WO2020200266A1 - 一种电动阀 - Google Patents

一种电动阀 Download PDF

Info

Publication number
WO2020200266A1
WO2020200266A1 PCT/CN2020/082916 CN2020082916W WO2020200266A1 WO 2020200266 A1 WO2020200266 A1 WO 2020200266A1 CN 2020082916 W CN2020082916 W CN 2020082916W WO 2020200266 A1 WO2020200266 A1 WO 2020200266A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
lower section
sealing
section
electric valve
Prior art date
Application number
PCT/CN2020/082916
Other languages
English (en)
French (fr)
Inventor
吕铭
钱柏江
Original Assignee
浙江三花制冷集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910381370.7A external-priority patent/CN111765252B/zh
Application filed by 浙江三花制冷集团有限公司 filed Critical 浙江三花制冷集团有限公司
Priority to KR1020217021849A priority Critical patent/KR102535388B1/ko
Priority to US17/312,334 priority patent/US11835145B2/en
Publication of WO2020200266A1 publication Critical patent/WO2020200266A1/zh
Priority to US18/495,322 priority patent/US20240060567A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/02Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle

Definitions

  • the invention relates to the technical field of fluid control, in particular to an electric valve.
  • Fig. 11 is a partial structural diagram of an electric valve in the background art.
  • the electric valve shown in Figure 11 includes a valve seat 01, a fluid inlet 02 and a fluid outlet 03.
  • the valve seat 01 includes a valve port 011, and the valve core 04 can axially move to abut or separate from the valve port 011 to close or open the valve port 012 of the electric valve. How to reduce the internal leakage when the electric valve is closed is a technical problem that those skilled in the art are constantly trying to solve.
  • the purpose of the present invention is to provide an electric valve which reduces internal leakage when the electric valve is closed.
  • the electric valve disclosed in the present invention includes a valve body part, a valve seat part, and a valve core part.
  • the valve core part is arranged in the inner cavity of the valve body part.
  • the valve core part includes a valve core. It is tubular, the valve core includes a body portion and a lower section, the lower section is roughly annular, the outer diameter of the lower section is roughly equal in diameter, and the inner diameter of the lower section is roughly equal in diameter, so
  • the valve seat member includes a first sealing portion, an end of the lower section can be abutted or separated from the first sealing portion, the valve body member includes a bushing member, and the valve core member includes a second sealing portion ,
  • the valve core member is in sliding fit with the bushing member through the second sealing portion, and the second sealing portion is attached to the inner wall of the bushing member; defining the inner cavity includes the valve core
  • the first cavity above the component, the valve core component includes a balance flow path, when the end of the lower section abuts the first sealing portion,
  • the lower section is roughly annular, the outer diameter of the lower section is roughly equal in diameter, and the inner diameter of the lower section is roughly equal in diameter.
  • the valve core component includes a second sealing portion that defines a second seal.
  • the diameter of the ring line of the axial projection of the outer edge of the lower section is D 1
  • the outer diameter of the lower section is defined as D 2
  • the inner diameter of the lower section is defined as D 3 , then 0.2mm 2 ⁇ D 1 *(D 2 -D 3 ) ⁇ 6mm 2 to reduce internal leakage when the electric valve is closed.
  • Figure 1 A schematic structural diagram of an electric valve provided by the present invention in a closed state
  • Figure 2 Partial enlarged view of I 1 in Figure 1;
  • FIG. 3 is a schematic diagram showing the structure of the valve core in Figure 1;
  • FIG. 4A shows a partial enlarged view of I 2 in FIG. 3;
  • FIG. 4B shows a schematic structural diagram of a first modification at I 2 in FIG. 3;
  • FIG. 4C is a schematic structural diagram of a second modification at I 2 in FIG. 3;
  • FIG. 4D shows a schematic structural diagram of a third modification at I 2 in FIG. 3;
  • Figure 5A shows a schematic diagram of the force analysis of the valve core component when the fluid enters in the forward direction
  • Figure 5B shows a schematic diagram of the force analysis of the valve core component when the fluid enters in the reverse direction
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of the electric valve of the present invention.
  • Fig. 7 is a partial structural diagram of Fig. 6;
  • Figure 8 shows a schematic diagram of the structure of the valve core in Figure 6;
  • FIG. 9 is a schematic structural diagram of Embodiment 3 of the electric valve provided by the present invention.
  • Fig. 10 shows a partial structural diagram of the electric valve in Fig. 9;
  • Fig. 11 is a partial structural diagram of an electric valve in the background art.
  • the "fixed connection” mentioned in this party can mean that two parts are directly fixedly connected, or two parts can be fixedly connected through other parts, that is, two parts are indirectly fixedly connected.
  • FIG embodiment of the present invention is a structure of the motor-driven valve 1 shown in FIG. 2 is a partial enlarged view at I 1 in FIG. 1
  • FIG. 3 is a schematic structural diagram of the valve body in FIG. 1
  • FIG. 4A It is a partial enlarged view of I 2 in Figure 3.
  • the electric valve includes a valve body part 10, a valve seat part 20, a valve core part 30 and a sealing assembly.
  • the valve body component 10 includes a valve body 11, and the valve body 11 is provided with a second fluid port A.
  • the valve seat component 20 includes a valve seat 21 and a sealing ring 22, and a first fluid port B is provided on the valve seat 21.
  • the valve core member 30 is arranged in the inner cavity of the valve body member 10.
  • the valve core member 30 includes a valve core 31, which is approximately tubular, and the valve core 31 includes a circular ring shape (not only refers to the absolute equal diameter of the inner diameter and the outer diameter, respectively).
  • the sealing ring 22 includes a first sealing portion 221, and the end of the lower section 311 can abut or be separated from the first sealing portion 221 to disconnect or communicate with the second fluid port A and the first fluid port B.
  • the valve body part 10 is also Including the bushing part 12, the valve core part 30 includes a second sealing part 321, the valve core 31 is slidingly fitted with the bushing part 12 through the second sealing part 321, and the second sealing part 321 is attached to the inner wall of the bushing part 12 to define
  • the inner cavity of the valve body part 10 includes a first cavity 50 located above the valve core part 30.
  • the valve core part 30 includes a balance flow path E. When the valve core 31 abuts the sealing ring 22, the first cavity 50 and the second fluid The port A is not connected, and the first cavity 50 and the first fluid port B are connected through the balance flow path E. It can be understood with reference to the drawings that such a design is beneficial to the force balance of the valve core component 30.
  • the valve core 31 includes a body portion 312, and the body portion 312 of the valve core 31 includes a small diameter section 3121 and a large diameter section 3122, that is, the outer diameter of the large diameter section 3122 is larger than that of the small diameter section 3121 .
  • the bushing member 12 includes a bushing 121 whose outer wall is welded and fixed to the valve body member 10.
  • the bushing 121 includes a substantially cylindrical first cylindrical portion 1211, and the inner diameters of the first cylindrical portion 1211 are substantially equal.
  • the valve core component 30 further includes a sealing assembly, which abuts between the outer wall of the small diameter section 3121 and the inner wall of the first cylindrical portion 1211.
  • the sealing assembly includes a sealing ring 35 and a gasket 36.
  • the large-diameter section 3122 of the body portion 312 can slide relative to the inner wall of the first cylindrical portion 1211.
  • the sealing ring 35 is arranged between the gasket 36 and the small-diameter section 3121 to seal The inner wall of the ring 35 abuts against the outer wall of the small diameter section 3121, and the outer wall of the gasket 36 abuts against the inner wall of the first cylindrical portion 1211 to form a dynamic seal between the valve core 31 and the bushing member 12.
  • the dynamic seal refers to ,
  • the sealing assembly can slide relative to the bushing 121, but the sealing assembly forms a seal between the valve core member 30 and the bushing 121, that is, the upper side and the lower side of the sealing assembly are not connected at this location, and the gasket 36 includes the aforementioned
  • the second sealing portion 321 defines the diameter of the ring line of the outer edge of the second sealing portion 321 in the lower section 311 in the axial projection of the ring line as D 1.
