手段に供給する空気の冷却度合を決定することで、前記冷却装置の運転状態を決定する請求項15に記載の移動体。
    The cooling device includes the first cooling unit and at least one of the second cooling unit and the third cooling unit.
    With the air supplied to the combustion means cooled by the first cooling unit, at least one of the second cooling unit and the third cooling unit is used based on the power demand and the output characteristics of the gas turbine unit. The moving body according to claim 15, wherein the operating state of the cooling device is determined by determining the degree of cooling of the air supplied to the combustion means.
  17.  前記冷却装置は、前記第一冷却部、前記第二冷却部及び前記第三冷却部を備え、
     前記燃焼手段に供給する空気を前記第一冷却部及び前記第三冷却部によって冷却する状態で、前記電力需要と前記ガスタービンユニットの出力特性とに基づいて、前記第二冷却部による前記燃焼手段に供給する空気の冷却度合を決定することで、前記冷却装置の運転状態を決定する請求項15に記載の移動体。
    The cooling device includes the first cooling unit, the second cooling unit, and the third cooling unit.
    With the air supplied to the combustion means cooled by the first cooling unit and the third cooling unit, the combustion means by the second cooling unit is based on the power demand and the output characteristics of the gas turbine unit. The moving body according to claim 15, wherein the operating state of the cooling device is determined by determining the degree of cooling of the air supplied to the cooling device.
  18.  大気の状態及び前記冷却装置の状況のうちの少なくともいずれか一方に応じて、前記冷却装置の運転状態を決定し、前記第一冷却部、前記第二冷却部及び前記第三冷却部のうちの少なくともいずれかによる前記燃焼手段に供給する空気の冷却度合を決定する請求項1~14のいずれか一項に記載の移動体。 The operating state of the cooling device is determined according to at least one of the air condition and the state of the cooling device, and the operating state of the first cooling unit, the second cooling unit, and the third cooling unit is determined. The moving body according to any one of claims 1 to 14, which determines the degree of cooling of the air supplied to the combustion means by at least one of them.
PCT/JP2019/022900 2019-03-29 2019-06-10 Moving body WO2020202590A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021511082A JP7146070B2 (en) 2019-03-29 2019-06-10 mobile
CN201980095023.6A CN113614347A (en) 2019-03-29 2019-06-10 Moving body
KR1020217031901A KR20210143209A (en) 2019-03-29 2019-06-10 moving body
SG11202110787TA SG11202110787TA (en) 2019-03-29 2019-06-10 Moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067320 2019-03-29
JP2019067320 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202590A1 true WO2020202590A1 (en) 2020-10-08

Family

ID=72668470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022900 WO2020202590A1 (en) 2019-03-29 2019-06-10 Moving body

Country Status (5)

Country Link
JP (1) JP7146070B2 (en)
KR (1) KR20210143209A (en)
CN (1) CN113614347A (en)
SG (1) SG11202110787TA (en)
WO (1) WO2020202590A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797933A (en) * 1993-09-29 1995-04-11 Toshiba Corp Intake air cooling device of gas turbine
KR20100047716A (en) * 2008-10-29 2010-05-10 (주)엑서지엔지니어링 Air cooling apparustus for gas turbine
JP2015155689A (en) * 2014-01-20 2015-08-27 三菱重工業株式会社 Liquefied gas cold utilization system and liquefied gas cold utilization method
WO2016078790A1 (en) * 2014-11-20 2016-05-26 Siemens Aktiengesellschaft Apparatus and method for cooling or heating the air inlet of a gas turbine
KR20180046625A (en) * 2016-10-28 2018-05-09 삼성중공업 주식회사 Gas turbine generating apparatus and startup operating method of the same
JP2018141381A (en) * 2017-02-27 2018-09-13 三菱重工業株式会社 Marine power generating system and power generation method of marine power generating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112505C (en) * 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 Liquefied natural gas (LNG) fueled combined cycle power plant and LNG fueled gas turbine plant
JPH10238368A (en) * 1996-10-12 1998-09-08 Yoshihide Nakamura Combined cycle system
JP2000204909A (en) 1999-01-11 2000-07-25 Osaka Gas Co Ltd Lng cryogenic power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797933A (en) * 1993-09-29 1995-04-11 Toshiba Corp Intake air cooling device of gas turbine
KR20100047716A (en) * 2008-10-29 2010-05-10 (주)엑서지엔지니어링 Air cooling apparustus for gas turbine
JP2015155689A (en) * 2014-01-20 2015-08-27 三菱重工業株式会社 Liquefied gas cold utilization system and liquefied gas cold utilization method
WO2016078790A1 (en) * 2014-11-20 2016-05-26 Siemens Aktiengesellschaft Apparatus and method for cooling or heating the air inlet of a gas turbine
KR20180046625A (en) * 2016-10-28 2018-05-09 삼성중공업 주식회사 Gas turbine generating apparatus and startup operating method of the same
JP2018141381A (en) * 2017-02-27 2018-09-13 三菱重工業株式会社 Marine power generating system and power generation method of marine power generating system

Also Published As

Publication number Publication date
CN113614347A (en) 2021-11-05
SG11202110787TA (en) 2021-10-28
KR20210143209A (en) 2021-11-26
JP7146070B2 (en) 2022-10-03
JPWO2020202590A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5456525B2 (en) Waste heat recovery device
JP5495526B2 (en) Heat source system and control method thereof
US11300010B2 (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JP7251225B2 (en) power generation system
JP2016008042A (en) Binary power generation system for lng ship
JP2015155787A (en) Refrigerant circulation device for air conditioner of ship using cold heat of lng
JPH0252962A (en) Method and device for generating cold heat
JPH10332090A (en) Treatment method of liquefied gas cooled at low temperature
JP2010144995A (en) Refrigerating system utilizing exhaust heat
JPWO2008139528A1 (en) Cooling cycle system, natural gas liquefaction facility, cooling cycle system operating method and remodeling method
JP3354750B2 (en) LNG vaporizer for fuel of natural gas-fired gas turbine combined cycle power plant
KR20150117635A (en) Configurations and methods for ambient air vaporizers and cold utilization
JP2014152950A (en) Refrigeration system, ship, and operation method of refrigeration system
JP2000018049A (en) Cooling system for combustion air gas turbine and cooling method
WO2020202590A1 (en) Moving body
JP2002081791A (en) Exhaust heat absorption refrigerating machine
KR20160004169A (en) Cargo box or container with self electricity generate refrigeration system
JP2005291094A (en) Power plant facility using liquefied gas vaporizing device
JP3696931B2 (en) Power generation facility using liquid air
KR101876973B1 (en) Fuel Gas Supply System and Method for Vessel
KR101215477B1 (en) Combustion air cooling systemm of engine for vessel
JP2001174098A (en) Waste heat absorption refrigerating machine
JP2971082B2 (en) Gas turbine equipment and operation method thereof
JP4005884B2 (en) Ammonia absorption refrigerator
JP2007040286A (en) Gas turbine plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217031901

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19923490

Country of ref document: EP

Kind code of ref document: A1