  • the inner diameter of the first cylindrical portion 1211 is D 1
  • the outer diameter of the lower section 111 is defined as D 2
  • the inner diameter of the lower section 311 is defined as D 3
  • the outer edge of the second sealing portion 321 is projected on the cross section of the lower section 311 as the diameter D 1 of the ring line and the lower section 311
  • the relationship between the diameter D 2 of the outer diameter and the inner diameter D 3 of the lower section 311 satisfies 1mm 2 ⁇ D 1 * (D 2- D 3 ) ⁇ 6mm 2 to reduce internal leakage when the electric valve is closed.
  • the wall of the lower section 311 will not be too thin, which is convenient for processing.
  • the valve core 31 The strength reliability is also good, and the sealing reliability is good. Furthermore, when the valve core 31 abuts against the sealing ring 22 described below to close the valve, if the sealing ring 22 is made of a soft material, such as a rubber material, this design reduces the lower section 311.
  • the risk of exceeding the material bearing limit of the sealing ring 22 reduces the impact of the lower section 311 of the valve core 31 on the sealing ring 22, which is beneficial to prolong the service life of the sealing ring, so that the valve core 31 and the sealing ring 22 are better matched, reducing valve closing
  • the internal leakage at the time is conducive to the valve closing reliability of the electric valve.
  • the range of D 1 *(D 2 -D 3 ) is given above.
  • the lower limit of this range is 1mm 2. It is understandable that according to the change of the material of the seal ring 22, the lower limit of D 1 *(D 2 -D 3 )
  • the limit value can be adjusted. Under the premise that the sealing ring 22 is made of soft material, the material hardness is higher, and the lower limit value can be adjusted to be relatively small.
  • the range of D 1 *(D 2 -D 3 ) becomes larger. If the hardness is lower, the lower limit can be adjusted to be relatively large, and the range of D 1 *(D 2 -D 3 ) is relatively small.
  • the minimum lower limit can be adjusted to 0.2mm 2 , that is, D 1 *(D 2 -D 3 ) ⁇ 0.2mm 2 , which can also achieve the purpose of reducing internal leakage when the valve is closed.
  • the sealing ring 22 is made of PTFE plastic, and its hardness is higher than that of a general rubber material, the limit of (D 2 -D 3 ) can be adjusted to 0.2 mm 2 .
  • the sealing ring 22 is made of a soft material to improve the sealing performance when the electric valve is closed.
  • the sealing ring 22 is made of a rubber material, such as nitrile rubber.
  • the end of the lower section 311 of the valve core 31 can abut or be separated from the first sealing portion 221 so that the second fluid port A and the first fluid port B are connected or disconnected.
  • the disconnection here means that the valve does not have internal No communication when leaking.
  • a small amount of internal leakage due to process and other reasons is not ruled out. Therefore, one of the effects of this patent is to reduce internal leakage, and the ideal purpose is to prevent internal leakage.
  • the inner cavity defining the valve body part 10 includes a second cavity 60 between the valve core 31 and the valve body part 10, that is, the first
  • the second cavity 60 refers to a space of the inner cavity of the valve body component that is located outside the valve core component and is not connected to the first cavity 50.
  • the radial dimension of the lower section 311 of the valve core 31 satisfies 0.1mm ⁇ D 2 -D 3 ⁇ 0.6mm, then D 2 -D 3 >0.1mm, which facilitates the processing of the valve core 31,
  • the end of the lower section 311 of the valve core 31 abuts against the seal ring 22 to prevent damage to the seal ring 22 when the valve is closed.
  • the range of (D 2 -D 3 ) is given above, and the lower limit of this range is 0.1mm.
  • the lower limit of (D 2 -D 3 ) can be adjusted according to the change of the material of the seal ring 22 Under the premise that the sealing ring 22 is made of soft material, the material hardness is higher, the lower limit can be adjusted to be relatively small, the range of (D 2 -D 3 ) becomes larger, and the material hardness is lower, the lower limit The value can be adjusted to be relatively large, and the range of (D 2 -D 3 ) is relatively small.
  • the minimum lower limit can be adjusted to 0.05mm, that is, (D 2 -D 3 ) ⁇ 0.05mm.
  • the limit of (D 2 -D 3 ) can be adjusted to 0.05 mm.
  • D 2 -D 3 ⁇ 0.6mm compared with D 2 -D 3 >0.6mm, can reduce the pressure difference force of the valve core component 10, and avoid the thicker wall of the lower section 311 that is not conducive to the opening of the electric valve. reliability.
  • the valve core moves in the valve opening direction until the valve core 31 is at a small opening position (for example, the valve opening pulse is less than 10% of the valve full opening pulse), it can also make the fluid flow faster in the lower section 311 and the seal ring 22 The flow between them further improves the valve performance.
  • the motorized valve is a two-way motorized valve, and the operating performance of the motorized valve in forward and reverse directions is better considered.
  • the service life of the sealing ring 22 is also considered.
  • the sealing ring 22 is made of soft materials such as rubber, it has a certain degree of elasticity and will elastically deform when subjected to external force.
  • the outer diameter D 2 of the lower section 311 is approximately equal in diameter
  • the inner diameter D 3 of the lower section 311 is approximately equal in diameter.
  • the valve core 31 moves downward to abut against the first sealing portion 221 to close the valve, the valve core During the downward movement of 31, in order to control the contact area of the lower section 311 of the valve core 31 and the seal ring 22, the size of the contact area is determined by the wall thickness of the lower section 311 (ie the value of D 2 -D 3 ) to prevent The change in the size of the contact area results in the change of the fluid pressure differential force received by the valve core 31, which affects the reliability of the valve opening and closing actions of the valve core 31. For this reason, the height of the lower section 311 of the valve core 31 is set to L ⁇ 0.4 mm.
  • the valve core 31 further includes a transition portion 313 disposed between the body portion 312 and the lower section portion 311.
  • the transition section 313 includes a first transition section 3131 connected with the lower section 311.
  • the longitudinal section of the first transition section 3131 is generally tapered, such as As shown in FIG. 4A, the inner diameter of the upper end of the first transition section 3131 is smaller than the inner diameter of the lower end of the first transition section 3131.
  • the inner wall of the first transition section 3131 has a first acute angle ⁇ with the horizontal direction.
  • the outer diameter of the upper end of the first transition section 3131 is larger than the outer diameter of the lower end of the first transition section 3131.
  • the outer wall of the first transition section 3131 has a second acute angle ⁇ with the horizontal direction.
  • the transition portion 313 also includes a second transition section 3132 connected with the body portion 312.
  • the inner diameter of the upper end of the second transition section 3132 is smaller than the inner diameter of the lower end of the second transition section 3132.
  • the upper end of the second transition section 3132 The outer diameter of the second transition section is smaller than the outer diameter of the lower end of the second transition section, the outer diameter of the upper end of the second transition section 3132 is greater than the inner diameter of the lower section 311, and the outer diameter of the upper end of the second transition section 3132 is smaller than the outer diameter of the lower section 311, so It is provided that the outer edge of the second sealing portion 321 is seated on the cross section of the lower section 311 in the axial projection loop line M of the valve core 31, which facilitates the force balance of the valve core component 30. It should be noted that the "force balance" in this article refers to general balance, not necessarily complete balance. If there is a slight force imbalance, it can be adjusted by appropriately changing the force of the driving part of the electric valve.
  • the lower end of the longitudinal section of the lower section 311 of the valve core 31 is roughly arc-shaped, so as to reduce the wear of the valve core 31 on the sealing ring 22 and improve the service life of the sealing ring 22.
  • the lower end surface of the valve core 31 may not be provided in the arc shape.
  • the lower end surface of the valve core 31 is substantially flat.
  • the arc-shaped portion is relatively small, and the overall outer diameter and inner diameter of the lower section 311 are set in approximately equal diameters respectively. The arc has little effect on the overall structure of the lower section 311.
  • FIG. 4B is a schematic diagram showing the structure of the first modification at I 2 of the valve core 31 in FIG. 3.
  • the first transition section 3131B of the transition portion 313B is different from the structure of FIG. 4A in that the outer diameter of the first transition section 3131B is equal to the outer diameter of the lower section 311B.
  • FIG. 4C is a schematic view showing the structure of the second modification at I 2 of the valve core 31 in FIG. 3.
  • the structure of the first transition section 3131C of the transition part is different from that of FIG. 4A in that the inner diameter of the first transition section 3131C is equal to the inner diameter of the lower section 311C.
  • the beneficial effects are the same as those of the valve core structure in FIG.
  • Fig. 4D shows a schematic structural view of the third modification at I 2 in Fig. 3.
  • the transition portion 313D has only the second transition section 3132, and the first transition section in Figs. 4A-4C is not designed.
  • a transition section but in order to facilitate the control of the contact area of the lower section 311D of the valve core 31 and the sealing ring 22, the length of the lower section 311D is longer, L ⁇ 0.4mm, to prevent the second transition section 3132 from being pressed to the seal Ring 22.
  • the valve seat component 20 further includes an inner bushing 25 and a pressure block 26.
  • the valve seat 21 includes an axial through hole 27.
  • the inner bushing 25 is partially arranged in the axial through hole 27 and welded to the valve seat 21.
  • the sealing ring 22 is specifically arranged between the outer side of the inner bushing 25 and the valve seat 21.
  • the valve seat 21 includes a first step portion 215, and the upper end of the valve seat 21 rivets and fixes the pressure block 26 on the step surface of the first step portion 215 of the valve seat 21.
  • the lower end surface of the pressure block 26 is also arranged opposite to the upper end surface of the sealing ring 22 to further axially limit the sealing ring 22.
  • the pressing block 26 includes a base 261 and a guide 262.
  • the inner diameter of the guide portion 262 is greater than the inner diameter of the base portion 261.
  • the valve core 31 interferes with the inner bushing 25 or the outer bushing 26 without clearance fit.
  • the inner diameter of the guide portion 262 is substantially enlarged from bottom to top, that is, the inner hole of the guide portion 262 is substantially expanded in diameter from the bottom to the top. In this way, not only the inner diameter of the guide portion is opposite to the axial direction of the valve core 31 The movement provides guidance.
  • a diversion space Q can be formed between the outside of the valve core 31 and the inner wall of the pressure block 26 , Conducive to fluid flow.
  • the two can cooperate to adjust the flow rate, which is convenient and low in cost.
  • the electric valve of each embodiment herein may be an electric valve with a bidirectional flow function (that is, when the electric valve is opened, the flow direction of fluid is from the second fluid port A to flow out from the first fluid port B (hereinafter referred to as positive ), or when the electric valve is opened, the flow direction of fluid can also enter from the first fluid port B and flow out from the second fluid port A (hereinafter referred to as reverse).
  • the electric valve of each embodiment can also be used for One-way circulation.
  • the ring line M of the axial projection of the second sealing portion 321 on the valve core 31 approximately coincides with the center ring line of the cross section of the lower section 311.
  • Such a design is not only beneficial to the force balance of the valve core component 30, but also, when the diameters D 1 and D 2 -D 3 of the ring line M of the axial projection of the second sealing portion 321 on the valve core 31 are known, The values of D 2 and D 3 can be designed easily and conveniently.
  • FIG. 5A shows a schematic diagram of the force analysis of the valve core component when the fluid enters in the forward direction
  • FIG. 5B shows a schematic diagram of the force analysis of the valve core component when the fluid enters in the reverse direction.
  • the electric valve of this scheme is designed with 1mm 2 ⁇ D 1 *(D 2 -D 3 ) ⁇ 6mm 2.
  • the electric valve is a two-way electric valve, it can improve the internal leakage performance and improve the reliability of valve closing at the same time. It can control the valve opening reliability of the electric valve in the forward and reverse directions to a good degree.
  • the above design is also conducive to the serialization of the product, that is, when D 1 is determined, the value range of D 2 -D 3 can be calculated through the above numerical relationship, that is, the wall thickness of the lower section 311 of the valve stem can be obtained. Similarly, when the range of D 2 -D 3 is determined, the numerical range of D 1 can be calculated through the above-mentioned numerical relationship.
  • the electric valve of the above embodiments may be an electronic expansion valve capable of adjusting the flow of fluid, or an on-off valve, such as a solenoid valve or a two-way valve.
  • the electromagnetic valve may be an electronic expansion valve capable of adjusting the flow of fluid, or an on-off valve, such as a solenoid valve or a two-way valve.
  • Fig. 6 is a schematic structural diagram of the second embodiment of the electric valve of the present invention.
  • Fig. 7 is a partial structural diagram of Fig. 6 and
  • Fig. 8 is a structural diagram of the valve core in Fig. 6.
  • the difference between the electric valve in this embodiment and the electric valve in the previous embodiment is that the sealing component is a part of the sealing seat component, and the valve core component is slidingly fitted with the sealing component.
  • the valve core includes a second sealing portion.
  • the valve seat component includes an inner bushing 25E and a pressure block 26E.
  • the bushing component 12E includes a bushing 121E and a sealing assembly.
  • the bushing 121E includes a second cylindrical portion 1211E (only part is shown in the figure).
  • the sealing assembly is fixed or limited on the bushing 121E.
  • the sealing assembly includes a sealing ring 35E and
  • the gasket 36E and the valve core 31E include a body portion 312E and a lower section portion 311E. At least part of the gasket 36E is in contact with the inner wall of the body portion 312E, and the sealing ring 35E is in contact with the inner wall of the bushing 121E.
  • the body portion 312E can slide relative to the sealing assembly.
  • the outer diameter of the body portion 312E is substantially the same, and the outer wall of the body portion 312E includes a second sealing portion 321E.
  • the diameter of the ring line N of the outer wall of the body portion 312E in the axial projection of the valve core 31E is D 1 .
  • the inner diameter of the lower portion 311E of the valve body 31E is substantially equal to, substantially equal to the outer diameter of the lower portion 311E, the outer diameter of the step portion 311E is D 2, define an inner diameter step portion 311E is D 3 define a diameter D 1 and the lower portion 311E of the
  • the relationship between the diameter D 2 of the outer diameter and the inner diameter D 3 of the lower section satisfies 1 mm 2 ⁇ D 1 *(D 2 -D 3 ) ⁇ 6 mm 2 .
  • the other structures of this embodiment can be understood with reference to Embodiment 1.
  • the various deformations of the lower section and the force-receiving relationship in Embodiment 1 are also applicable to this embodiment. Accordingly, this embodiment also has the beneficial effects of Embodiment 1.
  • the action performance of the electric valve in the forward and reverse directions is better considered, and the service life of the sealing ring 22 is also considered.
  • FIG. 9 shows a schematic structural diagram of Embodiment 3 of the electric valve of the present solution
  • FIG. 10 is a partial structural diagram of the electric valve in FIG. 9.
  • the electric valve is specifically a solenoid valve, which includes a head 100, a moving iron core 101, the head 100 and the moving iron core 101 as components of the driving part, the valve body part 102 and the valve seat part 103 are welded and fixed,
  • the valve core 31F includes a body portion 312F and a lower stage portion 311F.
  • the valve seat component includes an inner bushing 25F and a pressure block 26F.
  • the outer wall of the body portion 312F is of equal diameter design, and its outer wall is used as the second sealing portion.
  • the solenoid valve can also achieve the function of reducing the internal leakage of the electric valve of the previous embodiment when closing the valve.
  • Other structures of the solenoid valve can refer to the aforementioned implementation The design can also be changed without departing from the principle of this application, and the description will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)

Abstract

一种电动阀,包括阀体部件(10)、阀座部件(20)、阀芯部件(30),阀芯部件(30)设置于阀体部件(10)的内腔,阀芯部件(30)包括阀芯(31),阀芯(31)大致呈管状,阀芯(31)包括下段部(311),下段部(311)的外径大致呈等径设置,下段部(311)的内径大致呈等径设置,阀座部件(20)包括第一密封部(211),下段部(311)的端部能够与第一密封部(211)抵接或分离,阀体部件(10)包括衬套部件(12),阀芯部件(30)包括第二密封部(321),定义第二密封部(321)的外缘在下段部的横截面上的轴向投影环线的直径为D 1,定义下段部(311)的外径为D 2,定义下段部(311)的内径为D 3,则0.2mm 2≤D 1*(D 2-D 3)≤6mm 2。该电动阀可以减少电动阀关阀时的内泄漏。

Description

一种电动阀
本申请要求于2019年04月02日提交中国专利局、申请号为201910260394.7、发明名称为“一种电动阀”,以及2019年05月08日提交中国专利局、申请号为201910381370.7、发明名称为“一种电动阀”的两份中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及流体控制技术领域,具体涉及一种电动阀。
背景技术
图11所示为背景技术的一种电动阀的局部结构示意图。如图11所示的电动阀,包括阀座01,流体进口02和流体出口03。阀座01包括阀口部011,阀芯04能够轴向移动与阀口部011抵接或分离以关闭或打开电动阀的阀口012。如何减少电动阀关阀时的内泄漏,是本领域技术人员不断努力解决的一个技术问题。
发明内容
本发明的目的是提供一种电动阀,减少电动阀关阀时的内泄漏。
本发明所公开的电动阀包括阀体部件、阀座部件、阀芯部件,所述阀芯部件设置于所述阀体部件的内腔,所述阀芯部件包括阀芯,所述阀芯大致呈管状,所述阀芯包括本体部和下段部,所述下段部大致呈圆环状,所述下段部的外径大致呈等径设置,所述下段部的内径大致呈等径设置,所述阀座部件包括第一密封部,所述下段部的端部能够与所述第一密封部抵接或分离,所述阀体部件包括衬套部件,所述阀芯部件包括第二密封部,所述阀芯部件通过所述第二密封部与所述衬套部件滑动配合,所述第二密封部与所述衬套部件的内壁贴合;定义所述内腔包括位于所述阀芯部件上 方的第一腔,所述阀芯部件包括平衡流路,当所述下段部的端部与所述第一密封部抵接时,所述第一腔与电动阀的第一流体端口通过所述平衡流路连通,定义所述第二密封部的外缘在所述下段部的横截面上的轴向投影环线的直径为D 1,定义所述下段部的外径为D 2,定义所述下段部的内径为D 3,0.2mm 2≤D 1*(D 2-D 3)≤6mm 2
本发明所提供的电动阀,下段部大致呈圆环状,下段部的外径大致呈等径设置,下段部的内径大致呈等径设置,阀芯部件包括第二密封部,定义第二密封部的外缘在下段部的轴向投影环线的直径为D 1,定义下段部的外径为D 2,定义下段部的内径为D 3,则0.2mm 2≤D 1*(D 2-D 3)≤6mm 2,以减少电动阀关阀时的内泄漏。
附图说明
图1:本发明提供的一种电动阀在关阀状态下的结构示意图;
图2:图1中I 1处的局部放大图;
图3所示为图1中阀芯的结构示意图;
图4A所示为图3中I 2处的局部放大图;
图4B所示为图3的I 2处的第一变形例的结构示意图;
图4C所示为图3的I 2处的第二变形例的结构示意图;
图4D所示为图3的I 2处的第三变形例的结构示意图;
图5A所示为流体正向进入时阀芯部件的受力分析示意图;
图5B所示为流体反向进入时阀芯部件的受力分析示意图;
图6所示为本发明电动阀的实施例二结构示意图;
图7为图6的局部结构示意图;
图8所示为图6中阀芯的结构示意图;
图9所示为本发明提供的电动阀的实施例三的结构示意图;
图10所示为图9中电动阀的局部结构示意图;
图11所示为背景技术的一种电动阀的局部结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
这里需要说明的是,本文中所涉及的上和下等方位词是以零部件位于说明书附图中所示位置时定义的,只是为了表达技术方案的清楚及方便。应当理解,本文所采用的方位词不应限制本申请请求保护的范围。
本方中所述的“固定连接”可以是两个零部件直接固定连接,也可以是两个零部件通过其它零部件实现可行的固定连接,即两个零部件间接固定连接。
图1所示为本发明电动阀的实施例一结构示意图,图2所示为图1中I 1处的局部放大图,图3所示为图1中阀芯的结构示意图,图4A所示为图3中I 2处的局部放大图。
如图1到图3,图4A、图4B、图4C及图4D所示,该电动阀包括阀体部件10、阀座部件20、阀芯部件30和密封组件。阀体部件10包括阀体11,阀体11上开设有第二流体端口A。阀座部件20包括阀座21和密封环22,阀座21上设置有第一流体端口B。阀芯部件30设置于阀体部件10的内腔,阀芯部件30包括阀芯31,阀芯31大致呈管状,阀芯31包括圆环状(此处不单指内径和外径分别绝对等径的圆环,有少许不规则也是允许的,例如由于公差导致的)的下段部311,下段部311的内径大致呈等径设置,下段部311的外径大致呈等径设置。密封环22包括第一密封部221,下段部311的端部能够与第一密封部221抵接或分离以使第二流体端口A与第一流体端口B断开或连通,阀体部件10还包括衬套部件12,阀芯部件30包括第二密封部321,阀芯31通过第二密封部321与衬套部件12滑动配合,第二密封部321与衬套部件12的内壁贴合,定义阀体部件10的内腔包括位于阀芯部件30上方的第一腔50,阀芯部件30包括平衡流路E,当阀芯31与密封环22抵接时,第一腔50与第二流体端口A不连通,第一腔50与第一流体端口B通过平衡流路E连通。参照附图可以理解的是,如此设计,有利于阀芯部件30的受力平衡。
具体地,如图3所示,阀芯31包括本体部312,阀芯31的本体部312包括小径段3121和大径段3122,即,大径段3122的外径大于小径段3121 的外径。衬套部件12包括衬套121,衬套121的外壁与阀体部件10焊接固定,衬套121包括大致呈圆筒状的第一筒状部1211,第一筒状部1211的内径大致相等。阀芯部件30还包括密封组件,密封组件抵接于小径段3121的外壁与第一筒状部1211的内壁之间。具体地,密封组件包括密封圈35和垫片36,本体部312的大径段3122能够相对于第一筒状部1211内壁滑动,密封圈35设置于垫片36与小径段3121之间,密封圈35的内壁与小径段3121的外壁抵接,垫片36的外壁与第一筒状部1211的内壁抵接,以在阀芯31与衬套部件12之间形成动密封,动密封是指,密封组件能够相对于衬套121滑动,但密封组件又在阀芯部件30与衬套121之间形成密封,即,密封组件的上侧与下侧在该部位不连通,垫片36包括前述的第二密封部321,定义第二密封部321的外缘在下段部311的投影环线轴向投影环线的直径为D 1,本实施例中即第一筒状部1211的内径为D 1,定义下段部111的外径为D 2,定义下段部311的内径为D 3,第二密封部321的外缘在下段部311的横截面上的轴向投影环线的直径D 1与下段部311的外径的直径D 2及下段部311的内径D 3的关系满足1mm 2≤D 1*(D 2-D 3)≤6mm 2,以减少电动阀关阀时的内泄漏。
D 1*(D 2-D 3)≥1mm 2,则在轴向投影环线的直径D 1不变的情况下,下段部311的壁不会太薄,便于加工,另一方面,阀芯31的强度可靠性也较好,密封可靠性较好。再者,当阀芯31与下文所述的密封环22抵接以关阀时,若密封环22由软性材料制成,例如由橡胶材料制成,则如此设计,减小了下段部311超过密封环22材料承受极限的风险,减小阀芯31的下段部311对密封环22的冲击,利于延长密封环的使用寿命,使阀芯31与密封环22较好地配合,减少关阀时的内泄漏,利于电动阀的关阀可靠性。
上述给出了D 1*(D 2-D 3)的范围,该范围的下限值为1mm 2,可以理解,根据密封环22材质的变化,D 1*(D 2-D 3)的下限值可以调整,在密封环22为软性材质的前提下,其材质硬度高一些,则下限值可以调整为相对较小,D 1*(D 2-D 3)的范围变大,材质硬度低一些,则下限值可以调整为相对较大,D 1*(D 2-D 3)的范围相对小一些。下限值最小可以调整到0.2mm 2,即D 1*(D 2-D 3)≥0.2mm 2,也可以达到减少关阀时内泄漏的目的。比如,当密封 环22材质为PTFE塑料时,其硬度高于一般的橡胶材质,则(D 2-D 3)的限值就可以调整到0.2mm 2
而在轴向投影环线的直径D 1不变的情况下,D 1*(D 2-D 3)≤6mm 2,电动阀的开阀动作阻力得到改善,减少关阀时的内泄漏,利于电动阀开阀可靠性。具体将在后文详述。
其中,密封环22由软性材料制成以提高电动阀关阀时的密封性能,具体地,密封环22由橡胶材料制成,例如丁腈橡胶。阀芯31的下段部311的端部能够与第一密封部221抵接或分离以使第二流体端口A与第一流体端口B连通或不连通,此处的不连通是指阀不发生内泄漏时不连通。但实际产品中,不排除由于工艺等原因,产生少许的内泄漏,因此,本专利的效果之一是减少内泄漏,理想目的是不发生内泄漏。当阀芯31的下段部311的端部与第一密封部221抵接时,定义阀体部件10的内腔包括位于阀芯31与阀体部件10之间的第二腔60,也即第二腔60是指阀体部件的内腔的位于阀芯部件外侧且与第一腔50不连通的空间。在阀芯31与第一密封部221抵接没有发生内泄漏时,第二腔60与第一流体端口B不连通。
由于密封环22的材料属性,设置阀芯31的下段部311的径向尺寸满足0.1mm<D 2-D 3<0.6mm,则D 2-D 3>0.1mm,便于阀芯31的加工,改善阀芯31的下段部311的端部与密封环22抵接以关阀时对密封环22的损伤。
上述给出了(D 2-D 3)的范围,该范围的下限值为0.1mm,如前所述,根据密封环22材质的变化,(D 2-D 3)的下限值可以调整,在密封环22为软性材质的前提下,其材质硬度高一些,则下限值可以调整为相对较小,(D 2-D 3)的范围变大,材质硬度低一些,则下限值可以调整为相对较大,(D 2-D 3)的范围相对小一些。下限值最小可以调整到0.05mm,即(D 2-D 3)≥0.05mm。比如,当密封环22材质为PTFE塑料时,其硬度高于一般的橡胶材质,则(D 2-D 3)的限值就可以调整到0.05mm。
而D 2-D 3<0.6mm,较之D 2-D 3>0.6mm能够减少阀芯部件10受到的压差力,避免下段部311壁厚较厚带来的不利于电动阀的开阀可靠性。此外,在阀芯向开阀方向动作至阀芯31处于小开度位置时(例如开阀脉冲在阀全开脉冲10%以下),还能够使流体较快速地在下段部311与密封环22之间流过, 进一步提高阀的动作性能。进一步地,本实施例中,D 1=16.2mm,D 2-D 3=0.2mm时,较好地兼顾了电动阀为双向电动阀时,电动阀正向及反向时的动作性能,并还兼顾了密封环22的使用寿命。
由于密封环22由橡胶等软性材料制成,则其具有一定弹性,在受到外力作用时将发生弹性变形。下段部311的外径D 2大致呈等径设置,下段部311的内径D 3大致呈等径设置,当阀芯31向下移动以与第一密封部221抵接关阀时,在阀芯31下移过程中,为了控制阀芯31的下段部311与密封环22配合的接触面积,使接触面积的大小由下段部311的壁厚(即D 2-D 3的值)确定,防止因接触面积的大小的变化而导致阀芯31受到的流体压差力的变化而影响阀芯31的开阀及关阀动作可靠性,为此,设置阀芯31的下段部311的高度L≥0.4mm。
更进一步地,阀芯31还包括过渡部313,过渡部313设置本体部312与下段部311之间。为了便于控制上述阀芯31的下段部311与密封环22配合的接触面积,过渡部313包括与下段部311衔接的第一过渡段3131,第一过渡段3131的纵向截面大致呈锥形,如图4A所示,第一过渡段3131的上端的内径小于第一过渡段3131的下端的内径。具体地,第一过渡段3131的内壁与水平方向具有第一锐角夹角α。第一过渡段3131的上端的外径大于第一过渡段3131的下端的外径,具体地,第一过渡段3131的外壁与水平方向具有第二锐角夹角β。如图3所示,过渡部313还包括与本体部312衔接的第二过渡段3132,第二过渡段3132的上端的内径小于第二过渡段3132的下端的内径,第二过渡段3132的上端的外径小于第二过渡段的下端的外径,第二过渡段3132的上端的外径大于下段部311的内径,第二过渡段3132的上端的外径小于下段部311的外径,如此设置,第二密封部321的外缘在阀芯31的轴向投影环线M座落于下段部311横截面上,利于阀芯部件30的受力平衡。需要说明的是,本文中的“受力平衡”是指大体平衡,未必是完全的平衡,如果有稍许的受力不平衡,可以通过适当改变电动阀的驱动部件的作用力来调节。
阀芯31的下段部311的纵截面下端大致呈圆弧状,以减少阀芯31对密封环22的磨损,提高密封环22的使用寿命。需要说明的是,本方案中, 阀芯31的下端面不设置为该圆弧状也是可以的,例如,阀芯31的下端面大致为小平面状。此处需要说明的是,下段部311的纵截面下端大致呈圆弧状时,该圆弧状部分是比较小的,下段部311整体的外径和内径还是分别大致呈等径设置的,圆弧部对下段部311的整体结构的影响不大。
图4B所示为图3中阀芯31的I 2处的第一变形例的结构示意图。在该实施例的阀芯中,过渡部313B的第一过渡段3131B与图4A结构不同之处在于,第一过渡段3131B的外径等于下段部311B的外径。图4C所示为图3中阀芯31的I 2处的第二变形例的结构示意图。在该实施例的阀芯中,过渡部的第一过渡段3131C与图4A结构不同之处在于,第一过渡段3131C的内径等于下段部311C的内径。其有益效果同前图4A中阀芯结构有益效果,在此不再重复叙述。图4D所示为图3中I 2处的第三变形例的结构示意图,在该实施例的阀芯中,过渡部313D仅具有第二过渡段3132,未设计图4A-图4C中的第一过渡段,但为了便于上述阀芯31的下段部311D与密封环22配合的接触面积的控制,其下段部311D的长度较长,L≥0.4mm,以避免第二过渡段3132压到密封环22。
如图2所示,阀座部件20还包括内衬套25和压块26。阀座21包括轴向通孔27,内衬套25部分地设置在轴向通孔27中并与阀座21焊接固定,密封环22具体设置在内衬套25的外侧和阀座21之间,阀座21包括第一台阶部215,阀座21的上端将压块26铆压固定在阀座21的第一台阶部215的台阶面上。压块26的下端面还与密封环22的上端面相对设置,以对密封环22进行进一步的轴向限位。当然,可以理解的是,压块26的下端面可以与密封环22抵接,也可以不抵接。压块26包括基部261和导向部262。导向部262的内径大于基部261的内径,当下段部311与密封环22的第一密封部221抵接时,阀芯31的下段部311与内衬套25、压块26的基部261能够间隙配合。此处能够间隙配合是指,理想状态时,阀芯31与内衬套25和压块26均间隙配合,以避免发生干涉,但考虑到装配及工艺等因素,可能存在不期望的下述情况:阀芯31与内衬套25或外衬套26发生干涉而没有间隙配合。进一步地,导向部262的内径大致呈自下向上渐大设置,即,导向部262的内孔自下向上大致呈扩径状设置,这样,不仅在导向部的内侧对阀芯31的轴向运动提供导向, 阀芯31的下段部311的端部与密封环22的第一密封部221抵接时,还能在阀芯31的外部与压块26的内壁之间形成一个导流空间Q,利于流体的流动。而且,阀芯31相对于压块26轴向移动过程中,二者配合还能够进行流量调节,流量调节方便,成本低。
本文各实施例的电动阀可以是具有双向流通功能的电动阀(即,电动阀开阀时,流体的流向为自第二流体端口A进入,自第一流体端口B流出(以下简称为正向),或电动阀开阀时,流体的流向还可以自第一流体端口B进入,自第二流体端口A流出(以下简称为反向)。当然,各实施例的电动阀也可以是仅供单向流通。
图1所示实施例中,当所述电动阀处于关阀状态时,第二密封部321在阀芯31的轴向投影环线M与下段部311的横截面的中心环线大致重合。如此设计,不仅有利于阀芯部件30的受力平衡,而且,当第二密封部321的外缘在阀芯31的轴向投影环线M的直径D 1和D 2-D 3已知时,可以方便容易地设计D 2和D 3的值。
图5A所示为流体正向进入时阀芯部件的受力分析示意图,图5B所示为流体反向进入时阀芯部件的受力分析示意图。
如图5A及图5B所示,当压力为P的流体正向进入时,在关阀状态下,阀芯部件30主要受到的压差力F =Pπ(D 2 2-D 1 2),力的作用方向向下;当压力为P的流体反向进入时,在关阀状态下,阀芯部件30主要受到的压差力F =Pπ(D 1 2-D 3 2),力的作用方向向下,有利于关阀的动作可靠性,也有利于减小电动阀关阀时的内泄漏。
在电动阀阀芯以外的结构尺寸一定时,即在D 1不变时,若D 1*(D 2-D 3)≥6mm 2。则D 2-D 3增加,有如下三种情况:第一,D 2不变,D 3减小;第二,D 2增加,D 3不变;第三,D 2及D 3均增加。
如D 2不变,D 3减小时,则F 基本无变化,F 增加,即流体正向流入时,其对开阀及关阀动作影响不大,流体反向流入时,开阀阻力增加,不利于流体反向流入时电动阀的开阀可靠性,D 2-D 3的值越大,其不利影响越大。
如D 2增加,D 3不变,则F 增加,F 基本无变化,流体正向流入时, 开阀阻力增加,不利于流体正向流入时电动阀的开阀可靠性,D 2-D 3的值越大,其不利影响越大。流体反向流入时,其对开阀及关阀动作影响不大。
如D 2及D 3均增加,则F 增加,F 减小,流体正向流入时,开阀阻力增加,不利于流体正向流入时电动阀的开阀可靠性,D 2-D 3的值越大,其不利影响越大。流体反向流入时,其利于开阀动作。
因此,本方案的电动阀,设计1mm 2≤D 1*(D 2-D 3)≤6mm 2,当电动阀为双向电动阀时,在改善内泄漏性能以改善关阀可靠性的同时,还能够将电动阀正向及反向时的开阀可靠性均控制在一个较好的程度内。
上述设计,还有利于产品的系列化,即在D 1确定时,可以通过上述数值关系计算出D 2-D 3的数值范围,即得出阀杆的下段部311的壁厚。同样地,即在D 2-D 3范围确定时,可以通过上述数值关系计算出D 1的数值范围。
需要说明的是,在前述技术方案的说明基础上,可以理解的是,上述各实施例的电动阀,可以是能够调节流体的流量的电子膨胀阀,也可以是开关阀,例如电磁阀或双向电磁阀。
图6所示为本发明电动阀的实施例二结构示意图。图7为图6的局部结构示意图,图8所示为图6中阀芯的结构示意图。
本实施例的电动阀与前一实施例中电动阀的区别在于,密封组件是密封座部件的一部分,阀芯部件与密封组件滑动配合。阀芯包括第二密封部。具体说明如下:
如图6-图8所示,阀座部件包括内衬套25E和压块26E。衬套部件12E包括衬套121E和密封组件,衬套121E包括第二筒状部1211E(图中仅示出部分),密封组件固定或限位在衬套121E上,密封组件包括密封圈35E和垫片36E,阀芯31E包括本体部312E和下段部311E,至少部分垫片36E与本体部312E的内壁贴合抵接,密封圈35E与衬套121E的内壁抵接。本体部312E能够相对于密封组件滑动。本体部312E的外径大致相同,本体部312E的外壁包括第二密封部321E。本体部312E的外壁在阀芯31E的轴向投影环线N的直径为D 1。阀芯31E的下段部311E的内径大致相等,下段部311E的外径大致相等,定义下段部311E的外径为D 2,定义下段部311E的内径为D 3,直径D 1与下段部311E的外径的直径D 2及下段部的内径D 3的 关系满足1mm 2≤D 1*(D 2-D 3)≤6mm 2。本实施例的其它结构可以参照实施例一理解,实施例一关于下段部的各种变形及其受力关系同样适用于本实施例,相应地,本实施例也具有实施例一的有益效果,可参照实施例一理解,在此不再重述。更具体地,本实施例中,D 1=9.2mm,D 2-D 3=0.5mm。较好地兼顾了电动阀为双向电动阀时,电动阀正向及反向时的动作性能,并还兼顾了密封环22的使用寿命。
图9所示为本方案的电动阀的实施例三的结构示意图,图10为图9中电动阀的局部结构示意图。
如图所示,该电动阀具体为电磁阀,包括封头100,动铁芯101,封头100和动铁芯101作为驱动部件的组成部分,阀体部件102与阀座部件103焊接固定,阀芯31F包括本体部312F和下段部311F。阀座部件包括内衬套25F和压块26F。本实施例中,本体部312F的外壁呈等径设计,其外壁作为第二密封部,第二密封部的直径D 1与下段部311F的外径D 2及下段部311F的内径D 3满足1mm 2≤D 1*(D 2-D 3)≤6mm 2,该电磁阀也同样能够实现前述实施例电动阀的减小关阀时的内泄漏的作用,该电磁阀的其它结构可以参照前述实施例进行设计,也可以在不脱离本申请原理的框架内进行变更设计,在此不再重复叙述。
以上对本发明所提供的电动阀进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (21)

  1. 一种电动阀,包括阀体部件、阀座部件、阀芯部件,所述阀芯部件设置于所述阀体部件的内腔,其特征在于,所述阀芯部件包括阀芯,所述阀芯大致呈管状,所述阀芯包括本体部和下段部,所述下段部大致呈圆环状,所述下段部的外径大致呈等径设置,所述下段部的内径大致呈等径设置,所述阀座部件包括第一密封部,所述下段部的端部能够与所述第一密封部抵接或分离,所述阀体部件包括衬套部件,所述阀芯部件包括第二密封部,所述阀芯部件通过所述第二密封部与所述衬套部件滑动配合,所述第二密封部与所述衬套部件的内壁贴合;定义所述内腔包括位于所述阀芯部件上方的第一腔,所述阀芯部件包括平衡流路,当所述下段部与所述第一密封部抵接时,所述第一腔与所述电动阀的第一流体端口通过所述平衡流路连通,定义所述第二密封部的外缘在所述下段部的横截面上的轴向投影环线的直径为D 1,定义所述下段部的外径为D 2,定义所述下段部的内径为D 3,则0.2mm 2≤D 1*(D 2-D 3)≤6mm 2
  2. 根据权利要求1所述的电动阀,其特征在于,满足1mm 2≤D 1*(D 2-D 3)≤6mm 2
  3. 根据权利要求1或2所述的电动阀,其特征在于,所述阀座部件包括密封环,所述密封环由软性材料制成,所述密封环包括所述第一密封部,所述下段部的端部能够与所述第一密封部抵接或分离以使所述电动阀的第二流体端口与所述第一流体端口断开或连通,且满足0.1mm<D 2-D 3<0.6mm。
  4. 根据权利要求1或2所述的电动阀,其特征在于,所述阀座部件包括密封环,所述密封环由软性材料制成,所述密封环包括所述第一密封部,所述下段部的端部能够与所述第一密封部抵接或分离以使所述电动阀的第二流体端口与所述第一流体端口断开或连通,定义所述下段部的高度为L,则L≥0.4mm。
  5. 根据权利要求1或2所述的电动阀,其特征在于,所述阀座部件包括密封环,所述密封环由软性材料制成,所述密封环包括所述第一密封部,所述下段部的端部能够与所述第一密封部抵接或分离以使所述电动阀的第二流体端口与所述第一流体端口断开或连通,定义所述下段部的高度为L, 则L≥0.4mm,且0.1mm<D 2-D 3<0.6mm。
  6. 根据权利要求3或5所述的电动阀,其特征在于,
    满足0.05mm≤D 2-D 3<0.6mm。
  7. 根据权利要求4所述的电动阀,其特征在于,所述本体部与所述下段部之间包括过渡部,所述过渡部包括与所述下段部衔接的第一过渡段,所述第一过渡段的上端的内径小于所述第一过渡段的下端的内径。
  8. 根据权利要求4所述的电动阀,其特征在于,所述本体部与所述下段部之间包括过渡部,所述过渡部包括与所述下段部衔接的第一过渡段,所述第一过渡段的上端的外径大于所述第一过渡段的下端的外径。
  9. 根据权利要求4所述的电动阀,其特征在于,所述本体部与所述下段部之间包括过渡部,所述过渡部包括与所述下段部衔接的第一过渡段,所述第一过渡段的上端的内径小于所述第一过渡段的下端的内径,所述第一过渡段的上端的外径大于所述第一过渡段的下端的外径。
  10. 根据权利要求1或2所述的电动阀,其特征在于,所述本体部与所述下段部之间包括过渡部,所述过渡部包括与所述本体部衔接的第二过渡段,所述第二过渡段的上端的内径小于所述第二过渡段的下端的内径,所述第二过渡段的上端的外径小于所述第二过渡段的下端的外径及所述下段部的外径,所述第二过渡段的上端的外径大于所述下段部的内径。
  11. 根据权利要求1-10任一项所述的电动阀,其特征在于,所述阀芯部件还包括密封组件,所述衬套部件包括大致呈圆筒状的第一筒状部,所述密封组件抵接于所述阀芯的外壁与所述第一筒状部的内壁之间,所述密封组件包括所述第二密封部,所述第二密封部与所述第一筒状部的内壁滑动贴合。
  12. 根据权利要求11所述的电动阀,其特征在于,所述密封组件包括密封圈和垫片,所述本体部包括小径段和大径段,所述密封圈设置于所述垫片与所述小径段之间,所述垫片包括所述第二密封部,所述阀体部件还包括阀体,所述衬套部件包括与所述阀体焊接固定的衬套,所述衬套包括所述第一筒状部,所述第一筒状部的内径大致相等,所述第一筒状部的内壁的直径为D 1
  13. 根据权利要求11所述的电动阀,其特征在于,D 1=16.2mm,D 2-D 3=0.2mm。
  14. 根据权利要求1-10任一项所述的电动阀,其特征在于,所述衬套部件包括衬套和密封组件,所述阀体部件还包括阀体,所述衬套与所述阀体焊接固定,所述衬套包括第二筒状部,所述密封组件抵接于所述第二筒状部的内壁与所述本体部的外壁之间,所述本体部的外径大致相等,所述本体部包括所述第二密封部。
  15. 根据权利要求14所述的电动阀,其特征在于,D 1=9.2mm,D 2-D 3=0.5mm。
  16. 根据权利要求14所述的电动阀,其特征在于,所述密封组件包括密封圈和垫片,所述密封圈设置于所述垫片与所述第二筒状部之间,至少部分所述垫片与所述本体部的外壁贴合。
  17. 根据权利要求1-10任一项所述的电动阀,其特征在于,所述阀座部件还包括内衬套和压块,所述阀座包括轴向通孔,所述内衬套至少部分地设置于所述轴向通孔,所述密封环设置于所述内衬套的外侧与所述阀座之间,所述阀座包括第一台阶部,所述压块的下端面与所述第一台阶部和/或所述密封环抵接。
  18. 根据权利要求17所述的电动阀,其特征在于,所述阀座与所述压块铆压固定,所述压块包括与所述密封环抵接的基部和设置于所述基部上方的导向部,所述导向部的内径大致呈自下向上渐大设置;当所述下段部的端部与所述密封环抵接时,所述下段部与所述内衬套及所述基部能够间隙配合。
  19. 根据权利要求1-10任一项所述的电动阀,其特征在于,所述轴向投影环线与所述下段部的横截面的中心环线大致重合,所述下段部的纵截面下端大致呈圆弧状。
  20. 根据权利要求1-19任一项所述的电动阀,其特征在于,所述电动阀为电子膨胀阀或电磁阀。
  21. 根据权利要求20所述的电动阀,其特征在于,所述电子膨胀阀为双向电子膨胀阀,所述电磁阀为双向电磁阀。
PCT/CN2020/082916 2019-04-02 2020-04-02 一种电动阀 WO2020200266A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217021849A KR102535388B1 (ko) 2019-04-02 2020-04-02 전기밸브
US17/312,334 US11835145B2 (en) 2019-04-02 2020-04-02 Electric valve
US18/495,322 US20240060567A1 (en) 2019-04-02 2023-10-26 Electric valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910260394.7 2019-04-02
CN201910260394 2019-04-02
CN201910381370.7 2019-05-08
CN201910381370.7A CN111765252B (zh) 2019-04-02 2019-05-08 一种电动阀

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/312,334 A-371-Of-International US11835145B2 (en) 2019-04-02 2020-04-02 Electric valve
US18/495,322 Continuation US20240060567A1 (en) 2019-04-02 2023-10-26 Electric valve

Publications (1)

Publication Number Publication Date
WO2020200266A1 true WO2020200266A1 (zh) 2020-10-08

Family

ID=72665001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082916 WO2020200266A1 (zh) 2019-04-02 2020-04-02 一种电动阀

Country Status (1)

Country Link
WO (1) WO2020200266A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166924A (zh) * 2005-04-27 2008-04-23 伊格尔工业股份有限公司 密封结构和使用了该密封结构的控制阀
CN103133701A (zh) * 2011-11-22 2013-06-05 浙江三花股份有限公司 一种电动阀
CN203756982U (zh) * 2013-12-20 2014-08-06 杨顺立 三角环密封垫圈和采用三角环密封垫圈的活接
CN104791502A (zh) * 2014-01-20 2015-07-22 浙江三花股份有限公司 一种电动阀
CN104791497A (zh) * 2014-01-20 2015-07-22 浙江三花股份有限公司 一种直动式电动阀
CN104964054A (zh) * 2015-01-21 2015-10-07 王瑞林 流体力平衡锥面直角阀门
CN205207692U (zh) * 2014-10-21 2016-05-04 株式会社鹭宫制作所 流体控制阀
JP2016118223A (ja) * 2014-12-19 2016-06-30 太平洋工業株式会社 電動弁
JP2017180639A (ja) * 2016-03-30 2017-10-05 株式会社鷺宮製作所 シール構造及び電動弁
CN108019535A (zh) * 2018-01-04 2018-05-11 中国石油大学(北京) 阀芯采用密封锥面的两位三通换向阀
CN208519189U (zh) * 2018-04-02 2019-02-19 浙江三花制冷集团有限公司 一种电动阀

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166924A (zh) * 2005-04-27 2008-04-23 伊格尔工业股份有限公司 密封结构和使用了该密封结构的控制阀
CN103133701A (zh) * 2011-11-22 2013-06-05 浙江三花股份有限公司 一种电动阀
CN203756982U (zh) * 2013-12-20 2014-08-06 杨顺立 三角环密封垫圈和采用三角环密封垫圈的活接
CN104791502A (zh) * 2014-01-20 2015-07-22 浙江三花股份有限公司 一种电动阀
CN104791497A (zh) * 2014-01-20 2015-07-22 浙江三花股份有限公司 一种直动式电动阀
CN205207692U (zh) * 2014-10-21 2016-05-04 株式会社鹭宫制作所 流体控制阀
JP2016118223A (ja) * 2014-12-19 2016-06-30 太平洋工業株式会社 電動弁
CN104964054A (zh) * 2015-01-21 2015-10-07 王瑞林 流体力平衡锥面直角阀门
JP2017180639A (ja) * 2016-03-30 2017-10-05 株式会社鷺宮製作所 シール構造及び電動弁
CN108019535A (zh) * 2018-01-04 2018-05-11 中国石油大学(北京) 阀芯采用密封锥面的两位三通换向阀
CN208519189U (zh) * 2018-04-02 2019-02-19 浙江三花制冷集团有限公司 一种电动阀

Similar Documents

Publication Publication Date Title
JP4688404B2 (ja) 高性能流体制御弁
KR102096387B1 (ko) 전자 팽창 밸브
CN205371758U (zh) 电磁球阀
CN101270821A (zh) 带有用于保持轴向密封件的可移动机构的球阀
JP2006512546A (ja) 流体を制御するための弁
US20240060567A1 (en) Electric valve
CN101988583B (zh) 电磁阀
WO2015097786A1 (ja) ウェイストゲートバルブ装置
CN103939624A (zh) 一种减压阀
CN110107719B (zh) 一种压力控制阀
WO2020200266A1 (zh) 一种电动阀
JP4418267B2 (ja) チェックバルブ
WO2020200265A1 (zh) 一种电动阀
WO2020259656A1 (zh) 一种电子膨胀阀
CN218267295U (zh) 电子膨胀阀
CN111765258B (zh) 一种电动阀
JP4758626B2 (ja) ソレノイドバルブ
CN216519693U (zh) 高温调节阀
JP5767124B2 (ja) 制御弁
JP2002089722A (ja) 圧力制御弁
JP2023540685A (ja) 一方向弁及び空調機器
WO2024060983A1 (zh) 电子膨胀阀
CN110260023A (zh) 一种先导式电磁阀
CN215110543U (zh) 一种电磁阀
WO2023116656A1 (zh) 电动阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217021849

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782858

Country of ref document: EP

Kind code of ref document: A1